
Efficient Lookahead Decision Trees

Harold Kiossou[0000−0001−6972−9885], Pierre Schaus[0000−0002−3153−8941],
Siegfried Nijssen[0000−0003−2678−1266], and Gaël Aglin[0000−0002−6760−4752]

UCLouvain, Louvain-la-Neuve, Belgium
first.last@uclouvain.be

Abstract. Conventionally, decision trees are learned using a greedy ap-
proach, beginning at the root and moving toward the leaves. At each in-
ternal node, the feature that yields the best data split is chosen based on
a metric like information gain. This process can be regarded as evaluating
the quality of the best depth-one subtree. To address the shortsightedness
of this method, one can generalize it to greater depths. Lookahead trees
have demonstrated strong performance in situations with high feature in-
teraction or low signal-to-noise ratios. They constitute a good trade-off
between optimal decision trees and purely greedy decision trees. Cur-
rently, there are no readily available tools for constructing these looka-
head trees, and their computational cost can be significantly higher than
that of purely greedy ones. In this study, we introduce an efficient imple-
mentation of lookahead decision trees, specifically LGDT, by adapting a
recently introduced algorithmic concept from the MurTree approach to
find optimal decision trees of depth two. Additionally, we utilize an effi-
cient reversible sparse bitset data structure to store the filtered examples
while expanding the tree nodes in a depth-first-search manner. Experi-
ments on state-of-the-art datasets demonstrate that our implementation
offers remarkable computation-time performance.

Keywords: Decision Trees · Lookahead · Optimization.

1 Introduction

Decision tree-based learning algorithms are among the most widely used methods
in machine learning, both for their predictive performance and because humans
can relatively easily interpret these models. Finding an optimal tree (that min-
imizes the learning error) on a data set is an NP-hard problem. This is why
learning a decision tree is usually done greedily, for example, using algorithms
such as CART [5] and C4.5 [18]. A greedy algorithm selects an attribute in a
node locally, starting from the root, down to the leaf nodes. The decision to
select an attribute is made based on a single split and is never reconsidered
later. In recent years, thanks to optimization solvers and new algorithmic ideas,
approaches to infer exact decision trees have been introduced [1–3, 8, 14, 16, 20,
21].

These approaches have sparked excitement in the scientific community due
to empirical evidence showing improved classification rates on unseen data [3].

2 H. Kiossou et al.

f4

f5 f1

f4

f1

f2 f5

f4

f1 f3

f6 f2

f4

f1 f3

f2

f6 f5

f4

f1 f3

f2 f3

f5 f8

(a) (b) (c)

(d) (e)

...

Fig. 1: Illustration of iterations to discover the feature in each node using level-
two optimal decision trees. The level-two decision trees are rooted at dashed
white nodes, while the fixed features are represented in dark-gray nodes. The
tree is grown level-wise in this example. However, building it in a depth-first
search order would result in the same final decision tree since each decision
splits the data into two separate subproblems.

Despite recent algorithmic enhancements, they struggle with inferring trees on
medium-sized datasets within reasonable computational times (e.g., German-
credit dataset [2]). To address the limitations of both greedy and optimal de-
cision trees, lookahead decision trees present a potential solution. These trees
aim to overcome greedy decision tree shortcomings by considering future deci-
sions during construction. A lookahead algorithm determines the next feature’s
decision in a less myopic, yet still greedy, manner based on sliding subtrees, as
illustrated in Figure 1 with a depth of two. Standard approaches like C4.5 use
heuristics to decide each node’s best one-level subtree or stump [13]. This con-
cept can be extended to more than one level in lookahead decision trees [11].
Here, the attribute selected at a node corresponds to the root of the optimal or
suboptimal two-level decision tree before moving to the next level. This allows
the algorithm to anticipate the next step and make a more informed choice re-
garding the subsequent attribute. Setting the lookahead level to the maximum
depth enables the identification of the optimal decision tree.

