Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

Ddo, a Generic and Efficient Framework for MDD-Based Optimization

Xavier Gillard *, Pierre Schaus and Vianney Coppé

UCLouvain
{xavier.gillard, pierre.schaus, vianney.coppe } @uclouvain.be

Abstract

This paper presents ddo, a generic and efficient
library to solve constraint optimization problems
with decision diagrams. To that end, our frame-
work implements the branch-and-bound approach
which has recently been introduced by [Bergman
et al., 2016b] to solve dynamic programs to opti-
mality. Our library allowed us to successfully re-
produce the results of Bergman et al. for MISP,
MCP and MAX2SAT while using a single generic
library. As an additional benefit, ddo is able to ex-
ploit parallel computing for its purpose without im-
posing any constraint on the user (apart from mem-
ory safety). Ddo is released as an open source'
rust library (crate) alongside with its companion ex-
ample programs to solve the aforementioned prob-
lems. To the best of our knowledge, this is the first
public implementation of a generic library to solve
combinatorial optimization problems with branch-
and-bound MDD.

1 Introduction

Multivaluated Decision Diagrams (MDD) are a generaliza-
tion of Binary Decision Diagrams (BDD) which have long
been used in the verification community, e.g. for model
checking purposes [Burch er al., 1992]. More recently, these
graphical models have drawn the attention of researchers
from the CP and OR communities. The popularity of these
decision diagrams (DD) stems from their ability to pro-
vide a compact representation of large solution spaces as
in the case of the table constraint [Perez and Régin, 2015;
Verhaeghe et al., 2018]. One of the research streams
which emerged from this increased interest about MDDs is
decision-diagram-based optimization (DDO) [Bergman and
Cire, 2016]. TIts purpose is to efficiently solve combinatorial
optimization problems by exploiting the structure of the prob-
lem being solved through the use of DDs. So far, the tech-
niques developed in this context have largely been successful
and outperforms state-of-the-art IP solvers for the problems
where they are applicable. This paper belongs to the DDO

*Contact Author
"https://github.com/xgillard/ddo

5243

subfield and intends to broaden the DDO-awareness and facil-
itate its integration with other solvers and techniques through
the release of a generic and efficient open-source rust library
implementing these algorithms and data structures.

2 Background

A discrete optimization problem is first and foremost a con-
straint satisfaction problem with an associated objective func-
tion to be maximized. Among these problems, some exhibit
an optimal subproblem structure making them suitable for a
dynamic programming (DP) formulation. Even though DP
models are typically thought of in terms of recursion, it is also
natural to consider them as transition systems. In that case,
a DP model consists of: (a) a solution space defined by the
problem variables and their domains; (b) an initial state, (c)
an initial value; (d) a transition function and (e) a transition
cost function.

At the heart of DDO, is the idea that DP transition systems
naturally lend themselves to materialization in the form of a
(reduced) decision diagram. However, despite their compact-
ness, the construction of DD suffers from a potentially expo-
nential time and memory requirements. Using DDs to exactly
encode the solution space of a problem is thus out of reach
for any practical problem instance. This is why, DDO relies
on the use of bounded-size DDs to approximate a solution
of the actual problem. Two types of approximate bounded-
size DDs have been devised for that purpose: relaxed and re-
stricted DDs. These respectively encode an over- and under-
approximation of the solution-space. Assuming a maximiza-
tion problem, relaxed DDs [Andersen et al., 2007] are thus
capable of providing an upper bound on the optimal solution.
Conversely, restricted DDs yield good lower bounds, as they
contain a subset of the feasible solutions of the problem.

Deriving a restricted MDD from the DP formulation of a
problem is quite simple. For that purpose, it suffices to limit
the width of the MDD layers by simply dropping the less
promising nodes of that layer. This process only removes
solutions from the set of solutions represented by the MDD
but it does not create any infeasible solution. Deriving a re-
laxed MDD from the same DP formulation is a different mat-
ter though. For that purpose, one needs to provide a relaxation
to merge nodes that exceed the maximum width bound. For
that reason, anyone willing to use DDO to solve a new kind
of problem must provide both a DP formulation and a suit-

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

able relaxation for the problem; and in an ideal world, these
would be the only two required inputs.

