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Abstract

Background: Assessing the impact of government responses to Covid-19 is crucial to contain the pandemic and
improve preparedness for future crises. We investigate here the impact of non-pharmaceutical interventions (NPIs)
and infection threats on the daily evolution of cross-border movements of people during the Covid-19 pandemic. We
use a unique database on Facebook users’ mobility, and rely on regression and machine learning models to identify
the role of infection threats and containment policies. Permutation techniques allow us to compare the impact and
predictive power of these two categories of variables.

Results: In contrast with studies on within-border mobility, our models point to a stronger importance of
containment policies in explaining changes in cross-border traffic as compared with international travel bans and
fears of being infected. The latter are proxied by the numbers of Covid-19 cases and deaths at destination. Although
the ranking among coercive policies varies across modelling techniques, containment measures in the destination
country (such as cancelling of events, restrictions on internal movements and public gatherings), and school closures
in the origin country (influencing parental leaves) have the strongest impacts on cross-border movements.

Conclusion: While descriptive in nature, our findings have policy-relevant implications. Cross-border movements of
people predominantly consist of labor commuting flows and business travels. These economic and essential flows are
marginally influenced by the fear of infection and international travel bans. They are mostly governed by the
stringency of internal containment policies and the ability to travel.
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Background
Covid-19 is a disease induced by severe acute respira-
tory syndrome coronavirus 2 (SARS-CoV-2). The first
known cases of Covid-19 were registered in December
2019 in Wuhan (China), but the virus rapidly spread into
many countries, leading to a global pandemic that has
held the world captive for many months. As until recently
no effective vaccine or medication was available, govern-
ment policies were mainly targeted towards tracing and
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disrupting infection chains. Many countries introduced
coercive measures and disincentives to limit within- and
cross-border mobility of people in the hope of reducing
the virus propagation. Whether these policies were effec-
tive or not remains an open question, and there is much
to be gained from better understanding the evolution and
determinants of people’s mobility during Covid times.1
There is strong evidence that within-border (or inter-

nal) people’s mobility declined during the Covid-19 cri-
sis. Existing literature relies on big data provided by

1We understand mobility as “the movement of human beings in space and
time” [1]. This broad definition is in line with the mobility measure that we
use in our quantitative analysis, as that includes all types of movement.
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private cellular phone companies,2 and documenting spa-
tial movements in real time. [2] uses Vodafone data for
Italy, Portugal and Spain, and finds that women and
younger people show the largest drop inmobility. [3] com-
bines telco data with household surveys to highlight a
sharp decline in short-distance mobility, as proxied by
daily time spent at parks, retail and recreation, grocery,
transit locations, and workplaces. Using mobility data
from the analytics company SafeGraph, [4] finds that the
decline in mobility in New York and in four other U.S.
cities is mostly driven by the fear of infection, rather than
by legal restrictions. Although it also finds a significant
impact of non-pharmaceutical interventions (NPIs) such
as closing nonessential businesses, sheltering in place, and
school closures, the dominant role of infection threats is
confirmed by [5], who relies on Google mobility data.
By contrast, there is scant evidence of the impact

of Covid-19 on cross-border (or international) mobility,
which is due to the absence of high-frequency data on bor-
der crossings.3 In this paper we aim to fill this research gap
by addressing the following research questions: (i) How
has the Covid-19 impacted cross-border movements of
people? (ii) Are these changes due to coercive measures
(such as containment policies or international travel bans)
or by the fear of contracting the virus?
Understanding the determinants of cross-border mobil-

ity responses to Covid-19 is important for economic
and epidemiological reasons. Cross-border movements of
people predominantly consists of labor commuting flows
and business travels. Economically speaking, labor mobil-
ity is a key ingredient for growth and competitiveness in
normal times. And in a pandemic context, restrictions
placed on how workers move around can slow down eco-
nomic recovery prospects, by making it more difficult
for businesses to hire productive workers. They can also
induce severe economic impacts on cross-border work-
ers and their families. Epidemiologically speaking, the
role that mobility is playing in the spread of the disease
is still unclear. Using SafeGraph data for New York city
and for other U.S. cities, [6] find that (internal) mobility
increased the spread of the disease in the early stage of
the pandemic. [7] also finds a strong association between
internal movements and mortality using Google mobility
data for the UK. In the same vein, [8] shows that (internal

2By big data, we mean extremely large data sets that may be analyzed
computationally to reveal patterns, trends and associations, especially those
related to human behaviors and interactions, according to the Oxford
Languages (https://languages.oup.com/google-dictionary-en/).
3The recent OECD migration outlook reveals that issuance of new visas and
permits in OECD countries plummeted by 46% in the first half of 2020 (by
72% in the second quarter), as compared with the same period in 2019.
However, international migrants and refugees account for a tiny proportion,
not a say a negligible proportion, of daily cross-border movements of people
between European countries. Daily flows predominantly consist of
commuting workers and business travels.

and international) travel bans enacted during the Chi-
nese Lunar New Year holiday helped reduce the spread of
the virus, and [9] argue that an appropriate coordination
would considerably improve the likelihood of eliminating
community transmission throughout Europe. By contrast,
others expressed skepticism about the epidemiological
consequences of travel bans, arguing that the impacts of
these restrictions are not well understood [10] or poorly
effective [11–15] once patient zero has already spread the
virus across regions.
Without taking any position on the fact that cross-

border mobility should be limited or encouraged, we use a
unique database on daily mobility of European Facebook
users to shed light on the evolution of cross-border move-
ments of people during an entire pandemic year, and to
compare the effects of coercive policies with those related
to the fear of infection. Our results contrast with those
obtained for internal mobility. The following sections suc-
cessively describe our data sources, methods and findings.

Data
Border crossings
Data on daily cross-bordermobility is obtained from Face-
book (denoted by FB, henceforth) for the period from
the 29th of February 2020 to the 28th of February 2021
[16]. The database documents cross-border flows of FB
users with location services enabled, who travel from an
origin to a destination country by any means of trans-
portation (car, train, air, etc.) during each 24-hour time
period4. Only daily flows with aminimum of 1,000movers
are reported in the dataset. All flows below 1,000 are
set to zero in order to minimize re-identification risk of
FB users. This means that our outcome variable is left-
censored. To limit the impact of censoring, we focus on
45 country pairs (involving 30 contiguous European coun-
tries) characterized by at least 25% of uncensored values
of daily traffic during the period of observation. This
selection limits the ability to generalize our results but
is necessary to limit the impact of censoring, and allow
smooth estimation with Machine Learning methods. Fur-
ther limiting the impact of censoring, we use the 7-day
centered rolling average of daily flows.
Although FB data has high coverage, FB users are not

a random sample of the population. This raises concerns
about representativeness. Figure A.1 in Appendix mit-
igates these concerns by showing a strong association
between daily movements of FB users and the (estimated)
number of daily border crossings in the pre-Covid-19

