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Abstract

Combinatorial Optimization is intrinsically hard, including for computers because
of the exponential increase of the search space when larger problems are
considered. Several technologies have been developed in the previous decades
in order to provide computer systems with intelligent reasoning. One of them
is Constraint Programming, a declarative paradigm to solve/optimize discrete
constrained problems. At the core of this technology lies Propagation, which
is responsible for eliminating provable wrong (partial) combinations. This thesis
focuses on this part of the Constraint Programming technology. It is well known
that the amount of data generated and stored is augmenting. Not surprisingly the
size of the problems to be solved by optimization also tends to increase. Therefore
all our algorithmic design choices are motivated by scalability. The first part of
this work is dedicated to the evaluation of the procedures involved in constraint
programming propagation, so-called propagat...
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ABSTRACT

Combinatorial Optimization is intrinsically hard, including for computers because
of the exponential increase of the search space when larger problems are consid-
ered. Several technologies have been developed in the previous decades in order
to provide computer systems with intelligent reasoning. One of them is Constraint
Programming, a declarative paradigm to solve/optimize discrete constrained prob-
lems. At the core of this technology lies Propagation, which is responsible for
eliminating provable wrong (partial) combinations. This thesis focuses on this part
of the Constraint Programming technology. It is well known that the amount of
data generated and stored is augmenting. Not surprisingly the size of the problems
to be solved by optimization also tends to increase. Therefore all our algorithmic
design choices are motivated by scalability.
The first part of this work is dedicated to the evaluation of the procedures in-

volved in constraint programming propagation, so-called propagators. This is a
non-trivial task, since propagation is only a component of the technology and the
other parts may influence the solving performances. Specifically, the way search is
performed can have a strong repercussion on the performance associated with a
given propagator. We therefore introduce a fair manner to evaluate propagators,
in the sense that this effect is diminished as much as possible. We also depict
an easy technique in order to probe the impact of accelerating a propagator. De-
spite its simplicity, one can learn if the improvement of a filtering procedure has
a chance to be fruitful in practice. On that regard, we give some negative results
which are useful for the research community, so that no endeavor is invested on un-
promising directions from a practical perspective. Finally, a tool to visualize solver
performances is described.
The second part introduces two new scalable propagators that can be used in a

broad range of problems. The first one is a unified version of the Unary Resource
with Transition Times global constraint. This constraint can be found in schedul-
ing problems with unary resources in which sequence-dependent transition times
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between activities are involved. The filtering procedure is able to reason with family-
based transition times and optional tasks. We then describe our second propagator,
called Resource-Cost AllDifferent. It can be used in optimization problems where
a set of items, each requiring a possibly different amount of resource, must be
assigned to different slots for which the price of the resource can vary.
Both introduced propagators are experimentally evaluated on industrial and aca-

demic problems with our evaluation framework. The results show that they generally
outperform the state-of-the-art once the size of the problems gets larger. Moreover,
they are robust, in the sense that if our approach is slower than the best existing
approach on a given problem instance, it is by a small factor.
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I NTRODUCT ION

The amount of processed data has increased drastically in recent years. This has
led to fascinating improvements in Artificial Intelligence, in turn causing a gain of
interest by the public in general. This growth goes hand in hand with an augmenta-
tion of the problems sizes a computer has to solve. Artificial Intelligence, Machine
Learning and Operation Research often require solving discrete (optimization) prob-
lems. Unfortunately, problem size is a major issue for NP-Complete problems due
to the combinatorial explosion of the search space. Several technologies (e.g., Lo-
cal Search and Mixed-Integer Programming) have been developed and extensively
used in order to solve this kind of problem efficiently.
In particular, this thesis lies in the context of the Constraint Programming (CP)

paradigm, where problems are described as constraint programs. Basically, a con-
straint program defines a search space by declaring variables and their associated
finite domains, as well as a set of constraints that must all be respected by an
assignment in order to be a solution. An important asset of this paradigm is that
it is declarative, meaning intuitively that the programmer can focus on describing
what the solution must be instead of how to compute it. The responsibility of
finding an (optimal) solution is left to a constraint solver, that usually performs
a Depth-First Search. Filtering algorithms (also named propagators) are called at
each search node to verify that constraints can still be respected and to remove
inconsistent values from the variable domains.
Filtering (also known as Propagation) is a key ingredient of CP: it makes a

constraint solver capable of pruning large portions of the search space, possibly
saving significant exploration times. In practice, the strongest filtering algorithms
are not always the winners on every problem. As explained in [Smi05], maintaining
a higher level of consistency takes more time; on the other hand, if more values
can be removed from the domains of the variables, the search effort will be reduced
and this will save time. Whether or not the time saved outweighs the time spent
depends on the problem, the algorithm, its implementation, the search heuristics,
and the propagation queue strategy used in the solver.
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The CP community has invested a lot of effort to improve this trade-off by re-
searching the most efficient filtering algorithms. As an example, the sequence
constraint was introduced in 1994 [BC94], but no poly-time Global Arc Consis-
tency (GAC) algorithm was available until 2006 [Hoe+06]. Then, the original GAC
run time of O(n3) was not low enough to consistently beat weaker (but cheaper)
propagators. This motivated improvement efforts that are still ongoing [Bra+07,
CY10, BCH14]. Other people suggested guarding techniques to reduce the number
of times a heavy GAC algorithm is triggered. In the case of guarding propagation,
[DB+13] proposes a probabilistic model to estimate if alldifferent (bound
consistency) will be able to reduce a domain. In [SS05], the authors determine
situations where domain propagators can simply be replaced by lighter bound prop-
agators without increasing the search space.
The trade-off between computation time and pruning power is even more critical

for NP-hard constraints. For example, Energetic Reasoning (ER) was introduced
as a (powerful) filtering technique for cumulative in the nineties (see [EL90,
BLPN01]): however, the method has never been widely employed due to its large
run time. Improving the original O(n3) algorithm took in this case around 20 years
[DP14], while an approach to reduce the overhead by guarding the ER activation
with a necessary condition was presented only in 2011 [BHS11].

scalable propagation While computer hardware advances are constantly
ongoing, larger and larger problems must be tackled in our ever-evolving society.
Size has always been an intrinsic issue for NP-complete problems as the search
space increases exponentially, but in the context of CP, it is also problematic
because propagators (time and size) complexities generally depend on the number
of variables/values they consider. When the problem size grows, the number of
search nodes can augment exponentially and the running time increases inside
each search node, possibly leading to an additional exponential processing time
if the supplemental filtering is not sufficiently strong (the worst case being when
no additional filtering is performed). Moreover, most constraint inference is done
deep in the search tree. For these reasons, while strong but slow algorithms might
reduce the number of search nodes importantly on some problem instances, they
rarely allow a solving time improvement in general when large-scale instances are
considered. These observations imply that such heavy algorithms are seldom used
in practice, since only an accidental and drastic inference provides a speed-up.
This is a strong motivation for this thesis: we wish to work with propagators that

can be used on large-scale problems, since we assume the sizes of the problems we
will have to solve in the future will grow. The aim of these propagators is therefore
not to perform the strongest propagation, but to provide beneficial filtering while
being able to keep up once the problem size gets larger. We will denote those prop-
agators as scalable propagators. In the context of this thesis, scalable propagators
are therefore competitive or better than existing approaches when the problem size
is large.
There is a close link between the scalability and the computational complexity

of propagators. However, complexities generally provide bounds on the resources
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required by algorithms (time is usually the important resource in the case of propa-
gators) but they do not consider/measure the gain provided by the filtering. Com-
plexities are consequently not sufficient to describe the efficacy of a propagator in
practice1. Moreover, it happens that significant constants are hidden in the com-
plexities formulation. Finally, incremental computation of data structures2 used
by the propagators can also provide a substantial speed-up. It can therefore lead
to more scalable propagation, even if the time complexity of the propagator is a
bit larger. Hence, low time complexity and incremental computation, while being
desirable properties, are only correlated with the scalability of a propagator. They
are not sufficient, as we wish to ensure the propagator offers a powerful filtering.
Scalability has thus to be measured in practice by means of benchmarking.
In order to assess a propagator is scalable (scales well), we benchmark on many

large-scale instances: if it provides a significant time gain for a non-negligible per-
centage of the instances while not deteriorating too much the performances in
general, we denote the propagator as being scalable. We describe the complexities
of the propagators in this document, yet we concentrate on their effectiveness in
practice.

We focus on a last important point when we evaluate a given propagator. We
want to guarantee that the solving time difference that we compute is only due to
the filtering of the studied propagator. To do so, we set up the Replay Framework,
that ensures by design that only the gain from filtering is measured, whichever the
search strategy we use. This framework is described in great details in Chapter 3.
We think it should be used in the general case3, in order to avoid bias in conclusions
from propagator evaluations.

contributions The contributions of this thesis are listed below. All the
involved development was integrated in the open-source OscaR solver [Osc12],
except from the web tool4.

