
A dedicated algorithm for verification of

interlocking systems

Quentin Cappart and Pierre Schaus?

Université catholique de Louvain, Louvain-La-Neuve, Belgium
{quentin.cappart|pierre.schaus}@uclouvain.be

Abstract. A railway interlocking is the system ensuring a safe train
tra�c inside a station by monitoring and controlling signalling compo-
nents such as the signals or the points. Modern interlockings are con-
trolled by a generic software that uses data, called application data,
reflecting the layout of the station under control and defining which ac-
tions the interlocking can perform. The safety of the train tra�c relies
thereby on application data correctness, errors inside them can lead to
unexpected events, such as collisions or derailments. However, the ap-
plication data are nowadays prepared by automatic tools that do not
guarantee a su�cient level of safety. Furthermore, their verification is a
time consuming task and error prone as it is mostly performed by hu-
man testers. Given the high level of safety required by such a system,
verification of application data is a critical concern. For such reasons,
automatising and improving the verification process of application data
is an active field of research. Most of this research is based on model
checking, which performs an exhaustive verification of the system but
which su↵ers from scalability issues. However, even if such an approach
requires knowledge of the interlocking behaviour for modelling the sys-
tem, it does not take advantage of it for the verification itself. In this
paper, we propose to use our knowledge of the system in order to design
a scalable verification algorithm. Concretely, we develop a polynomial
algorithm that can detect all the possible safety issues provided that
an assumption of monotonicity hold. We finally apply it on a realistic
medium size station of the Belgian railway network.

1 Introduction

In the railway domain, an interlocking is the subsystem that is responsible for
ensuring a safe and fluid train tra�c by controlling active track components of
a station. Among these components, there are the signals, defining when trains
can move, and the points, that guide trains from track to track. Modern inter-
lockings, like Solid State Interlocking [1], are computerised systems composed of
a generic software taking data, called application data, as input. They describe

? This research is financed by the Walloon Region as part of the Logistics in Wallonia
competitiveness pole.

the actions that the interlocking must perform [2]. The main requirement to con-
sider when designing an interlocking is the safety. A correct interlocking must
never allow critical situations such as derailments or collisions. To this purpose,
an interlocking must satisfy the highest safety integrity level as stated by Stan-
dard EN 50128 of CENELEC [3]. Although the generic software is developed
in accordance with these requirements, the reliability of an interlocking is also
dependant of the correctness of its application data which are particular to each
station. However, preparation of application data is still nowadays done by tools
that do not guarantee the required level of safety. Furthermore, the verification
of their correctness, as well as their validation, is mainly done manually through
a physic simulator that reproduces the behaviour of the interlocking on real in-
frastructures. In addition to the high cost of this process, it is also error prone
because there is no guarantee that all the situations that could end-up in a safety
issue have been tested by the simulator.

To overcome this lack, research has been carried out in order to improve this
verification process [4–7]. Most of it is based on model checking [8]. The goal
is to perform an exhaustive verification of the system. It is done in three steps.
First, the application data and the station layout are translated into a model
reflecting the interlocking behaviour. Secondly, the requirements that the inter-
locking must ensure in order to prevent any safety issue are formalised. Finally,
the model checker verifies that no reachable state of the model violates the safety
requirements. The main advantage of this method is its exhaustiveness: if a re-
quirement is not satisfied, the model checker will always detect it. However, this
method su↵ers from the state space explosion problem. The number of reach-
able states exponentially grows as the size of the model grows and the model
checker algorithm might not return a result within a reasonable time in practice.
Di↵erent methods to limit it have been proposed. Winter et al. [9] suggest to
keep the model as simple as possible by abstracting some parameters, such as
the trains speed or length. Besides, improvements can also be done on the model
checking algorithms. Di↵erent studies propose to use symbolic model checking
instead of classical approaches [6, 7]. Variable ordering can also be considered in
order to speed up the verification [10]. Cappart et al. [11] propose to limit the
verification to a set of likely scenarios through a discrete event simulation. Fur-
thermore, Limbree et al. [12] propose a compositional approach and use modern
model checking algorithms, such as IC3 or k-liveness for the verification. How-
ever, despite the good performances obtained, their method still requires manual
work for modelling each station individually and defining their decomposition
through contracts.