Despite the potential benefits of using lookahead approaches their adoption
has been limited due to various factors. One of the primary concerns is the
additional computation cost associated with lookahead, which requires substan-
tial processing power and memory resources. Furthermore, while some studies
have reported better performance using lookahead compared to greedy methods,
there is no consistent evidence that lookahead consistently outperforms greedy
counterparts across a range of applications. [11] argued that lookahead is more
advantageous when there is high attribute interaction which was later confirmed
and reinforced by [10], whose work demonstrated that the superior performance

Efficient Lookahead Decision Trees 3

of lookahead decision trees is more pronounced when nonlinear relationships be-
tween feature pairs exist and when the signal-to-noise ratio is particularly low.

The enhanced capability of lookahead decision trees in handling feature in-
terdependencies can result in more accurate predictive models. Despite their po-
tential, there’s a lack of widely available tools for researchers and practitioners to
experiment with these methods. To address this, we introduce an efficient looka-
head algorithm with remarkable computation runtimes. Our two-level lookahead
approach achieves competitive error rates comparable to optimal trees, scaling
to larger depths similar to standard greedy decision tree algorithms like CART
or C4.5. We leverage an algorithmic concept from the MurTree algorithm [8] to
identify optimal level-two decisions, adapting it for both information gain and
misclassification error rate. Experiments on standard benchmarks show that this
hybrid, less greedy approach strikes an excellent balance between tree learning
speed and error rate. The paper structure includes a discussion of related work
in Section 2, technical background in Section 3, an exploration of our methods
in Section 4, and presentation of benchmark results in Section 5.

2 Related Work

Tree-based algorithms like CART and C4.5 often rely on heuristics for creating
greedy decision trees, where attributes are chosen based on metrics like infor-
mation gain or the Gini index. Despite their scalability, these trees may lack
accuracy due to their myopic nature. To address this, lookahead searches, aim
at optimizing upcoming iterations rather than just the next one. Norton [17]
and Ragavan and Rendell [19] demonstrated successful results with lookahead,
with the latter excelling in high attribute interaction scenarios at the cost of in-
creased computational complexity. Esmeir and Markovitch [11] introduced ID3-
k and LSID3 as lookahead strategies. ID3-k calculates k-level information gain
(gain-k) at each node, selecting the attribute maximizing it for further splits.
LSID3, using dynamic lookahead and a shallower tree-favoring criterion, sur-
passes greedy algorithms, especially with more available time. Relying on this,
Donick et al.[10] introduced a random forest approach that is a stepwise looka-
head variation. It considers three split nodes simultaneously in tiers of depth
two, enhancing the identification of feature interdependencies. The lookahead
algorithm outperforms the greedy algorithm in cases involving non-linear rela-
tionships between feature pairs and a low signal-to-noise ratio.

Thanks to hardware advancements and optimization solvers, various ap-
proaches for learning exact decision trees have emerged. These fall into categories
like mixed integer programming [1, 3, 4, 21], constraint programming [20], SAT
solvers [15], and dynamic programming [2, 8, 16]. Among these, dynamic pro-
gramming methods, like DL8 [16], are considered the fastest and most accurate
in a depth-constrained setting. DL8 uses a caching technique to save obtained
subtrees, optimizing performance. DL8.5 [2] enhances DL8 with an upper-bound
strategy and a lower-bound technique to efficiently explore sub search spaces.
Further advancements by MurTree [8] include limiting tree nodes, an efficient

4 H. Kiossou et al.

depth-two tree computation, and a novel similarity-based lower bounding ap-
proach.