4A number of recent studies such as [17, 18] use data extracted from FB
advertising API to identify migrants and model migration patterns. Note that
our data source is different as we only have access to aggregate bilateral
counts, without further details on movers’ characteristics. The advantage of
our data source is, however, that it is available on a daily basis.

https://languages.oup.com/google-dictionary-en/
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period, which are presented in Appendix Table A.1.5
However [19] shows that FB users are over-represented
in the population aged 20-40, with a high level of edu-
cation and an above-average income level. It means that
groups of individuals under 20 or over 65 and those with
lower income/education levels are under-represented in
FB data. Although people under 20 and over 65 form a tiny
minority of the population under investigation (i.e., com-
muters and business travelers), this is a limitation of our
work. FB users are more likely to belong to the richest and
healthiest parts of the movers’ population.
Let us denote by MF

i→jt the count of FB movers from
country i to country j at day t. When focusing on con-
tiguous countries (i.e., the pairs of countries that exhibit
the largest numbers of daily cross-border movements by
far, and that are the least affected by censoring rules),
the number of movers from i to j is almost identical to
the number of movers from j to i at each day t (i.e.,
MF

i→jt � MF
j→it). The reason is that border crossings

predominantly consist of back-and-forth movements of
commuting workers and business travelers, who move for
short periods and for economic reasons6. This is also the
case in the summer vacation period when considering a
7-day centered rolling average of daily flows. This means
that MF

i→jt and MF
j→it are reflecting the same reality, and

say nothing about the primary direction of the flows. For
this reason, we define the level of bilateral traffic of FB
users between countries i and j as:

TF
ijt ≡ Max

[
MF

i→jt ,MF
j→it

]
, (1)

and see it as a proxy for the scaled sum of the two
unobserved unidirectional flows between the two coun-
tries, φ(Mi→jt + Mj→it), where the scale factor φ denotes
the fraction of FB users in the actual number of movers
(denoted by Mi→jt and Mj→it). Using the maximum as
weighting scheme has the advantage to limit the impact
of censoring in the case movers in one of the two direc-
tions are below the threshold. As TF

ijt = TF
jit , we can get

rid of the dyadic dimension of the data, treat each country
pair as a one-dimensional observation, and divide the size
of the sample by two. In the methodological section, how-
ever, we explain how priors about the primary direction of
the flows can be used to improve the quality of fit of our
models.
To avoid dealing with re-scaling issues, we express traf-

fic counts as relative deviations from their initial or pre-
Covid-19 levels – in our case, the levels observed at the

5We also find a strong association between the number of FB users and
population size at the regional level. Results are available upon request.
6Note that we only observe the total number of movers within a day, and
neither the duration of their stay nor the direction of the movement. The vast
majority of movers cross the border twice as they return to their origin
country within a day or so. This is why we model cross-border traffic and use
a trick below to account for the presumed direction of the flows.

outset of the pandemic (denoted by day 0). We thus use
the relative deviation in bilateral traffic between day 0 and
day t, τijt ≡ Tijt−Tij0

Tij0
, as a variable of interest instead of

focusing on the level of traffic Tijt itself. Modelling rel-
ative deviations is also helpful to avoid over-fitting large
corridors at the expense of small corridors, and mitigates
representativeness issues even if the scale factor (φ) varies
across country pairs.
Figure 1 portrays these relative deviations in the aggre-

gate level of traffic between all country pairs included in
our sample. The curve largely mirrors the three phases of
the pandemic, depicting a stark drop in traffic in March
2020, a recovery during the spring and summer peri-
ods, and a new contraction in the post-summer period.
Between end of February and early April 2020, the aggre-
gate traffic level decreased from 720,000 to 130,000,
implying a 82% drop. Aggregate traffic never fully recov-
ered to the February levels in our period of observation.
This also holds true during the summer vacation period
when international travels were largely liberalized. The
pace and strength of these changes vary across the three
phases of the pandemic. The drop in March 2020 was
strong and sudden, while the summer peak and the post-
summer contraction were more gradual.
Aggregate fluctuations mask large differences across

country pairs. Bilateral traffic returned to its pre-Covid
level in a minority of cases. For the majority of corri-
dors, however, the traffic level has not fully recovered.
This is illustrated in Fig. 2, which depicts the evolution
of people’s traffic in corridors involving four open coun-
tries, namely Luxembourg, Switzerland, Italy, and Serbia.
Luxembourg is the country with the highest share of
cross-border workers in Europe. Given the economy’s
high reliance on cross-border workers, the Luxembourg
government has never implemented international travel
restrictions during the pandemic. Luxembourg experi-
enced a significant drop in traffic inMarch 2020, whatever
the partner country. After one month of lockdown, traf-
fic levels recovered pretty quickly until reaching a plateau
at about -25% since June 2020. Switzerland is the coun-
try with the largest number of cross-border commuters in
Europe. This country experienced a larger drop during the
first lockdown, and a slower recovery. Furthermore, the
variability across corridors is considerably greater than in
Luxembourg.
Italy has been severely impacted by the pandemic, and

responded with national and international travel bans.
We observe similar patterns of contraction and recov-
ery during the first two quarters of 2020, followed by a
substantial increase in traffic during the holiday summer
period, and a second lockdown-type contraction in the
post-Summer period. Finally, the patterns observed in Ser-
bia are less conclusive as they are more severely affected
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Fig. 1 Aggregate Traffic Deviations from Pre-Covid Levels. Source: Facebook data on daily border crossings. Notes: Y-axis represents the average of
τijt , the percentage change (times 100) in the 7-day moving average traffic compared to t = 0 over all destinations. The weights are the traffic levels
observed in pre-Covid-19 period (i.e., t = 0)

by censoring rules. Serbia is an important origin and tran-
sit country for migrants and refugees entering the EU.
Overall these patterns illustrate the need to account for
corridor-specific heterogeneity when analyzing the deter-
minants of bilateral traffic. Variations are likely to be

influenced by seasonal effects, epidemiological risks, and
policy measures implemented in the countries. We now
turn to the description of the data sources used to proxy
epidemiological conditions and the stringency of national
policies.

