
Available at:
http://hdl.handle.net/2078.1/192702

[Downloaded 2018/04/23 at 11:25:37]

"Verification of railway interlocking
systems and optimisation of railway traffic"

Cappart, Quentin

Abstract

Since the dawn of the nineteenth century, development of railway systems has
taken a huge importance in many countries. Over the years, the number of
trains, the number of tracks, the complexity of networks increase and are still
increasing. Directing trains on efficient routes, stopping and cancelling them are
some actions that railway operators must take in their everyday life in order to
regulate the traffic. However, with its continual growth, the consequences of such
actions become rapidly hard to predict. Bad decisions can lead to disastrous
situations such as accidents or, in the best cases, to unnecessary delays leading
to financial losses. Decisions and actions that could be taken manually in the
past are now hard combinatorial problems that require computer based methods
for their solving. In this context, the need of a reliable and efficient railway traffic
management is crucial. Like any transportation system, three aspects must be
considered: safety, availability and flu...

Document type : Thèse (Dissertation)

Référence bibliographique

Cappart, Quentin. Verification of railway interlocking systems and optimisation of railway traffic.
 Prom. : Schaus, Pierre

Verification of Railway Interlocking
Systems and Optimisation of Railway

Traffic

Quentin Cappart

December 2017

Thesis submitted in partial fulfillment of the requirements for the
degree of Doctor of Applied Science in Engineering

Institute of Information and Communication Technologies,
Electronics and Applied Mathematics (ICTEAM)

Louvain School of Engineering (EPL)

Université catholique de Louvain (UCL)

Louvain-la-Neuve

Belgium

Examining board
Prof. Pierre Schaus, Supervisor UCL/ICTEAM, Belgium
Prof. Peter Van Roy, President UCL/ICTEAM, Belgium
Prof. Yves Deville UCL/ICTEAM, Belgium
Prof. Charles Pecheur UCL/ICTEAM, Belgium
Prof. Axel Legay INRIA, France
Dr. Luis-Fernando Mejia Alstom, France
Dr. Renaud De Landtsheer CETIC, Belgium

Abstract

Since the dawn of the nineteenth century, development of railway systems
has taken a huge importance in many countries. Over the years, the number
of trains, the number of tracks, the complexity of networks increase and are
still increasing. Directing trains on efficient routes, stopping and cancelling
them are some actions that railway operators must take in their everyday
life in order to regulate the traffic. However, with its continual growth, the
consequences of such actions become rapidly hard to predict. Bad decisions
can lead to disastrous situations such as accidents or, in the best cases, to
unnecessary delays leading to financial losses. Decisions and actions that
could be taken manually in the past are now hard combinatorial problems
that require computer based methods for their solving. In this context, the
need of a reliable and efficient railway traffic management is crucial. Like any
transportation system, three aspects must be considered: safety, availability
and fluidity. Safety and availability belong to verification engineering while
fluidity is related to optimisation.

A plethora of research on this field already exist. However, most of it
suffers of a lack of scalability. They can only be used for small or medium
stations. This thesis presents innovative approaches for tackling this prob-
lem. For each aspect, we propose a method, that is feasible in practice for
stations of any size. Concretely, verification of safety is performed with
a dedicated algorithm while availability is verified with Statistical Model
Checking. Fluidity optimisation is carried out with Constraint Programming.
The performance of these methods are analysed through three stations of the
Belgian railway network.

i

Acknowledgements

Even if there is only one author, achieving this thesis could not have been
possible without the help, the support and the comments I received from
many people. My first thanks go to my supervisor, Pierre Schaus, for its
guidance all along this thesis. Finding a good match is not always easy but
working with Pierre was for me a pleasure. Pierre, thank you for providing
me with the freedom I needed, for always being there when required and for
continuously giving me new challenges.

During my thesis, I had the great opportunity to collaborate with many
people from different backgrounds. I thank Christophe Ponsard, Jean-Jacques
Gehrenbeck, Yoann Guyot, Raphaël Michel, Michel Bagein, Jean Quilbeuf
and Louis-Marie Traonouez for the help that they provided me and for the
work we accomplished together. I also sincerely thank the members of my
jury, Axel Legay, Charles Pecheur, Yves Deville, Luis-Fernando Mejia, Re-
naud De Landtsheer and Peter Van Roy for the time they spent reviewing
my work and for giving me valuable feedback about it. Discussions with all
of them highly contributed to improve this thesis.

Going to work was everyday a pleasure, and it is also due to the wonderful
colleagues I have. I warmly thank my two office mates: Christophe, who
greatly helped me since the beginning of this thesis, and Guillaume, who
often reminds me that, sometimes, I have to stop working in order to take
lunch together. Big thanks to all INGI department, and special thanks to
my BeCool fellows, for the interesting discussions and the fun moments we
had in the department or, abroad in conference. Special-special thanks to
Ratheil, John and Sascha, as you know... No pain no gain !

iii

iv

I would also like to thank all the people who have helped me indirectly. I
think especially about my family and my close friends for their encourage-
ments to whom I could work (and then relax) in excellent conditions.

Last, but certainly not least, I heartfelt thank Lydiane for all the support
and the trust she gave me. Making important decisions in life is not something
easy but, together, we managed to do it.

Foreword

This research is financed by the Walloon Region as part of the Logistics in
Wallonia competitiveness cluster.

Railway operators are faced with competition from road, air and maritime
transport. They need to improve in terms of the globalisation of traffic and
the interoperability between operations and infrastructure. To deal with this
challenge, Walloon Region (Belgium) initiated in April 2014 a project, called
Inograms. Its goal is to maintain the competiveness of railway industry in
the face of other transportation means. Given the large scope of this project,
it is divided into seven work package, each of them being dedicated to a
particular aspect of railway transportation.

This technology exploration is realised in the context of rail interoper-
ability and internationalisation. More specifically, this thesis is related to
the first work package which aims to propose innovative solutions for easing
the future development of new interlocking systems. The objective pursued
was the development of a tool which can be used to automatically generate
a new class of interlockings. No safety or availability issue and a maximal
fluidity were the requirements of the first work package and are the challenges
addressed by this thesis.

v

Contents

1 Introduction 1
1.1 Research Goals . 2
1.2 Overview of the Contributions 4
1.3 Publications . 6
1.4 Outline . 7

2 Interlocking Principles 9
2.1 Context . 9
2.2 Railway Components . 12
2.3 Solid State Interlocking . 14
2.4 Interlocking Behaviour . 16
2.5 Station Topology . 18
2.6 Operational Decisions . 19

3 Safety Verification 21
3.1 Motivation . 21
3.2 Safety Requirements . 23
3.3 Search Space Pruning . 25
3.4 Verification Algorithm . 31
3.5 Experimental Results . 35
3.6 Future Work . 36
3.7 Summary . 37

4 Availability Verification 39
4.1 Motivation . 39
4.2 Interlocking Model . 40
4.3 Simulation of the Model . 43

vii

viii CONTENTS

4.4 Availability Requirements . 50
4.5 Verification with Statistical Model Checking 52
4.6 Experimental Results . 58
4.7 Future Work . 60
4.8 Summary . 62

5 Fluidity Maximisation 63
5.1 Motivation . 63
5.2 Related Work . 66
5.3 Technical Background . 67
5.4 Constraint Programming Model 73
5.5 Experimental Results . 82
5.6 Future Work . 86
5.7 Summary . 87

6 Conclusion 89

A Inograms Project 91

B Case Studies 93

C Application Data Grammars 97

D Application Data Errors 103

E Benchmarks 111

Bibliography 117

Chapter 1
Introduction

“What is not started today is never finished tomorrow.”

–Johann Wolfgang von Goethe

Railway is one of the first means of mechanised mass transport. Even
now, it is still the backbone of transportation in many countries all around
the world. At the beginning, railway networks were only composed of a basic
infrastructure designed for a few trains only. At this time, the operations
could be managed manually by specialised people, the railway operators,
having the duty to regulate the traffic safely and efficiently. However, with
the unceasing growth of railway equipments, railway operators must face up
to new challenges. The complexity of networks and the density of the traffic
have reached such a level that operations can not be handled entirely manu-
ally without resorting to computer based methods. A direct consequence of
this growth is that the manual decisions quickly become hazardous and can
have unpredictable effects on the traffic such as delays, financial losses or
worse, accidents. In this context, the need of reliable and efficient methods
to assist railway operators is crucial.

Responsibilities of railway operators can be divided into three require-
ments of a decreasing level of priority. On the one hand, they must ensure
the safety and the availability of the traffic and on the other hand, they have
to maximise its fluidity. As for any transportation means, safety is the most
important requirement to consider. It ensures that no accident and no event
that could damage people or the infrastructure can occur. Once the traffic
is safe, it must also be available in every situation. In other words, trains
cannot be stopped in the station without possibility to move. It is related
to the availability of the traffic. Finally, once the safety and the availability
are ensured, the traffic has to be as fluid as possible in order to minimise
the total travel time of each train. This aspect is called fluidity. Unlike

1

2 CHAPTER 1. INTRODUCTION

the safety and the availability that fall under the field of verification, fluid-
ity is related to optimisation where an objective function has to be maximised.

Such responsibilities are in the scope of two railway subsystems: the
interlocking and the traffic management system. An interlocking is the sub-
system that is responsible for ensuring a safe and available train traffic by
controlling active track components of a station. Among these components,
there are the signals, defining when trains can move, and the points (also
called switches), that guide trains from track to track. Modern interlockings
are computerised systems composed of a generic software taking as input
data, called application data, describing the actions that the interlocking
must take for each situation that can occur in a particular station [TAV09].
The main requirement to consider when designing an interlocking is the
safety. A correct interlocking must never allow critical situations such as
derailments or collisions. To this purpose, an interlocking must satisfy the
highest safety integrity level as stated by Standards EN 50128 [CEN01] and
EN 50129 [CEN03] of CENELEC. Beyond the safety, an interlocking must
also ensure that no train will be stopped too long in the station in order to
maintain the availability of the network.

Operating at a higher layer, the traffic management system controls
several interlockings. According to an established timetable, it regulates
the traffic in order to ensure the planned traffic. The correctness and the
efficiency of both subsystems are then a critical concern for the safety, the
availability and the fluidity of the railway traffic.

Analysing and improving such aspects of the railway transportation is the
goal pursued by the first work package of Inograms Project, initiated in April
2014 by the Walloon Region (Belgium). It aims to study new technologies to
increase the competitiveness of rail operators in the face of transportation
means such as aircraft and road transport. More information about Inograms
is proposed in Appendix A.

1.1 Research Goals

This thesis is carried out within the aforementioned context. Current and
state of the art technologies used to design and operate such systems have

1.1. RESEARCH GOALS 3

some shortcomings and may not satisfy the three requirements in some sit-
uations. The bottleneck of an interlocking system is the application data.
Although the generic software is developed in accordance with the safety and
availability requirements, the reliability of an interlocking is also dependent
of the correctness of its application data which are particular to each station.
However, preparation of application data is still nowadays done by tools that
do not guarantee the required level of safety. Furthermore, the verification of
their correctness, as well as their validation, is mainly done manually through
a physical simulator that reproduces the behaviour of the interlocking on
real infrastructures. In addition to the high cost of this process, it is also
error prone because there is no guarantee that all the situations that could
end-up in a safety issue have been tested by the simulator.

To overcome this lack, research has been carried out in order to improve
this verification process [VHP14, Win02, Eis99, HK02]. Most of it is based on
model checking [CKNZ12]. The goal is to perform an exhaustive verification
of the system. It is done in three steps. First, the application data and
the station layout are translated into a model reflecting the interlocking
behaviour. Secondly, the requirements that the interlocking must ensure in
order to prevent any safety issue are formalised. Finally, the model checker
verifies that no reachable state of the model violates the safety requirements.
The main advantage of this method is its completeness: if a requirement is
not satisfied, the model checker will always detect it. However, this method
suffers from the state space explosion problem. The number of reachable
states grows exponentially with the size of the model and the model checker
might not return a result within a reasonable time in practice.

Concerning the traffic management system, it has the duty to regulate
the traffic in order to maximise its fluidity. However, in case of real time
perturbations, this task is handled manually and the actions to perform are
decided by human operators. When the traffic management system has pre-
dicted a future conflict, railway operators analyse the situation and evaluate
the possible actions to do in order to minimise the consequences of the pertur-
bation. Depending on the situation, they can perform some actions (stopping
a train, changing its route, etc.) or do nothing. Under stress and given the
complexity of the situation, the operators may take suboptimal decisions.
Several works already tackle this problem. A recent survey (2014) initiated
by Cacchiani et al. [CHK+14] recaps the different trends on models and algo-

4 CHAPTER 1. INTRODUCTION

rithms for the management of real-time railway disturbances. Most of them
are based on Mixed Integer Programming [CGD09, FLM+14, S. 83, LM15].
However, the performance of Mixed Integer Programming models for solving
scheduling problems is known to be highly dependant of the granularity of
time chosen and is not as flexible for the modelling than other approaches
such as Constraint Programming.

Both interlockings and traffic management systems have then shortcom-
ings and can be improved, even the most recent ones. Such improvements
are precisely the topic of this thesis. As previously shown, the satisfaction
of each requirement is sometimes compromised or is often obtained through
a long and tough process. The ambition of our work is twofold: improving
the state of the art solutions and providing automatic methods that can be
used in practice independently of the size and the complexity of the railway
network considered.

1.2 Overview of the Contributions

The contributions of this thesis are multiple and can be classified into four
categories.

Contributions Related to Safety The first contribution proposes to use
our knowledge of the railway field in order to accelerate the verification of
safety. Concretely, a polynomial algorithm verifying that an interlocking
will never cause accidents, given a constraint of monotonicity, is introduced.
From another point of view, the second contribution is a proof which can
be used in order to prune the search space of a verification based on model
checking. A search space growing up polynomially with the size and the
complexity of the station is proposed.

Contributions Related to Availability This category encompasses the
contributions aiming to verify the availability of the traffic against misconfig-
ured interlocking. Several contributions are introduced:

• A model instantiating the behaviour of the application data and the
topology of a station. The model is designed in order to be simulated
in a discrete event fashion.

1.2. OVERVIEW OF THE CONTRIBUTIONS 5

• A discrete event simulator which can be run on top of this model.
• Two availability properties that an interlocking must face in order to

ensure that no train would be stuck in the network without possibility
to move.
• The instantiation of the availability requirements in the aforementioned
model and their verification using Statistical Model Checking.

Contributions Related to Fluidity Unlike the previous contributions
which are oriented to verification, these ones are related to optimisation. The
goal pursued is to provide a decision support tool in order to assist railway
operators in their decisions. The contributions are as follows:

• A Constraint Programming model for rescheduling the traffic through
real time disturbances on the railway network.
• The application of state of the art scheduling algorithms and relevant

global constraints in order to achieve a better propagation and a faster
search. Concretely, the conditional time-intervals introduced by Laborie
et al. [LR08, LRSV09] as well as their dedicated global constraints
have been used.
• The formulation of an objective function aiming at the same time
to minimise the total delay and to maximise the overall passenger
satisfaction. Furthermore, the objective function also considers the
heterogeneity of the traffic and different levels of priority between trains
through a defined lexicographical order. For instance, a freight train has
a lower priority than a passenger train. To the best of our knowledge,
there is no work on real time train management dealing with such an
objective function.

Implementation and Technical Contributions The aforementioned
contributions could only be done thanks to the utility tools developed in
order to process input data and to analyse them. Concretely two input data
are required: the application data and the topology of the network. However,
both data have a format not directly exploitable. The first tasks were then
to extract and to convert them into an adapted format.

The first technical contribution is a translator designed to automatically
parse application data based on SSI [Cri87]. It is a kind of interlocking that

6 CHAPTER 1. INTRODUCTION

is used by the Belgian railways since 1992. Detailed explanations about this
format is provided thereafter. Following the same idea, the second contribu-
tion is a parser tool extracting the topology of a station from a data source
based on an extension of railML [NHSK04]. Finally, the global technical
contribution is a software that has two purposes: verifying automatically the
correctness of an interlocking system and optimising the decisions of railway
operators in face of real time perturbations in the network.

All the contributions have been tested on three stations of the Belgian
railway network: Namêche, Braine l’Alleud and Courtrai. They are presented
in Appendix B.

1.3 Publications

Aforementioned contributions lead to four main publications:

1. A first version of the model and the discrete event simulator for a
global verification of interlocking systems have been published and pre-
sented in October 2015 at the 29th European Simulation and Modelling
Conference, that was located in Leicester, United Kingdoms [CLSL15].

2. The dedicated algorithm and the proof of monotonicity have been
published and presented in September 2016 at the 35th International
Conference on Computer Safety, Reliability and Security, that was
located in Trondheim, Norway [CS16].

3. An extended version of the previous model and its verification with Sta-
tistical Model Checking have been published and presented in January
2017 at the 18th IEEE International Symposium on High Assurance
Systems Engineering, that was located in Singapore [CLS+17].

4. The Constraint Programming model aiming to maximise the fluidity
of traffic has been published and presented in June 2017 at the 14th
International Conference on Integration of Artificial Intelligence and
Operations Research Techniques in Constraint Programming, that was
located in Padova, Italy [CS17]. It also has been presented in June
2017 at the Treizièmes journées Francophones de Programmation par
Contraintes, that was located in Montreuil-sur-Mer, France.

Let us also mention that this thesis is not a simple aggregation of these
publications. It takes rather the most meaningful results in order to provide

1.4. OUTLINE 7

a complete solution for the verification and the optimisation of railway
interlocking systems. Furthermore, the implementation done has been used
for two other publications:

1. Busard et al. have used the translator in order to build a complete
framework for interlocking verification with model checking methods.
This work has been published and presented in June 2015 at the 4th
International Workshop on Engineering Safety and Security Systems,
that was located in Oslo, Norway [BCL+15].

2. Following the same philosophy, Limbrée et al. also have used the trans-
lator for generating a model which can be verified using a compositional
approach based on model checking. This work has been published
and presented in June 2016 at the 1st International Conference on
Reliability, Safety and Security of Railway Systems, that was located
in Paris, France [LCPT16].

1.4 Outline

The thesis is divided into four main chapters. With the exception of Chapter
2, each of them propose an innovative solution to the challenges related to
safety, availability and fluidity:

• Chapter 2 establishes the background related to the railway traffic
management. It describes the structure of an interlocking, its behaviour,
the input data considered and how the operations are managed.
• Chapter 3 focuses on safety verification. Most of the research dealing
with this challenge is limited to small or medium railway networks
because of the state space explosion. This chapter addresses this
issue by proposing a polynomial dedicated algorithm for an exhaustive
verification of safety. It describes the algorithm, as well as its underlying
concepts.
• Chapter 4 deals with the availability requirements of an interlocking.
The four main steps of the verification are depicted:

1. The construction of the model from the application data and the
railway topology.

2. Its execution through a discrete event simulator.

8 CHAPTER 1. INTRODUCTION

3. The formalisation of the availability requirements that an inter-
locking must satisfy.

4. The verification of these requirements using Statistical Model
Checking.

• Chapter 5 investigates how the fluidity of the traffic can be optimised.
It presents the Constraint Programming model and compares its per-
formance with the greedy strategies used by railway operators.

A review of the literature is established for the different aspects. Further-
more, for each solution proposed, a comparison with current and state of the
art methods, as well as experimental results based on realistic instances, are
also provided. Finally, the last chapter summarises the main conclusions and
results obtained and investigates some directions for future works.

Chapter 2
Interlocking Principles

“The introduction of so powerful an agent as steam to a car-
riage on wheels will make a great change in the situation of man.”

–Thomas Jefferson

2.1 Context

In the railway domain, an interlocking is an arrangement of systems that
prevents conflicting train movements in a station by controlling its active
track components. It is more specially a signalling subsystem that acts as
an interface between the traffic and the components. It is done in two steps.
First, the interlocking collects information about the occupation of the track
layout and about its movable components. When achieved, it then evaluates
the information and can permit or refuse train movements by setting signals
on a proceed state or letting it by default on a stop state. Interlocking
functions can be split into three hierarchical levels [TAV09]:

1. The operational level acts as the interface between the signalman
performing the request and the machine.

2. The interlocking level includes the functions required to decide if the
request performed by the signalman can be accepted, and to react
consequently.

3. The element control level mainly operates on the hardware by defining
the functions required to transmit information between the components.

Historically, each function was performed by a human. However, with the
unceasing growth of railway networks, this solution quickly became ineffective.
Over the years, the progression of interlocking technology kept increasing.
This evolution is depicted in Figure 2.1.

9

10 CHAPTER 2. INTERLOCKING PRINCIPLES

Steam locomotive
railway

1804

Mechanical
interlocking

Electric/Relay
interlocking

1860 1929 1980

Electronic/Computer-based
interlocking

Figure 2.1. Evolution of the railway interlocking technology [McN02, TAV09].

In a mechanical interlocking, the railway operator controls the system
through mechanical levers which are interconnected by wires. Contrariwise,
electric interlockings are manipulated through electric buttons. The physical
components are also controlled electrically using a relay technology. Elec-
tronic interlocking, also called computer-based interlocking, is the most recent
technology and is currently the most used in the world. All the functions
are performed electronically with a computer hardware and software. The
software is generally composed of a generic and a specific module. A large
range of electronic interlockings exist: SSI [Cri87], SMILE [AWNO85], ACC
[AIM+96], Ebilock [TAV09], etc. Each of them is dedicated to a specific case
which usually depends on national requirements, each country having its own
procedure and rules. However, SSI and SMILE are generally considered as
the two standardised forms of electronic interlockings.

This thesis deals with the specific module of computer based interlockings.
Whereas the generic module has to be developed only once, the specific mod-
ule depends on the railway network considered and must then be designed
for each interlocking. The safety, implying that no accident will occur, is the
most important aspect to consider. European Railway Agency has edited
strict safety norms in an effort to harmonise the signalling principles and
rules at the European level [GR14, CEN01, CEN03]. Although the generic
software is developed in accordance with these norms, the correctness of an
interlocking also relies on the correctness of the specific module. Furthermore
the availability aspect must also be considered.

Currently, the specific module is prepared manually and is thus subject
to human errors. For example, some prerequisites to the clearance of the

2.1. CONTEXT 11

signal can be missing. This kind of error can easily be discovered by a code
review or a static analysis [Liv06]. However, errors caused by concurrent
actions, like route commands, are much harder to spot. In this case, the
number of possible concurrent actions explodes quickly and testing manually
all the combinations is impracticable. As an exhaustive testing is impossible,
the manual validation of the application data relies on a relaxed verification
process:

1. Firstly, the functional tests ensure that the system responds properly
to the commands issued by the controller. Those tests are performed
by the expert who wrote the specific module.

2. Secondly, the safety tests check that each command is tested and that all
the conditions that are supposed to impact the commands are evaluated
in all their possible values. Those tests are prepared and carried out
by an independent checker.

3. Finally, the specific software is approved by the engineer in charge of
the project through a reviewing step.

During this process, all the anomalies are traced in a bug management
tool and must be fixed before the interlocking is commissioned. This valida-
tion is mainly done manually through a physical simulator that reproduces
the behavior of a real environment and applies it on interlocking machines.
In addition to the high cost of this process, it is also error prone because
there is no guarantee that all the situations that could end up in a safety or
an availability issue have been tested by the simulator.

The specific module defines the actions that can be done by an interlock-
ing system and under which conditions. Such information can be defined
in different ways according to the type of interlocking considered. Most
interlockings are route based. Informally, a route is the path that a train
is supposed to follow inside a station. In general situations, when a train
is entering a station, a railway operator assigns a route to the train by
performing a request. The interlocking then processes the request, decides if
it can be accepted and finally performs the required actions in order to fulfil
the request. Otherwise, the request is aborted.

12 CHAPTER 2. INTERLOCKING PRINCIPLES

2.2 Railway Components

An interlocking system acts as an interface between the traffic controller
and the components of the railway network. The main components are
represented in Figure 2.2 which illustrates the track layout of Braine l’Alleud,
a medium-sized station of the Belgian network (see Appendix B.2 for more
details). Components can be either physical or logical.

011
Joint
Track/Platform number

Signal

091

092

011

012

DXC

EC IC

CC

CGC

CXC

JC KXC

KCJXCDC

FC

101

102

103

104

P_07AC P_08BC

P_07BC P_08AC
P_09C

P_10C
T_10C

U_IR(10C)

U_IR(08BC)

Immobilisation Zone

20C

19C

U_BSIA U_BSIB
Bidirectional Locking

Platform

T_09C

T_08BC
T_101

T_102

T_103

T_104
U_IR(09C)

Figure 2.2. Layout of Braine l’Alleud Station.

Physical components have a real representation in the layout. They are
as follows:

• The tracks (e.g. 091) are the railway structure where trains can move.
A track can be a platform (e.g. 104) if trains can stop on it in order to
pick up passengers.
• The track segments (e.g. T_08BC) are the portions of tracks where
trains can be detected. They are delimited each other by the joints
(e.g. 19C).
• The points (e.g. P_07BC), also called railway switches, are the movable

devices that allow trains to move from one track to another. According
to Belgian convention, they can be in a normal position (left) or in a
reverse position (right).
• The signals (e.g. CXC) are the devices used to control the train traffic.
They are set on a proceed aspect (e.g. green) if trains can safely move
into the station or in a stop aspect (red) otherwise. They are also used

2.2. RAILWAY COMPONENTS 13

for displaying other information to the train driver like the authorisation
to proceed but with a limited speed.

These components are controlled and monitored by a single interlocking.
For instance, it can detect that a train is waiting on Track 011 in front of
Signal KXC and then puts it on a proceed aspect if this action is safe.

On the other hand, a route based interlocking also uses logical components.
Unlike physical components, they are intrinsic variables of the software and
do not have a real representation in the layout. The main component is the
route. It is the path that a train is supposed to follow inside a station. It
is generally named according to their origin and their destination. Signals
are often used as references for the origins whereas tracks or platforms are
commonly used for destinations. For instance, Route R_CXC_101 starts from
Signal CXC and ends on Platform 101. Besides, other logical components are
used:

• The subroutes are the contiguous segments that the trains must follow
inside a route. For instance, R_KC_102 is split into subroutes from KC
to 19C, from 19C to 20C and from 20C to CGC.
• The immobilisation zones (e.g. U_IR(09C)) are the variables material-

ising the immobilisation of a set of components, typically points. When
they are locked, the attached point cannot be commanded. For instance,
U_IR(09C) prevents Points P_08AC and P_09C to be commanded.
• The bidirectional locking is the mechanism used to prevent head to

head collisions on platforms. Each bidirectional locking consists of two
variables: U_BSIA and U_BSIB.
• The fictive signals (none in Braine l’Alleud but S_f_5D_B in Courtrai,
Appendix B.3) are particular signals that have no physical structure.
They are used by the interlocking in order to split a full path in a
sequence of routes. For instance, a possible full path from Signal MD to
Track 205 in Courtrai is the sequence of Routes R_MD_5D and R_5D_205
which are split by Fictive Signal S_f_5D_B. Concept of full path is
described in more detail in Chapter 3.

