
VERIFICATION BY DISCRETE SIMULATION OF INTERLOCKING SYSTEMS

Quentin Cappart
Christophe Limbrée

Pierre Schaus
Université catholique de Louvain

Place de l’Université 1, 1348, Belgium
E-mail: quentin.cappart@uclouvain.be

Axel Legay
INRIA/IRISA, Rennes, France

KEYWORDS

Discrete event simulation, Verification, Railway, Inter-
locking

ABSTRACT

In the railway domain, an interlocking is the system
controlling active components in a station in order to
ensure a safe train traffic. The behaviour of modern
interlockings is defined by particular data, called appli-
cation data, describing the actions that the interlocking
can take and under which conditions. However, appli-
cation data are either prepared manually or prepared
automatically by tools that do not guarantee a sufficient
level of safety. Given the high level of safety required by
such a system, the verification of the application data is
a critical concern. Recent researches dealing with this
issue are based on model checking. Due to the state
space explosion problem, this approach does unfortu-
nately not scale for large stations. In this paper, we
present an innovative approach for the verification of
interlocking data, based on a discrete event simulation,
which does not suffer of the state space explosion prob-
lem. Although sacrificing exhaustiveness, we show ex-
perimentally on a real life instances that this approach
is able to detect any introduced errors in the application
data within seconds.

INTRODUCTION

Each train station is controlled by a system having the
responsibility to ensure safe movements of trains and
to avoid all risk of conflicts between their path. Such
a system is called an interlocking. More specifically,
an interlocking controls the physical components of the
infrastructure such as the points and the authorities
of movement (e.g. signals) in order to safely allow the
trains through a station.

Unlike the interlockings of the first generation that
were based on a mechanical or relay logic, modern
interlockings are computer based which means that
the actions are calculated by a software. Furthermore,
the software of computer-based interlockings relies on

configuration data specifying what are the possible
actions and under which conditions they can be taken
(Theeg et al., 2009). Such data are called application
data and are specific to each station.

The safety of the train traffic inside a station is
thereby highly dependent on the correctness of its
application data. However, the application data are
prepared manually and are thus subject to human
errors leading their verification to a critical concern.
One approach for interlocking verification deeply
studied in the literature is model checking (Huber
and King, 2002; Winter et al., 2006; Busard et al.,
2015). The goal of a model checker is to verify if a
system meets a set of safety properties by considering
all the reachable states of the model representing the
system. This method is exhaustive, in other words, if
a requirement is not satisfied, it will always be detected.

However, model checking suffers from the state explo-
sion problem (Clarke et al., 2012). Whereas small sized
stations can be verified efficiently the verification time
grows exponentially as the size of the station increases
and might not return a result within a reasonable time
in practice. This is a well known limitation for model
checking. Several techniques to limit this problem
have been proposed. Winter and al. (Winter et al.,
2006) propose to relax the verification by reducing the
complexity of the model and to improve the verification
process by using the properties of the system. In
(Huber and King, 2002), Huber and King implemented
a symbolic model checker with different optimisations
like a dynamic variable re-ordering. Winter (Winter,
2012) also proposes several strategies to optimise the
variable ordering. Eisner (Eisner, 1999) uses symbolic
model checking. Busard and al. (Busard et al., 2015)
proposed in their model a customized model-checking
algorithms based on operation on the BDD.

Despite these optimisations, applying model checking
on medium or large stations remains intractable. In
(Busard et al., 2015) only very small stations could be
verified within hours of computations. To overcome
this issue, we propose in this paper a new approach

for the verification based on discrete event simulation
(Schriber et al., 2012) which does not suffer from
the state space explosion problem but sacrificing the
exhaustiveness property. We show experimentally
on a medium size real life instances of a Belgian
interlocking that this approach is able to detect any
introduced errors in the application data within seconds.

Usage of simulation in the railway domain is not new.
The company OpenTrack provides a railway simulation
tool (Nash and Huerlimann, 2004) to verify the capacity
of the railway network, the feasibility of the schedules,
collect statistics about running times, etc. but which
is not related to interlocking verification. Hon and
Kollmann (Hon and Kollmann, 2006) proposes an
hybrid model for the verification based on simulation
coupled with model checking. For the simulation, they
use the software Rhapsody (Gery et al., 2002) which
takes test cases as input and check if a system is correct
by simulating the test cases. However, the test cases
must be elaborated manually and it turns thereby into
a manual verifications which is different of what we
want to do.

