
cost-based filtering algorithms for a

capacitated lot sizing problem and the

constrained arborescence problem

houndji vinasetan ratheil

Thesis submitted in partial fulfillment of the requirements for the degree of:

• Doctor of Sciences of Engineering and Technology from UCL

• Doctor of Sciences of Engineering from UAC

May 2017

Institute of Information and Communication Technologies,
Electronics and Applied Mathematics (ICTEAM)

Louvain School of Engineering (LSE)
Université catholique de Louvain (UCL)

Belgium

Institut de Formation et de Recherche en Informatique (IFRI)
Ecole Doctorale des Sciences De l’Ingénieur (ED-SDI)

Université d’Abomey-Calavi (UAC)
Benin

Thesis Committee
Prof. Laurence A. Wolsey (supervisor) IMMAQ, UCL, Belgium
Prof. Pierre Schaus (supervisor) ICTEAM, UCL, Belgium
Prof. M. Norbert Hounkonnou (supervisor) ICMPA, UAC, Benin
Prof. Jean-Charles Régin I3S, UNS, France
Prof. Mathieu Van Vyve (secretary) IMMAQ, UCL, Belgium
Prof. Yves Deville (chairperson) ICTEAM, UCL, Belgium





To my daughter, my wife, my brothers, and my parents.

III





A B S T R A C T

Constraint Programming (CP) is a paradigm derived from artificial
intelligence, operational research, and algorithmics that can be used
to solve combinatorial problems. CP solves problems by interleaving
search (assign a value to an unassigned variable) and propagation.
Constraint propagation aims at removing/filtering inconsistent values
from the domains of the variables in order to reduce the search space
of the problem. In this thesis, we develop filtering algorithms for two
complex combinatorial optimization problems: a Capacitated Lot Siz-
ing Problem (CLSP) and the Constrained Arborescence Problem (CAP).
Each of these problems has many variants and practical applications.

The CLSP is the problem of finding an optimal production plan for
single or multiple items while satisfying demands of clients and re-
specting resource restrictions. The CLSP finds important applications in
production planning. In this thesis, we introduce a CLSP in CP. In many
lot sizing and scheduling problems, in particular when the planning
horizon is discrete and finite, there are stocking costs to be minimized.
These costs depend on the time spent between the production of an
order and its delivery. We focus on developing specialized filtering
algorithms to handle the stocking cost part of a class of the CLSP. We
propose the global optimization constraint StockingCost when the per-
period stocking cost is the same for all orders; and its generalized ver-
sion, the IDStockingCost constraint (ID stands for Item Dependent).

In this thesis, we also deal with a well-known problem in graph
theory: the Minimum Weight Arborescence (MWA) problem. Consider
a weighted directed graph in which we distinguish one vertex r as
the root. An MWA rooted at r is a directed spanning tree rooted at r
with minimum total weight. We focus on the CAP that requires one to

V



find an arborescence that satisfies some side constraints and that has
minimum weight. The CAP has many real life applications in telecom-
munication networks, computer networks, transportation problems,
scheduling problems, etc. After sensitivity analysis of the MWA, we
introduce the CAP in CP. We propose a dedicated global optimization
constraint to handle any variant of the CAP in CP: the MinArborescence

constraint.
All the proposed filtering algorithms are analyzed theoretically and

evaluated experimentally. The different experimental evaluations of
these propagators against the state-of-the-art propagators show their
respective efficiencies.

VI



R É S U M É

La programmation par contraintes - Constraint Programming (CP) - est
un paradigme né de l’intelligence artificielle, de la recherche opéra-
tionnelle et de l’algorithmique qui peut être utilisé pour résoudre
des problèmes combinatoires. CP résout les problèmes en alternant
recherche (assigner une valeur à une variable non assignée) et prop-
agation. La propagation en CP a pour objectif de supprimer (filtrer) les
valeurs inconsistantes des domaines des variables en élaguant l’arbre
de recherche du problème. Dans cette thèse, nous proposons des algo-
rithmes de filtrage pour deux problèmes d’optimisation combinatoires
complexes : un problème de dimensionnement de lots avec capacités -
Capacitated Lot Sizing Problem (CLSP) - et le problème d’arborescence
contraint - Constrained Arborescence Problem (CAP). Chacun de ces
problèmes a beaucoup de variantes et d’applications pratiques.

Le CLSP consiste à trouver un plan de production optimal pour un
ou plusieurs type(s) d’articles tout en satisfaisant les demandes des
clients et en respectant les restrictions sur les ressources de produc-
tion. Le CLSP a des applications importantes en planification de pro-
duction. Dans cette thèse, nous introduisons le CLSP en CP. Dans beau-
coup de problèmes de dimensionnement de lots et d’ordonnancement,
en particulier lorsque l’horizon de planification est discret et fini, il y
a des coûts de stockage à minimiser. Ces coûts dépendent du temps
passé entre la production d’un article et sa livraison. Nous nous in-
téressons aux algorithmes de filtrage pour traiter les coûts de stockage
intervenant dans une classe de problèmes de CLSP. Nous proposons
la contrainte d’optimisation globale StockingCost lorsque les coûts de
stockage sont les mêmes pour tous les articles et sa version généralisée,
la contrainte IDStockingCost (ID pour Item Dependent).

VII



Dans cette thèse, nous traitons également d’un problème bien connu
en théorie de graphes : l’arborescence recouvrante de poids minimum
- Minimum Weight Arborescence (MWA). Considérons un graphe ori-
enté et pondéré dans lequel on distingue un noeud r comme étant la
racine. Un MWA enraciné en r est un arbre recouvrant orienté et enrac-
iné en r de poids total minimum. Nous nous intéressons au CAP qui
consiste à trouver une arborescence qui satisfait certaines contraintes
et ayant le poids minimum. Le CAP a beaucoup d’applications pra-
tiques dans les réseaux de télécommunications, réseaux informatiques,
problèmes de transport, problèmes d’ordonnancement, etc. Après une
analyse de sensibilité du MWA, nous introduisons le CAP en CP. Nous
proposons une contrainte globale d’optimisation pour résoudre toutes
les variantes du CAP en CP : la contrainte MinArborescence.

Tous les algorithmes de filtrage proposés sont analysés de façon
théorique et évalués expérimentalement. Les différentes évaluations
expérimentales de ces propagateurs par rapport aux propagateurs de
l’état de l’art ont montré leurs efficacités respectives.

VIII







A C K N O W L E D G E M E N T S

Even if there is only one author, this Ph.D. thesis could not have been
achieved without implications, inputs, supports and encouragements
of some persons.

First of all, I would like to deeply thank Laurence Wolsey who has
believed in me and has given me the opportunity to do my master
and Ph.D. thesis with him. He taught me to be more rigorous about
my mathematical definitions, properties, propositions and proofs with
his different inputs. Very warm thanks go to Pierre Schaus for his sub-
stantial inputs, support, implication and motivation during this thesis
and also for our interesting discussions about proofs and beauty of
algorithms. Special thanks to Prof. Norbert Hounkonnou for his impli-
cation and support during my four stays in Benin. Many thanks also to
Yves Deville for his support since my master thesis. I am fortunate to
have had 4 advisors from different generations and research interests
and to have their different points of view.

This thesis would not have started without the personal implica-
tions of Profs. Marc Lobelle, Norbert Hounkonnou and Semiyou Ad-
edjouma. Many thanks to them.

I would like to thank Profs. Eugene Ezin and Gaston Edah for
putting me comfortable during my work stays at IFRI Institute, Benin.

I would like to thank all members of INGI staff (Vanessa, Sophie,
etc.) as well as all members of IFRI (Dr Arnaud, Christian, Miranda,
Ozias, Aimée, etc.).

I would like to thank all beninese Ph.D. students in INGI/IFRI for
our interesting discussions and our mutual motivations in this adven-
ture: Parfait, Emery, Yannick, Lionel, John.

XI



I would like to thank all cool Becool members: François, Trung,
John, Thanh, Hélène, Jean-Baptiste, Cyrille, Mickael, Sascha, Quentin,
Steven, Renaud - for fun moments and interesting discussions in our
offices, during conferences, etc. Special thanks to François for our
fruitfull discussions that have re-activated my passion about algorith-
mic/programming contests.

My warm gratitude goes to my parents Cathérine and Saturnin for
their presence, implication and support from my birth. I am what I
am and where I am thanks to them. I would like to thank also my
brothers Adonis, Romik and Rozen and my friends Patrick, Christian,
Boris, Come, Maurice, Jean-Louis, Oscar, Pauline, etc. for their encour-
agements.

Last, but certainly not least, I am deeply grateful to two important
women in my life: 1) my wife Erika for her continuous support,
motivation (for about 10 years now and in particular during this
thesis) and for her sacrifices for our family 2) my daughter Davina
who came in the middle of this thesis and has motivated me more to
improve the quality of all things I do because I have to be a model for
her (and her future brothers/sisters).

Ratheil,
May 2017.

XII







L I S T O F TA B L E S

Table 1.1 Example: performance profile - measures . . . . 12

Table 1.2 Example: performance profile - performance ra-
tios ri

p . . . . . . . . . . . . . . . . . . . . . . . . . 12

Table 1.3 Example: performance profile - cumulative per-
formance ρp(τ) . . . . . . . . . . . . . . . . . . . 12

Table 5.1 Average results on 100 instances with T = 500:
StockingCost, MinAss, and Basic . . . . . . . . 70

Table 6.1 Average results on 100 instances with T = 20:
IDS, MinAss, MinAss2, and Basic . . . . . . . . 94

Table 6.2 Average results on 100 instances with T = 500:
IDS, MinAss, and Basic . . . . . . . . . . . . . . 94

Table 6.3 Average results on 100 instances with T = 500:
StockingCost, IDS, MinAss, and Basic . . . . . . 96

Table 7.1 Proportion of the reduced costs affected by
Proposition 34 . . . . . . . . . . . . . . . . . . . . 116

Table 7.2 Average results on 100 instances: MinArbo_IRC,
MinArbo_RC, Arbo+LB, and Arbo . . . . . . . . 117

Table 7.3 Average results on 100 instances: MinArbo_IRC
vs MinArbo_RC . . . . . . . . . . . . . . . . . . . 118

Table 7.4 Results on 15 instances: MinArbo_IRC vs Mi-
nArbo_RC . . . . . . . . . . . . . . . . . . . . . . 119

Table A.1 Results on 100 PSP instances with MinAss based
model and COS heuristic (Part 1) . . . . . . . . . 130

Table A.2 Results on 100 PSP instances with MinAss based
model and COS heuristic (Part 2) . . . . . . . . . 131

XV



Table B.1 Results on 100 RMWA instances with Arbo +
MinArbo_RC based model and COS heuristic
(Part 1) . . . . . . . . . . . . . . . . . . . . . . . . 134

Table B.2 Results on 100 RMWA instances with Arbo +
MinArbo_RC based model and COS heuristic
(Part 2) . . . . . . . . . . . . . . . . . . . . . . . . 135

XVI



L I S T O F F I G U R E S

Figure 1.1 A feasible solution of the PSP instance of Exam-
ple 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.2 An optimal solution of the PSP instance of Ex-
ample 1 . . . . . . . . . . . . . . . . . . . . . . . . 3

Figure 1.3 Graphe G1 . . . . . . . . . . . . . . . . . . . . . . 4

Figure 1.4 Graphe G1 with ai,j and bi . . . . . . . . . . . . . 6

Figure 1.5 Graphe G1 with ai,j and bi: a feasible solution of
the RMWA problem associated . . . . . . . . . . . 6

Figure 1.6 Performance profile - Example . . . . . . . . . . 13

Figure 3.1 A feasible solution of the PSP instance of Exam-
ple 4 . . . . . . . . . . . . . . . . . . . . . . . . . . 31

Figure 3.2 An optimal solution of the PSP instance of Ex-
ample 4 . . . . . . . . . . . . . . . . . . . . . . . . 32

Figure 4.1 Initial graph G1 . . . . . . . . . . . . . . . . . . . 41

Figure 4.2 Computation of A(G1)
?: Phase 1, first iteration.

A0 = {(2, 1), (4, 2), (4, 3), (2, 4), (3, 5)}. . . . . . . 41

Figure 4.3 Computation of A(G1)
?: Phase 1, second itera-

tion. A0 = {(2, 1), (4, 2), (4, 3), (2, 4), (3, 5), (0, 4)}. 41

Figure 4.4 Computation of A(G1)
?: Phase 2. A0 =

{(2, 1), (4, 2), (4, 3), (3, 5), (0, 4)}. (2, 4) is removed. 43

Figure 4.5 Graphe G1 with ai,j and bi . . . . . . . . . . . . . 46

Figure 4.6 Graphe G1 with ai,j and bi: a feasible solution of
the RMWA problem associated . . . . . . . . . . . 46

Figure 5.1 An optimal assignment of the instance of Exam-
ple 7 without capacity restrictions . . . . . . . . 60

Figure 5.2 An optimal assignment of the instance of Exam-
ple 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 61

XVII



Figure 5.3 An optimal assignment of the instance of Exam-
ple 7 . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Figure 5.4 Evolution of Hopt
X3←t . . . . . . . . . . . . . . . . . 65

Figure 5.5 Performance profiles - Nodes: StockingCost,
MinAss, and Basic . . . . . . . . . . . . . . . . . 71

Figure 5.6 Performance profiles - Time: StockingCost,
MinAss, and Basic . . . . . . . . . . . . . . . . . 71

Figure 6.1 P r without capacity restrictions . . . . . . . . . . 80

Figure 6.2 An optimal assignment for P r . . . . . . . . . . . 80

Figure 6.3 An optimal assignment for P r without X6 . . . . 85

Figure 6.4 An optimal assignment for P r without X2 . . . . 85

Figure 6.5 An optimal assignment for P r without X3 . . . . 86

Figure 6.6 An optimal assignment for P r without X1 . . . . 86

Figure 6.7 Performance profiles - Nodes: IDS, MinAss,
and Basic . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 6.8 Performance profiles - Time: IDS, MinAss, and
Basic . . . . . . . . . . . . . . . . . . . . . . . . . . 95

Figure 6.9 Performance profiles - Nodes: StockingCost,
IDS, MinAss, and Basic . . . . . . . . . . . . . . 97

Figure 6.10 Performance profiles - Time: StockingCost, IDS,
MinAss, and Basic . . . . . . . . . . . . . . . . . 97

Figure 7.1 Initial graph G1 . . . . . . . . . . . . . . . . . . . 102

Figure 7.2 A(G1)
? . . . . . . . . . . . . . . . . . . . . . . . . 103

Figure 7.3 Arborescence constraint filtering . . . . . . . . . 106

Figure 7.4 Arborescence constraint filtering - Example . . . 107

Figure 7.5 G1 with rc(5, 3) and irc(5, 3) . . . . . . . . . . . . 110

Figure 7.6 G1 with rc(1, 2) and irc(1, 2) . . . . . . . . . . . . 113

Figure 7.7 G1 with rc(1, 4) and irc(1, 4) . . . . . . . . . . . . 115

Figure 7.8 Performance profiles - Nodes: MinArbo_RC
and MinArbo_IRC . . . . . . . . . . . . . . . . . . 118

Figure 7.9 Performance profiles - Time: MinArbo_RC and
MinArbo_IRC . . . . . . . . . . . . . . . . . . . . 118

XVIII



L I S T O F A L G O R I T H M S

2.2.1 Principle of a fix-point algorithm . . . . . . . . . . . . . 19

4.1.1 Computation of a minimum weight arborescence A(G)?

rooted at vertex r . . . . . . . . . . . . . . . . . . . . . . . . 42

5.3.1 StockingCost: Filtering of lower bound on H - BC(Hmin) 57

5.4.1 StockingCost: Computation of vopt
i for all i . . . . . . . . 60

5.4.2 StockingCost: Computation of min f ull[t] and max f ull[t] 62

5.4.3 StockingCost: Bound consistent filtering of Xmin
i . . . . . 63

5.5.1 StockingCost: Complete filtering algorithm in O(n) -
Part 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.5.2 StockingCost: Complete filtering algorithm in O(n) - Fil-
tering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

6.3.1 IDStockingCost: Filtering of lower bound on H with
(Hopt)r in O(n log n) . . . . . . . . . . . . . . . . . . . . . . 81

6.3.2 IDStockingCost: Filtering of lower bound on H with
(Hopt)r in O(n log n) - Part 2 . . . . . . . . . . . . . . . . . 82

6.4.1 IDStockingCost: Filtering of n date variables in O(n) . . . 91

7.2.1 Class Arborescence . . . . . . . . . . . . . . . . . . . . . . 105

7.3.1 Computation of the improved reduced costs
irc(i, j), ∀(i, j) ∈ E in O(|V|2) . . . . . . . . . . . . . . . . . 114

XIX





L I S T O F A B B R E V I AT I O N S

AP Assignment Problem

ATSP Asymmetric Traveling Salesman Problem

BC Bound Consistency

CAP Constrained Arborescence Problem

CLSP Capacitated Lot Sizing Problem

COP Constraint Optimization Problem

CP Constraint Programming

CSLP Continuous Setup Lot Sizing Problem

CSP Constraint Satisfaction Problem

DBDFS Discrepancy-Bounded Depth First Search

DC Domain Consistency

DDS Depth-Bounded Discrepancy Search

DFS Depth First Search

DLS Discrete Lot Sizing

DLSI Discrete Lot Sizing with variable Initial stock

DLSP Discrete Lot Sizing Problem

ELSP Economic Lot Sizing Problem

XXI



GAC Generalized Arc consistency

IDS Iterative Deepening Search

LDS Limited Discrepancy Search

LNS Large Neighborhood Search

LP Linear Programming

LS Lot Sizing

MDST Minimum Directed Spanning Tree

MIP Mixed Integer Programming

MST Minimum Spanning Tree

MWA Minimum Weight Arborescence

OR Operational Research

PLSP Proportional Lot Sizing and Scheduling Problem

PSP Pigment Sequencing Problem

RMWA Resource constrained Minimum Weight Arborescence

TSP Traveling Salesman Problem

UCL Université catholique de Louvain

WBST Weight-Bounded Spanning Tree

WW Wagner-Whitin

XXII



TA B L E O F C O N T E N T S

Abstract V
Résumé VII
Acknowledgments XI
List of Tables XVI
List of Figures XVIII
List of Algorithms XIX
List of Abbreviations XXI
Table of Contents XXV
1 introduction 1

1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Summary of the contributions . . . . . . . . . . . . . . . 7

1.3 Publications and other scientific realisations . . . . . . . 8

1.4 Methodology . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

I background 15

2 constraint programming (cp) 17

2.1 Overview of Constraint Programming . . . . . . . . . . 17

2.2 Propagators . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3 Global constraints . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 The minimumAssignment constraint . . . . . . . . 21

2.3.2 The cost-gcc constraint . . . . . . . . . . . . . . 22

2.4 Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.5 Cost-based propagator in the OscaR solver . . . . . . . 25

XXIII



3 capacitated lot sizing problem (clsp) 27

3.1 Overview of the Lot Sizing problem . . . . . . . . . . . 27

3.1.1 Characteristics of the Lot Sizing problem . . . . 27

3.1.2 Classification of the Lot Sizing problem . . . . . 28

3.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . 29

3.3 A variant of the CLSP . . . . . . . . . . . . . . . . . . . . 31

3.3.1 A CP model for the PSP . . . . . . . . . . . . . . 32

3.3.2 MIP formulation for the PSP . . . . . . . . . . . 33

4 constrained arborescence problem (cap) 37

4.1 Overview of Minimum Weight Arborescence (MWA) . 37

4.1.1 Conditions for optimality of the MWA . . . . . 39

4.1.2 Computation of an MWA . . . . . . . . . . . . . 40

4.2 Related works . . . . . . . . . . . . . . . . . . . . . . . . 43

4.3 A variant of the CAP . . . . . . . . . . . . . . . . . . . . 45

II filtering algorithms for a capacitated lot siz-
ing problem 49

5 the stockingcost constraint 51

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2 The StockingCost constraint . . . . . . . . . . . . . . . . 52

5.2.1 Decomposing the constraint . . . . . . . . . . . 54

5.3 Filtering of the cost variable H . . . . . . . . . . . . . . . 55

5.4 Pruning the decision variables Xi . . . . . . . . . . . . . 58

5.5 A complete filtering algorithm in O(n) . . . . . . . . . . 64

5.6 Experimental results . . . . . . . . . . . . . . . . . . . . 66

5.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6 the item dependent stockingcost constraint 73

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 73

6.2 The Item Dependent StockingCost constraint . . . . . . 74

6.2.1 Decomposing the constraint . . . . . . . . . . . 75

6.3 Filtering of the cost variable H . . . . . . . . . . . . . . . 76

6.4 Pruning the decision variables Xi . . . . . . . . . . . . . 84

6.5 Experimental results . . . . . . . . . . . . . . . . . . . . 92

6.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 98

III filtering algorithms for the constrained ar-
borescence problem 99

7 the weighted arborescence constraint 101

7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . 101

7.2 The MinArborescence constraint . . . . . . . . . . . . . 103

XXIV



7.2.1 Decomposing the constraint . . . . . . . . . . . 104

7.3 Improved Reduced Costs . . . . . . . . . . . . . . . . . . 106

7.4 Experimental results . . . . . . . . . . . . . . . . . . . . 115

7.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 120

Conclusion and Perspectives 121

IV appendix 127

a cp approach results for the psp 129

b cp approach results for the rmwa problem 133

c coding experience and source code 137

bibliography 161

XXV





1
I N T R O D U C T I O N

This thesis aims to provide some global optimization constraints for
solving the Capacitated Lot Sizing Problem (CLSP) and the Constrained
Arborescence Problem (CAP) by Constraint Programming (CP).

1.1 context

Constraint Programming (CP) is a paradigm that is effective in tackling
some hard combinatorial problems1 [RBW06, DSH90, Hen89]. One of
the main processes in CP is propagation. Constraint propagation in-
volves removing from the domain of variables, values that cannot ap-
pear in any consistent solution of the problem. However, as mentioned
in [Foc+99], pure constraint propagation techniques have shown their
limitations in dealing with objective functions. For optimization prob-
lems, it is interesting to have constraints that filter the variable rep-
resenting the objective value and also the decision variables mainly
based on some operational research (OR) rules. In optimization prob-
lems, the optimization constraints are constraints linked to (a part of)
the objective function to efficiently filter inconsistent values from a
cost-based reasoning. This kind of propagation is called cost-based
propagation [FLM99b]. In CP, optimization constraints have been de-
veloped for propagation in a variety of optimization problems (see
for example [FLM99b, DCP16, Ben+12, R0́2, BLPN12, CL97a, CL95,
RWH99]).

1 A combinatorial problem requires to take discrete decisions that respect some con-
straints and, if required, optimize an objective function.

1



2 introduction

This thesis deals with filtering algorithms for two complex optimiza-
tion problems: the CLSP and the CAP. Curiously, prior to our research
(see [Hou13, HSW14, Hou+14, Hou+15, Hou+17b, Hou+17a]), these
optimization problems have apparently not been tackled by CP.

capacitated lot sizing problem . In production planning, one
of the most important and difficult tasks is Lot Sizing (LS) [KGW03,
AFT99]. A manufacturing firm’s ability to compete in the market de-
pends directly on decisions making in LS [KGW03]. The CLSP is a
well-known version of LS. The CLSP requires one to determine a mini-
mum cost (stocking cost and/or setup costs and/or changeover costs,
etc.) production schedule to satisfy the demands for single or multiple
items without exceeding machine capacities. In this thesis, we focus
on the case in which 1) the planning horizon is discrete and finite, 2)
the demand is deterministic that is it is known in advance, 3) the pro-
duction of an order consumes one unit of capacity, and 4) an order is
produced in one go i.e one cannot produce a fraction of an order.

In particular, we consider the multiple items capacitated lot sizing
problem with sequence-dependent changeover costs called the Pig-
ment Sequencing Problem (PSP) by [PW05]. For the PSP, there is a single
machine with capacity limited to one unit per period. There are item-
dependent stocking costs and sequence-dependent changeover costs:
1) the total stocking cost of an order is proportional to its stocking
cost and the number of periods between its due date and the pro-
duction period; 2) the changeover cost is induced when passing from
the production of an item to another one. More precisely, consider
n orders (from m ≤ n different items2) that have to be scheduled
over a discrete time horizon of T periods on a machine that can pro-
duce one unit per period. Each order p ∈ [1, . . . , n] has a due date dp

and a stocking (storage) cost hI(p) ≥ 0 (in which I(p) ∈ [1, . . . , m]

is the corresponding item of the order p). There is a changeover cost
qi,j ≥ 0 between each pair of items (i, j) with qi,i = 0, ∀i ∈ [1, . . . , m].
Let successor(p) be the order produced just after producing the or-
der p. One wants to associate to each order p a production period
date(p) ∈ [1, . . . , T] such that each order is produced on or before its
due date (date(p) ≤ dp, ∀p), the capacity of the production is respected
(|{p | date(p) = t}| ≤ 1, ∀t ∈ [1, . . . , T]), and the total stocking costs

2 item: order type.



1.1 context 3

and changeover costs (∑p (dp − date(p)) · hI(p) + ∑p qI(p),I(successor(p)))
are minimized. A small instance of the PSP is described next.

Example 1. Two types of orders (1 and 2) must be produced over the plan-
ning horizon [1, . . . , 5] : m = 2 and T = 5. The stocking costs are re-
spectively h1 = 5 and h2 = 2 for each item. The demands for item 1 are
d1

t∈[1,...,5] = [0, 1, 0, 1, 0] and for the second item are d2
t∈[1,...,5] = [0, 0, 1, 0, 1].

Thus the number of orders is n = 4, two for each item. The changeover costs
are: q1,2 = 10, q2,1 = 5 and q1,1 = q2,2 = 0. The solution S1 = [1, 2, 0, 1, 2]
(represented in Figure 1.1) is a feasible solution. This means that the item

t = 3t = 1

1

t = 2

2

t = 4

1

t = 5

2

Figure 1.1: A feasible solution of the PSP instance of Example 1

1 will be produced in periods 1 and 4 while the item 2 will be produced in
periods 2 and 5. Period 3 is an idle period3. The cost associated to S1 is
Cs1 = h1 + h2 + q1,2 + q2,1 + q1,2 = 32. The optimal solution for this problem
is S2 = [2, 1, 0, 1, 2] (represented in Figure 1.2) with cost Cs2 = 19.

t = 3t = 1

2

t = 2

1

t = 4

1

t = 5

2

Figure 1.2: An optimal solution of the PSP instance of Example 1

In this thesis, we propose a global constraint called StockingCost to
handle the stocking costs and fast filtering algorithms.

As concerns the changeover costs part of the PSP, it can be modeled
as a classical Asymmetric Traveling Salesman Problem (ATSP) in which
the cities to be visited represent the orders and the distances between
them are the corresponding changeover costs. One can use some relax-
ations4 to solve the ATSP in CP. A classical relaxation is the assignment
relaxation that allows sub-tour(s) in a solution [FLM02]. In [Ben+12],
Benchimol et al. use the 1-tree5 relaxation that removes the degree con-
straints (that enforce the degree of two at each vertex) to solve the TSP.

3 idle period: period in which there is no production.
4 the problem without some constraints.
5 A 1-tree is defined as a spanning tree on the subgraph induced by the set of vertices

V \ {1}, together with two distinct edges incident to node 1 [Ben+12].



4 introduction

The directed version of 1-tree relaxation can also be used to solve the
ATSP. The second part of this thesis is devoted to the problem associ-
ated to this relaxation.

constrained arborescence problem . In graph theory, the
problem of finding a Minimum Spanning Tree (MST) [GH85] is one
of the most well-known problems on undirected graphs. The corre-
sponding version for directed graphs is the Minimum Directed Span-
ning Tree (MDST) or the Minimum Weight Arborescence (MWA) prob-
lem. An arborescence A rooted at a given vertex r is a directed span-
ning tree rooted at r. In other words, A is such that there is a path
from r to every other vertex without cycle. An MWA is an arborescence
of minimum cost. More formally, consider a weighted directed graph
G = (V, E) in which V is the vertex set and E ⊆ {(i, j) | i, j ∈ V} is the
edge set. A weight w(i, j) is associated to each edge (i, j) ∈ E. Given
a vertex r, the aim is to associate to each vertex v ∈ V \ {r} exactly
one vertex p(v) ∈ V (with (p(v), v) ∈ E) such that, considering the
sub-graph A = (V, F) with F = {(p(v), v) | v ∈ V \ {r}}, there is no
cycle and the total cost (∑v∈V\{r} w(p(v), v)) is minimized. Figure 1.3
shows a weigthed directed graph (denoted G1) and its MWA A(G1)

?

represented with dashed edges.

0

1 2

3 4

5

35 38

8

20

33
33

45

10
6

6

20

5

15

11

41

Figure 1.3: Graphe G1

It is well known that graphs are good structures to model some real
life problems. The MWA problem has many practical applications (for
example in the design of distribution and telecommunication networks
[FV97]). It is also a relaxation of the well-known ATSP problem [FT92].



1.1 context 5

Solving an MWA problem is relatively easy (it is solvable in polynomial
time). In real world applications, there are generally other side con-
straints that make the problems much more difficult. Similarly to the
constrained spanning tree [DK97a] problem on an undirected graph,
the CAP is the problem that requires one to find an arborescence that
satisfies other side constraints and is of minimum cost. To handle the
CAP in CP, we propose an optimization constraint for this optimization
problem denoted MinArborescence.

Concerning the MWA problem, a basic O(|V|2) optimization algo-
rithm is available. This algorithm also provides a lower bound (Linear
Programming (LP) reduced cost) on the cost of modifying the optimal
solution by forcing an edge to be in the optimal solution. We propose
an algorithm that runs also in O(|V|2) time to improve the LP reduced
costs in some cases. We perform filtering on the basis of these different
costs. The resulting global constraint is applied to the constrained ar-
borescence problem in which the use of an edge (i, j) ∈ E consumes a
certain amount of resources ai,j and there is a limited resource bi avail-
able at each vertex i ∈ V, the Resource constrained Minimum Weight
Arborescence (RMWA). Formally, there is the following additional con-
straints: ∑(i,j)∈δ+i

ai,j · xi,j ≤ bi, ∀i ∈ V in which δ+i is the set of outgoing
edges from i, xi,j = 1 if (i, j) ∈ A(G) and xi,j = 0 otherwise.

Example 2. Consider the graph G1 with additional data concerning the
RMWA problem. In Figure 1.4, the label of the edge (i, j) is w(i, j)(ai,j) and
the vertex i is followed by its resource bi, i(bi). One can see that with the
additional constraints ∑(i,j)∈δ+i

ai,j · xi,j ≤ bi, ∀i ∈ V on this instance, the
previous MWA (represented with dashed edges) is not valid because at the ver-
tex 4, a4,2 + a4,3 = 15 > b4. A feasible solution of this RMWA problem is
represented in dashed in Figure 1.5.

about the state-of-the-art approaches . Both
StockingCost and MinArborescence constraints can be decomposed
into standard or existing constraints. The experimental comparisons
show that our new filtering algorithms outperform the decomposi-
tions of each constraints. It is well known that CP is the combination of
two key ingredients: CP = Filtering + Search. In this thesis we focused
only on some filtering aspects of the stocking cost and arborescence
problems. We use a naive search procedure to ease the filtering
comparisons in most of our experimentation. We did not spend any
effort on the search aspects. To give a chance to CP to be competitive



6 introduction

0(12)

1(14) 2(11)

3(12) 4(10)

5(15)

35(4) 38(15)

8(8)

20(8)

33(10)

33(8)

45(11)

10(9)
6(9)

6(7)

20(9)

5(8)

15(8)

11(7)

41(8)

Figure 1.4: Graphe G1 with ai,j and bi

0(12)

1(14) 2(11)

3(12) 4(10)

5(15)

35(4) 38(15)

8(8)

20(8)

33(10)

33(8)

45(11)

10(9)
6(9)

6(7)

20(9)

5(8)

15(8)

11(7)

41(8)

Figure 1.5: Graphe G1 with ai,j and bi: a feasible solution of the RMWA problem
associated



1.2 summary of the contributions 7

with the state-of-the-art approaches (e.g. MIP [Wol98, WN99]) on the
experimented problems, one should also develop the search aspects.
For instance, use LNS [Sha98] to drive the search quickly toward good
solutions or develop custom heuristics. Note that it is easier to model
a problem in CP than other approaches and our new global constraints
can be used in many variants of the problems.

1.2 summary of the contributions

The main contributions of this thesis are enumerated below for each
of the two problems studied.

Capacitated Lot Sizing Problem

• The introduction of the CLSP in CP.

• The proposition of new models for the CLSP in CP.

• The definition of the StockingCost constraint for the CLSP when
the orders to be produced have the same per period stocking
cost.

• The introduction of new filtering algorithms for the
StockingCost constraint.

• An implementation of these filtering algorithms available in the
OscaR solver [Osc12] and an experimental evaluation of the
propagator associated.

• The definition of the Item Dependent StockingCost constraint
(denoted IDStockingCost) for the CLSP when the orders to be
produced have different per period stocking costs. This con-
straint can be used to tackle any variant of the CLSP in which
there are stocking costs as part of the objective function.

• The introduction of new filtering algorithms for the
IDStockingCost constraint.

• An implementation of these filtering algorithms available in the
OscaR solver and an experimental evaluation of the propagator
associated.

• New benchmarks of a variant of the CLSP.



8 introduction

Constrained Arborescence Problem

• The introduction of the CAP in CP.

• The proposition of new models for the CAP in CP.

• The definition of the minimum arborescence constraint (de-
noted MinArborescence) to tackle the CAP in CP.

• New sensitivity analysis of the minimum weighted arbores-
cence.

• The introduction of new filtering algorithms for the
MinArborescence constraint.

• An implementation of these filtering algorithms available in the
OscaR solver and an experimental evaluation of the propagator
associated.

• New benchmarks of a variant of the CAP.

1.3 publications and other scientific realisations

Each of our main results has been submitted to a refereed international
conference/journal and we have presented some of these results at
conferences. We have also made available some benchmarks about the
CLSP and the CAP as well as toolkits (using the OscaR solver [Osc12])
to solve some variants of these problems by CP.

Full papers submitted to refereed international conferences/journal

• Vinasetan Ratheil Houndji, Pierre Schaus, Laurence Wolsey and
Yves Deville. The StockingCost Constraint. Principles and
Practice of Constraint Programming, Lecture Notes in Com-
puter Science, Springer International Publishing, 2014, Volume
8656, pp. 382-397.

• Vinasetan Ratheil Houndji, Pierre Schaus, Mahouton Nor-
bert Hounkonnou and Laurence Wolsey. The Weighted

Arborescence Constraint. Accepted. To appear in
CPAIOR’2017 (Integration of Artificial Intelligence and
Operations Research techniques in Constraint Programming).



1.3 publications and other scientific realisations 9

• Vinasetan Ratheil Houndji, Pierre Schaus and Laurence Wolsey.
The Item Dependent StockingCost Constraint. Submitted to
the journal Constraints. Under review.

National conferences and other scientific realisations

• Vinasetan Ratheil Houndji, Pierre Schaus and Laurence Wolsey.
CP Approach for the Multi-Item Capacitated Lot-Sizing

Problem with Sequence-Dependent Changeover Costs. 28th
annual conference of the Belgian Operational Research Society,
Mons, Belgium, 2014. pp. 145-146.

• Vinasetan Ratheil Houndji, Pierre Schaus, Laurence Wolsey and
Yves Deville. La contrainte globale StockingCost pour les

problèmes de planification de production. Journées Fran-
cophones de Programmation par Contraintes. Bordeaux, France,
2015. pp. 128-129.

• Vinasetan Ratheil Houndji, Pierre Schaus, Mahouton Norbert
Hounkonnou and Laurence Wolsey. La contrainte globale

MinArborescence pour les problèmes d’arborescence de

poids minimum. Journées Francophones de Programmation par
Contraintes. Bordeaux, France, 2017.

• Vinasetan Ratheil Houndji, Pierre Schaus, Laurence Wolsey
and Yves Deville. CSPLib Problem 058: Discrete Lot Sizing

Problem. CSPLib: A problem library for constraints. Available
from http://www.csplib.org/Problems/prob058

• Vinasetan Ratheil Houndji and Pierre Schaus. CP4PP:

Constraint Programming for Production Planning. Toolkit
(using the OscaR solver as a dependency) and some
instances on a variant of the CLSP. Available from
https://bitbucket.org/ratheilesse/cp4pp

• Vinasetan Ratheil Houndji and Pierre Schaus. CP4CAP:

Constraint Programming for Constrained Arborescence

Problem. Toolkit (using the OscaR solver as a dependency)
and some instances on a variant of the CAP. Available from
https://bitbucket.org/ratheilesse/cp4cap

http://www.csplib.org/Problems/prob058
https://bitbucket.org/ratheilesse/cp4pp
https://bitbucket.org/ratheilesse/cp4cap


10 introduction

1.4 methodology

We describe the main steps followed to develop and evaluate our new
filtering algorithms for each of the new global constraints proposed in
this thesis (StockingCost, IDStockingCost and MinArborescence).