All of these improvements are generic and although they can be applied for
any model checking application, they do not take advantage of the intrinsic speci-
ficities of the considered system. In this paper, we propose to use our knowledge
of the railway field in order to design an e�cient dedicated verification algorithm.
The contributions of this paper are as follows:

• An extension of the model presented by Cappart et al. [11]. Concretely,
we add the bidirectional locking functionality [2] that prevents head to head
collisions on platforms. We also add the di↵erentiation between a route com-
mand and a route activation.

• The introduction of a polynomial algorithm verifying that the interlocking
will never cause derailments or collisions provided that an assumption of
monotonicity hold. It also verifies that each train will reach its correct des-
tination. Furthermore, its performances are also analysed through several
experimentations done on three instances.

This paper is structured around a typical medium sized Belgian station (the
same as [11]). The next section describes the interlocking components, explains
how it works, and illustrates its behaviour on the case study. Section 3 presents
the verification algorithm and states under which assumptions it can be used.
Performances are finally discussed in Section 4.

2 Interlocking principles

The role of an interlocking is to ensure a safe train tra�c inside a station. This
section explains how it is done in practice for the Belgian interlockings and
illustrates the process on a case study, Braine l’Alleud Station. A representation
of its track layout with its related components is shown on Figure 1.

011
Joint
Track/Platform number

Signal

091

092

011

012

DXC

EC IC

CC

CGC

CXC

JC KXC

KCJXCDC

FC

101

102

103

104

P_01AC P_02BC

P_01BC P_02AC

P_03C

P_04C

P_07AC P_08BC

P_07BC P_08AC
P_09C

P_10CT_10C

U_IR(10C)

U_IR(08BC)

Immobilisation Zone

20
C

19
C

U_BSIA U_BSIB

Bidirectional Locking

Platform

T_01BC

T_09C

T_08BC
T_101

T_102

T_103

T_104

U_IR(09C)

Fig. 1. Layout of Braine l’Alleud Station.

This figure recaps all the component types that are used in our model. Firstly,
there are the physical components of the track layout:

• The tracks (e.g Track 101) are the railway structures where trains can move.
A track can be a platform if the train can stop on it to pick up passengers.

• The track segments (e.g T 01BC) are the portions of tracks where a train
can be detected. They are delimited by the joints.

• The points (e.g. P 01AC) are the movable devices that allow trains to move
from one track to another. According to Belgian convention, they can be in
a normal position (left) or in a reverse position (right).

• The signals (e.g. CXC) are the devices used to control the train tra�c. They
are set on a proceed state (green) if a train can safely move into the station
or in a stop state (red) otherwise.

Braine l’Alleud Station is composed of 4 tracks, 17 track segments, 4 plat-
forms, 12 points and 12 signals. The physical components are controlled and
monitored by the interlocking. For instance, the system can detect that a train
is waiting on Track segment T 01AC in front of Signal CC and then puts this
signal to a proceed state if this action will not cause any safety issue. Generally
speaking, the interlocking must known which actions can be done and under
which conditions. Such information can be defined in di↵erent ways according
to the type of interlocking considered. Since 1992, Belgian railway stations have
used SSI format [1] for their interlockings. Such interlockings use a route based
paradigm. A route is the path that a train is supposed to follow inside a sta-
tion. It is named according to its origin and its destination place. Signals are
often used as a reference for the origins whereas tracks or platforms are used
for destinations. For instance, Route R CXC 101 starts from Signal CXC and
ends on Platform 101. When a train is approaching to a station, a signalman
performs a route request to the interlocking in order to ask if the route can be
commanded. It is a route command. If this request is fulfilled, all the requested
components are locked but the train cannot use the route yet because the start
signal is still on a stop state. The start signal goes to a proceed state only after
the activation of the route. Route activations are periodically tried by the in-
terlocking after that the route has been commanded. Once the route activation
has been accepted, the train can finally use its route. The interlocking handles
such requests and accepts or rejects it according to the station state. To manage
the requests, logical components are used:

• The subroutes are the contiguous segments that the trains must follow
inside a route. When a route is commanded for a train, a set of subroutes is
locked. When not requested, subroutes are in a free state. They are defined
by this syntax: U origin dest. For instance, U 19C 20C is the subroute from
Joint 19C to Joint 20C.