To the best of our knowledge there is no existing work
considering a discrete event simulation for verifying an
interlocking system. Our methodology can be used on
any application data formats used in any country.

In this work we instantiate our approach to the SSI
format (Cribbens, 1987) mainly used by Infrabel (www.
infrabel.be) in Belgium. In the next section, we de-
scribe how an interlocking works on a real life interlock-
ing instance. This case study corresponds to a medium
sized railway interlocking system of a Belgian station.
In Section 3, we explain the principles and the benefits
of our discrete event simulation for the verification. Fi-
nally, in Section 5, we discuss the experimental results
obtained on the case study.

INTERLOCKING PRINCIPLES

As previously said, the role of an interlocking is to
prevent any conflicting movements while the trains
move on their reserved routes in the station. This
section explains how it is done in practice. To to
so, let us first consider a case study, the station of
Braine l’Alleud, which is a typical Belgian medium
sized station. Figure 1 shows the track layout of Braine
l’Alleud (all the variable names are not represented on
the Figure).

On this figure, several elements can be identified:

• The signals (e.g. CC) are used to control the train
traffic. Each route begins from a signal which can
grant or prohibit access to the route for the trains.

• The points (e.g. P 01AC) are the movable compo-
nents that allow trains to move from one track to
another one. According to the Belgian convention,
a point can be in a normal position (left) or in a
reverse position (right).

• The track segments are portion of the track where
a train can be detected. They are either occupied,
or clear. Track segments are delimited each other
by the joints.

The physical components are controlled and moni-
tored by the interlocking. Besides, the interlocking soft-
ware makes use of logical components :

• The routes are the paths that the trains follow
when running through the station. Each route
starts from a signal and finishes to another signal
or to a track segment. In the application data, the
routes have the following format: R src dest (e.g.
R CC 104) with src the name of the start signal
and dest the name of the destination. A route can
either be set if it is reserved for a train, or unset on
the contrary.

• The subroutes are the contiguous segments that
the trains follow inside a route. When a route is
commanded for a train, a set of contiguous sub-
routes is locked establishing a path from the origin
of the route to its destination. When not requested,
subroutes are in a free state. In the application
data, they have the following syntax: U src dest
(e.g. U KXC 20C).

• The immobilisation zones, also called UIR, are the
components materialising the immobilisation (lock-
ing) of a set of points for a route. As for the sub-
routes, they can be on a locked or a free state de-
pending on whether they are reserved for a route. If
they are locked, the points attached to the UIR are
not supposed to move. In the application data, they
are presented like this: U IR(identifier) with iden-
tifier the name of the UIR. Generally, the UIR iden-
tifier is related to the name of the points locked by
it. For instance, U IR(08BC) locks Point P 08BC.

Using these components, the interlocking can control
the train traffic by commanding the routes. The actions
that have to be done and the conditions under which
they can be executed are described in the application
data. To explain the content of the application data, let
us consider the scenario where the route from the signal
KC to the track 103 has to be set:

1. Firstly, the interlocking will verify whether the re-
quest for the route R KC 103 can be granted.

1 *Q_R(KC_103)

2 if R_KC_103 xs,

3 P_09C cfr , P_08AC cfr ,

CXC

CC

IC

CGC

JC

KC

KXC

JXCDC

DXC

FC

091

092 101

102

103

104

011

012

011 Track number

Legend

EC

Joint

P_08BC

P_08ACP_09C
P_07BC

P_07AC

P_10CP_04C

P_03C
P_02BC

P_02ACP_01BC

P_01AC

Signal

 UIR(08BC)

 UIR(09C)

 UIR(10C)
Immobilisation zone (UIR)

17C

19C

20C

Figure 1: Layout of Braine l’Alleud Station

4 P_08BC cfr , P_10C cfn ,

5 U_IR (09C) f, U_IR (08BC) f,

6 U_IR (10C) f

7 then R_KC_103 s

8 P_09C cr , P_08AC cr ,

9 P_08BC cr, P_10C cn,

10 U_IR (09C) l, U_IR (08BC) l,

11 U_IR (10C) l,

12 U_KC_19C l, U_19C_20C l,

13 U_20C_CGC l

Listing 1: Request for Setting Route R KC 103

Listing 1 presents a typical route request as de-
scribed in the SSI format. There is a similar request
description for each route that can be commanded
in the station. The first part of this request (line
2 to 6) are the conditions under which the request
can be granted. More specifically, it can be granted
if the route is not already set (xs value on line 2),
if some points are free to be commanded to the re-
verse (cfr) or to the normal (cfn) position (line 3
and 4), and if some UIR are in a free state (f on
line 5 and 6). The components requested can be
seen on Figure 1.