3 Technical Background

We consider binary datasets in which each feature is a value in the set {0, 1}.
Let F be the set of n features and C = {+,−} the set of two classes 1. A
binary dataset is defined by: D = {(f i, ci),∀i ∈ {1, 2, . . . |D|}}, where f i =
(f(i,1), f(i,2), . . . , f(i,n)) ∈ {0, 1}n is a feature vector of length n and ci ∈ C is
the class label for the i-th instance. Thus, each instance in D is represented
by a feature vector and a corresponding class label, and the feature vectors
are composed of elements from the set of features F . Given a feature vector
f , fk = 1, indicating the presence of fk, is denoted as fk ∈ f and f̄k /∈ f
otherwise for its absence (we ignore i for simplicity). The binary dataset D can
be partitioned into the positive class of instances D+ and the negative class D−

such that D = D+∪D−. The MurTree algorithm [8] for finding optimal decision
trees of arbitrary depth uses a specialized algorithm for level-two decision trees
whenever it reaches the one level before the last layer (the final trees have a fixed
known limit on depth). This specialized level-two exact algorithm is presented
next for the sake of completeness.

3.1 Level-two specialized algorithm

MurTree uses a dynamic programming approach with the upper-bound notion of
DL8.5 to determine the optimal decision trees. It works in two phases. In the first
phase, it computes the frequency for each pair of features (fi, fj). Let FQ+(fi)
and FQ+(fi, fj) be the frequency counts in positive instances for a single fea-
ture fi and a pair of features (fi, fj), respectively. FQ−(fi) and FQ−(fi, fj)
are defined analogously for negative instances. Note that, based on FQ(fi)
and FQ(fi, fj), it is possible to compute FQ(f̄i), FQ(fi, f̄j), FQ(f̄i, fj), and
FQ(f̄i, f̄j) without explicit counting. The frequency counts FQ+ can be com-
puted in O(|D+|·m2

+) time with m+ the maximum number of features in a
single positive instance [8]. In the second phase, the tree is computed using the
missclassification score MS(fi, fj) = min {FQ+(fi, fj), FQ−(fi, fj)} for a cou-
ple of features (fi, fj). Given a depth two decision tree, let MSleft and MSright

denote the misclassification scores of the left and right subtrees:

MSleft(froot, fleft) = MS(f̄root, f̄left) +MS(f̄root, fleft) (1)

MSright(froot, fright) = MS(froot, f̄right) +MS(froot, fright), (2)

where froot is the feature of the root node, fleft and fright are the features of
the left and right-child nodes.

1 All the formula of this section can easily be adapted for multi-class contexts.

Efficient Lookahead Decision Trees 5

The procedure then iterates over all pairs of (fi, fj) of F to find the triplet
(froot, fleft, fright) independently optimized for the left and right branches using
the following equation:

min
froot,fleft,fright∈F

MS(froot, fleft, fright)

= min
froot

[min
fleft∈F

MSleft(froot, fleft)

+ min
fright∈F

MSright(froot, fright)].

(3)

The algorithm iterates through each pair (froot, fchild), computes the mis-
classification score of the left subtree using Equation (1), updates the best left
child for the feature froot, and performs the same operation for the right child.
Each subtree can be computed in O(|F2|) time. The global complexity of the
algorithm is then O(|D|·m2 + |F2|) with m the upper limit on the number of
features in any single positive and negative instance.

3.2 Level-two lookahead Information Gain.

In our algorithm, we can also use a level-two lookahead on information gain.
This is based on the work of [11], where they developed ID3-k, which uses a
level-k lookahead for information gain at each node to evaluate each feature.
To fully take advantage of the level-two specialized algorithm, we only do a
lookahead of two as it is easy to compute the different frequencies using FQ+(fi)
and FQ+(fi, fj) and FQ−(fi) and FQ−(fi, fj). The information gain is then
computed using the following equation (4):

max
froot,fleft,fright∈F

IG(froot, fleft, fright)

= max
froot

[max
fleft∈F

IGleft(froot, fleft)

+ max
fright∈F

IGright(froot, fright)],

(4)

with:

IG(froot, fleft) = H(froot)−
2∑

i=1

|leaf(froot, fleft)i|
|root| H(leaf(froot, fleft)i), (5)

IG(froot, fright) = H(froot)−
2∑

i=1

|leaf(froot, fright)i|
|root| H(leaf(froot, fright)i), (6)

and

H(S) = −
c∑

i=1

pi log2(pi), (7)

6 H. Kiossou et al.

where IG(froot, fchild) is the depth two information gain of a branch from froot
to fchild and child ∈ {left, right}. leaf(froot, fchild)i corresponds to the leaves
of branches (froot, fchild), H(S) the entropy of a node or leaf S with pi the
probability that an element belongs to the class i. We independently maximize
the information gain of each branch of the tree to obtain a tree with the highest
information gain.