Fig. 2 Traffic Deviations from Pre-Covid Levels for Selected Corridors. Source: Facebook data on daily border crossings. Notes: Y-axis represents τijt ,
i.e. percentage change (times 100) in corridor 7-day moving average traffic compared to t = 0 in corridor ij
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Fig. 3 Evolution of the average value of Covid cases and government policy measures. Source: Oxford Covid-19 Government Response Tracker
(OxCGRT). Note: The values of each indicator is scaled between 0 and 1, and the average is computed using the 30 countries included in our sample

Explanatory features
We link variations in cross-border traffic during the pan-
demic to daily changes in epidemiological conditions and
containment policies in the countries involved. We proxy
the severity of the pandemic with the daily numbers of
new Covid-19 cases and new Covid-19 related deaths in
each country using data from [20]. With regard to con-
tainment measures, we use data on daily policy responses
from the Oxford Covid-19 Government Response Tracker
(OxCGRT) [21]. The latter database consists of 18 ordi-
nal indicators capturing the levels of nonpharmaceutical
interventions (NPIs). Based on our priors as to which poli-
cies likely affect mobility, we choose to include the eight
mobility-relatedmeasures that form the “containment and
closure policies” block (denoted by C1-C8 in the database)
as well as proxies for the intensity of testing and contact
tracing (denoted by H2 and H3). We rescale all sets of
predictors between 0 and 1, and align them with the def-
inition of the outcome variable using the centered 7-day
rolling average at each day.

For all features and days, Fig. 3 displays the cross-
country mean level of each containment index over
time. Values close to one represent higher Covid-19
cases/deaths ormore stringent responses. As containment
policies were implemented in most countries during the
second half of March 2020, maximum values are observed
during this period. Testing and contract tracing were
implemented more heterogeneously across countries and
peaked in the summer of 2020. Reported number of new
Covid-19 related cases/deaths were much greater during
the second wave and peaked at the end of the year 2020.7
Figure 4 shows the cross-country correlations between

each of the explanatory variables and the relative devi-
ations in average traffic (i.e. deviation of the country-
specific mean level of traffic with all potential partner
countries in the sample). Containment policies are pos-
itively correlated with each other, and moderately cor-
related with epidemiological conditions, which allows us

7Epidemiological conditions are likely to subject to measurement errors. For
example, testing and tracing practices played an important role in determining
the number of detected cases.
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Fig. 4 Correlation Matrix of the different variables. Source: Own computations. Notes: Unilateral traffic growth for each country i is the relative
deviation in aggregate traffic involving country i,

∑n
j=1 Tijt , as compared to the pre-Covid-19 period (t = 0)

to include both sets of variables jointly in our regression
and machine learning models. However, the fact that con-
tainment policies are correlated with each other raises
concerns of multicollinearity, and motivates the usage
of a limited number of synthetic policy indices. These
indices are obtained by conducting a Principal Compo-
nent Analysis (PCA) of all policy measures (C1-C8, and
H2-H3) over the entire sample of observations, and by
extracting the first two components. The first component
mainly represents the C1-C8 measures which are strongly
correlated with each other while the second component
corresponds to a higher variance for the H2-H3 mea-
sures. We will compare the results obtained when using
a comprehensive specification, including all (collinear)
explanatory variables, with those obtained when using a
parsimonious specification, including the two synthetic
PCA components as predictors.
Turning to the main correlations of interest (i.e., cor-

relations between the relative deviations in cross-border
traffic and each predictor), the figure displays a moder-
ate negative correlation with containment policies, as well
as low and positive correlations with testing and trac-
ing policies. The strongest associations are obtained for

cancellations of public events, restrictions on public gath-
erings, requirements to stay at home, and restrictions on
internal movements. Two interesting observations arise
from these partial correlations. First, the negative cor-
relation between measures of epidemiological intensity
(Covid-19 cases and deaths) and changes in total traf-
fic are rather low. This might suggest that, in contrast
with studies on within-border mobility, the fear of being
infected might play a less important role in explaining
changes in cross-border movements. Second, among con-
tainment policies, the implementation of international
travel bans is far from being the most strongly corre-
lated covariate. This suggests that travel bans might be
effective in limiting non-essential travels, but less effec-
tive to limit labor commuting flows and business travels,
which represent the overwhelming majority of daily bor-
der crossings between European countries (see Table A.1).
By contrast, cancellations of events and constraints on
internal movements and gatherings are highly correlated
with traffic variations, possibly because such constraints
better proxy changes in economic activity and incentives
to move. In the following section, we describe the regres-
sion and machine learning methods used to test these
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hypotheses using bilateral traffic growth as a dependent
variable.

Methods
Mobility patterns identified in the previous section might
result from various factors such as travel bans, sanitary
measures influencing economic costs and incentives to
move for work and business (e.g. sectoral lockdown, work-
from-home practices) or for leisure (e.g. shops, restaurant
and bar closings), or the fear of the virus itself. Our goal
here is to identify the determinants of the relative devi-
ation in daily traffic of people between country i and
country j (τijt), considering all NPIs and epidemiological
daily indicators (xit and xjt) during the Covid-19 crisis.
Our models are also used to predict the effects of epi-
demiological restrictions, NPIs and mobility restrictions
on traffic counts.
We combine two analytical methods, Econometric

Modelling (EM) andMachine Learning (ML). EM andML
techniques are generally used for different purposes. In
EM, gravity models are used to explain human mobility
flows between two countries.8 EMmodels require impos-
ing one analytical specification for the response func-
tion, which governs the derivatives of the dependent with
respect to covariates. In the gravity specification, a large
set of fixed effects are included to capture relevant con-
founders, and allow for identification of potential causal
effects based on the so-called within variation. ML tech-
niques are at the other extreme of the bias-variance trade-
off. They do not require strong analytical assumptions and
allow, by design, to explore a larger set of regression func-
tions including linear or polynomial combinations of the
covariates. This increase of the so-called model capacity
comes with two drawbacks. First, the models are more
complex and are usually not easy to interpret. Contrary
to EM, ML techniques might computationally suffer from
the inclusion of large sets of control fixed effects. Second,
there is always a risk of overfitting the training data and
the identification of causation links is usually not an objec-
tive per se. Despite these difficulties, we use both EM and
ML to identify convergingmessages, and the triangulation
of results can serve to strengthen our evidence base.
We use four models exploring a broad range of learning

techniques: (i) A gravity model based on the linear regres-
sion method [23]; (ii) A K-nearest neighbors method
(KNN), which predicts the dependent variable by inter-
polation of its nearest observation neighbors in the train-
ing set [24]; (iii) A Gradient Boosting method (GBoost),
whose predictions are based on a set of decision tree mod-
els [25]; (iv) A Multi-layer Perceptron (MLP), which is a
classic neural network approach [26, 27]. The last three

8Gravity models aim to predict bilateral flows between two entities based on
their size, on their economic characteristics, and on the distance between
them [22].

models rely on different ML regressors, each based on a
distinct type of technique.We assess the predictive perfor-
mance of each model using the very same (and standard)
cross-validation ML methodology. The goal of the study
is not to design a forecasting model, but rather to iden-
tify the main determinants of mobility, and to investigate
whether these different approaches generate converging
findings. Therefore, instead of the validating our model
on a particular sub-period (as is usually done to evalu-
ate a time-series model), the observations composing the
cross-validation folds are randomly chosen within the full
sample. All models are implemented in Python via the
Skicit-learn library [28].