2. Before moving a point, the interlocking must en-
sure that it can be moved without causing safety
issues. Such conditions are also expressed in the
application data.

1 *P_08BCN U_IR (08BC) f // normal position

2 *P_08BCR U_IR (08BC) f // reverse position

Listing 2: Conditions Allowing Point P 08BC to Move

Listing 2 states that the point P 08BC can be con-
trolled in the normal position only if its UIR is free.
The same condition is verified to control it in the
reverse position. These conditions are the route set-
ting conditions. If they are not satisfied, the route
request is dropped.

3. If each condition is satisfied, the route can be set
and the actions defined in line 7 to 13 of Listing 1
are taken. More precisely, the route is thoroughly
set (s on line 7), the points are commanded either
to reverse (cr) or to normal (cn) position (line 8 and
9), the UIR (line 10 and 11) and the subroutes (line
12 and 13) are locked. The home signal of the route
(KC in our example) is controlled at its proceeding
state when additional conditions are fulfilled. These
additional conditions are abstracted in our model.
At this step, the train can run through the station.

4. While the train is running through the route, re-
served component can be progressively released.
For route R KC 103, when the train has cleared
Track containing P 08BC, UIR(08BC) can be re-
leased. The conditions under which components
can be released are also described in the applica-
tion data.

1 U_KC_19C f

2 if R_KC_102 xs, R_KC_103 xs ,

3 R_KC_104 xs,

4 T_08BC c

Listing 3: Subroute U KC 19C release conditions

Listing 3 states that Subroute U KC 19C can be
released whether the routes on (line 2 and 3) are
not set and the Track segment T 08BC (line 4) is
free.

1 if U_IR (08BC) l then

2 if U_17C_KC f,

3 U_KC_17C f,

4 U_19C_KC f,

5 U_KC_19C f,

6 then U_IR (08BC) f

Listing 4: Conditions for Releasing UIR(08BC)

Listing 4 shows the release conditions for
UIR(08BC): if it is locked (line 1), then it can be re-
leased (line 6) only if some subroutes are not locked
(line 2 to 5). Unlike the reservation actions which
are only executed upon request, the releasing ac-
tions are periodically verified.

This process briefly describes the route cycle controlled
by the interlocking. To be more precise, real interlock-
ings contains other components and other actions which
are abstracted in our study. As previously said, verifica-
tion of application data is a crucial task: an error or an
omission can lead to serious safety issues. For instance,
let us assume that the action P 08BC cr on Listing 1
is transformed on P 08BC cn. Following Figure 1, the
train will move through Track T 07AC instead of Track
T 08AC which can lead to a head to head collision from
a train following Route R JXC 012. There is thereby a
real need of efficient and reliable methods to verify the
application data.

VERIFICATION BY SIMULATION

On this section, we present a novel approach based on
a discrete event simulation which does not suffer
of the drawbacks of model checking. The idea is to
simulate the train movements and the behaviour of an
interlocking as described in its application data and
to observe if any safety issues occurred. If no issue
occurred and if the simulation time was long enough,
we can have a high expectation that the system is safe.
Compared to model checking where all the states are
considered even the ones corresponding to cases that
never occur in practice, the discrete simulation will
only consider the cases which can potentially happen
with a real interlocking.

A discrete event simulation involves three kinds of com-
ponents:

• The entities, which are the active objects on which
the simulation is applied. Each entity is character-
ized by its current state. Our model contains two
families of entities: the interlocking components de-
scribed in the previous section (e.g. the subroutes

which can be free or locked), and the trains, char-
acterized by their position.