4 Less Greedy Decision Trees

Algorithm 1: LGDT(D, minsup, maxdepth)

1 if maxdepth ≤ 2 then return sliding window(D, maxdepth)
2 tree← Tree()

3 sub tree← sliding window(D, 2)
4 tree.root← make tree(sub tree.root)
5 Recursion(tree.root, maxdepth− 1, D)

6 return solution
7 Procedure Recursion(node, depth, D)

8 if depth > 0 and node.error > 0 then
9 left← node.left

10 right← node.right
11 if FQ(left) ≥ minsup and FQ(right) ≥ minsup then
12 ws← min(2, depth)
13 D.save()
14 D.project(left)
15 sub tree← sliding window(D, ws)
16 node tree← make tree(sub tree.root)
17 child← tree.set node(left, node tree)
18 Recursion(child, depth− 1, D)

19 D.restore()
20 D.save()
21 D.project(right)
22 sub tree← sliding window(D, ws)
23 node tree← make tree(sub tree.root)
24 child← tree.set node(right, node tree)
25 Recursion(child, depth− 1, D)

26 D.restore()

This section presents Less Greedy Decision Trees (LGDT), a more informed
decision tree algorithm than classical greedy algorithms. The pseudocode of
LGDT is described in Algorithm 1.

It fixes the feature of each node of the depth-limited tree in a depth-first
way. In each node, it relies on the use of a generated depth-two decision tree

Efficient Lookahead Decision Trees 7

based on the current data as a sliding window (lines 1, 3, 15 and 22). The sliding
window uses D the current data subset in a node, then computes FQ+ and FQ−

and uses both to build a level-two decision tree based on one of the following
approaches:

– MurTree level-two specialized algorithm which returns an optimal decision
tree minimizing the misclassification rate;

– a depth-two information gain tree taking advantage of the level-two special-
ized algorithm.

When the maximum depth is 1 the sliding window returns the depth-one tree
with the feature optimizing the evaluated metric. At first, when building up to a
depth-two tree, it is enough to return the tree generated by the sliding window
(line 1). On the other hand, for deeper trees, a subtree is generated using D and
the sliding window (line 3). The root node of the solution tree is set to the root
of the subtree (line 4). The make tree function generates for the feature and the
data its two leaves and computes the misclassification error. Recursion is then
called in a depth-first search fashion starting from the root node to build the
decision tree. An internal node is only refined if the depth constraint is respected
and the node is not pure (line 8). Otherwise, the recursion is stopped, and the
node is considered as a leaf node. Moreover, before expanding a node the search
ensured the number of data falling in its left and right branches (9-10) respects
the minimum support constraint at line 11.

The algorithm will then be called recursively on the left and right parts.
Lines 14 and 21 will update the data representation D to be able to list all
examples falling respectively in left and right. Using the updated D the slid-
ing window will build a subtree for the left and right (lines 15 and 22). The
algorithm will append the sub-node trees (lines 16 and 23) to the parent node
(lines 17 and 24). The recursive method is then called on the child with the
current data representation D and an increment to the depth (lines 18 and 25).

In our implementation, we use a special data representation to efficiently store
and process the input data. By using this representation, we aim to improve
the performance and scalability of the algorithm, while reducing the memory
consumption allowing us to efficiently generate decision trees for large datasets.