Both physical and logical components are then used by the interlocking
in order to control the traffic. More details about how it is used in practice
is provided thereafter.

14 CHAPTER 2. INTERLOCKING PRINCIPLES

2.3 Solid State Interlocking

The work presented in this thesis is based on Solid State Interlocking (SSI)
technology. SSI refers together to the first computer-based interlocking sys-
tems, to the software used to develop these systems and to their programming
language. Its development started in the 1970s by British railways in collab-
oration with GEC (now Alstom) and Westinghouse. It quickly became one
of the most widely used interlocking systems, especially in Western Europe
and countries of the British Commonwealth [TAV09]. It is used in Belgium
since 1992. The software is structured into two modules:

1. The generic software which serves as an interpreter for the application
data and carries out system functions like communication. It does not
change from one station to another and can then be verified only once.
Its development and validation follow the highest safety rules applicable
to the domain (Standards EN 50128 [CEN01] and EN 50129 [CEN03]
of CENELEC).

2. The specific application data which express all interlocking functions.
They are written in a data language designed to be used by signalling
engineers and operators. Unlike the generic software, application data
are specific to a station and must then be verified individually for each
station considered.

The ability of an SSI-based interlocking to avoid critical situations, like
train collisions, relies on the safety level achieved by the combination of both
modules. To do so, application data use several variables, instantiating both
physical and logical components. They are depicted in Table 2.1.

Each component has then a unique identifier and one value defining the
status of the component. For instance, P_01BC cdn indicates that Point
P_01BC is directed to the normal position. Furthermore, the whole set of
application data is divided into several configuration files. They are as follows:

• The panel route request file (PRR) defines the conditions that must
be satisfied for a route request acceptance. The actions that the
interlocking must perform when the request is accepted are also defined
inside.

2.3. SOLID STATE INTERLOCKING 15

Component Value Meaning
Immobilisation zone

Subroute
Bidirectional locking

f Free
l Locked

Route s Set
xs Unset

Track segment c Clear
o Occupied

Point (condition for moving) cfn Condition for normal position
cfr Condition for reverse position

Point (position) cdn Directed to normal position
cdr Directed to reverse position

Point (action) cn Command to normal position
cr Command to reverse position

Signal stop Red aspect
proceed E.g. green aspect

Table 2.1. Application data components in SSI format.

• The points free to move file (PFM) includes all the conditions that
must be ensured before moving a point to its normal and its reverse
position.
• The flag operation file (FOP) defines the necessary conditions for freeing
a component.
• The output file (OPT) contains the outputs of the interlocking, as the
description of the life cycle of a route from their command to their
releasing. It is used to know when the start signal of a route can be set
at a proceed state.

The contents of such files, as well as the definition of variables, are
formalised by grammars, which are available in Appendix C. Examples are
provided in the next section. The grammars are based on ENBF Standard
[Sco98] and are context-free [Gin66] according to Chomsky hierarchy [Cho56].
They can be efficiency parsed with different algorithms such as Early [Ear70],
CYK [LL09], Packrat [For02] or recursive descent [Rei]. The choice of the
algorithm is dependent of specific properties that the grammar must satisfy.
Let us finally mention that the grammars proposed cover only a subset of the

16 CHAPTER 2. INTERLOCKING PRINCIPLES

application data, which is relevant for the interlocking correctness. The other
information serve different purposes such as the interlocking communication
and are not related to safety or availability.

2.4 Interlocking Behaviour

As previously said, a route based interlocking controls active components
of the station in order to ensure a safe and available traffic. For SSI based
interlocking, all the possible actions and their underlying conditions are
described in the application data. To illustrate this behaviour, let us consider
a scenario where a train is coming from Track 012 and has to go to Platform
103 in Braine l’Alleud (Figure 2.2). The process follows different steps.

Firstly, when the train is waiting at Signal S_KC, the interlocking verifies
whether the request for Route R_KC_103 can be granted. Listing 2.1 presents
the application data related to this request.

1 *Q_R(KC_103)
2 if R_KC_103 xs ,
3 P_08BC cfr , P_08AC cfr , P_09C cfr , P_10C cfn ,
4 U_IR (08 BC) f, U_IR (09C) f, U_IR (10C) f
5 then R_KC_103 s,
6 P_08BC cr , P_08AC cr , P_09C cr , P_10C cn ,
7 U_IR (08 BC) l, U_IR (09C) l, U_IR (10C) l,
8 U_KC_19C l, U_19C_20C l, U_20C_CGC l

Listing 2.1. Request for commanding Route R_KC_103.

The request is accepted only if Route R_KC_103 is not already set (line
2 - each route request has a similar condition), if relevant points are free to
be commanded to the reverse (cfr) or normal (cfn) position (line 3) and if
some immobilisation zones are not locked (line 4). If all the conditions are
satisfied, R_KC_103 is set (line 5), the points are controlled to the reverse (cr)
or normal (cn) position (line 6) and some components as the immobilisation
zones (line 7) and subroutes (line 8) are locked. At this step, Route R_KC_103
is set, or commanded, but not yet proved. A route is proved only when its
start signal turns on a proceed aspect. However, the start signal is still on a
stop aspect and the train can thereby not enter in the station yet. Before
moving a point, the interlocking must verify that this action can safely be

2.4. INTERLOCKING BEHAVIOUR 17

executed. Listing 2.2 illustrates such conditions for Point P_08AC.

1 * P_08ACN U_IR (09C) f
2 * P_08ACR U_IR (09C) f

Listing 2.2. Conditions allowing Point P_08AC to move.

Directly after the acceptance of the request in Listing 2.1, the interlock-
ing tries to lock a bidirectional locking in order to prevent routes going to
Platform 103 from the left to be proved. It is shown in Listing 2.3.

1 if U_BSIA (103) f then U_BSIB (103) l

Listing 2.3. Request for setting the bidirectional locking of Platform 103.

Once R_KC_103 has been commanded, the interlocking will check if it can
safely prove the route and so gives the train an authority to move.

1 * R_KC_103
2 if P_08BC cdr , P_08AC cdr , P_09C cdr , P_10C cdn ,
3 U_IR (08 BC) l, U_IR (09C) l, U_IR (10C) l,
4 T_08BC c, T_09C c, T_10C c, T_103 c,
5 U_BSIA (103) f
6 then U_BSIB (103) l, S_KC proceed

Listing 2.4. Request for proving Route R_KC_103.

Listing 2.4 states that R_KC_103 can be proved only if the points are
commanded and detected in the requested position (cdn and cdr on line
2), if the immobilisation zones are locked (line 3), if there is no train on
relevant track segments (line 4) and if the bidirectional locking for trains
coming from right to Platform 103 is free (line 5). The route proving results
on locking the paired bidirectional locking and on setting Signal S_KC on a
proceed state (line 6). At this step, the train can finally move into the station.

When not used anymore, locked components can be released. It is done
according to the progress of the train on its route. After each train movement,
the interlocking checks if a releasing event can be triggered. Listing 2.5 states
the conditions for releasing Subroute U_20C_CGC. If all the conditions are
fulfilled, the requested components are released.

18 CHAPTER 2. INTERLOCKING PRINCIPLES

1 U_20C_CGC f if U_KXC_20C f, U_19C_20C f, T_10C c

Listing 2.5. Conditions for releasing Subroute U_20C_CGC.

This process briefly describes the life cycle of a route and how it is
managed by the interlocking. Errors in application data can lead to disastrous
situations. For instance, if the bidirectional locking is not properly checked
before proving Route R_KC_103 (line 5 missing from Listing 2.4), two routes
going to the same platform from a different side can be proved together
which will potentially cause a head-on collision. It is why the application
data correctness is a critical concern.

2.5 Station Topology

The previous sections introduced the application data, which define the
behaviour of an interlocking for a specific station, but which contain no
information related to the track layout of the station. However, the correct-
ness of an interlocking is also dependent on its consistency with the track
layout. For this reason, a reliable data source describing the track layout
is required. It can be encoded in different ways. A common approach is
to represent the topology using a computer-aided design such as AutoCad
[EO+98] and to encode different information such as the track lengths or
the geographic position of the components. It is the method currently used
in Belgium, but it has some shortcomings. Given that the information is
presented graphically as a drawing, the processing of the schema and its
integration into a verification model require manual work and can then hardly
be automated.

A second method is to use a structured language, which eases an automatic
processing. For instance, railML [NHSK04] is a markup language specialised
for the railway domain. It was conceived to give a universal support for
information which can be used for any application related to the railway field.
It is used by several companies such as Alstom, Siemens, Bombardier, Thales
or Toshiba. It is structured with four main schemas that are as follows:

1. The Infrastructure, which contains information about the railway net-
work topology and the physical components.

2.6. OPERATIONAL DECISIONS 19

2. The Timetable and Rostering, which contains information related to
the timetables and the schedules.

3. The Rolling Stock, which takes over all the information about the
vehicles used.

4. A last schema which encompasses all the remaining information not
included in the previous schemas.

Only the infrastructure schema is relevant for our purpose. However, the
current version of railML1 does not include yet enough information in order
to fully define the topology of a network. For this reason, an extension of
railML, called railML+, is proposed. Two pieces of information are added: the
position of the joints, which separates the track segments and the definition
of the routes that can be set inside the topology. Thanks to its completeness
and its extensibility, railML+ can specify the track layout of a station with
more flexibility than the graphical approaches. Furthermore, such a format
can be easily parsed using different algorithms [LDL+08]. For these reasons,
it is the format that we used.

2.6 Operational Decisions

Beyond the interlocking operations, the railway traffic must also be regulated
according to an established timetable. It is under the responsibility of the traf-
fic management system. The first step is to define the schedule. While earliest
schedules could be built manually without using computer based methods,
it is not possible anymore. Plenty of works deal with this problematic of
building the most appropriate schedule for general [HKF96, GSA04, ZZ05],
or specific purposes [HS16, SWDK15].

However, practical schedules must also deal with real time perturbations.
Disturbances, technical failures or simply consequences of a too optimistic
theoretical schedule can cause delays which can be propagated on the traffic.
The initial schedule may then become infeasible. Real-time modifications of
the initial schedule therefore may be required. In this case, traffic management
is often handled manually and the actions to perform are decided by human
operators. We refer it as the traffic rescheduling problem. The procedure
follows this scenario:

1Version 2.3, released on March 9th, 2016.

20 CHAPTER 2. INTERLOCKING PRINCIPLES

1. The traffic management system has predicted a future conflict caused
by perturbations on the traffic.

2. The operators controlling the traffic analyse the situation and evaluate
the possible actions to do in order to minimise the consequences of
the perturbations. Besides the safety and the availability, the criterion
considered for the decision is the fluidity, which has to be maximised.
It often consists in minimising the sum of delays of trains pondered by
their number of passenger, taking into account that some trains can
have a higher priority than others.

3. According to the situation, they perform some actions (stopping a train,
changing its route, etc.) or do nothing.

Railway operators must deal with several difficulties in order to tackle
the traffic rescheduling problem. Firstly, the available time for analysing the
situation and taking a decision can be very short according to the criticality
of the situation. Time to take a decision can be for instance less than one
minute. Furthermore, for large stations with a dense traffic, particularly
during the peak hours, the effects of an action are often difficult to predict.
Finally, the number of parameters that must be considered (type of trains,
number of passengers, etc.) complicates the decision.

Such reasons can lead railway operators to take decisions that will not
improve the situation, or worse, will degrade it. Most of the time, the decision
taken is to give the priority either to the first train arriving at a signal, or
to the first one that must leave the station [DPP07]. However, it might not
always be the best decision. It is why the use of a decision support tool based
on optimisation in order to assist operators in their decisions is advocated.

Chapter 3
Safety Verification

“Safety isn’t expensive, it’s priceless.”

–Anonymous quote

3.1 Motivation

The main requirement to consider when designing an interlocking is safety.
A correct interlocking must never allow critical situations such as derail-
ments or collisions. To this purpose, an interlocking must satisfy the highest
safety integrity level as stated by Standards EN 50128 [CEN01] and EN
50129 [CEN03] of CENELEC. Although the generic software is developed
in accordance with these requirements, the safety of an interlocking is also
dependent of the correctness of its application data which are specific for
each station. As previously indicated, the preparation of the application
data is still nowadays done by a process that does not guarantee the required
level of safety. Most of them are prepared manually and are thus subject to
human errors.

To tackle this problem, research has been carried out in order to improve
the current verification process. A plethora of methods are proposed in the
literature. For instance, Hartonas-Garmhausen et al. [HGCC+98] propose a
verification based on real time constraints. They use Verus [CC97] for the
modeling and express the properties as invariants in a computational tree
logic. Moler et al. [MNR+12c, MNR+12a, MNR+12b] propose to use CSP‖B
[BL05] for the verification. The overall specification combines two communi-
cating models: a description of CSP processes and a collection of B machines.
B Language [Lan12] is also used by Abo et al. [AV13] which show how
OVADO tool can be used for the verification. Besides, some authors consider

21

22 CHAPTER 3. SAFETY VERIFICATION

Petri nets technology for reasoning about the problem [VA10, AA08, SCdB15].

Most of the methods are based on model checking. It is corroborated by
the recent surveys of Fantechi et al. [FFM13] and Haxthausen et al. [HNR16]
which recap some trends for the verification of interlocking systems. However,
model checking suffers from the state space explosion problem [CKNZ12].
The number of reachable states exponentially grows as the size of the model
grows and the model checker might not return a result within a reasonable
time in practice. Although it is possible to verify interlockings on small or
medium areas, this approach has some difficulties to scale for larger stations
such as Courtrai (Appendix B.3). The main challenge for model checking is
then to deal with the state space explosion problem.

To do so, Winter et al. [WJR+06] suggest to keep the model as simple
as possible by abstracting some parameters, such as the speed of trains
or their length. Besides, improvements can also be done intrinsically on
the model checking algorithms. Different studies propose to use symbolic
model checking instead of explicit approaches [Eis99, HK02]. Smart variable
ordering can also be considered in order to speed up the verification [Win12].
In [VHP14], Haxthausen et al. detail how an ETCS level 2 compatible Dan-
ish interlocking can be modelled. The state space, the transition relations
and the safety properties are efficiently evaluated by solvers based on SMT
[BSST09] that support bit vector and integer arithmetic. Bounded model
checking [HPP13] or static checking [HØ16] are also considered. Finally,
state space reduction can be carried out using partial order reduction tech-
niques [ABH+97, KLM+98, Pel98, FG05, KWG09], as done by Cimatti et
al. [CGM+98a, CGM+98b] who use SPIN model checker [Hol97].

For the specific verification of application data expressed in SSI, Hu-
ber and King [HK02] have proposed an integrated model checker. They
demonstrate how safety properties can be verified automatically. Their tool,
gdlSMV, directly reads geographic data and builds a corresponding repre-
sentation of the data. Finally, the verification is performed using symbolic
model checking algorithms with NuSMV [CCGR00]. Compared with this
work, Busard et al. [BCL+15] propose a unified and fully automated ap-
proach aiming to verify completely the safety of an interlocking system. They
developed an automatic generator of the model from the application data as
well as custom model checking algorithms with PyNuSMV, a Python library

3.2. SAFETY REQUIREMENTS 23

based on NuSMV [BP13]. Finally, Limbrée et al. [LCPT16] have improved
this previous work with a modelling based on a compositional approach and
use modern model checking algorithms, such as IC3 or k-liveness for the
verification. The idea of a compositional approach is also considered in other
works [MFH16, XTGC09].

This related work constitutes a large part of the state of the art methods
for the automatic verification of railway interlocking systems. However,
despite the great progresses achieved, automatically verifying large stations
is still a challenge. It is within this context that the first part of our research
is based. The objective pursued is to design a scalable method for verifying
the correctness of the application data in terms of safety. This chapter is
structured into four parts:

1. The requirements that any interlocking system must satisfy to ensure
the safety are formulated.

2. The main contribution for the safety verification is presented. Con-
cretely, we propose a state space which grows polynomially in function
of the problem size and which relies on a proof of the application data
monotonicity.

3. The application of this proof is then used for the specific case of
the application data expressed in SSI. It gave birth to a polynomial
algorithm for the safety verification.

4. Experimental results showing the adequacy and the scalability of the
approach are presented.

3.2 Safety Requirements

The main goal of an interlocking is to ensure the safety of the train traffic.
To do so, it must prevent the traffic of any accident that can occur in the
controlled area. The first step is then to define what are the possible accidents
and how they can be detected. Generally speaking, an accident or a safety
issue, corresponds to any situation violating the safety and that leads to
human or material damages. Different authors [Win02, Anu09, TRN+02]
identified two types of safety issues: collisions and derailments. There exist
three kinds of collisions (rear, head-on and slanting collision), but all of them
are characterised by the same effect: two trains are in the same place at the

24 CHAPTER 3. SAFETY VERIFICATION

same time. Furthermore, derailments can occur in two situations. On the one
hand, it occurs when a point is not set on a position allowing trains to stay
on the railway structure. On the other hand, a point moving when a train
is on it also causes a derailment. Figure 3.1 illustrates the five situations
leading to an accident.

(a) Rear collision. (b) Head-on collision. (c) Slanting collision.

(d) Derailment (case 1). (e) Derailment (case 2).

Figure 3.1. Situations leading to an accident due to an interlocking malfunction.

According to Busard et al. [BCL+15], there are three requirements that
must hold in order to avoid safety issues.

Requirement 1 (No collision). A same track segment cannot have two
trains or more on it at the same time. Otherwise, a collision will occur.

Requirement 2 (Consistent locking). A point cannot move if there is a
train on it. Otherwise, the train will derail.

Requirement 3 (Continuous path). A point must always be set on a position
allowing trains to continue their path in order to avoid derailments. For
instance, Point P_07BC in Figure 2.2 must be set to the reverse position
(right) for trains coming from Signal JC. If such a property is not satisfied,
the train will derail.

Such requirements can be expressed by means of invariants. They have
to be satisfied in all the reachable states of the system. Beyond the safety, an
implicit requirement is that a train must always reach its planned destination.

Requirement 4 (Consistent path). A train must always reach its planned
destination.

3.3. SEARCH SPACE PRUNING 25

3.3 Search Space Pruning

An important part of the related work does not take advantage of the in-
trinsic specificities of the considered system for its verification. Indeed, the
improvements they propose remain generic and although they can be applied
for any model checking application, they do not use knowledge of the railway
field in order to ease the verification. Our approach tackles the problem with
a different perspective. Instead of limiting our knowledge of the system only
for its modelling, we use it for the verification itself.

Specificities of the system can be used to identify what are the scenarios
that can lead to safety issues and to distinguish them from others that are ei-
ther redundant or that never happen in practice. The state space covering all
the possible situations is then pruned and the verification is faster. An auto-
matic and exhaustive verification is still performed, but compared to previous
methods based on model checking, it is restricted to a limited state space that
increases polynomially in function of the number of routes and track segments.

Classical model checking approaches, such as [BCL+15, LCPT16, HK02],
often consider a state space defined in terms of routes. All the combinations of
routes with their own whole life cycle are tested which leads to an exponential
growth of the state space in function of the number of routes. The idea
behind our method is to verify that no safety issue occurs in any situation by
considering only pairs of routes. The correctness of this idea is then based
on the assumption that testing only pairs of routes is sufficient for detecting
all the safety issues. We argue that this statement is correct provided that
the application data are route-monotonic. Let us first define the notion of
constrained components set of a station state.

Definition 3.1 (Constrained components set). The constrained components
set of a station state (S1) is the set of components (C1) that are currently
locked in S1. A station state S2 is more constrained than S1 if and only if
we have C1 ⊆ C2.

In other words, all the components that are locked in S1 are, at least, also
locked in S2. For instance, let us consider the states in Braine l’Alleud (2.2) be-
fore (S1) and after (S2) that the command request depicted in Listing 2.1 has
been successfully performed. The request triggers the locking of some com-
ponents (U_IR(08BC), U_IR(09C), U_IR(10C), U_KC_19C, U_19C_20C and

26 CHAPTER 3. SAFETY VERIFICATION

U_20C_CGC) and no releasing. Then, S2 is more constrained than S1. We can
now state the concept of route-monotonicity.

Definition 3.2 (Route-monotonicity). Application data are route-monotonic
provided that if a route cannot be commanded given a particular station state,
it will not be able to be commanded for a more constrained station state. The
same rule must also apply for releasing instructions.

In other words, if a route r1 cannot be commanded when a route r2 is com-
manded, it cannot be commanded if r2 and a third route r3 are commanded
together. Application data are not route-monotonic if conditions for route
commands (Listing 2.1) require components to be locked instead of being free.
It is because the station becomes more constrained each time a component is
locked for a route. The same rule also applies for the components releasing
such as in Listing 2.5. The property of route-monotonicity can be easily
checked through a static analysis of the application data. To do so, one
can simply read sequentially the application data and check separately each
condition. It is depicted in Algorithm 3.1.

Algorithm 3.1: Static verification of route-monotonicity property in application data.
1 INPUT: prr, the PRR file of the application data that we want to verify.
2 fop, the FOP file.
3 OUTPUT: True if the application data are route monotonic.
4 False otherwise.
5

// PRR file analysis (grammar in Appendix C.2)
6 for r ∈ prr.〈route_request〉 do
7 for c ∈ r.〈condition〉 do
8 if c.〈value〉 = l then
9 return False

// FOP file analysis (grammar in Appendix C.4)
10 for r ∈

{
fop.〈subroute_release〉, fop.〈UIR_release〉, fop.〈UBSI_release〉

}
do

11 for c ∈ r.〈condition〉 do
12 if c.〈value〉 = l then
13 return False

14 return True

Semantic of 〈〉-components is described in Appendix C. For all the possible
route command requests (line 6), if at least one condition for commanding

3.3. SEARCH SPACE PRUNING 27

a route (line 7) requires component to be locked instead of being free (line
8), then the application data are not route-monotonic. It is also checked for
components releasing (lines 10-13). This algorithm has a time complexity
linear in function of the size of the application data (O(|A|) with |A| the
size of the application data). The concept of route-monotonicity can then be
used to state Property 3.3.

Property 3.3 (Route-sufficiency). Considering only pairs of routes is suf-
ficient to verify the safety of an interlocking based on the application data
format described previously provided that they are route-monotonic.

Proof. We have to prove that all the requirements can be verified by using
at most two routes. An issue (point misdirected - violation of Requirement
3) can occur if the first route is not properly set initially. This case only
requires routes taken separately and is then trivially proved. Furthermore,
an issue can also occur if the actions related of a second route interact with
components already used by the first route. We need to prove that considering
two routes is sufficient to detect all possible issues. Let us consider C, the set
of all the components, either physical or logical, of the station and Ci ⊆ C,
the set of components used or locked by a route ri. Let us take two arbitrary
routes, r1 and r2. There are two possible situations:

• C1 ∩ C2 = ∅: the two routes have no component in common and are
then completely disjoint. No issue can happen between them.
• C1∩C2 6= ∅: the routes share at least one component. If the interlocking
allows both routes to be set together at the same time, an issue can
happen.

Other issues (violation of Requirements 1 and 2) can be represented as
an intersection between such sets because they are both generated by a same
component used by both routes. An intersection is formed by at least two
routes. Two routes are then sufficient to detect any issue provided that
the command of a third route will not relax C1 or C2 by releasing some
components thereafter. According to Definition 3.2, application data must be
route-monotonic to avoid that. In this case, testing only the pairs of routes
is sufficient to cover all the conflictual scenarios regarding Requirements 1, 2
and 3.

This kind of assumption is also considered in [MNR+12c] where the ver-
ification is limited to two trains. However, in practice, all the application

28 CHAPTER 3. SAFETY VERIFICATION

data are not route-monotonic. It happens when the full path (defined below)
of a train is not only determined by a single route but by a sequence of
several routes instead. It is for instance the case for Courtrai where a possible
path from Signal MD to Platform 205 is determined by Routes R_MD_5D and
R_5D_205. The related route command for R_5D_205 is depicted in Listing
3.6.

1 *Q_R (5 D_205)
2 if R_5D_205 xs
3 P_15AD cfr , P_15BD cfr , P_16D cfr ,
4 P_14BD cfn , P_14AD cfn ,
5 U_IR (15 BD) f, U_IR (14 BD) f,
6 U_5D_A l
7 then (...)

Listing 3.6. Request for commanding route R_5D_205 in Courtrai.

In this request, a necessary condition for commanding R_5D_205 is the
locking of Subroute U_5D_A (line 6). The purpose of this condition is to
allow R_5D_205 to be commanded only if another route, which uses U_5D_A,
has been commanded beforehand. This mechanism is currently used when
routes do not allow trains to entirely cross the whole station. According to
Definition 3.2, Courtrai is not route-monotonic because the command of any
route locking U_5D_A is a preliminary condition for commanding R_5D_205.
The notion of route-monotonicity has then to be extended. To do so, let
us introduce the concept of full path. A full path in a station is a sequence
of several routes that are commanded successively. It is constituted of a
sequence of n routes [r1, . . . , rn] with n ∈ N 6=0 having the following property:
a route ri with i ∈ [2, n] can be commanded only if r1−1 is also commanded.
Route ri requires then a more constrained state for its command which is
inconsistent with the route-monotonicity property. Let us extend this concept
with Definition 3.4.
Definition 3.4 (monotonicity-complete). Application data are monotonic-
complete provided that if the sequence of routes composing a full path cannot
be commanded given a particular station state, it will not be able to be
commanded for a more constrained station state. The same rule must also
apply for releasing instructions.

As for the route-monotonicity case, monotonicity-complete property can
be checked through a static analysis of the application data (Algorithm 3.2).

