
Noname manuscript No.
(will be inserted by the editor)

Bound-Consistent Spread Constraint

Application to load balancing in nurse-to-patient assignments

Pierre Schaus · Jean-Charles Régin

Received: date / Accepted: date

Abstract Given a vector of finite domain variables, the spread constraint aims
at minimizing the sum of squares of these variables while constraining the sum
of these to be equal to a given value. We improve the existing filtering for spread
achieving a bound-consistent filtering without increasing the complexity. Previous
versions of the algorithm considered a relaxed version of the bound-consistency
assuming interval domains defined on rational numbers rather than integers. We
apply our new algorithm to a real life problem: the daily assignment of newborn
infant patients to nurses in a hospital. The objective is to balance the workload of
the nurses, while satisfying a variety of side constraints. Prior work proposed a MIP
model for this problem, which unfortunately did not scale to large instances and
only approximated the objective function, since minimizing the variance cannot
be expressed in a linear model. This paper presents a two-step approach, first
assigning nurses to region of the hospital then assigning the patients to these. We
show that our approach allows to tackle large instances with hundreds of patients
and nurses in a few seconds using the OscaR optimization system.

Keywords Global Constraint · Nurse Rostering · Fair Assignment

1 Introduction

Balancing constraints arise in many real-world applications, most often to express
the need of a fair distribution of items or work. Simonis [16] suggested a global
constraint to balance the shift distribution among nurses and Pesant [7] proposed
the use of balancing constraints for a fair allocation of individual schedules.

Two global constraints and their propagators are available in constraint pro-
gramming for optimizing load balancing: spread [8,12], which constrains the vari-

P. Schaus
Université catholique de Louvain, ICTEAM (Belgium)
E-mail: pierre.schaus@uclouvain.be

J-C. Régin
Université de Nice-Sophia Antipolis (France)
E-mail: jcregin@gmail.com

2 Pierre Schaus, Jean-Charles Régin

ance and the mean of a set of variables, and deviation [13,11], which constrains
the mean absolute deviation and the mean of a set of variables. We also say that
spread and deviation respectively constrain the L2 and L1 norms of a set of
variables X1..Xn with respect to their mean (s =

∑
i∈[1..n]Xi), i.e.,

– L1:
∑
i∈[1..n] |Xi − s/n|;

– L2:
∑
i∈[1..n](Xi − s/n)2.

These criteria are not equivalent: Minimizing L1 or L2 does not lead to the same
solutions and it is not always obvious which one to choose. In fact, this is an old
and recurrent debate (see for instance [1]). The L2 criteria is more sensitive to
outliers.

Contributions This article improves the filtering algorithm for the spread con-
straint. The initial filtering introduced in [8] is for a very general version of spread
including a variable mean and a variable representing the median. Unfortunately
this algorithm has never been implemented and is very difficult to understand1. A
simplified version with a fixed constant mean was introduced in [12]. As in [8], this
algorithm achieves a relaxed version of the bound-consistency assuming continuous
interval domains. We introduce a stronger filtering achieving the classical bound-
consistency on integer domains. We give all the details (proofs and pseudocode)
of the intermediate results introduced in [8,12] and reused in our new algorithm.
Our algorithm is explained visually and illustrated on numeric examples for each
step; making is possible for someone to re-implement it. Our implementation is
freely available in OscaR solver [6].

As an application for spread we revisit a problem of nurse-to-patient assign-
ment first introduced in [4] and solved with CP in [14]. This problem considers a
fair distribution of the workload assigned to nurses. We use the two-step decom-
position approach from [4] computing first the number of nurses allocated to each
zone before solving the problem in each zone independently. We prove that the
first step can be solved optimally by solving a resource allocation problem. This
proof was missing in [14]. Finally we show that for some instances, we can prove
the two-step approach to be optimal using a new optimality check procedure for
this problem.

Organization Section 2 formally defines the consistency levels achieved by the fil-
tering algorithms from [8,12] and our new algorithm. Section 3 reviews the exist-
ing filtering algorithm and explains in detail the new filtering algorithms achieving
bound-consistency for spread. Section 4 introduces the two-step decomposition ap-
proach to solve the nurse-to-patient assignment problem and experimental results
using the new filtering for spread.

2 Definition

Preliminaries: We use the following definitions and notations to describe the se-
mantics of the spread constraint and propagators.

1 the ideas of the paper are correct. However, it contains some errors in the resolution of
second degree equations which complexifies its implementation

Bound-Consistent Spread Constraint 3

Definition 1 Let X be a finite-domain (discrete) variable. The domain of X is
a set of ordered values that can be assigned to X and is denoted by Dom(X).
The minimum (resp. maximum) value of the domain is denoted by Xmin =
min(Dom(X)) (resp. Xmax = max(Dom(X)). An integer interval with integer
bounds a and b is denoted [a..b] ⊆ Z, while a rational interval is denoted [a, b] ⊆ Q.
An assignment on the variables X = [X1, X2, ..., Xn] is denoted by the tuple x
and the i-th entry of this tuple by x[i]. The extended rational interval domain
of Xi is IQD(Xi) = [Xmin

i , Xmax
i] and its integer interval domain is IZD(Xi) =

[Xmin
i .. Xmax

i]. Since we always consider n variables, when not specified other-
wise our summations always range over [1..n] i.e.

∑
i is equivalent to

∑
i∈[1..n].

Similarly when it is possible we simplify ∀i ∈ [1..n] into ∀i.

Before defining formally the spread constraint observe that if
∑
iXi = s then:

n ·
∑
i

|Xi − s/n|2 = n ·
∑
i

X2
i − s2. (1)

It means that adding a constraint on L2 criteria with a fixed sum value is
equivalent to adding a constraint on

∑
iX

2
i since s and n are constants. But

working with the latter is more convenient when dealing with finite domain integer
variables. We now define the spread constraint with a fixed mean.

Definition 2 Given finite domain variables X = (X1, X2, ..., Xn), an integer value
s and a finite domain variable ∆, spread(X, s,∆) holds if and only if∑

i

Xi = s and
∑
i

X2
i ≤ ∆.

Example 1 Tuple x = (2, 3, 3, 2) ∈ spread([X1, X2, X3, X4], s = 10,∆ = 26) but
x = (1, 4, 3, 2) /∈ spread([X1, X2, X3, X4], s = 10,∆ = 26) because 12 + 42 + 32 +
22 = 30 > 26.

The definition of bound-consistency specialized for continuous and integer in-
terval domains is given next:

Definition 3 (Q-bound-consistency and Z-bound-consistency) A constraint
C(X1, . . . , Xn) (n > 1) is Q-bound-consistent (resp. Z-bound-consistent) with re-
spect to domainsDom(Xi) if for all i ∈ {1, . . . , n} and each value vi ∈ {Xmin

i , Xmax
i },

there exist values vj ∈ IQD(Xj) (resp. vj ∈ IZD(Xj)) for all j ∈ {1, . . . , n} − {i}
such that (v1, . . . , vn) ∈ C.