• The immobilisation zones are the variables materialising the immobilisa-
tion of a set of points. When they are locked, their attached points cannot
be moved. They are represented in the application data by the name U IR.

• The bidirectional locking is the mechanism used to prevent head to head
collisions on platforms. Each bidirectional locking consists of two variables
(U BSIA and U BSIB) which can prevent the activation of a route coming
from the left or the right of the platform. For instance, when U BSIA(104) is
locked, no route going to the Platform 104 from the right can be activated.

There are 32 possible routes in Braine l’Alleud. To manage it, 48 subroutes,
10 immobilisation zones and 4 bidirectional locking mechanisms are used. With
both the physical and logical components, a route based interlocking controls the
train tra�c by monitoring the station, setting routes, activating them, locking

components and releasing them. To illustrate how it works, let us consider the
scenario where a train is coming from Track 012 and has to go to Platform 103:

• Firstly, when the train is waiting at Signal KC, the interlocking verifies
whether the request for Route R KC 103 can be granted. Listing 1.1 presents
the request according to the application data of Braine l’Alleud.

1 *Q_R(KC_103)

2 if R_KC_103 xs, // xs: unset

3 P_08BC cfr , P_08AC cfr , P_09C cfr , P_10C cfn ,

4 U_IR (08BC) f, U_IR (09C) f, U_IR (10C) // f: free

5 then R_KC_103 s // s: set

6 P_08BC cr , P_08AC cr, P_09C cr, P_10C cn,

7 U_IR (08BC) l, U_IR (09C) l, U_IR (10C) l,

8 U_KC_19C l, U_19C_20C l, U_20C_CGC l // l: locked

Listing 1.1. Request for commanding Route R KC 103.

The request is accepted only if Route R KC 103 is not already set (line
2), if some points are free to be commanded to the reverse (cfr) or normal
(cfn) position (line 3) and if some immobilisation zones are not locked (line
4). If all the conditions are satisfied, R KC 103 is set (line 5), the points
are controlled to the reverse (cr) or normal (cn) position (line 6) and some
components as the immobilisation zones (line 7) or subroutes (line 8) are
locked. At this step, Route R KC 103 is set, or commanded, but not yet
activated. Its start signal is still on a stop state and the train can thereby
not enter in the station yet.

• Before moving a point, the interlocking must verify that this action can safely
be executed. Listing 1.2 illustrates such conditions for Point P 08AC.

1 *P_08ACN U_IR (09C) f // condition for normal (N) position

2 *P_08ACR U_IR (09C) f // condition for reverse (R) position

Listing 1.2. Conditions allowing Point P 08AC to move.

• Directly after the acceptance of the request of Listing 1.1, the interlocking
checks if a bidirectional locking must be used in order to prevent routes going
to Platform 103 from the left to be activated. It is shown on Listing 1.3.

1 if U_BSIA (103) f then U_BSIB (103) l

Listing 1.3. Request for setting the bidirectional locking of Platform 103.

• Once R KC 103 has been commanded, the interlocking checks if it can safely
activate the route and so gives the train an authority to move.

1 *R_KC_103

2 if P_08BC cdr , P_08AC cdr , P_09C cdr , P_10C cdn ,

3 U_IR (08BC) l, U_IR (09C) l, U_IR (10C) l,

4 T_08BC c, T_09C c, T_10C c, T_103 c, // c: clear

5 U_BSIA (103) f

6 then U_BSIB (103) l, KC proceed

Listing 1.4. Request for activating Route R KC 103.

Listing 1.4 states that R KC 103 can be activated only if the points are
commanded and detected in the requested position (cdn and cdr on line 2),
if the immobilisation zones are locked (line 3), if there is no train on some
track segments (line 4) and if the bidirectional locking for trains coming from
right to Platform 103 is free (line 5). The route activation results on locking
the paired bidirectional locking and on setting Signal KC on a proceed state
(line 6). At this step, the train can finally move into the station.