3 Theddo Library

This is exactly what our ddo framework aims to do: it starts
from the definition of a problem and its relaxation to automat-
ically and efficiently solve the problem to optimality. Further-
more, it allows a user to specify and use custom heuristics.
But these are not mandatory, and the framework readily pro-
vides default heuristics.

We illustrate our point going through a minimalistic yet ex-
tensive example. Which one shows how to model and solve
the binary knapsack problem with ddo. From Listing 1, one
can observe how closely the ddo model matches with the
mathematical abstractions outlined in the previous section.
In particular, the implementation of the Problem<usize>
trait by Knapsack describes the DP formulation of a bi-
nary knapsack problem whose state consists of a single un-
signed integer (usize). The solution space (a) of the
problem is characterized by the methods nb_vars () and
domain_of () (lines 9-16). Similarly, the other four el-
ements constitutive of a DP model (initial state (b), initial
value (c), transition function (d) and transition cost func-
tion (e)) are all implemented by their eponymous method
(lines 16-32). Also, KPRelax implementing the trait
Relaxation<usize> shows what it takes to merge sev-
eral nodes so as to derive a new relaxed node standing for
them all (lines 38—49). In our example, the relaxed state of
the new node is obtained by taking the maximum remaining
capacity available in any of the merged nodes. The arcs to-
wards the new relaxed node are obtained by (approximately)
considering that the longest path to any of the merged nodes
yields the relaxed node.

/// Lines 1-33 describe the problem DP formulation

1

2 #[derive (Debug, Clone)]

3 struct Knapsack {

4 capacity: usize,

5 profit : Vec<usize>,

6 weight : Vec<usize>

7)

8 impl Problem<usize> for Knapsack {

9 fn nb_vars (&self) -> usize |

10 self.profit.len()

11 }

12 fn domain_of<’a> (&self, state: &’a usize,
13 var : Variable)
14 ->Domain<’a> {

15 vec! [0, 1].into()

16 }

17 fn initial_state (&self) -> usize ({

18 self.capacity

19 }
20 fn initial_value (&self) -> i32 {
21 0
22 }
23 fn transition (&self, state:susize,
24 vars :&VarSet,
25 dec :Decision) -> usize {
26 state - self.weight[dec.variable.id()]
27 }
28 fn transition_cost (¢self, state:susize,
29 vars :&VarSet,
30 dec :Decision) -> i32 {
31 self.profit[dec.variable.id ()] as i32 * dec.value
32 }
33)

34 /// Lines 34-50 implement the problem relaxation

35 #[derive (Debug, Clone)]
36 struct KPRelax;
37 impl Relaxation<usize> for KPRelax {

38 fn merge_nodes (&¢self, nodes: &[Node<usize>])

39 -> Node<usize> ({

40 let lp_info = nodes.iter ()

41 .map (|n| &n.info)

42 .max_by_key (|i]| i.lp_len);
43 let max_capa= nodes.iter()

44 .map(|n| n.state)

45 .max () ;

46 Node: :merged (max_capa,

47 lp_info.lp_len,

48 lp_info.lp_arc.clone())

49 }

50)

51 fn main() {

52 let problem = Knapsack {/+ elided =/};

53 let mdd = mdd_builder (&problem, KPRelax) .build();
54 let mut solver = ParallelSolver::new(mdd);

55 let (optimal, solution) = solver.maximize();
56}

Listing 1: Detailed example

Finally, the last fragment (lines 51-56) of Listing 1 show
what it takes to instantiate the solver and use it to solve a
knapsack problem instance with ddo using all the hardware
threads available on the machine.

4 Experimental Results

To conclude our brief presentation of ddo, we would like to
showcase some experimental results (Table 1). These figures
measure the time it took (in seconds) to solve a subset of the
well known MISP/Max-Clique instances from the DIMACS
challenge. These measurements have been taken on a ma-
chine equipped with two Intel E5-2640v3 CPU (2.60GHz,
8 cores, 2 threads/core for a total of 32 available hardware
threads) and 128G of RAM. The timeout for each run was set
to 600 seconds and we set a maximum width of 100 nodes
per layer of our restricted and relaxed MDDs.