Theoretical analysis

First, we formally define the given global constraint, clearly state when
it is applicable and give some alternatives with the state-of-the-art CP

constraints. Then we characterize the optimal solutions of the associ-
ated problem and perform sensitivity analysis by giving some relevant
definitions, properties and propositions. Based on the latter, we pro-
pose some filtering rules and associated filtering algorithms. All non
trivial properties/propositions are proved as well as the correctness
of the algorithms. Finally, we analyze the time complexity of the pro-
posed algorithms.

Experimental evaluation

Each of our new filtering algorithms is tested and evaluated experi-
mentally. The implementations and tests have been realized within the
OscaR open source solver [Osc12]. All experiments were conducted on
a 2.4 GHz Intel core i5 processor using OS X 10.11.

1. Code testing.
Each of our new filtering algorithms is compared wrt at least
one alternative (with some state-of-the-art constraints) on small
random instances with a static search heuristic. The number of
solutions of each model must be the same, to check that our new
filtering algorithms do not remove any consistent solutions. Of
course, these tests do not guarantee the absence of bugs but
they make us more confident about the correctness of the im-
plementations.

2. Comparision wrt filtering and time.
The evaluation of a given global constraint uses the method-
ology described in [VCLS15]: the search tree with a baseline
model M is recorded and then the gains are computed by re-
visiting the search tree with stronger alternative filtering M ∪ φ.



1.4 methodology 11

Thus each model visits the same search space (in the same or-
der of visited nodes) but the model M ∪ φ skips the nodes re-
moved by the additional filtering of φ. This approach allows us
to use dynamic search heuristics without interfering with the fil-
tering. The analysis is based on the arithmetic average number
of nodes visited and the time needed to complete the recorded
search space. We also compare the geometric average gain fac-
tors of each model wrt the baseline. In addition, to refine the
analysis, we present some performance profiles.

For a given propagator, the performance profile [DM02] pro-
vides its cumulative performance wrt the best propagator on
each instance. More formally, consider a set of propagators F
and a set of instances I . Let ri

p be the performance ratio of the
propagtor p ∈ F wrt to the best performance by any propagator
in F on the instance i:

ri
p =

mi
p

min{mi
f | f ∈ F}

(1.1)

in which mi
p is the measure of the performance metric (time or

number of nodes visited) for the propagator p on the instance i.
Then

ρp(τ) =
1
|I| · |{i ∈ I | ri

p ≤ τ}| (1.2)

is the proportion of instances for which the propagator p ∈ F
has a performance ratio ri

p within a factor τ ∈ R of the best pos-
sible ratio. In other words, for a point (x, y) on the performance
profile, the value (1− y) gives the percentage of the instances
where the given propagator is at least x times worse than the
best propagator on each instance.
Example 3. We want to compare three models M1, M2 and M3 that
have different propators on a same problem. Table 1.1 provides the
different performance measures on 5 instances.

One can deduce the different performance ratios by instance/-
model using the formula 1.1 (see Table 1.2). Based on the differ-
ent ratios provided by Table 1.2, Table 1.3 reports the different
cumulative performances using the formula 1.2.

Figure 1.6 shows the coresponding performance profile. On this
figure, one can see that M3 is the best model for 60% of the
instances, M2 is the best for 40% of the instances and M1 is the



12 introduction

Instance M1 M2 M3

1 12 8 4

2 5 5 6

3 18 6 3

4 10 2 8

5 21 8 5

Table 1.1: Example: performance profile - measures

Instance M1 M2 M3

1 3 2 1

2 1 1 1.2

3 6 2 1

4 5 1 4

5 4.2 1.6 1

Table 1.2: Example: performance profile - performance ratios ri
p

τ M1 M2 M3

1 0.2 0.4 0.6

1.2 0.2 0.4 0.8

1.6 0.2 0.6 0.8

2 0.2 1 0.8

3 0.4 1 0.8

4 0.4 1 1

4.2 0.6 1 1

5 0.8 1 1

6 1 1 1

Table 1.3: Example: performance profile - cumulative performance ρp(τ)



1.5 outline 13

best for 20% of the instances. Clearly, M1 is the worst model. M1

is ≥ 3 times worse than the best model for 60% of the instances.
Note that M2 is never > 1.6 times worse than the other models
and M3 is ≤ 1.2 times worse than the other models for 80% of
the instances.

● ● ● ●

● ●

●

●

●

0.2

0.4

0.6

0.8

1.0

2 4 6
τ

%
 in

st
an

ce
s

Models
● M1

M2
M3

Metric

Figure 1.6: Performance profile - Example

1.5 outline

The remainder of this thesis is organized in three main parts. The first
part (Part I) gives background and theoretical preliminaries about the
topics addressed in this thesis. Part I contains three chapters: Chapter 2

focuses on CP, Chapter 3 focuses on the LS problem (and the CLSP) and
Chapter 4 focuses on the MWA (and the CAP). The second part (Part II)
regroups our contributions about the CLSP. Part II is divided into two
chapters, each one is dedicated to some specialized filtering algorithms
for the stocking costs arising in many variants of the CLSP. Chapter
5 introduces the StockingCost constraint for the CLSP when the per
period stocking cost of all orders is the same and Chapter 6 describes
the Item Dependent StockingCost constraint for the CLSP when the
per period stocking costs can be different between orders. The last
part (Part III), that contains a single chapter, is our contributions about
the CAP. In Part III, Chapter 7 presents the optimization version of the
arborescence constraint (denoted MinArborescence) for the CAP and
new sensitivity analysis of the MWA. Finally, we conclude and give
possible directions for future works.





Part I

B A C K G R O U N D





2
C O N S T R A I N T P R O G R A M M I N G ( C P )

In this chapter, we give some preliminary notions about Constraint
Programming (CP) and constraint propagation for optimization prob-
lems. The chapter is organized as follows: Section 2.1 gives an
overview of CP; Section 2.2 defines propagation in CP; Section 2.3
shows the importance of the global constraints and cost-based filter-
ing; Section 2.4 describes how search is performed in CP and Section
2.5 gives a skeleton of a cost-based propagator in the OscaR solver.

2.1 overview of constraint programming

CP allows a declarative statement of the problem with a set of vari-
ables and a set of constraints between variables. Typically, CP involves
finding a value for each one of a set of problem variables subject to con-
straints specifiying that some subsets of values cannot be used together
[FM06]. By constraint, we mean a mathematical relation between the
values that can be assigned to the variables involved. We can distin-
guish two classes of CP problems: Constraint Satisfaction Problems
(CSP) and Constraint Optimisation Problems (COP). A CSP [FM06, MS98,
Tsa95, Apt03] is a triple < X, D, C > in which X = {X1, X2, . . . , Xn} is
the set of n variables involved in the problem, D = {D1, D2, . . . , Dn} is
the set of domains1 of each variable Xi and C = {C1, C2, . . . , Cm} is the
set of m constraints that should be respected in every solution. A solu-
tion of a CSP is an assignment of a value vi ∈ Di to each variable Xi ∈ X
such that all constraints are satisfied. A COP is a CSP with an objective

1 The domain of a variable is the set of values that can be assigned to this variable.

17



18 constraint programming (cp)

function z. A numerical value z(s) is associated to every consistent so-
lution s of the problem and the goal is to find the best (minimum or
maximum) consistent solution wrt the objective function.

2.2 propagators

Consider a brute force algorithm that enumerates all the possible as-
signments of the variables with respect to their respective domains
without any processing. In this case, the size of the search space of the
given CSP is exponential in number of variables of the problem. CP re-
duces this size by performing some filterings based on the constraints
and the associated propagators. Propagators are also known as filters
implemented by some filtering algorithms and narrowing operators
[Ben96]. A propagator is associated to a single constraint or a set of
constraints. Note that different propagators (with different filtering al-
gorithms) can be developed for the same (set of) constraint(s). The role
of a propagator is to filter some (ideally all) inconsistent values from
the domains of the variables. A couple variable/value (x, v) is inconsis-
tent wrt a constraint c iff there is no solution with x = v that respects
the constraint c. For example, consider two variables X1 = {2, 3, 5}
and X2 = {1, 2, 4} and the constraint X1 < X2. We can see that X1 = 5,
X2 = 1 and X2 = 2 are inconsistent wrt X1 < X2. After the filter-
ing, the new domains of variables are respectively: X1 = {2, 3} and
X2 = {4}. A propagation engine, using a version of fix-point algo-
rithm (see Algorithm 2.2.1), coordinates the execution of propagators
in order to deliver constraint propagation for a collection of constraints
[SC06]. This process is repeated until a fix-point is reached i.e there
are no more values that can be removed. We present, in Algorithm
2.2.1 [Sch15], the principle of a fix-point algorithm.

The amount of filtering of each constraint depends on the consis-
tency level of the associated propagator. The main consistency in CP

is Domain Consistency (DC) or Generalized Arc consistency (GAC)
[Mac77]. If we individually consider each constraint, GAC is the best fil-
tering that can be achieved. A propagator achieves GAC for a constraint
iff all inconsistent values (wrt that constraint) are removed from the do-
mains of the variables involved. Formally, let vars(c) denote the set of
variables involved in the constraint c. A propagator achieves GAC for
a constraint iff ∀Xi ∈ vars(c), ∀v ∈ Di, ∀Xj ∈ vars(c) \ {Xi} : ∃vj ∈ Dj
such that c holds. For some constraints, GAC could be achieved
in reasonable time. Unfortunately, this is not always the case. An-



2.3 global constraints 19

Algorithm 2.2.1: Principle of a fix-point algorithm

1 repeat
2 Select a constraint c.
3 if c is consistent wrt the domains of variables then
4 Apply filtering algorithms of c.
5 end
6 else
7 Stop. There is no solution.
8 end
9 until no value can be removed.

other well-known consistency level is Bound Consistency (BC). This
latter, sometimes, offers a good trade-off between speed and filter-
ing. For BC, the domain of each variable Xi ∈ X is relaxed to
Di = [min{v ∈ Di}, . . . , max{v ∈ Di}]. A propagator achieves BC for a
constraint iff ∀Xi ∈ vars(c), ∀v ∈ {min{v ∈ Di}, max{v ∈ Di}}, ∀Xj ∈
vars(c) \ {Xi} : ∃vj ∈ [min{v ∈ Dj}, . . . , max{v ∈ Dj}] such that c
holds. There are some other consistency levels. We refer to [Bes06] for
more information about the formal consistency levels and propagators
in CP. It is worth noting that, some propagators use filtering algorithms
whose consistency levels cannot easily be characterised, but that offer
relatively good filtering.

2.3 global constraints

A global constraint is a constraint on a non fixed number of variables.
Such constraint is semantically redundant since the same relation can
be expressed as the conjunction of several simpler constraints [HK06].
A conjunction of simpler constraints that is semantically equivalent to
a global constraint is often called decomposition of this global con-
straint. A global constraint is useful to better filter inconsistent values
and/or to be more efficient in time than its different decompositions.

A well-known global constraint is the alldifferent constraint
[Rég94, Pug98, LO+03, Hoe01]. The alldifferent constraint holds
if and only if each variable involved in the constraint takes a dif-
ferent value. Consider the constraint alldifferent(X1, X2, X3) with
D1 = {1, 2}, D2 = {1, 2} and D1 = {1, 2, 3}. An equivalent decom-
position of this constraint is (X1 6= X2) ∧ (X2 6= X3) ∧ (X1 6= X3).



20 constraint programming (cp)

This set of three simple constraints can not filter anything by
tacking each constraint individually. However the global constraint
alldifferent(X1, X2, X3) can see that X3 = 1 and X3 = 2 are in-
consistent since {1, 2} must be reserved for X1 and X2. The filtering
for the alldifferent constraint is mainly based on Hall interval theo-
rem [Hal35] (see for example [Pug98, LO+03]) or matching theory (see
for example [Rég94, MT00]). Other variants of the alldifferent con-
straint exist (see for example [R9́9, CL97a, FLM99a, Bes+11]). A gen-
eralization of the alldifferent constraint is the global cardinality

constraint (gcc) [Rég96, Qui+03, KT05a] that enforces the (minimal
and/or maximal) number of occurences of each value.

We refer to [HK06, R1́1, BMR12] for more information about global
constraints.

Concerning the optimization problems, it is interesting to design
constraints that are linked to a part of the objective function. Such
constraints are called optimization constraints. The propagators asso-
ciated to these constraints are based on the different costs involved.
The cost-based filtering algorithms are more efficient than pure CP fil-
tering for optimization problems. In general, they use the following
pieces of information [FLM99b]:

1. an optimal solution of a related relaxed (less constrained) prob-
lem;

2. the optimal value of this solution. This value is a lower bound
on the original problem objective function. It is used to 1) check
the consistency of the constraint and 2) filter the objective vari-
able;

3. an optimistic evaluation of the cost increase if a value v ∈ Di is
assigned to the variable Xi - to filter decision variables.

The global optimization constraints used for the experiments in
this thesis are: the minimumAssignment constraint [Foc+99, CL97a], the
mincircuit constraint [CL97b, CL97a, FLM02, Pes+98, Ben+12] and
the knapsack constraint [FS02, Sel03, Tri03, DH80]. Below we describe
the minimumAssignment constraint and the cost-gcc constraint, two
global optimization constraints related to the new constraints pro-
posed in this thesis.



2.3 global constraints 21

2.3.1 The minimumAssignment constraint

Consider n variables in the set V1 = {V1
1 , . . . , Vn

1 } and n values in the
set V2 = {V1

2 , . . . , Vn
2 } with a cost c(i, j), ∀i, j ∈ [1, . . . , n] associated

to each pair (Vi
1, V j

2). The Assignment Problem (AP) [DM97, CMT88]
requires one to associate to each variable Vi

1 a single value V j
2 such that

the assigned values are different and the total cost of the assignment
is minimal. The problem can be formulated as follows:

Formulation 1.

Zopt = min ∑
(i,j)

c(i, j) · xi,j (2.1)

(AP) ∑
j∈V2

xi,j = 1, ∀i ∈ V1 (2.2)

∑
i∈V1

xi,j = 1, ∀j ∈ V2 (2.3)

xi,j ∈ {0, 1}, ∀(i, j) (2.4)

in which the decision variable xi,j = 1 when the value V j
2 is associ-

ated to the variable Vi
1 and xi,j = 0 otherwise. The constraint 2.2 (resp.

2.3) ensures that one and only one value in V2 (resp. in V1) is associated
to each Vi

1 (resp. V j
2).

The minimumAssignment constraint has the following signature:
minimumAssignment([x1, . . . , xn], C, Z) in which xi, ∀i ∈ [1, . . . , n] are
the decision variables, C is a cost function associating to each j ∈ Di, ∀i
the cost to assign the value j to the variable xi and Z is an upper bound
on the total cost of the assignment. This constraint holds if there is a
valid assignment with cost ≤ Z. Note that, for this constraint, the num-
ber m of possible values to assign must be greater than or equal to n:
m ≥ n.

The well-known Hungarian algorithm [Kuh10, CMT88] can solve
the AP in O(n2m). The optimal cost returned by the Hungarian algo-
rithm allows one to check the consistency of the minimumAssignment

constraint and filter the objective variable: Z ≥ Zopt. The Hungar-
ian algorithm also provides the LP reduced costs c̄(i, j) for each pair
(i, j) not in the optimal solution. The filtering of the variables can be
carried out based on the reduced costs i.e if Zopt + c̄(i, j) > Z then
Xi ← j is inconsistent. Note that the Hungarian algorithm allows each
re-computation of the optimal solution for the AP, needed in the case of
modification of one value in the cost matrix, to be efficiently obtained



22 constraint programming (cp)

in O(nm) [FLM99b]. Then the minimumAssignment constraint can be
implemented incrementally: the first filtering is achieved in O(n2m)

and the different updates during the search can be done in O(nm).
Assume that, in the optimal solution for the AP, we have: Xi ← k and

Xl ← j. If we assign j to Xi (Xi ← j) then l and k must be re-assigned
As in [FLM99b], let PTH be a minimum augmenting path from l to
k and cost(PTH) be its cost. Thus the cost of the optimal solution for
the AP in which Xi ← j is Zopt + c̄(i, j) + cost(PTH) [FLM99b]. Focacci
et al., in [Foc+99], present a way to improve the LP reduced costs by
computing a bound of cost(PTH) in O(n2). However, the experimental
results presented in [Foc+99, FLM99b] suggest that the filtering based
on the improved reduced costs does not significantly reduce the search
space wrt the one based on the LP reduced costs.

Further, Ducomman et al. [DCP16] show that one can obtain the
exact reduced costs from shortest paths in the residual graph. These
costs can be obtained by executing Johnson’s algorithm [Cor+01a] for
all pairs in O(n2m) using a Fibonacci heap to implement Dijkstra algo-
rithm for shortest path computation.

2.3.2 The cost-gcc constraint

In [R0́2], Régin introduces the cost-gcc constraint, a
generalization of the minimumAssignment constraint. This
global optimization constraint has the following form:
cost-gcc({X1, . . . , Xn}, {[l1, u1], . . . , [ld, ud]}, z, w) in wich:

• X is the variable set;

• [lk, uk] is an interval, ∀k ∈ V = {v1, . . . , vd} with V the set of
possible values that the variables can take;

• z is an upper bound of the cost of the assignment;

• w is the cost associated to each assignment: w(i, k) is the cost
incurred when the value k is assigned to the variable Xi.

Note that the cost-gcc constraint is the gcc constraint with costs.



2.4 search 23

The cost-gcc constraint holds when the number of times a variable
takes the value k ∈ V is in the interval [lk, uk] and the total cost of the
assignment is less than z:

|{i | Xi = k}| ≥ lk, ∀k ∈ V (2.5)

|{i | Xi = k}| ≤ uk, ∀k ∈ V (2.6)

∑
i,k
(Xi = k) · w(i, k) ≤ z (2.7)

Consistency checking for this constraint can be achieved based on
finding a minimum cost flow in a special directed graph called value
network of cost-gcc (see [R0́2]). One can check the consistency for the
cost-gcc constraint in O(n · S(m, n + d, γ)) in which m is the number
of arcs in the value network and S(m, n + d, γ) is the complexity of the
search for shortest paths from a node to every node in a graph with
m arcs and n + d nodes with a maximal cost γ [R0́2]. Régin, in [R0́2],
presents an algorithm to achieve GAC for the cost-gcc constraint in
O(∆ · S(m, n + d, γ)) (with ∆ = min{n, d}) and also studies the incre-
mental aspects of the algorithm. To the best of our knowledge, the
arc-consistent cost-gcc constraint has never been implemented in a
CP solver.

2.4 search

In general, the propagation is not sufficient to find a solution of a CSP.
Actually, after a fix-point is reached, there are three possible cases:

1. a domain of at least one variable is empty: the corresponding
CSP has no solution;

2. each variable has a single consistent value in its domain: a solu-
tion is found;

3. at least one variable has at least two values in its domain. Then
the current CSP is simplified by splitting a domain of a variable.
This is called branching.

A CSP is solved by decomposing the problem into smaller CSP un-
til all the subproblems reach the case 1 (the problem does not have
a solution) or one subproblem reaches the case 2. Note that when
a branching decision is taken, propagation is applied on every new
subproblem (until a fix-point is reached). The solutions are found



24 constraint programming (cp)

by interleaving propagation and branching decisions. This is why CSP

is also defined as Filtering + Search. Search defines how the search
space is explored with the alternatives done by the branching deci-
sions. The classical branching decision consists to: first select the vari-
able (with the domain to split) and then choose how to split. This is
called variable-value heuristic.

It is interesting to design a specialized search heuristic (for branch-
ing decisions) based on the context of the problem in order to quickly
have a consistent (and good for an optimization problem) solution.
We refer to [Bee06] for more information about branching strategies
and search. To traverse the entire search tree, CP solver mainly uses
Depth First Search (DFS). DFS explores the tree from the left of the
tree to the right and backtracks to the next unexplored branch when
the current small CSP has no solution. Note that, when backtrack oc-
curs, some data structures must restore their respective previous val-
ues. This state restoration can be achieved by 1) copying, 2) trail-
ing (information to reconstruct the state is stored in a trail prior to
change it), or 3) recomputing the state from scratch [SC06]. Most of
the CP solvers are trailing-based. A variable that can restore its do-
main is called reversible. We refer to [SC06] for more information
about state restoration. Alternative exploration strategies (all based on
DFS) are: Iterative Deepening Search (IDS) [Kor85], Limited Discrep-
ancy Search (LDS) [HG95], Depth-Bounded Discrepancy Search (DDS)
[Wal97], Discrepancy-Bounded Depth First Search (DBDFS) [BP00], etc.

For the optimization problems, the common approach is a constraint
based version of branch and bound introduced in [Hen89]. The princi-
ple is to dynamically (during the search) add the constraint z < z(s)
(for a minimization problem) in which z(s) is the cost of the last con-
sistent solution found s. By doing this, the CP solver does not explore
the part of the tree in which it is sure that the costs of the consistent
solutions inside these parts are ≥ z(s). The cost of the next consistent
solution found after s is strictly better than z(s) and the last solution
found when the search is completed is an optimal solution. On the
other hand, an optimization constraint can also help to provide a good
lower bound on the objective value in order to quickly prove optimal-
ity. Other techniques to solve optimization problems in CP consist of
iterating on possible values of z from its lower (or upper) bound or
achieving a dichotomic search (see for example [BLPN12]).

For hard problems, the search space is very large and it is difficult
to perform a complete search. Some local search techniques exist in CP



2.5 cost-based propagator in the oscar solver 25

to search for solutions with costs close to optimal even without a proof
of optimality. The interested reader may refer to [HM05, HS04, HT06,
Sha98] for more information about local searches in CP.

2.5 cost-based propagator in the oscar solver

There are many CP solvers: OR Tool [Goo], Choco [PFL15], Gecode
[Gec05], Ilog [J. 94], CHIP [Din+88], OscaR [Osc12], etc. We refer to
[Cps] for a more complete list of the CP solvers. The OscaR solver
[Osc12] is an open source toolkit for solving OR problems mainly based
on Scala [Sca]. For our implementations and experiments, we use Os-
caR mainly because: 1) it is open source 2) it has an implementation
of most of the state-of-the-art constraints needed for our experiments
3) the CP part of Oscar is maintained at UCL 4) its syntax is intuitive
and easy to understand for final users. We refer to [Sch15] for a quick
introduction to OscaR.

To implement a new propagator in OscaR, one needs to define two
main procedures [Sch15]:

• setup(): setup the constraint. This procedure allows to register
the constraint to potential modifications of the domains of the
variables in its scope. A first consistency check and propagation
can be done;

• propagate(). This procedure is called if a variable x has asked
to do so with, for example, one of these procedures:
- callPropagateWhenBoundsChange (when the lower bound or
the upper bound of the domain of x changes);
- callPropagateWhenDomainChanges (when the domain of x
changes);
- callPropagateWhenBind (when x is bound that means that
there is a single value in the domain of x).

Listing 2.1 is a skeleton of a cost-based propagator in OscaR that
describes to the solver how and when to process the different filtering
events. First, we state in setup that the propagator should be triggered
each time a decision variable changes one of its bounds (minimum
or maximum) and also each time the cost variable changes one of its
bounds. Then, in propagate, one sets how to filter the different vari-
ables: 1) filter the cost variable after the computation of an optimal
solution for a relaxed problem 2) filter the different decision variables



26 constraint programming (cp)

Xi after the computation of a lower bound of the new cost when Xi is
forced to take a value v ∈ Di; ∀i, v.

Listing 2.1: Skeleton of a cost-based propagator in OscaR
1 import oscar.cp._

2 ...

3

4 // X is the array of n decision variables and C is the cost of the objective

part concerned

5 class ConstraintExample(val X: Array[CPIntVar], val C: CPIntVar) extends

Constraint(X(0).store, "ConstraintExample") {

6

7 //Preprocessing and checking the pre-conditions

8

9 override def setup(l: CPPropagStrength): Unit = {

10 X.foreach(_.callPropagateWhenBoundsChange(this))

11 C.callPropagateWhenBoundsChange(this)

12 propagate()

13 }

14

15 override def propagate(): Unit = {

16

17 // Compute the optimal solution of the relaxed problem associated and its

cost Copt.

18 C.updateMin(Copt)

19

20 // Compute an optimistic evaluation of the new cost to be paid if a value v

in D(i) is assigned to variable X(i) and let newC(i)(v) be this cost.

21 for (i <- 1 to n) {

22 for(v <- D(i)){

23 if (newC(i)(v) > C.max){

24 X(i).removeValue(v)

25 }

26 }

27 }

28 }

29 }



3
C A PA C I TAT E D L O T S I Z I N G P R O B L E M ( C L S P )

In this chapter, we give some preliminary notions about the lot sizing
problem and some works related to this problem. In Section 3.1, the
lot sizing problem is defined and some elements to classify its differ-
ent versions are given. Then in Section 3.2, some works related to the
lot sizing problem are presented. Finally, in Section 3.3, the pigment
sequencing problem (a variant of the capacitated lot sizing problem) is
described.

3.1 overview of the lot sizing problem

Production planning considers the best use of production resources in
order to satisfy production goals over a certain period named the plan-
ning horizon [KGW03]. The Lot Sizing (LS) problem is one of the most
important problems in production planning [KGW03, AFT99]. There
are many versions of the LS problem depending on their characteristics.
These problems require one to determine a minimum cost (production
costs and/or storage/stocking costs and/or setup costs, etc.) produc-
tion schedule to satisfy the demands for single or multiple items while
respecting side restrictions. We give below some characteristics of the
LS problems and one of their classifications.

3.1.1 Characteristics of the Lot Sizing problem

The next properties affect directly classifying and modeling of the LS

problems [KGW03]:

27



28 capacitated lot sizing problem (clsp)

• Planning horizon: it is the time interval in which the production
of items will take place. It may be finite or infinite / discrete or
continious.

• Capacity or resource constraints: the LS problem may be capac-
itated or uncapacitated. If there are no restrictions on resources
or production capacity, the problem is an uncapacitated prob-
lem. Otherwise, it is a capacitated problem.

• Number of items: the LS problem is a single item problem if
there is only one type of order to be produced. Otherwise, it is
a multiple items problem.

• Demand: demand is static if its value does not change over time
and dynamic otherwise. If demand is known in advance, it is
deterministic. Otherwise, it is probabilistic.

• Setup: when the production of an item induces a cost (resp.
time) to prepare the machine, this cost (resp. time) is called
setup cost (resp. setup time). This cost/time is independent of
the amount of the item unit that is produced. It is changeover
cost (resp. time) when the production of an item in a given
period induces a cost (resp. time) that depends on the item pro-
duced in the previous period.

• Number of levels: the LS problem is multi-level problem if some
items are used in the production of other items. The problem is
a single-level if the production of an item is not dependent on
the production of others.

• Shortage: there is shortage when it is not possible to satisfy all
the demands. When it is allowed to satisfy some demands after
their deadlines, there is backlogging. There are lost sales when
it is allowed to not satisfy all the demands.

3.1.2 Classification of the Lot Sizing problem

We present, in this section, the classification of the LS problem for sin-
gle item proposed in [Wol02, PW05], based on the following three vari-
ables: PROB - CAPA - VAR.
The variable PROB can take one of the following values [Wol02,
PW05]:



3.2 related works 29

• LS (Lot Sizing): this is the basic LS problem. There is a planning
horizon of T periods and, in each period, there is a production
capacity ct and a demand to be satisfied dt. The cost to be min-
imized includes 1) unit production cost pt and a fixed set-up
cost ft if production takes place in t for each t ∈ [1, . . . , T], and
2) cost ht per unit of stock at the end of the period t ∈ [1, . . . , T];

• WW (Wagner-Whitin): this is the basic LS problem, except that
the unit production cost per period pt and the per period stock-
ing cost ht satisfy ht + pt ≥ pt+1 for each t ∈ [1, . . . , T − 1]. This
means that it is better to produce as late as possible;

• DLS (Discrete Lot Sizing): this is the basic LS problem except that
there is either no production or production at full capacity ct in
each period t ∈ [1, . . . , T];

• DLSI (Discrete Lot Sizing with variable Initial stock): this is the
DLS problem with an initial stock.

The second variable CAPA is about the resource (or capacity) restric-
tions and can take one of the following values:

• C (capacitated): the capacities ct, ∀t ∈ [1, . . . , T] may vary over
time;

• CC (constant capacitated): the capacities are the same over time.
ct = c1, ∀t ∈ [1, . . . , T];

• U (uncapacitated): there is no restriction on the capacity of pro-
duction. ct = ∞, ∀t ∈ [1, . . . , T].

Finally, the third variable treats other extensions of the problem such
as B (Backlogging), SC (Start-up Cost), ST (Start-up Time), SS (Safety
Stocks), etc. [Wol02, PW05].

3.2 related works

Historically, the paper “How many parts to make at once ?” [Har13]
(published in 1913) can be considered as the first that introduces the
LS problem. The research in this domain was intensified from Wag-
ner and Within paper [WW58] and Manne paper [Man58] in 1958. In
this thesis, we focus on the Capacitated Lot Sizing Problem (CLSP).



30 capacitated lot sizing problem (clsp)

There are many other variants such as the Economic Lot Sizing Prob-
lem (ELSP) [GS97], the Proportional Lot Sizing and Scheduling Prob-
lem (PLSP [DH95], the Continuous Setup Lot Sizing Problem (CSLP)
[DK97c]. We refer to [DK97b, JD06, UP10, Cop+16, BRG87] for general
reviews about the LS problem.

A CLSP is a LS problem in which there are resource restrictions (ca-
pacity) for each period of production over a discrete and finite plan-
ning horizon. It is a single level, dynamic demand production plan-
ning problem without backlogging. The CLSP is known to be NP-Hard
[CT90, BY82, FLK80] (for single and multiple items). Its special case,
the Discrete Lot Sizing Problem (DLSP), is also NP-Hard [JD98, Bru00].

The exact solving solution approaches mainly consist of adding
some strong valid inequalities (cut generation technique) or reformu-
lating the problem (see for example [GH01, BW01, BRW84, LMV89,
Gic08]). Since most of these problems are NP-Hard, many heuristics
or relaxation based approaches have also been proposed (see for exam-
ple [Hin95, CFL94, Dia+03, AFT99, Tri87, KR82]). We refer to [KGW03]
to have details about the operational research approaches proposed in
the litterature for the CLSP.

Related works in CP

Surprisingly, to the best of our knowledge, the LS problem have so far
been ignored by CP before we started our research. However, one can
use some alternatives with the state-of-the-art CP constraints. For each
global constraint introduced in this thesis, we state the possible alter-
natives in the corresponding chapter. For example, for our global con-
straints StockingCost (see Chapter 5) and IDStockingCost (see Chap-
ter 6), the cost-gcc constraint and the minimumAssignment constraint
(described in Section 2.3) are good state-of-the-art CP alternatives.

After our paper on the StockingCost constraint [Hou+14], German
et al. [Ger+15] have proposed the LotSizing constraint for a single
item problem where the different costs depend on the period of pro-
duction of the order. The authors compute lower bounds on the setup
cost, the variable production cost and the stocking cost and filter the
decision variables wrt these lower bounds. Unfortunately, they do not
compare the filtering of the LotSizing constraint wrt the filtering pro-
vided by the minimumAssignment (or cost-gcc) constraint.



3.3 a variant of the clsp 31

3.3 a variant of the clsp

This section describes the variant of the CLSP used for the experiments
in this thesis and its integer programming formulations described in
[Fle94, PW05, Hou+]: the Pigment Sequencing Problem (PSP). This is
a multiple items, single machine problem with discrete planning hori-
zon and production capacity limited to one unit per period. The de-
mand is dynamic and deterministic. There are item-dependent stock-
ing costs and sequence-dependent changeover costs. The total stocking
cost of an order is proportional to its stocking cost (ie the stocking cost
hi ≥ 0 of the corresponding item i) and the number of periods between
its due date and the production period. The changeover cost qi,j ≥ 0 is
induced when passing from the production of item i to another one j
with qi,i = 0, ∀i. The objective is to assign a production period for each
order respecting its due date and the machine capacity constraint so
as to minimize the sum of stocking costs and changeover costs. Note
that, without loss of generality, demands can be normalized such that
di

t ∈ {0, 1} and then each single item has classification DLS-CC-SC (see
Section 3.1.2). We recall the example given in Introduction (Chapter 1).

Example 4. Two types of order (1 and 2) must be produced over the planning
horizon [1, . . . , 5]. The stocking costs are respectively h1 = 5 and h2 = 2 for
each type of order (item). The demands for item 1 are d1

t∈[1,...,5] = [0, 1, 0, 1, 0]
and for the second item are d2

t∈[1,...,5] = [0, 0, 1, 0, 1]. Thus the number of
orders is n = 4. The changeover costs are: q1,2 = 10, q2,1 = 5 and q1,1 =

q2,2 = 0. The solution S1 = [1, 2, 0, 1, 2] (represented in Figure 3.1) is a
feasible solution. This means that the item 1 will be produced in periods 1 and

t = 3t = 1

1

t = 2

2

t = 4

1

t = 5

2

Figure 3.1: A feasible solution of the PSP instance of Example 4

4 while the item 2 will be produced in periods 2 and 5. Period 3 is an idle
period, a period in which there is no production. The cost associated to S1 is
Cs1 = h1 + h2 + q1,2 + q2,1 + q1,2 = 32. The optimal solution for this problem
is S2 = [2, 1, 0, 1, 2] (represented in Figure 3.2) with cost Cs2 = 19.



32 capacitated lot sizing problem (clsp)

t = 3t = 1

2

t = 2

1

t = 4

1

t = 5

2

Figure 3.2: An optimal solution of the PSP instance of Example 4

3.3.1 A CP model for the PSP

This section presents a basic CP model for the PSP. We uniquely iden-
tify each order. The aim is to associate to each of these orders a
period that respects the due date of the order. Let us denote by
date(p) ∈ [1, . . . , T], ∀p ∈ [1, . . . , n] the period in which the order p
is produced, dueDate(p) ∈ [1, . . . , T] the due date of the order p, and
I(p) the corresponding item of the order p. To enforce the feasibility
of a solution, the main constraints are the following:

date(p) ≤ duedate(p), ∀p (3.1)

alldifferent(date) (3.2)

in which:

• Equation 3.1: each order must be satisfied before its due date;

• Equation 3.2: since the capacity of the machine is limited to one,
each order must be produced at different period.

One can model the changeover costs part of the problem as
a ATSP. Each order represents a city to be visited and the
changeover costs are the distance between two cities. To this end,
we add an artificial order n + 1 such that date(n + 1) = T + 1
with qI(p),I(n+1) = qI(n+1),I(p) = 0, ∀p ∈ [1, . . . , n]. Denote by
successor(p), ∀p ∈ [1 . . . n] the order produced just after producing the
order p. The following additional constraints can then be added:

circuit(successor) (3.3)

date(p) < date(successor(p)), ∀p ∈ [1, . . . , n] (3.4)

in which:

• Equation 3.3: it ensures the existence of an Hamiltonian circuit
(see [Pes+98] );



3.3 a variant of the clsp 33

• Equation 3.4: the order p must be produced before its succes-
sors.

Finally, the objective is to minimize the stocking costs and the
changeover costs:

∑
p
(dueDate(p)− date(p)) · hI(p) + ∑

p
qI(p),I(successor(p))

We refer to Section 5.6 to see a stronger CP model for the PSP.

3.3.2 MIP formulation for the PSP

Formulation 2 is a basic integer linear programming formulation of
the PSP with m items to be produced over T periods with no initial
stocks [PW05].

Formulation 2.

min ∑
i,j,t

qi,jχ
i,j
t + ∑

i,t
hisi

t (3.5)

si
0 = 0, ∀i (3.6)

xi
t + si

t−1 = di
t + si

t, ∀i, t (3.7)

(PSP1) xi
t ≤ yi

t, ∀i, t (3.8)

∑
i

yi
t = 1, ∀t (3.9)

χ
i,j
t ≥ yi

t−1 + yj
t − 1, ∀i, j, t (3.10)

xi
t, yi

t, χ
i,j
t ∈ {0, 1}, si

t ∈ N, ∀i, j ∈ [1, . . . , m], ∀t ∈ [1, . . . , T]
(3.11)

in which:

• xi
t: binary variable of production. xi

t = 1 if the item i is produced
in period t and xi

t = 0 otherwise;

• yi
t: binary variable of setup. yi

t = 1 if the machine is prepared
for production of the item i in period t and yi

t = 0 otherwise;

• si
t: the number of items i stocked at the end of period t, ∀t ∈
[1, . . . , T];



34 capacitated lot sizing problem (clsp)

• χ
i,j
t : binary variable of changeover. χ

i,j
t = 1 if the machine is set-

up for item j in period t and was set-up for item i in period
t− 1; χ

i,j
t = 0 otherwise;

and:

• Equation 3.5: objective function - minimization of the sum of
stocking and changeover costs;

• Equation 3.6: there is no initial stock;

• Equation 3.7: the demand satisfaction in each period. This is a
flow balance constraint between the number of items produced,
stocked and delivered;

• Equation 3.8: setup forcing constraint (yi
t must be equal to 1 if

an item i is produced in period t);

• Equation 3.9: machine capacity production restrictions. Here we
use equality constraints (instead of ∑i yi

t ≤ 1, ∀t) in order to
compute the changeover costs;

• Equation 3.10: changeover variables definition. Actually, if
yi

t−1 = 1 and yj
t = 1 then χ

i,j
t must be equal to 1. Otherwise

χ
i,j
t = 0 thanks to the objective function.