3.3. SEARCH SPACE PRUNING 29

Algorithm 3.2: Static verification of complete-monotonicity property.
1 INPUT: prr, the PRR file of the application data that we want to verify.
2 fop, the FOP file.
3 OUTPUT: True if the application data are monotonic-complete.
4 False otherwise.
5

// PRR file analysis (grammar in Appendix C.2)
6 for fp ∈ FULL_PATH do
7 lockSet← ∅ // record the components locked during the command
8 for r ∈ fp do
9 req ← getRelatedRequest(r)

10 for c ∈ req.〈condition〉 do
11 if c.〈value〉 = l and c.〈variable〉 not in lockSet then
12 return False

13 lockSet← ∅ // refresh the set
14 for a ∈ req.〈assignment〉 do
15 if a.〈value〉 = l then
16 lockSet← lockSet ∪ a.〈variable〉

// FOP file analysis (grammar in Appendix C.4)
17 for r ∈

{
fop.〈subroute_release〉, fop.〈UIR_release〉, fop.〈UBSI_release〉

}
do

18 for c ∈ r.〈condition〉 do
19 if c.〈value〉 = l then
20 return False

21 return True

Let us define FULL_PATH as the set of all possible full paths and
getRelatedRequest(r) a function returning the request associated to a route r.
For instance, getRelatedRequest(KC_103) returns the route request described
in Listing 2.1. For each full path (line 6), the related routes are processed
sequentially (line 8). The application data are not monotonic-complete if the
command of a route requires components to be locked instead of being free,
unless if this component has been locked by the command of the previous
route composing the full path (line 11). To do so, the components locked
during the previous request are recorded in a set (lines 14-16) which is
refreshed after each request (line 13). For the components releasing part
(lines 17-20), it works as in Algorithm 3.1. This algorithm has a time
complexity of O(|A| × r × fp) with |A| the size of the application data, r
the maximal number of route composing a full path and fp the number of

30 CHAPTER 3. SAFETY VERIFICATION

full paths. In practice, r is negligible compared to fp (each full path in
Courtrai is composed of at most 2 routes). With the same reasoning than
for route-sufficiency property, we can infer Property 3.5.

Property 3.5 (complete-sufficiency). Considering only pairs of full paths is
sufficient to verify the safety of an interlocking based on the application data
format described previously provided that they are monotonic-complete.

Proof. We have to prove that all the requirements can be verified by using
at most two full paths. The proof is similar than for the route-sufficiency
proof. The only difference is the definition of the sets. Instead of considering
the set of all the components used by a single route, we consider the set of
components of all the routes composing the full path.

Among the case studies considered, all of them are monotonic-complete
but only Namêche and Braine l’Alleud are route-monotonic. So far, we
have not found consistent application data where the monotonicity-complete
property is not satisfied. We then propose the following conjecture:

Conjecture 3.6. Application data, that are expressed in SSI and that are
used in practice, are monotonic-complete.

The main implication of this conjecture is that the concepts of route-
sufficiency and complete-sufficiency can be used in order to prune drastically
the search space of a verification based on model checking for any application
data expressed in SSI. Finally, a last property of the application data is used
(Property 3.7).

Property 3.7. A route cannot be commanded if it is already commanded.

This property is a consequence that routes are linked to at most one train
at a time. In other words, once a route is commanded, it must be completed
before the route can be commanded again. It is expressed in the application
data as a condition in route commands such as in Listing 2.1 where R_KC_103
cannot be already set. Such a condition is a preliminary condition for the
correctness of the application data and must always hold. As we will see,
this property can be used in order to infer a partial order reduction for the
verification.

Even if the above concepts and assumptions done for the state space
reduction have been defined from application data expressed in SSI, they can
be adapted for other route-based interlocking formats.

3.4. VERIFICATION ALGORITHM 31

3.4 Verification Algorithm

The aforementioned concepts can be used in order do design a polynomial
algorithm for the verification of safety. Basically, this algorithm is related
to model checking using an implicit partial order reduction based on our
knowledge of the system. The goal is to exploit the equivalence of some states
in order to reduce the search space. An automatic and exhaustive verification
is still performed, but now the verification is restricted to a limited state
space that increases quadratically in function of the number of routes, or full
paths, and track segments. Furthermore, only the scenarios that can happen
in practice are generated.

Let S be a station. We define ROUTES as the set of all routes,
TRACK_SEGMENTS as the set of all track segments, POINTS as
the set of all points and COMPONENTS as the set of all components in
S. The algorithm returns True if S satisfies all the requirements and False
otherwise. For all routes r, we define r.origin as the origin of r, r.destination
as its destination, r.isCommanded and r.isProved as boolean values defining
if r is commanded and proved respectively. We also define t.position as the
current position of a train t, p.state as the state (normal or reverse) of a
point p and c.isLocked as a boolean value defining whether a component c is
locked.

Algorithm 3.3 presents how the verification can be performed by consider-
ing all the pairs of routes for route-monotonic application data. The command
and prove instructions (lines 5 and 7) correspond to the requests defined
in the application data, such as in Listings 2.1 and 2.4. The bidirectional
locking request (Listing 2.3) is also done through the command instruction.
These instructions return True if the request is fulfilled and False otherwise.
Furthermore, if they are accepted, all the attached actions modifying the
station state are executed. The move instruction (lines 20 and 23) moves a
train to the next track segment as defined by the state of the points. If a
point is misplaced, the train will either derail or pursue its movements until
it leaves the station. We will then consider that the position of the train is
not included in the the set of all track segments anymore.

First, each pair of routes is considered (lines 1-2). The goal is to move a
train t1 from the origin of a route to its destination (lines 10-28). For each

32 CHAPTER 3. SAFETY VERIFICATION

Algorithm 3.3: No conflictual pair of routes for route-monotonic cases.
1 for r1 ∈ ROUTES do
2 for r2 ∈ ROUTES such that r2 6= r1 do
3 place a train t1 at r1.origin
4 place a train t2 at r2.origin
5 r1.isCommanded ← command(r1)
6 r2.isCommanded ← command(r2)
7 r1.isProved ← prove(r1)
8 if not r1.isProved then
9 return False

10 while t1.position 6= r1.destination do
11 if not r2.isCommanded then
12 r2.isCommanded ← command(r2)
13 if r2.isCommanded and not r2.isProved then
14 for p ∈ POINTS such that t1.position = p do
15 if p.state 6= previous(p.state) then
16 return False // derailment detected (Requirement 2)

17 r2.isProved ← prove(r2)
18 if r2.isCommanded and r2.isProved then
19 while t2.position 6= r2.destination do
20 move(t2)
21 if t1.position = t2.position then
22 return False // collision detected (Requirement 1)

23 move(t1)
24 if t1.position /∈ TRACK_SEGMENTS then
25 return False // path inconsistency detected (Requirements 3 or 4)
26 remove t2 from S
27 for c ∈ COMPONENTS such that c.isLocked do
28 release(c)

29 reinitialise(S) // components are unlocked and trains removed

30 return True

position of t1, we try to command and to prove another route (lines 12 and
17). We also try to command r2 directly after r1 has been commanded (line
6). If r2 is successfully commanded and proved (line 18), we move a train t2
until it reaches the destination of the route (lines 19-22). When a particular
position of t1 has been tested, t1 goes to its next track segment (line 23) and
the interlocking will try to release all the locked components (lines 27-28).

3.4. VERIFICATION ALGORITHM 33

Releasing conditions are described in the application data such as in Listing
2.5. Through the iterations on the positions of t1, we memorise the fact that
the other route, r2, has been commanded or proved (lines 12 and 17). Indeed,
because of the succession of release actions, the command and the proving
can occur at different moments during the route life cycle. When a pair of
routes has been entirely tested, the station is reinitialised (line 29) in order
to have an empty station before testing the next pair. It is done through
reinitialise instruction which releases all the locked components and removes
all the trains of the station.

Let us notice that once r2 has been successfully commanded and proved,
t2 moves until it reaches the destination of the route. Two cases must be
considered. On the first hand, t1 is still on the remaining path of t2 and a
collision will happen (line 22). Such a case is then generated and detected
by the algorithm. On the other hand, t1 is not on the remaining path of t2
anymore and t2 can continue to move till then end of its route without risk
of collision. Besides, according to Property 3.7, no new command of r1 can
be granted because t1 is still on its route. In this case, no issue can happen
and it is then not required to test situations where t1 is not on the remaining
path of t2. Except this reduction, all the other possibilities involving pairs of
routes are generated.

Requirement 1 is tested after each movement of t2 by testing that its
position can never be the same as t1 (lines 21-22). Requirement 2 is tested
each time r2 has been commanded. If the current position of t1 is a point,
the point cannot move after the command of r2 (lines 14-16). It is done
by comparing its state with its previous one through the operator previous.
Requirements 3 and 4 are tested on lines 24 and 25. If r1 cannot be proved
(lines 8-9), we consider that we have an availability issue because no other
route is already proved. The concept of availability is not yet presented as a
requirement and is detailed in the next chapter.

Concerning the time complexity, each pair of routes must be tested,
as well as the complete path of a route. We have thereby the theoretical
bound O(r2t) with r the number of routes and t the number of track segments.

However, Algorithm 3.3 is designed for application data that are route-
monotonic and has to be slightly modified for the general case of monotonic-

34 CHAPTER 3. SAFETY VERIFICATION

complete application data. The only difference is that paths must be con-
sidered instead of routes. For each fp ∈ FULL_PATH, we also define
fp.origin as the origin of the first route composing fp, fp.destination as
the destination of the last route of fp, fp.isCommanded and fp.isProved
as boolean values indicating if all the routes inside fp are commanded and
proved. Finally, we define fullCommand and fullProving instructions with
Algorithms 3.4 and 3.5.

Algorithm 3.4: Definition of fullCommand.
1 INPUT: fp ∈ FULL_PATH.
2 OUTPUT: True if all the routes composing fp can be commanded.
3 False otherwise.
4

5 Function fullCommand(fp):
6 for r ∈ fp do
7 r.isCommanded ← command(r)
8 if not r.isCommanded then
9 return False

10 return True

Algorithm 3.5: Definition of fullProving.
1 INPUT: fp ∈ FULL_PATH.
2 OUTPUT: True if all the routes composing fp can be proved.
3 False otherwise.
4

5 Function fullProving(fp):
6 for r ∈ fp do
7 r.isProved ← prove(r)
8 if not r.isProved then
9 return False

10 return True

A full path is commanded only if all of its composing routes are com-
manded and similarly for the proving. Let us also mention that the command
and the proving actions are done sequentially from the first route of fp to
its last one. It reflects the practical behaviour of the interlocking. If a com-
mand or a proving has been refused, all the previous routes and the related

3.5. EXPERIMENTAL RESULTS 35

components are released. The verification of monotonic-complete application
data can then directly be inferred from Algorithm 3.3 by considering full
paths instead of routes, fullCommand instead of command and fullProving
instead of proving. The time complexity can now be expressed in terms of
the numbers of possible full paths, which give the theoretical bound O(fp2t)
with fp the number of full paths and t the number of track segments. In
practice, fp does not exceed two times the number of routes.

3.5 Experimental Results

Several kinds of errors have been introduced in the application data in order
to test the adequacy of the algorithm:

• A point is moved to a wrong position when a route is commanded
(Appendix D.1).
• A subroute is not properly locked when a route is commanded (Appendix
D.2).
• Some conditions are missing for releasing a component (Appendix D.3).
• Some conditions are missing for commanding a route (Appendix D.4).
• A bidirectional locking is not properly set when a route is commanded
(Appendix D.6).

The other errors depicted in Appendix D are not related to safety, but to
availability instead. All of the aforementioned errors have been successfully
detected for the three case studies (Appendix B) by the algorithm in less
than 30 minutes. Experiments have been realised on a MacBook Pro with a
2.6 GHz Intel Core i5 processor and with a RAM of 16 Go 1600 MHz DDR3
using a 64-Bit HotSpot(TM) JVM 1.8.

Besides, we compare our method with the approach of Busard et al.
[BCL+15] that have performed a model checking verification of Namêche
without considering only pair of routes. Results are presented in Figure 3.2
(a). Let us notice that the y-scale is logarithmic. Execution time is presented
in function of the number of routes considered. A complete verification
requires to consider all the possible routes (14 for Namêche). Limiting the
number of routes only produces a partial verification. As we can see, our

36 CHAPTER 3. SAFETY VERIFICATION

algorithm runs faster (≈ 4 orders of magnitude for the complete verification
of Namêche) than the approach where all the combinations of routes are
tested. Similarly, Figure 3.2 (b) recaps the execution time for our three
case studies. This speedup is mainly due to the restricted state space that
we have considered. We can observe that the algorithm scales well for the
three stations. Verification for Namêche, Braine l’Alleud and Courtrai takes
around 20 seconds, 3 minutes and 16 minutes respectively.

2 4 6 8 10 12 14100

101

102

103

104

105

(a) Comparison with [BCL+15].
0 20 40 60100

101

102

103

(b) The three case studies.

Figure 3.2. Execution time (in seconds) in function of the number of routes in Namêche
(•), Braine l’Alleud (�) and Courtrai (N) by using our algorithm and the model checking
approach of Busard et al. [BCL+15] for Namêche (�).

3.6 Future Work

Up to now, the verification proposed in this chapter is targeted for individual
interlockings taken separately. However, it happens in practice that large
stations are controlled by several interlocking systems. It is, for instance, the
case of Courtrai, which is divided into three areas. New aspects must be
considered, such as the communication between interlockings, which can share
some variables. In addition to the correctness of each interlocking, the safety
of the station is also dependent on the correctness of this communication.

As future work, we can extend the verification process in order to take
this communication into account and then completely verify the safety of an
entire station. We identified two possibilities to do so. On the first hand, we

3.7. SUMMARY 37

can extend the concept of full paths in order to allow them to encompass
routes which can be linked to different interlockings. The principles of the
communication have then to be integrated in the algorithm. On the other
hand, we can proceed in two steps. First, we verify each interlocking taken
separately using model checking and the reduced state space. Then, we verify
that the communication is also correct. It can be done using a compositional
approach, as proposed by Limbrée et al. [LCPT16].

3.7 Summary

Much research has been carried out in order to automatically verify the
correctness of an interlocking system. Up to now, most of it tackles the
problem with a model checking approach which suffers from the state space
explosion problem. In this chapter, another approach is proposed. The
idea is to use our knowledge of the system not only for its modelling, but
also for designing the verification algorithm. Concretely, we proposed a
proof which can be used for reducing the state space, and we implemented
a dedicated polynomial algorithm that can ensure the safety of a large sta-
tion in less than one hour. The validity of this method is corroborated by
the successful detection of errors that were introduced in the application data.

Finally, the method proposed here only deals with the verification of
safety. Availability properties, stating that the trains will always progress
in the station, are not considered. Whereas CENELEC Standard EN50128
strongly recommends the use of exhaustive methods for the verification of
safety, the verification of availability can be based on non exhaustive methods
as Statistical Model Checking. This aspect is the topic of the next chapter.

Chapter 4
Availability Verification

“A ship is safe in harbor. But that is not what ships are for.”

–John A. Shedd

4.1 Motivation

Beyond the safety, a correct interlocking must also ensure that no train will
be stopped too long in the station in order to maintain its availability. For
this reason, availability requirements must also be considered. It ensures
that every train will progress in the station without being locked because
of improper interlocking operations. Availability of the traffic is dependant
of the availability of the components. Components unnecessary locked for a
train will prevent their usage for other ones. Ensuring the availability of a
station is not trivial and requires to consider the different steps of route life
cycles, which can be interleaved. A static analysis of the application data is
then not sufficient.

The previous chapter presented a proof which can be used for easing
the verification of safety requirements. However, this approach is based
under the assumption that considering only pairs of full paths is sufficient
for verifying the correctness of monotonic-complete application data. Un-
fortunately, this assumption does not hold when availability properties are
considered. Indeed, an inconsistency can occur after a succession of inter-
leaved operations involving more than two full paths. For instance, let us
consider the fictive conditions for releasing Subroutes U_1, U_2 and U_3 as
depicted in Listing 4.7. Let us also consider that each subroute is locked by
a different full path. If the interlocking has allowed the three subroutes to be
locked together, they can not be released thereafter and an availability issue
occurs. This case would not be detected if only two full paths were considered.

39

40 CHAPTER 4. AVAILABILITY VERIFICATION

1 U_1 f if U_2 f
2 U_2 f if U_3 f
3 U_3 f if U_1 f

Listing 4.7. Fictive example for releasing subroutes.

Until now, verification of availability requirements is still subject to the
drawbacks of model checking and the state space explosion problem. Although
CENELEC advocates the use of exhaustive methods for the verification of
safety, availability requirements can be verified through a less restrictive
process. It is the aim of this chapter. The objective is twofold: designing a
method which is not limited by the state space explosion for practical uses
but which nevertheless provides enough guarantees on the correctness of the
system. The solution proposed is based on random simulations enriched with
Statistical Model Checking. This approach is divided into different steps:

1. A model reflecting the behaviour of an interlocking is built from the
combination of the application data and the track layout of the corre-
sponding station.

2. The model is simulated several times and a set of traces is then obtained
for a posteriori analysis.

3. The requirements that an interlocking must satisfy in order to ensure
the availability of the station are formalised.

4. Statistical Model Checking algorithms are used in order to evaluate
the probability that the interlocking model satisfies the availability
requirements thanks to the outputs of the simulations.

Figure 4.1 presents a global overview of this approach. The different steps
are detailed in the sections composing this chapter. Experimental results
showing the adequacy and the scalability of the approach are then proposed.
Finally, the last section shows how the approach can be used as a general
framework for verifying properties related to the interlocking and that go
beyond the scope of availability.

4.2 Interlocking Model

The first step is to build a model reflecting the behaviour of an interlocking.
To do so, the model must rely on two data sources: the application data and

4.2. INTERLOCKING MODEL 41

Interlocking
model

Application
data

Topology

Set of traces

SSI
translator

railML+
translator

Simulator
Statistical

model checker

Availability
requirements

Verification
output

Figure 4.1. Overview of the approach for the verification of availability requirements.

the track layout. Although the application data describe fully the behaviour
of an interlocking, they contain no information about the track layout of the
considered area. However, the correctness of an interlocking is also dependent
of its consistency with the track layout. It is why a data source describing
the track layout is also required. As indicated in Section 2.5, railML+ is the
format used.

The construction of the model is based on two translators that parse and
aggregate both data sources into a single model. Parsing is carried out thanks
to grammars which encapsulates the intrinsic structure of the input data.
Grammars for application data expressed in SSI are formalised in Appendix
C. They are translated using a combinatory parsing technique [Hut92] with
the implementation of Moors et al. [MPO08]. On the other hand, the parsing
of the track layout is carried out with the implementation proposed in the
XML Scala library which is based on the standard SAX parser from Java
library [MB02].

The architecture of the resulting model is presented in Figure 4.2. It is
composed of five specific modules.

Configuration It encapsulates the interlocking behaviour as described in
its application data and defines the logical components used.

Station Topology It represents the track layout of the considered area. To
do so, graph theory [W+01] is used. This structure has already been deeply
studied for modelling complex networks [Str01] such as Internet [FFF99],
social networks [Bor12], transportation networks [TR95] or for the specific
case of railway signalling [Won91]. In our case, the station is modelled as

42 CHAPTER 4. AVAILABILITY VERIFICATION

Interlocking

Configuration

Station
topology

SSI
 translator

railML+
translator

Simulator

Signalman

Train

Figure 4.2. Architecture of the interlocking model.

an undirected graph. Physical components (signals, points and joints) are
represented by nodes and their connections by edges. Each edge belongs to a
particular track segment. The implementation is done with Jung [OFWB03].
The environment and special infrastructure (level crossing, tunnel, bridge,
etc.) is not considered.

Train Each train follows routes in order to reach its destination. The train
model is based on several assumptions:

• Trains properly follow the signalling principles. For instance, they do
not overrun signals at a red aspect.
• Their speed and their length are abstracted.
• They can occupy one and only one track segment at each time step.
• They have no technical issue such as faulty components.

Such assumptions are also proposed by different authors [BCL+15, WJR+06,
TRN+02].

Signalman In few words, the signalman is the person controlling the railway
traffic by setting the signals and the points. For route based interlockings,
signalmen have the responsibility to perform route requests to the interlocking
when trains enter into a station. This behaviour is modelled by performing
route commands (Listing 2.1) when a train is waiting at a start signal.

4.3. SIMULATION OF THE MODEL 43

Interlocking It aggregates the previous models in order to have an exe-
cutable representation of an interlocking which can be simulated thereafter.
As suggested by Winter et al. [WJR+06], the model is designed to be as
simple as possible. To do so, the modelling relies on several assumptions:

• Signals have only two aspects. They move from a stop aspect to
a proceed aspect immediately after a route has been proved. The
abstraction of other aspects (such as can proceed at a restricted speed)
is a direct implication that speed of trains and the environment is
abstracted.
• There is no distinction between a route and a shunting route.
• There is no component failure.
• Communication between interlockings are not considered.

4.3 Simulation of the Model

The next step is to simulate the model in order to obtain a representation
of the interlocking behaviour. Simulation is a technique that has already
been applied to a large number of fields such as weather forecasting [JBJ08],
logistic [FFdS+15], healthcare facilities [WUS+10, JSL13] or transportation
[RN07]. It has also been applied to the railway field. For instance, Sogin et
al. [SBS11] analyse through simulations the effects of higher speed passenger
trains in freight networks. Besides, OpenTrack provides a railway simulation
tool [NH04] in order to predict some information about future situations
of the traffic. Informally, a simulation can be defined as an imitation of a
system [Rob14]. Its main asset is that it allows the study of various systems
without building the system, thus saving precious time, cost and effort.

There exist several ways to carry out a simulation, this choice is highly
dependent on the considered system and the desired analysis. Sulistio et
al. [SYB04] have designed a taxonomy (Figure 4.3) encompassing the main
choices to do when performing a simulation:

• Presence of Randomness: a simulation can be either deterministic
or probabilistic. Deterministic simulations ensure that from a given
input, the output will always be the same. It is not the case in
probabilistic simulations where randomness is present.

44 CHAPTER 4. AVAILABILITY VERIFICATION

Simulation

Presence
of time

Static Dynamic

Time
slicing

Discrete Continuous

Presence of
randomness

Deterministic Probabilistic

Progression
of time

Trace driven Event drivenTime driven

Figure 4.3. Simulation taxonomy with the characteristics of our simulation (in grey).

• Presence of Time: a simulation can be either static or dynamic.
Static simulations imitate systems at a specific time while dynamic
simulations also consider the progression of the system through time.
• Time Slicing: a dynamic simulation can be either continuous or
discrete. On the one hand, continuous simulations consider an infinity
of values for each time interval. Differential equations are often involved.
On the other hand, discrete simulations split the time into a finite set
of values called instants.
• Progression of Time: the time management in a discrete simulation
can be done in three ways. Firstly, trace driven simulations progress
by reading a set of events collected a priori from another environment.
On the contrary, execution time of events can also be discovered during

4.3. SIMULATION OF THE MODEL 45

the simulation itself. It this the case in time driven simulations where
the progression is done by fixed time increments and with event driven
simulations which progress with irregular time increments by jumping
from events to events.

Most of computer simulations are dynamic and probabilistic. Furthermore,
simulating a system through a discrete event simulation is often more suited
for verification purposes. For such reasons, they are the characteristics we
have chosen. The architecture of the simulator is presented in Figure 4.4. It
is composed of four main modules.

Events

Simulation
model

Simulation 1

…

Simulation n

Trace 1

…

Trace n

Set of tracesPRNGInterlocking
model

Entities

Figure 4.4. Architecture of the simulator.

Entities Informally, entities are the active objects that can be modified
during a simulation. Each of them is characterised by a state composed of a
list of attributes with mutable values. Two kinds of entities are involved:

1. Interlocking Entities: they are directly inferred from interlocking
components such as the points, signals, routes, etc. All of them, as well
as their possible values, have been presented in Table 2.1.

2. Trains Entities: they are obtained from the train model. They are
characterised by two attributes: a position, which corresponds to the
current track segment occupied by the train, and a direction (up or
down). By convention, up direction goes from the left to the right (see
Figure 2.2 for instance).

Events They define the actions that can change the entity states. Such
actions can also generate new events. All of them have an execution time and
can be guarded by conditions that must be satisfied before the event execution.

46 CHAPTER 4. AVAILABILITY VERIFICATION

There are events related to the application data and events triggered by the
train movements. This second category encompasses three events:

1. Train Arrivals: trains arrive randomly in the station at a start signal.
Such an event can occur with a uniform probability in the interval
[ta, ta + βa] where ta is the time of the last train arrival (ta = 0
at initialisation) and βa is a predefined parameter. Besides, after
each occurrence of this event, a new event is triggered in the interval
[ta, ta + βa] with the updated ta.

2. Train Movements: trains move through the station from track to
track by following the direction set by the signals and the points. The
first movement of a train x is triggered when its route has been proved.
The next movements occur in the interval [tm(x), tm(x) + βm] with
tm(x) the time of the last movement done by x and βm a parameter.
Each train has thereby its own queue of events. It implicitly models
the fact that the speed of trains can be different.

3. Train Departures: when a train reaches the end of its full path, it is
removed from the station.

Besides, four other events can be inferred from the application data:

4. Full Path Generation: Route requests (as in Listing 2.1) for routes
composing a full path for trains waiting at a start signal are periodically
issued. A request is accepted only if all of its conditions are fulfilled.
The route is then commanded and all the actions described in the
request are executed. Otherwise, the request is aborted and no action
is taken. Such an event can occur in the interval [tr, tr + βr] with tr
the time of the last full path generation. Related conditions for moving
a point (Listing 2.2) and for setting a bidirectional locking (Listing 2.3)
are also considered during this event.

5. Route Proving: this event is periodically issued for routes waiting
to be proved. If all the conditions are fulfilled, the route is proved.
Otherwise, the request is discarded and no action is taken. This event
is related to route proving requests, as in Listing 2.4.

6. Route Destroying: it performs a hard release of a route. The route
is unset and each of its components is released. This event is triggered
after three discarded route destroying events for a same route.

4.3. SIMULATION OF THE MODEL 47

7. Component Releasing: it tries to release every locked component,
as in Listing 2.5. This event is periodically issued after each train
movement.

It gives a total of seven events. For the execution time of several events,
randomness is introduced through the β parameters. Their purpose is to
allow the generation of a broad set of scenarios at each simulation by defining
a time range on which the events can occur. To do so, the values have to be
high enough for generating all the combinations of interleaved scenarios. The
parameter β for a particular event also determines the occurrence frequency
of this event. A lower β value for an event e1 than for the others indicates
that e1 will have a higher probability to occur. In our simulation, each β
has the same value. It indicates that each event has the same probability to
occur. It could also be done using a Poisson distribution with a constant rate.
Figure 4.5 illustrates a possible scenario for Braine l’Alleud (Figure 2.2).

Move trainTrain arrival
at CXC

Generate path
from CXC to 101

Prove route
R_CXC_101 Move train

1 2 3 4 5 6 7 8

Release
Components

Release
Components

Release
Components

0

Figure 4.5. Possible scenario generated from the events.