These results are very promising as they indicate that even
though our library is truly generic, it delivers an overall per-
formance on par with that of DDX10[Bergman et al., 2014;
Bergman et al., 2016al. The latter having been favorably
compared by its authors to IBM ILOG CPLEX 12.5.1.

Instance 1 thread 16 threads 32 threads
hamming8-4.clq 25.45 2.58 2.17
brock200_4.clq 18.65 1.78 1.56
san400.0.7_1.clq 48.67 4.98 4.35
p-hat300-2.clq 14.98 1.88 1.64
san1000.clq 124.46 23.18 21.78
p-hat1000-1.clq 73.98 20.07 19.58
sanr400_0.5.clq 74.07 6.80 6.21
san200-0.9_2.clq 64.94 3.13 2.62
sanr200_0.7.clq 69.67 5.81 4.91
san400.0.7 2.clq 250.07 19.74 15.94
p-hat1500-1.clq timeout 89.28 88.40
brock200_1.clq 316.30 25.64 21.01

Table 1: Runtime (seconds) to solve MISP/Max-Clique instances
from the DIMACS challenge. Timeout 600 seconds.

5244

Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence (IJCAI-20)
Demonstrations Track

5 Demonstration

This demonstration will focus on how a practician can use our
library to solve combinatorial optimization problems. Start-
ing from the above knapsack example, we will show how one
can tune the behavior of the solver to make the most of the
available resources and problem knowledge. In particular, we
will show how to opt for a static vs dynamic maximum layer
width; how to opt for a single vs multi-threaded resolution
and how to specify a custom variable selection heuristic in
replacement of the default (natural-order) one.

References

[Andersen et al., 2007] Henrik Reif Andersen, Tarik Hadzic,
John Hooker, and Peter Tiedemann. A constraint store
based on multivalued decision diagrams. In Christian
Bessiere, editor, Principles and Practice of Constraint
Programming, volume 4741 of LNCS, pages 118-132.
Springer, 2007.

[Bergman and Cire, 2016] David Bergman and Andre Cire.
Theoretical insights and algorithmic tools for decision
diagram-based optimization. Constraints, 21(4):533-556,
2016.

[Bergman et al., 2014] David Bergman, Andre Cire, Ashish
Sabharwal, Samulowitz Horst, Saraswat Vijay, and
Willem-Jan and van Hoeve. Parallel combinatorial opti-
mization with decision diagrams. In Helmut Simonis, ed-
itor, Integration of Al and OR Techniques in Constraint
Programming, volume 8451, pages 351-367. Springer,
2014.

[Bergman et al., 2016a] David Bergman, Andre Cire,
Willem-Jan van Hoeve, and John Hooker. Decision
Diagrams for Optimization. Springer, 2016.

[Bergman et al., 2016b] David Bergman, Andre Cire,
Willem-Jan van Hoeve, and John Hooker. Discrete
optimization with decision diagrams. INFORMS Journal
on Computing, 28(1):47-66, 2016.

[Burch et al., 1992] Jerry Burch, Clarke Edmund, McMillan
Kenneth, Dill David, and Hwang H.L. Symbolic model
checking: 1020 states and beyond. Information and Com-
putation, 98(2):142-170, 1992.

[Perez and Régin, 2015] Guillaume Perez and Jean-Charles
Régin. Efficient operations on mdds for building constraint
programming models. In Proceedings of the Twenty-
Fourth International Joint Conference on Artificial Intel-
ligence (IJCAI-15), pages 374-380, 2015.

[Verhaeghe er al., 2018] Hélene Verhaeghe, Christophe
Lecoutre, and Pierre Schaus. Compact-mdd: Efficiently
filtering (s) mdd constraints with reversible sparse bit-sets.
In Proceedings of the Twenty-Seventh International Joint
Conference on Artificial Intelligence (IJCAI-18), pages
1383-1389, 2018.

5245

	Introduction
	Background
	The ddo Library
	Experimental Results
	Demonstration