Note that for the L1 criterion, the Q-bound-consistency filtering was introduced
in [13] and the Z-bound-consistency filtering in [11]. The Q-bound-consistency
filtering for spread is described in [8,12]. Our contribution is a stronger Z-bound-
consistency filtering for integer domains obtained by adapting the algorithm from
[12].

We illustrate in the next example that the Z-bound-consistency for spread can
be stronger than the Q-bound-consistency:

Example 2 Consider 10 variables with domains all equal to [1..2] and a sum that
must be equal to 15. An assignment (from the extended continuous domain) min-
imizing the sum of squares would assign all of them to 1.5. The lower bound on

4 Pierre Schaus, Jean-Charles Régin

the sum of square variables will thus be set to 10 · 1.52 = 22.5. An integer assign-
ment minimizing the sum of squares would assign five variables to 2 and the other
five to 1. The lower bound on the sum of square variables would thus be set to
5 · 22 + 5 · 12 = 25.

To achieve Z-bound-consistency, the propagators for spread compute ∆Z to

filter ∆min, and X
Z
i and XZ

i to filter Xmax
i and Xmin

i :

∆Z = min
x
{
∑
i

x[i]2 s.t.
∑
i

x[i] = s (2)

and ∀i : x[i] ∈ IZD(Xi)}

X
Z
i = max

x
{x[i] s.t.

∑
j

x[j]2 ≤ ∆max and (3)

∑
j

x[j] = s and ∀j : x[j] ∈ IZD(Xj)}.

Note that XZ
i is defined similarly. The filtering of ∆ is implemented in time com-

plexity O(n · log(n)) and that of X in O(n2). The next section explains how to
compute these quantities efficiently to filter ∆ and Xi’s.

3 Filtering for Spread

First we explain in detail the O(n · log(n)) algorithm from [8] to compute ∆Q.
Then we adapt this algorithm to compute ∆Z. The key point of the algorithm
given in the next theorem (in the Q context) is a clear characterization of an
optimal solution to the problem of minimization of the sum of squares with a
given sum. This theorem says that in an assignment of sum s minimizing the sum
of squares, there cannot exist two values that can be made closer by moving both
of them inside their corresponding domains.

Theorem 1 x ∈ argminy{
∑
i y[i]2 s.t.

∑
i y[i] = s and ∀i : y[i] ∈ IQD(Xi)} ⇔∑

i x[i] = s and @ (i, j) such that: i 6= j, x[i] < Xmax
i , x[j] > Xmin

j and x[i] < x[j].

Proof We denote by opt(x) the left member of the bi-conditional symbol and by
¬p(x) the right member.

(⇒) p(x) ⇒ ¬opt(x): Assume it is possible to find a pair i, j such that
x[i] < Xmax

i , x[j] > Xmin
j and x[i] < x[j], then it is possible to transform the

assignment x into a assignment x′ also of sum s with
∑
i x
′[i]2 <

∑
i x[i]2. We

define the positive value δ = min{((x[j]−x[i])/2), (Xmax
i −x[i]), (x[j]−Xmin

j)}
and x′[k] = x[k] ∀k 6= i, j, x′[j] = x[j] − δ, x′[i] = x[i] + δ. If we define
∆(x) =

∑
i x[i]2, then ∆(x) − ∆(x′) = −2δ2 + 2δ · (x[j] − x[i]) ≥ δ2 > 0

because (x[j]− x[i]) ≥ 2δ.
(⇐) ¬opt(x) ⇒ p(x): We assume that x is not optimal and we consider x′ a
modified version of x also of sum s. Without loss of generality, we consider that
the first k entries were increased, the next l were decreased and the other were
left unchanged: (x′[i] − x[i]) = δi > 0 for i ∈ [1..k], (x[i] − x′[i]) = δi > 0 for

Bound-Consistent Spread Constraint 5

i ∈ [k+ 1..k+ l] and x[i] = x′[i] for i ∈ [(k+ l+ 1)..n]. The sum s is preserved
from x to x′ if

∑k
i=1 δi −

∑k+l
i=k+1 δi = 0. The difference between the sum of

squares can be written as:

∆(x)−∆(x′) = −
k+l∑
i=1

δ2i − 2 ·
k∑
i=1

x[i]δi + 2 ·
k+l∑
i=k+1

x[i]δi.

We show that this difference is strictly negative (i.e. x′ does not improve x)
if every increasing entry is larger than every decreasing entry, ∀i ∈ [1..k], ∀j ∈
[k+ 1..k+ l] : x[i] > x[j]. A lower bound on (

∑k
i=1 x[i]δi) is ((mini∈[1..k] x[i]) ·∑k

i=1 δi) and a strict upper bound on (
∑k+l
i=k+1 x[i]δi) is ((mini∈[1..k] x[i]) ·∑k+l

i=k+1 δi). Hence we have:

∆(x)−∆(x′) < (−
k+l∑
i=1

δ2i)+2 ·(min
i∈[1..k]

x[i]) ·(−
k∑
i=1

δi+

k+l∑
i=k+1

δi) = −
k+l∑
i=1

δ2i < 0

because
∑k
i=1 δi −

∑k+l
i=k+1 δi = 0. ut

An assignment x such that @ i, j with x[i] < Xmax
i , x[j] > Xmin

j and x[i] < x[j]
is called a ν-Qcentered assignment in [8]:

Definition 4 (ν-Qcentered assignment [8]) A ν-Qcentered assignment x ∈ Qn
on X with ν ∈ Q is such that ∀i :

x[i] =


Xmax
i if Xmax

i < ν

Xmin
i if Xmin

i > ν
ν otherwise.

Corollary 1 ([8]) x ∈ argminy{
∑
i y[i]2 s.t.

∑
i y[i] = s and ∀i : y[i] ∈ IQD(Xi)}

if and only if x is a ν-Qcentered assignment of sum s.

The optimal value ∆Q can be obtained from a tuple which is ν-Qcentered and
exhibiting a sum of s. Note that by definition of a ν-Qcentered assignment, this
tuple is completely defined by the value ν. The algorithm from [8] searches for the
value ν such that the ν-Qcentered assignment exhibits a sum of s.

For a given value ν, the sum of the corresponding ν-Qcentered assignment is∑
Xmin

i >ν

Xmin
i +

∑
Xmax

i <ν

Xmax
i +

∑
ν∈IQD(Xi)

ν. (4)

In order to simplify the notations, we denote by:

– R(ν), the (Right) variables {Xi s.t. Xmin
i > ν},

– L(ν), the (Left) variables {Xi s.t. Xmax
i < ν} and by

– M(ν), the (Medium) variables {Xi s.t. Xi /∈ (R(ν) ∪ L(ν))}.

The cardinality of the sets R(ν), L(ν) and M(ν) are denoted respectively r(ν),
l(ν) and m(ν). Let us furthermore define

– es(ν) =
∑
Xi∈R(ν)X

min
i +

∑
Xi∈L(ν)X

max
i (Extrema-Sum), and

– es(2)(ν) =
∑
Xi∈R(ν)(X

min
i)2 +

∑
Xi∈L(ν)(X

max
i)2.