The constraints modeling the changeover variables (constraints 3.10)
can be replaced by the constraints 3.16 as in the next formulation
[PW05].

Formulation 3.

Equations 3.5, 3.6, 3.7, 3.8, 3.9 (3.12)

∑
i

χ
i,j
t = yj

t, ∀j, t (3.13)

(PSP2) ∑
j

χ
i,j
t = yi

t−1, ∀i, t (3.14)

∑
i

yi
0 = 1 (3.15)

yj
t − zj

t = yj
t−1 − wj

t−1 = χ
jj
t , ∀j, t (3.16)

in which:



3.3 a variant of the clsp 35

• zi
t: binary variable of start-up. zi

t = 1 if there is a setup for an
item i in period t but not in period t− 1. zi

t = 0 otherwise;

• wi
t: binary variable of switch-off. wi

t = 1 if there is a setup for an
item i in period t but not in period t + 1. wi

t = 0 otherwise.

A tighter reformulation (Formulation 4) is obtained by adding some
DLS-CC-SC valid inequalities for each item i [PW05].

Formulation 4.

Formulation 3 (3.17)

(PSP3) si
t−1 +

t+p−1

∑
u=t

yi
u +

t+p−1

∑
u=t+1

(di
ul − (t + p− u))zi

u +
l

∑
u=t+p

di
ulz

i
u ≥ p

(3.18)

in which:

• di
ul is the sum of demands in the interval [u, l] for the item i:

di
ul = ∑l

k=u di
k;

• p = di
tl = ∑l

k=t di
k;

• Equation 3.18: valid inequalities on the interval [t, l] ⊆ [1, . . . , T]
∀i ∈ [1, . . . , n].

We refer to [PW05] for details about these valid inequalities and the
different formulations. Formulation 4 can be considered as the state-
of-the-art of exact method for the PSP. The interested reader may refer
to [PW05, Hou13] to see some experimental results for these MIP for-
mulations. Furthermore, Ceschia et al. [CDGS16] report the solution of
some instances of the PSP using a simulated annealing approach.





4
C O N S T R A I N E D A R B O R E S C E N C E P R O B L E M ( C A P )

In this chapter, we give some preliminary notions about the Min-
imum Weight Arborescence (MWA) and some works related to the
Constrained Arborescence Problem (CAP). In Section 4.1, the MWA

problem is defined and an algorithm to compute an MWA is given.
Then in Section 4.2, some works related to the CAP are presented. Fi-
nally, in Section 4.3, the resource constrained minimum weight arbores-
cence problem (a variant of the CAP) is described.

4.1 overview of minimum weight arborescence (mwa)

An arborescence A rooted at r is a spanning tree [GH85] if we ig-
nore the direction of edges and there is a directed path in A from
r to each other vertex [Way13]. A Minimum Directed Spanning Tree
(MDST) or Minimum Weight Arborescence (MWA) A(G)? of the graph
G is an arborescence of minimum total cost. Let us formally define
the MWA problem. Consider a directed graph G = (V, E), in which
V = {v1, v2, . . . , vn} is the vertex set and E ⊆ {(i, j) | i, j ∈ V} is the
edge set. Each edge (i, j) ∈ E has a weight w(i, j) and one vertex r ∈ V
is identified as the root. Without loss of generality, any edge entering
the root r can be removed.

To formulate the MWA problem, let us use the following notations.

Definition 1. Consider a subset of vertices S ⊆ V. Let δin
S be the set of edges

entering S: δin
S = {(i, j) ∈ E | (i ∈ V \ S) ∧ (j ∈ S)}. For a vertex k ∈ V,

δin
k is the set of edges that enter in k.

37



38 constrained arborescence problem (cap)

Definition 2. Let V ′ be the set of vertices without the root r: V ′ = V \ {r}.

The MWA problem can be formulated as follows [FV97]:

Formulation 5.

w(A(G)?) = min ∑
(i,j)∈E

w(i, j) · xi,j (4.1)

(MWA) ∑
(i,j)∈δin

j

xi,j = 1, ∀j ∈ V ′ (4.2)

∑
(i,j)∈δin

S

xi,j ≥ 1, ∀S ⊆ V ′ : |S| ≥ 2 (4.3)

xi,j ∈ {0, 1}, ∀(i, j) ∈ E (4.4)

in which xi,j = 1 if the edge (i, j) is in the optimal arborescence
A(G)? and xi,j = 0 otherwise. The first group of constraints im-
poses that exactly one edge enters in each vertex j ∈ V ′ and the
constraints (4.3) enforce the existence of a path from the root r to all
other vertices. As in [FT93], we assume that w(i, i) = ∞, ∀i ∈ V and
w(i, j) > 0, ∀(i, j) ∈ E without loss of generality. In this case, following
[Edm67], the constraints (4.4) can be relaxed to xi,j ≥ 0, ∀i, j(4.5) and
the constraints (4.2) become redundant. This leads to Formulation 6

for the MWA problem.

Formulation 6.

w(A(G)?) = min ∑
(i,j)∈E

w(i, j) · xi,j (4.6)

(MWA) ∑
(i,j)∈δin

S

xi,j ≥ 1, ∀S ⊆ V ′ : |S| ≥ 2 (4.7)

xi,j ≥ 0, ∀(i, j) ∈ E (4.8)

Algorithms to compute an MWA A(G)? of a given graph G were pro-
posed independently by Chu and Liu ([CL65]), Edmonds ([Edm67])
and Bock ([Boc71]). A basic implementation of that algorithm is in
O(|V||E|). The associated algorithm is often called Edmonds’ algo-
rithm. An O(min{|V|2, |E| log |V|}) implementation of the Edmonds’
algorithm is proposed by [Tar77]. More sophisticated implementations
exist (see for example [Gab+86, Men+04]). Fischetti and Toth ([FT93])
propose an O(|V|2) implementation to compute an MWA and also the
associated linear programming reduced costs. We rely on this algo-
rithm for filtering the MinArborescence constraint.



4.1 overview of minimum weight arborescence (mwa) 39

An MWA has two important properties that are used to construct it
[KT05b].

Proposition 1. A subgraph A = (V, F) of the graph G = (V, E) is an
arborescence rooted at the vertex r if and only if A has no cycle, and for each
vertex v 6= r, there is exactly one edge in F that enters v.

Proposition 2. For each v 6= r, select the cheapest edge entering v (breaking
ties arbitrarily), and let F? be this set of |V| − 1 edges. If (V, F?) is an
arborescence, then it is a MWA; otherwise, w(V, F?) is a lower bound on the
MWA.

4.1.1 Conditions for optimality of the MWA

The LP dual problem DMWA of MWA is [FT93]:

Formulation 7.

max ∑
S⊆V′

uS (4.9)

(DMWA) w(i, j)− ∑
(i,j)∈δin

S ,∀S⊆V′
uS ≥ 0, ∀(i, j) ∈ E (4.10)

uS ≥ 0, ∀S ⊆ V ′ (4.11)

in which uS is the dual variable associated to the subset of vertices
S ⊆ V ′.

Let rc(i, j) be the LP reduced cost associated to the edge (i, j). The
necessary and sufficient conditions for the optimality of MWA (with
primal solution x?i,j) and DMWA (with dual solution u?

S) are [FT93]:

1. primal solution x?i,j satisfies the constraints (4.7) and (4.8);

2. u?
S ≥ 0 for each S ⊆ V ′;

3. reduced cost rc(i, j) = w(i, j) − ∑(i,j)∈δin
S ,∀S⊆V′ u

?
S ≥ 0 for each

(i, j) ∈ E;

4. rc(i, j) = 0 for each (i, j) ∈ E such that x?i,j > 0;

5. ∑(i,j)∈δin
S

x?i,j = 1 for each S ⊆ V ′ such that u?
S > 0.



40 constrained arborescence problem (cap)

4.1.2 Computation of an MWA

Based on Proposition 1 and Proposition 2, an MWA can be computed in
a greedy way. We sketch below the two-phase algorithm for computing
an MWA A(G)? for a graph G rooted at a given vertex r.

• Phase 1:

1. select the minimum cost edge
min1[k] = arg min(v,k)∈δin

k
w(v, k) entering each k ∈ V ′

and let F? be this set of |V| − 1 edges.

2. if F? is an arborescence then we have an MWA. STOP.

3. there exists a subset of vertices forming a cy-
cle C. Then we contract all vertices in C into
a single vertex c and consider the reduced costs
wM(i, j) = w(i, j) − min1[j], ∀(i, j). We denote by
GM = (VM, EM) the contracted graph in which
VM = V ∪ {c} \ {k | k ∈ C}.
Go to 1 with the new graph GM.

In case some contraction(s) occurred in Phase 1, a second phase
is needed to break the cycle in each contracted vertex.

• Phase 2: consider a cycle C with the selected entering edge
(a, b) ∈ E. Remove all edges entering b except (a, b). This proce-
dure ensures that the cycle is broken and each vertex involved
is now connected to the rest of the graph.

For example, consider the graph G1 = (V1, E1) in Figure 4.1 with the
vertex 0 as root. Figures 4.2, 4.3 (Phase 1 with the cycle S1 = {2, 4})
and Figure 4.4 (Phase 2 with the edge (0, 4) selected for the cycle S1)
show the different steps needed to construct A(G1)

?.
Algorithm 4.1.1 [FT93] computes an MWA A(G)? for a graph G

rooted at a given vertex r and also gives the different dual values u?
S.

One can see the differents steps of the algorithm for the graph G1 on
the Figures 4.2, 4.3, 4.4.

Note that the optimality condition 5 implies that for each S ⊆ V ′,
u?

S > 0 =⇒ ∑(i,j)∈δin
S

x?i,j = 1 and ∑(i,j)∈δin
S

x?i,j > 1 =⇒ u?
S = 0

(because u?
S ≥ 0). The different values of dual variables uS, ∀S ⊆ V ′

are obtained during the execution of Edmonds algorithm. Actually,
for each vertex k ∈ V : u?

k = arg min(v,k)∈δin
k

w(v, k) (line 13 of Algo-



4.1 overview of minimum weight arborescence (mwa) 41

0

1 2

3 4

5

35 38

8

20

33
33

45

10
6

6

20

5

15

11

41

Figure 4.1: Initial graph G1

0

1 2

3 4

5

29 23

2

15

18

22 39

5
0

0

14

0

0

0

30

Figure 4.2: Computation of A(G1)
?: Phase 1, first iteration.

A0 = {(2, 1), (4, 2), (4, 3), (2, 4), (3, 5)}.

0

1

3

5

S1 = {2, 4}

2→ 0

18→ 16

0

0

14→ 12

0

Figure 4.3: Computation of A(G1)
?: Phase 1, second iteration.

A0 = {(2, 1), (4, 2), (4, 3), (2, 4), (3, 5), (0, 4)}.



42 constrained arborescence problem (cap)

Algorithm 4.1.1: Computation of a minimum weight arborescence
A(G)? rooted at vertex r

Input: G = (V, E) ; r ∈ V ; w(e), ∀e ∈ E

1 // all primal and dual variables x?i,j and u?
S are assumed to

be zero

2 foreach each edge (i, j) ∈ E do
3 rc(i, j)← w(i, j)
4 end
5 A0 ← ∅; h← 0
6 // Phase 1:

7 while G0 = (V, A0) is not r-connected do
8 // A graph is r-connected iff there is a path from the

vertex r to each other vertex v in V’.

9 h← h + 1
10 Find any strong component Sh of G0 such that r 6∈ Sh and

A0 ∩ δin
Sh

= ∅
11 // If |Sh| > 1, then Sh is a directed cycle

12 Determine the edge (ih, jh) in δin
Sh

such that
rc(ih, jh) ≤ rc(e), ∀e ∈ δin

Sh

13 u?
Sh
← rc(ih, jh) // dual variable associated to Sh

14 x?ih,jh
← 1;

15 A0 ← A0 ∪ {ih, jh}
16 foreach each edge (i, j) ∈ δin

Sh
do

17 rc(i, j)← rc(i, j)− u?
Sh

18 end
19 end
20 // Phase 2:

21 t← h
22 while t ≥ 1 do
23 // Extend A0 to an arborescence by letting all but one

edge of each strong component S
24 if x?it,jt = 1 then
25 foreach each q < t such that jt ∈ Sq do
26 x?iq,jq ← 0

27 A0 ← A0 \ {(iq, jq)}
28 end
29 end
30 t← t− 1
31 end



4.2 related works 43

0

1 2

3 4

5
86

5

15

11

Figure 4.4: Computation of A(G1)
?: Phase 2.

A0 = {(2, 1), (4, 2), (4, 3), (3, 5), (0, 4)}. (2, 4) is removed.

rithm 4.1.1). If a subset S ⊆ V ′ : |S| ≥ 2 is a strong component1,
then u?

S is the minimum reduced cost of edges in δin
S . Only these sub-

sets can have u?
S > 0. All other subsets (S ⊆ V ′ : |S| ≥ 2 and S is

not a strong component) have u?
S = 0. Thus there are O(|V|) subsets

S ⊆ V ′ : |S| ≥ 2 that can have u?
S > 0. A straightforward algorithm

can compute rc(i, j) = w(i, j) − ∑(i,j)∈δin
S ,∀S⊆V′ u

?
S, ∀(i, j) in O(|V|3) by

considering, for each edge, the O(|V|) subsets that are directed cycles.
In [FT93], Fischetti and Toth propose an O(|V|2) algorithm to compute
rc(i, j), ∀(i, j) ∈ E.

4.2 related works

The constrained Minimum Spanning Tree (MST) problem requires one
to find a spanning tree that respects some constraints and has min-
imum weight. The constrained MST problem is much more studied
than the CAP. Deo and Kumar [DK97a] present 29 variants of this
problem such as the diameter-constrained MST [Ach+92], the degree-
constrained MST [NH80], the min-degree MST [AT10], the capacitated
MST [CL73, PV84], etc.

As concerns the directed graphs, to the best of our knowledge,
the only variant of the CAP studied in the literature is the Resource
constrained Minimum-Weight Arborescence (RMWA) problem [Ros86,

1 A strong component of a graph G is a maximal (with respect to set inclusion) vertex
set S ⊆ V such that (i) |S| = 1 or (ii) for each pair of distinct vertices i and j in S, at
least one path exists in G from vertex i to vertex j [FT93].



44 constrained arborescence problem (cap)

GR90, FV97]. The RMWA problem requires one to find an arborescence
that respects the resource constraints on each vertex and has the min-
imum cost. Guignard and Rosenwein [GR90] introduce the problem
and propose a Lagrangian decomposition approach. Later on, Fischetti
and Vigo [FV97] propose a branch and cut algorithm by using some
known classes of valid inequalities for the Asymmetric Travelling Sales-
man Problem (ATSP) and new heuristic procedures.

Related works in CP

Many articles focus on filtering of the MST constraints on undirected
weighted graphs. Dooms and Katriel [DK07] propose filtering algo-
rithms for the Weight-Bounded Spanning Tree WBST(G, T, I, W) con-
straint, which is defined on undirected graph variables G and T, a
scalar variable I and a vector of scalar variables W. This constraint
enforces that T is a spanning tree of G with total weight less than I,
considering the edge weights W. Following [Rég08], the filtering algo-
rithms for WBST introduced by [DK07] are rather difficult to under-
stand and to implement. In [Rég08], Régin develops easier to imple-
ment consistency checking and filtering algorithms for this constraint.
More interestingly, he presents an incremental version of the algorithm.
Further, Régin et al. [Rég+10] extend this latter to also take into ac-
count mandatory edges. On the other hand, Una et al. [Una+16] use
learning to accelerate the search for the WBST constraint and carry out
numerical experiments on the diameter-constrained MST.

For directed graphs, Lorca [Lor10] proposes some constraints on
trees and forests. In particular, the tree constraint [BFL05, Lor10] is
about anti-arborescence on directed graph. By considering a set of ver-
tices (called resource), the tree constraint partitions the vertices of a
given graph into a set of disjoint anti-arborescences such that each anti-
arborescence points to a resource vertex. The authors propose a GAC

filtering algorithm in O(|E||V|) based on the computation of strong ar-
ticulation points of the graph. Further, Lorca and Fages [LJG11] revisit
the tree constraint and introduce a new GAC filtering algorithm for
this constraint in O(|E|+ |V|).



4.3 a variant of the cap 45

4.3 a variant of the cap

This section presents the variant of the CAP used for the experiments in
this thesis: the Resource constrained Minimum Weight Arborescence
(RMWA) problem. In this problem, each vertex i has a limited available
resource bi and the usage of an edge (i, j) consumes some resources
ai,j from the vertex i.

Formulation 8 is a basic formulation for the RMWA problem:

Formulation 8.

w(A(G)?) = min ∑
(i,j)∈E

w(i, j) · xi,j (4.12)

∑
(i,j)∈δin

j

xi,j = 1, ∀j ∈ V ′ (4.13)

(RMWA) ∑
(i,j)∈δin

S

xi,j ≥ 1, ∀S ⊆ V ′ : |S| ≥ 2 (4.14)

∑
(i,j)∈δ+i

ai,j · xi,j ≤ bi, ∀i ∈ V (4.15)

xi,j ∈ {0, 1}, ∀(i, j) ∈ E (4.16)

in which δ+i is the set of outgoing edges from i, ai,j is the amount
of resource that the edge (i, j) uses and bi is the resource available
at vertex i. The constraint (4.15) is about the resource restrictions on
the vertices. The other three constraints together with the objective
function are the classical ones that describe an MWA. We refer to [FV97]
for details about MIP approaches to this problem.

We recall the example given in Introduction (Chapter 1).

Example 5. Consider the graph G1 with additional data concerning the
RMWA problem. In Figure 4.5, the label of the edge (i, j) is w(i, j)(ai,j) and
the vertex i is followed by its resource bi, i(bi). One can see that with the
additional constraints ∑(i,j)∈δ+i

ai,j · xi,j ≤ bi, ∀i ∈ V on this instance, the
previous MWA (represented with dashed edges) is not valid because at the ver-
tex 4, a4,2 + a4,3 = 15 > b4. A feasible solution of this RMWA problem is
represented in dashed in Figure 4.6.

The RMWA problem has many practical applications in the design
of distribution and telecommunication networks [FV97]: the root ver-
tex is a centralized supplier and the other vertices are associated with
customers (or intermediate distribution facilities). A limited amount of



46 constrained arborescence problem (cap)

0(12)

1(14) 2(11)

3(12) 4(10)

5(15)

35(4) 38(15)

8(8)

20(8)

33(10)

33(8)

45(11)

10(9)
6(9)

6(7)

20(9)

5(8)

15(8)

11(7)

41(8)

Figure 4.5: Graphe G1 with ai,j and bi

0(12)

1(14) 2(11)

3(12) 4(10)

5(15)

35(4) 38(15)

8(8)

20(8)

33(10)

33(8)

45(11)

10(9)
6(9)

6(7)

20(9)

5(8)

15(8)

11(7)

41(8)

Figure 4.6: Graphe G1 with ai,j and bi: a feasible solution of the RMWA problem
associated



4.3 a variant of the cap 47

resource is available at each vertex. The use of a directed link has a cost
and consumes a given amount of resource. One wants an arborescence
that respects the resource restrictions at minimum cost.





Part II

F I LT E R I N G A L G O R I T H M S F O R A
C A PA C I TAT E D L O T S I Z I N G P R O B L E M





5
T H E S T O C K I N G C O S T C O N S T R A I N T

We refer to Chapter 3 for an overview of the Lot Sizing (LS) prob-
lem. Many LS problems call for the minimization of stocking/stor-
age costs. This chapter introduces a new global constraint, denoted
StockingCost, that holds when each order is produced on or before
its due date, the production capacity is respected, and the total stock-
ing cost is less than a given value. Here, we consider that all orders
have the same per-period stocking cost. We propose a linear time al-
gorithm to achieve bound consistency on the StockingCost constraint.
On a variant of the Capacitated Lot Sizing Problem (CLSP), we demon-
strate experimentally the pruning and time efficiency of our algorithm
compared to other state-of-the-art approaches.

5.1 introduction

There are often stocking costs to be minimized in the CLSP. These
costs depend on the time spent between the production of an or-
der and its delivery (due date). To handle such LS problems in CP,
we propose an efficient bound consistent filtering algorithm for the
StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) constraint that requires
each order i (represented by the variable Xi) to be produced by its
due date di, the capacity c of the machine to be respected, and H is an
upper bound on the stocking cost.

First, we characterize an optimal solution of the problem associated
to the StockingCost constraint. Then we demonstrate that a greedy
algorithm is able to efficiently compute the optimal cost Hopt and an

51



52 the stockingcost constraint

optimal solution. Since Hopt is the optimal cost, it allows achieving
bound consistent filtering of the objective variable H. After this step,
we analyze the evolution of Hopt

Xi←v that is the optimal cost when the
variable Xi is forced to take the value v. We show that, since the stock-
ing cost is the same for all orders, the evolution of Hopt

Xi←v is monotone.
This property allows us to efficiently achieve bound consistent filtering
for decision variables Xi.

This chapter is organized as follows: Section 5.2 defines the
StockingCost constraint and shows how one can achieve pruning with
the state-of-the-art approaches; Section 5.3 describes some algorithms
to achieve bound consistency for the total stocking costs H and for the
orders i, ∀i ∈ [1, . . . , n]; Section 5.5 presents a complete O(n) filtering
algorithm to achieve bound consistency for all variables; Section 5.6
provides some experimental results on the PSP (that is described in
Section 3.3) and Section 5.7 concludes.

5.2 the stockingcost constraint

The StockingCost constraint is able to tackle the stocking costs that
arise in some variants of the CLSP when the per-period stocking cost is
the same for all orders. In this section, we state when the StockingCost

constraint is applicable and provide some alternatives with other CP

constraints. Consider a set i = 1, . . . , n of orders over a planning hori-
zon [1, . . . , T]1. Each order i requires one unit of production capacity
and has a due date di ∈ [1, . . . , T]. The production capacity of the
machine is c units per period t. The aim is to produce each order by
its due date at latest without exceeding the machine capacity and to
minimize the sum of the stocking costs of the orders. Without loss of
generality, we assume that the per-period stocking cost for each order
is one.

The StockingCost constraint has the following form:

StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c)

in which:

• n is the total number of orders;

• each order i is represented by the variable Xi (with i ∈ [1, . . . , n])
that is the date of production of the order i on the machine;

1 In typical applications of this constraint, assuming that ct is O(1), the number of
orders n is on the order of the horizon T: n ∼ O(T).



5.2 the stockingcost constraint 53

• the integer di is the due-date for order i (with i ∈ [1, . . . , n]);

• the integer c is the maximum number of orders the machine can
produce during one period (capacity);

• if an item is produced before its due date, then it must be
stocked. The variable H is an upper bound on the total num-
ber of periods that all the orders are in stock.

The StockingCost constraint holds when each order is produced before
its due date (Xi ≤ di), the capacity of the machine is respected (i.e. no
more than c variables Xi have the same value), and H is an upper
bound on the total stocking cost (∑i(di − Xi) ≤ H).

Definition 3. Each variable has a finite domain. We denote by Xmin
i and

Hmin (resp. Xmax
i and Hmax) the minimal (resp. maximal) value in the do-

main of variable Xi and H. We also let T = (maxi(Xmax
i )−mini(Xmin

i )).

We know that the objective of a filtering algorithm is to remove val-
ues that do not participate in any solution of the constraint. Here, we
are interested in achieving bound-consistency for the StockingCost

constraint. This consistency level generally offers a good trade-off be-
tween speed and filtering power. Formally, the bound-consistency def-
initions for the StockingCost constraint are stated below.

Definition 4. Given a domain D of variables Xi and H, the constraint
StockingCost([X1, . . . , Xn], [d1, . . . , dn], H, c) is bound consistent with
respect to D iff:

• BC(Xmin
i ) (1 ≤ i ≤ n). Let xi = Xmin

i ; there exist
xj ∈ [Xmin

j , . . . , Xmax
j ] (1 ≤ j ≤ n, i 6= j) and h = Hmax such

that StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds;

• BC(Xmax
i ) (1 ≤ i ≤ n). Let xi = Xmax

i ; there exist
xj ∈ [Xmin

j , . . . , Xmax
j ] (1 ≤ j ≤ n, i 6= j) and h = Hmax such

that StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds;

• BC(Hmin). Let h = Hmin; there exist xi ∈ [Xmin
i , . . . , Xmax

i ](1 ≤ i ≤
n) such that StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) holds.

Without loss of generality, in the rest of this chapter, we assume that
Xmax

i ≤ di, ∀i. We give below how one can achieve filtering for the
StockingCost constraint with other existing constraints.



54 the stockingcost constraint

5.2.1 Decomposing the constraint

It is classical to decompose a global constraint into a conjunction of
simpler constraints, and applying the filtering algorithms available on
the simpler constraints.

A first decomposition of the constraint
StockingCost([x1, . . . , xn], [d1, . . . , dn], h, c) is the following:

|{i | Xi = t}| ≤ c, ∀t (5.1)

∑
i
(di − Xi) ≤ H (5.2)

Assuming that the filtering algorithms for each of the sepa-
rate constraints achieve bound consistency, the above decomposition
(with T + 1 constraints) does not achieve bound consistency of the
StockingCost constraint, as illustrated in the following example.

Example 6. Consider the following instance StockingCost([X1 ∈
[1, . . . , 2], X2 ∈ [1, . . . , 2]], [d1 = 2, d2 = 2], H ∈ [0, . . . , 2], c = 1). The
naive decomposition is not able to increase the lower bound on H because the
computation of H gives (2 − X1) + (2 − X2) = [0, . . . , 1] + [0, . . . , 1] =

[0, . . . , 2]. The problem is that it implicitly assumes that both orders can be
placed at the due date but this is not possible because of the capacity 1 of the
machine. The lower bound of H should be set to 1. It corresponds to one order
produced in period 1 and the other in period 2.

Other decompositions can be proposed to improve the filtering of
the naive decomposition.

A first improvement is to use the global cardinality constraint (gcc)
[Rég96, Qui+03] to model the capacity requirement of the machine
imposing that no value should occur more than c times. The gcc con-
straint can efficiently replace T constraints of equation 5.1 in the basic
decomposition. Bound consistency on the gcc constraint can be ob-
tained in O(n) plus the time for sorting the n variables. This consis-
tency level offers a good time vs filtering tradeoff for interval domains
[Hoe01]. However, the gcc constraint together with equation 5.2 do not
achieve bound consistency of the StockingCost constraint.

A second possible improvement is to use a cost-based global cardi-
nality constraint (cost-gcc) [R0́2]. In the cost-gcc, the cost of the arc
(Xi, v) is equal to +∞ if v > di and di − v otherwise. The cost-gcc



5.3 filtering of the cost variable H 55

provides more pruning than equations 5.1 and 5.2 in the basic decom-
position. As mentioned in Section 2.3.2, O(n · S(m, n+ d, γ)) time (with
n the number of variables, d is the size of the domains, m is the number
arcs and S(m, n+ d, γ) is the complexity of the search for shortest paths
from a node to every node in a graph with m arcs and n+ d nodes with
a maximal cost γ) is required to check the consistency of the cost-gcc

constraint. For the StockingCost, there can be up to n · T arcs. Hence2

the final complexity to obtain arc-consistency3 on the cost-gcc used
to model StockingCost can be up to O(T3) ≈ O(n3). Note that for
c = 1, one can use the minimumAssignment constraint with a filtering
based on LP reduced costs [Foc+99] or exact reduced costs [DCP16]
(see Section 2.3.1).

Next sections provide new scalable filtering algorithms to achieve
the bound consistent filtering for the StockingCost constraint.

5.3 filtering of the cost variable H

In this section, we show how to filter the lower bound on the cost
variable H in O(n) plus the time for sorting the n variables. Let P
denote the problem of computing the optimal lower-bound for H :

H o pt (P ) = min ∑
i
(d i − X i )

Xmin
i ≤ X i ≤ Xmax

i , ∀ i

|{ i | X i = t}| ≤ c , ∀ t

First, let us characterize an optimal solution. For a given assignment,
since the per-period stocking costs for all orders are the same, any
permutation of orders does not change the cost of this assignment.
Hence two solutions, that have the same sorted sequences of values,
have the same cost. Denote by X̄ a valid assignment vector in which
X̄ i is the value (period) taken by X i , ∀ i ∈ [1, . . . , n ].

Property 3. For two valid assignments/solutions X̄ (with H ( X̄ ) =

∑ i (d i − X̄ i )) and X̂ (with H ( X̂ ) = ∑ i (d i − X̂ i )), if the sorted sequences
of values of these solutions are the same, then H ( X̄ ) = H ( X̂ ).

2 using a Fibonacci heap to implement Dijkstra algorithm for shortest path computation
3 without considering incremental aspects.



56 the stockingcost constraint

Note that, in an optimal solution, all orders should be produced as
late as possible. In other words, if in a valid solution of P , there is an
available period for production in period t and there is an order that
can be assigned to t but is assigned to t ′ < t then that solution is not
optimal.

Definition 5. Considering a valid assignment X̄ and a period t, the boolean
value t. f ull indicates whether this period is used at maximal capacity or not:
t. f ull ≡ |{i | X̄i = t}| = c.

Proposition 4. Consider a valid assignment X̄ wrt P . This assignment is
optimal iff ∀i ∈ [1, . . . , n],@t : (X̄i < t) ∧ (X̄max

i ≥ t) ∧ (¬t. f ull).

Proof. First, let assume that X̄ does not respect the condition for opti-
mality of Proposition 4. This means that ∃Xk ∧ ∃t : (X̄k < t)∧ (Xmax

k ≥
t)∧ (¬t. f ull). In this case, by moving Xk from X̄k to t, we obtain a valid
solution better than X̄. Thus the condition is a necessary condition for
the optimality of P .

Now consider two solutions X̄ and X̂ such that X̄ is non-optimal
and X̂ is optimal. Then there must exist a latest period t that is idle
in X̄ and active in X̂. Thus X̄ does not satisfy the condition of the
Proposition 4.

To respect the condition for optimality of Proposition 4, the unique
set of periods used by the optimal solutions of P can be obtained from
right to left by considering orders decreasingly according to their Xmax

i .
Algorithm 5.3.1 computes the optimal value Hopt(P) in O(n log n) and
detects infeasibility if the problem is not feasible. This algorithm greed-
ily schedules the production of the orders by non-increasing due date.
A current time line t is decreased and at each step, all the orders such
that Xmax

i = t are stored into a priority queue (heap) to be sched-
uled next. Note that each order is added/removed exactly once in the
heap and the heap is popped at each iteration (line 11). The orders
with largest Xmin

i must be scheduled first until no more orders can be
scheduled in period t or the maximum capacity c is reached.

Let P r denote the same problem with relaxed lower bounds of Xi:



5.3 filtering of the cost variable H 57

Algorithm 5.3.1: StockingCost: Filtering of lower bound on H -
BC(Hmin)
Input: X = [X1, . . . , Xn] such that Xi ≤ di and sorted

(Xmax
i > Xmax

i+1 )

1 Hopt ← 0 // total minimum stocking cost

2 t← Xmax
1 // current period

3 slack← c // current slack at this period

4 i← 1
5 heap← {} // priority queue sorting orders in decreasing

Xmin
i

6 while i ≤ n do
7 while i ≤ n ∧ Xmax

i = t do
8 heap← heap ∪ {i}
9 i← i + 1

10 end
11 while heap.size > 0 do
12 // we virtually produce the order j in period t
13 j← heap.popFirst
14 slack← slack− 1
15 Hopt ← Hopt + (dj − t)
16 // Invariant: each order produced so far respects the

condition for optimality (Proposition 4) and its
domain

17 if t < Xmin
i then

18 the constraint is not feasible
19 end
20 if slack = 0 then
21 t← t− 1
22 while i ≤ n ∧ Xmax

i = t do
23 heap← heap ∪ {i}
24 i← i + 1
25 end
26 slack← c
27 end
28 end
29 if i ≤ n then
30 t← Xmax

i
31 end
32 end
33 Hmin ← max(Hmin, Hopt)



58 the stockingcost constraint

Hopt(P r) = min ∑
i
(di − Xi)

Xi ≤ Xmax
i , ∀i

|{i | Xi = t}| ≤ c, ∀t

The condition for optimality of P (see Proposition 4) is also valid for
the relaxed problem P r. Since this condition for optimality does not
depend on Xmin

i , all the optimal solutions of P and P r use the same
set of periods. Thus, from Property 3, we have the following property.

Property 5. If the problem P is feasible (i.e. the gcc constraint is feasible),
then Hopt(P) = Hopt(P r).

Observe that, if we use a simple queue instead of a priority queue
in Algorithm 5.3.1, one may virtually assign orders to periods t <

Xmin
i and the feasibility test is not valid anymore, but the algorithm

terminates with the same ordered sequence of periods used in the
final solution. The complexity of the algorithm without priority queue
is O(n) instead of O(n log n). The greedy Algorithm 5.3.1 is able to
compute the best lower bound Hopt(P r) (in the following we drop
problem argument since optimal values are the same) and filters the
lower bound of H if possible: Hmin ≥ Hopt(P r).

5.4 pruning the decision variables X i

In this section, we show how we filter the decision variables X i . The
idea is to study the evolution of H o pt

X i←v that is the optimal cost when
the variable X i is forced to take the value v. Since we assume the gcc

constraint is already bound-consistent and thus feasible, only the cost
argument may cause a filtering of lower-bounds Xmin

i . In the rest of
the chapter, we implicitly assumed relaxed domains [−∞ , . . . , Xmax

i ]

with X max
i ≤ d i , ∀ i ∈ [1, . . . , n ].

In this section, the aim is to perform some sensitivity analysis from
an optimal solution of P . Based on this, we achieve the bound consis-
tent filtering of the decision variables.

Definition 6. Let H o pt
X i←v denote the optimal lower bound in a situation

where X i is forced to take the value v ≤ Xmax
i .



5.4 pruning the decision variables X i 59

Clearly, v must be removed from the domain of X i if H o pt
X i←v >

H max. An interesting question is: what is the minimum value v for X i
such that H o pt

X i←v = H o pt?

Definition 7. Let vopt
i denote the minimum value such that Hopt

Xi←v = Hopt.

We have vopt
i = min{v ≤ Xmax

i | Hopt
Xi←v = Hopt}.

The next property gives a lower bound on the evolution of Hopt

when a variable Xi is forced to take a value v < vopt
i . By the definition

of vopt
i , Hopt will increase by at least (vopt

i − v) if Xi is forced to take a
value v < vopt

i .

Property 6. For v < vopt
i , we have Hopt

Xi←v ≥ Hopt + (vopt
i − v).

After the propagation of Hmin, one may still have some slack be-
tween the upper and the lower bound Hmax − Hmin. Since vopt

i is the
minimum value such that Hopt

Xi←v = Hopt, we can use the lower bound
of Property 6 to filter Xi as follows:

Xmin
i ← max(Xmin

i , vopt
i − (Hmax − Hmin))

In the following we show that the lower-bound of Property 6 can
be improved and that we can actually predict the exact evolution of
Hopt

Xi←v for an arbitrary value v < vopt
i . A valuable information to this

end is the number of orders scheduled at a given period t in an optimal
solution:

Definition 8. In an optimal solution X̄ (i.e. H(X̄) = Hopt), let

count[t] = |{i | X̄i = t}|.

Algorithm 5.4.1 computes vopt
i , ∀i and count[t], ∀t in linear time O(T).

The first step of the algorithm is to initialize count[t] as the number of
variables with upper bound equal to t. This can be done in linear time
assuming the time horizon of size (maxi{Xmax

i } −mini{Xmin
i }) is in

O(n). We can initialize an array count of the size of the horizon and
increment the entry count[Xmax

i ] of the array in O(1) for each variable
Xi.

The idea of Algorithm 5.4.1 is to use a Disjoint-Set T (also called
union-find) data structure [Cor+01b] making it possible to have effi-
cient operations for T.Union(S1, S2), grouping two disjoint sets into a
same set, and T.Find(v) returning a "representative" of the set contain-
ing v. It is easy to extend a disjoint-set data structure with operations



60 the stockingcost constraint

T.min(v)/T.max(v) returning the minimum/maximum value of the
set containing value v. As detailed in the invariant of the algorithm, pe-
riods are grouped into a set S such that if Xmax

i ∈ S then vopt
i = min S.