• The events, which define actions that can alter the
state of the entities and which can generate other
events. On one hand, there are events for the ac-
tions defined in the application data: requesting a
route and releasing a component. The execution of
these actions is guarded by their conditions. The
effect of these events is to set the considered enti-
ties into the requested state. On the other hand,
there are the events triggered by the train move-
ments: entering into the station, moving through it
and leaving it.

• The clock, stating when the events must occur.
Unlike a continuous simulation where event can oc-
cur during a time period, the discrete simulation
requires each event to occur at a particular instant.

In our simulation, all of these components interact to-
gether as follows:

1. Trains randomly arrive in the station at the possible
routes home signals. In practice, a train arrival is
an event which can occur with a uniform probabil-
ity on the discrete time interval [ta, ta+na] where ta
is the time of the last train arrival (ta = 0 for the
first step) and na is a predefined parameter. Be-
sides, each time such an event occurs, a new event
is triggered in the interval [ta, ta + na] while ta is
updated.

2. Route requests are periodically issued for the trains
waiting at a start signal. If the route setting condi-
tions are fulfilled, the route is set and all the actions
described in the request are executed. Otherwise,
the request is discarded and no action is taken. Like
the trains arrival, a route request is an event which
can occur in an interval [tr, tr +nr] with tr the time
of the last request and nr a predefined parameter.

3. Trains move through the station following the path
described by the station components state. Con-
cretely, they always move forward from one track
segment to the next one and follow the direction
defined by the position of the points. The first
movement of a Train x is triggered when its at-
tached route request is accepted. The next move-
ments occur in the interval [tm(x), tm(x)+nm] with
tm(x) the time of the last movement done by Train
x and nm a parameter. Each train has thereby its
own queue of events. By doing this, we implicitly
model the fact that the speed of the trains can be
different. The higher is nm, the larger will be the
speed difference between trains. Modelling an ex-
act or a realistic speed has no importance for the
verification. What matters is to have a nm large

enough to allow the simulation to cover all the pos-
sible combinations of train positions. To do so, nm

must be higher than the largest number of move-
ment steps for a train (i.e. the number of track
segments composing the longest route). Moreover,
the train lengths are abstracted, only the occupa-
tion of the track segments has an importance for
the verification.

4. After each train movement, the system checks if a
releasing event can be triggered. In this case, the
requested components are thoroughly released.

5. When a train reaches the end of a route, it is re-
moved from the station.

To model the randomness in our simulation we intro-
duced parameters n for several kinds of events. Their
goal is to define the time steps range on which the
events can occur. Therefore, the values of n determines
the frequency of occurrence of a family of events: the
lower is n, the higher will be the frequency. Besides, the
exact values of n has no importance, what matters is
the relation between the values. A n lower than others
indicates that the events related to n will have a higher
probability to occur than the others. We choose to
assign the same value than nm for each n, which means
that each event has the same probability to occur.
As we will see in the next section, this default value
provides good results. Figure 2 shows two possible
scenarios for the event sampling for two trains with
n = 5.

The model presented here is implemented in Scala using
the discrete event simulation package of OscaR (OscaR
Team, 2012). This toolkit has similar functionalities as
SimPy (Müller and Vignaux, 2003). Once the simula-
tion is launched, we can observe the expected behavior
of the interlocking system as described by its applica-
tion data and how it allows the trains to move through
the station. The analysis of this behavior is finally used
to verify the correctness of the application data. The
key idea to perform the verification is to monitor the
simulation to see whether a situation causing a safety
issue has occurred. The monitoring can be done in two
ways: with a dynamic GUI displaying the routes and
the train movements in real time, or with the execution
trace summarizing all the actions performed during the
simulation. As identified in (Busard et al., 2015) there
are three conflictual situations:

• Two trains are at the same time on the same track
segment. In this situation, we have a collision be-
tween the two trains.

• A point is moving while the track segment contain-
ing it is occupied. This situation causes a derail-
ment of the train.

• A train moves through a point not set in a posi-
tion allowing the train to continue its path. For
instance, in Figure 1, it occurs if a train follows
Route R CC 102 and if Point P 02BC is not set at
the reverse position. It will also cause a derailment.

These situations can be expressed in terms of the state
of the entities, and are easy to detect. Using this sim-
ulation, we can thereby verify in a non exhaustive way
the correctness of the application data.