6 Pierre Schaus, Jean-Charles Régin

When no ambiguity is possible, the ν argument will be dropped.
With the introduced notations, the sum of the ν-Qcentered assignment (4)

can be simply written as es+m · ν. Our objective to find the lower bound ∆Q is
achieved if we can find a value ν such that es+m · ν = s.

Nonempty intervals such that every domain either completely subsumes it or
does not overlap it, have the property that for every value ν inside it, the sets
R(ν), L(ν), M(ν) and the value es(ν) are constant. This is more formally stated
in Property 1.

Property 1 All intervals I = [a, b] ⊂ Q with a < b such that ∀i : (I ⊆ IQD(Xi)) ∨
(I ≥ IQD(Xi)) ∨ (I ≤ IQD(Xi)) have the property that for every a < (ν1, ν2) < b
the following equalities hold: R(ν1) = R(ν2), L(ν1) = L(ν2), M(ν1) = M(ν2) and
es(ν1) = es(ν2).

Proof Direct consequences of the definitions of R, L, M and es.

Property 1 leads naturally to an extension of the definitions of R, L, M and
es to intervals I such as the ones considered in Property 1:

– R(I), the variables {Xi s.t. Xmin
i ≥ max(I)},

– L(I), the variables {Xi s.t. Xmax
i ≤ min(I)},

– M(I), the variables {Xi s.t. Xmin
i ≤ min(I) and Xmax

i ≥ max(I)} and
– es(I) =

∑
Xi∈L(I)X

max
i +

∑
Xi∈R(I)X

min
i .

Note that M(I) = X− (R(I) ∪ L(I)).
When ν varies inside such an interval I, the sum ranges in the interval si(I) =

[es(I)+m(I) ·min(I), es(I)+m(I) ·max(I)] (si stands for Sum Interval). If s does
not fall in si(I) then the value ν we are looking for does not lie inside I neither.
On the contrary if s belongs to this interval, ν is the solution of the equation
s = es+m · ν that is ν = (s− es)/m.

There are at most 2 · n − 1 intervals I to consider (when all the bounds are
different). These are obtained by sorting the set of upper and lower bounds of
every variable Xi into increasing order. Any two consecutive values of this sorted
sequence form an interval I satisfying Property 1.

Definition 5 Let B(X) be the sorted sequence in non-decreasing order of the
set of bounds2

⋃
i{X

min
i , Xmax

i }. Let I(X) be the set of intervals defined by a

pair of two consecutive elements of B(X). The kth interval of I(X) is denoted by
Ik. For an interval I = Ik we define the operator prev(I) = Ik−1, (k > 1) and
succ(I) = Ik+1, (k < |I(X)|).

Example 3 (Building I(X)) Let X = {X1, X2, X3} with Dom(X1) = [1..3],
Dom(X2) = [2..6] and Dom(X3) = [3..9]. Then I(X) = {I1, I2, I3, I4} with I1 =
[1, 2], I2 = [2, 3], I3 = [3, 6], I4 = [6, 9]. We have prev(I3) = I2 and succ(I3) = I4.

Observe that for two consecutive intervals Ik and Ik+1 taken from I(X), the
sum intervals are also contiguous: max(si(Ik)) = min(si(Ik+1)). It is then possible
to make an algorithm to filter the lower bound of ∆. Algorithm 1 computes ∆Q

by iterating over the contiguous intervals si(Ik) until the sum lies inside it.

2 without duplicates.

Bound-Consistent Spread Constraint 7

Algorithm 1: Filtering of ∆

Data: I(X) and for all I ∈ I(X): m(I) and es(I).
Result: ∆min ← max{∆Q,∆min}.

1 forall the I ∈ I(X) do
2 if s ∈ si(I) then
3 ν ← (s− es(I))/m(I);

4 ∆Q ←
(
es(2)(I) +m(I) · ν2

)
;

5 ∆min ← max{∆Q,∆min};
6 break ;

Algorithm 1 executes in O(n) once I(X) is computed and that es(I) and m(I)
are available for every I ∈ I(X). Unfortunately, computing I(X) requires to sort
the bounds, hence O(n log(n)) time. Algorithm 1 also needs the values es(I) and
m(I). For a given I, these can be obtained in Θ(n) by scanning every variable once.
This would raise the overall complexity of Algorithm 1 to O(n2) since in the worst
case, es(I) and m(I) must be computed for every I ∈ I(X). A smarter procedure
is possible to compute es(I) and m(I) in linear time for every I ∈ I(X). Lemma
1 explains how the values es(I) can be computed in linear time for all I ∈ I(X)
once l(I), r(I) are given for all I ∈ I(X). Finally Algorithm 2 computes l(I), r(I)
and m(I) for all I ∈ I(X) in linear time too. This last algorithm can be easily
understood with the invariant given in the pseudocode.

Lemma 1 ([8]) es(Ik+1) = es(Ik) + (pk+1 − qk+1) · max(Ik) where pk+1 =
l(Ik+1)− l(Ik) and qk+1 = r(Ik)− r(Ik+1).

Note that lc is initialized at line 1 with b+1 and not 0 because some variables
might already be bound to value b1.

Algorithm 2: Compute I(X) and l(I), r(I),m(I) for all I ∈ I(X)

Data: The sorted sequence of the set of bounds B(X) = 〈b1, b2, ..., bk〉 and for each

bound bi the information b+i = |{Xi|Xmax
i = bi}| and b−i = |{Xi|Xmin

i = bi}|.
Result: I(X) and for all I ∈ I(X): m(I), l(I) and r(I).

1 lc← b+1
2 rc← n− b−1
3 I ← list()
4 for i← 2 to k do

/* invariant: lc = |{Xj |Xmax
j ≤ bi−1}| and rc = |{Xj |Xmin

j ≥ bi}| */

5 I ← [bi−1, bi]
6 I.add(I)
7 l(I) = lc
8 r(I) = rc
9 m(I) = n− l(I)− r(I)

10 lc← lc+ b+i
11 rc← rc− b−i

The complete filtering algorithm dominated by a complexity of O(n log(n)) is:

– sort the bounds (O(n log(n))),

8 Pierre Schaus, Jean-Charles Régin

i Ii R(Ii) L(Ii) M(Ii) es(Ii) es(2)(Ii) si(Ii)

1 [1, 2] x2, x3 φ x1 5 13 [6, 7]
2 [2, 3] x3 φ x1, x2 3 9 [7, 9]
3 [3, 6] φ x1 x2, x3 3 9 [9, 15]
4 [6, 9] φ x1, x2 x3 9 45 [15, 18]

Table 1 Values Ii, R(Ii), L(Ii), M(Ii), es(Ii), es(2)(Ii), si(Ii) relative to Example 4.