Algorithm 5.4.1: StockingCost: Computation of vopt
i for all i

1 Initialize count as an array such that count[t] = |{i | Xmax
i = t}|

2 Create a disjoint set data structure T with the integers
t ∈ [mini{Xmin

i }, maxi{Xmax
i }]

3 t← maxi{Xmax
i }

4 repeat
5 while count[t] > c do
6 count[t− 1]← count[t− 1] + count[t]− c
7 count[t]← c
8 T.Union(t− 1, t)
9 t← t− 1

10 end
11 // Invariant: vopt

i = t, ∀i ∈ {i | t ≤ Xmax
i ≤ T.max(T. f ind(t))}

12 t← t− 1
13 until t ≤ mini{Xmin

i }
14 // if count[mini{Xmin

i }] > c then the constraint is infeasible
15 ∀i : vopt

i = T.min(T. f ind(Xmax
i ))

Example 7. Consider the following instance StockingCost([X1 ∈
[1, . . . , 3], X2 ∈ [1, . . . , 6], X3 ∈ [1, . . . , 7], X4 ∈ [1, . . . , 7], X5 ∈
[1, . . . , 8]], [d1 = 3, d2 = 6, d3 = 7, d4 = 7, d5 = 8], H ∈ [0..4], c = 1).
At the beginning of the algorithm, count = [0, 0, 1, 0, 0, 1, 2, 1] and
T = {{1}, {2}, {3}, {4}, {5}, {6}, {7}, {8}}. Figure 5.1 shows a corre-
sponding representation of the orders.

t = 1 t = 2 t = 4 t = 5t = 3

1

t = 6

2

t = 7

3

4

t = 8

5

Figure 5.1: An optimal assignment of the instance of Example 7 without ca-
pacity restrictions



5.4 pruning the decision variables X i 61

After the main loop of the algorithm, count = [0, 0, 1, 0, 1, 1, 1, 1]
(see a representation of the orders in Figure 5.2) and T =

{{1}, {2}, {3}, {4}, {5, 6, 7}, {8}}. Thus vopt
X1

= 3, vopt
X2

= vopt
X3

= vopt
X4

= 5

and vopt
X5

= 8.

t = 1 t = 2 t = 4t = 3

1

t = 5

4

t = 6

2

t = 7

3

t = 8

5

Figure 5.2: An optimal assignment of the instance of Example 7

Property 6 gives a lower bound on the evolution of the optimal stock-
ing cost when assigning variable Xi to v. Unfortunately, this lower
bound is not optimal. One can be convinced easily for instance that
with c = 1, if v < vopt

i is assigned Xi, it virtually imposes to move to
left at least all variables Xj such that {Xj | Xmax

j = v}. This suggests

for c=1, the following improved lower bound for Hopt
Xi←v :

Hopt
Xi←v ≥ Hopt + (vopt

i − v) + |{j | Xmax
j = v}| (5.3)

Example 8 illustrates that this lower bound is still not optimal. It
is not sufficient just to consider the set {j | Xmax

j = v} since more
variables could be impacted.

Example 8. Consider the following instance StockingCost([X1 ∈
[1, . . . , 5], X2 ∈ [1, . . . , 4], X3 ∈ [1, . . . , 4]], [d1 = 5, d2 = 4, d3 =

4], H ∈ [0, . . . , 10], c = 1) with Hopt = 1 and vopt
X1

= 5. For v = 4,

Hopt
X1←4 ≥ Hopt + (vopt

X1
− v) + |{j | Xmax

j = v}| = 1 + (5− 4) + 2 = 4.

Here, Hopt
X1←4 is really 4. For v = 3, Hopt

X1←3 ≥ Hopt + (vopt
X1
− v) + |{j |

Xmax
j = v}| = 1 + (5− 3) + 0 = 3 but here Hopt

X1←3 = 4.

By Definition 5, a period t is full if it is using all its capacity
count[t] = c. Note that the maximum number of full periods is reached
when all orders are such that Xmax

i = max{Xmax
i }. In this case, the

number of full periods is b n
c c.

Property 7. There are at most b n
c c full periods.

Let us use the next two definitions to evaluate the exact increase in
cost of Hopt

Xi←v and to filter the decision variables.

Definition 9. min f ull[t] is the latest period ≤ t which is not full. More
exactly min f ull[t] = max{t′ ≤ t | count[t′] < c}.



62 the stockingcost constraint

Definition 10. max f ull[t] is the earliest period ≥ t which is not full. More
exactly max f ull[t] = min{t′ ≥ t | count[t′] < c}.

Property 8, stated below, gives the exact evolution of Hopt
Xi←v that

allows the bound consistent filtering of Xmin
i .

Property 8. ∀v < vopt
i , Hopt

Xi←v = Hopt + (vopt
i − v) + (v−min f ull[v]) =

Hopt + vopt
i −min f ull[v].

Proof. The number of variables affected (that would need to be shifted
by one to the left) by assigning Xi ← v is equivalent to the impact
caused by insertion of an artificial order with the domain [−∞, . . . , v].
This cost is (v− min f ull[v]). Thus the exact impact of Xi ← v is the
number of variables affected by the move plus (vopt

i − v).

Algorithm 5.4.2 computes min f ull[t], max f ull[t], ∀t in O(T). This al-
gorithm puts in the same set all consecutive periods t with count[t] = c
(ie full periods). Then it deduces min f ull[t] and max f ull[t] for each pe-
riod t.

Algorithm 5.4.2: StockingCost: Computation of min f ull[t] and
max f ull[t]

1 Create a disjoint set data structure F with the integers
t ∈ [mini{Xmin

i } − 1, maxi{Xmax
i }]

2 t← maxi{Xmax
i }

3 repeat
4 if count[t] = c then
5 F.Union(t− 1, t)
6 end
7 t← t− 1
8 until t < mini{Xmin

i }
9 ∀t : min f ull[t] = F.min(F. f ind(t))

10 ∀t : |F. f ind(t)| > 1 : max f ull[t] = F.max(F. f ind(t)) + 1
11 ∀t : |F. f ind(t)| = 1 : max f ull[t] = F.max(F. f ind(t))

The next two properties are very important because if the new min-
imum for Xi falls on a full period, we can increase the lower bound
further.

Property 9. If a period t is full (count[t] = c) then ∀i:

Hopt
Xi←t = Hopt

Xi←t′ , ∀t′ ∈ [min f ull[t], . . . , max f ull[t][ such that t′ < vopt
i



5.4 pruning the decision variables X i 63

Proof. Suppose that a period t is full. We know that ∀t′ ∈
[min f ull[t], . . . , max f ull[t][, min f ull[t′] = min f ull[t]. Thus, ∀t′ ∈
[min f ull[t], . . . , max f ull[t][ such that t′ < vopt

i , Hopt
Xi←t′ = Hopt + vopt

i −
min f ull[t′] = Hopt + vopt

i −min f ull[t] = Hopt
Xi←t.

Property 10. The function Hopt
Xi←t is monotone: Hopt

Xi←t ≥ Hopt
Xi←t′∀t < t′ ≤

vopt
i .

Proof. Consider t and t′ such that: t < t′. From Property 10, if t′ ∈
[min f ull[t], . . . , max f ull[t][ then Hopt

Xi←t = Hopt
Xi←t′ . On the other hand,

if t′ ≥ max f ull[t] then min f ull[t′] ≥ min f ull[t]. In this case, Hopt
Xi←t =

Hopt + vopt
i −min f ull[t] ≥ Hopt + vopt

i −min f ull[t′] = Hopt
Xi←t′ .

Now, we can filter the lower bound of each decision variable with
Algorithm 5.4.3.

Proposition 11. Algorithm 5.4.3 provides the bound consistent filtering
rule for each Xi (BC(Xmin

i )).

Proof. We know that newmin = vopt
i − (Hmax − Hmin) is a lower

bound of Xmin
i for each i ∈ [1, . . . , n]. If the period newmin is not

full then there is a solution ≤ Hmax with Xi = newmin and thus
we have BC(Xmin

i ). Otherwise, any solution with Xi = newmin is
> Hmax (since at least one order in newmin should be delay by
one period). Also, from Property 9, any solution with Xi = t such
that t ∈ [min f ull[t], . . . , max f ull[t][ is > Hmax. Hence, from Prop-
erty 10, the first available period that satifies the condition ≤ Hmax

is max f ull[newmin].

Algorithm 5.4.3: StockingCost: Bound consistent filtering of Xmin
i

1 newmin← vopt
i − (Hmax − Hmin)

2 if count[newmin] = c then
3 newmin← min{vopt

i , max f ull[newmin]}
4 end
5 Xmin

i ← max(Xmin
i , newmin))

Example 9. Consider the instance of Example 7: StockingCost([X1 ∈
[1, . . . , 3], X2 ∈ [1, . . . , 6], X3 ∈ [1, . . . , 7], X4 ∈ [1, . . . , 7], X5 ∈



64 the stockingcost constraint

[1, . . . , 8]], [d1 = 3, d2 = 6, d3 = 7, d4 = 7, d5 = 8], H ∈ [0..4], c = 1).
We know that vopt

X1
= 3, vopt

X2
= vopt

X3
= vopt

X4
= 5, vopt

X5
= 8 and

count = [0, 0, 1, 0, 1, 1, 1, 1]. Figure 5.3 shows a representation of an opti-
mal solution of the associated problem.

t = 1 t = 2 t = 4t = 3

1

t = 5

4

t = 6

2

t = 7

3

t = 8

5

Figure 5.3: An optimal assignment of the instance of Example 7

After running Algorithm 5.3.1 we have Hopt = 2 and thus
H ∈ [2, . . . , 4]. Algorithm 5.4.2 gives F = {{0}, {1}, {2, 3}, {4, 5, 6, 7, 8}},
min f ull = [1, 2, 2, 4, 4, 4, 4, 4] and max f ull = [1, 2, 4, 4, 9, 9, 9, 9]. Algo-
rithm 5.4.3 gives for:

• X1 : newmin = 3 − 2 = 1. count[1] = 0 and
Xmin

1 = max{1, 1} = 1 ;

• X2, X3, X4 : newmin = 5 − 2 = 3. count[3] = 1,
newmin = min{4, 5} = 4 and Xmin

j∈{2,3,4} = max{1, 4} = 4. Fig-

ure 5.4 shows the evolution of Hopt
X3←t. Note that for t ∈ [1, . . . , 3],

Hopt
X3←t > Hmax = 4.

• X5 : newmin = 8− 2 = 6. count[6] = 1, newmin = min{8, 9} = 8
and Xmin

5 = max{1, 8} = 8.

Thus X1 ∈ [1, . . . , 3], X2 ∈ [4, . . . , 6], X3 ∈ [4, . . . , 7], X4 ∈ [4, . . . , 7] and
X5 ∈ {8}.

5.5 a complete filtering algorithm in O(n)

Algorithm 5.4.1 and Algorithm 5.4.2 for computing vo pt
i , ∀ i and

max f ul l [ t ] , ∀ t presented so far have a complexity of O(T ). We de-
scribe, in this section, a complete self-contained version of the filtering
for the StockingCost constraint running in O(n) given a sorted ver-
sion of the variables. Algorithm 5.5.1 keeps tracks of the orders in the
same set (same vo pt) by maintaining two indexes j, k with the follow-
ing properties:



5.5 a complete filtering algorithm in O(n) 65

0 1 2 3 4 5 6 7 8
t

1
2
3

Hmax = 4
5
6

Hopt

Figure 5.4: Evolution of Hopt
X3←t

• After line 9, orders in { j , . . . , i} are the open orders
(i | Xmax

i ≥ t ) that still need to be placed into some periods
in an optimal solution.

• After line 9, all the orders in {k, . . . , i} have the same vopt. This
value vopt is only known when all the current remaining open
orders can be placed into the current period. This is when the
condition at line 14 is true.

Variable u keeps track of the max f ull[t] potential value with
max f ull[t] implemented as a map with constant time insertion. Only
periods t with max f ull[t] > t are added to the map. Each time a full
period t is discovered (at lines 21 and 33), one entry is added to the
map. By Property 7 the number of entries added into the map is at
most n.

Algorithm 5.5.2 just applies the filtering rules from Algorithm 5.4.3.

Implementation Details

Although Algorithm 5.5.1 is in O(n), it requires the variables to be
sorted. Since the filtering algorithms are called multiple times during
the search process and only a small number of variables are modified
between each call, simple sorting algorithms such as insertion or bub-
ble sort are generally more efficient than classical sorting algorithms
O(n log n).

The map can be a simple Hashmap but a simple implementation
with two arrays of size T and a magic number incremented at each call



66 the stockingcost constraint

can be used to avoid computing hash functions and the map object
creation/initialization at each call to the algorithm. One array contains
the value for each key index in the map, and the other array contains
magic numbers containing the value of the magic number at the inser-
tion. An entry is present only if the value at corresponding index in
the magic array is equal to the current magic number. Incrementing
the magic number thus amounts to emptying the map in O(1). The
cost O(T) at the map creation has to be paid only once and is thus
amortized.

5.6 experimental results

The experiments were conducted on instances of MI-DLS-CC-SC (Mul-
tiple Item - Discrete Lot Sizing - Constant Capacity - Setup Cost) prob-
lem: the PSP that is described in Section 3.3. Here the per-period stock-
ing cost h is the same for all orders. We follow the methodology for
experimental evaluation that is described in Section 1.4.

A CP Model

Let date(p) ∈ [1, . . . , T], ∀p ∈ [1, . . . , n], represents the period in which
the order p is satisfied. If objStorage is an upper bound on the total
number of periods in which orders have to be held in stock, the stock-
ing part can be modeled by the constraint:

StockingCost(date, dueDate, objStorage, 1)

Property 12. There is no difference between two orders of the same item ex-
cept for their due dates. Therefore given a feasible production schedule, if it is
possible to swap the production periods of two orders involving the same item
(date(p1), date(p2) such that item(p1) = item(p2)), we obtain an identical
solution with the same stocking cost.

Based on Property 12, we remove such symmetries by adding prece-
dence constraints on date variables involving by the same item:

date(p1) < date(p2), ∀(p1, p2) ∈ [1, . . . , n]× [1, . . . , n] such that

dueDate(p1) < dueDate(p2) ∧ item(p1) = item(p2)

Now the second part of the objective objChangeover concerning
changeover costs has to be introduced in the model. This part is similar



5.6 experimental results 67

Algorithm 5.5.1: StockingCost: Complete filtering algorithm in
O(n) - Part 1

Input: X = [X1, . . . , Xn, Xn+1] sorted: Xmax
i > Xmax

i+1
Xmax

n+1 = −∞ // artificial variable

1 Hopt ← 0; t← Xmax
1 ; i← 1

2 j← 1 // open orders {j, . . . , i} must be placed in some periods
3 k← 1 // orders {k, . . . , i} have same vopt

4 u← t + 1
5 max f ull ← map() // a map from int to int
6 while i ≤ n ∨ j < i do
7 while i ≤ n ∧ Xmax

i = t do
8 i← i + 1
9 end

10 // place at most c orders into period t
11 for i′ ∈ [j, . . . , min(i− 1, j + c− 1)] do
12 Hopt ← Hopt + (di′ − t)
13 end
14 if i− j ≤ c then // all the open orders can be placed in t
15 f ull ← i− j = c // true if t is fill up completely
16 vopt

l ← t, ∀l ∈ [k, . . . , i)
17 j← i
18 k← i
19 if f ull then
20 // Invariant (a): ∀t′ ∈ [t, . . . , u− 1], count[t] = c
21 max f ull[t]← u
22 if Xmax

i < t− 1 then
23 u← Xmax

i + 1
24 end
25 end
26 else
27 u← Xmax

i + 1
28 end
29 t← Xmax

i
30 end
31 else // all open orders cannot be placed in t
32 // Invariant (b): ∀t′ ∈ [t, . . . , u− 1], count[t] = c
33 max f ull[t]← u
34 j← j + c // place c orders into period t
35 t← t− 1
36 end
37 end



68 the stockingcost constraint

Algorithm 5.5.2: StockingCost: Complete filtering algorithm in
O(n) - Filtering

1 Hmin ← max(Hmin, Hopt)

2 for i ∈ [1, . . . , n] do
3 newmin← vopt

i − (Hmax − Hmin)

4 if max f ull[t].hasKey(newmin) then
5 newmin← min{vopt

i , max f ull[newmin]}
6 end
7 Xmin

i ← max(Xmin
i , newmin))

8 end

to a successor CP model for the ATSP in which the cities to be visited rep-
resent the orders and the distances between them are the correspond-
ing changeover costs. Let successor(p), ∀p ∈ [1, . . . , n], define the order
produced on the machine immediately after producing order p. We
additionally create a dummy order n + 1 to be produced after all the
other orders. In the first step, a Hamiltonian circuit successor variable
is imposed. This is achieved by using the classical circuit [Pes+98] con-
straint on successor variables for dynamic subtour filtering. The date
and successor variables are linked with the element constraint by im-
posing that the production date of p is before the production date of
its successors:

date(p) < date(successor(p)), ∀p ∈ [1, . . . , n]

As announced, the artificial production is scheduled at the end:

date(n + 1) = T + 1

Note that as with date variables, some symmetries can be broken.
For two orders n1, n2 ∈ [1, . . . , n] such that dueDate(n1) < dueDate(n2)

and item(n1) = item(n2), we force that n1 cannot be the successor of
n2 with successor(n2) 6= n1. Finally, a minimumAssignment constraint
[FLM99b] is used on the successor variables and the changeover part
of the objective objChangeover.

The objective to be minimized is simply the sum of stocking costs
and changeover costs: (objStorage · h) + objChangeover, in which h is
the unit stocking cost.



5.6 experimental results 69

Experimental results

In our experiments, we consider 100 random instances with:

• a planning horizon of 500 periods;

• the number of orders n ∈ [490, . . . , 500]4 with 10 different items.
Note that in practice the number of orders is close to the number
of periods;

• the changeover cost qi,j ∈ [10, . . . , 50] for i 6= j and qi,i = 0 for
each order i;

• the per-period stocking cost hi = 70 for each order. We have
tested different values of the per-period stocking cost and the
results with this value seem representative5.

All our source-code for the models, the global constraint,
and the instances are available at [HSb, Hou+]. We com-
pare the performance of the filtering algorithm due to
StockingCost(date, deadline, objStorage, 1) constraint with that
achieved by the following two sets of constraints:

• Basic: the baseline model is obtained by decomposing
StockingCost as:

– allDifferent(date) using a forward checking filtering;

– ∑p(dueDate(p)− date(p)) · h ≤ objStorage.

• MinAss:

– the minimumAssignment constraint with the LP reduced
costs based filtering;

– the allDifferent constraint with bound consistent filter-
ing.

Actually, after some experiments, this combination is one of
the best (wrt filtering/time) state-of-the-art alternatives for the
StockingCost constraint on the PSP.

4 At each period an item is randomly chosen and the corresponding demand is set
to 1 with a certain probability. Then we only consider the feasible instances with
n ∈ [490, . . . , 500].

5 Actually, more hi is high, more the stocking part of the problem is important to solve
the problem and more the best filtering based on the stocking costs is efficient. Here
it is the filtering introduced in this chapter.



70 the stockingcost constraint

As search heuristic, we use the conflict ordering search (COS)
[Gay+15] that performs well on the problem. The time limit to record
the search tree by the baseline model is 60 seconds.

Table 5.1 shows the arithmetic average of the number of nodes
and the time required for Basic, MinAss, and StockingCost respec-
tively. Clearly, these results suggest that our StockingCost version
offers a stronger and faster filtering than other decompositions. The
StockingCost based model reduces the search tree by ≈ 1.9 wrt the
minimumAssignment based model. Moreover, StockingCost is on aver-
age ≥ 8 times as fast as the other models. This is not surprising since
filtering algorithm for StockingCost is in O(n).

StockingCost MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 8.81 104 7.4 15.6 104
62.3 76.9 104

52.3

Av. gain factor 11.4 8.8 6.1 1.0 1.0 1.0

Table 5.1: Average results on 100 instances with T = 500: StockingCost,
MinAss, and Basic

To further evaluate the different performances, Figure 5.5 and Fig-
ure 5.6 show the performance profiles (for StockingCost, MinAss and
Basic) wrt the number of nodes visited and the time needed to com-
plete the search respectively. We can see that:

• wrt nodes: for all the instances, StockingCost provides the best
filtering. Note that for ≈ 30% of instances, StockingCost is bet-
ter than MinAss more than twice times;

• wrt time: StockingCost has also the best time. In particular,
StockingCost is at least 5 times as fast as MinAss (and Basic)
for ≈ 90% of instances. Also StockingCost is at least 10 times
as fast as MinAss (and Basic) for ≈ 30% of instances.

5.7 conclusion

We have introduced a new global constraint StockingCost to han-
dle the stocking aspect of the LS problem when using CP. We have



5.7 conclusion 71

● ● ●

●

●

●

●

●

●

●

●

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20
τ

%
 in

st
an

ce
s

Propagators
● Basic

MinAss
StockingCost

Nodes

Figure 5.5: Performance profiles - Nodes: StockingCost, MinAss, and Basic

● ●
●

●

●

●

●

●

●●

● ●
● ● ●● ● ●

● ●

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20
τ

%
 in

st
an

ce
s

Propagators
● Basic

MinAss
StockingCost

Time

Figure 5.6: Performance profiles - Time: StockingCost, MinAss, and Basic



72 the stockingcost constraint

described an advanced filtering algorithm achieving bound consis-
tency with a time complexity linear in the number of variables. The
experimental results show the pruning and time efficiency of the
StockingCost constraint on a variant of the CLSP compared to various
decompositions of the constraint.



6
T H E I T E M D E P E N D E N T S T O C K I N G C O S T
C O N S T R A I N T

In the previous chapter, we have introduced the global constraint
StockingCost to compute the total number of time-slots between the
production times and the due dates in a Capacitated Lot Sizing Prob-
lem (CLSP). This total number of periods can be converted into a
stocking-cost by multiplying it by a unique per period stocking cost
fixed parameter. Unfortunately, this constraint does not allow accurate
computation of the stocking cost when the per period stocking cost is
order dependent. We generalize the StockingCost constraint allowing
a per period stocking cost that is potentially different for each order.
We also allow the production capacity to vary over time. We propose
an efficient filtering algorithm in O(n log n) with n is the number of
orders to be produced. We experimentally demonstrate on a variant of
the CLSP that our new filtering algorithm scales well and is competitive
wrt the StockingCost constraint when the stocking cost is the same for
all orders.

6.1 introduction

The StockingCost constraint is well suited to compute the stocking
cost when the per period stocking cost is the same for every order.
Unfortunately, in many problems, it is order dependent since some
order types (items) are more or less expensive to hold in stock. In that
case, each order has the per period stocking cost of the corresponding
item. To take these cases into account, we generalize the StockingCost

73



74 the item dependent stockingcost constraint

constraint. The new constraint is denoted IDStockingCost (ID stands
for Item Dependent).

We use a similar approach than the one described in Chapter 5 to
achieve filtering of the IDStockingCost constraint. However, here, to
have an efficient algorithm we make a relaxation on the associated
problem by only considering the due date and the capacity restrictions.
This relaxation allows us to have a linearithmic algorithm to achieve
a filtering of the IDStockingCost constraint. The filtering algorithm
introduced does not achieve bound consistency but the experimental
results show that it scales well.

This chapter is organized as follows: Section 6.2 gives the formal def-
inition of the item dependent stockingCost constraint IDStockingCost;
Section 6.3 describes a filtering algorithm for the cost variable based
on a relaxed problem; Section 6.4 shows how to filter the decision vari-
ables based on an optimal solution of the relaxed problem; Section 6.5
presents some computational experiments on the PSP (that is described
in Section 3.3) and Section 6.6 concludes.

6.2 the item dependent stockingcost constraint

One has a time horizon T, a set i = 1, . . . , n of orders each with a due
date di ∈ [1, . . . , T] and a per period stocking cost hi. There is a ma-
chine which has ct units of production capacity in period t. Producing
an order in period t consumes one unit of capacity. The problem is
to produce each order by its due date at latest without exceeding the
machine capacity and to minimize the sum of the stocking costs of the
orders.

The Item Dependent StockingCost Constraint IDStockingCost is the
generalization of StockingCost constraint in which the orders have
different stocking costs and the periods have different capacities. The
IDStockingCostconstraint takes the following form:

IDStockingCost([X1, . . . , Xn], [d1, . . . , dn], [h1, . . . , hn], H, [c1, . . . , cT])

in which:

• n is the total number of orders to be produced;

• T is the total number of periods over the planning horizon
[1, . . . , T];



6.2 the item dependent stockingcost constraint 75

• the variable Xi is the date of production of order i on the ma-
chine, ∀i ∈ [1, . . . , n];

• the integer di is the due-date for order i, ∀i ∈ [1, . . . , n], di ≤ T;

• the integer hi ≥ 0 is the stocking cost for order i, ∀i ∈ [1, . . . , n];

• the integer ct ≥ 0 is the maximum number of orders the ma-
chine can produce during the period t (production capacity for
t), ∀t ∈ [1, . . . , T];

• the variable H is an upper bound on the total stocking cost.

As in the previous chapter, without loss of generality, we assume
that Xi ≤ di, ∀i. We give below some possible decompositions of the
IDStockingCost constraint.

6.2.1 Decomposing the constraint

The IDStockingCost constraint holds when:

|{i | Xi = t}| ≤ ct, ∀t (6.1)

∑
i
(di − Xi) · hi ≤ H (6.2)

This decomposition (with T + 1 constraints) imposes that (6.1) the ca-
pacity of the machine is respected in every period t and (6.2) H is an
upper bound on the total stocking cost.

As proposed in the previous chapter, the T constraints in equa-
tion (6.1) can be replaced by a global cardinality constraint gcc. Note
that for ct = 1, ∀t ∈ [1, . . . , T], the gcc constraint can be replaced
by an allDifferent [Rég94, Pug98] constraint. An even stronger
model is obtained by replacing the constraints in (6.1) and (6.2) by
an arc-consistent cost-gcc [R0́2] constraint. For unary capacity one
can use the minimumAssignment [FLM99b, DCP16] constraint with
filtering based on reduced costs. The filtering algorithms for the
minimumAssignment and cost-gcc execute in O(T3) ≈ O(n3). This
chapter presents a fast filtering algorithm for IDStockingCost running
in O(n log n).

In the rest of the chapter, without loss of generality, we assume that:

1. all orders i ∈ [1, . . . , n] are such that hi > 0. If this is not the
case, one can produce n0 = |{i | hi = 0}| orders in the first n0



76 the item dependent stockingcost constraint

periods and then consider the other orders over the planning
horizon [n0 + 1, . . . , T];

2. the gcc constraint is bound consistent. The gcc constraint is
bound consistent means that for each Xi, ∀vi ∈ {Xmin

i , Xmax
i }

and ∀Xj 6= Xi : ∃vj ∈ [Xmin
j , . . . , Xmax

j ] such that
∑k(vk = t) ≤ ct, ∀t. For example, consider three orders
X1 ∈ [3, 4], X2 ∈ [3, 4], X3 ∈ [1, 4] and c1 = 0, c2 = c3 = c4 = 1.
We can see that X3 can neither take the value 4 nor 3 because
the interval [3, 4] must be reserved for X1 and X2. On the other
hand, X3 cannot take value 1 because c1 = 0. Thus gcc is bound
consistent if X1 ∈ [3, 4], X2 ∈ [3, 4] and X3 = {2}.

6.3 filtering of the cost variable H

This section explains how we filter the lower bound on the cost variable
H in O(n log n). This is performed by computing the optimal cost of
a related relaxed problem.

The best lower bound H o pt of the global stocking costs variable H
can be obtained by solving the following problem:

H o pt = min ∑
i
(d i − X i ) · h i

(P ) |{ i | X i = t}| ≤ c t , ∀ t

X i ∈ D i , ∀ i

in which D i is the domain of the variable X i ie the set of values that
X i can take.

The problem P can be solved with a max-flow min-cost algorithm
on the bipartite graph linking orders and periods [R0́2]. Indeed the
cost of assigning X i ← t can be computed as (d i − t) · h i if t ∈ D i ,
+∞ otherwise. For unit capacity, it is a minimum assignment problem
that can be solved in O(T3 ) with the Hungarian algorithm. The costs
on the arcs have the particularity to evolve in a convex way (linearly)
along the values. But even in this case, we are not aware of a faster
minimum assignment algorithm. Since our objective is to design a fast
scalable filtering, some relaxations must be introduced.

Let Xmin
i and H min (resp. Xmax

i and H max) denote the minimal
(resp. maximal) value in the finite domain of variable X i and H . The
relaxation we make is to assume that X i can take any value ≤ Xmax

i



6.3 filtering of the cost variable H 77

without holes: D i = [1, . . . , Xmax
i ]. Our filtering algorithm is thus

based on a relaxed problem in which the orders can be produced in
any period before their minimum values (but not after their maximum
values). Let P r denote this new relaxed problem and (H o pt )r denote
its optimal value. (H o pt )r gives a valid lower bound to possibly in-
crease H min.

To solve this relaxation, one can compute (Hopt)r in a greedy fashion
assigning the production periods from the latest to the earliest. Clearly,
the orders should be produced as late as possible (i.e. as close as pos-
sible to their due-date) in order to minimize their individual stocking
cost. Unfortunately, the capacity constraints usually prevent us from
assigning every Xi to its maximum value Xmax

i .
We below characterize an optimal solution of P r after recalling the

definition of full period.

Definition 11. Let us denote by assPeriod a valid assignment vector in
which assPeriod[i] is the value (period) taken by Xi. Considering a valid
assignment and a period t, the boolean value t. f ull indicates whether this
period is used at maximal capacity or not: t. f ull ≡ |{i | assPeriod[i] =

t}| = ct.

Property 13. Consider a valid assignment assPeriod: assPeriod[i], ∀i ∈
[1, . . . , n] wrt P r. If this assignment is optimal, then
(i) ∀i ∈ [1, . . . , n],@t : (assPeriod[i] < t) ∧ (Xmax

i ≥ t) ∧ (¬t. f ull).

Proof. Let assume that assPeriod does not respect the criterion (i). This
means that ∃Xk ∧ ∃t : (assPeriod[k] < t) ∧ (Xmax

k ≥ t) ∧ (¬t. f ull).
In that case, by moving Xk from assPeriod[k] to t, we obtain a
valid solution that is better than assPeriod. The improvement is:
(t − assPeriod[k]) · hk. Thus the criterion (i) is a necessary condition
for optimality of P r.

Corollary 14. Any optimal solution assPeriod uses the same set of periods:
{assPeriod[k] : ∀k} and this set is unique.

The condition of Property 13 is not sufficient to ensure the optimality.
Actually, if in a solution of P r a valid permutation between two orders
decreases the cost of that solution, then this latter is not optimal.

Property 15. Consider a valid assignment assPeriod: assPeriod[i], ∀i ∈
[1, . . . , n] wrt P r. If this assignment is optimal, then
(ii) @(k1, k2): (assPeriod[k1] < assPeriod[k2]) ∧ (hk1 > hk2)∧ (Xmax

k1
≥

assPeriod[k2]).



78 the item dependent stockingcost constraint

Proof. Let assume that assPeriod does not respect the criterion (ii).
That means that ∃(Xk1 , Xk2) : (assPeriod[k1] < assPeriod[k2]) ∧ (hk1 >

hk2) ∧ (Xmax
k1
≥ assPeriod[k2]). In that case, by swapping the orders k1

and k2, we obtain a valid solution that is better than assPeriod. The
improvement is : (assPeriod[k2]− assPeriod[k1]) · hk1 − (assPeriod[k2]−
assPeriod[k1]) · hk2 > 0. Thus the criterion (ii) is a necessary optimality
condition.

The next proposition states that the previous two necessary condi-
tions are also sufficient for testing optimality to problem P r.

Proposition 16. Consider a valid assignment assPeriod: assPeriod[i], ∀i ∈
[1, . . . , n] wrt P r. This assignment is optimal if and only if
(i) ∀i ∈ [1, . . . , n],@t : (assPeriod[i] < t) ∧ (Xmax

i ≥ t) ∧ (¬t. f ull)
(ii) @(k1, k2): (assPeriod[k1] < assPeriod[k2]) ∧ (hk1 > hk2)∧ (Xmax

k1
≥

assPeriod[k2]).

Proof. Without loss of generality, we assume that 1) All the orders have
different stocking costs : ∀(k1, k2) : hk1 6= hk2 . If this is not the case for
two orders, we can increase the cost of one by an arbitrarily small value.
2) Unary capacity for all periods : ct = 1, ∀t. The periods with zero
capacity can simply be discarded and periods with capacities ct > 1
can be replaced by ct “artificial” unit periods. Of course the planning
horizon changes. To reconstruct the solution of the initial problem,
one can simply have a map that associates to each artificial period
the corresponding period in the initial problem. 3) All the orders are
sorted such that assPeriod[i] > assPeriod[i + 1].

We know that (i) and (ii) are necessary conditions for optimality.
The objective is to prove that a solution that respects (i) and (ii)
is unique and thus also optimal. From Corollary 13, we know that
all optimal solutions use the same set of periods: {t1, t2, . . . , tn} with
t1 = maxi{Xmax

i } > t2 > . . . > tn. Let C1 = {k | Xmax
k ≥ t1} be the

orders that could possibly be assigned to the first period t1. To respect
the property (ii), for the first period t1, we must select the unique order
argmaxk∈C1

hk. Now assume that periods t1 > t2 > . . . > ti were suc-
cessively assigned to orders 1, 2, . . . , i and produced the unique partial
solution that can be expanded to a solution for all the orders 1, . . . , n.
We show that we have also a unique choice to expand the solution in
period ti+1. The order to select in period ti+1 is argmaxk∈Ci+1

{hk} with
Ci+1 = {k : k > i ∧ Xmax

k ≥ ti+1} is the set of orders that could possibly
be assigned in period ti+1. Indeed, selecting any other order would



6.3 filtering of the cost variable H 79

lead to a violation of property (ii). Hence the final complete solution
obtained is unique.

Algorithm 6.3.1 considers orders sorted decreasingly according to
their Xmax

i . A virtual sweep line decreases in period starting at
maxi{Xmax

i }. The sweep line collects in a priority queue all the orders
that can be possibly scheduled in that period (such that t ≤ Xmax

i ).
Each time it is decreased new orders can possibly enter into a priority
queue (loop 12− 14). The priorities in the queue are the stocking costs
hi of the orders. A large cost hi means that this order has a higher
priority to be scheduled as late as possible (since t is decreasing). The
variable availableCapacity represents the current remaining capacity in
period t. It is initialized to the capacity ct (line 10) and decreased by
one each time an order is scheduled at t (line 19). An order is sched-
uled at lines 15− 20 by choosing the one with highest stocking cost
from ordersToSchedule. The capacity and the cost are updated accord-
ingly. The orders are scheduled at t until the capacity is reached (and
then the current period is updated to the previous period with non
null capacity) or the queue is empty (and then the algorithm jumps to
the maximum value of the next order to be produced). This process is
repeated until all orders have been scheduled.

At the end, optPeriod[i], ∀i ∈ [1, . . . , n] is the optimal schedule
showing the period assigned to the order i. We thus have at the
end: ∑n

i=1 (di − optPeriod[i]) · hi = (Hopt)r and optOrders[t] = {i |
optPeriod[i] = t}, ∀t ∈ [1, . . . , T] is the set of orders produced in period
t.

Proposition 17. Algorithm 6.3.1 computes an optimal solution of P r in
O(n log n).

Proof. Algorithm 6.3.1 works as suggested in the proof of Proposi-
tion 16 and then Invariant (c) and Invariant (d) hold for each t from
maxi{Xmax

i }. Thus the solution returned by the algorithm 1) is feasible
and 2) respects the properties (i) and (ii) of Proposition 16 and then
is an optimal solution.
Complexity: the loop at lines 12 − 14 that increments the order in-
dex i from 1 to n ensures that the main loop of the algorithm is
executed O(n) times. On the other hand, each order is pushed and
popped exactly once in the queue ordersToSchedule in the main loop.
Since ordersToSchedule is a priority queue, the global complexity is
O(n log n).



80 the item dependent stockingcost constraint

The next example shows the execution of Algorithm 6.3.1 on a small
instance.

Example 10. Consider the following instance: IDStockingCost([X1 ∈
[1, . . . , 4], X2 ∈ [1, . . . , 5], X3 ∈ [1, . . . , 4], X4 ∈ [1, . . . , 5], X5 ∈
[1, . . . , 8], X6 ∈ [1, . . . , 8]], [d1 = 4, d2 = 5, d3 = 4, d4 = 5, d5 = 8, d6 =

8], [h1 = 3, h2 = 10, h3 = 4, h4 = 2, h5 = 2, h6 = 4], H ∈ [0, . . . , 34], c1 =

c2 = c4 = c5 = c6 = c7 = c8 = 1, c3 = 0). The main steps of the execution
of Algorithm 6.3.1 are:

• t = 8, ordersToSchedule = {5, 6} and X6 ← 8. (Hopt)r = 0;

• t = 7, ordersToSchedule = {5} and X5 ← 7. (Hopt)r = h5 = 2;

• t = 5, ordersToSchedule = {4, 2} and X2 ← 5. (Hopt)r = 2;

• t = 4, ordersToSchedule = {4, 1, 3} and X3 ← 4. (Hopt)r = 2;

• t = 3, ordersToSchedule = {4, 1} (c3 = 0);

• t = 2, ordersToSchedule = {4, 1} and X1 ← 2. (Hopt)r = 2 + 2 ·
h1 = 8;

• t = 1, ordersToSchedule = {4} and X4 ← 1. (Hopt)r = 8 + 4 ·
h4 = 16.