• When they are not used, locked components can be released. It is done
according to the progress of the train on its route. After each train movement,
the interlocking checks if a releasing event can be triggered. Listing 1.5 states
the conditions for releasing Subroute U 20C CGC. If all the conditions are
fulfilled, the requested components are thoroughly released.

1 U_20C_CGC f if U_KXC_20C f, U_19C_20C f, T_10C c

Listing 1.5. Conditions for releasing Subroute U 20C CGC.

This process briefly describes the life cycle of a route and how it is managed
by the interlocking. To be more precise, application data also contain other in-
formation but it is either not related to the safety or abstracted in our model.
Cappart et al. [11] designed a model aiming to reproduce the interlocking be-
haviour through a discrete event simulation. However they did not consider the
bidirectional locking conditions and the di↵erentiation between a route com-
mand and a route activation. In this paper, we enrich their model by adding
these functionalities. Errors in application data can lead to disastrous situa-
tions. For instance, if the bidirectional locking is not properly checked before
activating route R KC 103 (line 5 missing from Listing 1.4), two routes going
to the same platform from a di↵erent side can be activated together which will
potentially cause a head to head collision. There is thereby a real need of e�cient
and reliable methods to verify the application data correctness.

3 Verification algorithm

This section describes the method that we have designed to verify that an inter-
locking will never cause safety issue in a station. However, we need to define first
what is exactly a safety issue and how it can be detected. Di↵erent authors [5,
13, 14] identified two types of safety issues: collisions and derailments. According
to Busard et al. [13], there are three requirements that must hold in order to
avoid safety issues. Beyond the safety, a correct interlocking must also ensure
that trains will always reach their destination. We have then four requirements:

(1) A same track segment cannot have two trains or more on it at the same
time. Otherwise, a collision will occur.

(2) A point cannot move if there is a train on it in order to avoid derailments.
(3) A point must always be set on a position allowing trains to continue their

path in order to avoid derailments.
(4) Each train following a route must reach the destination stated by the route.

Much research has been carried out in order to verify automatically if an
interlocking always satisfies these properties. However, current methods present
some shortcomings. Model checking approaches su↵er from the state space ex-
plosion problem and the discrete event simulation [11] does not provide enough
guarantees that all the errors leading to safety issues will be detected. The ap-
proach described in this paper tackles the problem with a di↵erent perspective.
Instead of limiting our knowledge of the system only for its modelling, we pro-
pose to use it for designing the verification algorithm. Specificities of the system
can be used to identify what are the scenarios that can lead to safety issues and
to distinguish them from others that are either redundant or that never happen
in practice. The state space is then pruned and the verification is more e�cient.
This approach is related to model checking. Indeed, an automatic and exhaustive
verification is still performed, but now this verification is limited to a limited
state space that increases polynomially in function of the number of routes and
track segments. The rest of this section describes our algorithm and states the
assumption under which it can be used.

Initialisation This paragraph presents the variables and the conventions used in
our dedicated algorithm. For a station S, we define ROUTES as the set of all
routes, TRACK SEGMENTS as the set of all track segments, POINTS as
the set of all points and COMPONENTS as the set of all physical components
in S. The algorithm returns True if S satisfies the requirements and False

otherwise. For all routes r, we define r.origin as the origin of r, r.destination as
its destination, r.isCommanded and r.isActivated as boolean values defining if
r is commanded and activated. We also define t.position as the current position
of a train t, p.state as the state (normal or reverse) of a point p and c.isLocked

as a boolean value defining whether a component c is locked.

No conflictual pair of routes The idea behind this algorithm is to verify that no
issue occurs in any situation, and for that, only pairs of routes are considered.
The correctness of this algorithm is then based on the assumption that testing
only pairs of routes is su�cient for detecting all the issues. It is related to the
monotonicity of the application data.

Proposition 1. The application data are monotonic. If a route cannot be com-

manded given a particular station state, it will not be able to be commanded for

a more constrained station state. The same rule must also apply for the compo-

nents releasing.