VALIDATION AND PERFORMANCE

In this section, we analyse the results obtained in order
to validate the approach and its performance in terms
of speed, test coverage and error detection capability.

The results presented here are based on two instances.
A small sized station, Namêche, containing 7 points,
7 UIR, 7 signals, 14 routes and 26 subroutes. The
other instance is our case study, Braine l’Alleud (Figure
1), which is a medium sized station containing 12
points, 10 UIR, 12 signals, 32 routes and 48 subroutes.
Furthermore, we compared the results with the ones
obtained using Busard et al. method (Busard et al.,
2015) which made experiments on Namêche with a
model checking approach.

In order to perform the validation, we introduced differ-
ent kinds of errors leading to safety issues in the appli-
cation data to check if they are thoroughly detected.

Table 1: Benchmark about Execution Time (in seconds)
of Error Detection in seconds

Namêche Braine l’Alleud
Simulation Model checking Simulation

1. 2.78 / 0.10 370 8.73 / 2.23
2. 2.94 / 0.45 242 6.88 / 2.57
3. 3.09 / 0.32 258 7.05 / 0.09
4. 3.32 / 0.19 163 6.71 / 1.28
5. 2.98 / 0.06 169 6.49 / 0.88

Table 1 recaps the execution time in seconds for de-
tecting the following errors with the simulation and the
model checking approach:

1. Missing condition in a route request.

2. Point moved to a wrong position when setting a
route.

3. Subroute not properly locked when setting a route.

4. Condition missing for releasing a subroute.

5. Condition missing for releasing an UIR.

0 1 2 3 4 5 6 7 8 9 10 11 12

0 1 2 3 4 5 6 7 8 9 10 11 12

Train 1

Train 2

Train 1

Train 2

Figure 2: Two possible scenarios for the event sampling for two trains with n = 5

Given the randomness of the simulation approach, we
repeated each experiment five time by introducing five
different errors of each kind. The time (x/y) presented
in Table 1 corresponds to the arithmetic mean (x) and
the standard deviation (y) between their execution time.

We can make several observations from this table.
Firstly, we can see that the simulation approach
detects thoroughly errors in the application data, even
if exhaustiveness is not guaranteed. However, it is
important to mention that the application data are
robust by their design. Several forms of redundancy are
implicitly comprised inside them which implies that an
inconsistency do not irremediably causes a safety issue.
For instance, removing an UIR statement in the route
setting conditions can be covered by another contiguous
condition. Therefore, introducing errors causing safety
issues becomes an harder task than expected.

Besides, we can also observe that our approach detects
errors significantly faster than the model checking
approach. Concerning the scalability of the approach,
the benchmark for Braine l’Alleud shows that the
execution time for a larger station do not increase that
much compared to Namêche. Although experiments on
larger data set have not been done yet, the possibility
of a full parallelisation strengthens the scalability of the
approach.

Indeed, the verification by simulation can be almost
entirely paralleled without any overhead if the simula-
tion time is not too short. The intuition behind this
assumption is that the train traffic occurring today
does not influence the train traffic occurring 10 days
later. In other word, a simulation covering 20 days

is identical to two simulation of 10 days. The only
overhead occurring is due to the time used to parse
the application data and to generate the simulation
model which can be neglected. By Gustafson’s law
(Gustafson, 1988), we can thereby deduce that with
n processors, the execution time should be divided by n.

Furthermore, before using simulation for the veri-
fication, we need to decide during how much time
the simulation must be active in order to have a
high expectation that the potentially errors will be
successfully discovered. The first step is to know
what is the correspondence between the simulation
time and the real time or in other words, how many
hours are covered for a simulation of one hour. To
do so, let us assume the worst case of a busy station
where there is an incoming train every minute during
a whole day (1440 trains per day). By recording
the number of routes set during the simulation, we
can report the number of trains that have moved
through the station and deduce how many days the
simulation has covered. Following this procedure, we
obtain that 1 hour of simulation for Braine l’Alleud
covers approximatively 16 872 days (≈ 46 years) of real
interlocking operations. A simulation of 1000 years
will thereby takes 22 hours of computation without
resorting to parallelisation. However, the results of
Table 1 shows that in practice error detection is done far
more quickly that the time required to reach this period.