Data representation. Table 1 summarizes various dataset representations. Each
example, identified by a unique tid, is linked to a feature set (Feats). The tid-
list groups tids into example subsets. The boolean representation (Table 1a)
uses 0s and 1s to show feature presence (1) or absence (0) per example. The
horizontal representation (Table 1b) records present features. The vertical rep-
resentation [12] (Table 1c) aligns rows with features, simplifying tid-list length
computation. Intersection operations on tid-lists [12] locate transactions covered
by two features, e.g., A,C arises from t2, t3 ∩ t1, t2, t3 = t2, t3.

We use intersection operations to significantly reduce data processing, saving
time and memory. In this work, using the vertical data representation enhances
algorithm efficiency, and the reversible sparse bitset structure reduces unneces-
sary computation and enables fast bitwise operations.

8 H. Kiossou et al.

Table 1: Dataset representations.

(a) Boolean.

tid A B C

t1 0 0 1

t2 1 0 1

t3 1 1 1

(b) Horizontal.

tid Feats

t1 {C}
t2 {A, C}
t3 {A, B, C}

(c) Vertical.

Feats tid-list

A t2, t3
B t3
C t1, t2, t3

1.0 1.2 1.4 1.6 1.8 2.0 2.2
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

le
m

s w
ith

 th
e

lo
we

st
 e

rro
r r

at
io

LGDT+error
LGDT+IG
C4.5
DL8.5

(a) max depth = 2

1.0 1.5 2.0 2.5 3.0 3.5
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

le
m

s w
ith

 th
e

lo
we

st
 e

rro
r r

at
io

LGDT+error
LGDT+IG
C4.5
DL8.5

(b) max depth = 3

1 2 3 4 5
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

le
m

s w
ith

 th
e

lo
we

st
 e

rro
r r

at
io

LGDT+error
LGDT+IG
C4.5
DL8.5

(c) max depth = 4

Fig. 2: Performance Profile plots comparing the error rate of the two versions of
LGDT against C4.5 and DL8.5.

Bitsets and Bitwise operations. In the vertical representation, the feature tid-list
can be stored using arrays or bitsets. Arrays group all integer values (tid) asso-
ciated with a feature, while bitsets use bits to represent each possible tid value.
A bitset is the size of the dataset (|D|), with each bit at index i indicating the
presence (1) or absence (0) of the example at tid = i in the feature tid-list. For a
dataset with eight examples (tid ∈ Ω = {1, 2, . . . , 8}), an array retains valid val-
ues post-operations, while a bitset maintains the same size, setting unnecessary
values to 0.

When dealing with large sets, bitsets are more memory-efficient than arrays
due to each integer in an array requiring at least 32 or 64 bits, while a bitset
needs just 1 bit per integer. Bitsets are especially useful in frequent itemset min-
ing algorithms [6], where bitwise operations like counting and intersection are
essential and the number of elements important than the data. These opera-
tions are often optimized for 64-bit processing, making bitsets ideal for storing
parameters that require such operations. As a result, many data structures use
an array of 64-bit bitsets, commonly referred to as words, to take advantage of
these optimizations.

Reversible Sparse Bitset. The decision tree undergoes expansion via a recursive
depth-first search . After data operations such as the project in Algorithm 1, the
number of elements in the bitset decreases resulting in a sparser bitset. Elements
are restored on backtracking from the recursive calls.

The Reversible Sparse Bitset (RSBS) [7] exploits bitset sparsity down the tree
and is able to efficiently restore element during backtracking. Operations are per-

Efficient Lookahead Decision Trees 9

10 3 10 2 10 1 100

Time (s)
0

5

10

15

20

In
st

an
ce

s S
ol

ve
d

LGDT
LGDT*
C4.5
DL8.5

(a) max depth = 2

10 3 10 2 10 1 100 101

Time (s)
0

5

10

15

20

In
st

an
ce

s S
ol

ve
d

LGDT
LGDT*
C4.5
DL8.5

(b) max depth = 3

10 3 10 2 10 1 100 101 102

Time (s)
0

5

10

15

20

In
st

an
ce

s S
ol

ve
d

LGDT
LGDT*
C4.5
DL8.5

(c) max depth = 4

Fig. 3: Cumulative number of dataset (y-axis) for which the decision tree algo-
rithm has terminated within the time limit (x-axis).