Performance Profile Web Tool This tool allows one to build so-called perfor-
mance profiles and to share them easily with the scientific community. They are
used to visually compare solving techniques (e.g., solvers, filtering algorithms,
search heuristics) with each other on a given benchmark. Our tool also enables
what-if analysis of computation time improvements of a given algorithm involved
in the search process. We made an extensive usage of this tool during the thesis
and hope it will be helpful to others.

Filtering Experimental Evaluation Framework We introduce an experimental
framework to evaluate filtering algorithms in Constraint Programming. We call
this the Replay Framework. In brief, the search heuristic is decoupled from the

1 Unless we compare two propagators with different complexities that compute the exact same
filtering for any input.

2 Along a branch of the search tree.
3 Or at least as a complementary method.
4 Available at the URL http://performance-profile.info.ucl.ac.be/.

http://performance-profile.info.ucl.ac.be/
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filtering, i.e., filtering has no effect on the search decisions. This is done by 1)
generating a search tree 2) saving it in memory and 3) traversing the saved tree
with the different models we wish to compare. The goal of this framework is to
ensure that the measurements (e.g., time gain) can only be attributed to the
evaluated filtering algorithms. That is, only the effects of filtering are evaluated
even if dynamic search strategies are used. Moreover, it allows evaluating with
large instances even if the search cannot terminate. We also introduce an easy
way to probe the impact of being able to make a heavy propagator more scalable.
This evaluation framework has been used for all experiments made in this thesis.

Generalized Unary Resource with Transition Times We propose a scalable fil-
tering algorithm for a generalized version of the Unary Resource constraint
when transition times are involved. This constraint can be used to solve scheduling
problems where a resource can only be used by one activity at a time. In addition,
the constraint imposes sequence-dependent transition times between the activi-
ties. It often happens that activities are grouped into families with zero transition
times within a family. Moreover, some of the activities might be optional from the
resource viewpoint (typically in the case of alternative resources). The global con-
straint we describe can deal with both optional activities and families of activities
and strengthen the pruning of domains as compared with existing approaches.

Resource-Cost AllDifferent We describe an efficient and scalable filtering algo-
rithm for the Resource-Cost AllDifferent constraint, which is a special
case of the Global Cardinality Constraint with Costs. It is useful for
problems where a set of machines require different amount of resource while the
price of this resource varies. A typical use case is the scheduling of electricity-
consuming activities under electricity prices fluctuations.

thesis outline

In Part I, we discuss the necessary background to read the thesis. Part II describes
how we propose to evaluate propagators in CP. We begin by explaining in Chapter 2
how our web tool can be used to build performance profiles. Chapter 3 provides
all details about our experimental framework to evaluate propagators. It is used to
evaluate well-known existing propagators. Our new propagators are then described
and evaluated in Part III. Chapter 4 and Chapter 5 respectively discuss the Gener-
alized Unary Resource with Transition Times and the Resource-Cost AllDifferent
constraints. We evaluate them using our replay framework on real-life problems.
Since we focus on scalability, we challenged our propagators on large instances.
Results illustrate that for the instances we consider, the algorithms are often the
fastest and are robust, in the sense that when they are not the fastest, it is by a
small factor as compared with the best approach.

publications The different papers that were published during this thesis are
given below. Notice the work on the Resource-Cost AllDifferent constraint has been
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extended for a journal publication shortly after its acceptance for publication in the
conference proceedings (Fast Track publication).
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BACKGROUND





1
CONSTRA INT PROGRAMMING

Constraint Programming (CP) is a declarative1 programming paradigm, that is, a
paradigm where programs describe the result of the computation, rather than how
to obtain it. This is of great interest, since the programmer can focus only on the
result instead of on the complexities of the computation. In particular, CP is mainly
used to solve hard combinatorial problems. This paradigm has been successfully
used in a broad range of domains, including data mining [AGS16, AGS17], traffic
routing [Har+15], scheduling and planning [Lab03, LM12]. In CP, constraints can
be used in a modular fashion, as building blocks used to describe the solution of
the problem. One of the reasons for the success of the paradigm is the efficient
algorithms underlying the constraints, sometimes enabling important reduction of
the search space.

1.1 modeling

Solving a given problem in CP first requires a formal model to be found such that
finding a solution to the model is equivalent to solving the initial problem. For
a given problem, several models may exist. A model is expressed as a Constraint
Satisfaction Problem (CSP).

constraint satisfaction problems Formally, a constraint program
implements a Constraint Satisfaction Problem (CSP)2. A CSP consists of a set of c
constraints C to be satisfied altogether and that are imposed on a set of n variables
X. For a given variable x ∈ X, its domain D(x) is the set of values the variable
can take. The minimum and maximum of the domain of a variable x are written x
and x, respectively. For a given constraint c ∈ C, we write X(c) the scope of the

1 In a weaker sense than the definition from [VRH04].
2 Also referred to as a Constraint Network.
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10 constraint programming

constraint c, i.e., the set of variables constrained by c. A CSP can then be seen
as the triplet 〈X, D, C〉. In this thesis, we will always consider the domains to be
finite and discrete. The search space is therefore defined as:

D1 × . . .× Di × . . .× Dn

Solving a CSP amounts to finding a feasible assignment for the variables x ∈ X,
such that:

c∧
i=1

Ci

Example 1. Let us consider the 0-1 Knapsack Decision Problem: given a knapsack
with a discrete maximum capacity W and a set of n items, each item i having a
weight wi and a value vi, one has to decide if a minimum total value V can be
obtained by taking a subset of the items in the knapsack without exceeding the
capacity W. A CSP to model this problem is:

n

∑
i=1

vi · Xi ≥ V

n

∑
i=1

wi · Xi ≤W

where ∀i ∈ {1, . . . , n} : D(Xi) ∈ {0, 1}. This problem is NP-complete.

constraint optimization problems A CSP can be extended with
an objective function O to optimize. A Constraint Optimization Problem (COP)
is then a quadruplet 〈X, D, C, O〉 and solving it consists in finding (one of) the
feasible assignments of x ∈ X such that O is optimum.

Example 2. The knapsack optimization problem is the COP of Example 1 with
the objective:

O(X) = max
X

n

∑
i=1

vi · Xi

This problem is then NP-hard.

1.2 constraint solver

Once the initial problem is represented as a CSP, it must be transmitted to an
implemented system that will actually perform the computation of the solution.
This system is often called a constraint solver and it is made of two major comple-
mentary components:

• Search, that traverses the search space in order to find an assignment of
the variables that respects all the constraints, and that possibly optimizes a
given objective function. To do so, it narrows the search space by adding ar-
bitrary constraints to the CSP and backtracks if the CSP becomes infeasible
(typically a domain gets empty).
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• Propagation, that infers more valid constraints of a given CSP in order to
further narrow the search space. To this end, the solver uses so-called prop-
agators, i.e., procedures associated with constraints whose aim is to verify
the constraints can be respected and to infer more constraints. Often, the
inferred constraints amount to update some variable domains. It is impor-
tant to remark that several propagators may exist for the same constraint.
A propagator is (one of) the concrete procedure(s) that implement(s) the
abstract, logical, constraint.

In this thesis, we will often use the term model to designate a set of propagators/
filtering procedures that allow solving a given problem in a sound and complete
manner using search. One can think of a model as the actual implementation
used by the solver to represent the CSP. Moreover, the notation M ∪ φ1 . . . ∪ φn
indicates that the set of filtering procedures {φ1, . . . , φn} is added to the model
M. This notation will be used in several parts of this document.

1.3 search

NP-complete problems are usually solved with backtracking search procedures. In
particular, Depth-First Search is typically used in CP, because it is a good time-
memory trade-off and efficient trail-based state restorations exist[War83, AK99].
As described in [VB06], in a Depth-First Search backtracking algorithm, a node
p = {b1, . . . , bj} in the search tree is identified by a set of branching constraints
where bi, 1 ≤ i ≤ j is the branching constraint posted at the level i of the search
tree. A node p is extended by adding the k nodes p ∪ {b1

j+1}, . . . , p ∪ {bk
j+1} for

some branching constraints bi
j+1, 1 ≤ i ≤ k.

The branches are often dynamically ordered using a heuristic, with the left-most
branch being the most promising. To ensure completeness, the constraints posted
on all the branches from a node must be exhaustive (for efficiency reasons, they are
typically also mutually exclusive). Usually, branching strategies consist in posting
unary constraints (e.g., X ≤ a and X > a) or binary constraints (e.g., X ≤ Y and
X > Y). In this case, a variable ordering heuristic is used to select the next variable
to branch on and the ordering of the branches is determined by a value ordering
heuristic.

Definition 1. A branching procedure is a function that, given a search node
p = {b1, . . . , bj} at level j of the search tree, computes the branching constraints
at the next level: β(p) = 〈b1

j+1, . . . , bk
j+1〉. The branching constraints are contract-

ing [Ben96], i.e., domains can only be reduced. Moreover, we assume that after
imposing a constraint, at least one domain is reduced. Finally, the procedure has
implicitly access to the current state of the constraint store (not written explicitly
for notation brevity).