Then H ∈ [16, . . . , 34].
Figure 6.1 (resp. Figure 6.2) shows the optimal period assignments for P r

without (resp. with) the capacity restrictions.

t = 1 t = 2 t = 3 t = 6 t = 7t = 4

1

3

t = 5

2

4

t = 8

5

6

Figure 6.1: P r without capacity restrictions

t = 3 t = 6t = 1

4

t = 2

1

t = 4

3

t = 5

2

t = 7

5

t = 8

6

Figure 6.2: An optimal assignment for P r



6.3 filtering of the cost variable H 81

Algorithm 6.3.1: IDStockingCost: Filtering of lower bound on H
with (Hopt)r in O(n log n)

Input: X = [X1, . . . , Xn] sorted (Xmax
i ≥ Xmax

i+1 )

1 (Hopt)r ← 0 // total minimum stocking cost for P r

2 optPeriod← map() // optPeriod[i] is the period assigned to

order i
3 // orders placed in t sorted top-down in non increasing hi
4 ∀t : optOrders[t]← stack()
5 ordersToSchedule← priorityQueue() // priority=hi
6 f ullSetsStack← stack() // stack of full sets

7 i← 1
8 . . . // see Algorithm 6.3.2

In an optimal solution of P r, a period t is full (t. f ull) if and if its
capacity is reached: t. f ull ≡ |optOrders[t]| = ct. Actually, an optimal
solution of P r is a sequence of full periods (obtained by scheduling
orders as late as possible) separated by some non full periods. Let us
formally define these sequences of production periods (after adapting
the definitions of min f ull and max f ull from Chapter 5). We call them
full sets. These are used to filter the decision variables (see section 6.4).

Definition 12. For a period t with ct > 0, min f ull[t] is the largest period
≤ t such that all orders Xk : Xmax

k ≥ min f ull[t] have optPeriod[Xk] ≥
min f ull[t].

Definition 13. For a period t with ct > 0, max f ull[t] is the smallest period
≥ t such that all orders Xk : Xmax

k > max f ull[t] have optPeriod[Xk] >

max f ull[t].

For the instance in Example 10, min f ull[5] = min f ull[4] =

min f ull[3] = min f ull[2] = min f ull[1] = 1 and max f ull[5] =

max f ull[4] = max f ull[3] = max f ull[2] = max f ull[1] = 5.

Definition 14. An ordered set of periods f s = {M, . . . , m} (with M >

. . . > m) is a full set iff:

(∀t ∈ f s \ {m} : ct > 0∧ t. f ull)∧ (∀t ∈ f s, max f ull[t] = M∧min f ull[t] = m).

We consider that min f ull[ f s] = m and max f ull[ f s] = M.

For the instance in Example 10, there are two full sets: {8, 7} and
{5, 4, 2, 1}.



82 the item dependent stockingcost constraint

Algorithm 6.3.2: IDStockingCost: Filtering of lower bound on H
with (Hopt)r in O(n log n) - Part 2

1 . . . // see Algorithm 6.3.1
2 i← 1
3 while i ≤ n do
4 f ullSet← stack()
5 t← Xmax

i // current period

6 // Invariant (a): t is a maxfull period
7 availableCapacity← ct // available capa at t
8 repeat
9 while i ≤ n ∧ Xmax

i = t do
10 ordersToSchedule.insert(i)
11 i← i + 1
12 end
13 if availableCapacity > 0 then
14 j← ordersToSchedule.delMax() // order with highest

cost

15 optPeriod[j]← t
16 optOrders[t].push(j)
17 availableCapacity← availableCapacity− 1
18 (Hopt)r ← (Hopt)r + (dj − t) · hj

19 end
20 else
21 // Invariant (b): t is a full period with ct > 0
22 f ullSet.push(t)
23 t← previousPeriodWithNonNullCapa(t)
24 availableCapacity← ct

25 end
26 // Invariant (c): ∀i such that optPeriod[i] is defined:

condition (i) of Proposition 16 holds
27 // Invariant (d): ∀k1, k2 such that optPeriod[k1] and

optPeriod[k2] are defined: condition (ii) of Proposition
16 holds

28 until ordersToSchedule.size > 0
29 // Invariant (e): t is a minfull period
30 f ullSet.push(t)
31 // Invariant (f): f ullSet is a full set
32 f ullSetsStack.push( f ullSet)
33 end
34 Hmin ← max(Hmin, (Hopt)r)



6.3 filtering of the cost variable H 83

Proposition 18. Algorithm 6.3.1 computes f ullSetsStack, a stack of all
full sets of an optimal solution of P r.

Proof. Invariant:
(a) and (e) - invariants for the maxfull and minfull periods.

Note that since gcc is bound consistent, ∀i : cXmax
i

> 0. Consider the
first iterations of the algorithm. At the beginning, tmax = maxi{Xmax

i }
is a maxfull period (by definition). Exit the loop 11− 25 means that all
orders in {k | tmax ≥ Xmax

k ≥ t} (t is the current period) are already
produced and the current period t is the closest period to tmax such that
all orders in {k | tmax ≥ Xmax

k ≥ t} are produced: the current period
t is then the minfull of all orders in {k | tmax ≥ Xmax

k ≥ t}. Hence
Invariant (a) and Invariant (e) hold for the first group of orders. The
algorithm does the same process - when it starts at line 9 with another
group of orders not yet produced - until all orders are produced. We
know that: ∀i : cXmax

i
> 0. Then, for each group of orders i.e. each time

the algorithm comes back to line 9 (resp. line 26), the current t is a
maxfull (resp. minfull).

(b) At line 22, t is a full period with ct > 0.
At line 22, for the current period t: availableCapacity = 0 and at least
one order is produced at t before. Thus t. f ull and ct > 0.

(f) f ullSet is a full set
This invariant holds because the invariants (a), (b) and (e) hold.

The algorithm starts from maxi{Xmax
i } and Invariant (f) holds until

the last order is produced. Then the proposition is true.

Implementation details

We consider each full set f s as a stack of periods such that
f s. f irst = min f ull[ f s] and f s.last = max f ull[ f s]. The list of all full
sets of an optimal solution is a stack of full sets: f ullSetsStack; such
that f ullSetsStack. f irst. f irt ≤ t, ∀t ∈ f ullSetsStack. Concretely, we
implement a special data structure StackO f Stack that is a stack of
stacks of integers with two arrays: the first one contains all integers
involved in the StackO f Stack and the second one contains the cumula-
tive size of different stacks pushed. The method StackO f Stack.push(i)
pushes the integer i on the top of the current stack and the method
StackO f Stack.pushStack() closes the current stack (if not empty) and
starts a new empty one.



84 the item dependent stockingcost constraint

6.4 pruning the decision variables X i

Let H o pt
X i←v (resp. (H o pt

X i←v )
r) denote the optimal cost of P (resp. P r) in

a situation in which X i is forced to take the value v in an optimal solu-
tion of P (resp. P r), that is equivalent to adding the constraint X i = v
to P (resp. P r). If H o pt

X i←v > H max, then the resulting problem is in-
consistent and v can be safely removed from the domain of X i . On the
other hand, we know that H o pt

X i←v ≥ (H o pt
X i←v )

r . If (H o pt
X i←v )

r > H max

(with v < o ptPer iod [ i ]), then v can be removed from the domain of
X i . To filter the decision variables X i , the idea is to find a valid lower
bound for (H o pt

X i←v )
r by performing some sensitivity analysis of the

optimal solution of P r returned by Algorithm 6.3.1.
If Xi is forced to take a value v (v < optPeriod[i]), it increases (Hopt)r

by at least (optPeriod[i] − v) · hi but an additional production slot in
optPeriod[i] becomes free in the associated optimal solution. Conse-
quently, the production of some orders can possibly be delayed and
(Hopt)r decreased. Formally,

Definition 15. Let newoptPeriod[j], ∀j ∈ [1, . . . , n] \ {i} denote the new
optimal assignment of periods when the order i is removed from its position
optPeriod[i].

gainCost[t]i is the maximum cost decrease when a production scheduled in
t is freed by removing an order i from t = optPeriod[i] in an optimal solution
of P r:

gainCost[t]i = ∑
j∈[1,...,n]\{i}

(newoptPeriod[j]− optPeriod[j]) · hj

Of course, newoptPeriod[j], ∀j ∈ [1, . . . , n] \ {i} must respect the two
conditions for optimality of Proposition 16. It is worth noting that only
full periods tk with ctk > 0 can have gainCost[tk] > 0. All others tj have
gainCost[tj] = 0. Actually, a period t is not full means that there is at
least one free place in t for production. Since these places are not used
in the initial optimal assignment then they will not be used if another
place in t is freed (see condition (i) of Proposition 16).

Example 11. Consider the instance of Example 10 and its optimal solution
represented in Figure 6.2:

• period 8: if the order 6 is removed from its optimal period 8,
then newoptPeriod[5] = 8 (Figure 6.3) and newoptPeriod[j] =

optPeriod[j], ∀j 6∈ {5, 6}.
gainCost[8]6 = h5 = 2;



6.4 pruning the decision variables X i 85

• period 7: newoptPeriod[j] = optPeriod[j], ∀j 6= 5.
gainCost[7]5 = 0;

• period 5: if the order 2 is removed from its optimal period 5,
then newoptPeriod[4] = 5 (Figure 6.4) and newoptPeriod[3] =

optPeriod[3],
newoptPeriod[1] = optPeriod[1] because d1, d3 < 5.
gainCost[5]2 = (5− 1) · h4 = 8;

• period 4: gainCost[4]3 = 2 · h1 + h4 = 8 (Figure 6.5);

• period 2: gainCost[2]1 = h4 (Figure 6.6);

• period 1: gainCost[1]4 = 0.

t = 3 t = 6 t = 7t = 1

4

t = 2

1

t = 4

3

t = 5

2

t = 8

5

Figure 6.3: An optimal assignment for P r without X6

t = 1 t = 3t = 2 t = 6t = 2

1

t = 4

3

t = 5

4

t = 7

5

t = 8

6

Figure 6.4: An optimal assignment for P r without X2

Intuitively, one can say that, if a place is freed in a full period t, only
orders k that have optPeriod[k] ≤ t in the full set of t will eventually
move. More precisely, for each full period t, let le f t[t] be the set of
orders such that: le f t[t] = {i | optPeriod[i] ∈ [min f ull[t], . . . , t[}.

Proposition 19. If a full period t is no longer full due to the removal of order
i (with optPeriod[i] = t) from t, then only orders in k ∈ le f t[t] can have
newoptPeriod[k] 6= optPeriod[k]. All other orders j have the same optimal
period newoptPeriod[j] = optPeriod[j].

Proof. We run Algorithm 6.3.1 again with order i removed:

1. all orders k with optPeriod[k] > max f ull[t] will conserve their
respective optimal periods because Xmax

i < optPeriod[k], ∀k
and then order i is not taken into account (in the
queue ordersToSchedule) for optimal assignment of periods
> max f ull[t];



86 the item dependent stockingcost constraint

2. all orders k with t ≤ optPeriod[k] ≤ max f ull[t] will conserve
their respective optimal periods. Actually, from Proposition 16,
we know that for a given order k, Xmax

i < optPeriod[k] or hk ≥ hi.
In these two cases, the presence/absence of Xi does not change
the decision taken for orders k with their optimal periods in
[t, . . . , max f ull[t]];

3. all orders k with optPeriod[k] < min f ull[t] will conserve their
respective optimal periods because order i is not taken into ac-
count (in the queue ordersToSchedule) for optimal assignment
of periods for all these orders.

t = 1 t = 2 t = 3 t = 6t = 2

4

t = 4

1

t = 5

2

t = 7

5

t = 8

6

Figure 6.5: An optimal assignment for P r without X3

t = 1 t = 2 t = 3 t = 6t = 2

4

t = 4

3

t = 5

2

t = 7

5

t = 8

6

Figure 6.6: An optimal assignment for P r without X1

Property 20. For a period t, gainCost[t]i does not depend on the order i in
optOrders[t] that is removed. We can simplify the notation from gainCost[t]i
to gainCost[t]: gainCost[t] = gainCost[t]i, ∀i ∈ optOrders[t].

Corollary 21. For a full period t with ct > 0:

gainCost[t] = ∑
j∈le f t[t]

(newoptPeriod[j]− optPeriod[j]) · hj

Observe that only orders k in le f t[t] that have Xmax
k ≥ t can replace

the order removed from t in the new optimal assignment. For each full
period t, let candidate[t] denote the set of orders ∈ le f t[t] that can jump
to the freed place in t when an order is removed from t. Formally, for
a full period t, candidate[t] = {i ∈ le f t[t] | Xmax

i ≥ t}. Let st denote
the order that will replace the removed order in t: st ∈ candidate[t] ∧



6.4 pruning the decision variables X i 87

newoptPeriod[st] = t. For a given full period t with ct > 0, gainCost[t]
depends on the order st and also depends on gainCost[optPeriod[st]]

since there is recursively another freed place created when st jumps to
t.

We want to identify the order st that will take the freed place in t
when an order is removed from t. This order must have the highest
“potential gainCost” for period t among all other order in candidate[t].
More formally,

Definition 16. Let (gainCost[t])k be the potential gainCost[t] by assuming
that it is the order k ∈ candidate[t] that takes the freed place in t when an
order is removed from t:

(gainCost[t])k = (t− optPeriod[k]) · hk + gainCost[optPeriod[k]]

The objective is to find the order st ∈ candidate[t] with the following
property: (gainCost[t])st ≥ (gainCost[t])k, ∀k ∈ candidate[t] and then
gainCost[t] = (gainCost[t])st .

For each full period t, let toSelect[t] denote the set of
orders in candidate[t] that have the highest stocking cost:
toSelect[t] = arg maxXk∈candidate[t] hk.

Proposition 22. For a full period t with candidate[t] 6= ∅: st ∈ toSelect[t].

Proof. Consider a full period t such that candidate[t] 6= ∅ (and then
toSelect[t] 6= ∅). If st 6∈ toSelect[t], then ∃k ∈ toSelect[t] such that
Xmax

k ≥ t ∧ hk > hst . This is not possible in an optimal solution (see
condition (ii) of Proposition 16).

Now we know that st ∈ toSelect[t], but which one exactly must
we select? The next proposition states that whatever the order s in
toSelect[t] that is chosen to take the freed place, we could compute
gainCost[t] from s. That means that all orders in toSelect[t] have the
same potential gainCost.

Proposition 23. ∀s ∈ toSelect[t], (gainCost[t])s = gainCost[t].

Proof. If |toSelect[t]| = 1, then the proposition is true. Now we as-
sume that |toSelect[t]| > 1. Consider two orders k1 and k2 in toSelect[t].
From Proposition 16, only null capacity periods can appear between
optPeriod[k1] and optPeriod[k2] because k1, k2 ∈ arg maxk∈candidate[t] hk
(and Xmax

k ≥ t). Since all orders k ∈ toSelect[t] have the same stock-
ing cost and Xmax

k ≥ t, any pair of orders k1 and k2 in toSelect[t] can
swap their respective optPeriod without affecting the feasibility of the
solution and the optimal cost. Thus the proposition is true.



88 the item dependent stockingcost constraint

We can summarize the computation of gainCost for each period in a
full set.

Corollary 24. Consider a full set {M, . . . , m} with m = min f ull[t] and
M = max f ull[t], ∀t ∈ {M, . . . , m}: gainCost[m] = 0 and for all full
period t ∈ {M, . . . , m} \ {m} from m to M:
gainCost[t] = (t − optPeriod[s]) · hs + gainCost[optPeriod[s]] with s ∈
toSelect[t].

By assuming that gainCost[t], ∀t are known, the next proposition
gives a lower bound on (Hopt

Xi←v)
r.

Proposition 25.

(Hopt
Xi←v)

r ≥ (Hopt)r + (optPeriod[i]− v) · hi − gainCost[optPeriod[i]]

Proof. The cost gainCost[optPeriod[i]] is the maximum decrease in cost
when an order is removed from optPeriod[i]. We know that the cost
(optPeriod[i]− v) · hi is a lower bound on the increased cost when the
order i is forced to take the value v because the capacity restriction can
be violated for the period v. Thus (Hopt)r + (optPeriod[i] − v) · hi −
gainCost[optPeriod[i]] is a lower bound on (Hopt

Xi←v)
r.

From this lower bound on (Hopt
Xi←v)

r, we have the following filtering
rule for variables Xi, ∀i ∈ [1, . . . , n].

Corollary 26. ∀i ∈ [1, . . . , n],

Xmin
i ≥ optPeriod[i]− bHmax − (Hopt)r + gainCost[optPeriod[i]]

hi
c

Proof. We know that v can be removed from the domain of Xi if
(Hopt

Xi←v)
r > Hmax and (Hopt

Xi←v)
r ≥ (Hopt)r + (optPeriod[i] − v) · hi −

gainCost[optPeriod[i]]. The highest integer value v∗ that respects the
condition (Hopt)r + (optPeriod[i] − v) · hi − gainCost[optPeriod[i]] ≤
Hmax is v∗ = optPeriod[i]− bHmax−(Hopt)r+gainCost[optPeriod[i]]

hi
c.

Algorithm 6.4.1 computes gainCost[t] for all full periods in [1, . . . , T]
in chronogical order and filters the n decision variables. It uses
the stack orderToSelect that, after processing, contains an order in
toSelect[t] on top. At each step, the algorithm treats each full set (loop
5− 15) from their respective minfull periods thanks to f ullSetsStack
computed in Algorithm 6.3.1. For a given full set, the algorithm pops



6.4 pruning the decision variables X i 89

each full period (in chronological order) and computes its gainCost[t]
until the current full set is empty; in that case, it takes the next full set
in f ullSetsStack. Now let us focus on how gainCost[t] is computed for
each full period t. For a given full period t, the algorithm puts all or-
ders in le f t[t] into the stack orderToSelect (lines 14− 15) in chronologi-
cal order. For a given period t, for each pair of orders k1 (with Xmax

k1
≥ t)

and k2 (with Xmax
k2
≥ t) in orderToSelect: if k1 is above k2, then hk1 ≥ hk2 .

The algorithm can safely remove orders k with Xmax
k < t from the top

of the stack (lines 7− 8) since these orders k 6∈ candidate[t′], ∀t′ ≥ t.
After this operation, if the stack orderToSelect is not empty, the order
on top is an order in toSelect[t] (Invariant (b) - see the proof of Propo-
sition 27) and can be used to compute gainCost[t] based on Corollary
24 (lines 12− 13). Note that for a period t if the stack is empty, then
toSelect[t] = ∅ (ie candidate[t] = ∅) and gainCost[t] = 0.
Algorithm 6.4.1 filters each variable Xi based on the lower bound from
Corollary 26 (lines 16− 18).

Proposition 27. Algorithm 6.4.1 computes gainCost[t] for all O(n) full
periods in linear time O(n).

Proof. Invariants:
(a) After line 6, ∀t′ ∈ [min f ull[t], . . . , t[ with ct′ > 0: gainCost[t′] is

defined.
For a given full set f s, the algorithm computes the different gainCost
of periods inside f s in increasing value of t from its min f ull. Thus
Invariant (a) holds.

(c) After line 15, ∀k1, k2 ∈ {k | Xk ∈ orderToSelect ∧ Xmax
k ≥ t}: if Xk1

is above Xk2 in orderToSelect, then hk1 ≥ hk2 .
From Proposition 16, we know that ∀k1, k2 such that optPeriod[k1] <

optPeriod[k2] we have hk1 ≤ hk2 or ((hk1 > hk2) ∧ (Xmax
k1

<

optPeriod[k2])). The algorithm pushes orders into orderToSelect from
min f ull[t] to t. If we are in period t′ = optPeriod[k2], then all orders k1

pushed before are such that (hk1 ≤ hk2) or ((hk1 > hk2) ∧ (Xmax
k1

< t′)).
Thus Invariant (c) holds.

(b) After line 8, orderToSelect. f irst ∈ toSelect[t].
For a period t, the loop 14− 15 ensures that all orders i in le f t[t] are
pushed once in the stack. The loop 7− 8 removes orders that are on
the top of stack such that {k | Xmax

k < t}. That operation ensures
that the order s on the top of the stack can jump to the period t (i.e.
Xmax

s ≥ t). Since this order is on the top and Invariant (c) holds for
the previous period processed, it has the highest stocking cost wrt



90 the item dependent stockingcost constraint

{k ∈ orderToSelect∧Xmax
k ≥ t} and then s ∈ toSelect[t]. Thus Invariant

(b) holds.
Based on Invariant (a) and Invariant (b), the algorithm computes
gainCost[t] for each full period from Corollary 24.

Complexity: there are at most n full periods and then the main loop
of the algorithm (lines 3− 15) is executed O(n) times. Inside this loop,
the loop 14− 15 that adds orders of the current period to orderToSelect
is in O(c) with c = max{ct | t ∈ f ullSetsStack}. On the other hand, the
orders removed from the stack orderToSelect by the loop at lines 7− 8
will never come back into the stack and then the complexity associated
is globally in O(n). Hence the global complexity of the computation
gainCost[t] for all full periods is O(n).

Example 12 shows an execution of Algorithm 6.4.1.

Example 12. Let us run Algorithm 6.4.1 on the instance of Example 10.
There are two full sets: f ullSetsStack = {{8, 7}, {5, 4, 2, 1}}

1. f ullSet = {5, 4, 2, 1}, orderToSelect← {}.

• t = 1, gainCost[1] = 0 and orderToSelect← {4};
• t = 2, s = 4, gainCost[2] = gainCost[1] + (2− 1) · h4 = 2

and orderToSelect← {4, 1};
• t = 4, s = 1, gainCost[4] = gainCost[2] + (4− 2) · h1 = 8

and orderToSelect← {4, 1, 3};
• t = 5, after line 8 orderToSelect ← {4}, s = 4,

gainCost[5] = gainCost[1] + (5 − 1) · h4 = 8 and
orderToSelect← {4, 2}.

2. f ullSet = {8, 7}, orderToSelect← {}.

• t = 7, gainCost[7] = 0 and orderToSelect← {5};
• t = 8, s = 5, gainCost[8] = gainCost[7] + (8− 7) · h5 = 2

and orderToSelect← {5, 6}.

Now the filtering is achieved for each order. Consider the order 2: v =

optPeriod[2]− bHmax+gainCost[optPeriod[2]]−(Hopt)r

hi
c = 5− b 34+8−16

10 c = 3 and
Xmin

2 = 3. Since c3 = 0, Xmin
2 = 4 thanks to the gcc constraint.



6.4 pruning the decision variables X i 91

Algorithm 6.4.1: IDStockingCost: Filtering of n date variables in
O(n)

Input: optPeriod, optOrders and f ullSetsStack (computed in
Algorithm 6.3.1)

1 gainCost← map() // gainCost[t]=cost won if an order is

removed in t
2 orderToSelect← stack() // items that could jump on current

period

3 while f ullSetsStack.notEmpty do
4 f ullSet← f ullSetsStack.pop
5 while f ullSet.isNotEmpty do
6 t← f ullSet.pop
7 // Invariant (a): ∀t′ ∈ [min f ull[t], . . . , t[ with ct′ > 0:

gainCost[t′] is defined
8 while orderToSelect.isNotEmpty ∧ (Xmax

orderToSelect.top < t) do
9 orderToSelect.pop

10 end
11 // Invariant (b): orderToSelect. f irst ∈ toSelect[t]
12 if orderToSelect.isEmpty then
13 gainCost[t]← 0
14 end
15 else
16 s← orderToSelect. f irst
17 gainCost[t]← gainCost[optPeriod[s]] + (t−

optPeriod[s]) · hs

18 end
19 while optOrders[t].isNotEmpty do
20 orderToSelect.push(optOrders[t].pop)
21 end
22 // Invariant (c): ∀k1, k2 ∈ {k ∈ orderToSelect ∧ Xmax

k ≥ t}:
if k1 is above k2 in orderToSelect, then hk1 ≥ hk2

23 end
24 end
25 for each order i do
26 v← optPeriod[i]− bHmax+gainCost[optPeriod[i]]−(Hopt)r

hi
c

27 Xmin
i ← max{Xmin, v}

28 end



92 the item dependent stockingcost constraint

Strengthening the filtering

During the search some orders are fixed by branching decisions or dur-
ing the filtering in the fix-point calculation. The lower bound (Hopt)r

can be strengthened by preventing those fixed orders to move. This
strengthening requires very little modification to our algorithm. First,
the fixed orders are filtered out such that they are not considered by
Algorithm 6.3.1 and Algorithm 6.4.1. A reversible 1 integer maintains
the contributions of orders fixed to the objective. This value is denoted
H f ixed. Also when an order is fixed in a period t, the corresponding ca-
pacity ct - also a reversible integer - is decreased by one. The strength-
ened bound is then (Hopt)r + H f ixed. This bound is also used for the
filtering of the Xi’s.

6.5 experimental results

The experiments were conducted on instances of the PSP described in
Section 3.3. We use the same methodology and experimental settings
as for the StockingCost constraint (see Section 5.6) but here the stock-
ing costs per item are different. All our source-code for the models, the
global constraint, and the instances are available at [HSb].

A CP model

The model used is a variant of that described in the previous chap-
ter. Each order is uniquely identified. The decision variables are
date[p] ∈ [1, . . . , T], ∀p ∈ [1, . . . , n]. For the order p, date[p] is the pe-
riod for production of the order p. Note that date[p] must repect its
dueDate[p]: date[p] ≤ dueDate[p]. Let objStorage denote the total stock-
ing cost: objStorage = ∑p (dueDate(p)− date(p)) · hp with hp = hi
is the stocking cost of the order p for an item i. The changeover
costs are computed using a successor based model and the circuit
[Pes+98] constraint. The changeover costs are aggregated into the vari-
able objChangeOver. The total stocking cost variable objChangeOver is
computed using the constraint introduced in this paper:

IDStockingCost(date, dueDate, [h1, . . . , hn], objStorage, [c1, . . . , cT])

1 A reversible variable is a variable that can restore its domain when backtracks occur
during the search.



6.5 experimental results 93

with ct = 1, ∀t ∈ [1, . . . , T]. The overall objective to be minimized is
objStorage + objChangeover.

Comparison on small instances

As first experiment, we consider 100 small random instances limited
to 20 periods, 20 orders and 5 items with qi,j ∈ [10, . . . , 50] for i 6= j,
qi,i = 0 and hi ∈ [10, . . . , 50], ∀i. We measure the gains over the Basic
model using as filtering for IDStockingCost:

1. IDS: our filtering algorithms for IDStockingCost;

2. MinAss: the minimumAssignment constraint with the LP re-
duced costs based filtering + the allDifferent constraint
with bound consistency filtering. As already mentioned, the
minimumAssignment constraint is much more efficient when it is
together with the allDifferent constraint (bound consistency
filtering);

3. MinAss2: the minimumAssignment constraint with exact reduced
costs based filtering [DCP16] + allDifferent constraint with
bound consistency filtering.

Table 6.1 shows the arithmetic average of the number of nodes and
the time required for Basic, MinAss, MinAss2 and IDS respectively.
Table 6.1 also shows the geometric average gain factor (wrt Basic) for
each propagator. Unsurprisingly MinAss2 prunes the search trees the
most but this improved filtering does not compensate for the time
needed for the exact reduced costs. It is still at least 4 times (on average)
slower than MinAss and IDS.

These results suggest that on small instances MinAss offers the
best trade-off wrt filtering/time. Notice that IDS is competitive with
MinAss in terms of computation time.

Comparison on large instances

The previous results showed that MinAss and IDS are competitive fil-
tering for the IDStockingCost constraint on small instances. We now
scale up the instance sizes to 500 periods (with the number of or-
ders n ∈ [490, . . . , 500]) and 10 different items. Again we consider
100 random instances with the following characteristics: T = 500,



94 the item dependent stockingcost constraint

IDS MinAss MinAss2 Basic

Nodes Time Nodes Time Nodes Time Nodes Time

Average (Av.) 30.1 104
15.7 26.2 104 13.2 24.9 104

51.7 130 104
51.4

Av. gain factor 5.0 4.0 6.2 4.9 6.7 1.0 1.0 1.0

Table 6.1: Average results on 100 instances with T = 20: IDS, MinAss,
MinAss2, and Basic

n ∈ [490, . . . , 500], nbItems = 10, qi,j ∈ [10, . . . , 50] for i 6= j, qi,i = 0 and
hi ∈ [50, . . . , 100], ∀i. Table 6.2 gives the average values for the num-
ber of nodes and computation time when replaying the search trees,
plus the geometric average gain over the Basic approach. Clearly, the
reported values suggest that IDS performs best, in particular wrt the
computation time.

IDS MinAss Basic

Nodes Time Nodes Time Nodes Time

Average (Av.) 6.68 104 5.8 8.30 104
25.8 73.5 104

52.8

Av. gain factor 12.7 10.0 11.1 2.3 1.0 1.0

Table 6.2: Average results on 100 instances with T = 500: IDS, MinAss, and
Basic

Figure 6.7 and Figure 6.8 show the performance profiles (for IDS,
MinAss and Basic) wrt the number of nodes visited and the time
needed to complete the search respectively. We can see that:

• wrt nodes: for ≈ 80% of instances, IDS provides the best filter-
ing;

• wrt time: IDS has the best time for all instances. Note that IDS
is at least 4 times as fast as MinAss for ≈ 60% of instances.



6.5 experimental results 95

●●● ●
●

●

●
●

●
●

●

●
●

●
●

●

●
●

●
●

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20
τ

%
 in

st
an

ce
s

Propagators
● Basic

IDS
MinAss

Nodes

Figure 6.7: Performance profiles - Nodes: IDS, MinAss, and Basic

● ● ● ●

●

●

●

●

●

●

●

●

●

● ●

●
● ●

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20
τ

%
 in

st
an

ce
s

Propagators
● Basic

IDS
MinAss

Time

Figure 6.8: Performance profiles - Time: IDS, MinAss, and Basic



96 the item dependent stockingcost constraint

IDStockingCost vs StockingCost

The IDStockingCost constraint generalizes the StockingCost con-
straint. We now compare the performance of IDS with StockingCost

on instances with equal stocking costs. We reuse the previous 100 in-
stances generated with 500 demands and time periods, but using the
same stocking cost for all the items.

As can be observed in Table 6.3, both StockingCost and IDS outper-
form MinAss. MinAss is at least 8 (on average) times slower than IDS
and StockingCost. Note that, as established in Chapter 5, StockingCost
offers a bound consistent filtering and is thus as expected the best prop-
agator in this setting. However, the average values reported in Table
6.3 show that IDS is competitive wrt StockingCost. That is confirmed
by the performance profiles presented in Figure 6.9 and Figure 6.10:

• wrt nodes: for ≈ 80% of instances, StockingCost is only at most
1.1 times better than IDS;

• wrt time: for ≈ 80% of instances, IDS has the best time even if
it is ≥ 2 times worse than StockingCost for ≈ 5% of instances.

StockingCost IDS MinAss Basic

Nodes Time Nodes Time Nodes Time Nodes Time

Average (Av.) 8.81 104
7.4 9.36 104 7.2 15.6 104

62.3 76.9 104
52.3

Av. gain factor 11.4 8.8 10.0 8.3 6.1 1.0 1.0 1.0

Table 6.3: Average results on 100 instances with T = 500: StockingCost, IDS,
MinAss, and Basic

About the specialized OR approach for the PSP

Pochet and Wolsey [PW05] report results solving instances with up to
T = 100 using the specialized valid inequalities for DLS-CC-SC (see
Section 3.3). Our CP model is able to solve and prove optimality of PSP

instances with up to T = 20 (see Appendix A). Note that the part of
the model concerning the changeover costs uses a minimumAssignment

constraint that slows down the CP model for this problem. On the other



6.5 experimental results 97

● ● ●

●

●

●

●

●

●

●

●
●

●
●

●
●●●

●

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20
τ

%
 in

st
an

ce
s

Propagators
● Basic

IDS
MinAss
StockingCost

Nodes

Figure 6.9: Performance profiles - Nodes: StockingCost, IDS, MinAss, and
Basic

●● ● ●
●

●

●
●
●

●

●

●

●
●

●

●
● ●

● ●
● ● ●

0.00

0.25

0.50

0.75

1.00

0 4 8 12 16 20
τ

%
 in

st
an

ce
s

Propagators
● Basic

IDS
MinAss
StockingCost

Time

Figure 6.10: Performance profiles - Time: StockingCost, IDS, MinAss, and
Basic



98 the item dependent stockingcost constraint

hand, the search aspects should be developed to give a chance to CP to
be competitive with the state-of-the-art MIP approaches on the PSP.

6.6 conclusion

We have introduced the IDStockingCost constraint, which is a gen-
eralization of the StockingCost constraint allowing for order depen-
dent stocking costs and production capacity that may vary over time.
We have proposed a scalable filtering algorithm for this constraint in
O(n log n). Our experimentation on a variant of the CLSP shows that
the filtering algorithm proposed: 1) scales well wrt the other state-of-
the-art CP formulation based on minimum assignment and 2) can be
used, on large instances, instead of the StockingCost constraint even
when the stocking cost is the same for all items.



Part III

F I LT E R I N G A L G O R I T H M S F O R T H E
C O N S T R A I N E D A R B O R E S C E N C E P R O B L E M





7
T H E W E I G H T E D A R B O R E S C E N C E C O N S T R A I N T

We refer to Chapter 4 for an overview of Minimum Weight Arbores-
cence (MWA) and the Constrained Arborescence Problem (CAP). In this
chapter, we define the minimum weight arborescence constraint (de-
noted MinArborescence) to solve the CAP in CP. A filtering based on
the LP reduced costs requires O(|V|2) in which |V| is the number of
vertices. We propose a procedure to strengthen the quality of the LP

reduced costs in some cases, also running in O(|V|2). Computational
results on a variant of the CAP show that the additional filtering pro-
vided by the constraint reduces the size of the search tree substantially.

7.1 introduction

We address the CAP - that requires one to find an arborescence that
satisfies other side constraints and is of minimum cost - and show
how one can handle them in CP. Let us recall the definition of an MWA.
Consider a weighted directed graph G = (V, E) in which V is the ver-
tex set and E ⊆ {(i, j) | i, j ∈ V} is the edge set. A weight w(i, j) is
associated to each edge (i, j) ∈ E. Given a vertex r, the aim is to as-
sociate to each vertex v ∈ V \ {r} exactly one vertex p(v) ∈ V (with
(p(v), v) ∈ E) such that, considering the sub-graph A = (V, F) with
F = {(p(v), v) | v ∈ V \ {r}}, there is no cycle and the total cost
(∑v∈V\{r} w(p(v), v)) is minimized. We focus on an optimization ori-
ented constraint for MWA mentioned in [Foc+99]1.

1 The authors consider MWA as a relaxation of the Traveling Salesman Problem (TSP)
and use LP reduced costs to filter inconsistent values.

101



102 the weighted arborescence constraint

The MinArborescence constraint holds if there is a set of edges that
form an arborescence rooted at a given vertex with total cost less than
the objective variable value K. This constraint can be handled as a
classical optimization constraint. First, an optimal solution of the MWA

problem associated is computed and its cost is used to check the con-
sistency of the constraint and filter, if possible, the objective variable
K. Since the LP reduced cost gives an optimistic evaluation of the cost
increase by forcing an edge in the optimal solution, they can be used
to filter the decision variables. Considering an MWA A(G)?, we show
that the LP reduced cost of the edge (i, j) can be improved if there is
a directed path P from j to i in A(G)? such that each vertex in P is
involved in at most one cycle2 when computing A(G)?.

This chapter is organized as follows: Section 7.2 formally defines
the optimization constraint for the MWA called MinArborescence and
show how one can improve the filtering of its basic decomposition by
avoiding the creation of cycles when some variables are fixed; Section
7.3 describes how the LP reduced costs can be improved in some cases
after sensitivity analysis of an MWA; Section 7.4 shows some experi-
mental results and Section 7.5 concludes.

In this chapter, we run our examples on the graph G1 (Figure 7.1)
from Chapter 4 and its MWA A(G1)

? (Figure 7.2).

0

1 2

3 4

5

35 38

8

20

33
33

45

10
6

6

20

5

15

11

41

Figure 7.1: Initial graph G1

2 See the computation of an MWA in Section 4.1.2.



7.2 the minarborescence constraint 103

0

1 2

3 4

5
86

5

15

11

Figure 7.2: A(G1)
?

7.2 the minarborescence constraint

We use the predecessor variable representation of a graph to define
the MinArborescence constraint. The arborescence is modeled with one
variable Xi for each vertex i of G = (V, E) representing its predecessor.
The initial domain of a variable Xi is thus the neighbors of i in G:
j ∈ D(Xi) ≡ (j, i) ∈ E.

The constraint MinArborescence(X, w, r, K) holds if the set of
edges {(Xi, i) | i 6= r} is a valid arborescence3 rooted at r with
∑i 6=r w(Xi, i) ≤ K.

The consistency of the constraint is achieved by computing an exact
MWA A(G)? rooted at r and verifying that w(A(G)?) ≤ K. The value
w(A(G)?) is an exact lower bound for the variable K: K ≥ w(A(G)?).
The filtering of the edges can be achieved based on the reduced costs.
For a given edge (i, j) 6∈ A(G)?, if w(A(G)?) + rc(i, j) > K, then Xi ← j
is inconsistent. In Section 7.3, we propose a procedure to strengthen
the quality of the LP reduced costs in O(|V|2) in some cases.

Observe that, for the MinArborescence constraint, it is not necessary
to study the mandatory4 edges as for the weighted spanning tree con-
straint. Actually, since exactly one edge entering each vertex in V \ {r},
if an edge (i, j) is mandatory then any of other edges (k, j) can not be
part of a solution (i.e w(A(G)?) + rc(k, j) > K) and will be removed.