Approaches with or without directional priors
Ideally, mobility models aim to characterize the evolution
of the unidirectional flow of people (Mi→jt) from an ori-
gin country i to a destination country j at day t, or of
their relative deviation from the initial reference period(
μi→jt ≡ Mi→jt−Mi→j0

Mi→j0

)
, based on a set of features available

for the same time period. Without loss of generality, the
general functional form fM of such a model can be written
as:

μi→jt = fM(xit , xjt , dij, dt) + ηi→jt (2)

where xit represents the set of origin-specific determi-
nant, xjt is a set of destination-specific determinants, dij is
a set of bilateral dummies capturing time-invariant bilat-
eral resistance (including initialMi→j0, distance, language
proximity, cultural proximity, etc.), dt a set of day dum-
mies capturing weekdays and seasonal trends (e.g. holiday
season, general feeling of risk when traveling, etc.), and
ηi→jt an error term. In our case, the vectors of explana-
tory variables xit and xjt capture the set of NPIs and
epidemiological variables, and should also be interpreted
as variations from period 0 since xi0 and xj0 are equal to
zero in the pre-Covid-19 period.
With FB data, the primary direction of the cross-border

flows is unknown, which implies that Mi→jt and Mj→it
cannot be distinguished a priori. Instead, we observe the
relative deviation in bilateral traffic, τijt , and we have to
estimate the function fT linking bilateral traffic to the set
of explanatory features without being able to distinguish
between origin- and destination-specific determinants. A
learning approach without directional priors writes as:

τijt = fT (xit , xjt , dij, dt) + ηijt (3)

It is possible, however, to discipline the model with pri-
ors about the direction of the flows. As bilateral traffic
is a proxy for the sum of unidirectional flows (Tijt �
φ(Mi→jt + Mj→it)), relative deviations in Tijt can be
expressed as a weighted sum of the relative deviations in
unidirectional flows: τijt = ωi→j,0×μi→jt+ωj→i,0×μj→it ,
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whereωi→j,0 = 1−ωj→i,0 is the pre-Covid-19 share of uni-
directional cross-border flows from country i to country
j in total traffic between the two countries. Estimates for
ωi→j,0 are constructed using pre-Covid-19 data on com-
muters, air travels and international migration, and then
used as priors to discipline the model (these shares are
depicted in Figure A.2 in Appendix).
We can thus create two sets of weighted features,

namely Xo
ijt for origin-specific effects, and Xd

ijt for
destination-specific effects, defined as follows:

Xo
ijt = ωi→j0xit + ωj→i0xjt

Xd
ijt = ωi→j0xjt + ωj→i0xit .

The model with directional priors is obtained after
replacing (xit , xjt) in Eq. (3) by

(
Xo
ijt ,Xd

ijt

)
. It writes as:

τijt = fT
(
Xo
ijt ,Xd

ijt , dij, dt
)

+ ηodijt . (4)

If the true model for unidirectional flow (fM(.)) was lin-
ear, plugging weighted covariates in the estimated model
for bilateral traffic (fT (.)) would allow retrieving the true
origin- and destination-specific coefficients of interest
accurately. Although this is not the case when fM(.) is
non linear, using weighted covariates might improve the
quality of fit or facilitate the interpretation of the results.
The rationale is that the effect of policies depends on
where they are implemented and on the primary direc-
tion of the flows. Suppose ωi→j0 � 1 (i.e., flows mostly
go from i to j), then an increase in restrictions/stringency
at destination (resp. at origin) makes Xd

ijt positive (resp.
Xo
ijt positive) and is more (resp. less) likely to reduce the

flow of cross-border movements. Using directional pri-
ors allows approximating origin- and destination-specific
effects without observing the direction of the flows during
the pandemic year.

Permutation feature importance
To identify the main causes of daily mobility variations,
the importance of each feature is computed for the dif-
ferent regression approaches with permutation feature
importance [29]. It has a the advantage of working sim-
ilarly for all regression models considering them as a
black-box models [30]. It is defined to be the decrease in
the regression score when a single feature value is ran-
domly shuffled across observations. More exactly, for a
given model f, it first calculates a baseline score Sf pro-
vided by f when it is fitted, and then evaluated with a
certain metric on the whole sample. Then for each pos-
sible feature x the modified score S∗

f ,x is computed by
evaluating f on the transformed data set where the values
of feature x are randomly permuted across all observa-
tions. The mean importance of the feature x for the model
f is computed as:

If ,x = 1
K

K∑
k=1

Sf − S∗
f ,x,k

Sf
(5)

where K is the number of random permutations realized
for each feature, and S∗

f ,x,k is the S∗
f ,x score for the kth

permutation.
In order to compare the importance values of the dif-

ferent models in an equivalent manner, the values If ,x are
scaled between 0% and 100% separately for each model
f. The mean features importance If ,x are computed over
10 permutations using the negative mean absolute error
(MAE) and the Root Mean Squared Error (RMSE). This
means that the bigger If ,x, the more permutations of
the feature x degrades the quality of predictions for the
model f and the feature is considered as more importantly
associated with the target variable.

Results
We present our results in two steps. First, we assess
the predictive power of the various models. This implies
comparing learning methods with or without directional
priors and with or without day/corridor control dum-
mies. We compare their predictive performance by using
out-of-sample predictions and computing the MAE and
RMSE. Second, we use the estimated models to rank the
importance of different features relying on permutation
techniques. Using multiple models allows assessing the
robustness of our findings.