Example 1. βff is the first-fail binary branching procedure. On the left branch, it
assigns the variable with the smallest domain cardinality to its smallest value, and it
removes this value from the variable domain on the right branch. Formally, it returns



12 constraint programming

two branching constraints c and ¬c, with c ≡ argmin
x∈X

(|D(x)|) = min(D(x)),

where X is the set of current unbound decision variables and |D(x)| is the cardi-
nality of the domain of x.

We call Constraint Branching Tree the structure that results of a (Depth-First)
Search with a model M and a branching procedure. This notion will be used
extensively in Chapter 3.

Definition 2. A Constraint Branching Tree (CBT) t rooted at node p is a (possibly
empty) ordered finite sequence of pairs (〈b1, t1〉, . . . , 〈bi, ti〉, . . . , 〈bk,
tk〉), where β(p) = {b1, . . . , bk} are the branching constraints (returned by a
branching procedure) and ti is a CBT for the node p ∪ bi. Intuitively, it can be
thought of as a tree with branches labeled with branching constraints, to be tra-
versed with a Depth-First Search. The definition of branching procedure ensures
the structure is finite. An empty CBT is written (). T is the set of all CBTs.

b1
j+1

b2
j+1

b3
j+1

p = M ∪ b1 ∪ . . . ∪ bj

p = M ∪ b1 ∪ . . . ∪ bj ∪ b1
j+1

p = M ∪ b1 ∪ . . . ∪ bj ∪ b2
j+1

p = M ∪ b1 ∪ . . . ∪ bj ∪ b3
j+1

Figure 1.1: Example of a CBT.

Finally, let us define the function isSolved(M) whose purpose is to verify if a
given model is solved in a given state of the search.

Definition 3. The function isSolved(M) → {True, False} returns the status of
the model M, solved or not. This corresponds to the fact that a solution to the
modeled problem is found. That is, for the set of constraints C imposed on X, we
have:

∧
i Ci ∧ ∀x ∈ X : |D(x)| = 1, i.e., all variables of the model have a valid

assignment (all the constraints are satisfied by the assignment).

1.4 propagation

Exhaustively searching through the space of all possible variable instantiations is of
course very inefficient. Constraint propagation aims to search less often in incon-
sistent regions of the search space. Its goal is to infer more valid constraints from
(the current state of) a CSP. Each propagator is involved in this inference and
a chain reaction may occur, until a fix point is reached, i.e., no inference can be
performed by any propagator anymore. Definition 4 formalizes this computation.
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Definition 4. If X is a set of variables, and M is a model that constrains elements
of X, the function fixPoint(M)→ {⊥, ?} reduces domains of the variables in X. It
returns ⊥ if a domain is wiped out (i.e., a constraint cannot be satisfied, hence no
solution can be found), or ? if all domains are still non-empty (infeasibility cannot
be proven).

global constraint The notion of global constraint was formally defined
a decade ago [BVH03] through a comparison with its decomposition into simpler
constraints. Several definitions are provided depending on the considered perspec-
tive. Intuitive descriptions for each perspective are:

• A constraint is global if no such decomposition exists (expressiveness).

• A constraint is global if its filtering algorithm is strictly stronger than the
decomposition, at least in some cases (quality of filtering).

• A constraint is global if its filtering algorithm has a strictly better time
and/or space complexity, compared to the filtering done by the decomposi-
tion (computational efficiency).

In this thesis, we will interchangeably use the term propagator and global con-
straint to refer to a filtering procedure φ that maps a set of domains D1, . . . Dn
to a second set of domains D′1, . . . D′n such that D′i ⊆ Di. The reason is that this
work focus more on the implementation perspective of CP than on the modeling
one. We will often succinctly describe the CSP of a problem, and then study the
details of changing the filtering procedures used to implement the same constraint.
We allow ourselves to use the term global constraint as we will study propagation
of n-ary constraints.

consistency Propagation derives local inconsistencies, or said differently, en-
sures a certain level of (local) consistency. Many levels of consistencies of a CSP
have been defined in the literature. We refer the reader to [Bes06, VB06] for a
detailed description of the different consistencies. In this thesis, we only consider
a few constraint-based consistencies. We provide their definition (largely inspired
by the ones given in [Bes06]) hereafter, beginning with the well-known Generalized
Arc Consistent (GAC):

Definition 5. Given a CSP 〈X, D, C〉, a constraint c ∈ C, and a variable x ∈ X(c),

• A value v ∈ D(x) is consistent with c in D iff there exists a valid tuple τ
satisfying c such that v = τ[{x}]. Such a tuple is called a support for (x, v)
on c.

• The domain D is generalized arc consistent on c for x iff all the values in
D(x) are consistent with c in D.

A weaker level of consistency is (generalized )Bound(Z) Consistency, that we
simply refer as Generalized Bound Consistent (GBC) in this thesis:
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Definition 6. Given a CSP 〈X, D, C〉, a constraint c ∈ C, a bound support τ
on c is a tuple that satisfies c and such that for all x ∈ X(c), x ≤ τ[x] ≤ x. A
constraint c is Bound(Z) Consistent iff forall x ∈ X(c), (x, x) and (x, x) belong
to a bound support on c.

A weaker consistency is Forward Checking consistency, for which several defi-
nitions exist in the literature. A simple constraint-based definition (adapted from
[VH89]) is:

Definition 7. Given a CSP 〈X, D, C〉, a constraint c ∈ C is forward checking
consistent according to a partial instantiation I on a set Y ⊆ X(c), iff I is locally
consistent, |X(c)| \Y = {x} and for all y ∈ Y, x is arc consistent on c.



Part II

OPT IM IZAT ION EVALUAT ION





2
A V I SUAL WEB TOOL TO
PERFORM WHAT - I F ANALYS I S
OF OPT IM IZAT ION
APPROACHES

In Operation Research (OR), evaluation is of great importance in order to validate
a given solution method with respect to existing ones: for example one may be
interested in assessing the effect of an improved neighborhood in Local Search, a
faster cut for Mixed Integer Programming, or a global constraint in Constraint Pro-
gramming. When reporting research results, it is critical to have the possibility to
provide a meaningful analysis and interpretation of tests performed over represen-
tative benchmarks. However, some communities (e.g., Constraint Programming)
tend to limit the presentation of the results to tables, sometimes with only a few
instances. This can drastically reduce the significance of the derived conclusions for
the general case, which should instead be the primary target when an evaluation
is performed. Finding a meaningful and effective way to aggregate the results is
not trivial and it has a direct impact on the conclusions. Some indicators such
as the arithmetic average of normalized measures are well known to bias the re-
sults [FW86]. An additional difficulty is the timeout given to the experiments: some
methods indeed become better if they are given more time while others are superior
at the early stage of the execution.
A performance profile [DM02] is a tool that is more and more widely employed

to grasp a lot of conclusive information out of evaluated benchmarks. Performance
profiles are cumulative distributions for a performance metric that do not suffer
from the aforementioned problems. Among other advantages, they directly pro-
vide an approximate cumulative (probability) distribution function1 that a certain

1 Under the assumption the studied benchmarks are representative enough.
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method can solve an arbitrary instance. Equipped with such a tool, one is clearly
able to make better decisions regarding a solver, based on data from quantitative
evaluations.
While performance profiles are useful in practice, there exists no tool to generate

and analyze them easily (e.g., via what-if analysis on heterogeneous benchmarks),
hampering their broader usage by researchers. The OR community would therefore
greatly benefit from an easy-to-use tool to build and export such profiles, with an
easy and well-defined input format. The current chapter proposes a free Web tool
to fill in this gap.
It is well known that premature optimization is the root of all evil [Knu74]. It

happens that many OR researchers spend time and energy trying to improve an
algorithm that is not the bottleneck of the whole problem. The tool we introduce
permits what-if analysis on the performance profiles. We can for instance simulate
the effect on the whole computation time of reducing the time complexity of a
sub-algorithm (e.g., cut generation, global constraint, local search move).
We first describe the tool, and then illustrate how it can be used for the Mixed

Integer Linear Programming technology. It is also extensively used to describe our
results in CP in the subsequent chapters of this thesis.

2.1 web tool description

In order to facilitate the use of performance profiles and hopefully to spread their
usage among the community as a standard evaluation tool, we have built a Web
tool to construct them easily. It is publicly available at http://performance-

profile.info.ucl.ac.be/. It allows generating profiles from a simple and well-
defined JSON format, and to visualize the approximate effect of improving the
solvers considered in an experimentation.