A GAC filtering for the MinArborescence constraint would require
exact reduced costs, that to the best of our knowledge can only be

3 A set {(Xi, i) | i 6= r} is an arborescence rooted at r if there is exactly one edge
entering each i ∈ V \ {r} and there is no cycle.

4 A mandatory edge is an edge that must be part in a solution [Ben+12].



104 the weighted arborescence constraint

obtained by recomputing the MWA from scratch in O(|E||V|2) which
is in O(|V|4). The basic decomposition of the MinArborescence con-
straint does not scale well due to the exponential number of con-
straints in equation (4.3). We describe below a light constraint (called
the Arborescence constraint) to have a scalable baseline model for ex-
periments.

7.2.1 Decomposing the constraint

The constraint Arborescence(X, r) holds if the set of edges
{(Xi, i) : ∀i ∈ V ′}5 is a valid arborescence rooted at r. We describe
below an incremental forward checking like incremental filtering pro-
cedure for this constraint in Algorithm 7.2.1. The algorithm is inspired
by the filtering described in [Pes+98] for enforcing a Hamiltonian cir-
cuit. During the search, the bound (fixed) variables 6 form a forest of
arborescences. Eventually when all the variables are bound, a unique
arborescence rooted at r is obtained. The filtering maintains for each
node:

1. a reversible integer value localRoot[i] defined as localRoot[i] = i
if Xi is not bound, otherwise it is recursively defined as
localRoot[Xi], and

2. a reversible set lea f Nodes[i] that contains the leaf nodes of i in
the forest formed by the bound variables.

The filtering prevents cycles by removing from any successor variable
Xv all the values corresponding to its leaf nodes (i.e. the ones in the
set lea f Nodes[v]). Algorithm 7.2.1 registers the filtering procedure to
the bind events such that bind(i) is called whenever the variable Xi
is bound. This bind procedure then finds the root lr of the (sub) ar-
borescence at line 15. As illustrated in Figure 7.3, notice that j is not
necessarily the root as vertex j might well have been the leaf node of
another arborescence that is now being connected by the binding of Xi
to value j. In this figure, a zigzag link means that there is a directed
path between the two vertices involved while a dashed edge represent
an edge removed by the filtering. The root lr then inherits all the leaf
nodes of i. None of these leaf nodes is allowed to become a successor
of lr, otherwise a cycle would be created.

5 V′ = V \ {r}.
6 bound variable: variable with a single value in its domain.



7.2 the minarborescence constraint 105

Algorithm 7.2.1: Class Arborescence

1 X: array of |V| variables
2 localRoot: array of |V| reversible int
3 leafNodes: array of |V| reversible set of int

4 Method init()
5 Xr ← r // self loop on r
6 foreach each vertex v ∈ V ′ do
7 lea f Nodes[v].insert(v)
8 Xv.removeValue(v) // no self loop

9 if Xv.isBound then
10 bind(v)
11 end
12 else
13 Xv.registerOnBindChanges()
14 end
15 end

16 Method bind(i: int)
17 j← Xi // edge (j, i) ∈ arborescence

18 lr ← localRoot[j] // local root of j
19 foreach each v ∈ lea f Nodes[i] do
20 localRoot[v]← lr
21 lea f Nodes[lr].insert(v)
22 Xlr.removeValue(v)
23 end



106 the weighted arborescence constraint

lr

i j

k

Figure 7.3: Arborescence constraint filtering

Example 13. Consider the following partial assignment from the graph
G1 (Figure 7.1): X2 ← 1, X5 ← 1 and X3 ← 4. Then we
have localRoot[2] = localRoot[5] = 1, lea f Nodes[1] = {1, 2, 5},
localRoot[3] = 4 and lea f Nodes[4] = {3, 4}. These assignments are shown
in Figure 7.4. Initially, the domain of the variable X4 is X4 ∈ {0, 1, 2, 3}.
Due to the assignment X3 ← 4, the value 3 must be removed from the do-
main of X4 to prevent the creation of the cycle {3, 4}. Thus X4 ∈ {0, 1, 2}.
Assume that the value 3 is assigned to X1 that means that the vertex 3
is the predecessor of the vertex 1 in the arborescence (X1 ← 3). Then
all vertices in lea f Nodes[1] have a new localRoot that is the vertex 4:
localRoot[1] = localRoot[2] = localRoot[5] = 4. It then follows that the
vertices 1 and 2 must be removed from the domain of X4 to prevent the cre-
ation of a cycle as illustrated in Figure 7.4. The dashed edges are the removed
edges and the bold dashed edges are the edge removed by the assignment
X1 ← 3. Finally, X4 ∈ {0}.

The MinArborescence(X, w, r, K) can be decomposed as the
Arborescence(X, r) constraint plus a sum over element constraints:
∑i 6=r w(Xi, i) ≤ K.

7.3 improved reduced costs

In the following, we write A(G)?i→j for the MWA of the graph G
when the edge (i, j) is forced to be in it. We know that the LP re-
duced cost rc(i, j) gives a lower bound on the associated cost in-



7.3 improved reduced costs 107

0

1

2 3

4

5

Figure 7.4: Arborescence constraint filtering - Example

crease: w(A(G)?i→j) ≥ w(A(G)?) + rc(i, j). However, this lower bound
of w(A(G)?i→j) can be improved in some cases. In this section, we
show that if there is a directed path P from j to i in A(G)? such
that each vertex in P is involved in at most one cycle when com-
puting A(G)? then rc(i, j) can be improved. To more define the
edges for which our improvement procedure is applicable, we de-
note by parent[S], ∀S ⊆ V ′ the first directed cycle that includes
the subset S found during the execution of the Edmonds’ algo-
rithm. We assume that parent[S] = ∅ if there is no such cycle and
parent[∅] = ∅. In the graph G1, parent[1] = parent[3] = parent[5] = ∅
and parent[2] = parent[4] = {2, 4}. Note that for the graph G1,
parent[parent[k]] = ∅, ∀k ∈ V ′. Formally,

Definition 17. Let parent[S] be the smallest cycle strictly containing
the subset S ⊆ V ′: parent[S] is the smallest subset > |S| such that
∑(i,j)∈δin

parent[S]
x?i,j = 1 and S ⊂ parent[S].

The rest of this section provides some properties/propositions to
improve rc(i, j) if there exist a path P from j to i in A(G)? such that
parent[parent[k]] = ∅, ∀k ∈ P . We first consider the simplest case that
is parent[k] = ∅, ∀k ∈ P .

The next three properties give some information to improve the LP

reduced costs when all vertices involved do not have a parent.

Property 28. Assume that there is a path P = (j, . . . , i) from the vertex j
to vertex i in A(G)? such that ∀k ∈ P : parent[k] = ∅. If the edge (i, j) is
forced to be in the MWA then the cycle c = {k | k ∈ P} will be created during
the execution of Edmonds’ algorithm.

Proof. parent[k] = ∅ means that pred[k] is such that w(pred[k], k) =

min{w(v, k) | (v, k) ∈ δin
k } and then pred[k] will be first selected by



108 the weighted arborescence constraint

Edmonds’ algorithm ∀k ∈ P \ {j}. On the other hand, if the edge (i, j)
is forced into the MWA, it implies that all other edges entering j are
removed. Consequently, the cycle c = {k | k ∈ P} will be created.

Let us use the following notation to evaluate the improved re-
duced costs. Let min1[k] = arg min(v,k)∈δin

k
w(v, k) be the minimum

cost edge entering the vertex k. If there is more than one edge with
the smallest weight, we choose one of them arbitrarily. Also, let
min2[k] = arg min(v,k)∈δin

k ∧(v,k) 6=min1 w(v, k) be the second minimum
cost edge entering k.

Definition 18. For each vertex k ∈ V, let bestTwoDi f f [k] be the difference
between the best two minimum costs of edges entering the vertex k: ∀k ∈
V, bestTwoDi f f [k] = w(min2[k])− w(min1[k]).

For instance, in the graph G1, min1[5] = (3, 5), min2[5] = (1, 5) and
bestTwoDi f f [5] = 10− 5 = 5.

Property 29. Consider the cycle c = (i, . . . , j) obtained by forcing the
edge (i, j) such that parent[k] = ∅, ∀k ∈ c (see Property 28). The mini-
mum cost increase if the cycle is broken/connected by the vertex k′ ∈ c is
bestTwoDi f f [k′].

Proof. For a given k′ ∈ c, parent[k′] = ∅ implies that the edge
(pred[k′], k′) = min1[k′]. Then the cheapest way to break the cycle by
k′ is to use the edge with the second minimum cost min2[k′]. Hence
the minimum cost increase if the cycle is broken by the vertex k′ is
w(min2[k′])− w(min1[k′]) = bestTwoDi f f [k′].

When parent[j] = ∅, the LP reduced costs rc(i, j) are simple
and can be easily interpreted. To express rc(i, j) in such cases,
let pred[v], ∀v ∈ V ′, be the vertex in V such that the edge
(pred[v], v) ∈ A(G)?: x?pred[v],v = 1. For example, in the graph G1,
pred[1] = 2 and pred[5] = 3. Next property gives the LP reduced costs
rc(i, j) expression when parent[j] = ∅.

Property 30. Consider a vertex j ∈ V ′ such that parent[j] = ∅. For all
i ∈ V \ {j} with (i, j) 6∈ A(G)?: rc(i, j) = w(i, j)− w(pred[j], j).

Proof. We know that if parent[j] = ∅ then for each S ⊆ V ′ with j ∈ S
and |S| ≥ 2, u?

S = 0 (because none of them is a directed cycle). Then
rc(i, j) = w(i, j) − u?

j . On the other hand, since parent[j] = ∅, then
the edge min1[j] is the one used to connect j in A(G)?. Hence u?

j =

w(min1[j]) = w(pred[j], j) and rc(i, j) = w(i, j)− w(pred[j], j).



7.3 improved reduced costs 109

By considering an MWA A(G)?, the interpretation of rc(i, j) when
parent[j] = ∅ is that the edge (i, j) is forced into A(G)? and the edge
(pred[j], j) that is used to connect j is removed. Intuitively, if this pro-
cess induces a new cycle, this latter has to be (re)connected to the
rest of the arborescence from a vertex in the cycle different from j.
Proposition 31 established below gives a first improved reduced cost
expression when a new cycle c is created by forcing (i, j) into the ar-
borescence and ∀k ∈ c : parent[k] = ∅. Note that such new cycle will
be created only if there is already a path in A(G)? from the vertex j to
the vertex i.

Proposition 31. Assume that there is a path P = (j, . . . , i) from the ver-
tex j to vertex i in A(G)? such that ∀k ∈ P : parent[k] = ∅. Then
w(A(G)?i→j) ≥ w(A(G)?) + rc(i, j) + mink∈P\{j}{bestTwoDi f f [k]}.

Proof. Without loss of generality, we assume that the cycle
c = {k | k ∈ P} is the first one created by the Edmonds’ algo-
rithm (see Property 28). After this step, the new set of vertices
is V ′ = {c} ∪ {v ∈ V | v 6∈ c}. In A(G)?, the edges assigned
to vertices in c do not influence the choice of edges for each ver-
tex in {v ∈ V | v 6∈ c} (because parent[k] = ∅, ∀k ∈ c). Thus
w(A(G)?i→j) ≥ ∑k∈V∧k 6∈c w(pred[k], k) + w(c), in which w(c) is the
minimum sum of costs of edges when exactly one edge is assigned to
each vertex in c without cycle. The cheapest way to connect all vertices
in c such that each one has exactly one entering edge is to use all
cheapest entering edges (min1[k], ∀k ∈ c). The cycle obtained must be
broken in the cheapest way. To do so, the vertex used: 1) must be dif-
ferent from j (because (i, j) is already there) and 2) have to induce the
minimal cost increase. Then, from Property 29, a lower bound of the
minimum cost increase is mink∈P\{j}{bestTwoDi f f [k]}. In addition,
we have to add the cost of the forced edge (i, j) and remove the cost
of the edge in A(G)? that enters in j: w(c) ≥ ∑k∈c w(pred[k], k) +
mink∈c\{j}{bestTwoDi f f [k]} + w(i, j) − w(pred[j], j). We know
that ∑k∈c w(pred[k], k) + ∑k∈V∧k 6∈c w(pred[k], k) = w(A(G)?) and
rc(i, j) = w(i, j)− w(pred[j], j) (see Property 30).
Thus w(A(G)?i→j) ≥ w(A(G)?) + rc(i, j) +

mink∈P\{j}{bestTwoDi f f [k]}.

Example 14. Consider the graph G1 presented in Figure 7.1 and its MWA

(Figure 7.2). We want to force (5, 3) to be into the MWA:



110 the weighted arborescence constraint

• rc(5, 3) = w(5, 3)− w(4, 3) = 41− 11 = 30. This operation leads
to the graph shown in Figure 7.5 (a). We can see that the new cycle
created c = (5, 3) must be broken from a vertex different from 3.

• irc(5, 3) = rc(5, 3) + bestTwoDi f f [5] = 30 + 5 = 35. The corre-
sponding graph is shown in Figure 7.5 (b), that actually is the new
MWA.

0

1 2

3 4

5
86

5

15
41

(a) G1 with rc(5, 3)

0

1 2

3 4

5
8

10
6

15
41

(b) G1 with irc(5, 3)

Figure 7.5: G1 with rc(5, 3) and irc(5, 3)

Property 29, Property 30 and Proposition 31 can be generalized into
Property 32, Property 33 and Proposition 34 below to include some
vertices that have one parent.

Property 32. Consider an ordered set of vertices (k1, k2, . . . , kn) in A(G)?

such that c = (k1, k2, . . . , kn) is a directed cycle connected (broken) by the



7.3 improved reduced costs 111

vertex k? and parent[c] = ∅. The minimum cost increase if the cycle is
broken by another vertex k′ ∈ c \ {k?} is ≥ bestTwoDi f f [k′]− u?

c .

Proof. We know that parent[c] = ∅ implies that
u?

c = min{w(min2[k]) − w(min1[k]) | k ∈ c} = w(min2[k?]) −
w(min1[k?]). Thus if the cycle is now connected by another vertex
than k?, the edge min1[k?] can be used instead of min2[k?] and de-
creases the cost by w(min2[k?])−w(min1[k?]) = u?

c . On the other hand,
∀ki ∈ c \ {k?}, (pred[ki], ki) = min1[ki]. It follows that the cheapest way
to use k′ to connect c is to use min2[k′]. Hence a lower bound of the to-
tal cost induced is min2[k′]−min1[k′]− u?

c = bestTwoDi f f [k′]− u?
c .

The next property gives a lower bound of the LP reduced costs rc(i, j)
when parent[parent[j]] = ∅.

Property 33. Consider a vertex j ∈ V such that parent[parent[j]] = ∅.
For all i ∈ V \ {j} with (i, j) 6∈ A(G)?, rc(i, j) ≥ w(i, j)− w(pred[j], j)−
u?

parentj
.

Proof. We know that if parent[parent[k]] = ∅, then among all S with j ∈
S and |S| ≥ 2, only parent[k] can have u?

S > 0. Then rc(i, j) = w(i, j)−
u?

j − u?
parent[j]. On the other hand, u?

j = w(min1[j]) ≤ w(pred[j], j). Thus
rc(i, j) ≥ w(i, j)− w(pred[j], j)− u?

parentj
.

Now the improved reduced costs can be formulated as follows.

Proposition 34. Assume that there is a path P = (j, . . . , i) from the vertex
j to vertex i in A(G)? such that ∀k ∈ P : parent[parent[k]] = ∅. Then
w(A(G)?i→j) ≥ w(A(G)?) + rc(i, j) + mink∈P\{j}{bestTwoDi f f [k] −
u?

parent[k]}.

Proof. Note that if ∀k ∈ P : parent[k] = ∅ (that implies that u?
parent[k] =

0), the formula is the same as the one of Proposition 31. Let Z denote
the set of vertices in P and in all other cycles linked to P . Formally,
Z = {v ∈ V | v ∈ P} ∪ {k ∈ V | ∃v ∈ P ∧ parent[k] = parent[v]}.
We know that, in A(G)?, the edges assigned to vertices in Z do
not influence the choice of edges for each vertex k ∈ V \ Z. Thus
w(A(G)?i→j) ≥ ∑k∈V\Z w(pred[k], k) + w(Z) in which w(Z) is the min-
imum sum of the costs of edges when we assign exactly one edge to
each vertex in Z without cycle. The reasoning is close to the proof of
Proposition 31. The differences here are:



112 the weighted arborescence constraint

1. ∃k ∈ P \ {j} : parent[k] 6= ∅. Assume that we
want to break the cycle by one vertex v? in P \ {j}. If
the vertex v? used is such that parent[v?] = ∅, then
the minimum cost to pay is ≥ bestTwoDi f f [v?] (here
u?

parent[v?] = 0 because parent[v?] = ∅). If v? is such that
parent[v?] 6= ∅ ∧ parent[parent[v?]] = ∅, then from Property
32, the cost to pay is ≥ bestTwoDi f f [v?]− u?

parent[v?]. By consid-
ering all vertices in P \ {j}, the cost to pay is then
≥ mink∈P\{j}{bestTwoDi f f [k]− u?

parent[k]}.

2. the vertex j may have one parent. Let connect be the vertex that
is used to connect the cycle parent[j] in A(G)?.
Case 1: parent[i] 6= parent[j]. If we force the edge (i, j), then
the cycle parent[j] should not be created because it is as if
all edges entering j but (i, j) are removed. First, assume that
j 6= connect. The edge in parent[j] not in A(G)? should be
used and the cost won is u?

parent[j] (as in the proof of Prop-
erty 32). Thus a lower bound on the cost to break the cycle
parent[j] by j is: w(i, j) − w(pred[j], j) − u?

parent[j]. This lower
bound is equal to rc(i, j) because w(pred[j], j) = w(min1[j]).
Now assume that j = connect. In this case (pred[j], j) = min2[j]
(because parent[parent[j]] = ∅). Using the edge (i, j) instead
of (pred[j], j) induces the cost w(i, j) − w(min2[j]) = w(i, j) −
w(min1[j]) − w(min2[j]) + w(min1[j) = w(i, j) − w(min1[j]) −
u?

parent[j] = rc(i, j).
Case 2: parent[i] = parent[j] 6= ∅. This means that the edge (i, j)
is the one of the cycle that is not in the MWA A(G)?. In this
case rc(i, j) = 0, and the new cycle created should be broken as
described above (1.).

Hence a lower bound on w(Z) is

∑
k∈Z

w(pred[k], k) + min
k∈P\{j}

{bestTwoDi f f [k]− u?
parent[k]}+ rc(i, j)

and w(A(G)?i→j) ≥ w(A(G)?) + mink∈P\{j}{bestTwoDi f f [k] −
u?

parent[k]}+ rc(i, j).

Note that parent[parent[k]] = ∅ if k is not in a cycle or k is in a
cycle that is not contained in a larger cycle. The formula of Proposition
34 is available only if ∀k ∈ P : parent[parent[k]] = ∅. Let irc(i, j)
denote the improved reduced cost of the edge (i, j): irc(i, j) = rc(i, j) +



7.3 improved reduced costs 113

max{mink∈P∧k 6=j{bestTwoDi f f [k] − u?
parent[k]}, 0} if the assumption of

Proposition 34 is true and irc(i, j) = rc(i, j) otherwise.

0

1 2

3 4

5
33

6

6

5 11

(a) G1 with rc(1, 2)

0

1 2

3 4

5

35

33
6

5 11

(b) G1 with irc(1, 2)

Figure 7.6: G1 with rc(1, 2) and irc(1, 2)

Example 15. Consider the graph G1 in Figure 7.1 and its MWA A(G1)
? in

Figure 7.2. For the contruction of A(G1)
?, the cycle c1 = {2, 4} is created.

We want to force into the MWA the edge:

1. (1, 2): rc(1, 2) = w(1, 2) − u?
2 − u?

c1
= w(1, 2) − w(4, 2) −

(w(0, 4) − w(2, 4)). rc(1, 2) = 16. The corresponding graph is pre-
sented in Figure 7.6 (a). Of course, the new cycle (1, 2) created
must be broken from the vertex 1. irc(1, 2) = rc(1, 2) + (w(0, 1)−
w(2, 1)) = 16 + 29 = 45. Actually, that is the exact reduced cost
since the new graph obtained is an arborescence (see Figure 7.6 (b));

2. (1, 4): rc(1, 4) = w(1, 4) − u?
4 − u?

c1
= w(1, 4) − w(2, 4) −

(w(0, 4) − w(2, 4)). rc(1, 4) = 37. The corresponding graph
is presented in Figure 7.7 (a). But irc(1, 4) = rc(1, 4) +

min{w(0, 1)− w(2, 1) = 29, w(1, 2)− w(4, 2)− u?
c1

= 16}. Thus
irc(1, 4) = 37 + 16 = 53. Here (see Figure 7.7 (b)), the graph ob-
tained is not an arborescence and irc(1, 4) is a lower bound.

Algorithm 7.3.1 computes irc(i, j), ∀(i, j) in O(|V|2). First, it initial-
izes each irc(i, j) to rc(i, j), ∀(i, j) ∈ E. Then, for each edge (i, j) in-
volved in the assumption of Proposition 34 (Invariant (a)), Algorithm
7.3.1 updates its irc(i, j) according to the formula of Proposition 34.



114 the weighted arborescence constraint

Algorithm 7.3.1: Computation of the improved reduced costs
irc(i, j), ∀(i, j) ∈ E in O(|V|2)
Input: parent[k], ∀k ∈ V ; pred[k], ∀k ∈ V ; u?

ci
, ∀ci ∈ C and

bestTwoDi f f [k], ∀k ∈ V that can be computed in O(|V|2)
Output: irc(i, j), ∀(i, j) ∈ E

1 foreach each edge (i, j) ∈ E do
2 irc(i, j)← rc(i, j)
3 end

4 foreach each vertex i ∈ V do
5 if parent[parent[i]] = ∅ then
6 min← bestTwoDi f f [i]− u?

parent[i]

7 j = pred[i]
8 while (parent[parent[j]] = ∅)∧ min > 0∧ j 6= r do
9 // Invariant (a): there is a path P from j to i such that

∀k ∈ P : parent[parent[k]] = ∅
10 // Invariant (b):

min = mink∈P\{j}{bestTwoDi f f [k]− uparent[k]?}
11 irc(i, j)← irc(i, j) + min
12 if bestTwoDi f f [j]− uparent[j]? < min then
13 min← bestTwoDi f f [j]− u?

parent[j]

14 end
15 j = pred[j]
16 end
17 end
18 end



7.4 experimental results 115

0

1 2

3 4

5

45

6

5

15

(a) G1 with rc(1, 4)

0

1 2

3 4

5
33

45

6

5

11

(b) G1 with irc(1, 4)

Figure 7.7: G1 with rc(1, 4) and irc(1, 4)

7.4 experimental results

This section presents the experiments performed to evaluate the im-
proved reduced costs and the filtering based on reduced costs. All our
source-code for the models, the global constraint, and the instances are
available at [HSa].

Proportion of the reduced costs that are improved

As a first experiment, we evaluate the proportion of reduced costs af-
fected by Proposition 34. Therefore we randomly generated two classes
of 100 instances with w(i, j) ∈ [1, 100] and different values of the num-
ber of vertices (|V| = 20, |V| = 50 and |V| = 100):

• class1: for each i ∈ V, parent[parent[i]] = ∅;

• class2: many vertices i ∈ V are such that parent[parent[i]] 6= ∅.

The class1 was obtained by filtering out the random instances not sat-
isfying the property parent[parent[i]] = ∅, ∀i ∈ V. In the following, we
denote by λ(i, j) the exact reduced cost associated to the edge (i, j) ∈ E
that is the cost increase if the (i, j) is forced to be A(G)?. This cost is ob-
tained by computing an optimal solution with (i, j) as the single edge
entering j and then subtract w(A(G)?) from its optimal cost. Table 7.1
shows, for each class of instances (with respectively |V| = 20, |V| = 50
and |V| = 100), the proportion of instances of each class and for each
group of instances: 1) the proportion of edges (i, j) ∈ E such that



116 the weighted arborescence constraint

rc(i, j) < λ(i, j); 2) the proportion of edges that have irc(i, j) > rc(i, j);
and 3) the proportion of edges such that irc(i, j) = λ(i, j). Note that, for
this benchmark, at least 37% of 300 instances are class1 instances and
at least 45% of LP reduced costs (with rc(i, j) < λ(i, j)) are improved
for these instances. Of course, the results are less interesting for the
class2 instances.

|V| = 20 |V| = 50 |V| = 100

Class1 Class2 Class1 Class2 Class1 Class2

%: instances of classk (k ∈ {1, 2}) 48 52 31 69 32 68

%: rc(i, j) < λ(i, j) 19.3 38.1 9.8 26.7 2.1 16.6

%: irc(i, j) > rc(i, j) 12.6 1.9 4.6 0.9 1.2 0.2

%: irc(i, j) = λ(i, j) 9.9 1.17 3.49 0.79 1.19 0.2

Table 7.1: Proportion of the reduced costs affected by Proposition 34

The benefit of the cost-based filtering

To test the MinArborescence constraint, experiments were conducted
on an NP-Hard variant of the CAP: the RMWA that is described in Sec-
tion 4.3. The RMWA can be modeled in CP with a MinArborescence

constraint (or one of its decomposition) for the MWA part of problem
and the binaryKnapsack constraint [FS02] together with weightedSum

constraint for the resource constraints. We have randomly generated
the different costs/weights as described in [GR90]: ai,j ∈ [10, 25],
w(i, j) ∈ [5, 25]. To have more available edges to filter, we have used

bi = 2 · b
∑(i,j)∈δ+i

ai,j

|δ+i |
c (instead of bi = b

∑(i,j)∈δ+i
ai,j

|δ+i |
c) and 75% graph density

(each edge has a 25% probability to have an high value such that it will
not be selected in an MWA).

In order to avoid the effect of the dynamic first fail heuristic inter-
fering with the filtering, we use the approach described in Introduc-
tion (see Section 1.4). Here, the baseline is the decomposition model
using the Arborescence constraint. This search tree is then replayed
with the stronger reduced cost based filtering for MinArborescence.
The recorded search tree for each instance corresponds to an explo-
ration of 30 seconds. As an illustration for the results, Table 7.2 re-



7.4 experimental results 117

ports the arithmetic average results (for 100 randomly instances with
|V| = 50) for MinArborescence constraint with filtering respectively
based on improved reduced costs (MinArbo_IRC), reduced costs (Mi-
nArbo_RC), the decomposition with Arborescence constraint (Arbo)
and Arbo+filtering only based on lower bound of MWA (Arbo+LB). Ta-
ble 7.2 also shows the geometric average gain factor (wrt Arbo) for
each propagator. On average, the search space is divided by 566 with
the reduced cost based filtering MinArborescence constraint (wrt Arbo)
and by 166 with Arbo+LB. This demonstrates the benefits brought by
the MinArborescence constraint introduced in this chapter.

MinArbo_IRC MinArbo_RC Arbo+LB Arbo

Nodes Time Nodes Time Nodes Time Nodes Time

Average (Av.) 14385 0 14385 0 81239 1.4 6646748 28

Av. gain factor 566 - 566 - 166 - 1.0 1.0

Table 7.2: Average results on 100 instances: MinArbo_IRC, MinArbo_RC,
Arbo+LB, and Arbo

MinArbo_RC vs MinArbo_IRC

To further differentiate the filtering of MinArbo_IRC, we now use Mi-
nArbo_RC as a baseline filtering for recording the search tree on an-
other set of 100 randomly generated instances of class1 with |V| = 50.
Figure 7.8 and Figure 7.9 show the corresponding performance pro-
files wrt the number of nodes visited and the time used respectively.
For ≈ 30% of instances the search space is divided by at least 1.5 and
for ≈ 7% the search space is divided by at least 4. About time perfor-
mance profile, MinArbo_IRC is ≈ 1.5 times faster than MinArbo_RC
for ≈ 20% of instances and is ≈ 2 times faster than MinArbo_RC for
≈ 10% of instances. Table 7.3 presents the average results on 100 in-
stances. Unfortunately, as was expected, the average gain is limited as
only ≈ 5% of LP reduced costs can be improved. We detail, in Table 7.4,
the computational results on the first 15 instances. As shown in Table
7.4, MinArbo_IRC is really interesting only for some instances (2, 3, 9,
10).



118 the weighted arborescence constraint

●● ● ● ● ● ● ●

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8
τ

%
 in

st
an

ce
s

Propagators
● MinArboIRC

MinArboRC

Nodes

Figure 7.8: Performance profiles - Nodes: MinArbo_RC and MinArbo_IRC

●

●

●

● ● ● ● ● ● ●

0.6

0.8

1.0

0 2 4 6 8
τ

% 
ins

tan
ce

s

Propagators
● MinArboIRC

MinArboRC

Time

Figure 7.9: Performance profiles - Time: MinArbo_RC and MinArbo_IRC

MinArbo_IRC MinArbo_RC

Nodes Time Nodes Time

Average (Av.) 359922 24 507555 28

Av. gain factor 1.46 1.22 1.0 1.0

Table 7.3: Average results on 100 instances: MinArbo_IRC vs MinArbo_RC



7.4 experimental results 119

Instance MinArbo_IRC MinArbo_RC

Nodes Time(s) Nodes Time

1 392758 29 416512 27

2 135714 8 644828 29

3 235336 15 499904 28

4 359444 26 494172 29

5 326638 32 335132 29

6 394179 29 406095 29

7 306708 26 419106 28

8 532913 29 569113 28

9 111963 6 553500 29

10 155036 9 811462 28

11 295616 21 539794 35

12 256654 29 302816 28

13 301595 29 333861 29

14 345283 26 480511 29

15 344903 32 346807 29

Table 7.4: Results on 15 instances: MinArbo_IRC vs MinArbo_RC



120 the weighted arborescence constraint

About the specialized OR approaches for the RMWA

Our CP model is able to solve and prove optimality of the RMWA in-
stances with up to |V| = 50 (see Appendix B). Similar instances can be
solved using the Lagrangian decomposition approach of [GR90]. The
branch and cut algorithm of [FV97] reports results solving instances
with up to |V| = 500. We believe this lack of performance of CP wrt
to the branch and cut approach is due to the |V| independent knap-
sack constraints inducing a weaker pruning. We should also develop
some dedicated search heuristics to improve the CP performance on
this problem.

7.5 conclusion

We have defined the MinArborescence constraint based on the reduced
costs to filter the edges. We have proposed an algorithm to improve
the LP reduced costs of the minimum weighted arborescence in some
cases. Finally, we have demonstrated experimentally the interest of im-
proved reduced costs in some particular graphs and the efficiency of
the cost-based filtering on the resource constrained minimum weight
arborescence problem.



C O N C L U S I O N A N D P E R S P E C T I V E S

121





C O N C L U S I O N A N D P E R S P E C T I V E S

The research results presented in this thesis mainly revolve around
global optimization constraints and cost-based filtering algorithms.
We have introduced two new complex optimization problems in Con-
straint Programming (CP): a Capacitated Lot Sizing Problem (CLSP) and
the Constrained Arborescence Problem (CAP)7. For each of these opti-
mization problems, we have proposed some cost-based filtering algo-
rithms to handle them in CP. We below summarize our main results
and the possible future orientations.

capacitated lot sizing problem

Lot Sizing (LS) is often an important aspect in production planning.
We have focused on how to deal with the stocking costs that may arise
in a CLSP. Actually, for the most of variants of the CLSP, the sum of
stocking costs for each order forms part of the objective function to
be minimized. First, we have introduced the StockingCost constraint.
This constraint enforces that each order is produced on or before its
due date, the production capacity of the machine is respected, and the
total stocking cost is less than a given value. We have established some
relevant properties/propositions about this constraint. Then we have
developed an O(n) (with n the number of orders) algorithm to solve an
associated problem to optimality and to calculate the cost of modifying
the optimal solution by forcing an order to be produced earlier than
in the optimal solution. These costs allow to efficiently achieve bound
consistent filtering for the StockingCost constraint. We have tested our

7 The CAP is also a sub-problem of some variants of the CLSP.

123



124 the weighted arborescence constraint

filtering algorithms on a variant of the CLSP: the Pigment Sequencing
Problem (PSP). The experimental results show that our new filtering al-
gorithm outperforms the formulation based on the minimumAssignment

constraint8. Further, we have generalized the StockingCost constraint
to take into account the order dependent per-period stocking costs and
the production capacity that may vary over time. So we have proposed
the IDStockingCost constraint. For this new global constraint, we have
developed an O(n log n) filtering algorithm. This new filtering algo-
rithm does not achieve bound consistency for the IDStockingCost con-
straint but works well in practice on large instances. Again, we have
tested the filtering algorithm on the PSP with orders that may have dif-
ferent per-period stocking costs. The experimental results show that
our new filtering algorithm scales well compared with the state-of-
the-art CP propagators. Moreover, on large instances, it is competitive
with the filtering algorithm introduced for the StockingCost constraint
when all orders have the same per-period stocking cost.

We below state some possible future works for the CLSP in CP:

• Filtering: a possible perspective is to develop an efficient fil-
tering algorithm with a stronger form of consistency for the
IDStockingCost constraint. On the other hand, we have focused
on the global optimization constraints for the stocking costs. In
the CLSP, some other costs may be involved in the objective func-
tion. For example, in the PSP, there are the changeover costs
together with the stocking costs to be minimized. To improve
CP performance on the CLSP, it would be interesting to develop
some optimization oriented propagators for the setup costs, the
changeover costs, the production costs, etc. It could also be inter-
esting to develop global filtering algorithms that combine sev-
eral different costs.

• Search: we are mainly interested in filtering. Since CP is
f iltering + search, it would be interesting to develop some
custom heuristics for these problems. One could also design
generic heuristics linked to a global optimization constraint
such as the IDStockingCost constraint (see for example heuris-
tics based on counting good solutions introduced in [Pes16]).
On the other hand, to solve big instances, one could try some
local search approaches ([Sha98, HM05, HT06]).

8 To the best of our knowledge, this formulation is the best state-of-the-art CP formula-
tion for the stocking costs part of the PSP.



7.5 conclusion 125

• More experiments:

– we have noticed that the global constraints introduced
filter better when the stocking costs are high. It could
be interesting to do more expermients to see the perfor-
mance of CP with regard to other approaches by varying
different parameters such as the number of periods, the
density of the demands, the different costs involved, etc.

– the experiments were conducted on the PSP. A possible
perspective is to model and experiment other variants of
the CLSP.

constrained arborescence problem

In this thesis, we have also dealt with a graph theory problem: the Min-
imum Weight Arborescence (MWA). The MWA can be used to model
many real life problems (for example in telecommunication networks).
We have introduced the CAP (that requires one to find an arbores-
cence that satisfies some side constraints and that has the minimum
weight) in CP. We have proposed an optimization constraint - the
MinArborescence constraint - to tackle the CAP in CP. This constraint
enforces that a set of edges is a valid arborescence rooted at a given
vertex with total cost less than a given value. The filtering of the
MinArborescence constraint can be performed with the LP reduced
costs that can be obtained in O(|V|2) for all O(|V|2) edges (with V the
set of vertices). We have developed an O(|V|2) algorithm to strengthen
the quality of the LP reduced costs based on sensitivity analysis of
MWA. Our experiments showed that our improved reduced costs are
stronger than the LP ones when a few contracting cycles are needed to
compute the MWA. Finally we have demonstrated experimentally the
benefits of the cost-based filtering on a variant of the CAP: the resource
constrained MWA problem.

As for the CLSP, the perspectives about the CAP can be classify as
follows:

• Filtering: a good extension of this research is to develop some
filtering algorithms wrt to the other constraints involved in the
variants of this problem. For example about the resource con-
strained MWA problem, one could propose a global filtering al-
gorithm for the |V| independent knapsack contraints. On the
other hand, the MinArborescence constraint would benefit from



126 the weighted arborescence constraint

incremental computation of the MWA and its reduced costs in
order to reduce the O(|V|2) complexity.

• Search: it would be interesting to develop some dedicated
heuristics for the CAP as well as generic ones wrt the
MinArborescence constraint. On the other hand, applying some
local search approaches on big instances could also be interest-
ing.

• More experiments:

– some interesting research questions are 1) how the differ-
ent parameters (density of the graph, size of the graph,
weights of the edges, etc.) influence the strength of the
filtering based on reduced costs and the quality of the
improved reduced costs ? 2) how much the reduced costs
are improved ? 3) is it interesting to do more research to
efficiently improve the quality of the reduced costs ?

– we have mainly experimented the resource constrained
MWA problem. As for the constrained spanning tree prob-
lem, one can think about other variants of the CAP such
as the degree MWA problem, the diameter MWA problem,
the weighted MWA problem, etc. In particular, we believe
that CP can be effective on the degree MWA problem by
using the gcc constraint [Rég96, Qui+03].

final words

To the best of our knowledge, our research on the CLSP and the CAP

are the first in the CP community about these challenging optimization
problems. We do hope that these results will trigger more research
in the future to make CP more efficient on these interesting problems.
This has already started for the CLSP with the German et al. paper
[Ger+15]. On the other hand, research on search aspects should be
conducted in order to compare the CP approach with the specialized
approaches on these problems. Finally, an interesting research direc-
tion is to hybridize several OR approaches (including the CP approach)
on the different variants of the CLSP and the CAP.