The event list is implemented with a priority queue, ordered by event
time. For that, a heap data structure [Cor09] is used.

Pseudo Random Number Generator As previously indicated, random-
ness is present in the simulation. However, generating pure random values
with a computer is not feasible [Gen06]. A Pseudo Random Number Genera-
tor, or PRNG, can be used to tackle this problem. Informally, a PRNG is an
algorithm which can generate from an initial value, a sequence of number
which looks like a sequence of numbers randomly picked up. The initial value
is also called the seed. For a given seed, a PRNG always produces the same
sequence of numbers. There exists a plethora of PRNG in the literature
[MN98, BBS86, WH82, EL86], each with their own specificities. Concerning
the seed, it is often determined by unpredictable parameters having a high
level of entropy such as the exact timing of keystrokes or the movements of
the computer mouse [FSK10].

48 CHAPTER 4. AVAILABILITY VERIFICATION

The PRNG used follows a linear congruential generator pattern [Knu98]
with a 48-bit seed. It is based on the following recurrence relation:

Xn+1 = (aXn + b) mod m

where a, b andm are parameters. The next number of the sequence if then
determined from its previous number. We chose the implementation proposed
in the standard library of Java (java.util.Random) which is suitable for
generating numbers with a uniform probability. Although this PRNG is
not cryptographically secure [Kel01], this property is not required for our
simulation.

Simulation Model Obtained from the aggregation of the previous mod-
ules, this module gives a model which can be simulated. Concretely, it gathers
information about the interlocking and defines how its behaviour can be
simulated when facing up to the traffic. All the information about the current
situation is gathered into a simulation state. A simulation state with i ∈ N
is defined in Equation (4.1).

si :
〈
nb, σp, σr, σs, σuir, σubsi, σtrack, σtrain

〉
(4.1)

In this equation, si is the state at the ith step of the simulation. Let us
state point, route, subroute,uir, ubsi, track as the sets of the interlocking
components as defined in the application data and train as the set of trains
in the station. The other variables are then defined as follows:

• nb is the number of trains that have moved in the station so far. This
information is used thereafter in order to under-approximate how many
real days the simulation has covered.
• σp : point → {normal, reverse, default} is a function defining the
position of a point. The default state represents a point that is not
positioned yet.
• σr : route → {unset, commanded, proved} is a function defining the
state of a route.
• σs : subroute → {free, locked} is a function defining the state of a
subroute.

4.3. SIMULATION OF THE MODEL 49

• σuir : uir → {free, locked} is a function defining the state of an
immobilisation zone.
• σubsi : ubsi → {free, locked} is a function defining the state of a
bidirectional locking.
• σtrack : track→ {clear, occupied} is a function defining the state of
a track segment.
• σtrain : train→ (track, {up, down}) is a function defining the current
position of a train and its direction.

Besides, the model also includes an event queue. Equation (4.2) defines a
simulation model sm in terms of a simulation state s and an event queue E.

sm :
〈
s, E

〉
(4.2)

At each state, the first event of the queue is processed and then removed.
Table 4.1 presents a subset of the simulation states corresponding to the
scenario depicted in Figure 4.5 for Train IC 442. Symbol Xindicates that the
event associated to the transition has been accepted while 7 indicates that it
has been refused. For instance, no action is done during the transition from
s3 to s4 because the event related to this transition (component releasing
event) has been refused.

R_CXC_101 P_01BC P_02AC UIR_(01BC) IC 442

s0 - unset default default free -
s1 X unset default default free (up, T_092)
s2 X commanded normal reverse locked (up, T_092)
s3 X proved normal reverse locked (up, T_092)
s4 7 proved normal reverse locked (up, T_092)
s5 X proved normal reverse locked (up, T_01BC)
s6 7 proved normal reverse locked (up, T_01BC)
s7 X proved normal reverse locked (up, T_101)
s8 X proved normal reverse free (up, T_101)

Table 4.1. Simplified trace of the scenario presented in Figure 4.5. Symbol Xindicates that
the event associated to the transition of state has been accepted while 7 indicates that it
has been discarded.

50 CHAPTER 4. AVAILABILITY VERIFICATION

The simulation stops either when the event queue is empty, or when an
ending condition has been reached. We define the ending condition in func-
tion of the number of trains that have moved in the station. The simulation
is stopped when nb has reached a threshold Θ. More details about the choice
of this threshold are provided in Section 4.5. Algorithm 4.1 shows how the
simulation is executed.

Algorithm 4.1: Interlocking simulation.
1 INPUT: A simulation model sm.
2 OUTPUT: A trace (sequence of states) of the simulation of sm.
3

4 trace← sm.s0
5 i← 0
6 while sm.si.nb < Θ and not sm.E.isEmpty do
7 e← sm.E.pop
8 i← i+ 1
9 e.process // update the simulation state

10 trace← trace.append(sm.si)
11 return trace

It takes as input a simulation model and returns the resulting trace.
While the ending condition is not satisfied or while the event queue is not
empty (lines 6 to 10), an event is popped from the priority queue (line 7)
and is then processed (line 9). Finally, the new state is appended to the
trace (line 10). The whole simulation engine, as well as the different events,
has been implemented using the discrete event simulation package of OscaR
[Osc12], a Scala toolkit for solving operations research problems. This toolkit
has similar features as SimPy [MV03]. Several simulations can be performed.
Given their randomness, each of them can give a different trace.

4.4 Availability Requirements

The next step is to define the requirements that must be satisfied during
the simulation. As previously indicated, availability refers to the ability to
provide a traffic which progresses continuously. From the interlocking point
of view, the requirements can be expressed in terms of its logical components.

Requirement 5 (Route setting). Routes can always be eventually proved.

4.4. AVAILABILITY REQUIREMENTS 51

Requirement 6 (Component releasing). Components can always be eventu-
ally released. In other words, they do not remain locked forever.

Always eventually means that after any state of the system, there exists
at least another state satisfying the requirement. Unlike safety requirements
that could be expressed by means of invariants, such logic is not sufficient to
express availability requirements. It is why a linear temporal logic [HR04]
is considered. In few words, such a logic is designed to encode properties
involving a sequence of states. To do so, it introduces five temporal operators.
Let us consider arbitrary properties ϕ and ψ. The operators are then:

1. ©ϕ (next), which indicates that ϕ has to hold in the next state.
2. �ϕ (globally), which indicates that ϕ has to hold in all the next states.
3. ♦ϕ (finally), which indicates that ϕ has to hold in at least one of the

next states.
4. ϕUψ (until), which indicates that ϕ has to hold until a state satisfying
ψ has been reached.

5. ϕRψ (release), which indicates that ψ has to hold unless ϕ is reached
including where ψ is reached.

Furthermore, for practical uses, operators can be enriched with bounds
defining on how many iterations the operator must be considered. Such a
logic is often referred in the literature as a bounded linear temporal logic
[Kam12]. Requirements 5 and 6 can then be formalised:

�n♦n
(
r.isProved

)
∀r ∈ ROUTES (4.3)

�n♦n
(
¬c.isLocked

)
∀c ∈ COMPONENTS (4.4)

where n is the operator bound. This combination of bounds indicates
that an availability issue will be detected if a route is not proved after at most
n simulation steps. The same also apply for the components releasing. It
produces a simulation of 2n steps. The combination of the temporal operators
� and ♦ in the property �♦ϕ describes the fact that a state satisfying ϕ
must be visited infinitely often. It is also referred as a liveness property.

52 CHAPTER 4. AVAILABILITY VERIFICATION

4.5 Verification with Statistical Model Checking

Finally, the traces of the simulation can be analysed in order to evaluate
the correctness of the interlocking. As for the verification of safety, classical
model checking approaches do not scale for large stations because of the
state space explosion problem. This limitation is especially true for the
verification of availability properties that are expressed in a linear temporal
logic. Besides, to the best of our knowledge, there exists no similar proof
as in Section 3 which can be used for pruning the search space. Another
method is then required.

Although the highest safety integrity level is required for the verification
of safety requirements, availability can be verified through a less restrictive
process. We propose first to carry out the verification through random
simulations. The idea is to simulate the system many times and to observe
if the requirements are always satisfied. If no issue has occurred in any
simulation and provided that the simulation time was long enough, we can
then have a high expectation that the system is correct. Besides, the detection
of one issue directly implies that the system is incorrect. Compared to model
checking where all the states are considered, the random simulations only
consider situations that can potentially happen in practice. Despite its
simplicity, this method raises three fundamental questions:

1. How long should the simulations last at least ?
2. How many simulations should be executed in order to have enough

confidence on the model correctness ?
3. How can we be sure that conflicting scenarios have been generated

through the simulations ?

Each of them must be answered in order to have a verification reliable
enough for practical uses. To do so, Statistical Model Checking (SMC) is
considered [LDB10]. The aim of SMC is to approximate, in a controlled
manner, the probability of satisfaction or violation of a property. Unlike
classical model checking approaches where an exhaustive exploration of the
state space is conducted, only a sample of simulations is required. Such
algorithms have already been used for verification of several applications
[ABF+16], often stochastic [SVA05], as biological [JCL+09], biochemical
[CFL+08], electronic [CDL10] or aircraft [BBB+10] systems. To the best

4.5. VERIFICATION WITH STATISTICAL MODEL CHECKING 53

of our knowledge, it has never been used for the verification of railway
interlocking systems yet. Let us now provide an answer to our three questions.

Setting the Simulation Time The first question is related to the simu-
lation time: how can we be sure that a simulation is long enough for having
a verification that fully cover the interlocking behaviour ? For instance, some
scenarios involving a train will never be generated if the simulation always
stops when the train is in the middle of a station. It is why the choice of the
simulation time is crucial. According to the aforementioned example, the
bound must be sufficient to determine a simulation time long enough to allow
a verification covering at least a complete scenario.

A complete scenario is a scenario going from a train arrival in a station to
its departure. The scenario is not complete if the verification is aborted when
the train is still waiting or moving into the station. For instance, a verification
covering one hour will not be sufficient because trains arriving in a station
could still be in it after this time. In our case, we assigned a simulation time
allowing verifications covering a complete day. This value is chosen under
the reasonable assumption that a train would not stay into the same station
longer than one day. With such a bound, we can have the certainty that all
the situations have a non zero probability to occur during a simulation and
that all the possible scenarios can be covered through the verification. Given
the operator bounds of Requirements 4.3 and 4.4, a total simulation time of
two days is required in order to allow verifications covering one day. Variable
nb in Equation 4.1 is used in order to under approximate how many real days
the simulation has covered. Indeed, by taking the extreme case of a busy
station where there is an incoming train every minute all the day long, we
can safely assume that the simulation has covered at least one real day when
1440 trains have moved through the station. Taking this value as the bound
can then ensure that the simulation will allow verifications covering at least a
complete scenario. Table 4.2 recaps the execution time for computing a 2-day
simulation on the three case studies (Appendix B) and the corresponding
number of time steps with β = 100. As we can see, the larger is the station,
the longer is the time required to perform the simulation. These experiments
have been realised on a MacBook Pro with a 2.6 GHz Intel Core i5 processor
and with a RAM of 16 Go 1600 MHz DDR3 using a 64-Bit HotSpot(TM)
JVM 1.8.

54 CHAPTER 4. AVAILABILITY VERIFICATION

Namêche Braine l’Alleud Courtrai
Exec. time 47 seconds 6 minutes 8 minutes
time steps 200000 800000 900000

Table 4.2. Approximate execution time and the corresponding number of time steps
required for computing and verifying a 2-day simulation on the three case studies with
β = 100.

Setting the Number of Simulations The second question tackles the
problem of the confidence that we can have on the verification process. Con-
sidering only a single simulation can be risky. Indeed, given the randomness
present in the simulation, it is possible that the simulation becomes too
specific and that it does not reflect the behaviour of the entire system with
enough accuracy.

A better idea would be to execute several simulations and to observe if
the verdict is the same. Intuitively, the greater the number of simulations
performed, the better our expectation on the system correctness. Aggregation
of several simulations can be done with Monte Carlo methods [GS05, RK11].
It is used to estimate a probability γ of satisfying a property ϕ such as in
Equations (4.3) and (4.4). The principle is to generate N random simulations
ρ1, . . . , ρN and to compute an estimation of γ. Equation (4.5) illustrates this
estimation.

γ̃ = 1
N

N∑
i=1

1(ρi |= ϕ) (4.5)

The term 1 is an indicator function that returns 1 if ϕ is satisfied in ρ and
0 otherwise. The next step is then to determine N , the number of random
simulations. To do so, Chernoff bound [Che52] is the method commonly
used. It determines the number of simulations required in order to have a
confidence δ and a precision ε on the probability. This relation is expressed
in Equation (4.6).

Pr(|γ − γ̃| < ε) ≥ 1− δ if N ≥
ln(2

δ)
2ε2 (4.6)

This bound N guarantees that the probability that a property is satisfied
is included in the (1− δ)-[γ − ε, γ + ε] confidence interval assuming that the

4.5. VERIFICATION WITH STATISTICAL MODEL CHECKING 55

simulation is distributed uniformly with regard to real executions. In our
case, we are interested in γ̃ = 1 which gives the interval (1−δ)-[1−ε, 1] It can
then be used in order to have a parametrizable confidence on the correctness
of the system. For instance, a 0.99-[0.99, 1] (ε = 0.01 and δ = 0.01) can be
obtained with 26 492 simulations of two days each. Given the bounds �n♦n
of Requirements 5 and 6, each simulation embeds n verifications covering
one day of interlocking operations. Furthermore, refining δ by a factor 10
will increase the number of simulations by 11513 while refining ε by the same
factor will multiply this number by 100. Knowing the execution time required
to perform a 2-day simulation for each station from Table 4.2, we can deduce
the expected execution time required to obtain such confidence intervals. A
recap of the values obtained is presented in Table 4.3.

Namêche Braine l’Alleud Courtrai
Number of simulations 26 492

Real time covered 144 years
Total exec. time 14 days 110 days 148 days

Added exec. time for δ
10 +6 days +48 days +64 days

Added exec. time for ε
10 ×100

Table 4.3. Characteristics of the verification for a 0.99-[0.99, 1] confidence interval using
Chernoff bound.

These results show that even poor confidence intervals (0.99-[0.99, 1]) for
a small station require a consequent execution time. In other words, the
limitation is the same as with the model checking approach: a high guarantee
of correctness requires the execution of a huge number of simulations and
then the exploration of too many states. In its simplest form, this method
cannot be used in practice.

However, a crucial advantage compared to model checking is that ran-
dom simulations can be easily multi-threaded without any overhead. By
Gustafson’s law [Gus88], the execution of N simulations on m processors will
be m times faster than the execution of N simulations on a single processor.
Even if model checking can also be paralleled [BBR07, Hol06], it is a harder
task and the parallelisation gain decreases with the number of processes.

Table 4.4 summarises the number of processors required in order to obtain

56 CHAPTER 4. AVAILABILITY VERIFICATION

a (0.99-[0.99, 1]) confidence interval on the verification of the three case studies.
These results show that it is possible to reach strong Chernoff bounds in
practice thanks to parallelisation. For comparison, the EC2 cloud computing
services proposed by Amazon contain more than 30 000 cores [OIY+09].
Chernoff bound can then be used in order to achieve a parametrisable level
of confidence on the correctness of the system.

Namêche Braine l’Alleud Courtrai
1 hour 336 2640 3600
12 hours 28 220 300
1 day 14 110 150
10 days 2 11 15

Table 4.4. Number of processors required for performing the verification with a 0.99-[0.99, 1]
confidence interval for different time periods.

Verification Algorithm Let us now describe how Requirements 5 and 6
are verified using a simulation trace. The idea is to check that each route
would not stay unproved for more than one complete day. Similarly, compo-
nents cannot be locked for more than one complete day. Let s = 〈si, . . . , sm〉
be the sequence of states obtained with a simulation of 2-days and n the
bound used for the availability requirements. The corresponding simulation
trace will then contain 2n states. Algorithm 4.2 presents how the verification
is performed.

First, a counter is assigned at each route and component and is initialised
at n (lines 6-7). Each simulation state is processed sequentially (lines 8-22).
For each route, the algorithm checks if the route is proved at the current
state (line 10). If it is not the case, the counter is decremented (line 11) and
if it reaches zero, False is returned (lines 12-13). It means that the current
route has not been proved during a complete day. Requirement 5 is then
not satisfied. Once a route has been proved, its counter is reinitialised (lines
14-15). The same process is performed for the components (lines 16-22).
The algorithm runs with a time complexity of O(n× (r + c)) with n the
simulation bound, r the number of routes in the station and c the number of
components. However, it can also be directly embedded in the simulation
and no post-processing of the trace is then required.

4.5. VERIFICATION WITH STATISTICAL MODEL CHECKING 57

Algorithm 4.2: Verification algorithm based on the analysis of the simulation trace.
1 INPUT: A trace of m states 〈si, . . . , sm〉.
2 n, the verification bound (as in Requirements 5 and 6).
3 OUTPUT: True if both requirements are satisfied.
4 False otherwise.
5

// initialisation of counters
6 routeMap[r]← n ∀r ∈ ROUTES
7 compMap[c]← n ∀c ∈ COMPONENTS
// analysing each state of the simulation

8 for i ∈ 0, . . . ,m do
// analysing the state of each route at si

9 for r ∈ ROUTES do
10 if not si.r.isProved then
11 routeMap[r]← routeMap[r]− 1
12 if routeMap[r] = 0 then
13 return False // r not proved for n steps: Req. 5 not satisfied

14 else
15 routeMap[r]← n // reinitialisation of the counter

// analysing the state of each component at si

16 for c ∈ COMPONENTS do
17 if si.c.isLocked then
18 compMap[c]← compMap[c]− 1
19 if compMap[c] = 0 then
20 return False // c locked for n steps: Req. 6 not satisfied

21 else
22 compMap[c]← n

23 return True

Generation of Conflicting Scenarios A drawback of the random sim-
ulations is that they do not provide guarantees that particular scenarios
have been generated. Therefore, it is theoretically possible that there exist
conflictual scenarios not covered by the simulations. It is the topic of the
third question. Similarly to code coverage [AO08] that is used for software
testing in order to gain confidence into the quality of test suites, measures
and statistical reports related to simulations can also be performed. Such
measures can be for instance the number of times that a route has been
commanded, proved, released and destroyed.

58 CHAPTER 4. AVAILABILITY VERIFICATION

'1'1 '2'2 '3'3

''Initial state

Figure 4.6. Importance splitting using three levels.

Other techniques for the generation of scenarios, particularly for the detec-
tion of rare events, such as importance splitting [JLS13, JLS14] or importance
sampling [Sha94, Hei95] can also be used. Amongst them, importance split-
ting is particularly well suited for our application. It allows to increase the
probability of generating rare events and to speed up the error detection by
decreasing the number of simulations required to estimate the probability. It
starts by splitting the property in a sequence of temporal properties ϕk, with
the logical characteristic ϕ = ϕM ⇒ ϕM−1 ⇒ · · · ⇒ ϕ1. It defines a set of
levels, each associated to the conditional probability Pr(ρ |= ϕk+1 | ρ |= ϕk)
of reaching level k + 1 from level k. Instead of trying to detect directly a
violation that occurs rarely, the importance splitting algorithm considers
a set of sub-properties easier to verify and which lead progressively to the
violation. An illustration of this process is presented in Figure 4.6.

However, the results presented in the next section shows that resorting
to such a method is not required for availability purposes because of the
good results obtained with simple statistical reports. It can thereby be useful
when other properties, related to rare events, must be verified.

4.6 Experimental Results

The last step is to analyse the validity of the approach through experimental
results. Indeed, now that we have a model and a verification process, we

4.6. EXPERIMENTAL RESULTS 59

need to ensure that it will efficiently detect the errors leading to availability
issues. To do so, we introduced several errors in the application data in order
to test if they will be detected through the verification. Introduced errors
related to availability are as follows:

• Point moved to a wrong position when commanding a route (Appendix
D.1).
• Irrelevant additional conditions for releasing a component (Appendix
D.5).
• No consistency between a route command and a route proving (Ap-
pendix D.7).

These errors are known to cause availability issues. Other errors depicted
in Appendix D are only related to safety. The simulator and the verification
algorithm has been implemented in Scala. the Discrete Event Simulation
package of OscaR [Osc12] has also been used for the simulator. Table 4.5 re-
caps the number of tests where an issue violating the availability requirements
when errors are introduced. A hundred simulations have been performed for
each configuration.

Table 4.5. Number of simulations, among 100, where an issue violating an availability
requirement (Equations (4.3) and (4.4)) has been detected for the three case studies.

Error Namêche Braine l’Alleud Courtrai
(4.3) (4.4) (4.3) (4.4) (4.3) (4.4)

D.1 100 0 100 0 100 100
D.5 100 100 100 100 100 100
D.7 100 0 100 0 100 100

A non zero value indicates that an availability issue has occurred on at
least one simulation. In this case, the system is not correct. As we can
see, each error introduced in the application data causes the violation of at
least one requirement. Furthermore, we can also deduce that even if precise
confidence intervals require a consequent execution time, errors are detected
faster in practice.

60 CHAPTER 4. AVAILABILITY VERIFICATION

4.7 Future Work

Possibilities of future work are multiple. Until now, the approach presented
in this chapter has only been considered for the availability verification. How-
ever, it is not its only asset. The approach can be seen as a general framework
for verifying properties related to interlocking systems. As depicted in Figure
4.2, new properties can be easily considered without modifying the model and
the simulator. Verification of other properties can then be easily integrated.

For instance, let us come back on the verification of safety presented in
the previous chapter. We have shown that a dedicated algorithm can be
used in order to detect errors in the application data causing safety issues.
However, the identification of which part of the application data is erroneous
remains not trivial. This kind of problematic has been considered by Busard
et al. [BCL+15] that identified a set of properties that the application data
must satisfy in order to avoid safety issues. Such properties are used to detect
what are the errors in the application data leading to an unsafe behaviour
of the interlocking. Some of them, with examples related to Braine l’Alleud
(Figure 2.2), are as follows:

• Routes in opposite directions (e.g. R_CXM_101 and R_DC_92) cannot be
proved at the same time.
• Subroutes in opposite directions (e.g. U_CC_DXC and U_DXC_CC) cannot
be locked at the same time.
• Subroutes composing a route must be released in correct order. For

instance, R_KC_102 is composed sequentially by U_KC_19C, U_19C_20C
and U_20C_CGC. The three subroutes must then be released in this
order.
• A point cannot move when its attached immobilisation zone is locked.

For instance, U_IR(09C) prevents P_08AC and P_09C to be commanded.

Identifying which properties are violated once a safety issue has been
detected can give more information about which part of the application data
is faulty. Verification of such properties can be directly performed without
requiring any change in the model. When many properties are considered,
it can be tedious to adapt the verification algorithm or to design a new
one each time a property is added. A statistical model checker, such as

4.7. FUTURE WORK 61

PLASMA Lab platform [BCLS13, JLS12], taking as input properties can be
used instead. PLASMA Lab is a compact, efficient and flexible platform for
verifying stochastic models with SMC. It includes several SMC algorithms
and a library to include new simulators and to define properties. Simulators
of systems or models can be reused with few implementation work thanks
to the existing libraries. It already includes simulators for Reactive Module
Language (Markov chains models as in the PRISM model-checker [HKNP06]),
Simulink [Kar06] and SystemC [BDBK09] models. In our case, we have de-
veloped a new plug-in that implements PLASMA Lab library and creates
an interface between PLASMA Lab and the simulator. Defining the new
properties is part of the future work.

Besides, the model, and the simulator as well, can also be improved. As
presented beforehand, they are built upon some hypothesis, which can be
progressively removed. It will then be possible to model less usual behaviours
(shunting, level crossing, etc.), to add characteristics to trains (speed, length,
weight, etc.), to take into account the environment (tunnels, bridges, etc.), or
to consider other aspects of signals (can proceed at a restricted speed). The
simulation will thus be more realistic and the verification of other properties,
not necessarily related to interlocking systems, become feasible. It is for
instance the case of loading gauge verification, which defines the maximum
dimension for trains to ensure safe passage through bridges, tunnels and
other structures.

Probabilistic notions and rare events that can happen in practice can
also be integrated in the simulation. For instance, the fact that a component
failure will happen every ten years or that a driver will not follow the sig-
nalling principles every five year can be modelled. In this case, we are also
interested in finding scenarios revealing a rare failure of the system and in
inferring the probability that a safety or availability issue will occur under
these failures. A knowledge of the system can be used in order to force the
simulation to reach a failure, and to stop it if there is enough evidence that it
will not reach a failure. Importance splitting is particularly well fitted for that.

Finally, other tools and methods can be used for modelling the system
and its verification. For instance, timed automata [AD94] are particularly
fitted for the verification of real-time systems. Methods for checking both
safety and liveness properties in timed automata have been developed and

62 CHAPTER 4. AVAILABILITY VERIFICATION

intensively studied over the last decades [BY04]. Several tools such as Kronos
[BDM+98] or UPPAAL [LPY97] already exist.

4.8 Summary

The objective pursued in this chapter was to design a verification method
which is not limited by the state space explosion for practical uses but
which nevertheless provides enough guarantees on the correctness of the
system. The key idea of the contribution is to perform several simulations
and to observe through statistical tests whether the results obtained provide
a statistical evidence that the system is correct with regard to availability.
Requirements have been formulated, and experimental results have shown
that the verification thoroughly detects violations of the properties. Besides,
strong confidence intervals on the verification can be obtained thanks to
parallelisation. We have finally shown that the approach proposed can
be considered as a general framework for verifying properties related to
interlocking systems.

Chapter 5
Fluidity Maximisation

“All we have to decide is what to do with the time that is given
us.”

– J.R.R. Tolkien, The Fellowship of the Ring

5.1 Motivation

Previous chapters presented how an interlocking can be verified in order to
ensure the safety and the availability of the train traffic. However, although
these requirements are necessary for commissioning an interlocking, they are
not sufficient for providing a fluid traffic. Fluidity is often assimilated to
availability but it is, in fact, a different notion. While availability is used
to ensure that no train is blocked for too long, fluidity is related to the
proper use of the railway resources such as the track segments. For instance,
let us consider again the station of Braine l’Alleud (Figure 2.2). If Track
102 is never used whereas Track 101 is congested, the fluidity of the traffic
inside Braine l’Alleud can then certainly be improved. Once the safety and
the availability are ensured, the main goal pursued is then to maximise the
fluidity. It is the problem addressed by this chapter.