2.1.1 Introductory Example

To describe how to use the tool, we will use a simple running example. While the
tool is used to evaluate the performance of solvers, we will use here an analogy
with cars. Let us assume that we desire to compare performances of 3 cars, cA,
cB and cC. Those cars will be evaluated according to the time that they need to
complete tracks (i.e., from our analogy, the problem instances). The benchmark
is made of 6 tracks that have different non-exclusive characteristics that can be
used as labels. In this example, some tracks can have parts with roads and woods.
Finally, the time required by a car to complete a track can be split in several
components. That is, the total time to complete a track for a car is the sum of the
times of all components of the car. For example, the car cA has a time associated
with its wheels and its motor (the rest is considered as negligible). The sum of
both time components will be considered as the total time for the car. Table 2.1
reports the evaluation results of this fictive experiment: each row corresponds to a
given component of a car (e.g., cAw stands for the wheels of the car cA) and each
column corresponds to a track with labels (e.g., first column has the label Road).

http://performance-profile.info.ucl.ac.be/
http://performance-profile.info.ucl.ac.be/
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As an example, the total time required by the car cA to finish the first track is
cAw + cAm = 100 + 20 = 120. Notice not all cars must have all components: cB
only has a time associated with its wheels (said differently, the time imputed to
the motor is negligible for cB).

Labels Road Road Road, Wood Road, Wood Wood Wood

cAw 100 30 40 50 10 20

cAm 20 3 4 5 1 2

cBw 10 7 45 55 30 50

cCw 15 12 35 40 15 25

cCm 10 3 4 5 1 2

Table 2.1: Results for the introductory car example. cAw and cAm stand for the wheels
and motor component of cA, respectively.

A performance profile is a cumulative distribution of a performance metric for a
solver. Let S be the set of all considered solvers ({cA, cB, cC} in our introductory
example) and let I be the set of instances (e.g., the set of tracks). We also refer
to the metric value for the solver s on the instance i as metric(s, i) (e.g., the time
required to complete a track in our example). The profile of the solver s ∈ S is
then given by:

Fs(τ) =
1
|I|

∣∣∣∣∣∣
i ∈ I :

metric(s, i)
min
b∈B

(metric(b, i))
≤ τ


∣∣∣∣∣∣ (2.1)

where B ⊆ S is the set of baselines, that is, the solvers against which the ratio is
computed. If B contains all the approaches (i.e., B = S), the definition is the one
of the original work introducing performance profiles [DM02]. If B contains only
one solver (|B| = 1), it is the definition used in [VCLS15]. The latter definition is
extensively used in this thesis and is more discussed in Chapter 3. Some intermediary
settings (|B| > 1 ∧ B ⊂ S) are also possible, in an attempt to make the tool as
generic as possible.
When the data from Table 2.1 is given to the tool with B = {cA, cB, cC}, the

profile given in Figure 2.1 is generated. In this figure, one can observe that the
x-axis is divided in 2 linear parts. The first one goes from 0 to 2, while the second
one goes from 2 to 12. The bounds of the first part can be set by the user (see
section 2.1.2), in order to select the region of τ values to be studied. The end of
the second part (from 2 to 12 in the figure) cannot be configured and corresponds
to the largest metric ratio computed over all the data. This second region provides
a shrunk and long-term view of the profiles.
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 Export as a Web PageÁ

Input Format

The input to be passed consists of a JSON �le following a JSON schema available at the end this section. A JSON schema helps to

validate the JSON �le. The user can use a validator (http://www.jsonschemavalidator.net/) to ensure its input data is correct according

to the Schema. The following properties must be de�ned in the JSON �le :

 Download JSON Schema (data:text/json;charset=utf-8,%7B%22%24schema%22%3A%22http%3A%2F%2Fjson-schema.org%2Fdraft-04%2Fschema%23%22%2C%22title%22%3A%22Input%20Data%20Schema%22%2C%22description%22%3A%22Schema%20for%20the%20input%20data%20used%20to%20build%20the%20performance%20pro�le%22%2C%22type%22%3A%22object%22%2C%22properties%22%3A%7B%22metric%22%3A%7B%22description%22%3A%22Name%20of%20the%20metric%20to%20be%20used%22%2C%22type%22%3A%22string%22%7D%2C%22labels%22%3A%7B%22description%22%3A%22Labels%20that%20can%20be%20associated%20to%20an%20instance%22%2C%22type%22%3A%22array%22%2C%22items%22%3A%7B%22description%22%3A%22A%20label%20that%20can%20be%20attached%20to%20an%20instance%20to%20caracterize%20it%22%2C%22type%22%3A%22string%22%7D%2C%22uniqueItems%22%3Atrue%7D%2C%22instances%22%3A%7B%22description%22%3A%22Array%20of%20arrays%20(one%20for%20each%20instance)%20of%20label%20indices%20referring%20to%20the%20label%20array%22%2C%22type%22%3A%22array%22%2C%22items%22%3A%7B%22description%22%3A%22An%20array%20of%20indices%20of%20the%20label%20array%22%2C%22type%22%3A%22array%22%2C%22items%22%3A%7B%22description%22%3A%22An%20id%20of%20the%20label%20array%22%2C%22type%22%3A%22integer%22%2C%22minimum%22%3A0%2C%22uniqueItems%22%3Atrue%7D%7D%2C%22uniqueItems%22%3Afalse%7D%2C%22data%22%3A%7B%22description%22%3A%22Object%20containing%20each%20approach%20data%20(as%20a%20property).%22%2C%22type%22%3A%22object%22%2C%22additionalProperties%22%3A%7B%22description%22%3A%22Object%20containing%20each%20metric%20component%20of%20an%20approach.%20For%20the%20ith%20instance%2C%20the%20total%20amount%20of%20metric%20equals%20the%20sum%20of%20the%20ith%20element%20of%20each%20metric%20component.%22%2C%22type%22%3A%22object%22%2C%22additionalProperties%22%3A%7B%22description%22%3A%22Array%20of%20amount%20of%20metric%20for%20all%20instances%20(ith%20element%20corresponds%20to%20the%20ith%20instance)%20for%20a%20given%20metric%20component.%22%2C%22type%22%3A%22array%22%2C%22items%22%3A%7B%22description%22%3A%22Amount%20of%20metric%20for%20a%20given%20instance.%22%2C%22type%22%3A%22number%22%2C%22minimum%22%3A0%7D%7D%2C%22minProperties%22%3A1%7D%2C%22minProperties%22%3A1%7D%7D%2C%22required%22%3A%5B%22metric%22%2C%22labels%22%2C%22instances%22%2C%22data%22%5D%2C%22additionalProperties%22%3Afalse%7D)

metric
De�nes the name of the metric. It is used to label the x-axis of the plot.

labels
Labels that can be assigned to instances.

instances
An array assigning labels to instances. The i  element of this array gives the indices (in the lables array) corresponding to the labels assigned to the i  instance.th th

data
The actual data for each compared approach. An approach is de�ned by its name and several metric components. For each metric component, a name must be given
as well as an array with the corresponding value for each instance. The i  element gives the metric quantity of the metric component for the i  instance. The total
metric of an instance is the sum on all metric components for this instance.

th th

½

Input Example

The following JSON �le corresponds to the plot that is shown when this page is loaded.

  Data�
Figure 2.1: Performance profile generated from the data of Table 2.1 with

B = {cA, cB, cC}.

2.1.2 Usage

In this section we describe the input and output formats for the Web tool, using
our running example. We then describe the different controls that are part of the
graphical user interface, and their utility.

input/output: The input consists of a JSON file that must be passed to
the interface (see Figure 2.3). It has to be valid according to a JSON schema,
available from the Web page. A JSON Schema allows ensuring the input JSON file
is correct according to the expected format. As an example, Figure 2.2 shows the
JSON file corresponding to the data from Table 2.1:

• Line 2 defines the metric name to be used in the plot legend.

• Line 3 defines the labels, an array of strings that can be associated with
each instance separately.

• Line 4 defines the instance labels, an array of arrays. Each element of this
array contains the indices of the labels to be associated with the given
instance. For instance, the first instance only has the Road label, while the
third one has Road and Wood labels.

• Lines 5-17 defines the data for the different cars, that is, the solvers em-
ployed in the experimentation. Each car/solver is defined as a set of com-
ponents. For a given instance and solver, the total metric is the sum of the
metric value for all components.
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1 {

2 "metric" :"time",

3 "labels" :["Road","Wood"],

4 "instances" :[[0],[0],[0,1],[0,1],[1],[1]],

5 "data": {

6 "Car A": {

7 "wheels" :[100,30,40,50,10,20],

8 "motor" :[20,3,4,5,1,2]

9 },

10 "Car B": {

11 "wheels" :[10,7,45,55,30,50]

12 },

13 "Car C" :{

14 "wheels" :[15,12,35,40,15,25],

15 "motor" :[10,3,4,5,1,2]

16 }

17 }

18 }

Figure 2.2: An example of input JSON file for the Web Tool. This file must be correct
according to the JSON Schema.

To export the graph, we offer two possibilities (see Figure 2.3). First, a button
allows downloading the generated profiles as SVG files. SVG is a vector graphics
format, similarly to PDF, but that can still be modified if required (using vector
graphics tools, or even via a text editor). Moreover, several tools to convert SVG
files to PDF exist. A second button provides the possibility to export the plot as
a minimal Web page. This page can then be included by the user in another Web
page of his choice.