Part IV

A P P E N D I X





A
C P A P P R O A C H R E S U LT S F O R T H E P S P - I N S TA N C E S
S O LV E D T O O P T I M A L I T Y

We report in this appendix our best results on 100 instances (with
n = T = 20) of the PSP solved to optimality. The results are obtained
with the MinAss based model using COS heuristic [Gay+15]. Table
A.1 and Table A.2 show on each instance the number of nodes (Nodes)
and the time in seconds (Time) needed to complete the search. These
tables also show the optimal cost for each instance. All the instances,
the results, and the source codes are available at [HSb].

129



130 cp approach results for the psp

Instance Nodes Time(s) OptCost Instance Nodes Time(s) OptCost

1 21012 9.14 1377 26 6990 1.575 1753

2 52214 7.292 1447 27 42580 5.837 1277

3 20928 2.946 1107 28 25774 3.287 1036

4 10666 1.784 1182 29 1148 0.211 880

5 1498 0.235 1471 30 1306 0.234 588

6 1182 0.186 1386 31 45798 6.812 2249

7 25978 4.068 1382 32 19314 3.009 1562

8 157560 25.352 3117 33 420 0.057 1104

9 1122 0.201 1315 34 1002 0.193 1108

10 3388 0.653 1952 35 105872 12.846 2655

11 10750 1.715 1202 36 918538 121.909 1493

12 25564 4.161 1135 37 41196 5.494 1840

13 2758 0.492 1026 38 6190 0.955 1113

14 6874 1.181 1363 39 9576 1.549 1744

15 6542 1.034 1430 40 16414 2.334 1193

16 15004 2.441 1145 41 1032 0.152 1189

17 18532 3.617 1367 42 8786 1.534 996

18 610 0.111 1315 43 1956 0.296 1995

19 10904 1.94 1490 44 10068 1.986 1339

20 22722 3.139 779 45 21280 3.465 1182

21 89702 11.177 2774 46 12404 2.154 1575

22 84592 10.432 1397 47 4396 0.743 1371

23 88708 15.039 1473 48 5376 0.899 1572

24 390 0.06 1308 49 16732 2.886 1882

25 2988 0.616 1810 50 18002 2.758 1405

Table A.1: Results on 100 PSP instances with MinAss based model and COS
heuristic (Part 1)



cp approach results for the psp 131

Instance Nodes Time(s) OptCost Instance Nodes Time(s) OptCost

51 8854 1.464 1397 76 10980 1.799 1484

52 9128 1.732 1531 77 3928 0.596 852

53 5602 0.936 1108 78 128864 16.187 1297

54 36322 5.602 1056 79 4530 0.947 1555

55 69128 9.09 1015 80 7668 1.331 1382

56 14100 2.152 2121 81 27902 4.254 1889

57 10446 1.782 919 82 29886 5.004 1947

58 16416 2.347 1384 83 4332 0.726 1681

59 147094 19.496 1490 84 2510 0.36 728

60 18940 2.895 1265 85 65888 9.404 2113

61 3330 0.711 977 86 2238 0.406 886

62 11040 1.6 872 87 9650 1.589 1152

63 1792 0.321 1481 88 22196 3.361 1353

64 10222 1.713 1869 89 43814 6.083 1390

65 39804 6.25 1781 90 177784 23.811 2449

66 7962 1.715 1571 91 17890 2.862 998

67 59610 8.501 1185 92 1440 0.19 1453

68 46692 6.979 1131 93 15702 2.279 1286

69 6486 1.223 1619 94 64326 11.726 1403

70 15208 2.447 1148 95 846 0.12 1618

71 12528 2.077 1024 96 15100 2.543 1409

72 17610 3.346 1555 97 34704 5.354 1290

73 76846 12.508 1104 98 2838 0.463 1403

74 2810 0.504 1053 99 17702 3.318 1237

75 6962 1.033 1021 100 19054 3.003 1040

Table A.2: Results on 100 PSP instances with MinAss based model and COS
heuristic (Part 2)





B
C P A P P R O A C H R E S U LT S F O R T H E R M WA P R O B L E M -
I N S TA N C E S S O LV E D T O O P T I M A L I T Y

We report in this appendix our best results on 100 instances (with
|V| = 50) of the RMWA problem solved to optimality. The results are ob-
tained with the Arbo + MinArbo_RC based model using COS heuristic
[Gay+15]. Table B.1 and Table B.2 show on each instance the number of
nodes (Nodes) and the time in seconds (Time) needed to complete the
search. These tables also show the optimal cost for each instance. All
the instances, the results, and the source codes are available at [HSa].

133



134 cp approach results for the rmwa problem

Instance Nodes Time(s) OptCost Instance Nodes Time(s) OptCost

1 1308 7.417 254 26 474 0.392 255

2 1150 0.962 253 27 1918 1.199 257

3 2110 1.1 253 28 2448 1.543 262

4 454 0.348 260 29 6226 2.767 257

5 11898 6.457 265 30 1682 0.884 264

6 1166 0.745 260 31 1124 0.473 256

7 578 0.448 255 32 2642 1.313 260

8 814 0.647 259 33 870 0.525 254

9 634 0.528 259 34 946 0.51 253

10 380 0.215 253 35 960 0.717 264

11 2586 1.434 264 36 688 0.434 260

12 22002 8.319 259 37 634 0.565 256

13 1306 0.667 257 38 1056 0.57 258

14 774 0.583 259 39 2384 1.53 259

15 3840 1.822 264 40 1986 1.095 260

16 1430 0.848 265 41 826 0.443 257

17 12588 6.23 261 42 418 0.443 257

18 1194 0.661 261 43 14682 7.146 261

19 892 0.487 252 44 172 0.176 252

20 1798 1.18 259 45 694 0.582 258

21 736 0.544 257 46 156 0.205 255

22 434 0.485 260 47 1098 0.614 258

23 1862 0.991 255 48 666 0.498 256

24 662 0.454 257 49 530 0.517 256

25 1114 0.615 256 50 550 0.524 254

Table B.1: Results on 100 RMWA instances with Arbo + MinArbo_RC based
model and COS heuristic (Part 1)



cp approach results for the rmwa problem 135

Instance Nodes Time(s) OptCost Instance Nodes Time(s) OptCost

51 724 0.411 253 76 13222 6.101 265

52 1148 0.789 260 77 320 0.284 255

53 162 0.327 259 78 240 0.358 258

54 556 0.441 253 79 514 0.374 256

55 2088 1.22 258 80 312 0.374 257

56 784 0.509 256 81 600 0.466 255

57 2108 1.164 251 82 2178 1.014 254

58 402 0.441 255 83 420 0.424 258

59 474 0.456 260 84 3168 1.791 255

60 686 0.521 254 85 1014 0.673 259

61 846 0.574 259 86 1364 0.833 263

62 632 0.461 254 87 136 0.267 255

63 712 0.434 260 88 4844 2.469 263

64 2822 1.294 261 89 1906 1.114 258

65 2382 0.856 258 90 196 0.168 256

66 5900 3.451 258 91 7698 3.592 257

67 1596 0.81 257 92 3910 2.441 262

68 1660 1.17 258 93 1410 0.599 261

69 2790 1.367 254 94 538 0.388 251

70 760 0.481 255 95 2494 1.245 257

71 996 0.529 253 96 1152 0.627 262

72 1312 0.651 259 97 334 0.153 262

73 3262 1.745 257 98 244 0.159 257

74 2414 1.509 256 99 788 0.593 260

75 1290 0.742 263 100 1830 0.82 263

Table B.2: Results on 100 RMWA instances with Arbo + MinArbo_RC based
model and COS heuristic (Part 2)





C
C O D I N G E X P E R I E N C E A N D S O U R C E C O D E

We provide in this appendix our implementations of the different fil-
tering algorithms after a word about our coding experience. These im-
plementations are available in the Oscar open source solver [Osc12].

coding experience . We have spent a lot of time to implement
the algorithms that use the main theoretical propositions contained in
this thesis. At our beginnings, as soon as we have an idea that seems
good, we are in a hurry to implement it to see if it works or not. We
have quickly noticed that it is not always a good idea to precipitate
ourselves on the implementation. Actually, sometimes, after a long
time of coding and testing, we may observe that there is a bug not
in the implementation but in the proposition used by the algorithm.
Sometimes such bugs could easily be detected by trying to sketch a
proof of the proposition. On the other hand, sometimes it is hard to
prove a proposition. In these cases, a quick implementation of the idea
and some intensively random tests with small instances make us more
confident about the correctness of the proposition or allow us to adjust
the proposition by, for example, taking into account some special cases.
For the kind of research we have focused on, one need to have a good
tradeoff between the time spent on the proofs of the propositions and
the time spent on the implementation. Of course, it depends on how
hard it is to 1) prove the proposition and 2) implement the algorithm.

The implementation task is not always easy when one wants an ef-
ficient and clear code. In particular, when the codes are developed for
a big open source project like the OscaR solver, the quality require-
ments are high. In general, we obtain the final version after two, three

137



138 coding experience and source code

or more implementations of the algorithm. The first one is often easy
to be sure that the proposition associated is well implemented. This
is performed by the code testing procedure described in Section 1.4.
After the first version, different improvements can be achieved (for
example, with regards to the data structures used) until the current
version is satisfactory enough. It is worth noting that, sometimes, the
implementations help us to improve the algorithm itself or the theo-
retical propositions associated. The final version is generally obtained
after some iterations over 1) the propositions, 2) the algorithms and 3)
the implementations until satisfaction.



coding experience and source code 139

Listing C.1: The StokingCost constraint - filtering
1 /**
2 * The StockingCost constraint holds when each item is produced before

3 * its due date (Xi <= di), the capacity of the machine is respected

4 * (i.e. no more than c variables Xi have the same value), and H
5 * is an upper bound on the total stocking cost (sumi(di − Xi) <= H).

6 *
7 * This constraint is useful for modeling

8 * Production Planning Problem such as Lot Sizing Problems

9 *
10 * @param Y, the variable Yi is the date of production of item i on the machine

11 * @param d, the integer di is the due-date for item i
12 * @param H, the variable H is an upper bound on the total number of slots all

the items are need in stock.

13 * @param c is the maximum number of items the machine can produce during one

time slot (capacity). If an item is produced before its due date, then it

must be stocked.

14 *
15 */

16 class StockingCost(val Y: Array[CPIntVar], val deadline: Array[Int], val H:

CPIntVar, val c: Int) extends Constraint(Y(0).store, "StockingCost") {

17

18 val allDiffBC = new AllDiffBC(Y)

19 val n = Y.size

20 var domMaxMax = Int.MinValue

21 var domMinMin = Int.MaxValue

22 var k = 0

23 while (k < Y.size) {

24 val m = Y(k).min

25 val M = Y(k).max

26 if (m < domMinMin) domMinMin = m

27 if (M > domMaxMax) domMaxMax = M

28 k += 1

29 }

30 val X = Array.tabulate(n)(Y(_))

31 val Xmax = Array.fill(n+1)(Int.MinValue)

32 val d = Array.fill(n)(0)

33 val vopt = Array.fill(n)(0)

34

35 override def setup(l: CPPropagStrength): Unit = {

36 X.foreach(_.callPropagateWhenBoundsChange(this))

37 H.callPropagateWhenBoundsChange(this)

38 propagate()

39 }

40

41 // --------------map ---------------------

42 var magic = 1

43 val mapMagic = Array.fill(domMaxMax-domMinMin+1)(0)

44 val map = Array.fill(domMaxMax-domMinMin+1)(0)

45

46 def clearMap() {

47 magic += 1

48 }

49 def index(k: Int) = k-domMinMin



140 coding experience and source code

50 def insert(k: Int,v: Int) {

51 map(index(k)) = v

52 mapMagic(index(k)) = magic

53 }

54 def hasKey(k: Int) = {

55 if (k < domMinMin) false

56 else mapMagic(index(k)) == magic

57 }

58 def get(k: Int) = map(index(k))

59

60 // --------------incremental sort ---------------------

61

62 val sortX = Array.tabulate(X.size)(i => i)

63

64 def sortIncremental() {

65 var nn = X.size

66 var i = 0

67 do {

68 var newn = 0

69 i = 1

70 while (i < nn) {

71 if (Y(sortX(i - 1)).max < Y(sortX(i)).max) {

72 val tmp = sortX(i - 1)

73 sortX(i - 1) = sortX(i)

74 sortX(i) = tmp

75 newn = i

76 }

77 i += 1

78 }

79 nn = newn

80 } while (nn > 0);

81 k = 0;

82 while (k < n) {

83 X(k) = Y(sortX(k))

84 Xmax(k) = X(k).max

85 d(k) = deadline(sortX(k))

86 k += 1

87 }

88 }

89

90 override def propagate(): Unit = {

91 allDiffBC.propagate()

92 sortIncremental()

93 var t = Xmax(0)

94 var i = 0

95 var j = 0 //open items {j, ... ,i\} must be placed in some slots

96 var k = 0 //items {k, ... ,i\} have same vOpt

97 var u = t+1

98 clearMap()

99 var Hopt = 0

100 var ind = 0

101 while (j < i || i < n) {

102 while (i < n && Xmax(i) == t) {

103 i += 1



coding experience and source code 141

104 }

105 // place at most c items into slot t
106 ind = j

107 while(ind <= (i-1).min(j+c-1)){ //update Hopt

108 Hopt += d(ind) - t

109 ind += 1

110 }

111

112 if (i - j <= c) { // all the open items can be placed in t
113 val full = (i-j) == c

114 ind = k

115 while(ind < i){

116 vopt(ind) = t

117 ind += 1

118 }

119 j = i

120 k = i

121 if (full) {

122 insert(t, u)

123 if (Xmax(i) < t-1) {

124 u = Xmax(i)+1

125 }

126 } else {

127 u = Xmax(i)+1

128 }

129 t = Xmax(i)

130 } else { // all the open items can not be placed in t
131 insert(t,u) //place c items into slot t
132 j += c

133 t -= 1

134 }

135 }

136 H.updateMin(Hopt)

137 val slack = H.max - H.min

138 i = 0

139 while (i < n) {

140 var newmin = vopt(i) - slack

141 if (hasKey(newmin)) {

142 newmin = vopt(i).min(get(newmin))

143 }

144 X(i).updateMin(newmin)

145 i += 1

146 }

147 }

148 }



142 coding experience and source code

Listing C.2: The Item Dependent StokingCost constraint - filtering
1 /**
2 * The IDStockingCost constraint holds when each item is produced before

3 * its due date (Xi <= di), the capacity of the machine is respected

4 * (i.e. no more than c variables Xi have the same value), and H
5 * is an upper bound on the total stocking cost (sumi((di − Xi) ∗ hi) <= H).

6 *
7 * This constraint is the generalization of StockingCost constraint to

8 * item dependent stocking cost and useful for modeling

9 * Production Planning Problem such as Lot Sizing Problems

10 *
11 * @param Y , the variable Yi is the date of production of item i on the

machine

12 * @param deadline , the integer deadlinei is the due-date for item i
13 * @param h , the integer hi is the stocking cost for item i
14 * @param H , the variable H is an upper bound on the total number of

slots all the items are need in stock.

15 * @param cap , the integer capt is the maximum number of items the

machine can produce during one time slot t (capacity). If an item is

produced before its due date, then it must be stocked.

16 *
17 */

18

19 class IDStockingCost(val Y: Array[CPIntVar], val deadline: Array[Int], val h:

Array[Int], val H: CPIntVar, val cap: Array[Int]) extends Constraint(Y(0).

store, "IDStockingCost") {

20

21 val allDiffBC = new AllDiffBC(Y)

22

23 val n = Y.size

24 val X = Array.tabulate(n)(Y(_))

25 val Xmax = Array.ofDim[Int](n)

26 val aux = Array.ofDim[Int](n + 1)

27 val runs = Array.ofDim[Int](n + 1)

28 var domMaxMax = Y.map(_.max).max

29 var domMinMin = Y.map(_.min).min

30 val c = Array.tabulate(domMaxMax + 1)(t => cap(t))

31 val optimalSlotTab = Array.fill(n + 1)(-1)

32 val optimalItemTab = Array.tabulate(domMaxMax + 1)(t => new

ReversibleArrayStack[Int](s, c(t)))

33 val ordersToSchedule = new ArrayHeapInt(n)

34 val candidateTojump = new ArrayStackInt(n)

35 val fullSetsStack = new StackOfStackInt(2 * n)

36 val gainCostTab = Array.fill(domMaxMax + 1)(0)

37

38 // ---------------- sparse-set for isolating unbounded variables ---------

39

40 val capa = Array.tabulate(domMaxMax + 1)(t => new ReversibleInt(s, c(t)))

41 val fixedCost = new ReversibleInt(s, 0)

42 val nUnbound = new ReversibleInt(s, n)

43 val unBoundIdx = Array.tabulate(n)(i => i)

44

45 def processFixed(): Unit = {

46 var nUnboundTmp = nUnbound.value



coding experience and source code 143

47 var additionalFixedCost = 0

48 var i = nUnboundTmp

49 while (i > 0) {

50 i -= 1

51 val idx = unBoundIdx(i)

52 if (X(idx).isBound) {

53 // we decrease the capa

54 capa(X(idx).value).decr()

55 // compute the contribution of this item to the objective

56 additionalFixedCost += (deadline(idx) - X(idx).value) * h(idx)

57 // remove this item from the unbound ones

58 val tmp = unBoundIdx(nUnboundTmp - 1)

59 unBoundIdx(nUnboundTmp - 1) = idx

60 unBoundIdx(i) = tmp

61 nUnboundTmp -= 1

62 }

63 }

64 nUnbound.value = nUnboundTmp

65 fixedCost.value = fixedCost.value + additionalFixedCost

66 }

67

68 override def setup(l: CPPropagStrength): Unit = {

69 Y.foreach(_.callPropagateWhenBoundsChange(this))

70 H.callPropagateWhenBoundsChange(this)

71 propagate()

72 }

73

74 override def propagate(): Unit = {

75

76 allDiffBC.propagate()

77

78 // ----------- some preprocessing computation --------------------

79

80 processFixed()

81

82 val nU = nUnbound.value

83

84 //assert((0 until nU).forall(i => !X(unBoundIdx(i)).isBound))

85 //assert((nU + 1 until n).forall(i => X(unBoundIdx(i)).isBound))

86 //assert(fixedCost.value == (0 until n).filter(i => X(i).isBound).map(i => (

deadline(i) - X(i).value) * h(i)).sum)

87

88 var i = nU

89 while (i > 0) {

90 i -= 1

91 Xmax(unBoundIdx(i)) = -X(unBoundIdx(i)).max

92 }

93 SortUtils.mergeSort(unBoundIdx, Xmax, 0, nU, aux, runs)

94

95 //assert((0 until nU - 1).forall(i => X(unBoundIdx(i)).max >= X(unBoundIdx(i

+ 1)).max))

96

97 // put the max as positive values again ... ;-)

98 i = nU



144 coding experience and source code

99 while (i > 0) {

100 i -= 1

101 Xmax(unBoundIdx(i)) = -Xmax(unBoundIdx(i))

102 }

103

104 // ----------- compute Hopt --------------------

105

106 var Hopt = 0

107 ordersToSchedule.clear()

108 fullSetsStack.reset()

109

110 // assert((0 to domMaxMax).forall(t => optimalItemTab(t).isEmpty))

111

112 var k = 0

113 while (k < nU) {

114 var t = Xmax(unBoundIdx(k))

115 var availableCapacity = capa(t).value

116 do {

117 while (k < nU && Xmax(unBoundIdx(k)) == t) {

118 val i = unBoundIdx(k)

119 ordersToSchedule.enqueue(-h(i), i)

120 k += 1

121 }

122 if (availableCapacity > 0) {

123 val currentInd = ordersToSchedule.dequeue

124 optimalSlotTab(currentInd) = t

125 optimalItemTab(t).push(currentInd)

126 availableCapacity = availableCapacity - 1

127 Hopt = Hopt + (deadline(currentInd) - t) * h(currentInd)

128 }

129 else {

130 fullSetsStack.push(t)

131 t = t - 1

132 while (capa(t).value == 0) t = t - 1

133 availableCapacity = capa(t).value

134 }

135 } while (ordersToSchedule.size > 0)

136 fullSetsStack.push(t)

137 fullSetsStack.pushStack()

138 }

139 val Hmin = Hopt + fixedCost.value

140

141 H.updateMin(Hmin)

142

143 // ----------- now compute the gain costs ----------------

144

145 val nFullSet = fullSetsStack.nStacks()

146 i = 0

147 while (i < nFullSet) {

148 /* size of current full set */

149 val fullSetSize = fullSetsStack.sizeTopStack()

150 candidateTojump.clear

151 var j = 0

152 while (j < fullSetSize) {



coding experience and source code 145

153 // set t to the next time slot of the current fullSet

154 val t = fullSetsStack.pop

155 // filter out candidate top candidate items that can not be placed in t

156 // such that the one that remains on top is the most costly one that can

jump

157 while (!candidateTojump.isEmpty && Xmax((candidateTojump.top)) < t) {

158 candidateTojump.pop

159 }

160 if (candidateTojump.isEmpty) {

161 gainCostTab(t) = 0

162 } else {

163 // select one of the most costly item than can jump (i.e. the one on

top of the stack)

164 val selected = candidateTojump.top

165 gainCostTab(t) = gainCostTab(optimalSlotTab(selected)) + (t -

optimalSlotTab(selected)) * h(selected)

166 }

167 val s = optimalItemTab(t).size

168 // add the items placed in t in the candidateTojump

169 k = 0

170 while (k < s) {

171 candidateTojump.push(optimalItemTab(t).pop)

172 k += 1

173 }

174 j += 1

175 }

176 i += 1

177 }

178

179 //assert((0 to domMaxMax).forall(t => optimalItemTab(t).isEmpty))

180

181 //-------------- actual prunning the X based on gain costs ----------

182

183 k = 0

184 while (k < nU) {

185 i = unBoundIdx(k)

186 val lb = optimalSlotTab(i) - (H.max + gainCostTab(optimalSlotTab(i)) -

Hmin) / h(i)

187 X(i).updateMin(lb)

188 k += 1

189 }

190 }

191 }



146 coding experience and source code

Listing C.3: The StackOfStack data structure
1 /**
2 * Data structure to represent a stack of stack of integer values.

3 * For instance [[1,4,2],[5,8]] has two stacks.

4 * Its size is 5, the top-post stack has a size of 2.

5 * After one pop the status is [[1,4,2],[5]] and the top most stack has size 1

6 * After another pop the status is [[1,4,2]] and the top most stack has a size

of 3

7 */

8 class StackOfStackInt(n: Int) {

9

10 if (n < 1) throw new IllegalArgumentException("n should be > 0")

11

12 private[this] var mainStack: Array[Int] = Array.ofDim(n)

13 private[this] var cumulSizeOfStack: Array[Int] = Array.ofDim(n)

14 private[this] var indexMainStack = 0

15 private[this] var nStack = 0

16

17 def push(i: Int): Unit = {

18 if (indexMainStack == mainStack.length) grow()

19 mainStack(indexMainStack) = i

20 indexMainStack += 1

21 }

22

23 /**
24 * close the current stack (if not empty) and start a new empty one

25 */

26 def pushStack(): Unit = {

27 if (indexMainStack != 0 && cumulSizeOfStack(nStack) != indexMainStack) {

28 nStack += 1

29 cumulSizeOfStack(nStack) = indexMainStack

30 }

31 }

32

33 def isEmpty(): Boolean = {

34 indexMainStack == 0

35 }

36

37 def size(): Int = {

38 indexMainStack

39 }

40

41 /**
42 * Pop the top element of the top stack

43 * @return the value of the top element on the top stack

44 */

45 def pop(): Int = {

46 if (indexMainStack == 0) throw new NoSuchElementException("Stack empty")

47 else {

48 if (cumulSizeOfStack(nStack) == indexMainStack) nStack -= 1

49 indexMainStack -= 1

50 mainStack(indexMainStack)

51 }

52 }



coding experience and source code 147

53

54 /**
55 * @return The number of stacks that are stacked

56 */

57 def nStacks(): Int = {

58 nStack

59 }

60

61 /**
62 * @return The size of the top stack

63 */

64 def sizeTopStack(): Int = {

65 if (cumulSizeOfStack(nStack) == indexMainStack) {

66 cumulSizeOfStack(nStack) - cumulSizeOfStack(nStack - 1)

67 } else {

68 indexMainStack - cumulSizeOfStack(nStack)

69 }

70 }

71

72 def reset(): Unit = {

73 indexMainStack = 0

74 nStack = 0

75 }

76

77 private def grow(): Unit = {

78 val newStack = new Array[Int](indexMainStack * 2)

79 System.arraycopy(mainStack, 0, newStack, 0, indexMainStack)

80 mainStack = newStack

81

82 val newCumulSizeOfStack = new Array[Int](indexMainStack * 2)

83 System.arraycopy(cumulSizeOfStack, 0, newCumulSizeOfStack, 0, indexMainStack

)

84 cumulSizeOfStack = newCumulSizeOfStack

85 }

86 }



148 coding experience and source code

Listing C.4: The MinArborescence constraint - filtering
1 /**
2 * The minArborescence constraint is defined as:

3 * minArborescence(preds, w, root, z) in which

4 * preds(i) is the predecessor of the vertex i in the arborescence A(G) of the

graph G found,

5 * w is a cost function on edges of G,

6 * root is a vertex and

7 * z is an upper bound of the cost of arborescence of G rooted at the vertex r.

8 * The constraint holds when there exists an arborescence A(G) rooted at the

vertex r with w(A(G)) <= z.

9 *
10 * @param preds , preds(i) is the predecessor of the vertex i in the

arborescence

11 * @param w , w(i)(j) is the weight of the edge (i,j)

12 * @param root , the root vertex of the arborescence

13 * @param z , the variable z is an upper bound on the cost of the

arborescence

14 * @param withIRC , boolean variable: withIRC = true for filtering based on

15 * improved reduced costs ; withIRC = false for filtering based on LP reduced

costs

16 *
17 * O(n*n) in which n is the number of vertices

18 *
19 */

20

21 class MinArborescence(val preds: Array[CPIntVar], val w: Array[Array[Int]], val

root: Int, val z: CPIntVar, val withIRC: Boolean = true) extends Constraint

(preds(0).store, "Arborescence") {

22

23 val arbo = new MinArborescence(w, root, true)

24 val n = preds.length

25 val M = z.max + 1

26 val costMatrix = Array.tabulate(n, n)((i, j) => new ReversibleInt(s, if (!

preds(j).hasValue(i)) M else w(i)(j)))

27

28 override def setup(l: CPPropagStrength): Unit = {

29

30 preds(root).assign(root)

31

32 var k = 0

33 while (k < n) {

34 preds(k).updateMax(n - 1)

35 k += 1

36 }

37

38 k = 0

39 while (k < n) {

40 if (!preds(k).isBound) {

41 preds(k).callValRemoveIdxWhenValueIsRemoved(this, k)

42 preds(k).callPropagateWhenDomainChanges(this)

43 }

44 k += 1

45 }



coding experience and source code 149

46 if (!z.isBound) {

47 z.callPropagateWhenBoundsChange(this)

48 }

49 propagate()

50 }

51

52 override def valRemoveIdx(y: CPIntVar, k2: Int, k1: Int): Unit = {

53 costMatrix(k1)(k2).value = M

54 }

55

56 override def propagate(): Unit = {

57

58 val maxZ = z.max

59 val min = arbo.arbred(costMatrix, maxZ)

60 z.updateMin(min)

61

62 if (withIRC) arbo.computeImprovedRC()

63

64 val gap = maxZ - min

65 var k1 = 0

66 while (k1 < n) {

67 var k2 = 0

68 while (k2 < n) {

69 val gradient = if (withIRC) arbo.improvedRC(k1)(k2)

70 else arbo.rc(k1)(k2)

71

72 if (k2 != root && gradient > gap) {

73 preds(k2).removeValue(k1)

74 }

75 k2 += 1

76 }

77 k1 += 1

78 }

79 }

80 }



150 coding experience and source code

Listing C.5: Computation of an MWA

1 /**
2 * Computation of Minimum Weight Arborescence and LP reduced costs

3 * Based on O(n^2) fortran implementation of

4 * (Fischetti and Toth, 1993: AN EFFICIENT ALGORITHM FOR THE MIN-SUM

5 * ARBORESCENCE PROBLEM ON COMPLETE DIGRAPHS)

6 *
7 *
8 * @param tab , tab(i)(j) is the weight of the edge (i,j)

9 * @param root , is a vertex, the root of the Minimum Weight Arborescence

10 * @param rcflag , true if LP reduced costs are wanted, false otherwise.

11 *
12 */

13 class ArborWithoutBreakable(var tab: Array[Array[Int]], var root: Int, val

rcflag: Boolean) {

14

15 val verbose = false

16

17 root += 1

18 val n = tab(0).length

19 var k1, k2 = 1

20 val c = Array.ofDim[Int](n + 1, n + 1)

21 val rc = Array.ofDim[Int](n + 1, n + 1)

22

23 val mm = 2 * n

24 val pred: Array[Int] = Array.ofDim(mm + 1)

25 val stack: Array[Int] = Array.ofDim(mm + 1)

26 val sv: Array[Int] = Array.ofDim(n + 1)

27 val shadow: Array[Int] = Array.ofDim(n + 1)

28 val lnext: Array[Int] = Array.ofDim(mm + 1)

29 val lpred: Array[Int] = Array.ofDim(mm + 1)

30 val arsel1: Array[Int] = Array.ofDim(mm + 1)

31 val arsel2: Array[Int] = Array.ofDim(mm + 1)

32 val parent: Array[Int] = Array.ofDim(mm + 1)

33 val u: Array[Int] = Array.ofDim(mm + 1)

34 val label: Array[Int] = Array.ofDim(mm + 1)

35 val line: Array[Int] = Array.ofDim(mm + 1)

36 val fson: Array[Int] = Array.ofDim(mm + 1)

37 val broth: Array[Int] = Array.ofDim(mm + 1)

38 val left: Array[Int] = Array.ofDim(mm + 1)

39 val right: Array[Int] = Array.ofDim(mm + 1)

40 val node: Array[Int] = Array.ofDim(mm + 1)

41 val delet = Array.fill(mm + 1)(false)

42 val reduc: Array[Int] = Array.ofDim(mm + 1)

43 val bestTwoDiff: Array[Int] = Array.ofDim(n + 1)

44 var cost, stage, v, v1, v2, f1, f2, sd1, lst, pr, nx, p, h, h1, r, delta, r2,

min, i, j, len = 0

45 var np1, larsel1, larsel2, shdw, w, ll, linem, la, lb, l, minrow, mincol, l1,

l2, rcst, lmin, sd2, sd = 0

46 var nLeft, m = n

47 var done = false

48 val inf = Int.MaxValue

49 val unvis = 0

50



coding experience and source code 151

51 var k = 0

52 var mainLoop = false

53

54 def arbred(oC: Array[Array[ReversibleInt]], max: Int): Int = {

55 //Intitialization

56 var k1 = 1

57 while (k1 <= n) {

58 k2 = 1

59 while (k2 <= n) {

60 c(k1)(k2) = oC(k1 - 1)(k2 - 1).value

61 rc(k1)(k2) = c(k1)(k2)

62 k2 += 1

63 }

64 k1 += 1

65 }

66 k = 1

67 while (k <= n) {

68 label(k) = unvis

69 parent(k) = mm

70 rc(k)(k) = inf

71 k += 1

72 }

73 init()

74

75 nLeft = n

76 m = n

77 cost = 0

78 len = 0

79 stage = n

80 label(root) = root

81 insert(root)

82

83 var loop1 = true

84 do {

85 var loop2 = true

86 do {

87 if (!mainLoop) {

88 //20

89 newst()

90 if (done) {

91 loop2 = false

92 }

93 }

94 if (loop2) {

95 var loop3 = true

96 while (loop3) {

97 //30

98 if (!mainLoop) {

99 v = stack(len)

100 minarc()

101 if (min > max) return inf

102 }

103 mainLoop = false

104 //40



152 coding experience and source code

105 label(v) = stage

106 arsel1(v) = i

107 arsel2(v) = j

108 u(v) = min

109 cost = cost + min

110

111 if (label(v1) != unvis) {

112 loop3 = false

113 }

114 if (loop3) {

115 insert(v1)

116 }

117 }

118 }

119 } while (loop2 && label(v1) != unvis && label(v1) != stage)

120 if (done) {

121 loop1 = false

122 }

123 if (loop1) shrink()

124 if (nLeft == 1) {

125 loop1 = false

126 }

127 if (loop1) {

128 v = m

129 mainLoop = true

130 }

131 } while (loop1 && !done)

132

133 //60

134 arcarb()

135

136 if (rcflag) {

137 reduce()

138 }

139 k1 = 1

140 while (k1 <= n) {

141 k2 = 1

142 while (k2 <= n) {

143 rc(k1 - 1)(k2 - 1) = rc(k1)(k2)

144 improvedRC(k1-1)(k2-1) = rc(k1)(k2)

145 k2 += 1

146 }

147 k1 += 1

148 }

149 return cost

150 }

151

152 def arcarb() {

153 // Select the arcs of the optimal arborescence rooted at root

154 k = 1

155 while (k <= m) {

156 delet(k) = false

157 k += 1

158 }



coding experience and source code 153

159 pred(root) = 0

160 delet(root) = true

161 k = m

162 do {

163 if (!delet(k)) {

164 j = arsel2(k)

165 pred(j) = arsel1(k)

166 while (j != k) {

167 delet(j) = true

168 j = parent(j)

169 }

170 }

171 k -= 1

172 } while (k > 0)

173 }

174

175 def init() {

176 // Initialize the data structure defining the current reduced cost matrix

177 k = 1

178 while (k <= n) {

179 line(k) = k

180 sv(k) = k

181 shadow(k) = 0

182 lnext(k) = k + 1

183 lpred(k + 1) = k

184 k = k + 1

185 }

186 lnext(n + 1) = 1

187 lpred(1) = n + 1

188 }

189

190 def insert(v: Int) {

191 //Insert the vertex v into the stack

192 len = len + 1

193 stack(len) = v

194 np1 = n + 1

195 lst = lpred(np1)

196 if (v == lst) {

197 return

198 }

199 pr = lpred(v)

200 nx = lnext(v)

201 lnext(pr) = nx

202 lpred(nx) = pr

203 lnext(lst) = v

204 lpred(v) = lst

205 lnext(v) = np1

206 lpred(np1) = v

207 }

208

209 def minarc() {

210 //Find the minimum reduced-cost arc (v1,v2) entering vertex v2

211 j = v

212 l2 = line(v)



154 coding experience and source code

213 np1 = n + 1

214 l1 = lnext(np1)

215 min = rc(l1)(l2)

216 l = lnext(l1)

217 do {

218 if (rc(l)(l2) < min) {

219 min = rc(l)(l2)

220 l1 = l

221 }

222 l = lnext(l)

223 } while (l != np1)

224 v1 = sv(l1)

225 sd1 = shadow(l1)

226 i = l1

227 if (sd1 > 0) {

228 i = rc(sd1)(l2)

229 }

230 }

231

232 def newst() {

233 //Select an unlabelled vertex, stage, and initialize a new stage

234 done = true

235 while (label(stage) > 0) {

236 stage = stage - 1

237 if (stage <= 0) {

238 return

239 }

240 }

241

242 done = false

243 if (len != 0) {

244 v1 = stack(1)

245 l1 = line(v1)

246 v2 = stack(len)

247 l2 = line(v2)

248 np1 = n + 1

249 f1 = lnext(np1)

250 f2 = lpred(l1)

251 lnext(f2) = np1

252 lpred(np1) = f2

253 lnext(np1) = l1

254 lpred(l1) = np1

255 lnext(l2) = f1

256 lpred(f1) = l2

257 }

258 len = 1

259 stack(len) = stage

260 }

261

262 def reduce() {

263 //Compute the reduced-cost matrix rc

264 np1 = n + 1

265 v = np1

266 while (v <= m) {



coding experience and source code 155

267 fson(v) = 0

268 v += 1

269 }

270 fson(mm) = 0

271 v = 1

272 while (v <= m) {

273 p = parent(v)

274 if (fson(p) == 0) {

275 fson(p) = v

276 broth(v) = 0

277 } else {

278 broth(v) = fson(p)

279 fson(p) = v

280 }

281 v += 1

282 }

283 broth(mm) = mm

284

285 h = 0

286 h1 = h + 1

287 v = mm

288 do {

289 while (v > n) {

290 left(v) = h1

291 v = fson(v)

292 }

293 h = h1

294 h1 += 1

295 node(h) = v

296 while (broth(v) == 0) {

297 v = parent(v)

298 right(v) = h

299 }

300 v = broth(v)

301 } while (v != mm)

302 u(root) = 0

303

304 h = 1

305 while (h <= n) {

306 j = node(h)

307 if (j == root) {

308 i = 1

309 while (i <= n) {

310 rc(i)(j) = c(i)(j)

311 i += 1

312 }

313 } else {

314 rc(j)(j) = c(j)(j) //90

315 l = h - 1

316 r = h + 1

317 delta = u(j)

318 p = parent(j)

319 var loop = true

320 while (loop) {



156 coding experience and source code

321 l1 = left(p) //100

322 while (l >= l1) {

323 i = node(l)