– compute I(X) and for all I ∈ I(X) : r(I), l(I) and m(I) with Algorithm 2
(Θ(n)),

– compute es(I) for all I ∈ I(X) with Lemma 1 (O(n)),
– filter ∆ with Algorithm 1 (O(n)).

Example 4 (Computing ∆Q) Variables and domains are from Example 3 and the
sum considered is s = 10. Relevant values necessary to compute ∆Q are given
in Table 1. Since s ∈ si(I3): ν = (s − es)/m = (10 − 3)/2 = 3.5 and ∆Q =
es(2)(I3) + m(I3) · 3.52 = 33.5. For s = 9, s ∈ si(I2) and s ∈ si(I3). Whichever
interval is chosen between I2 and I3, the value ν is the same. Consequently the
value for ∆Q is also the same.

The remainder of the section explains how to compute ∆Z ≥ d∆Qe that
will allow us to achieve Z-bound-consistency rather than Q-bound-consistency on
spread.

As shown in the next theorem, the optimal solution obtained with integer
assignments is very similar to the one obtained on rational domains in Theorem
1.

Theorem 2 x ∈ argminy{
∑
i y[i]2 s.t.

∑
i y[i] = s and ∀i : y[i] ∈ IZD(Xi)}

⇔
∑
i x[i] = s and @ (i, j) such that: i 6= j, x[i] < Xmax

i , x[j] > Xmin
j and

x[i] + 1 < x[j].

Proof Similar to the proof of Theorem 1:

(⇒) Take δ = 1.
(⇐) All the δi’s are integer and greater or equal to 1. We show that the
difference (∆(x)−∆(x′)) is nonpositive if every increasing entry is at most one
smaller than every decreasing entry, ∀i ∈ [1..k],∀j ∈ [k + 1..k + l] : x[i] + 1 ≥
x[j]. A lower bound on (

∑k
i=1 x[i]δi) is ((mini∈[1..k] x[i]) ·

∑k
i=1 δi) and an

upper bound on (
∑k+l
i=k+1 x[i]δi) is ((mini∈[1..k] x[i] + 1) ·

∑k+l
i=k+1 δi). Hence

we have:

∆(x)−∆(x′) ≤ (−
k+l∑
i=1

δ2i) + (min
i∈[1..k]

x[i]) · (−2
k∑
i=1

δi + 2

k+l∑
i=k+1

δi) + 2

k+l∑
i=k+1

δi

≤ (−
k+l∑
i=1

δ2i) + 2

k+l∑
i=k+1

δi

≤ (−
k∑
i=1

δ2i) +

k+l∑
i=k+1

δi(2− δi).

Bound-Consistent Spread Constraint 9

Since ∀i ∈ [1..k+l] : δi ≥ 1 we have
∑k
i=1 δ

2
i ≥

∑k
i=1 δi and

∑k+l
i=k+1 δi(2−δi) ≤∑k+l

i=k+1 δi. Thus

−
k∑
i=1

δ2i +

k+l∑
i=k+1

δi(2− δi) ≤ −
k∑
i=1

δi +

k+l∑
i=k+1

δi = 0. ut

Definition 6 A Zcentered assignment x is such that ∀i : x[i] ∈ IZD(Xi) and @ i, j
such that x[i] < Xmax

i , x[j] > Xmin
j and x[i] + 1 < x[j].

Algorithm 3 computes a Zcentered assignment of sum s. This algorithm can

Algorithm 3: An inefficient algorithm to compute a Zcentered assignment
of sum s.
Result: A Zcentered assignment x of sum s.

1 x← a valid assignment of sum s

2 while ∃ i, j such that x[i] < Xmax
i , x[j] > Xmin

j and x[i] + 1 < x[j] do

3 x[i]← x[i] + 1
4 x[j]← x[j]− 1

be easily implemented but is very inefficient. A smarter method is possible. The
idea is that it is always possible to distribute the m entries assigned to ν on the
integer values bνc and dνe while conserving a sum of s. Clearly, such an assign-
ment is Zcentered since the values assigned to ν differ by at most one after the
transformation.

The distribution of the m entries on bνc and dνe while conserving the sum of s
is given as follows. The value ν always takes the form of (s− es)/m and there are
exactly m entries assigned to ν. Hence it is always possible to distribute these m
entries on bνc and dνe without modifying the sum. The only question to answer is
how many of them must be assigned to bνc and to dνe? Let us denote by ν+ the
number of entries that must be assigned to dνe and by ν− the number of entries
that must be assigned to bνc. Of course ν+ + ν− = m. Looking at the Figure 1,
the sum is preserved if

ν− · ((s− es) mod m) = (m− ν−) · (m− (s− es) mod m).

Hence the distribution on bνc and dνe is:

ν− = m− (s− es) mod m
ν+ = (s− es) mod m.

Algorithm 1 can be modified into Algorithm 4 to achieve a bound-consistent
filtering of ∆ with the computation of ∆Z.

Example 5 The variables are the same as in Example 4 and the sum is s = 10. From
Example 4, s ∈ si(I3) and ν = (s− es)/m = (10− 3)/2 = 3.5. The distribution of
overlapping variables between bνc and dνe is given by ν+ = (s−es(I)) mod m(I) =
(10− 3) mod 3 = 1 and ν− = 1. Consequently ∆Z = es(2)(I3) + 42 + 32 = 34.

10 Pierre Schaus, Jean-Charles Régin

m⋅ν=s−es
m

(s−es)modm
m⋅⌊ ⌋

m⋅⌈ ⌉

m−(s−es)modm

Fig. 1 Distances between ν = (s− es)/m, bνc and dνe.

Algorithm 4: Bound-consistent filtering of ∆

Data: I(X) and for all I ∈ I(X): m(I) and es(I).
Result: ∆min ← max{∆Z,∆min}.

1 forall the I ∈ I(X) do
2 if s ∈ si(I) then
3 ν ← (s− es(I))/m(I)

4 ν+ ← (s− es(I)) mod m(I)

5 ν− ← m− (s− es(I)) mod m(I)

6 ∆Z ← es(2)(I) + ν+ · dνe2 + ν− · bνc2

7 ∆min ← max{∆Z,∆min}
8 break

3.1 Filtering of X

Only the propagation of the upper bound of Xi is considered here since the prop-
agation of its lower bound is a symmetrical problem. The propagation of Xi is
achieved in [12] by computing the largest consistent value assuming the domains
of other variables are rational intervals:

X
Q
i = max

x
{x[i] s.t.

∑
i

x[i]2 ≤ ∆max and (5)∑
i

x[i] = s and ∀j : x[j] ∈ IQD(Xj)}.

3.1.1 Algorithm to compute X
Q
i

The idea of the algorithm from [8] is to start from the a ν-Qcentered assignment
x of sum s found with Algorithm 1. This assignment is the one of sum s with
minimal sum of squares ∆Q. If x[i] = Xmax

i , the upper bound of the variable Xi is

consistent. Otherwise the optimal value X
Q
i is obtained by successively assigning

Xi to increasing values until either the minimal sum of squares reaches ∆max or it

is proved that Xmax
i is consistent. At that point, X

Q
i is equal to the current value

considered for Xi. This procedure is valid since the increasing values assigned
to Xi range from x[i] to Xmax

i and the minimal sum of squares ∆Q increases
quadratically when the value assigned to Xi increases.

