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Abstract. This paper discusses the usage of sparse sets for integer do-
main implementation over traditional representations. A first benefit of
sparse sets is that they are very cheap to trail and restore. A second key
advantage introduced in this work is that sparse sets permit to get delta
changes with a very limited cost, allowing efficient incremental propaga-
tion. Sparse sets can also be used to represent subset bound domains for
set variables.
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1 Introduction

The representation of variable domains is an important design choice when build-
ing a CP (Constraint Programming) solver. It can have a significant impact on
the performances of the CP system. In this paper, we focus on finite domains
and, without loss of generality, we assume that domains only contain positive
integer values.

Possible domain representations are considered part of the CP folklore, thus
not often clearly detailed or explained in the literature. Three popular represen-
tations of a finite domain D C [1, N] are range sequences, bit vectors [15], and
successor vectors [18]:

— The range sequence associated with D is the shortest sequence ([a1,b1], .. .,
[ak, bg]) such that D is covered, i.e., D = Ule[ai,bz-], and the ranges are
ordered by their smallest elements, i.e., a; < a;41 for 1 <7 < k. Clearly, a
range sequence is unique, none of its ranges are empty, and b; +1 < a;41 for

1 <@ < k. Solvers using range sequences for domain implementation include
Gecode [5].
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— The bit vector associated with D is the string of N bits such that the i*" bit
is 1 iff « € D. Solvers using bit vectors for domain implementation include
Choco [4].

— The successor vector [18] requires two vectors pred and succ allowing to
access a successor of a value in the domain in constant time. This represen-
tation is further described in Section 1.5.1 of [9]. As for bit vector, it takes
constant time to remove an arbitrary value in the domain and update the
pred and succ vectors.

As reported in Table 1, those three representations have different space and
time complexities. The space complexity of bit and successor vectors is linear
with respect to N, whatever the number of values in D, whereas the space
complexity of range sequences is linear with respect to the number of ranges k
in D.S

Table 1. Complexity for a domain D C [1, N] assuming a range sequence of length &
implemented with a list. We assume that neither the bit vector nor the sparse set is
augmented with explicit bounds. All rows except the last one are time complexities.

Bit vect. Successor vect. Range seq. Sparse Set
Restore A values o(A) o(4) o) 0(1)
Value removal O(1) o) O(k) o)
Check value in D o(1) o(1) O(k) 0(1)
Iterate O(N) O(|D)) e(|D|) o(|D))
Iterate increasingly O(N) e(|DJ) o(|D]) O(sort(|D|))
Get min/max O(N) o(1) O(1) e(|D))
Space complexity O(N) O(N) O(k) O(N)

* Assuming an implementation with immutable linked lists, where a value removal
builds a new list, possibly sharing a tail with the old list.

Therefore, range sequences may be more scalable than bit/successor vectors
and successor for large sparse domains. Fortunately filtering algorithms rarely
create holes in large domains. In such cases, algorithms updating the bounds of
the domains are preferred (for instance, most filtering algorithms for scheduling
constraints update bounds). Some CP systems maintain together an interval
domain, which only stores the lower and upper bounds of D, and a bit vector

5 Recently Pothitos and Stamatopoulos [12] have proposed a gap-based representation
for domains, which may be viewed as the complementary of the range sequence
representation: instead of memorizing all ranges (in a list or a binary tree), they
propose to memorize all gaps between ranges in a binary tree (called a gap interval
tree). The advantage is that the subtraction of a range of values is faster, as it
affects only one tree node (i.e., it inserts or modifies only one node). However, the
complexity of searching for, adding or deleting a value still depends on the number
of gaps in the domain.
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representation. In this case, the bit-vector is lazily created when a hole is created
in the middle of D.