Validation of models
We first investigate whether adding priors about the direc-
tion of the flows and/or adding a full bunch of day and cor-
ridor dummies improves the performance of our learning
models. Models without directional priors are described
in Eq. (3), while models with priors use weighted regres-
sors, as described in Eq. (4). A 10-fold cross-validation
over the whole data set (from the 29th February 2020 until
the 28th February 2021) is realized for eachmodel to assess
its performance. Table 1 reports the MAE, RMSE and
their standard error across cross-validation folds obtained
with different learning methods.
It shows that directional priors (ωi→j,0 and ωj→i,0) do

not bring significant additional predictive power under
most learning approaches when day and corridor dum-
mies are not factored in (see Panels A and B). The only
exception is the G-Boost method. On the contrary, when
day and corridor dummies are included (Panels C and D),
adding directional priors slightly improve the quality of fit
with virtually all learning techniques (except with KNN).
In addition, we show below that distinguishing between
origin- and destination-specific effects as in Eq. (4) makes
the interpretation of the results much easier. Therefore,
the model with directional priors will be prioritized in the
rest of the analysis.
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Table 1 MAE comparison of the different models with or without directional priors and dummies

Linear KNN G-Boost MLP Linear KNN G-Boost MLP

Panel A: No dummies - No prior Panel B: No dummies - Priors

avg MAE 0.194 0.018 0.073 0.051 0.201 0.019 0.042 0.057

std MAE (0.009) (0.001) (0.001) (0.005) (0.005) (0.001) (0.001) (0.003)

avg RMSE 0.285 0.042 0.106 0.083 0.287 0.043 0.064 0.089

std RMSE (0.017) (0.009) (0.003) (0.011) (0.009) (0.005) (0.002) (0.008)

Panel C: Dummies - No prior Panel D: Dummies - Priors

avg MAE 0.135 0.020 0.050 0.041 0.134 0.020 0.049 0.038

std MAE (0.005) (0.001) (0.002) (0.003) (0.005) (0.001) (0.001) (0.003)

avg RMSE 0.210 0.045 0.081 0.068 0.203 0.047 0.077 0.064

std RMSE (0.010) (0.006) (0.006) (0.006) (0.009) (0.005) (0.002) (0.005)

Note: The table compares the performances of the 4 different approaches (Linear, KNN, G-Boost and MLP) with and without directional priors (ωi→j,0), and with or without
day/corridor dummies (dt and dij ). Errors are computed from a 10-fold cross-validation on the whole sample

Second, we investigate whether the inclusion of day-
specific effects – i.e., 366 time dummies, dt , that are com-
mon to all corridors and capture unobserved variations
such as seasonal changes, synchronized fears of infection,
etc. – and corridor-specific effects – i.e., 45 corridor dum-
mies, dij, that are time invariant and capture unobserved
variations such as the skill level of the cross-border work-
force, linguistic and cultural proximity between countries,
etc. – improves the predictive power of ourmodels. Again,
we perform another 10-fold cross-validation on different
versions of eachmodel. Panels C and D in Table 1 includes
both sets of dummies jointly, with or without directional
priors. In the absence of directional priors, the inclusion
of day and corridor dummies reduces theMAE and RMSE
by 20 to 30% whatever the learning technique used. When
directional priors are factored in, the dummies improve
the performance of the linear and MLP models, whereas
they deteriorate the quality of fit under the KNN and G-
Boost models. This is because adding day and corridors
dummies drastically increases the number of parameters
to be estimated, and some ML approaches (like KNN) are
known to suffer from the curse of dimensionality.
To further explore this issue, Table A.2 in Appendix

considers the model with directional priors and adds one
set of dummies at a time. The inclusion of 45 corridor-
specific dummies always improves the quality of fit. On
the contrary, the inclusion of 366 day-specific dummies
deteriorates the performance of KNN and G-Boost meth-
ods. This confirms that the gains from adding information
about unobserved common time trends, which might
already be captured by the relatively well synchronized
trends in observed epidemiological conditions and con-
tainment measures, is outbalanced by the costs linked to
the inflated dimensionality of the computation problem.
Third, ML techniques always outperform the linear EM

model. This result was also expected given that ML is

based on more complex prediction methods that allow for
non-linear relationships between variables, and account
for non-stationary variations contained in the matrices of
Xo
ijt and Xd

ijt . The KNN always produces the best quality of
fit. The error of this approach is minimal when the num-
ber of neighbors k used to estimate the relative deviations
in traffic is low (say, 2 or 3). Its impressive performance in
10-fold cross-validation can be explained by the fact that
the model finds a small number of observations for which
the relative deviations in traffic are similar to those that
must be predicted. In general, the closest neighbors are
observations of the days preceding or following the daily
level of traffic observed in the same corridor.

Main sources of variations in cross-border mobility in
COVID times
In order to identify the government policy indicators hav-
ing the greatest impact on relative deviations in traffic,
the importance of each feature is computed for the differ-
ent approaches involving directional priors and dummies.
Directional priors allow us to distinguish the effects of
origin-specific features from those of destination-specific
features. Table 2 presents the results from this exercise.
Features are ranked by decreasing order on the basis of
the average predictive power across the four learning tech-
niques. The column ‘Avg.’ gives the mean value of error
metric averaged over the four models. Panel A provides
the results obtained with the saturated models includ-
ing the large set of corridor and day dummies, which is
the first-best model when using linear and MLP learning
techniques. Panel B gives the results obtained with cor-
ridor dummies only, which is the first-best model when
using the KNN and G-Boost techniques. Results of Panel
B will be discussed in the next section. In the top part of
the table, the models use all individual features depicted
in Fig. 3, despite the high level of correlation between



Docquier et al. Globalization and Health           (2022) 18:41 Page 10 of 17

Table 2 Feature ranking by origin and destination

Panel A Panel B

Corridor & Day dummies Corr. dum.

Features Linear KNN G-Boost MLP Avg. Avg.

Indiv. features

Origin - C1 School closures 100 69 100 59 82 85

Destin - C1 School closures 94 60 36 85 68 68

Destin - C3 Cancel public events 19 64 77 68 57 57

Origin - C3 Cancel public events 10 100 33 65 52 46

Origin - C7 Restr. Internal movement 0 93 16 100 52 51

Origin - H2 Testing policy 14 7 87 92 50 43

Origin - C4 Restrictions gatherings 50 51 40 54 49 44

Origin - C6 Stay home requirements 92 16 12 59 45 21

Destin - C6 Stay home requirements 17 15 96 54 45 45

Destin - C4 Restrictions gatherings 6 48 70 25 37 42

Destin - C7 Restr. Internal movement 13 66 12 58 37 29

Origin - H3 Contact tracing 5 12 27 44 22 22

Origin - C8 International travel bans 1 1 45 40 22 18

Origin - New Covid deaths 0 7 73 5 21 46

Origin - New Covid cases 11 0 21 52 21 75

Destin - New Covid deaths 6 10 64 0 20 49

Destin - C5 Close public transport 34 6 1 39 20 9

Destin - H3 Contact tracing 31 21 2 14 17 7

Destin - C2 Workplace closing 5 33 7 23 17 21

Destin - C8 International travel bans 0 12 20 32 16 24

Destin - New Covid cases 12 0 43 6 15 38

Origin - C5 Close public transport 18 7 0 31 14 12

Origin - C2 Workplace closing 1 23 10 14 12 23

Destin - H2 Testing policy 9 0 2 10 4 6

Synthetic features

Destin - Component 1 100 100 100 100 100 100

Origin - Component 1 13 75 20 49 39 48

Origin - Component 2 1 55 17 19 23 26

Destin - Component 2 9 50 0 0 15 17

Origin - New Covid cases 0 0 18 30 12 75

Destin - New Covid deaths 5 14 6 11 9 49

Origin - New Covid deaths 1 13 3 9 6 46

Destin - New Covid cases 0 2 1 6 2 38

Notes: The different features are ranked following the permutation importance method. For each approach, we provide results obtained with the model including
day/corridor dummies (cols. 1-5) and the version including corridors dummies only (col. 6). Directional priors are always used to identify the effects of origin- and
destination-specific features. The importance values of each feature is computed over 10 permutations using the negative mean absolute error (MAE). The resulted values are
scaled between 0% and 100% separately for each model. The col. ‘Avg.’ averages the results obtained with the four learning techniques. The features are ranked according to
the average importance of the models including the day/corridor dummies (Panel A). In Panel B, we only report the ‘Avg.’ score without reporting the model-specific results