While safety and availability issues are related to the interlocking, fluidity
is beyond its scope and is dependent of other aspects of railway management.
The first step is the development of a timetable. Over the years, the number
of trains, the number of tracks and the complexity of networks keep increasing.
In this context, the need of an efficient and reliable train schedule is crucial.
Indeed, a bad schedule can cause train conflicts, unnecessary delays, financial
losses, and a decrease in passenger satisfaction. Beyond the departure time,
a schedule must also indicate on which platform trains must stop, and which
itinerary they have to follow. While earliest train schedules could be built

63

64 CHAPTER 5. FLUIDITY MAXIMISATION

manually without resorting to optimisation or computer based methods, it is
not possible anymore.

The design of a proper and realistic timetable is then a necessary condition
for preserving a fluid train traffic. A tremendous amount of research papers
deal with this problematic of building the most appropriate schedule for
general [HKF96, GSA04, ZZ05], or specific purposes [HS16, SWDK15]. This
aspect is currently well achieved and its improvement is not a main concern.
However, practical schedules must also deal with real time perturbations.
Disturbances, technical failures or simply consequences of a too optimistic
theoretical schedule can cause delays which can be propagated on other trains.
The initial schedule may then become infeasible or suboptimal. Real-time
modifications of the initial schedule may therefore be required. Dealing with
such modifications is still a challenge today.

In Belgium, the responsibility of regulating the traffic is mainly performed
by a software, called the Traffic Management System (TMS), that auto-
matically manages the traffic according to predefined rules. According to
an established timetable, this system commands routes in order to ensure
the planned traffic. However, in case of real time perturbations, signalling
must be handled manually and the actions to perform are decided by human
operators. The general procedure follows this pattern:

1. The TMS has predicted a future conflict caused by perturbations on
the traffic.

2. The operators controlling the traffic analyse the situation and evaluate
the possible actions to do in order to minimise the consequences of
the perturbations. Besides the safety and the availability, the criterion
considered for the decision is the sum of delays per passenger. In other
words, the objective is to minimise the sum of delays of trains weighted
by their number of passengers. Furthermore, some trains can have a
higher priority than others. For instance, connecting trains can have
priority over other trains.

3. According to the situation, they perform some actions (stopping a train,
changing its route, etc.) or do nothing.

When facing up real time perturbations, operators have to deal with
several difficulties:

5.1. MOTIVATION 65

• The available time for analysing the situation and taking a decision can
be very short according to the criticality of the situation (sometimes
less than one minute).
• For large stations with a dense traffic, particularly during the peak
hours, the effects of an action are often difficult to predict.
• The number of parameters that must be considered (type of trains,
number of passengers, etc.) complicates the decision.

Such reasons can lead railway operators to take decisions that will not
improve the situation, or worse, will degrade it. Most of the time, the decision
taken is to give the priority either to the first train arriving at a signal, or
to the first one that must leave the station [DPP07]. However, it is not
always the best decision. For instance, let us consider the scenario depicted
in Figure 5.1, where t1 is a train that is 3 minutes away from the station,
and t2 another train, which is 10 minutes away. Both of them has to reach
Platform A but t2 is already late and t1 is ahead of schedule. Giving the
priority to the first train arriving will allow t1 to go first. However, in this
case, stopping t1 at the next signal and letting t2 entering first in the station
may be a better solution for reducing the total delay.

t1t1

t2t2

Platform A

3 minutes

10 minutes

Figure 5.1. Situation where a decision is required in order to minimise the delay.

In this chapter, we propose a new method for rescheduling traffic in a
real time context. It is divided into four sections:

1. The state of the art methods for tackling this problem are depicted.
2. The technical background on which relies our contribution is presented.
3. The model for rescheduling the traffic through real time disturbances

on the railway network is fully described.

66 CHAPTER 5. FLUIDITY MAXIMISATION

4. Experiments are carried out in order to corroborate the adequacy
and the scalability of the approach. Concretely, its application on
several situations in comparison with classical strategies of operators is
performed.

5.2 Related Work

Aforementioned issues concerning real-time management of the traffic advo-
cate the use of a decision support tool in order to assist operators in their
decisions. The requirement for this software is then to provide a good solution
to this rescheduling problem within a short and parametrisable computation
time.

A recent survey (2014) initiated by Cacchiani et al. [CHK+14] recaps the
different trends on models and algorithms for real-time railway disturbance
management. For instance, Fay et al. [Fay00] propose an expert system using
fuzzy rules and Petri nets for the modelling. Such a method requires to define
the rules, which can differ according to the station. Higgins et al. [HKF97]
propose to use local search methods in order to solve conflicts. However,
this work does not take into account the alternative routes that trains can
have in order to reach their destination, and that the planned route remains
not always optimal in case of real time perturbations. For that, D’Ariano
et al. [DPP07] model the problem with an alternative graph formulation
and propose a branch and bound algorithm to solve it. They suggest to
enrich their method with a local search algorithm for rerouting optimization
purposes [DCPP08]. Besides, some works consider the passenger satisfaction
[SS10, DHSS12, DHK+14] in their model. It is also referred as the Delay
Management Problem.

Generally speaking, most of the methods dealing with railway traf-
fic scheduling are based on Mixed Integer Programming (MIP) [CGD09,
FLM+14, S. 83, LM15]. Informally, MIP is an optimisation technique where
decision variables can be either discrete or continuous. However, the effi-
ciency of MIP models for solving scheduling problems is known to be highly
dependant of the chosen granularity of time. Furthermore, it is not as flexible
and expressive for the modelling as other approaches such as Constraint
Programming (CP).

5.3. TECHNICAL BACKGROUND 67

Constraint Based Scheduling (CBS) [BLPN12], or in other words, applying
CP [RVBW06] on scheduling problems seems to be a good alternative over
MIP. According to the survey of Bartak et al. [BSR10], CP is particularly
well suited for real-life scheduling applications. Furthermore, several works
[KBK+12, KTK13, KB14] show that CP can be used for solving scheduling
problems on large and realistic instances. By following this trend, Rodriguez
[Rod07] proposes a CP model for real-time train scheduling at junctions.
However, despite the good performances obtained, this model can be improved.
Firstly, the modelling does not use the strength of global constraints which can
provide a better propagation. Secondly, the search can also be improved with
heuristics and the use of local search techniques. Finally, the objective function
is only defined in function of train delays without considering the passengers
or the different categories of trains. In this context, our contribution aims to
tackle these flaws through an innovative way of modelling the problem.

5.3 Technical Background

Let us first introduce the technical background and all the information
required for the comprehension of the subsequent chapters.

Constraint Programming

Some scientists consider that CP is the holy grail of programming: the user
states the problem and the computer solves it [Fre97]. In few words, CP
is a general framework proposing simple, general and efficient algorithmic
solutions to hard combinatorial problems. Two kinds of problem are targeted
by CP. On the first hand, there is the Constraint Satisfaction Problem (CSP)
where the goal is to find only a single feasible solution. Each solution satisfy-
ing the constraints is suitable. On the other hand, there is the Constraint
Optimisation Problem (COP) where the goal is to find the best feasible
solution according to an objective function. In order to solve both problems,
two stages are considered. Firstly, the problem must be formally and declar-
atively represented by means of variables, constraints, and possibly objective
functions. It is the modelling phase. Secondly, the modelled problem is solved
by a tool which automatically search feasible solutions by exploring a search
tree. It is the search phase. Let us describe in more details both phases.

68 CHAPTER 5. FLUIDITY MAXIMISATION

Modelling Phase

A CSP is defined by a set of variables, a set of domains, which contain possible
values for the variables, and a set of constraints, which restrict assignments
of values to variables. Formally, a CSP is defined by the triplet (X,D,C)
where:

• X = {x1, . . . , xn} is the set of variables.
• D = {D1, . . . , Dn} is the set of the domain for each variable.
• C = {C1, . . . , Cm} is the set of constraints.

The goal of a CSP is then to choose a value for each variable of X from
D which satisfies all the constraints of C. A COP is an extension of a CSP
where one, or several, objective functions are added. Formally, a COP is
defined as the quadruplet (X,D,C,O) where O = {o1, . . . , op} is the set of
objective functions. In addition to finding a feasible solution, the goal is to
find the best assignation of variables according to the objective functions
defined in O. Modelling a CSP, or similarly a COP, resorts then to define
adequately the different sets.

Search Phase

Once the problem is modelled, the next step is to solve it. To do so, two
operations are interleaved: the propagation and the search. The search essen-
tially consists of an exhaustive enumeration of all the possible assignments of
values to variables until a feasible solution has been found. It is also possible
that the considered problem has no solution or that we want to continue
the search until the best solution has been found. A search tree, growing up
exponentially with the number of variables, is constructed during this process.

Besides, propagations of constraints are applied in order to prune the
search tree. The goal is to reduce the number of possible combinations.
Given the current domains of the variables and a particular constraint c,
the propagation of c removes from the domains the values that cannot be
part of the solution because of the violation of c. This process is repeated
at each domain change and for each constraint until no more value can be
removed from the domains. It is referred as the fix point algorithm (Algorithm
5.1). When the propagation has led to an empty domain for a variable, an

5.3. TECHNICAL BACKGROUND 69

inconsistency is detected (line 4) which means that the current domains
cannot give a feasible solution.

Algorithm 5.1: Fix point algorithm.
1 repeat
2 select a constraint c in C
3 propagate c
4 if an inconsistency is detected then
5 return False

6 until no value can be removed
7 return True

Concerning COP, the search process is improved with a branch and bound
method [LW66]. When a feasible solution has been found, a new constraint
ensuring that the next solution has to be better than the current one is added.
Provided that the whole search space has been explored, the last solution
found is then proved to be optimal.

Constraint Based Scheduling

Scheduling [Pin15] is a generic term covering a large scope of optimisation
problems related to time management such as Job Shop Scheduling [YN97],
Vehicle Routing Problem [Lap92] or Nurse Rostering Problem [BDCBVL04].
In a nutshell, scheduling problems address two questions: what are the actions
to do and when to do them ? Despite the simplicity of this formulation, most
of the scheduling problems are computationally hard to solve. Solving big
and realistic scheduling problems is still a challenge nowadays and is targeted
by much research.

Among it, Constraint Based Scheduling [BLPN12] consists in applying
CP for solving scheduling problem. The idea is to model the problem as
a COP and to use efficient propagators [Vil07, Vil04, DVCS15, GHS15b,
GHS15a, VCDMS16] in order to reduce the state space. According to the
survey of Bartak et al. [BSR10], this approach seems to be particularly well
suited for this task.

A scheduling problem is modelled by means of activities. Roughly speak-
ing, an activity is an event that can be executed at some points in time. Each
activity encapsulates three CP variables:

70 CHAPTER 5. FLUIDITY MAXIMISATION

1. A start date, which defines when the activity can begin.
2. A duration, which defines the duration of the activity.
3. An end date, which defines when the activity can end.

These variables are linked by an implicit constraint of consistency stating
that the end date of each activity must equal its start date in addition to
its duration. Each activity is also characterised by a set of features. Two of
them are considered here:

• An activity is preemptive if it can be interrupted and then restarted
thereafter. It is non-preemptive if it cannot be interrupted.
• An activity is optional if it is not mandatory to be executed. It is
non-optional if it must be executed.

Furthermore, activities are subject to a set of constraints. Constraints
are the essence of scheduling problems. They define what we can do and
when we can do it. Three categories of constraints are often considered.

Firstly, the time-related constraints encompass all the constraints restrict-
ing the time when activities can be scheduled. For instance, a precedence
constraint among two activity states the second one cannot begin until the
first one has been finished.

The second category contains the resource-related constraints. A resource
is something that is needed by an activity during its execution. These con-
straints are used in order to express relations between activities and resources.
For instance, the unary resource constraint [Vil04] prevents a resource to be
used by more than one activity at each time.

Finally, a scheduling problem can also be defined by other constraints
that are more general. For instance, the execution of two activities can be
incompatible for some reasons that are not related to time or the resource
usage. Solving a scheduling problem consists in finding a feasible assignment
of the activities that satisfies all the constraints. However, in most cases, and
especially in scheduling, finding a feasible solution is not sufficient. It is the
best solution that is desired instead. To do so, an objective function has to
be considered.

5.3. TECHNICAL BACKGROUND 71

There is a large panel of possible objective functions for scheduling
problems. For instance, we can chose to minimise either the makespan, or
the sum of delays. The makespan is defined as the maximal ending time
of the set of all activities in the schedule. When minimising the makespan,
the goal is then to schedule the activities in order to finish the last one as
soon as possible. Furthermore, each activity has commonly a due date, or in
other words, a time defining when the activity should end. When an activity
finishes after its due date, a delay is generated. The second objective function
aims to minimise the cumulated sum of delays of all the activities.

Time-Interval Variables

Many scheduling problems consider activities that may or may not be exe-
cuted in the final schedule. As previously stated, such activities are optional.
The choice of executing optional activities is then a decision that has to be
done. Modelling and solving such activities is a hot topic in CBS. Most of the
approaches are based on the definition of additional variables representing
the existence of an activity in the schedule and the addition of new global
constraints with dedicated propagators [BF99, MPP05, BC07]. Although an
efficient propagation is done, the implementation of new constraints, only for
optional activities, is required, which can sometimes be tedious.

Another approach is to design a dedicated structure which implicitly
embeds the optionality nature of activities. It is the idea of the time-interval
variables introduced by Laborie et al. [LR08, LRSV09]. Instead of defining
new constraints over the additional variables in order to handle optional
activities, the idea is to introduce new variables encapsulating the notion of
optionality and to adapt the existing constraints to these new variables. Such
an approach offers several advantages. For instance, it provides an expressive
an easy modelling where the notion of optionality is implicitly contained
in the new variables. No additional variable is required. Furthermore, an
efficient propagation can be performed thanks to relations that hold between
the variables.

In [LR08], Laborie and Rogerie have formalised the time-interval variables.
A time-interval variable a is a variable whose domain dom(a) is a subset of
{⊥} ∪ {[s, e)|s, e ∈ Z, s ≤ e}. A time-interval variable is said to be fixed if
its domain is reduced to a singleton. If a denotes a fixed time-interval, we

72 CHAPTER 5. FLUIDITY MAXIMISATION

say that the variable is non-executed if a = ⊥ or that is executed if a = [s, e).
Furthermore, we denote s(a), or simply s, d(a), or d, e(a), or e, as the start
date, the duration and the end date of a respectively. We also define the
execution status x(a), or x, which indicates if a is executed or not.

The main characteristic of a time-interval variable is the way by which the
constraints are managed. Any constraint involving at least one non-executed
time-interval variable is not considered. In other words, such constraints have
no impact on the model and no solution is removed through their propagation.
Management of constraints is then hidden for the modelling and is implicitly
done by the propagator and the solver engine. Let us introduce four kinds of
constraints related to time-interval variables that are used in our model.

Temporal Constraints These constraints [LR08] express temporal rela-
tion between two activities. They are related to Allen’s Relations [All83].
Their semantics depends on the temporal relation between the activities.
The different possibilities are given in Table 5.1 for two fixed activities a and b.

Constraint Semantics
startBeforeStart(a, b) x(a) ∧ x(b) =⇒ s(a) ≤ s(b)
startBeforeEnd(a, b) x(a) ∧ x(b) =⇒ s(a) ≤ e(b)
endBeforeStart(a, b) x(a) ∧ x(b) =⇒ e(a) ≤ s(b)
endBeforeEnd(a, b) x(a) ∧ x(b) =⇒ e(a) ≤ e(b)
startAtStart(a, b) x(a) ∧ x(b) =⇒ s(a) = s(b)
startAtEnd(a, b) x(a) ∧ x(b) =⇒ s(a) = e(b)
endAtStart(a, b) x(a) ∧ x(b) =⇒ e(a) = s(b)
endAtEnd(a, b) x(a) ∧ x(b) =⇒ e(a) = e(b)

Table 5.1. Semantics of the different temporal constraints.

All temporal constraints are aggregated into a network in order to have
a better propagation [DMP91]. Instead of having a bunch of independent
constraints, they are considered as a global constraint.

Span Constraint span(a0, {a1, . . . , an}) [LR08] states that, if activity a0
is executed, it spans over all executed activities from the set {a1, . . . , an}. In
other words, a0 starts together with the first executed activity from the set
and ends together with the last one. The activity a0 is not executed if and

5.4. CONSTRAINT PROGRAMMING MODEL 73

only if no activity of the set is executed. More formally, let a0, a1, . . . , an be
a set of fixed activities. Then, span(a0, {a1, . . . , an}) holds if and only if:

¬x(a0) ≡ ∀i ∈ [1, n], ¬x(ai) (5.1)

x(a0) ≡


∃i ∈ [1, n], x(ai)
s(a0) = mini∈[1,n],x(ai) s(ai)
e(a0) = maxi∈[1,n],x(ai) e(ai)

(5.2)

Alternative Constraint alternative(a0, {a1, . . . , an}) [LR08] models an
exclusive alternative between the activities of {a1, . . . , an}. If activity a0 is
executed, then exactly one of activities from the set {a1, . . . , an} is executed
and a0 starts and ends together with the chosen activity. Activity a0 is not
executed if and only if none of activities in {a1, . . . , an} is executed. More
formally, alternative(a0, {a1, . . . , an}) holds if and only if:

¬x(a0) ≡ ∀i ∈ [1, n], ¬x(ai) (5.3)

x(a0) ≡ ∃k ∈ [1, n]


x(ak)
s(a0) = s(ak)
e(a0) = e(ak)
∀j 6= k,¬x(aj)

(5.4)

NoOverlap Constraint noOverlap(p) [LRSV09], where p is a sequence
of activities, states that any activity in the sequence is constrained to end
before the start of the next activity. This constraint is typically useful
for modelling disjunctive resources. More formally, the condition for a
permutation value π of p to satisfy the constraint is defined as:

noOverlap(π) ≡ ∀a, b ∈ A,¬x(a) ∨ ¬x(b)

∨
((

0 < π(a) < π(b)
)
≡
(
e(a) ≤ s(b)

))
(5.5)

5.4 Constraint Programming Model

Let us now come back to the traffic rescheduling problem. Basically, the
goal is to schedule adequately trains in order to bring them to their desti-

74 CHAPTER 5. FLUIDITY MAXIMISATION

nation. The decision is then to choose, for each train, which route must be
commanded and at what time. In order to illustrate how the problem is
modelled, let us introduce the fictive station presented in Figure 5.2.

T2T1 T3

T4 T5 T6 T7

S1

S2

S3

T8 T9 T10 T11

R1
R2IT1

��

Figure 5.2. Layout of a fictive station with two routes and one itinerary.

Let us remember that the routes correspond to the paths that trains can
follow inside a station in order to reach a destination. We will express them
in terms of track segments and signals. For instance, R1 is a route going
from T4 to T7 by following the path [T4, S2, T5, T2, T6]. The first track
segment of a route is always in front of a signal which is initially at a stop
aspect and which turns green when the TMS has allowed the train to proceed.
The track segment used for the destination is not a part of the route. At
this step, all the track segments forming the route after the start signal are
reserved and cannot be used by another train. Once a route has been proved,
the train can move through it in order to reach its destination. For instance,
once a train following route R1 has reached T6 and is not on the previous
track segments anymore, T5 and T2 can be released in order to allow other
trains to use them. Let us notice that this description is a simplification of
the complete operations described in Chapter 2, that we do in order to ease
the understanding of the CP model.

Furthermore, for the sake of modelling, a new logical component is added.
The itineraries are the non physical paths from a departure point to an arrival

5.4. CONSTRAINT PROGRAMMING MODEL 75

point. An itinerary can be constituted of one or several routes which can
be alternative. For instance, as depicted in Figure 5.2, two routes (R1 and
R2) are possible for accomplishing itinerary IT1 from T4 to T7. In normal
situations, a route is often preferred than others, but in case of perturbations,
the route causing the less conflicts is preferred.

According to an established timetable, the TMS commands routes in order
to ensure the planned traffic. However, in case of real time perturbations,
signalling must be handled manually and the actions to perform are decided
by human operators. The decision is then to choose, for each train, which
route must be commanded and at what time. Let us solve this problem with
CP using time-interval variables. The model contains three kinds of activities
that are linked together:

• The itinerary activities, which define the time interval when a train
follows a particular itinerary. Each train has one and only one itinerary
activity. We define At,it as the activity for itinerary it of train t.
• The route activities, which define the time interval when a train follows
a particular route of an itinerary. We define At,it,r as the activity for
route r of itinerary it related to train t.
• The train activities, which correspond to the movements of a train
through the station in order to complete a route. Such activities use
the track segments and signals as resources. We define At,it,ri as the ith
train activity of route r of itinerary it and related to train t. Inside a
same route, there are as many train activities as the number of elements
on the route path. The element can be a track segment or a signal. For
instance, by following the example of Figure 5.2, At,IT1,R1

1 is a train
activity related to track segment T4, At,IT1,R1

2 to signal S2, At,IT1,R1
3

to T5, etc.

As previously indicated, one particularity of the problem is that some
activities are optional. For instance, a train that has to accomplish itinerary
IT1 can follow either R1, or R2. If R1 is chosen, the activity related to
R2 will not be executed. Optionality is modelled thanks to time-interval
variables. Figure 5.3 presents how the different activities are organised for a
train t in the fictive station of Figure 5.2.

Activity At,IT1 is mandatory, it models the fact that the train has to
reach its destination. Constraint alternative ensures that the train will

76 CHAPTER 5. FLUIDITY MAXIMISATION

At,IT1At,IT1

Alternative

Span
At,IT1,R1

1At,IT1,R1
1 At,IT1,R1

2At,IT1,R1
2 At,IT1,R1

3At,IT1,R1
3 At,IT1,R1

4At,IT1,R1
4 At,IT1,R1

5At,IT1,R1
5

Span
At,IT1,R1At,IT1,R1

At,IT1,R2
1At,IT1,R2
1 At,IT1,R2

2At,IT1,R2
2 At,IT1,R2

3At,IT1,R2
3 At,IT1,R2

5At,IT1,R2
5 At,IT1,R2

6At,IT1,R2
6At,IT1,R2

4At,IT1,R2
4

At,IT1,R2At,IT1,R2

Figure 5.3. Breakdown structure of the model using alternative and span constraints.

follow one and only one route, R1 or R2. The other route activity is then not
executed. Furthermore, the start date and the end date of the chosen route is
synchronised with the itinerary activity. Constraint span enforces the route
activity to be synchronised with the start date of the first track segment
activity and with the end date of the last track segment activity. For instance,
At,IT1,R1 is synchronised with the start date of At,IT1,R1

1 and the end date of
At,IT1,R1

5 . Finally, all the aforementioned activities are non-preemptive. Let
us now define the different components of the model.

Parameters

Two entities are involved in the model: the trains and the track segments.
Table 5.2 recaps the parameters considered. The estimated arrival time of a
train is a prediction of its arrival time at the station. The earliest start time
defines a lower bound on the starting time of a train. In other words, a train
cannot start its itinerary before this time. It models the fact that a train
cannot leave its platform before the time announced to the passengers. The
planned completion time is the time announced on the initial schedule. It
defines when the train is supposed to arrive at a platform. It is used in the
objective function in order to compute the delays generated. The category
defines the nature of the train. Four categories are considered:

1. Maintenance or special vehicles (C1).
2. Connecting passenger trains (C2).
3. Simple passenger trains (C3).

5.4. CONSTRAINT PROGRAMMING MODEL 77

4. Freight trains (C4).

Such categories are sorted with a decreasing order according to their
priority. Special vehicles have then the highest priority and freight trains the
lowest.

Parameter Name Meaning
Speed sptt Speed of t

Passengers pt Number of passengers of t
Estimated Arrival Time eatt When t arrives to the station
Earliest Start Time estt Lower bound on start time of t

Planned Completion Time pctt When t must complete its travel
Category catt Category of t
Length lgtts Length of ts

Table 5.2. Parameters related to a train t and to a track segment ts.

Decision Variables

As previously said, the problem is to choose, for each train, which route
must be commanded and at what time. Such a problem can be seen as a
slight variant of a job shop scheduling problem [YN97] where the machines
are represented by the track segments and the jobs by train activities. The
differences are as follows:

• Some activities are optional. In other words, they may or may not be
executed in the final schedule.
• The end of a train activity must be synchronised with the start of the
next one. It is also referred as a no-wait constraint [MP02].
• A train activity can use more than one resource. Indeed, when a train
is on a particular track segment, its current activity uses the current
track segment as well as the next ones that are reserved for the route.
For instance, let us consider the route activity At,IT1,R1. The related
train activities with their resources are At,IT1,R1

1 , At,IT1,R1
2 , At,IT1,R1

3 ,
At,IT1,R1

4 and At,IT1,R1
5 . The resources used by the activities are (T4),

(T4, S2), (T5, T2, T6), (T2, T6) and (T6) respectively. Let us remember
that only the track segments located after the start signal are reserved

78 CHAPTER 5. FLUIDITY MAXIMISATION

through the route command. Concerning the initial track segment T4,
it is released after the train has passed the start signal.

From a CBS approach, the problem is to reduce each activity domain
to a singleton. The decision variables and their domain are, for all trains t,
itineraries it, routes r and indexes i:

s(At,it,ri)
{
∈ [eatt, horizon] if t is on a track segment.
∈ [estt, horizon] if t is in front of a signal. (5.6)

d(At,it,ri)
{

= lgtts/spdt if t is on track segment ts.
∈ [0, horizon] if t is in front of a signal. (5.7)

e(At,it,ri) = s(At,it,ri) + d(At,it,ri) (5.8)

x(At,it,ri) ∈ {0, 1} (5.9)

Where s(A), d(A), e(A) and x(A) are the start date, the duration, the end
date and the execution status of an activity A respectively. The domain is
designed to be as restricted as possible without removing a solution. Equation
(5.6) indicates that an activity cannot begin before the estimated arrival
time of t. The upper bound of the start date is defined by the time horizon
considered. More details about the horizon chosen is provided in Section
5.5. Equation (5.7) models the time required to achieve the activity. If t
is on a track segment, the duration is simply the speed of t divided by the
length of the current track segment but if t is in front of a signal, the time
that it will have to wait is unknown. Equation (5.8) is an implicit constraint
of consistency. Finally, Equation (5.9) states that the activity is optional.
Concerning route and itinerary activities, they are linked to train activities
through constraints.

Constraints

Most of the constraints are expressed in terms of a train, an itinerary and
a route. Let us express T as the set of trains, ITt as the set of possible
itineraries for t ∈ T , Rit the set of possible routes for it ∈ ITt and Nr as the
number of train activities of a route r ∈ Rit. Furthermore, let us state TS as
the set of all the track segments in the station.