formed per 64-bit word for improved performance. RSBS employs sparse bitsets,
separating empty from non-empty words, eliminating unnecessary counting of
empty words. This sparsity aids intersection operations, ensuring unnecessary
intersections with a 0 bit are avoided. Moreover RSBS employs a reversibility
technique from constraint programming solvers, enabling the data structure to
recover previous states during searches, thus avoiding the overhead of copying
parameters between parent and child nodes.

When backtracking, the RSBS can revert to a previous state using its trail
of changes, which is implemented with a stack. In practice, only the size of the
number of non-empty words needs to be restored to retrieve the correct parti-
tioning between empty and non-empty words. Throughout the search, the entire
algorithm operates with a single instance of the data structure, facilitating incre-
mental changes at each step and ensuring consistency when exploring multiple
paths. The stack chronicles successive changes, and during backtracking, the top
layers are removed to revert to prior states.

LGDT uses a single instance of the RSBS(D) to maintain the data in the
current node. Before going further down, the state is saved (lines 13 and 20) and
the state bit vector is projected (using bitwise AND operations) with the next
node feature (a fixed precomputed bit vector) (lines 14 and 21). Each projection
reduces the dataset by filtering the examples that satisfy the condition of the
selected feature. Before exploring a node and proceeding to the second split,
the previous state must be restored, as indicated in lines 19 and 26. This save-
and-restore mechanism leverages the internal stack state of the RSBS. Every
save action corresponds to a push on the stack, and every restore action equates
to a pop, allowing for the restoration of the partitioning between empty and
non-empty words in constant time.

5 Results

This section presents the results of the experiments we have conducted. The
source code and data used for the experiments in the paper are available at
https://anonymous.4open.science/r/pytrees-C73F/. First, we conducted a per-

10 H. Kiossou et al.

2 4 6 8
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

le
m

s w
ith

 th
e

lo
we

st
 e

rro
r r

at
io

LGDT+error
LGDT+IG
DL8.5

(a) max depth = 4

2 4 6 8 10
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

le
m

s w
ith

 th
e

lo
we

st
 e

rro
r r

at
io

LGDT+error
LGDT+IG
DL8.5

(b) max depth = 5

5 10 15 20 25
Performance ratio

0.0

0.2

0.4

0.6

0.8

1.0

Pr
ob

le
m

s w
ith

 th
e

lo
we

st
 e

rro
r r

at
io

LGDT+error
LGDT+IG
DL8.5

(c) max depth = 6

Fig. 4: Performance Profile plots comparing the error rates of LGDT and DL8.5
on large datasets.

formance comparison among three decision tree learning algorithms: C4.5, DL8.52,
and LGDT. Our primary focus was on LGDT, with a distinction between two
implementations based on data representation. The first, denoted as LGDT, em-
ployed a reversible sparse bitset structure, while the second, LGDT∗, followed the
original [11] algorithm using a double loop and boolean data view. A scikit-learn3

implementation of C4.5 was included for comparison. DL8.5 was run with a 10-
minute time limit. All the algorithms on an Intel i5-1245U machine with 16 GB
RAM running Arch Linux. The experiments encompassed 23 discretized datasets
from CP4IM4, with a minimum support of 1. Figure 3 illustrates the cumula-
tive termination count of each algorithm. Notably, C4.5 exhibited the fastest
performance, consistently producing decision trees within a second, regardless
of depth. At a depth limit of 2, LGDT and DL8.5 displayed similar performance,
as both returned optimal trees at this depth. DL8.5 and LGDT performed sim-
ilarly due to their shared utilization of the level-two specialized algorithm and
reversible sparse bitset data structure. LGDT∗ lagged behind the RSBS implemen-
tation, attributed to individual example checks for supported examples during
each projection. With increasing depth, C4.5 maintained its speed edge, while
DL8.5 progressively slowed and ultimately couldn’t solve all instances within a
10-minute window starting from depth 4. Furthermore, when comparing LGDT
implementations across depths, LGDT outperformed LGDT∗ by an average factor
of 10.