some of them. In the bottom part of the table, the models
use synthetic containment features derived from a PCA
analysis.
When considering all individual features, the ranking

based on their predictive power varies across models.

We identify, however, several common and interesting
findings. First, school closures in the origin country has
the largest average impact on the variation in daily traf-
fic. Remember that cross-border traffic predominantly
consists of labor commuting flows and business travels.
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School closures at origin imply that many parent workers
are forced to take parental leave and cannot commute to
work. In the same vein, school closures in the destination
country are also paralyzing economic activity in the desti-
nation country and reduce incentives to move. This result
is in line with [31], who finds that school closures were
among the most important predictors of internal mobil-
ity in March 2020. Second, variations in traffic are mostly
impacted by containment measures. Based on the average
predictive power (col. ‘Avg.’), ten out of the twelve most
predictive features involve C-type containment measures
implemented in the origin or destination countries. Third,
the fear of being infected in the destination country, as
proxied by the destination-specific number of Covid-19
deaths and cases (appearing in bold characters in Table 2)
are among the least predictive features. Fourth, inter-
national travel bans in origin and destination countries
(appearing in italics in Table 2) also have a low predictive
power. We thus conclude that cross-border daily flows are
marginally influenced by the fear of infection and inter-
national travel bans. They are mostly governed by the
stringency of internal containment policies and by fam-
ily constraints. It is worth noticing that models without
directional priors deliver very similar results, as illustrated
in Table A.3 in the Appendix.
In addition to school closures, the top panel of Table 2

suggests that the most important containment measures
are the cancellation of public events, restrictions on gath-
erings, restrictions on internal movements and stay-home
requirements. In addition, the twelve most predictive fea-
tures include 5 destination-specific and 7 origin-specific
measures. However, as illustrated in Fig. 4, these mea-
sures are highly correlated at the national level. Hence,
instead of feeding the model with correlated features, the
bottom part of the table uses synthetic indices of contain-
ment and sanitary measures. We use a PCA analysis to
reduce the dimensionality of the origin- and destination-
specific containment measures and we extract the first
two components of the PCA.
Remember that the first PCA component can be inter-

preted as an average index of stringency of containment
measures (i.e. C1-C8 indices); the second component cap-
tures testing and tracing policies (i.e. H2 and H3). The
results clearly reveal that the stringency of containment
measures in the destination country has, by far, the great-
est predictive power. The average stringency of contain-
ment measures at origin is the second most predictive
power, with an average importance equal to 40% of that
of the destination country. This comforts the idea that
cross-border daily flows of people mostly involve eco-
nomic/essential movements which can only be influenced
by changes in incentives to move or coercive mobility con-
straints. In line with the top part of the table, variables

influencing the fear of infection have negligible impacts
on border crossings.

Discussion
The EM and ML techniques used in this paper allow
highlighting a strong association between the evolution
of bilateral traffic between contiguous countries and con-
tainment policies in the destination country as well as
school closures in the origin country. Association does
not imply causation. It could be argued that this statisti-
cal association is governed by the influence of unobserved
characteristics affecting both policy changes and mobil-
ity simultaneously, or that a reverse causation mecha-
nism operates (i.e. cross-border mobility influences policy
reforms). The fact that our results are robust to the inclu-
sion of a large set of day and corridor dummies captur-
ing unobserved time- and corridor-specific characteristics
strongly mitigates the first misspecification concern.
With regard to reverse causation, concerns aremitigated

by the use of high-frequency data. We cannot reject the
possibility of a mobility-driven propagation of the virus
requiring new containment measures. However, such a
mechanism takes time to operate. Mobility shocks at day
t do not generate immediate and visible epidemiological
consequences, and policy responses are also implemented
with a certain delay. By contrast, our estimates suggest
that containment policies are immediately associated with
changes in cross-border mobility. This prudently sup-
ports the existence of a causation effect of containment
measures on mobility.
An opposite argument that goes against the reverse cau-

sation issue is that it also takes time for information about
epidemiological conditions to be assimilated by potential
movers. Hence, the fear of infection could be better prox-
ied by the lagged numbers of Covid-19 cases and deaths.
Our results are preserved and even reinforced when using
lagged proxies for the fear of infection. More precisely,
traffic at day t is very badly predicted by the number
Covid-19 cases and deaths observed one or two weeks
before the date (see Table A.4 in the Appendix). Hence,
we can reasonably rule out that the low impact of infec-
tion fears at destination is driven by a misspecification
problem.
In the same vein, it could be argued that fears are

strongly synchronized across countries and captured by
the day dummies. These concerns aremitigated by the fact
that removing the day-specific dummies does not alter
our conclusions. In Panel B of Table 2, day dummies are
excluded. The only significant change is that the num-
ber of Covid cases in the origin country has a greater
predictive power, possibly implying that people in sick
leave self-isolate and stopmoving. However, the predictive
power of international travel bans (in italics) and fears to
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be infected at destination (epidemiological conditions at
destination are in bold characters) remain low when using
both individual and synthetic features. Again, the strin-
gency of containment measures in the destination country
has the greatest predictive power by far.
Finally, one may fear that our results can be affected by

the quality of data as well as their comparability across
countries (see [32] for a discussion of the strengths and
weaknesses of data sources on Covid-19). Data on Covid-
19 threats and NPIs (such as the number of new cases
and deaths) are likely to be subject to country and time
biases due to multiple reasons (e.g. changes in testing
strategies, seasonal effects, variations in reporting delays
or in the classification of Covid-related deaths, etc.). It is
worth emphasizing, however, that the Permutation Fea-
ture Importance technique that we use is, by construction,
robust to noise.9 In addition, the systematic use of bilat-
eral and time dummies (dij and dt) allows us to mitigate
the biases caused by unobserved variations in the quality
of data across country pairs and periods.