Bound-Consistent Spread Constraint 11

A detailed description of Algorithm 5 follows. Let us denote by xi the current
value assigned to Xi and by d = xi − x[i] the distance of the current value of
Xi to the ith entry in the starting ν-Qcentered assignment x of sum s. Let us
furthermore denote by ∆Q′, si′, es′,m′, ν′ the modified values if Xi were assigned
to xi = x[i] + d.

The interval I from I(X) is such that s ∈ si(I). Let us first assume Xi ∈ R(I),
which implies x[i] = Xmin

i (by definition of a ν-Qcentered assignment). Recall that
if Xi ∈ M(I) then x[i] = ν = (s − es(I))/m and if Xi ∈ L(I) then x[i] = Xmax

i

and no filtering of the upper bound is possible.

The following lemma describes the quadratic evolution of ∆Q with d, i.e. when
xi increases. An illustration of Lemma 2 is given in Figure 2.

Lemma 2 if d ≤ s−min(si(I)) then

1. es′(I) = es(I) + d,
2. es′(2)(I) = es(2) + d2 + 2d ·Xmin

i ,

3. m′ = m,
4. ν′ = ν − d/m and

5. ∆Q′ = es′(2)(I) +m · (ν′)2

∆Q′ = es(2)(I) + d2 + 2dXmin
i +m · (ν − d

m)2

∆Q′ = ∆Q + (d2 + 2dXmin
i + d2/m− 2dν).

I 1

I 2

I
prev I 


 '=−d /m

d *

Q

x i
d

Q'

max

effects

Fig. 2 Consequences of the increasing of xi by d : ∆Q′ increases quadratically and ν′ decreases
by d/m.

From Lemma 2, the minimal sum of squares increases quadratically with d.
The maximum consistent value for Xi is the nonnegative solution of the following
second degree equation:

∆Q + d2 + 2dXmin
i + d2/m− 2dν = ∆max.

12 Pierre Schaus, Jean-Charles Régin

The nonnegative solution of this equation is d∗ = −b+
√
b2−ac
a where a = 1 + 1/m,

b = Xmin
i − ν and c = ∆Q − ∆max. This reasoning is valid as long as d ≤ s −

min(si(I)). Otherwise, ν′ moves outside the interval I and the modified values

in Lemma 2 are no longer valid. If d∗ ≤ s − min(si(I)) then X
Q
i = x[i] + d∗.

Otherwise, x[i] + s − min(si(I)) is a consistent value for Xi and larger values
for xi must be considered. The procedure is repeated with the interval prev(I)
instead of I. Indeed when Xi ← xi = x[i] + s −min(si(I)), the value ν′ is equal
to min(I) = max(prev(I)) and s = min(si′(I)) = max(si′(prev(I))).

The process is repeated until one valid solution of the second degree equation
d∗ ≤ s−min(si(I)) is found or the current interval considered is equal to I1.

Until now we assumed that Xi ∈ R(I). The case Xi ∈ M(I) can also lead to
the filtering of Xmax

i . This case can be reduced to the same procedure as for the
case Xi ∈ R(I):

– The xi starts to increase from ν rather than from Xmin
i as previously. Hence,

the interval I is conceptually split in two at the value ν: I ′ = [min(I), ν] and
[ν,max(I)].

– The value X
Q
i is computed on this modified configuration by considering that

the domain of Xi is now [ν,Xmax
i].

– The same procedure as described previously can be applied since with this
modified domain we have that Xi ∈ R(I ′).

We say that the interval I is conceptually split because actually we only need
to adapt the computation of m′(I), es′(I) and es′(2) from Lemma 2. For xi =

Xmin
i + d and an interval I ∈ I(X) such that xi > min(I), if Xi ∈ M(I) then

m′(I ′) = m(I)−1 where I ′ = [min(I),min{max(I), xi}]. The reason is that IQD(Xi)
subsumes I ′ hence if Xi ← xi, then Xi belongs to R(I ′) and not to M(I ′) anymore.
The unified procedure to adapt the values m′, es′ and es′(2) for an interval I when
Xi ← xi with xi ≥ min(I) is given in the Procedure getUpdatedValues.

Procedure getUpdatedValues(xi, I)

Data: xi ∈ IQD(Xi) and xi ≥ min(I), I ∈ I(X)
Result: Let I′ = [min(I),min{max(I), xi}] and

X′ = {X1, ..., Xi−1, Xi ← xi, Xi+1, ..., Xn}. Return the values
m(I′), es(I′) and es(2)(I

′) computed with respect to X′.

1 d← xi −Xmin
i

2 m′ ← m(I)
3 es′ ← es(I) + d

4 es′
(2)
← es(2)(I) + d2 + 2dXmin

i

5 if Xi ∈M(I) then
6 m′ ← m′ − 1

7 es′ ← es′ +Xmin
i

8 es′
(2)
← es′

(2)
+ (Xmin

i)2

9 return m′, es′, es′
(2)

The algorithm to compute Xmax
i is given in Algorithm 5. In lines 1-5, the

current value for xi is initialized to Xmin
i if Xi ∈ R(I) and to ν if Xi ∈ M(I).

In the main loop in lines 6–23, the algorithm tries to discover whether there is a

Bound-Consistent Spread Constraint 13

value for xi such that the value of the sum of squares reaches the maximum value
∆max while keeping the value ν in the current interval I. If this is not possible
(line 14) and the upper bound Xmax

i is not yet proved to be consistent (line 21),
the procedure is repeated on the previous interval prev(I) with xi increased (line
20) such that the current value ν is equal to max(I) in the next iteration of the
loop.

Algorithm 5: Filtering of Xi
Data: I s.t. s ∈ si(I), Xi ∈ X

Result: Xmax
i ← min{XQ

i , X
max
i }

1 if Xi ∈ L(I) then return /* Xmax
i is consistent */

2 ν ← (s− es(I))/m(I)

3 xi ← Xmin
i

4 if Xi ∈M(I) then
5 xi ← ν

6 repeat
7 m′, es′, es′

(2)
← getUpdatedValues(xi, I)

8 si′ ← es′ +m′ ·min(I) /* si′ = min(si′(I)) */
9 if m′ > 0 then

10 ν′ ← (s− es′)/m′

11 ∆Q ← es′
(2)

+m′ · (ν′)2

12 d1 ← s− si′

13 d2 ← (−b+
√
b2 − a · c)/a /* a, b, c def. in text */

14 if d2 ≤ d1 then

15 xi ← xi + d2 /* xi = X
Q
i */

16 X
Z
i ← getX

Z
i (xi, I) /* b-c upper bound */

17 Xmax
i ← min{Xmax

i , X
Z
i }

18 return

19 else
20 xi ← xi + d1

21 if xi ≥ Xmax
i then return /* Xmax

i is consistent */
22 if I = I1 then break
23 I ← prev(I)

24 until I = I1
25 Xmax

i ← min{Xmax
i , xi}

The complexity of Algorithm 5 is linear in the number of intervals in I, which
is smaller than 2n − 1. It is applied for each variable Xi to make the filtering

Xmax
i ← min(Xmax

i , bXQ
i c) and a similar procedure is used to filter the lower

boundsXmin
i . Hence the overall complexity of filtering X isO(n2). This complexity

can actually be improved to O(n · log(n)) by doing a binary search on the intervals
I rather than a linear search. The binary search is valid since the sum of squares
increases piece-wise quadratically and continuously with the current value of xi.