Proof. In other words, if a route r1 cannot be commanded when a route r2 is
commanded, it cannot be commanded if r2 and a third route r3 are commanded

together. Such a scenario can only occur if conditions for route commands (List-
ing 1.1) require components to be locked instead of being free. It is because the
station becomes more constrained each time a component is locked for a route.
In some cases, the application data are not monotonic. This situation happens
when the itinerary of a train is not only determined by a single route but by a
sequence of n routes [r1, . . . , rn]. In this case, a route ri with i 2]1, n] can only
be set if ri�1 is also set. Route ri requires then a more constrained state for its
command. However, the property of monotonicity can be easily checked through
a static analysis. To do so, one can simply read sequentially the application
data and check separately each condition. Furthermore, applying the notion of
monotonicity to the set of itineraries instead of routes can also be done. ⇤

Proposition 2. Considering only pairs of routes is su�cient to verify the safety

of an interlocking based on the application data format described previously pro-

vided that they are monotonic.

Proof. We have to prove that all the requirements can be verified by using at
most two routes. An issue can occur if the first route is not properly set, such
a case only requires routes taken separately and is then trivially proved, or if
the command or activation of another route interacts with components already
locked for the first route. We need to prove that considering two routes is su�-
cient to detect all of these issues. Let us consider C, the set of all the components,
either physical or logical, of the station and Ci ✓ C, the set of components used
or locked by Route ri. Let us take two arbitrary routes, r1 and r2. There are
two possible situations:

• C1 \ C2 = ;: the two routes have no component in common and are then
completely disjoint. No issue can happen between them.

• C1 \ C2 6= ;: the routes have at least a component in common. If the inter-
locking allows both routes to be set at the same time, an issue can happen.

Any issue can be represented as an intersection between such sets. An inter-
section is formed by at least two routes. Two routes are then su�cient to detect
any safety issue provided that commanding a third route will not relax C1 or
C2 by releasing some components thereafter. According to Proposition 1, the
application data must be monotonic to avoid that. In this case, testing only all
the pairs of routes is thus su�cient to cover all the conflictual scenarios. ⇤

This kind of assumption is also considered in [15] where the verification is
limited to two trains. Algorithm 1 presents how we performed the verification by
considering all the pairs of routes. The command and activate instructions (lines
5 and 7) correspond to the requests defined in the application data, like Listings
1.1 and 1.4. The bidirectional locking request (Listing 1.3) is also done through
command instruction. They return True if the request is fulfilled and False oth-
erwise. Furthermore, if they are accepted, all the attached actions modifying the
station state are executed. move instruction (lines 20 and 23) moves a train to
the next track segment as defined by the points state. If a point is misplaced,

the train will either derail or pursue its movements until it leaves the station.

First, each pair of routes are considered (lines 1-2). The goal is to move a
train t1 from the origin of a route to its destination (lines 10-28) and for each
position of t1, we will try to command and to activate another route (lines 12 and
17). We also try to command r2 directly after that r1 has been commanded (line
6). Such a case can happen in real situations. If r2 is successfully commanded
and activated (line 18), we move a train t2 until it reaches the destination of
the route (lines 19-22). When a particular position of t1 has been tested, t1
goes to its next position (line 23) and the interlocking will try to release all
the locked components (lines 27-28). Releasing conditions are described in the
application data such as in Listing 1.5. Through the iterations on the positions
of t1, we memorize the fact that the other route, r2, has been commanded or
activated (lines 12 and 17). Indeed, because of the succession of release actions,
the command and the activation can occur at di↵erent moments during the
route life cycle. When a pair of routes has been entirely tested, the station is
reinitialised (line 29) in order to have an empty station before testing the next
pair. It is done through reinitialise instruction which releases all the locked
components and removes all the trains of the station.

Detection of issues Requirement (1) is tested after each movement of t2 by
testing that its position can never be the same as t1 (lines 21-22). Requirement
(2) is tested each time r2 has been commanded. If the current position of t1 is a
point, the point cannot move after the command of r2 (lines 14-16). It is done
by comparing its state with its previous one through the operator previous.
Requirements (3) and (4) are tested on lines 24 and 25. If r1 cannot be activated
(lines 8-9), we consider that we have a fluidity issue because no other route is
already activated (not presented as a requirement).