We proceed with an experiment to gauge the proximity of LGDT tree er-
rors to optimality. Using a performance profile [9], we contrast error rates of
two LGDT versions (LGDT+error using a level-two specialized optimal tree al-
gorithm, and LGDT+IG with level-two information gain optimization) with those
of C4.5 and DL8.5 on the aforementioned datasets, based on the training set.
This aims to ascertain LGDT’s viability as an alternative to C4.5 and to gauge
its divergence from DL8.5. Figure 2 illustrates performance profiles for instances
with maximum depths of 2, 3, and 4. The performance profile is a cumulative

2 https://github.com/aia-uclouvain/pydl8.5
3 https://scikit-learn.org/
4 https://dtai.cs.kuleuven.be/CP4IM/datasets/

Efficient Lookahead Decision Trees 11

distribution of an algorithm’s s ∈ S enhanced performance versus other algo-
rithms in set S across a problem set P : ps(τ) =

1
|P | × |{p ∈ P : rp,s ≤ τ} |, with

the performance ratio rp,s =
tp,s

min{tp,s|s∈S} where tp,s signifies each algorithm’s

error rate. Results reveal that, regardless of depth, LGDT consistently achieves
superior error rates compared to C4.5 across all datasets. At depth 2, both
LGDT+error and DL8.5 immediately secure the lowest error rates as they yield
optimal trees in this context. LGDT+IG holds the lowest error rate for about 50%
of instances, while C4.5 achieves it on around 30%. Moreover, permitting an
error rate roughly double the best, LGDT+IG solves all instances, whereas C4.5
remains unable. With increasing depth, DL8.5 consistently outperforms others
with the lowest error rate, except for depth 4, where it times out on some. The er-
ror gaps widen with depth, reflecting escalating performance ratios. Notably, the
LGDT-C4.5 gap widens faster than DL8.5-LGDT, showcasing LGDT’s greater
reliability than C4.5. This may be due to C4.5’s inclination to make erroneous
or sub-optimal decisions with deeper trees, heightening the risk of mitigating
underfitting.

To evaluate LGDT’s effectiveness compared to optimal decision trees on large
datasets, we conducted a final experiment using 15 classification datasets from
the UCI Repository. These datasets had at least 30 features, binarized to create
datasets with a minimum of 300 features. Experiments covered tree depths of
4, 5, and 6, with DL8.5 constrained to a 30-second runtime to highlight chal-
lenging scenarios. The performance profile in Figure 4 revealed that at depth 4,
DL8.5 outperformed in about 40% of instances, but this advantage diminished
and disappeared at depth 6. DL8.5 consistently lagged behind LGDT, and as
depth increased, the error gap widened, showcasing LGDT’s superior reliability
for deeper trees. DL8.5’s declining performance with depth is attributed to its
tendency to become trapped in deeper search tree sections, prioritizing optimal
features over comprehensive search space coverage. This focus results in substan-
tial unexplored segments, leading to suboptimal outcomes compared to LGDT
approaches.

6 Conclusion

In this paper, we proposed an efficient lookahead algorithm for constructing de-
cision trees that can capture feature interdependencies within binary datasets.
To offer the best computation time, and become a viable and practical alter-
native over pure greedy methods, the algorithm relies on two algorithmic ideas:
the Murtree level-two specialized algorithm and the reversible sparse-bitset data
structure also used in DL8.5. Through experiments on various datasets, we com-
pared the performance of our algorithm with two state-of-the-art decision tree
methods, C4.5 and DL8.5. Our results suggest that lookahead decision trees can
be a valuable addition to the toolkit of data scientists. In future research, we
aim to explore effective techniques for managing continuous features instead of
binarizing them in advance.