The major drawback of our approach is that there is
no guarantee of exhaustiveness. Therefore, it is theo-
retically possible that there exist conflictual scenarios
not covered by the simulation. To gain confidence
about our model, we have designed covering tests

aiming to measure which scenarios are tested. For an
interlocking system, a scenario corresponds to a route
request accepted whereas the station has a particular
configuration. For instance, the Request Q(R CC 102)
of Listing 1 can be made when none or several routes
are already set in the station. Furthermore, a same
route can have different states depending on which of
its elements are released. Similarly to software testing
where code coverage (Ammann and Offutt, 2008) is
used to gain confidence into the quality of test suites,
we also measure and report statistics related to the
scenarios coverage. More exactly we record for each
request the number of times it is generated, granted,
and which routes were already set when granted.

The idea behind this test coverage is twofold. First, it
aims to verify that the requests can be done in many
different situations and secondly, it can be used to de-
tect conflictual routes. Table 2 summarizes this test
coverage for the scenarios where a request is done when
Route R CXC 104 is set. After 1 hour of simulation,
361 496 requests were done under this assumption. Fur-
thermore, each scenario occurred with a uniformly prob-
ability with a mean of 11661 and a standard deviation
of 180.

Table 2: Test Coverage when Route R CXC 104 is Set

Request
#Granted

#Done
% Request

#Granted
#Done

%

DXC 092 0 EC 091 0
KXC 103 22.65 CC 102 0
CC 103 0 CGC 012 13.70
KC 101 24.37 CC 104 0
CC 101 24.85 KXC 101 24.13
KC 102 24.36 IC 011 14.51
EC 092 0 FC 091 0

KXC 104 21.89 KC 104 23.11
DC 091 12.62 KC 103 22.78
JXC 011 16.16 CXC 101 12.71
CXC 102 0 JC 012 14.75
JXC 012 16.33 DXC 091 0
CGC 011 13.69 CXC 103 0
KXC 102 24.15 DC 092 12.57

IC 012 14.05 FC 092 0
JC 011 15.38 - -

This table summarises the proportion of times (in per-
cent) that a request is granted after being issued. We
can observe that some requests, like Q(R DXC 092),
are always refused when Route R CXC 104 is set. In
Figure 1 we can indeed notice that R DXC 092 is highly
interleaved with R CXC 104 such that there exists no
state of R CXC 104 where R DXC 092 can be also set.

For the other requests, they are all much less often
granted than they are done. It is because other routes

can also be set in the station, which will prevent the
acceptance of the request. However, we can notice that
some routes have a lower probability to be set than
other. It corresponds mainly to the routes beginning in
the middle of the station (from Signals DC, DXC, ED,
IC, CGC, JC or JXC in Figure 1). It is because on such
locations, trains can have a route going either to left,
or to right. Therefore, the probability to have a route
going to a particular direction is reduced. Furthermore
the requests having the lowest probability to be granted
are Q(R CXC 101), Q(R DC 091) and Q(R DC 092)
which are all three interleaved with R CXC 104. Gener-
ally speaking, the more a route is constrained, the lower
will be its probability to be set. Similar results are ob-
served for scenarios involving other routes, which shows
that most of the scenarios are covered by the simulation.

Through the analysis of the results presented in this sec-
tion, we thereby confirmed the validity of the simulation
approach, its performance, and its benefits.

CONCLUSION

Verification of an interlocking system is a safety
concern. Up to now, most of the research work
considered for the verification were based on model
checking. However, due to the state space explosion,
this approach does not scale very well for large sta-
tions. In this paper, we presented a new approach
of verification based on a discrete event simulation
aiming to address the problems encountered by the
model checking. We have first described the principles
of this approach and how it can be used for a verifi-
cation purpose. Besides, we have confirmed through
experimental results the validity of this approach and
shown that it does not suffer from the problems of the
model checking approach. Furthermore, we presented
other benefits of the method as the possibility of a
full parallelisation in order to do a long-term simulation.

The present work focuses on defining the discrete event
simulation. However, it does not show how the results
of performing several simulations can be aggregated
to obtain a confidence on the reliability of the entire
system.