Time complexity Each pair of routes must be tested, as well as all the possible
configurations of positions between two trains. We have thereby the theoretical
bound O(r2t2) with r the number of routes and t the number of track segments.
The verification of Braine l’Alleud Station took 148 seconds on a MacBook
Pro 2.6 GHz Intel Core i5 processor and with a RAM of 16 Go 1600 MHz DDR3
using a a 64-Bit HotSpot(TM) JVM 1.8 on Yosemite 10.10.5.

4 Experiments

Several kinds of errors have been introduced in the application data in order
to test the adequacy of our algorithm and all of them have been successfully
detected in Braine l’Alleud:

• Incorrect or missing conditions on a route command (Listing 1.1).
• Conditions missing for releasing a component (Listing 1.5).
• Route activation not consistent with the related route command or condition
verifying the vacancy of a track segment is missing (Listing 1.4).

Algorithm 1: No conflictual pair of routes

1 for r1 2 ROUTES do

2 for r2 2 ROUTES such that r2 6= r1 do

3 place a train t1 at r1.origin
4 place a train t2 at r2.origin
5 r1.isCommanded command r1
6 r2.isCommanded command r2
7 r1.isActivated activate r1
8 if not r1.isActivated then

9 return False

10 while t1.position 6= r1.destination do

11 if not r2.isCommanded then

12 r2.isCommanded command r2

13 if r2.isCommanded and not r2.isActivated then

14 for p 2 POINTS such that t1.position = p do

15 if p.state 6= previous(p.state) then

16 return False

17 r2.isActivated activate r2

18 if r2.isCommanded and r2.isActivated then

19 while t2.position 6= r2.destination do

20 move t2
21 if t1.position = t2.position then

22 return False

23 move t1
24 if t1.position /2 TRACK SEGMENTS then

25 return False

26 remove t2 from S
27 for c 2 COMPONENTS such that c.isLocked do

28 release c

29 reinitialise S

30 return True

• Bidirectional locking not properly locked (Listings 1.3 and 1.4).

In order to analyse the scalability of our algorithm, we perform three exper-
imentations. Firstly, we compare the execution time required to verify di↵erent
numbers of routes in the station. A complete verification requires to consider all
the possible routes. Indeed, limiting the number of routes only produces a par-
tial verification. Secondly, in addition to Braine l’Alleud (17 tracks segments and
32 routes) we test our algorithm on a smaller instance, Nameche (13 tracks seg-
ments and 14 routes), and a larger one, a subpart of Courtrai (19 track segments
and 70 routes). Finally, we compare our method with the approach of Busard et

al. [13] that have performed a model checking verification of Nameche. Figure 2
recaps the execution time of the di↵erent experimentations. Let us notice that
the y-scale is logarithmic. As we can see, our algorithm runs faster (⇡ 4 orders
of magnitude for 14 routes) than the model checking approach, even for larger
instances and more routes. Furthermore, the algorithm scales well for larger in-
stances: a verification of all the routes is performed in less than 3 minutes for
Braine l’Alleud and in less than 16 minutes for Courtrai. The experimentations
have been performed on the same computer as in the previous section.

2 4 6 8 10 12 14
100

101

102

103

104

105

0 20 40 60
100

101

102

103

Fig. 2. Execution time (in seconds) in function of the number of routes in Nameche (•),
Braine l’Alleud (⌅) and Courtrai (N) by using our algorithm and the model checking
approach of Busard et al. [13] for Nameche (⌥).