5.4. CONSTRAINT PROGRAMMING MODEL 79

Precedence This constraint (Equation (5.10)) ensures that train activities
must be executed in a particular order. It links the end of a train activity
At,it,ri with the start of At,it,ri+1 .

∀t ∈ T
∀it ∈ ITt
∀r ∈ Rit
∀i ∈ [1, Nr)

 endAtStart
(
At,it,ri , At,it,ri+1

)
(5.10)

Execution Consistency As previously said, some activities are alterna-
tive. If a route is not chosen for a train, none of activities At,it,ri will be
executed. Otherwise, all of them must be executed. Equation (5.11) states
that all the train activities related to the same environment must have the
same execution status.

∀t ∈ T
∀it ∈ ITt
∀r ∈ Rit
∀i ∈ (1, Nr]

 x(At,it,r1) ≡ x(At,it,ri) (5.11)

Alternative This constraint (Equation (5.12)) models an exclusive alter-
native between a bunch of activities.

∀t ∈ T
∀it ∈ ITt

}
alternative

(
At,it,

{
At,it,r

∣∣∣r ∈ Rit}) (5.12)

It means that when At,it is executed, then exactly one of the route
activities must be executed. Furthermore, the start date and the end date of
At,it must be synchronised with the start and end date of the executed route
activity. if At,it is not executed, none of the other activities will be executed.
In our case, At,it is a mandatory activity. It models the fact that each train
must reach its destination through an itinerary but for that, it must follow
exactly one route.

Span This constraint (Equation (5.13)) states that an executed activity
must span over a bunch of other executed activities by synchronising its start

80 CHAPTER 5. FLUIDITY MAXIMISATION

date with the earliest start date of other executed activities and its end date
with the latest end date.

∀t ∈ T
∀it ∈ ITt
∀r ∈ Rit

 span
(
At,it,r,

{
At,it,ri

∣∣∣i ∈ [1, Nr]
})

(5.13)

It models the fact that the time taken by a train to complete a route is
equal to the time required for crossing each of its components. If the route is
not chosen, then no activity will be executed.

Unary Resource An important constraint (Equation (5.14)) is that trains
cannot move or reserve a track segment that is already used for another train.
Each track segment can then be reserved only once at a time.

∀ts ∈ TS, noOverlap
({
A
∣∣∣A ∈ ACTts}) (5.14)

ACTts is the set of all the train activities using track segment ts.

Train Order Consistency This last constraint (Equation (5.15)) ensures
that trains cannot overtake other trains if they are on the same track segment.
An illustration of this scenario is presented in Figure 5.4. Even if train t2 has
a higher priority than t1, it cannot begin its activities before t1 because t1
has an earlier estimated arrival time. In other words, on each track segment
in front of a signal, the start date of the first activity of each train is sorted
by the estimated arrival time of the trains.

t1t1t2t2

Figure 5.4. Two trains waiting on the same track segment.

Let us state TSB ⊂ TS as the set of all first track segments, Ntsb as
the number of trains beginning their itinerary on tsb, and (ABtsb

i) as the

5.4. CONSTRAINT PROGRAMMING MODEL 81

sequence of the first activities of trains ti beginning on tsb with i ∈ [1, Ntsb].
The sequence is ordered by the estimated arrival time of trains ti.

∀tsb ∈ TSB
∀i ∈ (1, Ntsb]

}
startBeforeStart

(
ABtsb

i−1, AB
tsb
i

)
(5.15)

Objective Function

The criterion frequently used for the objective function is the cumulated sum
of train delays [Rod07]. Let us state jctt as the journey completion time of a
train t. It corresponds to the end date of the last train activity of t. The
delay dt of t is expressed in Equation 5.16.

dt = max
(
0, jctt − pctt

)
(5.16)

This expression is used to nullify the situation where t is in advance on
its schedule. Equation 5.17 presents a first objective function.

min
(∑
t∈T

dt
)

(5.17)

However, in real circumstances, railway operators must also consider
other parameters such as the number of passengers and the priority of trains.
Intuitively, if a passenger train has more passengers than another one, the
cost of the delay will be more important. The objective function is then
threefold:

1. Scheduling trains according to their priority. For instance, a mainte-
nance vehicle must be scheduled before a passenger train, if possible.

2. Minimising the sum of delays.
3. Maximising the overall passenger satisfaction. The passenger satisfac-

tion decreases if its train is late.

A second objective function can then be expressed (Equation (5.18)).

lexMin
(∑
t∈C1

dt,
∑
t∈C2

pt × dt,
∑
t∈C3

pt × dt,
∑
t∈C4

dt

)
(5.18)

82 CHAPTER 5. FLUIDITY MAXIMISATION

Where pt corresponds to the number of passengers of train t, as defined
in Table 5.2. This equation gives a lexicographical order of trains according
to their category from C1 to C4. For passenger categories (C2 and C3) the
delay is expressed by passengers. In this way, the more is the number of
passenger, the greater will be the penalty for delays. The objective is then
to minimise this expression with regard to its lexicographical order.

Search Phase

The exploration of the state space is performed with the algorithm of Vilim
et al. [VLS15] which combines a Failure-Directed Search with Large Neigh-
borhood Search. The implementation proposed on CP Optimizer V12.6.3
[Lab09] is particularly fitted to deal with conditional time-interval variables,
precedence constraints, and optional resources. The search is performed on
execution and on start date variables. Concerning the variable ordering,
trains are sorted according to their category. For instance, activities related
to passenger trains will be assigned before activities of freight trains. The
value ordering is let by default.

5.5 Experimental Results

This section evaluates the performance of the CP model through different
experiments. Concretely, we compare our solution with the solutions obtained
with classical dispatching methods on the three case studies. Three systematic
strategies are commonly used in practice:

1. First Come First Served (FCFS), which gives priority to the train that
has the earliest estimated arrival time.

2. Highest Delay First Served (HDFS), which gives priority to the train
that has the earliest planned completion time.

3. Highest Priority First Served (HPFS), which gives priority to a train
belonging to the category with the highest priority. The planned
completion time is then used as a tie breaker for trains of a same
category.

Furthermore, three meta-parameters are considered for the experiments,
the time horizon, the decision time and the number of trains. The time

5.5. EXPERIMENTAL RESULTS 83

horizon defines an upper bound on the estimated arrival time of trains. Ac-
cording to D’Ariano et al. [DPP07], the practical time horizon for railway
managers is usually less than one hour. In our experiments, we considered
three time horizons (30 minutes, one hour and two hours). The decision time
is the time that railway operators have at disposal for taking a decision. It
is highly dependant to the criticality of the situation. However, according
to Rodriguez [Rod07], the system must be able to provide an acceptable
solution within 3 minutes for practical uses. In our case, it correspond to
the time that has the solver for giving a solution. Concerning the number
of trains, we considered scenarios having 5, 10, 15, 20, 25 and 30 trains.
Homogeneous and heterogeneous traffics are both considered. Finally, other
aspects such as the scalability of the approach or the management of critical
cases are also analysed.

The implementation of the model has been performed with IBM ILOG CP
Optimizer V12.6.3 [Lab09] which is particularly fitted for designing schedul-
ing models [Vil09, SEB+13, HA11]. All the experiments have been realised
on a MacBook Pro with a 2.6 GHz Intel Core i5 processor and with a RAM
of 16 Go 1600 MHz DDR3 using a 64-Bit HotSpot(TM) JVM 1.8. The
optimisation is performed using four workers.

Homogeneous Traffic

In this first situation, the number of passengers and the category are not
considered. Each train has then the same priority and Equation (5.17) is
the objective function used. Table 5.3 recaps the experiments performed for
Courtrai (Appendix B.3), which is our largest case study.

Each scenario is repeated one hundred times with a random schedule.
The different values of the schedule are generated randomly with uniform
distributions. For instance, let us consider a schedule from 1pm to 3pm with
10 trains. For each train, we randomly choose its itinerary among the set
of possible itineraries, its departure time and its expected arrival time in
the interval [1pm, 3pm]. The delay indicated for each strategy corresponds
to the arithmetic mean among all the tests. For each scenario, the average,
the minimum and the maximum improvement ratio of the CP solution in
comparison to the best solution obtained with classical methods is also

84 CHAPTER 5. FLUIDITY MAXIMISATION

Average Delay (min.) Improvement Ratio (%) POS OPT
trains FCFS HDFS CP Mean Min Max (x/100) (x/100)

Horizon of two hours
5 192.06 191.10 148.91 22.08 -7.69 100.00 99 97
10 800.40 797.82 575.04 27.92 5.13 66.08 100 85
15 1917.95 1896.64 1341.53 29.27 1.16 58.549 100 28
20 3457.45 3397.03 2414.45 28.92 10.26 53.29 100 0
25 5581.10 5632.69 3993.04 28.45 8.58 48.37 100 0
30 8004.84 8018.76 5714.69 28.61 14.35 43.61 100 0

Horizon of one hour
5 225.36 228.75 172.06 23.65 0.71 100.00 100 96
10 911.01 906.32 664.18 26.72 3.96 62.41 100 83
15 2128.34 2104.95 1494.67 28.99 5.93 51.29 100 17
20 3675.72 3680.00 2612.6 28.92 8.25 55.86 100 1
25 5971.54 6004.81 4246.55 28.89 9.41 53.67 100 0
30 8595.56 8576.92 6085.51 29.05 7.89 45.51 100 0

Horizon of 30 minutes
5 231.16 229.06 173.95 24.06 1.49 100.00 100 94
10 950.30 929.71 692.18 25.55 3.12 64.32 100 83
15 2145.36 2161.20 1535.86 28.41 7.927 51.61 100 14
20 3858.67 3888.29 2728.0 29.30 6.63 52.50 100 0
25 6137.02 6135.59 4320.14 29.59 7.75 53.38 100 0
30 8863.49 8775.84 6357.08 27.56 8.72 49.08 100 0

Table 5.3. Comparison between CP and classical scheduling approaches for a homogeneous
traffic with a decision time of 3 minutes on Courtrai.

indicated. POS indicates the number of tests where the CP approach has
improved the solution while OPT indicates the number of tests where CP
has reached the optimal solution (notified by the solver). As we can see,
CP improves the solution for almost all the tests. The average improvement
ratio is above 20% in all the scenarios. Optimum is often reached (more than
75 % of the instances) when 10 trains or less are considered. Experiments
on the other case studies are proposed in Appendix E.1. Similar results are
observed.

Heterogeneous Traffic

In this second situation, Equation (5.18) is used for the objective function.
The number of passengers and the category are then considered. As for
the heterogeneous case, such values are chosen randomly with a uniform
distribution. Among the classical approaches, only HPFS deals with an het-
erogeneous traffic. Table 5.4 recaps the experiments performed for Courtrai.
Optimisations are performed sequentially for each category. The time is
allocated according to the priority of categories. The allocation is then not

5.5. EXPERIMENTAL RESULTS 85

done a priori but dynamically according to the time taken by the successive
optimisations. In other words, the optimisation is firstly done only for trains
of the highest category, and if the decision time is not reached, the optimisa-
tion is done for trains of the second category. This process continues until
the decision time is reached or until all the categories have been considered.

POS OPT POS OPT POS OPT
trains (x/100) (x/100) (x/100) (x/100) (x/100) (x/100)

Two hours One hour 30 minutes
5 100 99 100 99 100 99
10 98 87 99 89 99 87
15 100 64 100 75 100 75
20 100 51 100 51 100 52
25 100 13 100 22 100 26
30 100 5 100 8 100 7

Table 5.4. Comparison between CP and HPFS approach for a heterogeneous traffic with a
decision time of 3 minutes for Courtrai.

Unlike the previous experiments, we do not compute the improvement
ratio, but the number of experiences where CP has improved the solution
obtained with HPFS. This choice was motivated by the subjective aspect of
defining an improvement ratio for a heterogeneous traffic. For instance, there
is no clear preference between decreasing the delay of one train of category
C1 or 10 trains with lower priorities. This kind of questions usually requires
the consideration of signalling operators. We consider that CP has improved
the solution when the sum of delay per category is lexicographically lower
than the result provided by HPFS. For a time horizon of one hour and for 100
tests per scenario, CP improves the solution for all the tests, even when the
optimum is not reached. Experiments on the other case studies are proposed
in Appendix E.2. Similar results are also observed.

Scalability

This experiment deals with the scalability of the CP model in function of
the decision time. We observed that setting the decision time to 10 minutes
instead of 3 minutes does not significantly increase the performances. The
gain of the improvement ratio is less than 1% for 60 random instances on a
homogeneous traffic of 5,10,15,20,25 or 30 trains on Courtrai (10 instances
per configuration). We can then conclude that even if the CP approach

86 CHAPTER 5. FLUIDITY MAXIMISATION

gives a feasible and competitive solution within 3 minutes, the quality of the
solution does not increase significantly with time.

Criticality

In some cases, railway operators do not have an available decision time of
180 seconds, they have to react almost instantly because of the criticality
of the situation. For this reason, we analysed how the CP model performs
with a tiny decision time (10 seconds). To do so, we recorded the number of
experiments where the CP approach has improved the solution in comparison
to FCFS and HDFS strategies. For the scenarios depicted in Table 5.3, we
observed that CP provides a same or better solution in more than 99% of
the cases and can then also be used to deal with critical situations.

Reproducibility

A shortcoming in the literature about this field of research is the lack of
reproducibility. To overcome this lack, we decided to provide information
about our instances and the tests performed. To do so, we submitted our
problem to CSPLIB [GW99], an open-source library of test problems for
constraint solvers. It is indexed as Problem 78. The information provided
are enough to build a model, perform experiments and to compare them with
ours.

5.6 Future Work

Possibilities of future work are multiple. First, the model proposed in this
section can be improved in order to reflect more accurately the situation. For
instance, speed of trains can vary according its position in the station. It is
the case when the train is in front of a signal, where it must brake. The fact
that trains can occupy several track segments at the same time can also be
considered. Such improvements will give a better representation of the real
situation and will then reduce the gap between the solution obtained and its
practical use. Defining a suitable and pertinent improvement metric for the
heterogeneous case is also an open question.

Secondly, the model is based under the assumption that complete and
accurate information is provided. However, it might not be the case. For

5.7. SUMMARY 87

instance, we are not always sure at what time a train will exactly arrive to
the station. This is especially true when a large horizon of time is considered.
Instead, the estimated arrival time can be expressed with a normal probability
distribution. It is also possible that new unexpected events occur meanwhile
(obstruction of tracks, failure of a component, etc.). This stochastic nature
of the problem raises new challenges: how can we build robust schedules (i.e.
slight deviations from the schedule would not generate important differences)
? how to deal with new information ? how re-optimisation can be done once
the information become more precise ? how can we change the model on the
fly when some routes become unusable ?

Answering to such questions is not trivial but is of a great interest for
practical uses. One idea for dealing with re-optimisation is to use perturba-
tive methods for recomputing new solutions from the first solution obtained.
For instance, it can be done using Constraint Based Local Search (CBLS)
[VHM09].

Finally, the area considered for the optimisation is limited to a single sta-
tion. Considering areas covering several stations and analysing the scalability
of the approach will also be a great step forward and is a natural follow up
of this work.

5.7 Summary

Railway operators must deal with the problem of rescheduling the railway
traffic in case of real time perturbations in the network. However, the system-
atic and greedy strategies (FCFS, HDFS and HPFS) currently used for this
purpose often give a suboptimal decision. We addressed this issue by propos-
ing a CP model for rescheduling the railway traffic on real time situations.
The modelling is based on the recently introduced time-interval variables.
Such a structure allows to design the model elegantly with variables and
global constraints especially dedicated for scheduling. Finally, an objective
function taking into account the heterogeneity of the traffic is proposed. Ex-
periments have shown that a dispatching better than the classical approaches
is obtained in less than three minutes in almost all the situations that can
occur in a large station, even when the optimum is not reached.

Chapter 6
Conclusion

“In literature and in life we ultimately pursue, not conclusions,
but beginnings.”

–Sam Tanenhaus

Nowadays, many countries must deal with the huge development of railway
systems. The number of trains, the number of tracks, the complexity of
networks have become so important that classical methods ensuring proper
operations do not suit anymore. In this context, the development of new
methods, more adapted to the current situation, is crucial. It is the problem-
atic addressed by this thesis. The research goal was to design and develop
innovative methods in order to ensure the safety, the availability and the
fluidity of the railway traffic. To do so, three main contributions have been
proposed.

Firstly, Chapter 3 presented how the safety of an interlocking can be
efficiently verified. State of the arts methods dealing with the automatic veri-
fication of interlocking systems suffer from the state space explosion problem.
We proposed to use our knowledge of the railway field in order to accelerate
the verification. The contribution is a problem reduction property which
can be used for reducing the state space and then speed up the verification
provided that a constraint of monotonicity hold. As we saw, this constraint
is satisfied in practical situations. Furthermore, we designed a polynomial
algorithm, based on this proof, in order to verify application data expressed in
SSI. The validity of this method has been corroborated empirically by the suc-
cessful detection of several errors that were introduced in the application data.

Secondly, Chapter 4 has introduced how the availability of the traffic can
be ensured. Besides the safety, a correct interlocking must also prevent trains
from being locked in the station because of improper interlocking operations.
It will directly ensure the progression of each train in the network. To do so,

89

90 CHAPTER 6. CONCLUSION

a complete and automated approach is proposed. The contribution is a model
reflecting the behaviour of an interlocking which can be simulated and then
verified using Statistical Model Checking. Although the verification is not
exhaustive as for the safety, Statistical Model Checking can give a parametris-
able level of confidence on the correctness of the system which is sufficient
for the verification of availability. As in Chapter 3, this approach has also
been validated empirically by the successful detection of several introduced
errors. Beyond the verification of availability, this approach can be considered
as a general framework for verifying properties related to interlocking systems.

Finally, Chapter 5 has tackled the fluidity aspect which is beyond the
interlocking scope. When safety and availability are ensured, the next step
is to do the best for providing a traffic having the least delay as possible.
Railway operators must deal with the problem of rescheduling the railway
traffic in case of real time perturbations in the network. However, the sys-
tematic and greedy strategies currently used often give a suboptimal decision.
The contribution is a Constraint Programming model for rescheduling the
railway traffic on real time situations. The modelling is based on the recently
introduced time-interval variables. Experiments have shown that a dynamic
rescheduling, better than the classical approaches, is obtained in less than
three minutes in almost all the situations that can occur in a large station,
even when the optimum is not reached.

The aforementioned contributions led to four scientific papers [CLSL15,
CS16, CLS+17, CS17] that have been published and presented in international
conferences. To conclude, let us finally notice that all the work done in this
thesis is still in its early stage. Ideas and approaches have been proposed
and validated, prototypes have been implemented, possibilities of future
work have been stated but the ultimate goal pursued is the integration of
these methods into a framework which can be plugged with the existing
infrastructure and then be used in practice. New questions may raise and
new aspects should certainly be considered. Such an integration is then a
natural follow up of this work but is resorts more to the engineering science.
The other main challenge is analysing the scalability of the approaches and
to adapt them to larger areas covering several interlockings or stations.

Appendix A
Inograms Project

Railway operators are faced with competition from road, air, waterway and
maritime transport. They need to improve in terms of the globalisation of
traffic and the interoperability between operators and infrastructures which
are known to be more complex than in other modes.

The ERTMS standard, developed by Europe to meet this requirement,
is spreading throughout the world, throwing a spotlight on a demand for
evolution towards new functionalities and on the risk of an emergence of
extra-European competition in the sector. Inograms is an industrial research
project which aims to explore new technological avenues to meet the needs
of extra-European ERTMS markets, offering the new functionalities and
significant cost reductions which are necessary to protect the competitiveness
of products developed in Wallonia.

Inograms encompasses research activities in the fields of systems engi-
neering, information processing, and control-command systems. It supports
ERTMS in becoming accepted as the only standardised international system
guaranteeing interoperability between manufacturers. It then contributes
to improving the recognised position of Wallonia as a centre of excellence
in ERTMS and assist Wallonia’s industry in dealing with competition from
outside Europe stimulated by the growth of ERTMS in extra-European
markets. Given the large scope of this project, it is divided into seven work
package, each of them being dedicated to a particular aspect of railway
transportation, such as interlockings (WP1), systems engineering (WP2),
energy harvesting (WP3), data processing (WP4), track activity monitoring
(WP5), hybridisation of technologies (WP6) and automatic train operation
(WP7).

This description is slightly adapted from the official description of the
project, issued by Logistic in Wallonia Cluster.

91

Appendix B
Case Studies

B.1 Namêche (Belgium)

Namêche is a station in Belgium located near Namur in Wallonia. It is a
small station, composed of 4 tracks, 13 tracks segments, 7 points, 7 signals,
14 routes, 7 immobilisation zones and 26 subroutes. There is no bidirectional
locking. It is controlled by a single interlocking.

CXM

FM

GM

GYM

046

045

044

043

423

425

424

CM

KM

KXM

306
Joint

Track/Platform number

Signal

Immobilisation Zone

U_IR(09M)U_IR(02BM)U_IR(01AM)

U_IR(02AM) U_IR(04BM)

U_IR(03M)

U_IR(01BM)

Figure B.1. Layout of Namêche.

93

94 APPENDIX B. CASE STUDIES

B.2 Braine l’Alleud (Belgium)

Braine l’Alleud is a medium sized station located in the center of Belgium in
Wallonia. It is located on the direct line between Charleroi and Brussels. It is
composed of 4 tracks, 17 track segments, 12 points, 12 signals, 32 routes, 10
immobilisation zones, 48 subroutes and 4 bidirectional locking mechanisms.
As Namêche, it is fully controlled by a single interlocking.

011
Joint
Track/Platform number

Signal

091

092

011

012

DXC

EC IC

CC

CGC

CXC

JC KXC

KCJXCDC

FC

101

102

103

104

P_07AC P_08BC

P_07BC P_08AC
P_09C

P_10C
T_10C

U_IR(10C)

U_IR(08BC)

Immobilisation Zone

20C

19C

U_BSIA U_BSIB
Bidirectional Locking

Platform

T_09C

T_08BC
T_101

T_102

T_103

T_104
U_IR(09C)

Figure B.2. Layout of Braine l’Alleud.

B.3. COURTRAI (BELGIUM) 95

B.3 Courtrai (Belgium)

Courtrai, or Kortrijk, is a large Belgian station located in the Flemish province
of West Flanders. The station is split into three zones (LK6, LK7 and LK8)
controlled each by a different interlocking. The three interlockings commu-
nicate together in order to share information about the station state. Only
LK7 is considered here. This area is composed of 6 tracks, 19 track segments,
26 points, 24 signals (14 of them are fictive), 70 routes, 10 immobilisation
zones and 72 subroutes. There are 4 bidirectional locking mechanisms shared
with other zones but none only defined in LK7. Unlike Namêche and Braine
l’Alleud, Courtrai has full paths. There are 96 full paths, which are composed
of at most 2 different routes.

306Joint Track/Platform number

Signal

Immobilisation Zone

Bidirectional LockingFictive signal

Single junction point

Double junction point

208

207

206

205

204

203

305

306

307

308

U_IR(23BD) U_IR(12BD)

U_IR(25BD) U_IR(13BD)

U_IR(26BD) U_IR(14BD)

U_IR(27BD) U_IR(15BD)

U_IR(41D)

U_BSIA U_BSIB

EXD

ED

FD

GD

HD

ID

MD

MXD

OD

OXD

f_3D_A f_3D_B

Figure B.3. Layout of Courtrai.

Appendix C
Application Data Grammars

C.1 Structure Definition

Grammar C.1 (Variables, values and expressions in SSI).

〈route〉 ::= R_〈id〉_〈id〉

〈subroute〉 ::= U_〈id〉_〈id〉

〈track_segment〉 ::= T_〈id〉

〈immobilisation_zone〉 ::= U_IR
(
〈id〉

)
〈point〉 ::= P_〈id〉

〈signal〉 ::= S_〈id〉

〈bidirectional_locking〉 ::= U_BSI(A|B)
(
〈id〉

)
〈variable〉 ::= 〈route〉 | 〈subroute〉 | 〈immobilisation_zone〉

| 〈track_segment〉 | 〈bidirectional_locking〉 |
〈point〉 | 〈signal〉

〈value〉 ::= f | l | s | xs | c | o | cfn | cfr | cn | cr | cdn
| cdr | stop | proceed

〈condition〉 ::= 〈variable〉 〈value〉

〈assignment〉 ::= 〈variable〉 〈value〉

Where 〈id〉 can be any string.

97

98 APPENDIX C. APPLICATION DATA GRAMMARS

C.2 PRR File

It defines the conditions that must be satisfied for granting a route command.
The actions that the interlocking must perform when the request is accepted
are also defined inside.

Grammar C.2 (PRR File).

〈PRR〉 ::= {〈route_request〉}

〈route_request〉 ::= Q*
(
〈route〉

)
if {〈condition〉}
then {〈assignment〉}
[〈UBSI_expression〉]

〈UBSI_expression〉 ::= if 〈bidirectional_locking〉 f
then 〈bidirectional_locking〉 l

C.3. PFM FILE 99

C.3 PFM File

It includes all the conditions that must be ensured before moving a point to
its normal or its reverse position.

Grammar C.3 (PFM File).

〈PFM 〉 ::= {〈point_request〉}

〈point_request〉 ::= *〈point〉N 〈condition〉
*〈point〉R 〈condition〉

100 APPENDIX C. APPLICATION DATA GRAMMARS

C.4 FOP File

It defines the necessary conditions for releasing components.

Grammar C.4 (FOP File).

〈FOP〉 ::= {〈subroute_release〉 | 〈UIR_release〉 |
〈UBSI_release〉}

〈subroute_release〉 ::= 〈subroute〉 f if 〈condition〉

〈UIR_release〉 ::= if 〈immobilisation_zone〉 l
then if 〈condition〉

then 〈assignment〉

〈UBSI_release〉 ::= 〈bidirectional_locking〉 f if 〈condition〉

C.5. OPT FILE 101

C.5 OPT File

It contains the outputs of the interlocking, as the description of the life cycle
of a route from their command to their releasing. It is used to know when
the start signal of a route can be set at a proceed state.

Grammar C.5 (OPT File).

〈OPT 〉 ::= {〈route_life_step〉}

〈route_life_step〉 ::= if 〈condition〉
then 〈assignment〉
else 〈assignment〉

Appendix D
Application Data Errors

D.1 Wrong Position for a Point

Namêche

1 *Q_R(GYM_423)
2 if (...)
3 then R_GYM_423 s,
4 P_01BM cr P_01BM cn,
5 P_03M cr , P_01AM cr , (...)