Once again, the filtering with the value X
Q
i is not Z-bound-consistent because

it corresponds to an assignment with some variables assigned to ν which might
be not integer. Line 16 of Algorithm 5 computes the Z-bound-consistent upper

bound for Xi given X
Q
i and the current interval I. We explain in the following

getX
Z
i (xi, I) detailed in Algorithm 6 running in O(m). The main steps of the

14 Pierre Schaus, Jean-Charles Régin

procedure are illustrated in Figure 3. Line 1, rounds down the value X
Q
i . This

corresponds to the arrow A in Figure 3. Lines 2–6 compute the sum of squares

corresponding to a Zcentered assignment of sum s with Xi assigned to X
Z
i . We

can use the getUpdatedValues procedure to do this in constant time. Since the
Qcentered assignment of sum s has been transformed into a Zcentered assignment
of sum s, the sum of squares might have increased (∆Z > ∆Q = ∆max). In this

case, the current value X
Z
i at line 1 is not consistent for Xi and there is some

opportunity to decrease it even more by steps of 1 until a consistent value for
Xmax
i is found (lines 7–9).

⌊⌋


1

⌊⌋

⌈⌉

X i
Q

X i
Z

1

A

B

B

Fig. 3 Illustration of the main steps of the Algorithm 6

Algorithm 6: getX
Z
i (xi, I)

1 X
Z
i ← bxic

2 m′, es′, es′
(2)
← getUpdatedValues(X

Z
i , I)

3 ν ← (s− es′)/m′
4 ν+ ← (s− es′) mod m′

5 ν− ← m′ − ν+

6 ∆Z ← es′
(2)

+ ν+ · dνe2 + ν− · bνc2

7 while ∆Z > ∆max do

8 ∆Z ← ∆Z + 2 · (dνe −XZ
i)

9 X
Z
i ← X

Z
i − 1

10 return X
Z
i

Bound-Consistent Spread Constraint 15

Note that no more than m iterations are needed because as shown in Figure 3

with arrows B, each time X
Z
i is decreased by 1, one variable assigned to bνc must

be increased in the Zcentered assignment (to maintain the correct sum s). We are
guaranteed than within at most m steps the Zcentered assignment will correspond
to a Qcentered assignment which was proved to exhibit a sum of squares ≤ ∆max

in Algorithm 5. It remains to explain how to update in constant time the value

∆Z in line 8 of Algorithm 6, each time X
Z
i is decreased by one. We refer to arrows

B of Figure 3 for the visual explanation and to the next transformations to obtain
the formula.

∆Z
′

← es′(2) + 1− 2X
Z
i + (ν+ + 1) · dνe2 + (ν− − 1) · bνc2

= ∆Z + 1− 2X
Z
i + dνe2 − bνc2

= ∆Z + 1− 2X
Z
i + (dνe − bνc) · (dνe+ bνc)

= ∆Z + 1− 2X
Z
i + 1 · (2dνe − 1)

= ∆Z + 2 · (dνe −XZ
i)

The term 1−2X
Z
i is the resulting modification to es′(2) caused by the decreasing

by one of X
Z
i , and the +1 and −1 applied respectively on ν+ and ν− are because

one variable assigned to bνc is increased by one. The other lines are simple algebraic
manipulations to simplify the formula.

4 Nurse-to-patient assignment problems

As an application for spread we consider the daily assignment of newborn infant
patients to nurses in a hospital described in [4] and solved with CP in [14]. In
this problem, some infants require little attention, while others need significant
care. The amount of work required by the infant during one shift is called the
acuity. A nurse is in charge of a group of infants and the total amount of acuity is
the workload of the nurse during that shift. For ensuring an optimal care quality
and perceived fairness for the nurses, it is essential to balance the workload. In
addition, the problem features various side constraints:

– A nurse can work in only one zone, but the patients are located in p different
zones.

– A nurse cannot be responsible for more than childrenmax infants.
– The total amount of acuity of a nurse cannot exceed acuitymax.

The balance objective and the various constraints make it very difficult to find
a good solution in a reasonable time. Since nurses only work in one zone, the
number of nurses assigned to each zone has already a huge impact on the quality
of the balancing. In [4], the problem was tackled using a MIP model recalled in
Section 4.1, but the results were not satisfactory. In this paper, we reuse our best
two-step CP approach introduced in [14] in order to reach the required solution
quality and scalability. This approach is recalled in Section 4.2. We improve this
approach in two ways:

1. We recognize that the first step is a discrete resource allocation problem that
can be solved optimally with well-known algorithms.

16 Pierre Schaus, Jean-Charles Régin

Fig. 4 Comparison of two solutions on a 6 nurses, 14 infants, and 2 zones problem. Solution
on the left is obtained by minimizing the range-sum criterion. Solution on the right is obtained
by minimizing the variance.

2. We show that the final result can for some instances be proved optimal using
a check procedure based on the second best solution of the resource allocation
problem.

4.1 The MIP Model

We now review the main variables of the MIP model from [4]. We also describe the
limitations of the MIP model and suggest why a CP approach may address them.
Due to space reasons, we do not reproduce the entire MIP model but readers can
consult [4] for more details. The technical details presented here are sufficient for
our purposes. The MIP model contains four families of variables:

1. Xij = 1 if infant i is assigned to nurse j and 0 otherwise;
2. Zjk = 1 if nurse j is assigned zone k and 0 otherwise;
3. Yk,max is the maximum acuity of a nurse in zone k;
4. Yk,min is the minimum acuity of a nurse in zone k.

All these variables are linked with linear constraints to enforce the constraints
of the problem. The objective function implements what we call the range-sum
criterion and consists of minimizing the sum of the acuity ranges of the p zones,
i.e.,

p∑
k=1

(Yk,max − Yk,min).

The MIP model has a fundamental limitation: The objective function may produce
poorly balanced workloads. It tends to equalize the workload inside the zones
but may produce huge differences among the workload of different zones. This is
illustrated in Figure 4. The left solution is obtained by minimizing the range-sum
criterion and the right solution by minimizing the variance (L2 norm in the next
section). The range-sum objective is minimal on the left because the workloads

Bound-Consistent Spread Constraint 17

inside each of the two zones are identical. Unfortunately, nurses in the first zone
work twice as much as those in the second zone. The right solution is obtained by
minimizing the variance and is significantly more appealing. This illustrates clearly
that “the high level objective that all nurses should be assigned an equal amount of
patient acuity” [4] is not properly captured with the range-sum criterion.