The three representations also induce different time complexities for classical
domain operations. In particular, searching for, adding or deleting a value in
a domain is done in constant time with bit and successor vectors, whereas the
time complexity of these operations depends on the number of ranges when using
range sequences: it is linear when using a list of ranges, and logarithmic when
using a binary tree. As a counterpart, iterating over all values inside a domain
D may be done in O(|D|) when using range sequences and successor vectors,
whereas it is in O(N) when using bit vectors.”

The facility to restore domains when backtracking in the search tree is an
important aspect to consider when choosing the domain representation. In this
paper, we assume CP solvers based on trailing, the predominant approach.® A
trail can be viewed as a stack containing the information to be restored upon
backtracking to recover a previous state. In some cases (e.g., when storing the
previous value of the entity being modified), only the first change per trailed
entity within one search node must be restored upon backtracking [?]. We can
rely on this observation to efficiently implement trail-based systems. A global
time-stamp is incremented at the creation of each node of the search tree. Each
trailed entity also contains an inner time-stamp corresponding to the last time it
was added to the trail. We trail the entity value only if its time-stamp is outdated,
i.e., it is not the same as the current global time-stamp. When backtracking to
a parent node, each entry on the trail, up to the time-stamp of the parent node,
is popped and restored.

While range sequences may be more scalable in memory for large domains
with a few holes in the middle, it is also less trivial to restore them in a trail-
based solver. Assuming a 32 bits system, a bit vector can be split into words
of 32 bits. Each time a value is removed, the word corresponding to the flipped
bit is trailed. Hence in the worst case, one could trail up to N/32 entries in a
search node. A successor vector requires to trail each entry. Hence the number
of trailed entities inside a search node is exactly equal to the number of removed
values.

Contribution In this paper, we discuss an alternative domain representation
based on sparse sets. This representation has the advantage that it only requires
to trail at most one entity per domain for each node of the search tree and
iterating over the values in a domain D is optimal (i.e., time complexity of
O(|D])). As for the bit vectors or successor vectors, we can check in constant
time if a value is present or not. Using sparse sets for representing domains is
not new, as they are already used in some solvers since a few years.

What we believe is the most important contribution of the paper is the
idea of instrumenting sparse set-based domain representation to provide at no

"In C, we may use the ffs function to get the position of the first bit set in the
vector. The x86 CPU architecture implements such operation in hardware, but its
use is however not guaranteed by the compiler.

8 We refer to [14] for a comparison between trailing and copying mechanisms.
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cost the delta changes to the constraints. This information is very important to
achieve incremental filtering for some constraints. We also discuss how a single
sparse set can be used to implement a set-variable domain with subset-bounds
representation. To the best of our knowledge this can also be considered as a
new contribution of the paper.

2 Sparse Sets for integer variable domains

Sparse sets were introduced by Briggs and Torczon in [1]. When using sparse
sets, a domain D is represented by its size sizep and two arrays domp and
mapp. The domp array contains all values in the range [1, N]. The sizep first
elements of domp are considered to be part of D, the others have been removed
(see Figure 1). The map , array maps values to their position in the domp array.

sizep
in domain removed
domp = d g f c b h a e i
mapp = 6 4 3 0 7 2 1 5 8
a b c e f g h 7

Fig. 1. Example representation of the domain D = {b,¢,d, f, g, h }, such that sizep =
6, when the initial domain is { a,...,% }. The sizep first values in domp belong to the
domain; the last values are those which have been removed. The map array maps
values to their position in domp. For example, value b has index 4 in the domp array.
In such representation, only the size needs to be kept in the trail.

For a domain D, the following invariants hold:

— D ={dompli] | 0 <i< sizep}

— mappv] =i < dompli] =v

— The values in domp|sizep .. N — 1] are not modified by any operation, where
N is the size of the domp array, i.e., the size of the initial domain.

Thanks to the last invariant, the domain can be restored in constant time by
setting the sizep marker back to its previous position. Hence sizep is the only
entity to trail for the domain of domp.