Listing D.8. Point moved in a wrong position when commanding Route R_GYM_423.

Braine l’Alleud

1 *Q_R(DC_091)
2 if (...)
3 then R_DC_091 s,
4 P_01AC cr , P_01BC cr , P_02BC cr ,
5 P_02AC cr P_02AC cn, (...)

Listing D.9. Point moved in a wrong position when commanding Route R_DC_091.

Courtrai

1 *Q_R (7 D_3D)
2 if (...)
3 then R_7D_3D s,
4 P_12BD cn , P_13BD cn ,
5 P_13AD cn P_13AD cr, (...)

Listing D.10. Point moved in a wrong position when commanding Route R_7D_3D.

103

104 APPENDIX D. APPLICATION DATA ERRORS

D.2 Subroute not Properly Locked

Namêche

1 *Q_R(KM_045)
2 if (...)
3 then R_KM_045 s
4 P_01AM cr , P_02BM cr , P_04AM cr ,
5 P_04BM cr , P_01BM cr , P_02AM cr
6 U_IR (01 AM) l, U_IR (02 BM) l, U_IR (04 BM) l,
7 U_KM_07M l, U_07M_04M l, U_04M_CM l

Listing D.11. Subroute not properly locked when commanding Route R_KM_045.

Braine l’Alleud

1 *Q_R(CXC_102)
2 if (...)
3 then R_CXC_102 s,
4 P_03C cr ,
5 P_01BC cn , P_02AC cn ,
6 P_02BC cn , P_01AC cn ,
7 U_IR (01 BC) l, U_IR (02 BC) l,
8 U_CXC_13C l, U_13C_DXC l

Listing D.12. Subroute not properly locked when commanding Route R_CXC_102.

Courtrai

1 *Q_R (4 D_307)
2 if (...)
3 then R_4D_307 s,
4 P_25BD cn , P_26AD cn ,
5 P_25AD cn , P_26BD cn ,
6 U_IR (25 BD) l,
7 U_4D_MXD l

Listing D.13. Subroute not properly locked when commanding Route R_4D_307.

D.3. MISSING CONDITIONS FOR RELEASING A SUBROUTE 105

D.3 Missing Conditions for Releasing a Subroute

Namêche

1 U_02M_KXM f if
2 U_09M_02M f,
3 T_02AM c

Listing D.14. Missing conditions for releasing Subroute U_02M_KXM.

Braine l’Alleud

1 U_18C_KXC f if
2 U_16C_18C f, U_JC_18C f,
3 T_09C c

Listing D.15. Missing conditions for releasing Subroute U_18C_KXC.

Courtrai

1 U_26D_5D f if
2 U_23D_26D f,
3 U_MD_26D f,
4 U_MXD_26D f,
5 T_26BD c

Listing D.16. Missing conditions for releasing Subroute U_26D_5D.

106 APPENDIX D. APPLICATION DATA ERRORS

D.4 Missing Conditions on a Route Command

Namêche

1 *Q_R(GM_044)
2 if R_GM_044 xs
3 P_01AM cfn , P_01BM cfn , P_03M cfn ,
4 U_IR(01AM) f, U_IR(01BM) f
5 then (...)

Listing D.17. Missing conditions for commanding Route R_GM_044.

Braine l’Alleud

1 *Q_R(JXC_011)
2 if R_JXC_011 xs
3 P_07AC cfn , P_07BC cfn , P_09C cfn ,
4 P_08AC cfn , P_08BC cfn ,
5 U_IR(07AC) f, U_IR(07BC) f, U_IR(09C) f
6 then (...)

Listing D.18. Missing conditions for commanding Route R_JXC_011.

Courtrai

1 *Q_R (12 D_203)
2 if R_12D_203 xs
3 P_12BD cfr , P_13AD cfr , P_13BD cfr ,
4 P_14AD cfr , P_14BD cfr ,
5 P_15AD cfn , P_15BD cfn ,
6 U_IR(12BD) f, U_IR(13BD) f, U_IR(14BD) f
7 then (...)

Listing D.19. Missing conditions for commanding Route R_12D_203.

D.5. ADDITIONAL CONDITIONS FOR RELEASING A COMPONENT 107

D.5 Additional Conditions for Releasing a Component

Namêche

1 U_09M_07M f if
2 U_CXM_09M f,
3 U_07M_KM f,
4 T_02BM c,
5 T_01AM o

Listing D.20. Additional conditions for releasing Subroute U_09M_07M.

Braine l’Alleud

1 U_JXC_17C f if
2 R_JXC_012 xs ,
3 U_IR(07AC) f,
4 T_07AC c

Listing D.21. Additional conditions for releasing Subroute U_JXC_17C.

Courtrai

1 U_ED_14D f if
2 R_ED_12D xs , R_ED_3D xs , R_ED_4D xs ,
3 U_14D_EXD f,
4 T_15BD c, T_14BD c

Listing D.22. Additional conditions for releasing Subroute U_ED_14D.

108 APPENDIX D. APPLICATION DATA ERRORS

D.6 Bidirectional Locking not Properly Locked

Namêche

There is no bidirectional locking in Namêche.

Braine l’Alleud

1 *Q_R(KC_102)
2 if (...)
3 then R_KC_102 s
4 P_07BC cr , P_08AC cr , P_08BC cr , P_07AC cr ,
5 P_09C cn ,
6 U_IR (07 BC) l, U_IR (08 BC) l, U_IR (09C) l,
7 U_KC_19C l, U_19C_18C l, U_18C_JC l,
8 if U_BSIA(102) f then U_BSIB(102) l

Listing D.23. Bidirectional locking not properly locked when commanding Route
R_KC_102.

Courtrai

There is no bidirectional locking in Section LK7 of Courtrai.

D.7. INCONSISTENCY IN ROUTE PROVING 109

D.7 Inconsistency in Route Proving

Namêche

1 * R_KM_045
2 P_01AM cdr , P_02BM cdr , P_04AM cdr ,
3 P_04BM cdr P_04BM cdn,
4 U_IR (01 AM) l, U_IR (02 BM) l, U_IR (04 BM) l
5 T_01AM c, T_02BM c, T_04BM c
6 (...)

Listing D.24. Inconsistency in the proving of Route R_KM_045.

Braine l’Alleud

1 * R_CXC_101
2 P_01BC cdn ,
3 P_02AC cdr P_02AC cdn,
4 U_IR (01 BC) l,
5 U_BSIB (101) f,
6 T_01BC c, T_101 c,
7 (...)

Listing D.25. Inconsistency in the proving of Route R_CXC_101.

Courtrai

1 * R_MD_3D
2 P_23BD cdn , P_25AD cdn P_25AD cdr,
3 U_IR (23 BD) l,
4 T_23BD c
5 (...)

Listing D.26. Inconsistency in the proving of Route R_MD_3D.

Appendix E
Benchmarks

E.1 Homogeneous Traffic

E.1.1 Namêche

Average Delay (min.) Improvement Ratio (%) POS OPT
trains FCFS HDFS CP Mean Min Max (x/100) (x/100)

Horizon of two hours
5 38.88 40.27 31.22 19.70 0.00 100.00 100 100
10 236.49 238.54 182.49 22.83 3.29 55.92 100 100
15 649.56 642.07 486.86 24.18 5.98 56.19 100 100
20 1206.16 1190.51 925.18 22.29 7.19 44.05 100 91
25 2155.13 2122.59 1656.8 21.94 10.07 37.28 100 18
30 3075.02 3039.92 2400.56 21.03 10.06 35.89 100 0

Horizon of one hour
5 59.07 61.47 47.32 19.89 0.00 100.00 100 100
10 313.43 316.37 247.05 21.18 3.78 73.21 100 100
15 755.45 758.97 596.44 21.05 4.65 53.10 100 100
20 1404.53 1396.52 1122.44 19.63 7.20 28.53 100 87
25 2425.92 2407.15 1909.55 20.67 8.481 31.51 100 9
30 3487.68 3414.48 2766.43 18.98 6.84 31.37 100 0

Horizon of 30 minutes
5 65.44 65.85 50.74 22.46 2.17 100.00 100 100
10 334.14 335.24 264.69 20.78 2.44 44.54 100 100
15 818.71 819.57 641.92 21.59 5.97 40.40 100 99
20 1543.83 1554.92 1220.98 20.91 5.47 34.67 100 88
25 2457.18 2469.57 1957.49 20.34 8.36 31.30 100 7
30 3649.87 3659.01 2917.92 20.05 7.30 33.10 100 0

Table E.1. Comparison between CP and classical scheduling approaches for a homogeneous
traffic with a decision time of 3 minutes on Namêche.

111

112 APPENDIX E. BENCHMARKS

E.1.2 Braine l’Alleud

Average Delay (min.) Improvement Ratio (%) POS OPT
trains FCFS HDFS CP Mean Min Max (x/100) (x/100)

Horizon of two hours
5 32.16 33.74 27.68 13.93 0.00 100.00 100 100
10 199.20 200.80 152.02 23.68 4.55 50.64 100 100
15 555.21 550.43 412.35 25.09 6.58 43.23 100 100
20 1091.13 1103.64 822.69 24.60 8.76 44.29 100 76
25 2021.35 2003.00 1511.57 24.53 9.41 40.86 100 2
30 2945.43 2921.32 2200.76 24.67 7.75 37.32 100 0

Horizon of one hour
5 51.47 51.59 40.41 21.49 0.00 100.00 100 100
10 275.09 282.21 216.44 21.32 3.12 60.00 100 100
15 711.54 718.07 542.06 23.82 3.60 46.44 100 100
20 1325.53 1336.11 1003.9 24.26 5.77 45.37 100 30
25 2210.68 2243.30 1709.52 22.67 2.36 37.70 100 0
30 3255.52 3254.38 2509.98 22.87 0.53 36.65 100 0

Horizon of 30 minutes
5 56.82 57.48 43.88 22.77 0.00 100.00 100 100
10 290.51 302.48 227.44 21.71 3.83 43.79 100 100
15 762.12 779.67 583.13 23.49 -2.91 45.10 99 99
20 1450.54 1474.12 1107.54 23.65 5.72 47.42 100 46
25 2337.98 2369.70 1797.85 23.10 -1.11 38.71 99 0
30 3494.44 3540.45 2709.84 22.45 6.63 33.78 100 0

Table E.2. Comparison between CP and classical scheduling approaches for a homogeneous
traffic with a decision time of 3 minutes on Braine l’Alleud.

E.1. HOMOGENEOUS TRAFFIC 113

E.1.3 Courtrai

Average Delay (min.) Improvement Ratio (%) POS OPT
trains FCFS HDFS CP Mean Min Max (x/100) (x/100)

Horizon of two hours
5 192.06 191.10 148.91 22.08 -7.69 100.00 99 97
10 800.40 797.82 575.04 27.92 5.13 66.08 100 85
15 1917.95 1896.64 1341.53 29.27 1.16 58.549 100 28
20 3457.45 3397.03 2414.45 28.92 10.26 53.29 100 0
25 5581.10 5632.69 3993.04 28.45 8.58 48.37 100 0
30 8004.84 8018.76 5714.69 28.61 14.35 43.61 100 0

Horizon of one hour
5 225.36 228.75 172.06 23.65 0.71 100.00 100 96
10 911.01 906.32 664.18 26.72 3.96 62.41 100 83
15 2128.34 2104.95 1494.67 28.99 5.93 51.29 100 17
20 3675.72 3680.00 2612.6 28.92 8.25 55.86 100 1
25 5971.54 6004.81 4246.55 28.89 9.41 53.67 100 0
30 8595.56 8576.92 6085.51 29.05 7.89 45.51 100 0

Horizon of 30 minutes
5 231.16 229.06 173.95 24.06 1.49 100.00 100 94
10 950.30 929.71 692.18 25.55 3.12 64.32 100 83
15 2145.36 2161.20 1535.86 28.41 7.927 51.61 100 14
20 3858.67 3888.29 2728.0 29.30 6.63 52.50 100 0
25 6137.02 6135.59 4320.14 29.59 7.75 53.38 100 0
30 8863.49 8775.84 6357.08 27.56 8.72 49.08 100 0

Table E.3. Comparison between CP and classical scheduling approaches for a homogeneous
traffic with a decision time of 3 minutes on Courtrai.

114 APPENDIX E. BENCHMARKS

E.2 Heterogeneous Traffic

E.2.1 Namêche

POS OPT POS OPT POS OPT
trains (x/100) (x/100) (x/100) (x/100) (x/100) (x/100)

Two hours One hour 30 minutes
5 100 100 100 100 100 100
10 100 100 99 100 100 100
15 100 100 100 97 100 98
20 100 96 100 83 100 92
25 100 61 100 67 100 65
30 100 31 100 38 100 21

Table E.4. Comparison between CP and HPFS approach for a heterogeneous traffic with a
decision time of 3 minutes for Namêche.

E.2. HETEROGENEOUS TRAFFIC 115

E.2.2 Braine l’Alleud

POS OPT POS OPT POS OPT
trains (x/100) (x/100) (x/100) (x/100) (x/100) (x/100)

Two hours One hour 30 minutes
5 100 100 100 100 100 100
10 100 100 100 100 100 100
15 99 98 99 99 98 98
20 100 86 99 81 97 83
25 99 45 98 48 98 52
30 99 36 99 28 98 25

Table E.5. Comparison between CP and HPFS approach for a heterogeneous traffic with a
decision time of 3 minutes for Braine l’Alleud.

116 APPENDIX E. BENCHMARKS

E.2.3 Courtrai

POS OPT POS OPT POS OPT
trains (x/100) (x/100) (x/100) (x/100) (x/100) (x/100)

Two hours One hour 30 minutes
5 100 99 100 99 100 99
10 98 87 99 89 99 87
15 100 64 100 75 100 75
20 100 51 100 51 100 52
25 100 13 100 22 100 26
30 100 5 100 8 100 7

Table E.6. Comparison between CP and HPFS approach for a heterogeneous traffic with a
decision time of 3 minutes for Courtrai.

Bibliography

[AA08] Mare Antoni and Nadia Ammad, Formal Validation Method
and Tools for French Computerized Railway Interlocking Sys-
tems, Railway Condition Monitoring, 2008 4th IET Interna-
tional Conference on, IET, 2008, pp. 1–10.

[ABF+16] Alexandre Arnold, Massimo Baleani, Alberto Ferrari, Marco
Marazza, Valerio Senni, Axel Legay, Jean Quilbeuf, and
Christoph Etzien, An Application of SMC to Continuous Vali-
dation of Heterogeneous Systems, Proceedings of the 9th EAI
International Conference on Simulation Tools and Techniques,
ICST (Institute for Computer Sciences, Social-Informatics and
Telecommunications Engineering), 2016, pp. 76–85.

[ABH+97] Rajeev Alur, Robert K. Brayton, Thomas A. Henzinger, Shaz
Qadeer, and Sriram K. Rajamani, Partial-Order Reduction in
Symbolic State Space Exploration, International Conference on
Computer Aided Verification, Springer, 1997, pp. 340–351.

[AD94] Rajeev Alur and David L. Dill, A Theory of Timed Automata,
Theoretical Computer Science 126 (1994), no. 2, 183–235.

[AIM+96] A. M. Amendola, L. Impagliazzo, P. Marmo, G. Mongardi,
G. Sartore, and A. Trasporti, Architecture and Safety Require-
ments of the ACC Railway Interlocking System, Proceedings of
IEEE International Computer Performance and Dependability
Symposium, Sep 1996, pp. 21–29.

[All83] James F. Allen, Maintaining Knowledge about Temporal Inter-
vals, Communications of the ACM 26 (1983), no. 11, 832–843.

117

118 BIBLIOGRAPHY

[Anu09] S. V. Anunchai, Verification of Railway Interlocking Tables
using Coloured Pertri Nets, Proceedings of the 10th Workshop
and Tutorial on Practical Use of Coloured Petri Nets and the
CPN Tools, 2009.

[AO08] Paul Ammann and Jeff Offutt, Introduction to Software Test-
ing, Cambridge University Press, 2008.

[AV13] Robert Abo and Laurent Voisin, Data Formal Validation of
Railway Safety-Related Systems: Implementing the OVADO
Tool, Towards a Formal Methods Body of Knowledge for Rail-
way Control and Safety Systems (2013), 27.

[AWNO85] Katsuji Akita, Toshikatsu Watanabe, Hideo Nakamura, and
Ikumasa Okumura, Computerized Interlocking System for Rail-
way Signaling Control: SMILE, IEEE Transactions on Industry
applications (1985), no. 3, 826–834.

[BBB+10] Ananda Basu, Saddek Bensalem, Marius Bozga, Benoît Cail-
laud, Benoît Delahaye, and Axel Legay, Statistical Abstraction
and Model-Checking of Large Heterogeneous Systems, Formal
Techniques for Distributed Systems, Springer, 2010, pp. 32–46.

[BBR07] Jiri Barnat, Lubos Brim, and Petr Rockai, Scalable Multi-core
LTL Model-Checking, SPIN, vol. 7, Springer, 2007, pp. 187–
203.

[BBS86] Lenore Blum, Manuel Blum, and Mike Shub, A Simple Unpre-
dictable Pseudo-Random Number Generator, SIAM Journal on
Computing 15 (1986), no. 2, 364–383.

[BC07] Roman Barták and Ondrej Cepek, Temporal Networks with
Alternatives: Complexity and Model, FLAIRS Conference,
2007, pp. 641–646.

[BCL+15] Simon Busard, Quentin Cappart, Christophe Limbrée, Charles
Pecheur, and Pierre Schaus, Verification of railway interlocking
systems, Proceedings 4th International Workshop on Engineer-
ing Safety and Security Systems, vol. 184, 2015, p. 19.

[BCLS13] Benoît Boyer, Kevin Corre, Axel Legay, and Sean Sed-
wards, PLASMA-Lab: A Flexible, Distributable Statistical

BIBLIOGRAPHY 119

Model Checking Library, Quantitative Evaluation of Systems,
Springer, 2013, pp. 160–164.

[BDBK09] David C Black, Jack Donovan, Bill Bunton, and Anna Keist,
SystemC: From the Ground Up, vol. 71, Springer Science &
Business Media, 2009.

[BDCBVL04] Edmund K. Burke, Patrick De Causmaecker, Greet Vanden
Berghe, and Hendrik Van Landeghem, The State of the Art
of Nurse Rostering, Journal of Scheduling 7 (2004), no. 6,
441–499.

[BDM+98] Marius Bozga, Conrado Daws, Oded Maler, Alfredo Oliv-
ero, Stavros Tripakis, and Sergio Yovine, Kronos: A Model-
Checking Tool for Real-time Systems, International Symposium
on Formal Techniques in Real-Time and Fault-Tolerant Sys-
tems, Springer, 1998, pp. 298–302.

[BF99] J. Christopher Beck and Mark S. Fox, Scheduling Alternative
Activities, AAAI/IAAI, Citeseer, 1999, pp. 680–687.

[BL05] Michael Butler and Michael Leuschel, Combining CSP and B
for Specification and Property Verification, FM 2005: Formal
Methods, Springer, 2005, pp. 221–236.

[BLPN12] Philippe Baptiste, Claude Le Pape, and Wim Nuijten,
Constraint-Based Scheduling: Applying Constraint Program-
ming to Scheduling Problems, vol. 39, Springer Science &
Business Media, 2012.

[Bor12] Stephen P. Borgatti, Social Network Analysis, Two-Mode Con-
cepts in, Computational Complexity, Springer, 2012, pp. 2912–
2924.

[BP13] Simon Busard and Charles Pecheur, PyNuSMV: NuSMV as a
Python Library, Nasa Formal Methods, Springer, 2013, pp. 453–
458.

[BSR10] Roman Barták, Miguel A. Salido, and Francesca Rossi, New
Trends in Constraint Satisfaction, Planning, and Scheduling: A
Survey, The Knowledge Engineering Review 25 (2010), no. 03,
249–279.

120 BIBLIOGRAPHY

[BSST09] Clark W. Barrett, Roberto Sebastiani, Sanjit A. Seshia, and
Cesare Tinelli, Satisfiability Modulo Theories, Handbook of
Satisfiability 185 (2009), 825–885.

[BY04] Johan Bengtsson and Wang Yi, Timed Automata: Semantics,
Algorithms and Tools, Lecture Notes in Computer Science
3098 (2004), 87–124.

[CC97] Sérgio Campos and Edmund Clarke, The Verus Language:
Representing Time Efficiently With BDDs, Transformation-
Based Reactive Systems Development, Springer, 1997, pp. 64–
78.

[CCGR00] Alessandro Cimatti, Edmund Clarke, Fausto Giunchiglia, and
Marco Roveri, NuSMV: A New Symbolic Model Checker, In-
ternational Journal on Software Tools for Technology Transfer
2 (2000), no. 4, 410–425.

[CDL10] Edmund Clarke, Alexandre Donzé, and Axel Legay, On
Simulation-Based Probabilistic Model Checking of Mixed-
Analog Circuits, Formal Methods in System Design 36 (2010),
no. 2, 97–113.

[CEN01] CENELEC, EN. 50128: Railway applications-Communication,
Signaling and Processing Systems-Software for Railway Control
and Protection Systems, 2001.

[CEN03] CENELEC, EN. 50129: Railway application–Communications,
Signaling and Processing Systems–Safety Related Electronic
Systems for Signaling, 2003.

[CFL+08] Edmund M. Clarke, James R. Faeder, Christopher J. Lang-
mead, Leonard A. Harris, Sumit Kumar Jha, and Axel Legay,
Statistical Model Checking in BioLab: Applications to the
Automated Analysis of T-Cell Receptor Signaling Pathway,
Computational Methods in Systems Biology, Springer, 2008,
pp. 231–250.

[CGD09] Francesco Corman, Rob M. P. Goverde, and Andrea D’Ariano,
Rescheduling Dense Train Traffic Over Complex Station Inter-
locking Areas, Robust and Online Large-Scale Optimization,
Springer, 2009, pp. 369–386.

BIBLIOGRAPHY 121

[CGM+98a] Alessandro Cimatti, Fausto Giunchiglia, Giorgio Mongardi,
Dario Romano, Fernando Torielli, and Paolo Traverso, Formal
Verification of a Railway Interlocking System using Model
Checking, Formal Aspects of Computing 10 (1998), no. 4,
361–380.

[CGM+98b] Alessandro Cimatti, Fausto Giunchiglia, Giorgio Mongardi,
Dario Romano, Fernando Torielli, and Paolo Traverso, Model
Checking Safety Critical Software with SPIN: an Application
to a Railway Interlocking System, Computer Safety, Reliability
and Security (1998), 284–293.

[Che52] Herman Chernoff, A Measure of Asymptotic Efficiency for
Tests of a Hypothesis Based on the Sum of Observations, The
Annals of Mathematical Statistics (1952), 493–507.

[CHK+14] Valentina Cacchiani, Dennis Huisman, Martin Kidd, Leo
Kroon, Paolo Toth, Lucas Veelenturf, and Joris Wagenaar,
An Overview of Recovery Models and Algorithms for Real-
Time Railway Rescheduling, Transportation Research Part B:
Methodological 63 (2014), 15–37.

[Cho56] Noam Chomsky, Three Models for the Description of Language,
Information Theory, IRE Transactions on 2 (1956), no. 3, 113–
124.

[CKNZ12] Edmund M. Clarke, William Klieber, Miloš Nováček, and Paolo
Zuliani, Model Checking and the State Explosion Problem,
Tools for Practical Software Verification, Springer, 2012, pp. 1–
30.

[CLS+17] Quentin Cappart, Christophe Limbrée, Pierre Schaus, Jean
Quilbeuf, Louis-Marie Traonouez, and Axel Legay, Verifica-
tion of Interlocking Systems using Statistical Model Checking,
18th International Symposium on High Assurance Systems
Engineering (HASE), IEEE, 2017, pp. 61–68.

[CLSL15] Quentin Cappart, Christophe Limbrée, Pierre Schaus, and
Axel Legay, Verification by Discrete Simulation of Interlocking
Systems, 29th Annual European Simulation and Modelling
Conference (ESM), 2015, pp. 402–409.

122 BIBLIOGRAPHY

[Cor09] Thomas H. Cormen, Introduction to Algorithms, MIT press,
2009.

[Cri87] A. H. Cribbens, Solid-State Interlocking (SSI): An Integrated
Electronic Signalling System for Mainline Railways, IEE Pro-
ceedings B (Electric Power Applications), vol. 134, IET, 1987,
pp. 148–158.

[CS16] Quentin Cappart and Pierre Schaus, A Dedicated Algorithm for
Verification of Interlocking Systems, International Conference
on Computer Safety, Reliability, and Security, Springer, 2016,
pp. 76–87.

[CS17] Quentin Cappart and Pierre Schaus, Rescheduling Railway
Traffic on Real Time Situations using Time-Interval Vari-
ables, International Conference on AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems, Springer, 2017, pp. 312–327.

[DCPP08] Andrea D’Ariano, Francesco Corman, Dario Pacciarelli, and
Marco Pranzo, Reordering and Local Rerouting Strategies to
Manage Train Traffic in Real Time, Transportation Science
42 (2008), no. 4, 405–419.

[DHK+14] Twan Dollevoet, Dennis Huisman, Leo Kroon, Marie Schmidt,
and Anita Schobel, Delay Management Including Capacities
of Stations, Transportation Science 49 (2014), no. 2, 185–203.

[DHSS12] Twan Dollevoet, Dennis Huisman, Marie Schmidt, and Anita
Schobel, Delay Management with Rerouting of Passengers,
Transportation Science 46 (2012), no. 1, 74–89.

[DMP91] Rina Dechter, Itay Meiri, and Judea Pearl, Temporal Con-
straint Networks, Artificial intelligence 49 (1991), no. 1-3,
61–95.

[DPP07] Andrea D’Ariano, Dario Pacciarelli, and Marco Pranzo, A
Branch and Bound Algorithm for Scheduling Trains in a Rail-
way Network, European Journal of Operational Research 183
(2007), no. 2, 643–657.

BIBLIOGRAPHY 123

[DVCS15] Cyrille Dejemeppe, Sascha Van Cauwelaert, and Pierre Schaus,
The Unary Resource with Transition Times, International Con-
ference on Principles and Practice of Constraint Programming,
Springer, 2015, pp. 89–104.

[Ear70] Jay Earley, An Efficient Context-Free Parsing Algorithm, Com-
munications of the ACM 13 (1970), no. 2, 94–102.