As a future work, we plan to plug our approach in a
statistical model checker (SMC). The idea behind SMC
is to perform several simulations of a given system, and
then to use statistics (Monte Carlo, hypothesis testing,
etc.) in order to reveal information on its global be-
havior (Legay et al., 2010; Younes and Simmons, 2006).
Classical SMC approaches are well-suited to compute
the probability that a system satisfies a given property.
Here, we are more interested in guiding the simulation
so that it reveals a rare failure of the system. Our knowl-
edge of the system will be used to force the simulation to

reach a failure, and to stop it if there is enough evidence
that it will not reach a failure.

ACKNOWLEDGEMENT

This research is financed by the Walloon Region as part
of the Logistics in Wallonia competitiveness pole.

REFERENCES

Ammann P. and Offutt J., 2008. Introduction to soft-
ware testing. Cambridge University Press.

Busard S.; Cappart Q.; Limbrée C.; Pecheur C.; and
Schaus P., 2015. Verification of railway interlocking
systems. arXiv preprint arXiv:150603554.

Clarke E.M.; Klieber W.; Nováček M.; and Zuliani P.,
2012. Model checking and the state explosion problem.
In Tools for Practical Software Verification, Springer.
1–30.

Cribbens A., 1987. Solid-state interlocking (SSI): an in-
tegrated electronic signalling system for mainline rail-
ways. In IEE Proceedings B (Electric Power Applica-
tions). IET, vol. 134, 148–158.

Eisner C., 1999. Using symbolic model checking to ver-
ify the railway stations of Hoorn-Kersenboogerd and
Heerhugowaard. In Correct Hardware Design and Ver-
ification Methods, Springer. 99–109.

Gery E.; Harel D.; and Palachi E., 2002. Rhapsody: A
complete life-cycle model-based development system.
In Integrated Formal Methods. Springer, 1–10.

Gustafson J.L., 1988. Reevaluating Amdahl’s Law. Com-
mun ACM, 31, no. 5, 532–533. doi:10.1145/42411.
42415. URL http://doi.acm.org/10.1145/42411.

42415.

Hon Y.M. and Kollmann M., 2006. Simulation and veri-
fication of UML-based railway interlocking designs. In
Automatic Verification of Critical Systems. 168–172.

Huber M. and King S., 2002. Towards an integrated
model checker for railway signalling data. In FME
2002: Formal MethodsGetting IT Right, Springer.
204–223.

Legay A.; Delahaye B.; and Bensalem S., 2010.
Statistical Model Checking: An Overview. In
Runtime Verification - First International Con-
ference, RV 2010, St. Julians, Malta, Novem-
ber 1-4, 2010. Proceedings. 122–135. doi:10.1007/
978-3-642-16612-9 11. URL http://dx.doi.org/

10.1007/978-3-642-16612-9_11.

Müller K. and Vignaux T., 2003. SimPy: Simulating
Systems in Python. ONLampcom Python DevCen-
ter. URL http://www.onlamp.com/pub/a/python/

2003/02/27/simpy.html?page=2.

Nash A. and Huerlimann D., 2004. Railroad simulation
using OpenTrack. Computers in railways IX, 45–54.

OscaR Team, 2012. OscaR: Scala in OR. Available from
https://bitbucket.org/oscarlib/oscar.

Schriber T.J.; Brunner D.T.; and Smith J.S., 2012. How
discrete-event simulation software works and why it
matters. In Proceedings of the Winter Simulation
Conference. Winter Simulation Conference, 3.

Theeg G.; Anders E.; and Vlasenko S., 2009. Railway
Signalling & Interlocking: International Com-
pendium. Eurailpress. ISBN 9783777103945.
URL https://books.google.be/books?id=

Y-vrSAAACAAJ.

Winter K., 2012. Optimising ordering strategies for
symbolic model checking of railway interlockings. In
Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Applications and Case Studies,
Springer. 246–260.

Winter K.; Johnston W.; Robinson P.; Strooper P.; and
Van Den Berg L., 2006. Tool support for checking
railway interlocking designs. In Proceedings of the
10th Australian workshop on Safety critical systems
and software-Volume 55. Australian Computer Soci-
ety, Inc., 101–107.

Younes H.L.S. and Simmons R.G., 2006. Statistical
probabilistic model checking with a focus on time-
bounded properties. Inf Comput, 204, no. 9, 1368–
1409. doi:10.1016/j.ic.2006.05.002. URL http://dx.

doi.org/10.1016/j.ic.2006.05.002.