To remove a value, we swap it with the last value of the domain (i.e., the
value directly to the left of the sizep marker), reduce sizep by one and update
the map array. Such operation is done in constant time, as shown in Figure 2.

Alternatively, we can restrict the domain to the intersection of itself and a
set M. We first move all values of M which belong to the sizep first elements
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function CoNTAINS(D,v) >veD
Return map p,[v] < sizep
end function

procedure SwAP(D,1,7) > Swap elements at positions ¢ and j in domp.
dompli], domplj] + domplj], domp|i]
map p[dompli]] « i
map p[domplj]] < j

end procedure

procedure BIND(D, v) >D<« Dn{v}
if map[v] > sizep then
sizep < 0
else
SwAP(D, map [v], 0)
sizep < 1
end if
end procedure

procedure REMOVE(D, v) >D <+ D\{v}
if mapp[v] < sizep then
SWAP(D, map [v], sizep — 1)
sizep < sizep — 1
end if
end procedure

procedure CLEARMARKS(D) > Mp 0
markp < 0
end procedure

procedure MARK(D, v) > Mp + MpU(DnN{v})
if map[v] < sizep A mapp[v] >= markp then
SWAP(D, map p[v], markp)
markp < markp + 1
end if
end procedure

procedure RESTRICT(D) > D« Mp
sizep < markp
end procedure

Fig. 2. Operations on the discrete representation of variables involve swapping values
in the domp array. All procedures have an O(1) time complexity.



6 V. le Clément, P. Schaus, C. Solnon, and C. Lecoutre

of domp, i.e., which are still in the domain, at the beginning of domp. Such
operation is called MARK in Figure 2. The markp counter keeps track of the
marked values (see figure 3). We denote the set of marked values by Mp. Once
all values are marked, we set sizep to the size of the intersection, i.e., markp.
The whole operation is done in O(|M|), with |M| the size of M.

markp sizep
marked unmarked removed
domp = d g f c b h a e i
mapp = 6 4 3 0 7 2 1 5 8
a b c d e f g h 7

Fig. 3. Values can be marked in the discrete representation of a domain by moving
the value to the beginning of the domp array and increasing the markp marker. To
restrict the domain to only the marked values, we only need to set sizep to markp.

Operations on the bounds however are inefficient. This major drawback is
due to the unsorted domp array. Searching for the minimum or maximum value
requires the traversal of the whole domain. Increasing the lower bound or de-
creasing the upper bound involves removing every value between the old and
new bound one by one.

Fortunately it is not frequent to have a propagator updating both the bounds
of variable and removing values in the middle. OscaR [11]| uses sparse set do-
main representation and also maintains bounds information: when one value is
removed from the domain, if it happens to be the current minimum value, a new
minimum value is searched. Castor [3] also maintains the bounds but update
them lazily each time an iteration over the domain is achieved. The bounds are
also trailed entities. It means that restoring the domain also involves restoring
the bounds.

Very sparse domains: In the above representation, we use an array to implement
mapp structure. For a very sparse initial domain this is not optimal since it
requires a space proportional to the difference between the largest and smallest
value. We can imagine using another implementation of mapp structure, for
example with Hashmaps also allowing fast access based on keys consuming a
memory proportional to the number of initial values in the domain.

3 Incremental propagation

For some constraints, it is much more efficient to realize an incremental filtering
rather than filtering from scratch. Incremental filtering requires to know exactly
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the domain changes (also called delta) since last call. This is generally achieved
by maintaining some state inside the constraint. AC5-based solvers [18] provide
this information by implementing a queue of events of single changes. In such
approach, the information of every removed value arrives one by one to the
propagator through a call to a valRemoved(x,v) method in charge of propagating
the constraint given that v has been removed from domain of x. The approach
has some drawbacks:

— It can be a source of inefficiency since one execution of a filtering algorithm
is achieved for each removed value while it can (sometimes) be more efficient
to treat them all at once.