Conclusion
Existing literature shows that people within-bordermobil-
ity has drastically declined in times of Covid-19, primarily
because of the fear to be infected in parts of the pop-
ulation. To the best of our knowledge, our study is the
first to analyze the effect of Covid-19 and related contain-
ment measures on people’s cross-border movements. In
line with the findings above, we also document a sharp
decline in cross-border mobility in general, especially dur-
ing the first lockdown and in the second and third waves of
the pandemic. However, these variations in cross-border
mobility are mostly induced by local containment policies
in the destination country, and school closures in both
countries. The fear of infection and international travel
bans have little influence on cross-border movements.
The likely reason is that cross-border daily flows of

people are predominantly made of commuting workers
and business travelers who move for economic/essential
reasons. These economic flows are observed between
contiguous countries, and account for 99% of interna-
tional movements of people when compared with the
flows of migrants and refugees. Their magnitude varies
with the economic costs and incentives of moving, which
depend on lockdown measures and on the stringency of
internal containment policies. In addition, international
travel bans do not apply to commuters and businessmen.
Although there is no consensus on the fact that these
flows contribute to the propagation of the virus, policy-
makers must be aware that economic movers hardly adapt

9It could be further supplemented with a leave-one-out sensitivity analysis on
countries [32].

their mobility decisions to epidemiological threats. Bor-
der crossings can only be controlled with internal coercive
policies.

Appendix A: Appendix – figures and tables
A.1 Representativeness of facebook data
A critical question relates to the representativeness of
FB data. On average, comparison between the number
of FB users and population size by country reveals that
the number of FB users with location services enabled
represents 5.6% of the population in Europe, on average.
However, this fraction is rather uniform across countries,
which suggests that FB data might be representative of
the population as a whole. This does not mean, however,
that data on FB users are representative of the population
of cross-border movers, as using internet connection or
activating location services abroad can be costly [33]. To
address this point, we produce estimates of the number
of daily cross-border inflows in the pre-Covid period, and
compare them with FB data. We collect data on commut-
ing flows from the Labor Force Survey for 2019,10 data
on air passengers as of March 2019,11 and estimates of
immigration flows from [34].12
Overall, Table A.1 shows that migration flows account

for a tiny (say negligible) proportion of daily movements,
implying that FB data mostly capture commuting flows
and business travels, as well as holiday-maker’s moves
in vacation periods. This implies that the largest flows
are observed between contiguous countries and business
partners. Combining corridors available in our sample and
corridors involving non-EU countries, Figure A.1 shows
that FB data as of the first week of March 2020 are highly
correlated with estimates of actual flows in the year 2019,
which suggests that FB data might also be representative
of cross-border movements.

A.2 Parameters of the mLmethods
We describe in this section the parameters of the different
ML models used in this paper. In order to tune the mod-
els, a boosting sample corresponding of 70% of the whole
dataset is used (from the 29th February 2020 until the 16th
November 2020). We use the following parameters:

• K Nearest Neighbors. The models uses 5 neighbors
and it has the distance metric as weight function.

10Labor Force Surveys are provided by Eurostat. We use data on commuting
by NUTS2 region, and allocate commuters aged 15 to 64 by destination on the
basis of contiguity links with other countries. When a NUTS region shares
several contiguity links, we share the number of commuters proportionately
to the level of income per capita in the destination country. To identify daily
movements, we assume that each commuter spend 4 days per week in the
place of work, and multiply LFS number by 4/7.
11We use monthly statistics on Air passengers from Eurostat by airport of
departure, and allocate them by destination using FB data. To identify daily
movements, we divide monthly flows by 30.
12The latter are available until the year 2015; we multiply them by 1.5 to proxy
the level in 2019. To identify daily movements, we divide annual inflows by 360.
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Table 3 Estimates of the average count of daily cross-border outflows in 2019

Daily count estimates As percent of Total

Commuters Air pass. Migrants Total Commuters Air pass. Migrants

AUT 159678 169395 441 329514 0.484 0.514 0.001
BEL 133742 241103 729 375574 0.356 0.641 0.001
DNK 44732 45719 77 90528 0.494 0.505 0.000
FIN 22532 21311 195 44038 0.511 0.483 0.004
FRA 396457 417902 670 815029 0.486 0.512 0.000
DEU 472160 361659 2770 836589 0.564 0.432 0.003
GRC 1714 24700 4 26418 0.064 0.934 0.000
IRL 23892 108689 61 132642 0.18 0.819 0.000
ITA 139103 115605 952 255660 0.544 0.452 0.003
LUX 152407 4829 76 157312 0.968 0.030 0.000
NLD 102000 267917 296 370213 0.275 0.723 0.000
PRT 55785 87144 157 143086 0.389 0.609 0.001
ESP 79857 346395 36 426288 0.187 0.812 0.000
SWE 51000 87565 91 138656 0.367 0.631 0.000
GBR 76300 465893 873 543066 0.140 0.857 0.001

EU15 1911359 2765826 7428 4684613 0.408 0.590 0.001
BIH 17017 21296 0 38313 0.444 0.555 0.000
BGR 52571 33019 42 85632 0.613 0.385 0.000
HRV 36557 28639 33 65229 0.560 0.439 0.000
CZE 122160 62294 156 184610 0.661 0.337 0.000
EST 10642 18674 6 29322 0.362 0.636 0.000
HUN 100196 62174 217 162587 0.616 0.382 0.001
LTU 2414 14435 0 16849 0.143 0.856 0.000
NOR 8232 50767 178 59177 0.139 0.857 0.003
POL 205314 135350 109 340773 0.602 0.397 0.000
ROU 65550 81892 207 147649 0.443 0.554 0.001

Sources: Numbers of daily commuters are extracted from Eurostat data by Nuts2 region in 2019; Numbers of air passengers are extracted from Eurostat monthly statistics on
air passenger transport in February 2019; Data on international migrants are extrapolated from [34] for the year 2015, assuming a conservative 50% growth in the flows
between 2015 and 2020

Fig. 5 Daily traffic estimates (X-axis) and FB data (Y-axis) by corridor (1 March 2020). Sources: Numbers of daily commuters are extracted from
Eurostat data by Nuts2 region in 2019; Numbers of air passengers are extracted from Eurostat monthly statistics on air passenger transport on March
1, 2020; Data on international migrants are extrapolated from [34] for the year 2015, assuming a conservative 50% growth in the flows between
2015 and 2020. FB data are the Facebook data on daily border crossings on March 1, 2020. Note: All variables are expressed in logs
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Fig. 6 Distribution of Weights. Sources: Numbers of daily commuters are extracted from Eurostat data by Nuts2 region in 2019; Numbers of air
passengers are extracted from Eurostat monthly statistics on air passenger transport on March 1, 2020; Data on international migrants are
extrapolated from [34] for the year 2015, assuming a conservative 50% growth in the flows between 2015 and 2020. Notes: Countries on X-Axis are
ordered as countryi countryj , thus linked to ωi→j . The opposite weight ωj→i = 1 − ωi→j refers to the weight of countryj countryi

• Gradient Boosting. The Gradient Boosting model has
least square regression as loss function, a learning
rate of 0.1 and a number of estimators of 100 (which
is equivalent to the number of boosting stages to
perform).