It is not immediately obvious how to remedy these problems. The variance
is non-linear and is not easily modelled in a MIP approach. In addition, a CP
approach may exploit the combinatorial structure in the bin-packing and the side-
constraints, while the MIP relaxation is generally bad for bin-packing like prob-
lems. Finally, there are important symmetries that are not removed in their model:
For a given solution, the nurses are completely interchangeable.

4.2 A Two-Step CP Model

This approach introduced in [14] first pre-computes the number of nurses assigned
to each zone and then assigns the patients to nurses. This simplifies the resolution
by

1. removing one degree of flexibility which is the number of nurses in each zone.
2. removing the necessity of expressing disjointedness constraint between the pa-

tients assigned to different nurses since the set of nurses that can be assigned
to each patient can be pre-computed.

Furthermore pre-assigning the number of nurses in each zone, decomposes the
problem. Given the pre-computed number of nurses in each zone, it is equivalent
to minimize L2 among all the nurses at once or to minimize L2 separately inside
each zone (see equation 1). So if a given number of nurses is assigned to regions,
the total acuity for that region is fixed and the best we can do is minimizing the
L2 criterion inside this zone independently of other zones.

4.2.1 Step I: Finding the number of nurses in each zone

The problem of discovering the right number of nurses assigned to each nurses is
crucial because the decomposition may be significantly sub-optimal if these num-
bers are not properly chosen. Indeed, the number of nurses assigned to each zone
has a crucial impact on the quality of the balancing. However, after visualizing
some optimal solutions, we observed that the workloads of the nurses are extremely
well balanced (almost the same) inside the zones. This suggested solving a relax-
ation of the problem to discover a good distribution of the nurses to the zones. The
relaxation allows the acuity of a child in a zone to be distributed among the nurses
of that zone (continuous relaxation of the acuity). Since the acuity of a child can
be split, the relaxed problem will have an optimal solution where the nurses of a
zone have exactly the same workload Ak

xk
, i.e., the total acuity Ak =

∑
i∈Pk

ai of
zone k divided by the number of nurses xk in zone k. This is schematically illus-
trated on Figure 5 for a two-zone relaxation problem and stated in Proposition
1.

Proposition 1 An optimal solution of the relaxed problem must have the same
workload for all the nurses in a given zone.

18 Pierre Schaus, Jean-Charles Régin

Zone 1 Zone 2

x1 x2

A1
x1

Fig. 5 Illustration of a solution of the relaxation solved to find the number of nurses in each
zone.

Proof If this is not the case, the sum of squares inside that zone can be reduced by
making closer the workload given to two nurses (same argument as the one used
in proof of Theorem 1) .

The mathematical formulation of the relaxed problem is

min

p∑
k=1

xk ·
(
Ak
xk

)2

(6)

s.t.

p∑
k=1

xk = m (7)

xk ∈ Z+
0 (8)

with m integer and m ≥ p. The workload of all the nurses of
zone k is Ak

xk
.

Solving the Relaxation This problem is a discrete resource allocation problem with
separable objective convex function [5]. It can be solved optimally with the greedy
INCREMENT algorithm described in [3]. The algorithm starts with one nurse for each
zone, and consecutively increments the number of nurses from the zone that will
increase the least its L2. When the number of nurses m is reached, the allocation
is optimal 3. Algorithm 7 is an instance of INCREMENT method applied to our
problem running in O(p+m · log p):

The complexity is obtained using a heap data structure to select in O(log p)

the k = argmaxi{
A2

i

xi
− A2

i

xi+1} at each iteration and it takes a linear time O(p) to
initialize it.

3 A complete proof of correction of the algorithm can be found in [10].

Bound-Consistent Spread Constraint 19

Algorithm 7: Solve the relaxation problem

1 xi ← 1 for i ∈ [1..p]
2 while

∑
i∈[1..p] xi < m do

3 k ← argmaxi{
A2

i
xi
− A2

i
xi+1

}
4 xk ← xk + 1

5 return x

4.2.2 Step II: CP Model

Listing 1 gives the OscaR CP [6] model for the second step. In particular it con-
siders the allocation of patients of zone i given the number of nurses (nbNursesIn-
Zone(i)) assigned to this zone in Step I. This model minimizes the sum of squared
acuities (sum2 variable). The constraint binpacking is the one introduced in [15]
making the link between the acuity of each patient and the total acuity of each
nurse. The gcc constraint is the global cardinality constraint introduced in [9] forc-
ing each nurse to have between 1 and 3 patients. The search is a nondeterministic
search [2] that breaks the symmetries dynamically, trying at each node to assign
the chosen patient to the nurses that already have some patients plus at most one
nurse without any patient yet.

Listing 1 Scala/OscaR CP Model solving the zone i

val cp = CPSolver()
// for each patient, the nurse assigned to this patient (decision variables)
val nurseOfPatient = Array.fill (nbPatientsInZone(i))(CPVarInt(cp,0 until nbNursesInZone(i)))
// for each nurse, his/her acuity
val acuityOfNurse = Array.fill(nbNursesInZone(i))(CPVarInt(cp,1 to 105))
// sum of squares of the acuities
val sum2 = CPVarInt(cp, 0 to Int.MaxValue)
cp.minimize(sum2) subjectTo {

// acuityByZone(i)(j) is the acuity required by infant j (located in zone i)
cp.add(spread(acuityOfNurse,acuityByZone(i).sum,sum2))
// each nurse must have between 1 and 3 patients
cp.add(gcc(nurseOfPatient,0 until nbNursesInZone(i),1,3))
// binpacking constraint linking acuity of patients and nurses
cp.add(binpacking(nurseOfPatient,acuityByZone(i),acuityOfNurse))
} exploration {

// dynamic symmetry breaking search
while (!allBounds(nurseOfPatient)) {

val maxUsed = nurseOfPatient.maxBoundOrElse(−1)
val x = nurseOfPatient.minDomNotBound
cp.branchAll(0 to maxUsed+1)(v => cp.post(x == v))
} run()
}

4.2.3 Proving optimality of our solutions

We define the candidate optimal solution to be the solution obtained after the
optimization in each zone independently, based on the nurse allocation obtained
from the continuous relaxation. This candidate optimal solution obtained with our
two-step approach is not optimal if another allocation of the number of nurses to
the different zones would have led to a better sum of squares objective at the end
of the second step. There are a finite number of ways of allocating the nurses to the

20 Pierre Schaus, Jean-Charles Régin

different zones. Optimality could be proven by solving the second step for every
possible allocation. We can avoid that effort if the objective of the second best
continuous relaxation of the first step is actually larger than the sum of squares of
our candidate optimal solution. The question to answer now is how to compute the
second best continuous relaxation. This second best solution is obtained by taking
the second best decision when selecting k during the last iteration of Algorithm
7. More precisely when

∑
i xi = m− 1, the second best should be selected instead

of the best one with argmaxi. The correctness of this procedure is guaranteed by
the separable convex nature of the function to minimize. Alternatively to find the
second best solution, one can start from the optimal solution with

∑
i xi = m

then update this solution by applying the change xi ← xi − 1, xj ← xj + 1 that

minimizes the increase: argmini6=j|xj>1{(
A2

i

xi+1 −
A2

i

xi
) + (

A2
i

xj−1 −
A2

j

xj
)}.

