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Abstract

Sequence mining is an important tool for an-
alyzing large databases of timed events, such
as in click stream mining and event log min-
ing. Recently, constraint programming (CP)
approaches for pattern mining are gaining in-
terest, due to the modularity of the frame-
work and flexibility to add additional con-
straints. While CP systems were less scalable
then specialized mining systems, we recently
showed this can be overcome by hybridizing
advanced CP techniques (trailing) with al-
gorithmic improvements. In this work, we
study the more involved task of mining un-
der the restriction that the time gap between
two matching events must be smaller then a
threshold. We show that this too can benefit
greatly from hybridization.

1. Sequential Pattern Mining (SPM)
under gap[M,N ] constraint

Given a set of sequences SDB and a threshold θ, the
goal is to find all subsequences that is included in at
least θ of the sequences. Consider the following se-
quence database, where we assume that each event is
represented by an individual letter, and the time of the
event is the index of the event in the sequence (e.g. ’B’
happens at time 2 and 5 in sid1):{

(sid1, 〈ABDCB〉), (sid2, 〈BAADCAB〉),
(sid3, 〈ABDDBEC〉), (sid4, 〈ACCB〉)

}

Preliminary work. Under review for Benelearn 2016. Do
not distribute.

The pattern 〈BC〉 has frequency 3, it is included in
sid1 at corresponding positions (2, 4), in sid2 at posi-
tion (1, 5) and in sid3 at (2, 7) and (5, 7).

A gap[M,N ] constraint changes when a subsequence is
included in a sequence, namely iff the gap between
two subsequent symbols is larger or equal than M and
smaller or equal to N . For example, with a gap[0,2]

constraint, 〈BC〉 has only frequency 2, at positions
(2, 4) in sid1 and (5, 7) in sid3.

More formally, the problem of SPM under gap[M,N ]

is to find all patterns p = 〈p1, p2, · · · , pl〉 such that
|S ∈ SDB s.t. ∃(e1, e2, · · · , el) where ∀i, S[ei] = pi ∧
i ∈ [2, l] ,M ≤ ei−1 − ei − 1 ≤ N | ≥ θ; so at least θ
matching sequences, where ei represent the matching
position of item pi in a sequence S.

Without gap constraint, it does not matter that a sub-
sequence can be embedded in a sequence at different
positions, only the smallest position matters. This
means that storing this smallest position, the pseudo-
projection (Pei et al., 2001), is sufficient and a linear
scan of each sequence is enough to compute the pro-
jection of an extention of the pattern, e.g. from 〈BC〉
to 〈BCA〉.

In (Kemmar et al., 2015) a global constraint is intro-
duced based on the pseudo-projection of PrefixSpan
idea, adapted to handle gap constraints. The idea is
to compute and store all possible embeddings of a pat-
tern in a sequence.

The contributions of our work is that we show how
to improve on this approach by 1) precomputing the
last position of each symbol in a sequence and us-
ing this to quickly determine that an embedding can
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not be extended; 2) using a trail-based backtrack-
ing aware datastructure to store the embeddings ef-
ficiently. It is based on our earlier work (Aoga et al.,
2016) which showed that hybridizations of algorithmic
improvements and CP-inspired backtrack-aware datas-
tructures can outperform existing CP and specialised
methods. Our new results show that with gap restric-
tions, where needing to store the embeddings increases
the memory requirements, the use of backtrack-aware
datastructures is even more beneficial.

2. Backtracking-aware datastructures

A constraint programming problem consists of vari-
ables that can take certain values, and constraints over
these variables. At the heart of a constraint solver is a
generic depth-first search algorithm. Conceptually, it
recursively assigns a variable to one of its values and
then calls each constraint. A constraint remove values
from other variables, or fail if it is violated.

In our case, the variables are the symbols in the pat-
tern α = v1, . . . , vi and variables will be assigned in
order. At the heart of our approach is the PPICgap
constraint, which stores the embeddings of the pat-
tern in the data, and uses this to count in how many
sequences the pattern is included.

To do so, the constraint will internally build the so
called projected database of a pattern α under the

gap constraint: SDB
[M,N ]
|α . Each time the pattern

is extended, the new gap-projected database can be
constructed from the previous one. When the search
backtracks (an extention is removed again), the gap-
projected database of the original pattern must be re-
stored. E.g. from 〈BCA〉 back to 〈BC〉, to consider
extention 〈BCB〉.

We propose to store and restore projected-database by
using CP trailing techniques as illustrated in Fig. 1.
We use three vectors : sid, emb size and embs, respec-
tively for the sequence id, the number of embeddings of
the pattern in that sequence, and the set of actual em-
beddings. These vectors are reversible vectors: when
a pattern is extended, the embeddings are read and
the new embeddings are appended at the end of the
vector, together with the start position and the length
(φ and ϕ). If the search backtracks, the previous start
position φ and length ϕ are used and values after φ+ϕ
will be overwritten. This is much more memory effi-
cient then having to copy and delete the embeddings
in memory each time.

0 1 2 3 4 5 6 7 8 9 10

sid : 1 2 3 4 1 2 3 4 1 3 .

emb size : 1 1 1 1 2 2 2 1 1 1 .

embs : 0 0 0 0 2 1 2 4 4 7 .

. . . . . 5 7 5 . . .

. . . . . . . . . . .

〈〉 : (φ = 0, ϕ = 4) 〈B〉 : (φ = 4, ϕ = 4) 〈BC〉 : (φ = 8, ϕ = 2) · · ·

Figure 1. Reversible vectors technique.

3. Experiments

We report experimental with an implementation in
Scala in OscaR solver (OscaR Team, 2012) on two real-
life datasets.

SDB #SDB N sparsity description
Kosarak 69999 21144 1.0 web click
protein 103120 25 24.2 protein

We compare with GapSeq1(Kemmar et al., 2015),
and the state of the art dedicated algorithm cSpade.
Fig 2 shows PPICgap clearly outperforms Gap-seq un-
der both minimum and maximum gap and is most of
the time faster than cSpade. Our implementation is
available here http://sites.uclouvain.be/cp4dm/

spm/
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Figure 2. CPU times for PPICgap and Gap-Seq for several
minsup under gap[1,7] .
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