— It is a potential source of implementation bugs. Indeed, the developer must
be well aware that there can be a mismatch between the domains of the
variables and the information received so far about removed values. For
some filtering algorithm, it is important to consider not yet handled values
in the event queue as part of the domain, since their removal has not yet
been reflected in the internal state of the propagator.

— A propagator cannot choose a different filtering algorithm based on the size
of the delta, since it has no access to the event queue. This is illustrated in
the following example.

Ezample 1. Consider the constraint * = y + ¢ with ¢ an integer constant. We
assume a propagator achieving domain consistency filtering for this constraint
based on AC5. When a value v is removed from D(z), the value v — ¢ must be
removed from D(y), and vice-versa when a value is removed from D(y). Assume
now that the initial domains of x and y are very large, say [0 .. 10000]. If the
propagation of other constraints leave only 10 values in the domain of z, the
valRemoved(x,v) method will be called 9990 times. But if the propagator knows
in advance that so many values have been removed, we could choose to scan the
10 remaining values in D(x) instead of processing the 9990 removed values.

Advisors [8] is another technique used in Gecode enabling incremental prop-
agation. In this approach the advised propagator receives a log of modification
events used to update its state. As explained in Gecode’s tutorial [16], the in-
formation provided concerns the bound changes but no accurate information is
given about value removals. As for AC5, several bound notifications can happen
before the actual propagate is executed. This technique is independent from the
domain representation but comes with a cost for propagators using it.

We introduce a new technique based on sparse sets allowing propagators to
have access to all delta changes at once without additional cost. The drawback
is that our technique relies on the sparse set domain representation and is thus
dependent on the domain representation.

The idea is the following: at the end of the propagation of a constraint, that
constraint remembers the sizes of the domains. On the next propagation of the
constraint, the values that have been removed from the domains will be between
the saved old sizep and the new sizep, as shown in Figure 4. By iterating over
the values between the two markers, we can have access to the removed values
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since the last execution of the propagator. When backtracking, the saved sizes
must be reset.

sizep old sizep
in domain removed since last call removed before
domp = d g f c b h a e i
mapp =| 6 4 3 0 7 2 1 5 8
a b c d e f g h )

Fig. 4. If “old sizep” was the size of D on the last propagation of a constraint, the
values ¢, b and h have been removed since then. To perform incremental propagation,
the propagator only has to check the values for which ¢, b or h was a support. Note
that the “old sizep” marker is a property of the propagator and is different for each
propagator, while sizep is a property of D.

This technique is used in Castor [3] and OscaR [11] solvers. An implemen-
tation skeleton of an OscaR propagator in Scala is given in Figure 5. As can be
seen, one can specify a filtering procedure interested to have the delta changes
of a specific variable X. Behind the scene it means that three values are updated
after each execution of the filtering code: the old minimum, the old maximum
and the previous size. Based on these three values and the sparse set representa-
tion, we can offer the query methods on the delta object. Each of these methods
execute in constant time and iterating on the removed values in X takes O(A)
time with A the number of removed values since last call to propagate.

Finally, note that successor vectors can also permit to get delta changes, pro-
vided that an additional stack is used to record deleted values. This is described
in [9] and implemented in AbsCon. Similarly to sparse sets, at the end of the
propagation of a constraint, it suffices to execute a cheap operation: storing the
last deleted value of each domain.

4 Sparse Sets for integer set variable domains

The idea of subset bound representation for set variables was developed inde-
pendently in [13,6]. A set domain D is represented by two sets of integers D and
D, with D C D, representing set values {v | D Cv C D }. Thus D contains the
required values that must be in the set, and D contains the possible values that
can be in the set. This representation is usually complemented with an integer
variable representing the cardinality of the set. The set variable domains are
commonly represented (e.g., in Choco3 [4]) with two bit vectors, one for D and
one for D.
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class MyConstraint(val X: CPVarInt) extends Constraint(X.s) {
override def setup(l: CPPropagStrength): CPOutcome = {

X.filterWhenDomainChanges { delta =>
// ... filtering code ...
delta.changed() // has the domain changed?
delta.maxChanged() // has the max value changed?
delta.minChanged() // has the min value changed?
delta.size() // number of value removed
delta.oldMin() // old minimum
delta.oldMax() // old maximum
delta.values() // iterator over the removed values
Suspend

}

Success

Fig. 5. Illustration of the functionality allowing to get the delta information on domain
changes.