Figure 2.3: Input as a JSON file and outputs as an SVG file or a Web page.

controls: Several controls are available for configuring the plot (see Fig-
ure 2.4). First, the user can define the non-empty set of solvers to be used as
baselines. Moreover, a set of optional labels can be assigned to each instance in
order to characterize them (e.g., number of variables, number and type of con-
straints, authors of the instance, . . . ). Some instances might have no label. Using
the tool controls, it is possible to specify which labels should be considered in the
profile: removing a label from the set will filter out any instance characterized by
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this label before generating the profiles. This allows investigating easily how the
performance profiles are affected by specific groups of instances in the benchmark.

Figure 2.4: The differ-
ent available controls.

For each component in the input data (to which values
for the metric are associated), a slider is generated in order
to allow the user to study the impact on the performance of
being able to reduce the metric for the component by a given
ratio. For example, the user may use the slider to quickly
assess the impact on the profiles of making wheels that
are 20% more efficient. This feature is useful for assessing
the potential benefits of a certain algorithm improvement,
before actually starting to research how the improvement
can actually be obtained. Alternatively, this technique allows
one to estimate the amount of improvement that would be
necessary to achieve a given goal.
The minimum and maximum τ values can be specified

via an input box, thus allowing the user to focus on a spe-
cific τ region, or to have a general viewpoint. The button
x scale type can be used to switch between a linear and
a logarithmic scale. If the scale is linear, it is split in two
parts: the first one goes from τmin to τmax and the second
one goes from τmax to the maximum τ value computed out
of the data. This allows focusing on the desired τ region
(i.e., τmin to τmax) while also having a “long-term” view.

Finally, a threshold for the minimum metric value of the
baselines can be specified. That is, if one of the approaches
considered as a baseline has a value smaller than this thresh-
old for a given instance, this instance is filtered out. This
can be used to remove noisy measurements (e.g., impreci-
sion of time measurements when the solution time is very
small) or non-significant measures. A second threshold for
the minimum unsolved metric can be specified. That is, if
the value of the metric for a solver on a certain instance
is larger than this second threshold, the instance will be
considered as unsolved. Formally, the metric value for this
solver-instance pair is considered infinite. This approach can
for example be used to define the time-out value for an experimentation.

2.2 use cases

We showcase how our tool can be used for Mixed Integer Linear Programming and
Constraint-Based Local Search2.

2 We also use the tool extensively in Chapter 3 in the case of CP.
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2.2.1 Mixed Integer Linear Programming

A well-known framework to solve Mixed Integer Linear Programs is the Branch
and Cut method, a sophisticated version of Branch-and-Bound. At each node of
the search tree, cutting plane algorithms can be used to find additional linear con-
straints satisfied by all feasible solutions. Those cuts sometimes allow discarding
important parts of the search space, leading to non-negligible improvements. How-
ever, their computation time can be large, so it would be of great interest to know
the gain provided by a more efficient computation. Yet if the gain is shown to be
negligible, research should focus on other aspects of the solving process.
Let us study the Concorde solver [App+06], that has been shown to be efficient

at solving the Travelling Salesman Problem. In particular, its authors introduced
local cuts [App+01, App+11], that were crucial to solve some instances. We are
interested in knowing the potential of being able to compute those cuts more
efficiently.
For that purpose, we define the hypothetical solver concordehypothetical as the Con-

corde solver where the local cuts are computed instantly in O(1). The performance
of concordehypothetical is an upper bound of any performance that could be obtained
by improving local cuts in the Concorde solver.
We use the performance profile definition from [VCLS15], that is, exactly one

of the approaches is used as a baseline in Equation 2.1. We use that definition
because it allows reading the gain of an approach as compared with a given base-
line approach (in this case the Concorde solver, written concorde). For our case,
Equation 2.1 becomes:

Fs(τ) =
1
|I|

∣∣∣∣{i ∈ I :
time(s, i)

time(concorde, i))
≤ τ

}∣∣∣∣
We considered the TSPLib [Rei91] set of instances, augmented with the VLSI3

instances. For each instance, we set a time limit of 900 seconds, and we measured
the total time required to compute the local cuts. Instances that could not be
solved to optimality or lasted less than 1 sec. were filtered out.
Figure 2.5 compares the Concorde solver with concordehypothetical. The profile

Fconcordehypothetical
(τ) provides an upper bound of the performance that can be ob-

tained by improving the computation of local cuts. One can read
Fconcordehypothetical

(0.9) ' 0.2, which means that for ∼ 20% of the instances,
concordehypothetical is (at least) faster by a factor 0.9 as compared with the baseline
solver concorde. This means that by improving local cuts computation, we would
be able, at the very most, to save ' 10% of the solving time for only ' 20% of the
instances. Or said differently, for ∼ 80% of the instances, the speed-up factor can-
not be larger than ' 0.9. Similarly, one can see that Fconcordehypothetical

(0.7) ' 0.05,
so for ∼ 95% of the instances, the speed-up factor cannot be larger than ' 0.7.
This is an indicator that working on this time reduction has a low chance to provide
substantial gains in practice.

3 http://www.math.uwaterloo.ca/tsp/vlsi/index.html

http://www.math.uwaterloo.ca/tsp/vlsi/index.html
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Figure 2.5: Performance profiles for the Concorde Solver on the TSPLib and the VLSI
instances.

2.2.2 Constraint-Based Local Search
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Figure 2.6: Perf. profiles for OscaR (CBLS) on the Pick-up and Delivery Problem.

Let us now consider the solution of a Pick-Up and Delivery Problem using
Constraint-Based Local Search [HM09, MVH17]. We generated 100 instances with
500 cities, 10 vehicles, random distances and random mandatory precedences be-
tween the cities. We used the OscaR (CBLS) solver [Osc12]. Again, we measured
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the time taken by the capacity constraint invariant, as it can be time consuming.
We are interested in knowing if reducing the time complexity of this invariant can
be beneficial. The results are given in Figure 2.6. An hypothetical O(1) capacity
constraint invariant would provide a gain factor between ∼ 0.4 and ∼ 0.5, for all
instances. This research direction seems thus more promising.





3
A FA IR EXPER IMENTAL
FRAMEWORK FOR GLOBAL
CONSTRA INT EVALUAT ION

Not surprisingly filtering is still an important research topic in the CP commu-
nity. Unfortunately, rigorous tools and methodologies to analyze the performance
of filtering algorithms for global constraints are missing. This chapter introduces
generic tools and a methodology to probe the potential of filtering techniques and
to assess the likely impact of specific improvements (e.g., time complexity, better
implementation). Such tools would allow researchers to focus their efforts in the
most promising directions. For example, a researcher may be interested in finding
a more efficient way to enforce Generalized Arc Consistent (GAC) for a specific
constraint: with the current methodologies, knowing if this line of research is worth
investigating remains an open question until a new algorithm is actually devised and
evaluated. With the approach we propose, instead, it becomes possible to estimate
and bound a-priori the potential effectiveness of a propagator improvement.
Tools to analyze the solving process of CP are not new. Some interesting visual

tools have already been introduced. For instance, the Oz/Gecode explorer allows
visualizing the search tree [Explorer97] and interacting with it through a graphical
user interface. CP-Viz is a generic visualization platform for CP [Sim+10] allowing
an advanced post-mortem analysis of the solving process. In CP-Viz the user can
visualize each constraint and its filtering, which is very useful for teaching CP or
debugging models and constraints. The visual search tree profiling tool introduced
in [Shi+15] allows comparing search trees visually with convenient navigation tech-
niques, letting the user compare and understand the differences in terms of search
space exploration between different configurations and models.
Unfortunately those visualization tools do not allow a fine-grained analysis of the

time benefits of adding a specific filtering to an existing model for a large set of

27
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instances. These tools do also not allow evaluating what would be the benefit of
reducing the computation time of a specific filtering procedure.
The definitions of global constraint given in Section 1.4 provide an elegant frame-
work to theoretically compare a global constraint with a decomposition, but do not
explain how to assess the practical benefits provided by a global constraint on a set
of representative instances. One of the contributions of this chapter is a practical
and rigorous framework as an attempt to fill in this gap.
For preliminary analysis, standard profiling tools already allow discovering the

fraction of time spent in each propagator, making it possible to estimate roughly
potential speedups. This chapter goes one step further and tries to answer those
questions by proposing a methodology and visual analysis tools inspired by perfor-
mance profiles [DM02].
A typical approach to compare different filtering algorithms consists in measuring

time and the number of backtracks with respect to a baseline approach, on a set
of benchmark instances that are solved to completeness. This allows assessing the
propagator performance, but provides little or no information on the consequences
of its speed-up. It is also common to use static search strategies (e.g., fixed variable
heuristic, minimum value) to make the evaluation fair and rigorous since a stronger
filtering has a guarantee to explore a reduced search tree. The rationale behind
static strategies usage is that the search nodes order is known a priori and is not
influenced by the current solver state, e.g., by current domains filtered by the
evaluated algorithms. A first drawback of this approach is the risk to bias the
analysis, since dynamic strategies are often preferred in practice. Second, instances
that can be solved to completeness (required to ensure that the same search space
is visited) are generally small, which may not be the case for real applications.
Third, differences in the complexity of filtering algorithms become more relevant
as the instance size grows: therefore, being forced to focus on small instances may
lead to misjudging the performance gap between different propagators.

contributions We propose to extend the traditional evaluation approach
with two main contributions:

1. A method to compare propagators in a principled fashion, by storing and
replaying search trees (see [VCLS15, VCLS18]), in order to enable fair com-
parisons with arbitrary search strategies and instance sizes. Its main asset is
that it enables to measure the exact impact of a propagator on the solving
of a given problem. Shishmarev et al. already noticed the importance of
replaying, in the context of search tree visualisation [Shi+15, Shi+16b] and
better understanding of learning solvers behavior [Shi+16a].