324 rc(i)(j) = c(i)(j) - delta

325 l -= 1

326 }

327 r2 = right(p) //120

328 while (r <= r2) {

329 i = node(r)

330 rc(i)(j) = c(i)(j) - delta

331 r += 1

332 }

333 if (p == mm) {

334 loop = false

335 }

336 if (loop) {

337 delta = delta + u(p)

338 p = parent(p)

339 }

340 }

341 }

342 h += 1

343 }

344 }

345

346 def shrink() {

347 // Shrink the (super-) vertices stored in stack from vertex v downto vertex v1

348 if (len == nLeft && stack(0) == v1) {

349 nLeft = 1

350 return

351 }

352 m = m + 1

353 parent(m) = mm

354 v = stack(len)

355 larsel2 = line(v)

356 do {

357 w = stack(len)

358 len -= 1

359 parent(w) = m

360 nLeft -= 1

361 ll = line(w)

362 reduc(ll) = u(w)

363

364 } while (w != v1)

365 larsel1 = line(v1)

366

367 linem = larsel1

368 shdw = larsel2

369 np1 = n + 1

370 la = lnext(np1)

371 lb = lpred(larsel1)

372 min = inf

373 l = la

374



coding experience and source code 157

375 var loop = true

376 while (loop) {

377 //30

378 ll = larsel1

379 minrow = rc(l)(ll) - reduc(ll)

380 l1 = ll

381 mincol = rc(ll)(l)

382 l2 = ll

383 //40

384 do {

385 ll = lnext(ll)

386 rcst = rc(l)(ll) - reduc(ll)

387 if (rcst < minrow) {

388 minrow = rcst

389 l1 = ll

390 }

391 if (rc(ll)(l) < mincol) {

392 mincol = rc(ll)(l)

393 l2 = ll

394 }

395 } while (ll != larsel2)

396 //61

397 if (minrow < min) {

398 min = minrow

399 lmin = l

400 }

401 //70

402 rc(l)(linem) = minrow

403 rc(l)(shdw) = l1

404 sd1 = shadow(l1)

405 if (sd1 > 0) {

406 rc(l)(shdw) = rc(l)(sd1)

407 }

408 rc(linem)(l) = mincol

409 rc(shdw)(l) = l2

410 sd2 = shadow(l2)

411 if (sd2 > 0) {

412 rc(shdw)(l) = rc(sd2)(l)

413 }

414 sd = shadow(l)

415 if (sd > 0) {

416 rc(sd)(linem) = rc(sd)(l1)

417 rc(linem)(sd) = rc(l2)(sd)

418 }

419 //80

420 if (l == lb) {

421 loop = false

422 }

423 if (loop) {

424 l = lnext(l)

425 }

426 }

427 line(m) = linem

428 sv(linem) = m



158 coding experience and source code

429 shadow(linem) = shdw

430 rc(linem)(linem) = inf

431 lnext(linem) = np1

432 lpred(np1) = linem

433 len += 1

434 stack(len) = m

435 nLeft += 1

436 v1 = sv(lmin)

437 j = rc(lmin)(shdw)

438 sd = shadow(lmin)

439 i = lmin

440 if (sd > 0) {

441 i = rc(sd)(linem)

442 }

443 }

444

445 /*
446 * Our improved rc

447 */

448 val improvedRC = Array.fill(n + 1, n + 1)(0)

449 val bestDiffFromSrcUntilDest = Array.fill(n + 1, n + 1)(inf)

450 val hasAtmostOneParent = Array.fill(n + 1)(false)

451

452 def computeImprovedRC() {

453 k1 = 1

454 while (k1 <= n) {

455 val pk1 = parent(k1)

456 if (pk1 == mm || parent(pk1) == mm) hasAtmostOneParent(k1) = true

457 k1 += 1

458 }

459

460 computeBestTwoDiff()

461

462 // BestDiffBetween for v with at most one parent

463 k1 = 1

464 while (k1 <= n) {

465 val pk1 = parent(k1)

466 if (hasAtmostOneParent(k1)) {

467 min = bestTwoDiff(k1) - u(pk1)

468 k2 = pred(k1)

469 while (min > 0 && hasAtmostOneParent(k2) && k2 != root) {

470 bestDiffFromSrcUntilDest(k1)(k2) = min

471 val currentBestDiff = bestTwoDiff(k2) - u(parent(k2))

472 if (currentBestDiff < min) {

473 min = currentBestDiff

474 }

475 k2 = pred(k2)

476 }

477 }

478 k1 += 1

479 }

480 // ImprovedRC

481 k1 = 0

482 while (k1 < n) {



coding experience and source code 159

483 if (hasAtmostOneParent(k1+1)) {

484 k2 = 0

485 while (k2 < n) {

486 val additionalCost = if (bestDiffFromSrcUntilDest(k1 + 1)(k2 + 1) ==

inf) 0 else bestDiffFromSrcUntilDest(k1 + 1)(k2 + 1)

487 improvedRC(k1)(k2) += additionalCost

488 bestDiffFromSrcUntilDest(k1 + 1)(k2 + 1) = inf

489 k2 += 1

490 }

491 }

492 hasAtmostOneParent(k1 + 1) = false

493 k1 += 1

494 }

495 }

496

497 def computeBestTwoDiff(): Unit = {

498 // bestTwoDiff for each v in V

499 k1 = 1

500 while (k1 <= n) {

501 if (hasAtmostOneParent(k1)) {

502 var min1 = c(1)(k1)

503 var min2 = inf

504 k2 = 2

505 while (k2 <= n) {

506 val cK2K1 = c(k2)(k1)

507 if (cK2K1 < min1) {

508 val tmp = min1

509 min1 = cK2K1

510 min2 = tmp

511 } else if (cK2K1 < min2) {

512 min2 = cK2K1

513 }

514 k2 += 1

515 bestTwoDiff(k1) = min2 - min1

516 }

517 }

518 k1 += 1

519 }

520 }

521 }





B I B L I O G R A P H Y

[Ach+92] N. R. Achuthan, L. Caccetta, P. Caccetta, and J. F. Geelen.
“Algorithms for the minimum weight spanning tree with
bounded diameter problem.” In: Optimization: techniques
and applications 1.2 (1992), pp. 297–304.

[AT10] İ. Akgün and B. Ç. Tansel. “Min-degree constrained
minimum spanning tree problem: New formulation via
Miller–Tucker–Zemlin constraints.” In: Computers & Oper-
ations Research 37.1 (2010), pp. 72–82.

[Apt03] K. R. Apt. Principles of Constraint Programming. Cam-
bridge University Press, 2003.

[AFT99] V. A. Armentano, P. M. Franca, and F. M. B. de Toledo. “A
network flow model for the capacitated lot-sizing prob-
lem.” In: Omega. 2nd ser. 27 (1999), pp. 275–384.

[BRG87] H. C. Bahl, L. P. Ritzman, and J. N. D. Guupta. “Deter-
mining lot sizes and resource requirements: a review.” In:
Operations Research. 3rd ser. 35 (1987), pp. 329–345.

[BLPN12] P. Baptiste, C. Le Pape, and W. Nuijten. Constraint-based
scheduling: applying constraint programming to scheduling
problems. Vol. 39. Springer Science & Business Media,
2012.

[BRW84] I. Barany, T. J. V. Roy, and L. A. Wolsey. “Strong formula-
tions for Multi-Item Capacitated Lot Sizing.” In: Manage-
ment Science. 10th ser. 30 (1984), pp. 1255–61.

161



162 Bibliography

[BP00] J. C. Beck and L. Perron. “Discrepancy-Bounded Depth
First Search.” In: Second International Workshop on Integra-
tion of AI and OR techniques in Constraint Programming for
Combinatorial Optimization Problems, CPAIOR’2000. 2000,
pp. 133–147.

[Bee06] P. van Beek. “Handbook of Constraint Programming.” In:
Elseiver, 2006. Chap. 4: Backtracking Search Algorithms,
pp. 85–134.

[BFL05] N. Beldiceanu, P. Flener, and X. Lorca. “The tree con-
straint.” In: International Conference on Integration of Ar-
tificial Intelligence (AI) and Operations Research (OR) Tech-
niques in Constraint Programming. Springer. 2005, pp. 64–
78.

[BMR12] N. Beldiceanu, C. Mats, and J.-X. Rampon. Global Con-
straint Catalog. Available from http://sofdem.github.

io/gccat/gccat/. 2012.

[BW01] G. Belvaux and L. A. Wolsey. “Modelling practical lot-
sizing problems as mixed integer programs.” In: Manage-
ment Science 47 (2001), pp. 724–738.

[Ben+12] P. Benchimol, W.-J. van Hoeve, J.-C. Régin, L.-M.
Rousseau, and M. Rueher. “Improved Filtering for
Weighted Circuit Constraints.” In: Constraints 17.3 (2012),
pp. 205–233.

[Ben96] F. Benhamou. “Heterogeneous Constraint Solving.” In:
Fifth International Conference on Algebraic and Logic Pro-
gramming (ALP96). 1996, pp. 62–76.

[Bes06] C. Bessiere. “Handbook of Constraint Programming.” In:
Elsevier, 2006. Chap. 3: Constraint Propagation, pp. 29–
83.

[Bes+11] C. Bessiere, N. Narodytska, C.-G. Quimper, and T. Walsh.
“The alldifferent constraint with precedences.” In: In-
ternational Conference on AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Prob-
lems. Springer. 2011, pp. 36–52.

[BY82] G. R. Bitran and H. H. Yanasse. “Computational complex-
ity of the capacitated lot size problem.” In: Management
Science 28 (1982), pp. 1174–1186.

http://sofdem.github.io/gccat/gccat/
http://sofdem.github.io/gccat/gccat/


Bibliography 163

[Boc71] F. Bock. “An algorithm to construct a minimum directed
spanning tree in a directed network.” In: Developments in
Operations Research (1971), pp. 29–44.

[Bru00] W. Bruggeman. “The Discrete Lot Sizing and Scheduling
Problem: complexity and modification for batch availabil-
ity.” In: European Journal of Operational Research. 3rd ser.
124 (2000), pp. 511–528.

[CMT88] G. Carpaneto, S. Martello, and P. Toth. “Algorithms and
codes for the assignment problem.” In: Annals of opera-
tions research 13.1 (1988), pp. 191–223.

[CL95] Y. Caseau and F. Laburthe. “Improving branch and bound
for Jobshop scheduling with constraint propagation.” In:
Combinatorics and Computer Science 1120 (1995), pp. 129–
149.

[CL97a] Y. Caseau and F. Laburthe. “Solving Various Weighted
Matching Problems with Constraints.” In: Third Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming (CP’97). 1997, pp. 17–31.

[CL97b] Y. Caseau and F. Laburthe. “Solving small TSPs with con-
straints.” In: 14th international conference on Logic Program-
ming (ICLP). 1997, pp. 316–330.

[Cps] Catalog of Constraint Programming Solvers. Available from
http://openjvm.jvmhost.net/CPSolvers/.

[CDGS16] S. Ceschia, L. Di Gaspero, and A. Schaerf. Optimization
hub: Lot Sizing Problem. Available from http://opthub.

uniud.it. 2016.

[CL73] K. M. Chandy and T. Lo. “The capacitated minimum
spanning tree.” In: Networks 3.2 (1973), pp. 173–181.

[CT90] W. H. Chen and J. M. Thizy. “Analysis of relaxations for
the multi-item capacitated lot-sizing problem.” In: Annals
of Operations Research. 1st ser. 26 (1990), pp. 29–72.

[CL65] Y. J. Chu and T. H. Liu. “On the shortest arborescence of
a directed graph.” In: Sci. Sin., Ser. A 14 (1965), pp. 1396–
1400.

http://openjvm.jvmhost.net/CPSolvers/
http://opthub.uniud.it
http://opthub.uniud.it


164 Bibliography

[CFL94] C. Chung, J. Flynn, and C. M. Lin. “An effective algorithm
for the capacitated single item lot size problem.” In: Eu-
ropean Journal of Operational Research. 2nd ser. 75 (1994),
pp. 427–440.

[Cop+16] K. Copil, M. Worbelauer, M. Meyr, and H. Tempelmeier.
“Simultaneous lot sizing and scheduling problems: a clas-
sification and review of models.” In: OR Spectrum (2016).

[Cor+01a] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
“Introduction to Algorithms (Third ed.)” In: The MIT
press, 2001. Chap. 25: All-Pairs Shortest Paths.

[Cor+01b] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein.
“Introduction to Algorithms (Third ed.)” In: The MIT
press, 2001. Chap. 21: Data structures for Disjoint Sets.

[DM97] M. Dell’Amico and S. Martello. “Linear assignment.”
In: Annotated Bibliographies in Combinatorial Optimization
(1997), pp. 355–371.

[DH80] R. S. Demboand and P. L. Hammer. “A reduction algo-
rithm for knapsack problems.” In: Methods of Operations
Research 36 (1980), pp. 49–60.

[DK97a] N. Deo and N. Kumar. “Computation of constrained
spanning trees: A unified approach.” In: Network Opti-
mization. Springer, 1997, pp. 196–220.

[Dia+03] M. Diaby, H. C. Bahl, M. H. Karwan, and S. A. Zionts.
“Lagrangean relaxation approach for very-large-scale ca-
pacitated lot-sizing.” In: Management Science. 9th ser. 38

(2003), pp. 1329–1340.

[Din+88] M. Dincbas, P. V. Hentenryck, H. Simonis, A. Aggoun, T.
Graf, and F. Berthier. “The constraint logic programming
language CHIP.” In: International Conference on Fifth Gen-
eration Computer System. 1988, pp. 693–702.

[DSH90] M. Dincbas, H. Simonis, and P. V. Hentenryck. “Solving
large combinatorial problems in logic programming.” In:
Journal of Logic Programming. 1-2 8 (1990), pp. 75–93.

[DM02] E. D. Dolan and J. J. Moré. “Benchmarking optimization
software with performance profiles.” In: Mathematical pro-
gramming 91.2 (2002), pp. 201–213.



Bibliography 165

[DK07] G. Dooms and I. Katriel. “The not-too-heavy spanning
tree constraint.” In: Integration of AI and OR Techniques
in Constraint Programming for Combinatorial Optimization
Problems - CPAIOR 2007. Springer. 2007, pp. 59–70.

[DK97b] A. Drexl and A. Kimms. “Lot sizing and scheduling, Sur-
vey and extensions.” In: European Journal of Operational
Research (1997), pp. 221–235.

[DH95] A. Drexl and K. Haase. “Proportional lot sizing and
scheduling.” In: International Journal of Production Eco-
nomics 40.1 (1995), pp. 73–87.

[DK97c] A. Drexl and A. Kimms. “Lot sizing and scheduling: sur-
vey and extensions.” In: European Journal of Operational
Research 99.2 (1997), pp. 221–235.

[DCP16] S. Ducomman, H. Cambazard, and B. Penz. “Alternative
Filtering for the Weighted Circuit Constraint: Comparing
Lower Bounds for the TSP and Solving TSPTW.” In: Thir-
tieth AAAI Conference on Artificial Intelligence. 2016.

[Edm67] J. Edmonds. “Optimum Branchings.” In: Journal of Re-
search of the National Bureau for Standards 71B(4) (1967),
pp. 125–130.

[FS02] T. Fahle and M. Sellmann. “Cost based filtering for the
constrained knapsack problem.” In: Annals of Operations
Research 115.1-4 (2002), pp. 73–93.

[FT92] M. Fischetti and P. Toth. “An additive bounding proce-
dure for asymmetric travelling salesman problem.” In:
Mathematical Programming 53 (1992), pp. 173 –197.

[FT93] M. Fischetti and P. Toth. “An efficient algorithm for min-
sum arborescence problem on complete digraphs.” In:
Management Science 9.3 (1993), pp. 1520–1536.

[FV97] M. Fischetti and D. Vigo. “A branch-and-cut algorithm
for the resource-constrained minimum-weight arbores-
cence problem.” In: Network. 3rd ser. 29 (1997), pp. 55–
67.

[Fle94] B. Fleischmann. “The Discrete Lot Sizing and Scheduling
Problem with sequence dependent setup costs.” In: Euro-
pean Journal of Operational Research 75 (1994), pp. 395–404.



166 Bibliography

[FLK80] M. Florain, J. K. Lenstra, and A. R. Kan. “Determinis-
tic Production Planning: Algorithms and Complexity.” In:
Management Science. 7th ser. 26 (1980), pp. 669–679.

[FLM99a] F. Focacci, A. Lodi, and M. Milano. “Integration of CP
and OR methods for matching problems.” In: First Inter-
national Workshop on Integration of AI and OR techniques
in Constraint Programming for Combinatorial Optimization
Problems (CPAIOR’99). 1999.

[FLM99b] F. Focacci, A. Lodi, and M. Milano. “Cost-based do-
main filtering.” In: Principles and Practice of Constraint
Programming–CP’99. Springer. 1999, pp. 189–203.

[FLM02] F. Focacci, A. Lodi, and M. Milano. “Embedding relax-
ations in global constraints for solving TSP and TSPTW.”
In: Annals of Mathematics and Artificial Intelligence 34

(2002), pp. 291–311.

[Foc+99] F. Focacci, A. Lodi, M. Milano, and D. Vigo. “Solving TSP
through the integration of OR and CP techniques.” In:
Electronic notes in discrete mathematics 1 (1999), pp. 13–25.

[FM06] E. C. Freuder and A. K. Mackworth. “Handbook of Con-
straint Programming.” In: Elseiver, 2006. Chap. 2: Con-
straint Satisfaction: An Emerging Paradigm, pp. 13–27.

[Gab+86] H. N. Gabow, Z. Galil, T. H. Spencer, and R. E. Tarjan.
“Efficient algorithms for finding minimum spanning trees
in undirected and directed graphs.” In: Combinatorica 6.3
(1986), pp. 109–122.

[GS97] G. Gallego and D. X. Shaw. “Complexity of the ELSP with
general cyclic schedules.” In: IIE transactions 29.2 (1997),
pp. 109–113.

[Gay+15] S. Gay, R. Hartert, C. Lecoutre, and P. Schaus. “Conflict
ordering search for scheduling problems.” In: Principles
and Practice of Constraint Programming - CP 2015. Springer.
2015, pp. 144–148.

[Gec05] Gecode Team. Gecode: Generic constraint development envi-
ronment. Available from http://www.gecode.org. 2005.

http://www.gecode.org


Bibliography 167

[Ger+15] G. German, H. Cambazard, J.-P. Gayon, and B. Penz.
“Une contrainte globale pour le lot sizing.” In: Journée
Francophone de Programmation par Contraintes - JFPC 2015.
2015, pp. 118–127.

[GH01] S. M. T. F. Ghomi and S. S. Hashemin. “An analytical
method for single level-constrained resources production
problem with constant set-up cost.” In: Iranian Journal of
Science and Technology 26.B1 (2001), pp. 69–82.

[Gic08] C. Gicquel. “MIP models and exact methods for the Dis-
crete Lot-sizing and Scheduling Problem with sequence-
dependent changeover costs and times.” PhD thesis.
France: Ecole centrale Paris, 2008.

[Goo] Google ortools. Available from https : / / developers .

google.com/optimization/.

[GH85] R. L. Graham and P. Hell. “On the history of the mini-
mum spanning tree problem.” In: History of computing 7

(1985), pp. 13–25.

[GR90] M. Guignard and M. B. Rosenwein. “An application of
lagrangean decomposition to the resource-constrained
minimum weighted arborescence problem.” In: Network.
3rd ser. 20 (1990), pp. 345–359.

[Hal35] P. Hall. “On representatives of subsets.” In: J. London
Math. Soc 10.1 (1935), pp. 26–30.

[Har13] F. W. Harris. “How many parts to make at once.” In: Fac-
tory, The magazine of management 10.2 (1913), pp. 135–136.

[HG95] W. D. Harvey and M. L. Ginsberg. “Limited discrepancy
search.” In: 14th international joint conference on Artificial
intelligence. Vol. 1. 1995, pp. 607–613.

[Hen89] P. V. Hentenryck. Constraint Satisfaction in Logic Program-
ming. The MIT Press, 1989.

[HM05] P. V. Hentenryck and L. Michel. Constraint-based local
search. The MIT Press, 2005.

[Hin95] K. S. Hindi. “Computationally efficient solution of the
multi-item, capacitated lot-sizing problem.” In: Comput-
ers and Industrial Engineering. 4th ser. 28 (1995), pp. 709–
719.

https://developers.google.com/optimization/
https://developers.google.com/optimization/


168 Bibliography

[Hoe01] W.-J. van Hoeve. The alldifferent Constraint: A Survey. 2001.

[HK06] W.-J. van Hoevve and I. Katriel. “Handbook of Constraint
Programming.” In: Elsevier, 2006. Chap. 6: Global Con-
straints, pp. 169–208.

[HS04] H. H. Hoos and T. Stutzle. Stochastic Local Search: Foun-
dations and Applications. The Morgan Kaufmann Series,
2004.

[HT06] H. H. Hoos and E. Tsang. “Handbook of Constraint
Programming.” In: Elseiver, 2006. Chap. 5: Local Search
Methods, pp. 135–167.

[Hou13] V. R. Houndji. “Deux Problèmes de Planification de Pro-
duction: Formulations et Résolution par Programmation
en Nombres Entiers et par Programmation par Con-
traintes.” MA thesis. Belgium: Louvain School of Engi-
neering, 2013.

[HSa] V. R. Houndji and P. Schaus. CP4CAP: Constraint Program-
ming for Constrained Arborescence Problem (CAP). Toolkit us-
ing the OscaR solver as a dependency and some instances on
a variant of the CAP. Available from https://bitbucket.

org/ratheilesse/cp4cap.

[HSb] V. R. Houndji and P. Schaus. CP4PP: Constraint Program-
ming for Production Planning. Toolkit using the OscaR solver
as a dependency and some instances on a variant of the CLSP.
Available from https://bitbucket.org/ratheilesse/

cp4pp.

[HSW14] V. R. Houndji, P. Schaus, and L. Wolsey. “CP Approach
for the Multi-Item Capacitated Lot-Sizing Problem with
Sequence-Dependent Changeover Costs.” In: Communica-
tion - 28th annual conference of the Belgian Operational Re-
search Society - Orbel’28. 2014, p. 145.

[Hou+] V. R. Houndji, P. Schaus, L. Wolsey, and Y. Deville. CSPLib
Problem 058: Discrete Lot Sizing Problem. Ed. by C. Jeffer-
son, I. Miguel, B. Hnich, T. Walsh, and I. P. Gent. Avail-
able from http://www.csplib.org/Problems/prob058.

[Hou+14] V. R. Houndji, P. Schaus, L. Wolsey, and Y. Deville. “The
StockingCost Constraint.” In: Principles and Practice of Con-
straint Programming–CP’2014. Springer. 2014, pp. 382–397.

https://bitbucket.org/ratheilesse/cp4cap
https://bitbucket.org/ratheilesse/cp4cap
https://bitbucket.org/ratheilesse/cp4pp
https://bitbucket.org/ratheilesse/cp4pp
http://www.csplib.org/Problems/prob058 


Bibliography 169

[Hou+15] V. R. Houndji, P. Schaus, L. Wolsey, and Y. Deville. “La
contrainte globale StockingCost pour les problèmes de
planification de production.” In: Communication - Journées
Francophones de Programmation par Contraintes, JFPC’2015.
2015, pp. 128–129.

[Hou+17a] V. R. Houndji, P. Schaus, M. N. Hounkonnou, and L.
Wolsey. “La contrainte globale MinArborescence pour les
problèmes d’arborescence de poids minimum.” In: Com-
munication - Journées Francophones de Programmation par
Contraintes, JFPC’2017. 2017.

[Hou+17b] V. R. Houndji, P. Schaus, M. N. Hounkonnou, and L.
Wolsey. “The Weighted Arborescence Constraint.” In: In-
tegration of AI and OR techniques in Constraint Programming
for Combinatorial Optimization Problems, CPAIOR’2017.
2017.

[J. 94] J. F. Puget. A C++ implementation of CLP. Tech. rep. 1994.

[JD06] R. Jans and Z. Degraeve. “Modeling Industrial Lot Sizing
Problems: A Review.” In: International Journal of Produc-
tion Research (2006).

[JD98] C. Jordan and A. Drexl. “Discrete Lot Sizing and Schedul-
ing by batch sequencing.” In: Management Science. 5th ser.
44 (1998), pp. 698–713.

[KGW03] B. Karimi, S. M. T. F. Ghomi, and J. Wilson. “The ca-
pacitated lot sizing problem: a review of models.” In:
Omega, The international Journal of Management Science
(2003), pp. 365–378.

[KR82] R. Karni and Y. Roll. “A Heuristic Algorithm for
the Multi-Item Lot-Sizing Problem with Capacity Con-
straints.” In: AIIE Transactions. 4th ser. 14 (1982), pp. 249–
56.

[KT05a] I. Katriel and S. Thiel. “Complete bound consistency
for the global cardinality constraint.” In: Constraints 10.3
(2005), pp. 191–217.

[KT05b] J. Kleinberg and E. Tardos. “Algorithm Design.” In: Ts-
inghua University Press, 2005. Chap. 4.9: Minimum-Cost
Arborescences: A multi-phase greedy algorithm.



170 Bibliography

[Kor85] R. E. Korf. “Depth-first Iterative-Deepening: An Opti-
mal Admissible Tree Search.” In: Artificial Intelligence 27

(1985), pp. 97–109.

[Kuh10] H. W. Kuhn. “The hungarian method for the assignment
problem.” In: 50 Years of Integer Programming 1958-2008.
Springer, 2010, pp. 29–47.

[LMV89] J. M. Y. Leung, T. L. Magnanti, and R. Vachani. “Facets
and algorithms for capacitated lot sizing.” In: Mathemati-
cal Programming 45 (1989), pp. 331–359.

[LO+03] A. López-Ortiz, C.-G. Quimper, J. Tromp, and P. van Beek.
“A fast and simple algorithm for bounds consistency of
the alldifferent constraint.” In: International Joint Confer-
ence on Artificial Intelligence – IJCAI’03. 2003, pp. 245–250.

[Lor10] X. Lorca. “Contraintes de Partitionnement de Graphe.”
PhD thesis. Université de Nantes, 2010.

[LJG11] X. Lorca and F. Jean-Guillaume. “Revisiting the tree Con-
straint.” In: Principles and Practice of Constraint Program-
ming - CP 2011. Vol. 6876. 2011, pp. 271–285.

[Mac77] A. K. Mackworth. “Consistency in networks of relation.”
In: Artificial Intelligence. 1st ser. 8 (1977), pp. 99–118.

[Man58] A. S. Manne. “Programming of Economic Lot Sizes.” In:
Management Science. 2nd ser. 4 (1958), pp. 115–135.

[MS98] K. Marriott and P. Stuckey. Programming with constraints.
The MIT press, 1998.

[MT00] K. Mehlhorn and S. Thiel. “Faster algorithms for bound-
consistency of the sortedness and the alldifferent con-
straint.” In: International Conference on Principles and Prac-
tice of Constraint Programming. Springer. 2000, pp. 306–
319.

[Men+04] R. Mendelson, R. Tarjan, M. Thorup, and U. Zwick.
“Melding Priority Queues.” In: Proceedings of SWAT 04
3111.3 (2004), pp. 223–235.

[NH80] S. C. Narula and C. A. Ho. “Degree-constrained mini-
mum spanning tree.” In: Computers & Operations Research
7.4 (1980), pp. 239–249.

[Osc12] OscaR Team. OscaR: Scala in OR. Available from https:

//bitbucket.org/oscarlib/oscar. 2012.

https://bitbucket.org/oscarlib/oscar
https://bitbucket.org/oscarlib/oscar


Bibliography 171

[PV84] C. H. Papadimitriou and U. V. Vazirani. “On two geomet-
ric problems related to the travelling salesman problem.”
In: Journal of Algorithms 5.2 (1984), pp. 231–246.

[Pes16] G. Pesant. “Counting-Based Search for Constraint Opti-
mization Problems.” In: Thirtieth AAAI Conference on Arti-
ficial Intelligence. 2016, pp. 3441–3447.

[Pes+98] G. Pesant, M. Gendreau, J.-Y. Potvin, and J.-M. Rousseau.
“An exact constraint logic programming algorithm for
the traveling salesman problem with time windows.” In:
Transportation Science 32.1 (1998), pp. 12–29.

[PW05] Y. Pochet and L. Wolsey. Production Planning by Mixed In-
teger Programming. Springer, 2005.

[PFL15] C. Prud’homme, J.-G. Fages, and X. Lorca. Choco Docu-
mentation. Available from http://www.choco-solver.org.
2015.

[Pug98] J.-F. Puget. “A fast algorithm for the bound consistency
of alldiff constraints.” In: Fifteenth National Conference on
Artificial Intelligence and Tenth Innovative Applications of Ar-
tificial Intelligence Conference (AAAI / IAAI). 1998, pp. 359–
366.

[Qui+03] C.-G. Quimper, P. van Beek, A. López-Ortiz, A. Golynski,
and S. B. Sadjad. “An efficient bounds consistency algo-
rithm for the global cardinality constraint.” In: Principles
and Practice of Constraint Programming–CP’2003. Springer.
2003, pp. 600–614.

[Rég94] J.-C. Régin. “A filtering algorithm for constraints of dif-
ference in CSPs.” In: Conference on Artificial Intelligence
(AAAI). Vol. 94. 1994, pp. 362–367.

[Rég96] J.-C. Régin. “Generalized arc consistency for global cardi-
nality constraint.” In: Proceedings of the thirteenth national
conference on Artificial intelligence. Vol. 1. AAAI Press. 1996,
pp. 209–215.

[R9́9] J.-C. Régin. “The symmetric alldiff constraint.” In: 16th
International Joint Conference on Artificial Intelligence (IJ-
CAI’99). 1999, pp. 420–425.

[R0́2] J.-C. Régin. “Cost-based arc consistency for global cardi-
nality constraints.” In: Constraints 7 (2002), pp. 387–405.

http://www.choco-solver.org


172 Bibliography

[Rég08] J.-C. Régin. “Simpler and incremental consistency check-
ing and arc consistency filtering algorithms for the
weighted spanning tree constraint.” In: International Con-
ference on Integration of Artificial Intelligence (AI) and Oper-
ations Research (OR) Techniques in Constraint Programming.
Springer. 2008, pp. 233–247.

[R1́1] J.-C. Régin. “Hybrid Optimization.” In: P. Van Henten-
ryck and M. Milano editors, 2011. Chap. Global con-
straint: a survey, pp. 63–134.

[Rég+10] J.-C. Régin, L.-M. Rousseau, M. Rueher, and W.-J. van Ho-
eve. “The weighted spanning tree constraint revisited.”
In: International Conference on Integration of Artificial Intelli-
gence (AI) and Operations Research (OR) Techniques in Con-
straint Programming. Springer. 2010, pp. 287–291.

[RWH99] R. Rodosek, M. G. Wallace, and M. T. Hajian. “An exact
constraint logic programming algorithm for the traveling
salesman problem with time windows.” In: Annals of Op-
erations Research 86 (1999), pp. 63–87.

[Ros86] M. B. Rosenwein. “Design and application of solution
methodologies to optimize problems in transportation lo-
gistics.” PhD thesis. University of Pennsylvania, 1986.

[RBW06] F. Rossi, P. V. Beek, and T. Walsh. Handbook of Constraint
Programming. Elsevier, 2006.

[Sca] Scala. Scala programming language. Available from http:

//www.scala-lang.org.

[Sch15] P. Schaus. CP for the Impatient. Available from https://

www.info.ucl.ac.be/pschaus/cp4impatient/. 2015.

[Sel03] M. Sellmann. “Approximated consistency for knapsack
constraints.” In: International Conference on Principles
and Practice of Constraint Programming. Springer. 2003,
pp. 679–693.

[Sha98] P. Shaw. “Using constraint programming and local search
methods to solve vehicle routing problems.” In: Interna-
tional Conference on Principles and Practice of Constraint Pro-
gramming. Springer. 1998, pp. 417–431.

http://www.scala-lang.org
http://www.scala-lang.org
https://www.info.ucl.ac.be/ pschaus/cp4impatient/
https://www.info.ucl.ac.be/ pschaus/cp4impatient/


Bibliography 173

[SC06] C. Shulte and M. Carlsson. “Handbook of Constraint Pro-
gramming.” In: Elseiver, 2006. Chap. 14: Finite Domain
Constraint Programming Systems, pp. 495–526.

[Tar77] R. E. Tarjan. “Finding optimum branchings.” In: Networks
7.3 (1977), pp. 25–35.

[Tri03] M. A. Trick. “A Dynamic Programming Approach for
Consistency and Propagation for Knapsack Constraints.”
In: Annals of Operations Research 118 (2003), pp. 73–60.

[Tri87] W. W. Trigerio. “A Dual-Cost Heuristic For The Capaci-
tated Lot Sizing Problem.” In: IIE Transactions. 1st ser. 19

(1987), pp. 67–72.

[Tsa95] E. Tsang. Foundations of Constraint Satisfaction. Academic
Press, London, 1995.

[UP10] H. Ullah and S. Parveen. “A Literature Review on Inven-
tory Lot Sizing Problems.” In: Global Journal of Researches
in Engineering 10 (2010), pp. 21–36.

[Una+16] D. de Una, G. Gange, P. Schachte, and P. J. Stuckey.
“Weighted Spanning Tree Constraint with Explanations.”
In: International Conference on AI and OR Techniques in Con-
straint Programming for Combinatorial Optimization Prob-
lems. Springer. 2016, pp. 98–107.

[VCLS15] S. Van Cauwelaert, M. Lombardi, and P. Schaus. “Under-
standing the potential of propagators.” In: Integration of
AI and OR Techniques in Constraint Programming for Com-
binatorial Optimization Problems - CPAIOR 2015. Springer.
2015, pp. 427–436.

[WW58] H. M. Wagner and T. M. Within. “Dynamic version of
the economic lot size model.” In: Management Science 50

(1958), pp. 89–96.

[Wal97] T. Walsh. “Depth-Bounded Discrepancy Search.” In: Fif-
teenth International Joint Conference on Artificial Intelligence,
IJCAI’97. 1997, pp. 1388–1393.

[Way13] K. Wayne. Greedy Algorithms. Available from http://www.

cs.princeton.edu/~wayne/kleinberg-tardos. 2013.

[Wol98] L. A. Wolsey. Integer programming. Vol. 42. Wiley-
Interscience, 1998.

http://www.cs.princeton.edu/~wayne/kleinberg-tardos
http://www.cs.princeton.edu/~wayne/kleinberg-tardos


174 Bibliography

[Wol02] L. A. Wolsey. “Solving multi-item lot-sizing problems
with an MIP solver using classification and reformula-
tion.” In: Management Science 48.12 (2002), pp. 1587–1602.

[WN99] L. A. Wolsey and G. L. Nemhauser. Integer and Combina-
torial Optimization. Wiley-Interscience, 1999.


	Abstract
	Résumé
	Acknowledgments
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	Table of Contents
	1 Introduction
	1.1 Context
	1.2 Summary of the contributions
	1.3 Publications and other scientific realisations
	1.4 Methodology
	1.5 Outline

	Background
	2 Constraint Programming (CP)
	2.1 Overview of Constraint Programming
	2.2 Propagators
	2.3 Global constraints
	2.3.1 The minimumAssignment constraint
	2.3.2 The cost-gcc constraint

	2.4 Search
	2.5 Cost-based propagator in the OscaR solver

	3 Capacitated Lot Sizing Problem (CLSP)
	3.1 Overview of the Lot Sizing problem
	3.1.1 Characteristics of the Lot Sizing problem
	3.1.2 Classification of the Lot Sizing problem

	3.2 Related works
	3.3 A variant of the CLSP
	3.3.1 A CP model for the PSP
	3.3.2 MIP formulation for the PSP


	4 Constrained Arborescence Problem (CAP)
	4.1 Overview of Minimum Weight Arborescence (MWA)
	4.1.1 Conditions for optimality of the MWA 
	4.1.2 Computation of an MWA

	4.2 Related works
	4.3 A variant of the CAP


	Filtering Algorithms for a Capacitated Lot Sizing Problem
	5 The StockingCost Constraint
	5.1 Introduction
	5.2 The StockingCost constraint
	5.2.1 Decomposing the constraint

	5.3 Filtering of the cost variable H
	5.4 Pruning the decision variables Xi
	5.5 A complete filtering algorithm in O(n)
	5.6 Experimental results
	5.7 Conclusion

	6 The Item Dependent StockingCost constraint
	6.1 Introduction
	6.2 The Item Dependent StockingCost constraint
	6.2.1 Decomposing the constraint

	6.3 Filtering of the cost variable H
	6.4 Pruning the decision variables Xi
	6.5 Experimental results
	6.6 Conclusion


	Filtering Algorithms for the Constrained Arborescence Problem
	7 The Weighted Arborescence Constraint
	7.1 Introduction
	7.2 The MinArborescence constraint
	7.2.1 Decomposing the constraint

	7.3 Improved Reduced Costs
	7.4 Experimental results
	7.5 Conclusion


	Conclusion and Perspectives
	Appendix
	A CP Approach results for the PSP
	B CP Approach results for the RMWA problem
	C Coding Experience and Source Code

	Bibliography