5 Conclusion

Much research has been carried out in order to automatically verify the correct-
ness of an interlocking system. Up to now, most of it tackles the problem with
a model checking approach or, more recently, using a discrete event simulation.
Both of them have some limitations. On the one hand, model checking su↵ers
from the state space explosion problem, and on the other hand, simulation does
not provide su�cient guarantees that the system is correct. In this paper, we
proposed another approach. The idea was to use our knowledge of the system
not only to model it, but also to design the verification algorithm. Concretely,
we implemented a dedicated polynomial algorithm that can verify the safety of
a medium size station in less than three minutes and that can scale on larger
stations provided that an assumption of monotonicity hold. We also shown their
validity by introducing several errors in the application that were successfully
detected. The method proposed in this paper only deals with the verification of
safety. Availability properties, stating that the trains will always progress in the
station, are not considered. However, whereas Standard EN50128 [3] strongly
recommends the use of exhaustive methods for the verification of safety, the ver-
ification of availability can be based on non exhaustive methods as statistical
model checking [16]. Both methods are complementary and a full verification

of an interlocking can then be based on a hybrid approach using the dedicated
algorithm for the safety and statistical model checking for the availability.

References

1. Cribbens, A.: Solid-state interlocking (ssi): an integrated electronic signalling sys-
tem for mainline railways. In: IEE Proceedings B (Electric Power Applications).
Volume 134., IET (1987) 148–158

2. Theeg, G., Anders, E., Vlasenko, S.: Railway Signalling & Interlocking: Interna-
tional Compendium. Eurailpress (2009)

3. CENELEC, E.: 50128. Railway applications-Communication, Signaling and Pro-
cessing Systems-Software for Railway Control and Protection Systems (2011)

4. Vu, L.H., Haxthausen, A.E., Peleska, J.: Formal modeling and verification of in-
terlocking systems featuring sequential release. In: Formal Techniques for Safety-
Critical Systems. Springer (2014) 223–238

5. Winter, K.: Model checking railway interlocking systems. In: Australian Computer
Science Communications. Volume 24. (2002) 303–310

6. Eisner, C.: Using symbolic model checking to verify the railway stations of hoorn-
kersenboogerd and heerhugowaard. In: Correct Hardware Design and Verification
Methods. Springer (1999) 99–109

7. Huber, M., King, S.: Towards an integrated model checker for railway signalling
data. In: FME 2002: Formal MethodsGetting IT Right. Springer (2002) 204–223

8. Clarke, E.M., Klieber, W., Nováček, M., Zuliani, P.: Model checking and the state
explosion problem. Springer (2012)

9. Winter, K., Johnston, W., Robinson, P., Strooper, P., Van Den Berg, L.: Tool
support for checking railway interlocking designs. In: Proceedings of the 10th
Australian workshop on Safety critical systems and software-Volume 55, Australian
Computer Society, Inc. (2006) 101–107

10. Winter, K.: Optimising ordering strategies for symbolic model checking of railway
interlockings. In: Leveraging Applications of Formal Methods, Verification and
Validation. Applications and Case Studies. Springer (2012) 246–260

11. Cappart, Q., Limbrée, C., Schaus, P., Legay, A.: Verification by discrete simula-
tion of interlocking systems. In: 29th Annual European Simulation and Modelling
Conference 2015, ESM 2015. (2015) 402–409

12. Limbree, C., Cappart, Q., Pecheur, C., Tonetta, S.: Verification of interlocking
systems using statistical model checking. arXiv preprint arXiv:1605.06245 (2016)

13. Busard, S., Cappart, Q., Limbrée, C., Pecheur, C., Schaus, P.: Verification of
railway interlocking systems. In: Proceedings 4th International Workshop on En-
gineering Safety and Security Systems, ESSS. (2015) 19–31

14. Anunchai, S.: Verification of railway interlocking tables using coloured pertri nets.
In: Proceedings of the 10th Workshop and Tutorial on Practical Use of Coloured
Petri Nets and the CPN Tools. (2009)

15. Moller, F., Nguyen, H., Roggenbach, M., Schneider, S., Treharne, H.: Defining
and Model Checking Abstractions of Complex Railway Models Using CSPkB. In:
Hardware and Software: Verification and Testing. Volume 7857 of Lecture Notes
in Computer Science. Springer Berlin Heidelberg (2013) 193–208

16. Cappart, Q., , Limbrée, C., Schaus, P., Quilbeuf, J., Traonouez, L.M., Legay, A.:
Verification of interlocking systems using statistical model checking. arXiv preprint
arXiv:1605.02529 (2016)