2. A simple model to evaluate the potential for improvement that a propagator
has. This is achieved by instrumenting the solver to collect information
about the constraint whose potential is to be evaluated.

chapter outline This chapter first motivates the need for our framework.
It then introduces our replay technique used to make a fair evaluation of filter-
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ing procedures, and describes how to implement it. We then propose our simple
approach to assess the impact of a propagator improvement. For ease of access,
our method has been made an integral part of the OscaR solver [Osc12], and
Section 3.4 explains how the method can be used. We finally give a case study
about different propagators for several constraints using our evaluation approach:
alldifferent, cumulative, binpacking and unary with transition times. As
for the impact of propagator improvements, we focused on cumulative and the
Revisited Cardinality Reasoning for BinPacking. Applying our method allowed ob-
taining valuable insights: for example, we found that (somehow counter-intuitively)
Energetic Reasoning (ER) cannot provide improvements on a number of typical
scheduling instances, even if the run-time of the propagator is reduced to zero.
Conversely, investigating different, complementary forms of filtering for cumula-
tive has a much greater potential. We also observed that changing the search
strategy may have a significant impact on the effectiveness of some propagators.

3.1 motivation

This section provides the motivation that impelled us to propose our approach.
We wish to design methods that allow a thorough analysis of the behavior of
propagators in CP and to understand their potential. More precisely, we want to
characterize exactly how much search space reduction and time gain is provided
by the additional use of a given propagator. This is usually done by comparing the
execution with and without the evaluated propagator. Currently, the comparison is
made using dynamic and static search strategies. Both methods have their merits,
but also substantial limitations:

• Dynamic strategies have a significant impact on which part of the search
space is visited first, sometimes providing tremendous solving speed-up as
compared to static strategies. They therefore intuitively make for more real-
istic evaluations since they are the ones programmers use in practice. Nev-
ertheless, they allow poor control and limited insights in the behavior and
potential of the propagator itself, since it is impossible to quantify how much
additional filtering and search decisions were influenced by each other.

• On the other hand, static strategies allow measuring exactly the search
space reduction provided by a propagator. However, they are rarely used in
practice because they generally provide poor solving time performance. At
the same time, dynamic and static search strategies perform differently, so
an evaluation of a propagator with a static strategy can hardly be generalized
to the usage with a dynamic strategy. This makes the comparison with
static strategies somewhat artificial, since it is not representative of practical
usage.

We argue that the designers of global constraints are currently missing an addi-
tional methodology that enables the same degree of control and ease of analysis
of static strategies, in an experimental setup that is almost as realistic as that of
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dynamic strategies. In our opinion, as a key feature, such an approach should retain
the ability of static strategies to distinguish clearly the benefits that are provided
by inference and those that come from the search strategy. One of the main con-
tributions of this chapter is a framework to perform global constraints evaluation
that owns these important characteristics.

section outline The motivation for our approach is presented as follows:
we start by formally discuss evaluation of propagators in CP, and we identify the
conditions that enable one to measure precisely the impact of inference on the
search performance. We use the formalism to discuss the current evaluation meth-
ods and to point out their limitations. Finally, we show how the approach we
propose fills in the gap between the traditional evaluation methods, and allows the
designer of a global constraint to obtain more insights in the algorithm behavior
and its potential.

3.1.1 Evaluation of Global Constraints

Formally, we consider the problem of evaluating a filtering function φ that maps a
set of domains D1, . . . Dn to a second set of domains D′1, . . . D′n such that D′i ⊆
Di.1 In practice, φ may represent a propagator for enforcing GAC or a domain-
specific consistency level (e.g., Energetic Reasoning), or it can be some kind of
meta-propagation scheme such as Singleton Arc Consistency [BD05].
Like many other approaches, we measure the performance of the algorithm to

compute φ by comparing the time needed to solve a target CSP using a baseline
model M ∪ φM and an extended model M ∪ φ (see Chapter 1 regarding this nota-
tion). We call φM the baseline filtering function (e.g., a decomposition of a global
constraint) that is to be replaced in the extended model by the algorithm φ that
we want to evaluate. We also require the property that φM is subsumed by φ, i.e.,
φ performs at least the same deductions as φM (for instance, in the case of an
AllDifferent constraint, φM can be a binary decomposition while φ would be
the GAC filtering).
Notice that it often happens that we wish to evaluate the use of a stronger

propagator while keeping weaker algorithms in the propagation queue with a higher
priority, as stronger propagation can come at the cost of a higher time complexity.
This also has to be done if we want to compare φ with a baseline filtering function
φM that φ does not subsume. In this case, we compare the model M ∪ φM with
M ∪ φM ∪ φ, i.e., we construct the extended model by adding φ to the baseline
model instead of replacing φM by φ. To reduce the notation, when φ is added to
the baseline model instead of replacing φM, one can denote the baseline model by
M and the extended model by M ∪ φ.

1 Some particular CP approaches, such as the ones using Decision Diagrams [Ber+16], perform
inference on internal data structures. But in the end, potential partial assignments are removed
by propagation (e.g., by removing an arc of a Decision Diagram) and the inference made on
Decision Diagrams can always be projected to variable domains.
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To ensure the measured difference between the two models is only due to propaga-
tion alone, two conditions must be respected:

C.1 The two runs must explore the same search space;

C.2 All search nodes (and therefore the solution nodes) that are visited by both
runs are visited in the same order.

The first requirement is always met as long as M∪ φM and M∪ φ are semantically
equivalent (i.e., they have the same solutions) and the problem is solved to com-
pleteness (feasibility or optimality). Without the second requirement, M ∪ φM or
M∪ φ could get an unfair advantage if the search strategy quickly allows hitting a
feasible solution (and stops, for feasibility problems), or a high-quality solution (and
gets a good bound, for optimality problems). The next section discusses existing
evaluation methods from the perspective of those two requirements.

3.1.2 Current Evaluation Methods and their Limitations

There exist two families of search strategies in CP: static and dynamic strategies.
For static strategies, also known as lexicographic-order search strategies, the order
in which the branching constraints are posted is (implicitly) known prior to the
search process, meaning that the pruning happening at a search node has no effect
on this order. An example is a branching procedure that always returns two con-
straints C and ¬C, such that C assigns, according to a fixed variable order that is
known a priori, the first unassigned variable to its smallest domain value. On the
other hand, dynamic strategies do take the search state into account when creating
the branching constraints. They are an essential asset of CP to get good perfor-
mances. An example of dynamic strategy is the branching procedure described in
Example 1 (Chapter 1).
While static and dynamic strategies are important, they both have strong limi-

tations from an evaluation perspective, as we argue hereafter.

dynamic strategies can be used for evaluation while respecting condition
C.1 under the condition that instances are solved to completeness. This is already
a strong limitation, since it prevents evaluation on large-scale instances. Moreover,
dynamic strategies cannot guarantee that condition C.2 is satisfied in general. Let
us illustrate with a first hypothetical example how this can lead to unfair conclusions
(see Figure 3.1). On the left tree, a model M ∪ φM is used, and the branching
procedure returns the branching constraints 〈C,¬C〉 at the root node. This leads
the search towards a region where the only solution of the problem (found in the
green node) lies. Let us now consider the right tree: the same branching procedure
is used but the model is extended to M∪ φ, such that more domain pruning occurs
at the root node. It is possible, due to the dynamic nature of the search strategy,
that the branching constraints are swapped so that the constraint ¬C is imposed
on the left branch. The whole left subtree will have to be traversed before the
correct search region can even be considered. It would be unfair to impute this bad
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performance to φ solely, since the propagator was in fact able to prune (perhaps
significantly) more, and could help in practice with a slightly different context (e.g.,
with a different search strategy). When using dynamic strategies, the unpredictable
effects of combined search and propagation prevent measurement of benefits/harm
induced by the additional pruning2. The effects of φ should be isolated to really
quantify the amount of pruning that a new propagator can perform.