• Multi-Layer Perceptron. The MLP Regressor has 2
hidden layers of 100 neurons each. The activation

function for the layer is the rectified linear unit
function. It uses an adam solver with minibatches of
size 50.

A.3 Additional figures and tables
Some additional figures and tables cited in the core of the
text are found below.

Table 4 MAE comparison of the different models with and without day/corridor dummies

Linear KNN G-Boost MLP Linear KNN G-Boost MLP

Panel A: No dummies Panel B: Day dummies

avg MAE 0.201 0.019 0.042 0.057 0.179 0.181 0.056 0.059

std MAE (0.005) (0.001) (0.001) (0.003) (0.004) (0.005) (0.001) (0.003)

avg RMSE 0.287 0.043 0.064 0.089 0.259 0.269 0.084 0.090

std RMSE (0.009) (0.005) (0.002) (0.008) (0.008) (0.008) (0.002) (0.004)

Panel C: Corridor dummies Panel D: Corridor & Day dummies

avg MAE 0.156 0.018 0.037 0.048 0.134 0.020 0.049 0.038

std MAE (0.006) (0.001) (0.001) (0.004) (0.005) (0.001) (0.001) (0.003)

avg RMSE 0.231 0.043 0.059 0.086 0.203 0.047 0.077 0.064

std RMSE (0.010) (0.005) (0.002) (0.009) (0.009) (0.005) (0.002) (0.005)

Notes: The table compares the performances of the 4 different approaches with and without the day- and corridor-specific dummies. All models are estimated with
directional priors. Errors are computed from a 10-fold cross-validation on the whole data set
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Table 5 Averaged feature ranking across models and specifications without directional priors

Panel A: Corridor & Day dummies Panel B: Corridor dummies

Features Linear KNN G-Boost MLP Avg. Linear KNN G-Boost MLP Avg.

C1 School closures 100% 78% 98% 91% 93% 100% 100% 86% 86% 93%

C3 Cancel public events 14% 100% 79% 84% 69% 21% 100% 60% 76% 64%

C6 Stay home requirement 56% 18% 78% 71% 56% 25% 23% 64% 38% 38%

C7 Restr. Internal movement 6% 97% 20% 100% 56% 1% 84% 27% 100% 53%

C4 Restrict gatherings 28% 60% 80% 49% 54% 9% 76% 65% 64% 53%

H2 Testing policy 11% 4% 64% 64% 36% 26% 2% 49% 30% 36%

New Covid deaths 3% 10% 100% 0% 28% 0% 77% 100% 0% 44%

C8 Inter. travel controls 0% 8% 47% 44% 25% 3% 17% 44% 32% 24%

H3 Contact tracing 18% 20% 20% 35% 23% 12% 1% 19% 32% 16%

New Covid cases 11% 0% 46% 35% 23% 11% 76% 63% 87% 59%

C5 Close public transport 26% 7% 0% 43% 19% 15% 0% 0% 31% 11%

C2 Workplace closing 2% 34% 12% 21% 17% 2% 46% 23% 33% 26%

Notes: The different features are ranked following the permutation importance method. For each approach, we provide results obtained with the model including
day/corridor dummies (cols. 1-5) and the version including corridors dummies only (cols. 6-10). Directional priors are not included. The importance values of each feature is
computed over 10 permutations using the negative mean absolute error (MAE). The origin- and destination-specific features importance are aggregated by taking the mean
between the 2. Finally, the resulted values are scaled between 0% and 100% separately for each model. The last column in each panel presents the mean value of importance
averaged over the four models. The features are ranked according to the average importance of the models including the corridor and day dummies

Table 6 Feature ranking including lagged epidemiological conditions

Panel A: Corridor & Day dummies Panel B: Corridor dummies

Features Linear KNN G-Boost MLP Avg. Linear KNN G-Boost MLP Avg.

C1 School closing 100% 69% 81% 68% 79% 100% 83% 79% 97% 90%

C3 Cancel public events 10% 100% 56% 78% 61% 19% 100% 58% 77% 63%

C7 Restr. Internal movement 5% 89% 22% 100% 54% 4% 74% 20% 100% 49%

C6 Stay home requirements 60% 20% 79% 55% 54% 27% 24% 74% 31% 39%

C4 Restrictions gatherings 12% 57% 100% 33% 51% 5% 74% 100% 32% 53%

H2 Testing policy 12% 6% 69% 54% 35% 20% 2% 67% 29% 30%

H3 Contact tracing 23% 15% 37% 29% 26% 21% 0% 34% 34% 22%

C5 Close public transport 25% 11% 7% 32% 19% 14% 5% 4% 33% 14%

C8 Inter. travel controls 0% 7% 30% 28% 16% 11% 16% 28% 21% 19%

C2 Workplace closing 0% 32% 8% 19% 15% 2% 41% 5% 12% 15%

New Covid cases t − 7 12% 0% 8% 12% 8% 14% 34% 6% 46% 25%

New Covid deaths t 4% 12% 12% 0% 7% 10% 49% 13% 12% 21%

New Covid cases t 1% 1% 0% 24% 7% 4% 41% 0% 68% 28%

New Covid cases t − 14 4% 1% 9% 8% 6% 6% 33% 8% 0% 12%

New Covid deaths t − 14 0% 12% 6% 5% 6% 0% 53% 7% 21% 20%

New Covid deaths t − 7 1% 10% 4% 3% 5% 8% 48% 4% 44% 26%

Notes: The different features are ranked following the permutation importance method. The importance values of each feature is computed over 10 permutations using the
negative mean absolute error (MAE). Four new variables are inserted in addition to the ones includes in the regression: 7- and 14-days of new Covid cases and deaths are
included. For each approach, we provide results obtained with the model including day/corridor dummies (cols. 1-5) and the version including corridors dummies only (cols.
6-10). Directional priors are not included. The origin- and destination-specific features importance are aggregated by taking the mean of the 2. Finally, the resulted values are
scaled between 0% and 100% separately for each model. The last column in each panel presents the mean value of importance averaged over the four models. The features
are ranked according to the average importance of the models including the corridor and day dummies
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