Sparse sets are a good alternative representation for set variable domains,
offering the same advantages as for integer variables. The only difference is that
two size values are needed as illustrated in Figure 6. These two size values are
also trailed to restore the set variable domain on backtrack. For a domain D,
the following invariants hold:

— D={v|dompl0..sizep — 1] Cv C domp[0 .. size; — 1] }

— mapplv] =i < dompli] =v

— The values in domp[0.. sizep — 1] and domp[sizer .. N — 1] are not modified
by any operation, where N is the size of the domp array.

sizep sizer
required candidate excluded
domp = d g f c b h a e i
mapp = 6 4 3 0 7 2 1 5 8
a b c d e f g h )

Fig. 6. Example representation of the domain D = {d, g, f },? ={d,g,f,¢c,b,h}. The
sizep first values belong to D; the size; first values belong to D. In such representation,
only sizep and size need to be kept in the trail.
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Note that sizep can only increase since removing a required value should
trigger a backtrack, and sizer; can only decrease since no constraint can add a
value in the possible set. The variable is bound to a single set value when sizep =
size;. This representation is also very convenient to remove every possible value
in constant time when the upper bound on the cardinality of the set variable
becomes equal to sizep.

As for integer variables, one can offer to the propagators the delta changes
on D and D by trailing the two old sizes without additional cost.

Set variables are implemented with sparse sets in OscaR [11].

4.1 Related Work

In many contexts different from domain implementation, using a sparse set looks
the most effective solution to maintain state constraint systems. In this section,
we illustrate our purpose with a possible use of sparse sets to manage the set of
fixed and unfixed variables in constraint scopes.

For some kinds of (global) constraints, it is worthwhile handling separately
the variables that are fixed (assigned) and those that are not. Indeed, when
filtering such constraints, one typically needs to iterate over the unfixed variables
involved in their scopes. For example, let us consider the statement given at Line
5 of Algorithm 5 (STR2) in [10]:

foreach variable x € scp(c) | « ¢ past(P)

Here, the loop iterates over all variables involved in a constraint ¢ of a constraint
network P. Specifically, we only need to consider the variables of the scope of
¢ (sep(e)) that have not been assigned by the backtrack search algorithm (i.e.,
are not in past(P)). Depending on the implementation, with r and r’ being
respectively |sep(c)| and |sep(c) \ past(P)|, this iteration is O(r) or O(r').

To guarantee O(r'), we can use a sparse set containing for each variable x of
the constraint network the position of z in scp(c). The position value is removed
whenever a variable is fixed. As for the domains, this sparse set is made reversible
by trailing its size.

One can also uses reversible sparse sets in STR2 [10] to efficiently maintain
a set of valid tuples of a table constraint. Cheng and Yap [2] use sparse sets to
efficiently maintain a set of MDDs (multi-valued decision diagrams).

5 Conclusion

We have shown in this paper how to use sparse sets for representing domains
enabling constant time operations for searching for, adding or deleting a value
in a domain. This sparse set based representation is already used in LAD [17],
OscaR [11], Castor [3], AbsCon and Choco3 [4].? We introduced how to access
delta changes in the domains when using spare-sets, important for incremental

9 Graph domains implementation by Jean-Guillaume Fages.
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propagation. We also explained subset bound implementation for set variables
using sparse sets. As a future work we plan to compare the performances of
incremental filtering based on sparse sets over AC5 based propagators.
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