4.3 Experimental Results

Problem Instances Reference [4] specifies a statistical model to generate instances
very similar to their real instances. This statistical model was also used to mea-
sure the robustness of their solution technique with respect to the number of
nurses, the number of infants, and the number of zones. The model contains a
single parameter: the number of zones. The maximum acuity per nurse is fixed
to acuitymax = 105 and the maximum number of infants per nurse is fixed to
childrenmax = 3. The instance generator fixes the number of nurses, the number
of infants, the acuity, and the zone of each infant. The different steps to generate
an instance are as follows:

– The number of patients in a zone is specified by a Poisson random variable
with mean 3.8 and offset by 10.

– The acuity Y of a patient is obtained by first generating a number X ∼
Binomial(n = 8, p = 0.23) and then choosing the number Y ∼ Unif(10 ·
(X + 1), 10 · (X + 1) + 9).

– The total number of nurses is obtained by solving a First Fit Decreasing (FFD)
procedure in each zone. More precisely, the total number is the number of
nurses found in each zone by the FFD procedure. The FFD procedure starts
by ranking the patients in decreasing acuity. Then, the patient with the highest
acuity is assigned to the first nurse. The next patients are assigned successively
to the first nurse that can accommodate them without violating the maximum
acuity and the number of patient constraints.

We generated 10 instances of 3 a zones problem, and three larger instances with
6, 15 and 20 zones. The results are given on Table 2. The columns respectively
represent the number of nurses, the number of patients, the total number back-
tracks, the overall time, the average workload per nurse, the lower bound on the
standard deviation coming from the continuous relaxation (Step I), the standard
deviation of the best solution, and the lower bound computed from the second
best continuous relaxation. It can be seen that the computation times are very
short (at most one second) and except for one 3 zones instance and the 20 zones
instance (in bold), all the results are proven optimal since the lower bound of the
second best continuous relaxation is always larger than the standard deviation of

Bound-Consistent Spread Constraint 21

the optimal solution. Note that the MIP formulation from [4] could hardly solve
problems with 2 zones in less than 30 minutes.

Table 2 Results on 3, 6, 15 and 20 zones problem instances

zones m n #fails time(ms) avg load lb1 std std optimal lb2 std
3 15 42 11973 503 84.20 2.90 3.04 11.74
3 18 43 4473 173 79.78 5.48 5.84 5.87
3 17 43 17155 484 81.41 3.42 4.46 8.95
3 17 42 14089 489 83.82 5.58 5.65 6.74
3 18 43 43421 1188 81.00 4.93 5.77 7.36
3 14 38 3335 110 85.36 2.13 3.08 13.23
3 19 48 23041 573 87.42 2.26 3.07 9.18
3 16 44 19817 598 84.88 6.38 6.70 6.68
3 19 49 20370 454 86.00 1.91 2.49 9.64
3 17 41 7606 192 82.18 3.04 3.40 9.41

6 31 78 12019 565 84.58 3.57 4.20 6.85
15 71 198 38651 2272 81.95 5.17 5.33 5.34
20 102 258 1176852 25169 82.71 4.87 5.54 5.27

The last three lines of table 2 are obtained with instances from a 6,15 and
20 zones. The solution for the 15 zones instance is depicted in Figure 6. This
solution is also proven optimal since the second best lower bound is larger than
the standard deviation computed for our best solution.

Fig. 6 Solution of a 15 zones instance obtained with the two-step approach.

5 Conclusion

We have introduced the bound-consistent filtering algorithms for the spread con-
straint on finite integer domains. We used spread to solve a real-life nurse-to-
patient assignment problem using a two-step decomposition approach. We show
that in practice this decomposition is optimal on typical instances. Our imple-
mentation of the spread constraint is open source and available on the repos-
itory of OscaR [6]. All the instances used in our experiments are available on
http://becool.info.ucl.ac.be/resources/nurse-patient-assignment.

22 Pierre Schaus, Jean-Charles Régin

References

1. Gorard, S.: Revisiting a 90-year-old debate: The advantages of the mean deviation. British
Journal of Educational Studies pp. 417–439 (2005)

2. Hentenryck, P., Michel, L.: Nondeterministic control for hybrid search. Constraints 11(4),
353–373 (2006)

3. Ibaraki, T., Katoh, N.: Resource Allocation Problems: Algorithmic Approaches. The MIT
Press, Cambridge, Mass. (1988)

4. Mullinax, C., Lawley, M.: Assigning patients to nurses in neonatal intensive care. Journal
of the Operational Research Society 53, 25–35 (2002)

5. N. Katoh, T.I., Mine, H.: A polynomial time algorithm for the resource allocation problem
with a convex objective function. The Journal of the Operational Research Society pp.
449–455 (1979)

6. OscaR Team: OscaR: Scala in OR (2012). Available from
https://bitbucket.org/oscarlib/oscar

7. Pesant, G.: Constraint-based rostering. The 7th International Conference on the Practice
and Theory of Automated Timetabling PATAT 2008 (2008)

8. Pesant, G., Régin, J.: Spread: A balancing constraint based on statistics. Lecture Notes
in Computer Science 3709, 460–474 (2005)

9. Régin, J.C.: Generalized arc consistency for global cardinality constraint. AAAI-96 pp.
209–215 (1996)

10. Schaus, P.: Balancing and bin-packing constraints in constraint programming. PhD thesis,
Université catholique de Louvain, INGI, (2009)

11. Schaus, P., Deville, Y., Dupont, P.: Bound-consistent deviation constraint. 13th Interna-
tional Conference on Principles and Practice of Constraint Programming (CP 2007) 4741
(2007)

12. Schaus, P., Deville, Y., Dupont, P., Régin, J.: Simplification and extension of spread. 3d
Workshop on Constraint Propagation And Implementation (2006)

13. Schaus, P., Deville, Y., Dupont, P., Régin, J.: The deviation constraint. Proceedings of
CP-AI-OR 4510, 269–284 (2007)

14. Schaus, P., Van Hentenryck, P., Régin, J.C.: Scalable load balancing in nurse to patient
assignment problems. In: Integration of AI and OR Techniques in Constraint Programming
for Combinatorial Optimization Problems, pp. 248–262. Springer (2009)

15. Shaw, P.: A constraint for bin packing. In: Principles and Practice of Constraint Program-
ming CP 2004, pp. 648–662 (2004)

16. Simonis, H.: Models for global constraint applications. Constraints 12, 63–92 (2007)