C ¬C

(a) M ∪ φM

¬C C

(b) M ∪ φ

Figure 3.1: Comparison of searches by two different models M ∪ φM and M ∪ φ with the
same dynamic search strategy.

Let us insist on this point with a real example. Example 2 illustrates how using
dynamic strategies to evaluate a global constraint can lead to unfair conclusions.

Example 2. Consider the first BL instance [BLP00] with 20 activities for the
Resource Constrained Project Scheduling Problem (RCPSP). The Time-
Tabling propagator and Energetic Reasoning Checker (ERC) [BLPN01] are used for
the cumulative constraint in the baseline model M. If the branching procedure
βff of Example 1 is used, 100 nodes are required for finding the optimal solution.
However, if the ER Propagator φ is used additionally (i.e., together with the ERC
and Time-Tabling propagator, and hence additional pruning is possible in M ∪ φ),
then 124 nodes are required. While the model M ∪ φ has been able to prune
more, more nodes were required to find the optimal solution. The blame for this
counterintuitive behavior is on the interleaving of propagation and branching, rather
than on the ER propagator itself. Indeed, in this case, more propagation occurred
at a certain node, and the branching procedure generated a different sequence of
branching constraints such that a behavior similar to the one illustrated in Figure 3.1
happened. So, if the solution time is used as a metric for the evaluation, in such a
case a clear non-beneficial bias3 would apply against ER. Notice an opposite bias
is also possible.

2 Notice that a similar reasoning could be done for another example where the left and right tree
are attributed to M ∪ φ and M ∪ φM, respectively.

3 In principle, one might remove most of the bias by using statistics, i.e., by running experiments
with many instances and many search strategies. However, this is an expensive process and it is
not always viable.
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static strategies allow ensuring that condition C.2 is fulfilled, by definition.
Condition C.1 is easily respected, by solving instances to completeness, possibly
after having reduced the search space by adding constraints at the root node.
This explains why researchers sometimes use those strategies to evaluate a global
constraint. However, a major issue with that approach is that static search strategies
are rarely used in practice, since they are often outperformed by dynamic ones. So
the obtained conclusions may be biased, as the propagator will rarely be used in
that context.
With Example 3, let us briefly showcase that static strategies do not line up with

reality.

Example 3. We consider the same comparison made in Example 2. Let us use a
lexicographic branching strategy on the starts of the activities: on the left branch,
the activity start is assigned to its minimum value, on the right branch this value is
removed from its domain. Without ER, one obtains 20081 nodes to prove optimality,
while with the additional propagation one only requires 8789 nodes. Since the
strategy is static, we need less nodes with more pruning, as expected. However,
in Example 2, we made the opposite conclusion with a dynamic strategy. More
importantly, the results reported here are quite different from those a user would
get in practice: both approaches require much more nodes and the ratio of the
number of nodes required by M ∪ φ by the number of nodes required by M goes
from 1.24 to ∼ 0.44.

Finally, Example 4 should convince the reader that when evaluating a filtering
algorithm, one may get opposite outcomes depending on whether a static or a
dynamic search strategy is used.

Example 4. Let us consider the 15th BL instance [BLP00] with 25 activities for the
RCPSP. We wish to evaluate if adding ER to solve the instance is beneficial. Let us
first use the static strategy of Example 3. The required number of nodes to solve
the instance without ER is 193038 while only 24140 nodes are necessary if it is used
additionally. Moreover, it takes ∼ 16 and ∼ 13 seconds4 to solve the instance with-
out and with the additional propagator, respectively. One could therefore conclude
that ER should be used. However, if we make the same comparison using the Set-
Times dynamic strategy from [LP+94], the results differ: only 51754 (respectively
18064) nodes are required without (respectively with) ER. The ratio is therefore
quite different (24140/193038 ' 0.125 as compared to 18064/51754 ' 0.349),
but more importantly, the solution time is ∼ 1.5 seconds in the first case and ∼ 4
seconds in the latter case. We would therefore consider in this case that Energetic
should not be used to solve the instance. This illustrates that there is a need to
line up with dynamic strategies that are actually used in practice when we perform
the evaluation of a global constraint, since static branchings can lead to opposite
conclusions. Although illustrated on a single instance, this phenomenon is not rare
on a complete benchmark suite.

4 With a 2.2 GHz Intel Core i7 processor.
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3.1.3 Aim of this work

In this chapter, we suggest a framework to evaluate a global constraint φ while
respecting conditions C.1 and C.2 so that any difference in execution can only be
attributed to additional propagation provided by φ. This point was already raised in
[VCLS15] and then in [Shi+15, Shi+16b]. At the same time, we wish for the ability
to use search strategies that are as close as possible to those actually employed in
practice, and we want to keep the possibility of using large instances, so we wish
to avoid forcing completeness to ensure condition C.1.
In addition, to better understand the potential of improving propagators from a

computation time point of view, we suggest the simple yet very informative concept
of fictional propagator. In brief, they allow estimating the impact on the solving
time of a problem, assuming that a propagation time improvement has been found
(e.g., reduction of the time complexity of a given propagator).

Notice that the approach we propose is not necessarily meant to replace exist-
ing ones. We simply think that our framework can strengthen the conclusions of
an evaluation. But one could use our framework together with traditional evalua-
tions: for instance, by comparing the results we obtain with those of a traditional
evaluation based on dynamic strategies, it is possible to measure the effect of the
interplay between the stronger inference and the search.
In order to ensure conditions C.1 and C.2 are satisfied during our evaluation, the

compared models must traverse Constraint Branching Tree (CBT)s (see Chapter 1)
linked by a well-defined relation that we call CBT inclusion (Figure 3.2 provides an
illustration of CBT inclusion). It is formally defined with :

Definition 8. A CBT t1 = (〈b1
1, t1

1〉, . . . , 〈bi
1, ti

1〉, . . . , 〈bn
1 , tn

1 〉) is included in a CBT

t2 = (〈b1
2, t1

2〉, . . . , 〈bj
2, tj

2〉, . . . , 〈bm
2 , tm

2 〉), denoted as t1 ⊆ t2 iff :

• ∃(1 ≤ l1 < . . . < ln ≤ m) s.t. (bi
1 = bli

2 ∧ ti
1 ⊆ tli

2 ) ∀ 1 ≤ i ≤ n

• or t1 = () (empty sequence)

b1
1

b1
2 b2

2 b3
2 b4

2

b2
1 b3

1

(a) ta

b1
1

b1
2 b2

2 b3
2 b4

2

b2
1 b3

1

(b) tb

Figure 3.2: CBT inclusion : ta ⊆ tb.
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In the next section, we propose an approach based on replaying CBTs that
ensures the CBT traversed by the extended model M∪ φ (in a depth-first manner)
is included in the CBT traversed by the baseline model M ∪ φM.

3.2 fair evaluation through the replay technique

This section first describes our replay technique [VCLS15, VCLS18] from a high-
level perspective. It then discusses its limitations and provides details on how to
implement the approach.

3.2.1 Replaying (High-Level Description)

The goal behind the replaying technique is to be able to evaluate only the effect of
additional propagation, while using a search heuristic that is as similar as possible
to the ones used in practice. To do so, we first generate a CBT, and replay it using
the models to be evaluated. Replaying is therefore a two-step procedure:

1. Generation of a CBT to be replayed.

2. CBT replay with one (or several) models to be evaluated.

CBT generation is done using a function generate(M, β) → T that re-
turns a CBT from a model M and a branching procedure β. It relies on the func-
tions fixPoint(M) and isSolved(M), defined in Chapter 1. Notice these definitions
are provided for the sake of characterizing the semantic of our approach, yet they
do not necessarily correspond to the implementation.
The function generate(M, β) is then:

generate(M, β)→ T =



(〈β(M)1,

generate(M ∪ β(M)1, β)〉, . . . ,

〈β(M)k,

generate(M ∪ β(M)k, β)〉, . . . ,

〈β(M)n,

generate(M ∪ β(M)n, β)〉) if fixPoint(M) 6= ⊥
∧¬isSolved(M)

() otherwise

It can be computed with a classic CP Depth-First Search. Example 5 illustrates
a CBT generation, and Figure 3.3a provides a visual example of a generated CBT
that will be replayed further in this chapter.

Example 5. Consider the branching procedure βff of Example 1 (Chapter 1) and
the model M = {x > 0 =⇒ y > 2}, where x ∈ {0, 1, 2, 3} and y ∈ {0, 1, 2, 3, 4}.
generate(M, βff ) = (〈x = 0, (. . .)〉, 〈x 6= 0, (〈y = 3, (. . .)〉, 〈y 6= 3, (. . .)〉)〉)
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b1
j+1 b2

j+1 b3
j+1

b1
j b2

j

(a) CBT generated with M ∪ φM

b1
j+1 b2

j+1 b3
j+1

b1
j b2

j

(b) Replay by M ∪ φ

Figure 3.3: A CBT generated by a model M ∪ φM and replayed by an extended model
M ∪ φ.