[Eis99] Cindy Eisner, Using Symbolic Model Checking to Verify the
Railway Stations of Hoorn-Kersenboogerd and Heerhugowaard,
Correct Hardware Design and Verification Methods, Springer,
1999, pp. 99–109.

[EL86] Jürgen Eichenauer and Jürgen Lehn, A Non-Linear Congru-
ential Pseudo Random Number Generator, Statistische Hefte
27 (1986), no. 1, 315–326.

[EO+98] James H. Earle, Denise Olsen, et al., Engineering Design
Graphics: AutoCAD Release 14, Addison-Wesley Longman
Publishing Co., Inc., 1998.

[Fay00] Alexander Fay, A Fuzzy Knowledge-Based System for Rail-
way Traffic Control, Engineering Applications of Artificial
Intelligence 13 (2000), no. 6, 719–729.

[FFdS+15] Marcelo Moretti Fioroni, Luiz Augusto G Franzese, Isac Reis
de Santana, Pavel Emmanuel Pereira Lelis, Camila Batista
da Silva, Gustavo Dezem Telles, José Alexandre Sereno Quin-
táns, Fábio Kikuda Maeda, and Rafael Varani, From Farm to
Port: Simulation of the Grain Logistics in Brazil, Proceedings
of the 2015 Winter Simulation Conference, IEEE Press, 2015,
pp. 1936–1947.

[FFF99] Michalis Faloutsos, Petros Faloutsos, and Christos Faloutsos,
On Power-Law Relationships of the Internet Topology, ACM
SIGCOMM Computer Communication Review, vol. 29, ACM,
1999, pp. 251–262.

[FFM13] Alessandro Fantechi, Wan Fokkink, and Angelo Morzenti,
Some Trends in Formal Methods Applications to Railway Sig-
naling, Formal Methods for Industrial Critical Systems: A
Survey of Applications (2013), 61–84.

124 BIBLIOGRAPHY

[FG05] Cormac Flanagan and Patrice Godefroid, Dynamic Partial-
Order Reduction for Model Checking Software, ACM Sigplan
Notices, vol. 40, ACM, 2005, pp. 110–121.

[FLM+14] S. Foglietta, G. Leo, C. Mannino, P. Perticaroli, and M. Pia-
centini, An Optimized, Automatic TMS in Operations in Roma
Tiburtina and Monfalcone Stations, WIT Transactions on The
Built Environment 135 (2014), 635–647.

[For02] Bryan Ford, Packrat Parsing: Simple, Powerful, Lazy, Linear
Time, Functional Pearl, ACM SIGPLAN Notices, vol. 37,
ACM, 2002, pp. 36–47.

[Fre97] Eugene C. Freuder, In Pursuit of the Holy Grail, Constraints
2 (1997), no. 1, 57–61.

[FSK10] Niels Ferguson, Bruce Schneier, and Tadayoshi Kohno, Cryp-
tography Engineering, John Wiley & Sons, 2010.

[Gen06] James E. Gentle, Random Number Generation and Monte
Carlo Methods, Springer Science & Business Media, 2006.

[GHS15a] Steven Gay, Renaud Hartert, and Pierre Schaus, Simple and
Scalable Time-Table Filtering for the Cumulative Constraint,
International Conference on Principles and Practice of Con-
straint Programming, Springer, 2015, pp. 149–157.

[GHS15b] Steven Gay, Renaud Hartert, and Pierre Schaus, Time-Table
Disjunctive Reasoning for the Cumulative Constraint, Interna-
tional Conference on AI and OR Techniques in Constriant Pro-
gramming for Combinatorial Optimization Problems, Springer,
2015, pp. 157–172.

[Gin66] Seymour Ginsburg, The Mathematical Theory of Context Free
Languages, McGraw-Hill Book Company, 1966.

[GR14] George Raymond, Where Are the CENELEC Standards Going
?, IRSE News Issue 203 (2014), 21–23.

[GS05] Radu Grosu and Scott A. Smolka, Monte Carlo Model Check-
ing, Tools and Algorithms for the Construction and Analysis
of Systems, Springer, 2005, pp. 271–286.

BIBLIOGRAPHY 125

[GSA04] Keivan Ghoseiri, Ferenc Szidarovszky, and Mohammad Jawad
Asgharpour, A Multi-Objective Train Scheduling Model and
Solution, Transportation research part B: Methodological 38
(2004), no. 10, 927–952.

[Gus88] John L. Gustafson, Reevaluating Amdahl’s Law, Communica-
tions of the ACM 31 (1988), no. 5, 532–533.

[GW99] Ian P. Gent and Toby Walsh, CSPLib: A Benchmark Library
for Constraints, International Conference on Principles and
Practice of Constraint Programming, Springer, 1999, pp. 480–
481.

[HA11] Alain Hait and Christian Artigues, A Hybrid CP/MILP
Method for Scheduling with Energy Costs, European Journal
of Industrial Engineering 5 (2011), no. 4, 471–489.

[Hei95] Philip Heidelberger, Fast Simulation of Rare Events in Queue-
ing and Reliability Models, ACM Transactions on Modeling
and Computer Simulation (TOMACS) 5 (1995), no. 1, 43–85.

[HGCC+98] Vicky Hartonas-Garmhausen, Sergio Campos, Alessandro
Cimatti, Edmund Clarke, and Fausto Giunchiglia, Verifica-
tion of a Safety-Critical Railway Interlocking System with
Real-Time Constraints, Twenty-Eighth Annual International
Symposium on Fault-Tolerant Computing, IEEE, 1998, pp. 458–
463.

[HK02] Michael Huber and Steve King, Towards an Integrated Model
Checker for Railway Signalling Data, FME 2002: Formal Meth-
ods - Getting IT Right, Springer, 2002, pp. 204–223.

[HKF96] Andrew Higgins, Erhan Kozan, and Luis Ferreira, Optimal
Scheduling of Trains on a Single Line Track, Transportation
Research Part B: Methodological 30 (1996), no. 2, 147–161.

[HKF97] Andrew Higgins, Erhan Kozan, and Luis Ferreira, Heuris-
tic Techniques for Single Line Train Scheduling, Journal of
Heuristics 3 (1997), no. 1, 43–62.

[HKNP06] Andrew Hinton, Marta Kwiatkowska, Gethin Norman, and
David Parker, PRISM: A Tool for Automatic Verification of

126 BIBLIOGRAPHY

Probabilistic Systems, Tools and Algorithms for the Construc-
tion and Analysis of Systems, Springer, 2006, pp. 441–444.

[HNR16] Anne Elisabeth Haxthausen, Hoang Nga Nguyen, and Markus
Roggenbach, Comparing Formal Verification Approaches of
Interlocking Systems, International Conference on Reliabil-
ity, Safety and Security of Railway Systems, Springer, 2016,
pp. 160–177.

[HØ16] Anne E. Haxthausen and Peter H. Østergaard, On the Use of
Static Checking in the Verification of Interlocking Systems, In-
ternational Symposium on Leveraging Applications of Formal
Methods, Springer, 2016, pp. 266–278.

[Hol97] Gerard J. Holzmann, The model checker SPIN, IEEE Trans-
actions on software engineering 23 (1997), no. 5, 279–295.

[Hol06] G. Holzmann, The Design of a Distributed Model Checking
Algorithm for SPIN, 2006.

[HPP13] Anne E. Haxthausen, Jan Peleska, and Ralf Pinger, Applied
Bounded Model Checking for Interlocking System Designs, Soft-
ware Engineering and Formal Methods, Springer, 2013, pp. 205–
220.

[HR04] Michael Huth and Mark Ryan, Logic in Computer Science:
Modelling and Reasoning About Systems, Cambridge University
Press, 2004.

[HS16] Daniel Harabor and Peter J. Stuckey, Rail Capacity Modelling
with Constraint Programming, International Conference on AI
and OR Techniques in Constriant Programming for Combina-
torial Optimization Problems, Springer, 2016, pp. 170–186.

[Hut92] Graham Hutton, Higher-Order Functions for Parsing, J. Funct.
Program. 2 (1992), no. 3, 323–343.

[JBJ08] Mark F. Jentsch, AbuBakr S. Bahaj, and Patrick A.B. James,
Climate Change Future Proofing of Buildings - Generation and
Assessment of Building Simulation Weather Files, Energy and
Buildings 40 (2008), no. 12, 2148–2168.

BIBLIOGRAPHY 127

[JCL+09] Sumit K. Jha, Edmund M. Clarke, Christopher J. Langmead,
Axel Legay, André Platzer, and Paolo Zuliani, A Bayesian Ap-
proach to Model Checking Biological Systems, Computational
Methods in Systems Biology, Springer, 2009, pp. 218–234.

[JLS12] Cyrille Jegourel, Axel Legay, and Sean Sedwards, A Platform
for High Performance Statistical Model Checking–PLASMA,
Tools and Algorithms for the Construction and Analysis of
Systems, Springer, 2012, pp. 498–503.

[JLS13] Cyrille Jegourel, Axel Legay, and Sean Sedwards, Importance
Splitting for Statistical Model Checking Rare Properties, Com-
puter Aided Verification, Springer, 2013, pp. 576–591.

[JLS14] Cyrille Jegourel, Axel Legay, and Sean Sedwards, An Effective
Heuristic for Adaptive Importance Splitting in Statistical Model
Checking, Leveraging Applications of Formal Methods, Verifica-
tion and Validation. Specialized Techniques and Applications,
Springer, 2014, pp. 143–159.

[JSL13] Xianfei Jin, Appa Iyer Sivakumar, and Sing Yong Lim, A
Simulation Based Analysis on Reducing Patient Waiting Time
for Consultation in an Outpatient Eye Clinic, Proceedings of
the 2013 Winter Simulation Conference (WSC), IEEE, 2013,
pp. 2192–2203.

[Kam12] Norihiro Kamide, Bounded Linear-Time Temporal Logic: A
Proof-Theoretic Investigation, Annals of Pure and Applied
Logic 163 (2012), no. 4, 439–466.

[Kar06] Steven T. Karris, Introduction to Simulink with Engineering
Applications, 2006.

[KB14] Wen-Yang Ku and J. Christopher Beck, Revisiting Off-the-
shelf Mixed Integer Programming and Constraint Programming
Models for Job Shop Scheduling, 2014.

[KBK+12] Elena Kelareva, Sebastian Brand, Philip Kilby, Sylvie
Thiébaux, Mark Wallace, et al., CP and MIP Methods for
Ship Scheduling with Time-Varying Draft, ICAPS, 2012.

128 BIBLIOGRAPHY

[Kel01] John R. Kelly, Cryptographically Secure Pseudo Random Num-
ber Generator, August 14 2001, US Patent 6,275,586.

[KLM+98] Robert Kurshan, Vladimir Levin, Marius Minea, Doron Peled,
and Hüsnü Yenigün, Static Partial Order Reduction, Tools
and Algorithms for the Construction and Analysis of Systems
(1998), 345–357.

[Knu98] Donald Knuth, The Art of Computer Programming: Seminu-
merical Algorithms, vol. 2, Addison-Wesley, 1998.

[KTK13] Elena Kelareva, Kevin Tierney, and Philip Kilby, CP Methods
for Scheduling and Routing with Time-Dependent Task Costs,
International Conference on AI and OR Techniques in Constri-
ant Programming for Combinatorial Optimization Problems,
Springer, 2013, pp. 111–127.

[KWG09] Vineet Kahlon, Chao Wang, and Aarti Gupta, Monotonic
Partial Order Reduction: an Optimal Symbolic Partial Order
Reduction Technique, CAV, vol. 9, Springer, 2009, pp. 398–413.

[Lab09] Philippe Laborie, IBM ILOG CP Optimizer for Detailed
Scheduling Illustrated on Three Problems, International Con-
ference on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems, Springer, 2009,
pp. 148–162.

[Lan12] Kevin Lano, The B Language and Method: A Guide to Practi-
cal Formal Development, Springer Science & Business Media,
2012.

[Lap92] Gilbert Laporte, The Vehicle Routing Problem: An Overview
of Exact and Approximate Algorithms, European Journal of
Operational Research 59 (1992), no. 3, 345–358.

[LCPT16] Christophe Limbrée, Quentin Cappart, Charles Pecheur, and
Stefano Tonetta, Verification of Railway Interlocking - Com-
positional Approach with OCRA, Proceedings of the First
International Conference on Reliability, Safety, and Security
of Railway Systems. Modelling, Analysis, Verification, and
Certification (RSSRail), 2016, pp. 134–149.

BIBLIOGRAPHY 129

[LDB10] Axel Legay, Benoît Delahaye, and Saddek Bensalem, Statistical
Model Checking: An Overview, Runtime Verification, Springer,
2010, pp. 122–135.

[LDL+08] Tak Lam, Jianxun Jason Ding, Jyh-Charn Liu, et al., XML
Document Parsing: Operational and Performance Character-
istics, Computer (2008), no. 9, 30–37.

[Liv06] Benjamin Livshits, Improving Software Security with Precise
Static and Runtime Analysis, 2006.

[LL09] Martin Lange and Hans Leiß, To CNF or not to CNF? An
efficient yet Presentable Version of the CYK Algorithm, Infor-
matica Didactica 8 (2009), 2008–2010.

[LM15] Leonardo Lamorgese and Carlo Mannino, An Exact Decompo-
sition Approach for the Real-Time Train Dispatching Problem,
Operations Research 63 (2015), no. 1, 48–64.

[LPY97] Kim G. Larsen, Paul Pettersson, and Wang Yi, UPPAAL
in a Nutshell, International Journal on Software Tools for
Technology Transfer (STTT) 1 (1997), no. 1, 134–152.

[LR08] Philippe Laborie and Jerome Rogerie, Reasoning with Condi-
tional Time-Intervals, FLAIRS Conference, 2008, pp. 555–560.

[LRSV09] Philippe Laborie, Jerome Rogerie, Paul Shaw, and Petr Vilím,
Reasoning with Conditional Time-Intervals Part II: An Alge-
braical Model for Resources, FLAIRS Conference, 2009.

[LW66] Eugene L. Lawler and David E. Wood, Branch-and-Bound
Methods: A Survey, Operations research 14 (1966), no. 4,
699–719.

[MB02] W. Scott Means and Michael A. Bodie, The Book of SAX,
2002.

[McN02] Ian McNeil, An Encyclopedia of the History of Technology,
Routledge, 2002.

130 BIBLIOGRAPHY

[MFH16] Hugo D. Macedo, Alessandro Fantechi, and Anne E. Hax-
thausen, Compositional Verification of Multi-Station Interlock-
ing Systems, International Symposium on Leveraging Applica-
tions of Formal Methods, Springer, 2016, pp. 279–293.

[MN98] Makoto Matsumoto and Takuji Nishimura, Mersenne Twister:
A 623-Dimensionally Equidistributed Uniform Pseudo-Random
Number Generator, ACM Transactions on Modeling and Com-
puter Simulation (TOMACS) 8 (1998), no. 1, 3–30.

[MNR+12a] F. Moler, Hoang Nga Nguyen, Markus Roggenbach, S. A.
Schneider, and Helen Treharne, Combining Event-Based and
State-Based Modelling for Railway Verification, 2012.

[MNR+12b] Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve
Schneider, and Helen Treharne, CSPB Modelling for Railway
Verification: the Double Junction Case Study, Proceedings of
the 12th International Workshop on Automated Verification
of Critical Systems, 2012.

[MNR+12c] Faron Moller, Hoang Nga Nguyen, Markus Roggenbach, Steve
Schneider, and Helen Treharne, Defining and Model Checking
Abstractions of Complex Railway Models Using CSP‖B, Haifa
Verification Conference, Springer, 2012, pp. 193–208.

[MP02] Alessandro Mascis and Dario Pacciarelli, Job-Shop Scheduling
with Blocking and No-wait Constraints, European Journal of
Operational Research 143 (2002), no. 3, 498–517.

[MPO08] Adriaan Moors, Frank Piessens, and Martin Odersky, Parser
Combinators in Scala, 2008.

[MPP05] Michael D. Moffitt, Bart Peintner, and Martha E. Pollack, Aug-
menting Disjunctive Temporal Problems with Finite-Domain
Constraints, Proceedings of the National Conference on Arti-
ficial Intelligence, vol. 20, Menlo Park, CA; Cambridge, MA;
London; AAAI Press; MIT Press; 1999, 2005, p. 1187.

[MV03] Klaus Muller and Tony Vignaux, Simpy: Simulating Systems
in Python, 2003.

BIBLIOGRAPHY 131

[NH04] Andrew Nash and Daniel Huerlimann, Railroad Simulation
using OpenTrack, Computers in Railways IX (2004), 45–54.

[NHSK04] Andrew Nash, Daniel Huerlimann, Jörg Schütte, and
Vasco Paul Krauss, RailML–A Standard Data Interface for
Railroad Applications, Computers in Railways IX, WIT Press,
Southampton (2004), 233–240.

[OFWB03] Joshua O’Madadhain, Danyel Fisher, Scott White, and
Y. Boey, The Jung (Java Universal Network/Graph) Frame-
work, 2003.

[OIY+09] Simon Ostermann, Alexandria Iosup, Nezih Yigitbasi, Radu
Prodan, Thomas Fahringer, and Dick Epema, A Performance
Analysis of EC2 Cloud Computing Services for Scientific Com-
puting, Cloud Computing, Springer, 2009, pp. 115–131.

[Osc12] OscaR Team, OscaR: Scala in OR, 2012, Available from
https://bitbucket.org/oscarlib/oscar.

[Pel98] Doron Peled, Ten Years of Partial Order Reduction, Computer
Aided Verification, Springer, 1998, pp. 17–28.

[Pin15] Michael Pinedo, Scheduling, Springer, 2015.

[Rei] Anthony J. Dos Reis, Recursive-Descent Parsing, Compiler
Construction using Java, JavaCC, and Yacc, 185–214.

[RK11] Reuven Y. Rubinstein and Dirk P. Kroese, Simulation and the
Monte Carlo Method, vol. 707, John Wiley & Sons, 2011.

[RN07] Manuel D. Rossetti and Shikha Nangia, An Object-Oriented
Framework for Simulating Full Truckload Transportation Net-
works, Proceedings of the 39th Conference on Winter Simula-
tion: 40 years! The Best is yet to Come, IEEE Press, 2007,
pp. 1869–1877.

[Rob14] Stewart Robinson, Simulation: the Practice of Model Develop-
ment and Use, Palgrave Macmillan, 2014.

[Rod07] Joaquín Rodriguez, A Constraint Programming Model for Real-
Time Train Scheduling at Junctions, Transportation Research
Part B: Methodological 41 (2007), no. 2, 231–245.

132 BIBLIOGRAPHY

[RVBW06] Francesca Rossi, Peter Van Beek, and Toby Walsh, Handbook
of Constraint Programming, Elsevier, 2006.

[S. 83] S. Araya and K. Abe and K. Fukumori, An Optimal Reschedul-
ing for Online Train Traffic Control in Disturbed Situations,
The 22nd IEEE Conference on Decision and Control, Dec 1983,
pp. 489–494.

[SBS11] Samuel Sogin, Christopher P. L. Barkan, and Mohd Rapik
Saat, Simulating the Effects of Higher Speed Passenger Trains
in Single Track Freight Networks, Proceedings of the Winter
Simulation Conference, Winter Simulation Conference, 2011,
pp. 3684–3692.

[SCdB15] Pengfei Sun, Simon Collart-dutilleul, and Philippe Bon, A
Model Pattern of Railway Interlocking System by Petri Nets,
Models and Technologies for Intelligent Transportation Sys-
tems (MT-ITS), 2015 International Conference on, IEEE, 2015,
pp. 442–449.

[Sco98] Roger S. Scowen, Extended BNF-A Generic Base Standard,
Tech. report, 1998.

[SEB+13] Miguel A. Salido, Joan Escamilla, Federico Barber, Adriana
Giret, Dunbing Tang, and Min Dai, Energy-Aware Parameters
in Job-Shop Scheduling Problems, GREEN-COPLAS 2013:
IJCAI 2013 Workshop on Constraint Reasoning, Planning and
Scheduling Problems for a Sustainable Future, 2013, pp. 44–53.

[Sha94] Perwez Shahabuddin, Importance Sampling for the Simulation
of Highly Reliable Markovian Systems, Management Science
40 (1994), no. 3, 333–352.

[SS10] Michael Schachtebeck and Anita Schobel, To Wait or not to
Wait-and Who Goes First ? Delay Management with Priority
Decisions, Transportation Science 44 (2010), no. 3, 307–321.

[Str01] Steven H. Strogatz, Exploring Complex Networks, Nature 410
(2001), no. 6825, 268–276.

BIBLIOGRAPHY 133

[SVA05] Koushik Sen, Mahesh Viswanathan, and Gul Agha, On Statis-
tical Model Checking of Stochastic Systems, Computer Aided
Verification, Springer, 2005, pp. 266–280.

[SWDK15] Ilankaikone Senthooran, Mark Wallace, and Leslie De Koninck,
Freight Train Threading with Different Algorithms, Interna-
tional Conference on AI and OR Techniques in Constriant Pro-
gramming for Combinatorial Optimization Problems, Springer,
2015, pp. 393–409.

[SYB04] Anthony Sulistio, Chee Shin Yeo, and Rajkumar Buyya, A
Taxonomy of Computer-Based Simulations and its Mapping to
Parallel and Distributed Systems Simulation Tools, Software-
Practice and Experience 34 (2004), no. 7, 653–674.

[TAV09] G. Theeg, E. Anders, and S.V. Vlasenko, Railway Signalling
& Interlocking: International Compendium, Eurailpress, 2009.

[TR95] Robert C. Thomson and Dianne E. Richardson, A Graph
Theory Approach to Road Network Generalisation, Proceed-
ing of the 17th International Cartographic Conference, 1995,
pp. 1871–1880.

[TRN+02] David Tombs, Neil Robinson, George Nikandros, et al., Sig-
nalling Control Table Generation and Verification, CORE 2002:
Cost Efficient Railways through Engineering (2002), 415.

[VA10] Somsak Vanit-Anunchai, Modelling Railway Interlocking Ta-
bles using Coloured Petri Nets, Coordination Models and Lan-
guages, Springer, 2010, pp. 137–151.

[VCDMS16] Sascha Van Cauwelaert, Cyrille Dejemeppe, Jean-Noël Mon-
ette, and Pierre Schaus, Efficient Filtering for the Unary
Resource with Family-Based Transition Times, International
Conference on Principles and Practice of Constraint Program-
ming, Springer, 2016, pp. 520–535.

[VHM09] Pascal Van Hentenryck and Laurent Michel, Constraint-Based
Local Search, MIT press, 2009.

134 BIBLIOGRAPHY

[VHP14] Linh H. Vu, Anne Elisabeth Haxthausen, and Jan Peleska, For-
mal Modeling and Verification of Interlocking Systems Featur-
ing Sequential Release, Formal Techniques for Safety-Critical
Systems, Springer, 2014, pp. 223–238.

[Vil04] Petr Vilím, O(n log n) Filtering Algorithms for Unary Resource
Constraint, International Conference on Integration of Artificial
Intelligence (AI) and Operations Research (OR) Techniques
in Constraint Programming, Springer, 2004, pp. 335–347.

[Vil07] Petr Vilím, Global Constraints in Scheduling, Ph.D. thesis,
PhD Thesis, Charles University in Prague, Faculty of Math-
ematics and Physics, Department of Theoretical Computer
Science and Mathematical Logic, KTIML MFF, Universita
Karlova, Malostranské námestı 2/25, 118 00 Praha 1, Czech
Republic, 2007.

[Vil09] Petr Vilím, Max Energy Filtering Algorithm for Discrete Cu-
mulative Resources, International Conference on AI and OR
Techniques in Constriant Programming for Combinatorial Op-
timization Problems, Springer, 2009, pp. 294–308.

[VLS15] Petr Vilím, Philippe Laborie, and Paul Shaw, Failure-directed
Search for Constraint-Based Scheduling, International Confer-
ence on AI and OR Techniques in Constriant Programming
for Combinatorial Optimization Problems, Springer, 2015,
pp. 437–453.

[W+01] Douglas Brent West et al., Introduction to Graph Theory,
vol. 2, Prentice Hall Upper Saddle River, 2001.

[WH82] Brian A. Wichmann and I. David Hill, Algorithm AS 183:
An Efficient and Portable Pseudo-Random Number Generator,
Journal of the Royal Statistical Society. Series C (Applied
Statistics) 31 (1982), no. 2, 188–190.

[Win02] Kirsten Winter, Model Checking Railway Interlocking Sys-
tems, Australian Computer Science Communications, vol. 24,
Australian Computer Society, Inc., 2002, pp. 303–310.

BIBLIOGRAPHY 135

[Win12] Kirsten Winter, Optimising Ordering Strategies for Symbolic
Model Checking of Railway Interlockings, Leveraging Applica-
tions of Formal Methods, Verification and Validation. Appli-
cations and Case Studies, Springer, 2012, pp. 246–260.

[WJR+06] K. Winter, W. Johnston, P. Robinson, P. Strooper, and L. Van
Den Berg, Tool Support for Checking Railway Interlocking De-
signs, Proceedings of the 10th Australian Workshop on Safety
Critical Systems and Software, vol. 55, Australian Computer
Society, Inc., 2006, pp. 101–107.

[Won91] Wai Wong, A Simple Graph Theory and its Application in Rail-
way Signaling, International Workshop on the HOL Theorem
Proving System and Its Applications, IEEE, 1991, pp. 395–409.

[WUS+10] Travis Worth, Reha Uzsoy, Erika Samoff, Anne-Marie Meyer,
Jean-Marie Maillard, and Aaron M. Wendelboe, Modelling the
Response of a Public Health Department to Infectious Disease,
Proceedings of the 2010 Winter Simulation Conference (WSC),
IEEE, 2010, pp. 2185–2198.

[XTGC09] Tianhua Xu, Tao Tang, Chunhai Gao, and Baigen Cai, Logic
Verification of Collision Avoidance System in Train Control
Systems, Intelligent Vehicles Symposium, IEEE, 2009, pp. 918–
923.

[YN97] Takeshi Yamada and Ryohei Nakano, Job Shop Scheduling,
IEE Control Engineering Series (1997), 134–134.

[ZZ05] Xuesong Zhou and Ming Zhong, Bicriteria Train Scheduling
for High-Speed Passenger Railroad Planning Applications, Eu-
ropean Journal of Operational Research 167 (2005), no. 3,
752–771.

	Introduction
	Interlocking Principles
	Safety Verification
	Availability Verification
	Fluidity Maximisation
	Conclusion
	Inograms Project
	Case Studies
	Application Data Grammars
	Application Data Errors
	Benchmarks
	Bibliography