12 H. Kiossou et al.

References

1. Aghaei, S., Gómez, A., Vayanos, P.: Strong optimal classification trees. arXiv
preprint arXiv:2103.15965 (2021)

2. Aglin, G., Nijssen, S., Schaus, P.: Learning optimal decision trees using caching
branch-and-bound search. In: Proceedings of AAAI. vol. 34, pp. 3146–3153 (2020)

3. Bertsimas, D., Dunn, J.: Optimal classification trees. Machine Learning 106(7),
1039–1082 (2017)

4. Boutilier, J.J., Michini, C., Zhou, Z.: Shattering inequalities for learning optimal
decision trees. In: International Conference On Integration Of Constraint Program-
ming, Artificial Intelligence, And Operations Research. pp. 74–90. Springer (2022)

5. Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and regression
trees. wadsworth int. Group 37(15), 237–251 (1984)

6. Burdick, D., Calimlim, M., Gehrke, J.: Mafia: A maximal frequent itemset algo-
rithm for transactional databases. In: Proceedings 17th international conference
on data engineering. pp. 443–452. IEEE (2001)

7. Demeulenaere, J., Hartert, R., Lecoutre, C., Perez, G., Perron, L., Régin, J.C.,
Schaus, P.: Compact-table: efficiently filtering table constraints with reversible
sparse bit-sets. In: International Conference on Principles and Practice of Con-
straint Programming. pp. 207–223. Springer (2016)

8. Demirović, E., Lukina, A., Hebrard, E., Chan, J., Bailey, J., Leckie, C., Ramamoha-
narao, K., Stuckey, P.J.: Murtree: Optimal decision trees via dynamic programming
and search. Journal of Machine Learning Research 23(26), 1–47 (2022)

9. Dolan, E.D., Moré, J.J.: Benchmarking optimization software with performance
profiles. Mathematical programming 91, 201–213 (2002)

10. Donick, D., Lera, S.C.: Uncovering feature interdependencies in high-noise envi-
ronments with stepwise lookahead decision forests. Scientific Reports 11(1), 9238
(2021)

11. Esmeir, S., Markovitch, S.: Lookahead-based algorithms for anytime induction of
decision trees. In: Proceedings of the twenty-first international conference on Ma-
chine learning. p. 33 (2004)

12. Holsheimer, M., Kersten, M.L., Mannila, H., Toivonen, H.: A perspective on
databases and data mining. In: KDD. vol. 95, pp. 150–155 (1995)

13. Iba, W., Langley, P.: Induction of one-level decision trees. In: Machine Learning
Proceedings 1992, pp. 233–240. Elsevier (1992)

14. Lin, J., Zhong, C., Hu, D., Rudin, C., Seltzer, M.: Generalized and scalable optimal
sparse decision trees. In: ICML. pp. 6150–6160. PMLR (2020)

15. Narodytska, N., Ignatiev, A., Pereira, F., Marques-Silva, J., Ras, I.: Learning op-
timal decision trees with sat. In: Ijcai. pp. 1362–1368 (2018)

16. Nijssen, S., Fromont, E.: Mining optimal decision trees from itemset lattices. In:
KDD. pp. 530–539 (2007)

17. Norton, S.W.: Generating better decision trees. In: IJCAI. vol. 89, pp. 800–805
(1989)

18. Quinlan, J.R.: C4.5: Programs for machine learning. Elsevier (2014)
19. Ragavan, H., Rendell, L.A.: Lookahead feature construction for learning hard con-

cepts. In: ICML (1993)
20. Verhaeghe, H., Nijssen, S., Pesant, G., Quimper, C.G., Schaus, P.: Learning optimal

decision trees using constraint programming. Constraints 25(3), 226–250 (2020)
21. Verwer, S., Zhang, Y.: Learning optimal classification trees using a binary linear

program formulation. In: Proceedings of AAAI. vol. 33, pp. 1625–1632 (2019)