CBT replay: Let t = (〈b1, t1〉, . . . , 〈bi, ti〉, . . . , 〈bn, tn〉). Let us define the
function replay(t, M) whose purpose is intuitively to re-traverse a CBT t using a
model M and to return a new CBT tincl such that tincl ⊆ t:

replay(t, M)→ T =



(〈b1, replay(t1, M ∪ b1)〉, . . . ,

〈bk, replay(tk, M ∪ bk)〉, . . . ,

〈bn, replay(tn, M ∪ bn)〉) if fixPoint(M) 6= ⊥
∧¬isSolved(M)

() otherwise

The rationale behind this function is to make sure that exactly the same search
space is visited. Moreover, we want to guarantee that the modifications made to the
constraint store (i.e., adding or removing constraints to the store, and modifying
the variable domains accordingly) are done in the exact same order. From the
definitions, we can see that, as long as β is a deterministic function and φM is
subsumed by φ, we have that (Property 1 and 2):

Property 1. ∀β : replay(generate(M, β), M) = generate(M, β)

Property 2. replay(t, M ∪ φ) ⊆ replay(t, M ∪ φM)

In other words, replaying with the original model leads to the original CBT, and
extending the model leads to a CBT that is included in the original one.
An illustration of a replay of the CBT of Figure 3.3a is given in Figure 3.3b. In

this figure, the extended model M∪ φ is able to prove infeasibility at the red node,
i.e., before the baseline model M∪ φM. The time required to visit the 3 gray nodes
is therefore saved.
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propagator evaluation: the evaluation of a propagator φ is simply done
by computing in sequence:

t← generate(M ∪ φM, β) (3.1)

replay(t, M ∪ φM) (3.2)

replay(t, M ∪ φ) (3.3)

Then we compare the results of the two latter runs, which both use replay and
hence incur the same search overhead. It is important that the generate run is done
with the baseline problem M ∪ φM, because, thanks to the additional propagation
performed by φ, the run with M ∪ φ may skip some parts of t. However, all of the
runs will always explore the same search space and visit the shared nodes in the
same order.
This approach offers two significant advantages: 1) it allows tackling arbitrarily

large instances, since a limit (e.g., time or number of nodes) can be enforced on
the first run and the replays will still be guaranteed to explore the same search
space. 2) It allows using any search strategy, including dynamic ones, making the
evaluation more realistic.
Interestingly, if a limit to the generation is imposed, M ∪ φ might actually find

one additional solution. This occurs if the generation is stopped at an internal node
with a partial assignment that is part of a solution, not found by M∪ φM since the
generation was stopped due to the imposed limit. In this case, M ∪ φ can remove
more domain values inconsistent with the partial assignment, and by doing so, it
might reduce the domains up the point where a total assignment is found, i.e., an
additional solution is discovered.
Finally, let us designate as metric(t, M) the metric quantity5 required to replay

the CBT t with the model M. In particular, we respectively write time(t, M) and
backtracks(t, M), the time and the number of backtracks needed to traverse t.

3.2.2 Limitations

There are a few limitations to our approach that we must acknowledge. First, one
can only use monotonic [Tac09, ST09] propagators in the baseline model M. A
monotonic propagator is a propagator φ such that D1

i ⊆ D2
i =⇒ φ(D1

i ) ⊆
φ(D2

i ), for any variable i considered by the propagator. Intuitively, this means that
the more the domains are reduced, the more the propagator can infer inconsistent
values. This property is required because once the model is extended with φ, more
pruning might happen because of φ, implying reduced domains. If some propagators
of M are not monotonic, they might prune less than when the CBT was generated.
This has undesirable implications. For instance, one could reach a leaf solution
node while still having unbound solution variables.
Another limitation is that we only allow the evaluation of a propagator φ by

comparing a model M ∪ φM with an extended model M ∪ φ. This requirement is
due to ensure that replay(t, M ∪ φ) ⊆ replay(t, M ∪ φM). This means that if we

5 Similarly to the definition given in Chapter 2.
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have two propagators φ1 and φ2 for a constraint that do not subsume each other,
one cannot use the model M ∪ φ1 as a baseline and replay with only M ∪ φ2. One
would have to replay with M ∪ φ1 ∪ φ2, or generate with M only (if it is sufficient
to solve the problem in a sound manner) and replay with M∪ φ1 and with M∪ φ2.6

Finally, one could argue that when using the replay, we are comparing the stronger
model M ∪ φ in a search tree that would never be visited in practice, since it has
been generated using the baseline model. We argue that in practice the replayed
search tree is often similar to what it would be using the real dynamic search. We
conducted a few small experiments to illustrate this. The results are given in Ta-
ble 3.1. We first experimented with the Golomb ruler (length 11). The CBT was
generated with the branching procedure of Example 1 using forward checking as
the filtering technique for the AllDifferent constraints. The replay uses GAC
AllDifferent constraints. The number of nodes was decreased from 7386480
to 2929035 using the stronger filtering. Even though the search tree is drastically
reduced (more than divided by two), we measured that there are ∼ 99% of (local)
matching decisions, i.e., decisions imposed during the replay that are exactly the
same as the ones that would locally be returned by the real dynamic branching
procedure if it was called at each search node of the replayed tree. This demon-
strates that although being a static strategy, decisions of the replay are very similar
to what would happen in practice with the dynamic strategy. We then considered
an instance of the Job Shop Scheduling problem (36 activities) with a Conflict Or-
dering Search strategy [Gay+15], a state-of-the-art dynamic search strategy. The
baseline model M ∪ φM only uses binary constraints for the Disjunctive con-
straints, and the algorithms of [Vil07] are used in M ∪ φ. In this case, the node
ratio is ∼ 0.44 and the percentage of matching decisions is ∼ 84%, which is still
very large. Finally, we experimented with the Traveling Salesman Problem with the
branching procedure of Example 1. M ∪ φM uses a sum of Element constraints,
while M ∪ φ uses the MinimumAssignment constraint [Foc+99] with exact re-
duced costs, as proposed in [DCP16]. We considered the instance gr21 from the
TSPLib [Rei91]: the node ratio is ∼ 0.09, and ∼ 22% of the decisions are matching.
This is less than for the other two problems, but the search space reduction is more
drastic.
Clearly, the comparison between M ∪ φM and M ∪ φ remains artificial to some

degree, because an actual dynamic strategy may behave differently for the run using
M∪ φ. Still, the ability to ensure conditions C.1 and C.2 and therefore isolate the
contributions of φ, while using an arbitrary strategy, is a significant asset: one
can exactly measure how fruitful/detrimental a filtering algorithm is in a realistic
practical context.

6 A last solution is to use as a baseline the model that makes use of the constructive disjunction
of φ1 and φ2 [WM96, MW95, Jef+10], that only prunes when both algorithm prune. However,
in the general case, the time overhead for performing deductions only made by φ1 or φ2 cannot
easily be deducted from the propagation time. This penalizes the baseline from a time perspective
when it is replayed.
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Problem Golomb ruler Job Shop Traveling Salesman

# Nodes with M ∪ φM 7386480 898 82194

# Nodes with M ∪ φ 2929035 399 7177

% Same Decisions 99.86 84.42 21.77

Table 3.1: Number of nodes of replays by M ∪ φM and M ∪ φ, and percentages of locally
matching decisions with the dynamic strategy.

3.2.3 Implementation of the Replay Technique

To implement the replay technique, we first generate a flat linearized version of the
CBT by doing a preorder taversal using the baseline model M∪ φM. This linearized
CBT is simply a sequence of triples of the form 〈b, c, d〉 meant to represent a node
of the original CBT. For a given triple 〈b, c, d〉:

• b is the branching constraint on the branch between the node it represents
and its parent.

• c is the number of children of the node.

• d is the number of descendants of the node.

As we shall see, those triples are required to re-traverse the CBT with a given
extended model M ∪ φ.

linearizing the CBT must be done so that when the sequence is tra-
versed, the behavior is the same as a CP Depth-First Search. The sequence must
therefore represent the preorder traversal of the CBT. As an example, the sequence
for the CBT given in Figure 3.3a is:

〈>, 2, 5〉, 〈b1
j , 3, 3〉, 〈b1

j+1, 0, 0〉, 〈b1
j+1, 0, 0〉, 〈b3

j+1, 0, 0〉, 〈b2
j , 0, 0〉

where > is the True clause.
Recording the sequence is done with Algorithm 3.2.1. This procedure defines in

a recursive manner a classic CP Depth-First Search. More specifically, each time
a branching constraint b is added to the model M, a triple 〈b, c, d〉 is added to
a sequence S, where c is the number of branching constraints generated by the
branching procedure β. However, unless the search proves infeasibility or finds a
solution, the number of descendants d is only known after the recursive call. The
triple is therefore updated at that moment. The calls to RECORD_STATE(M)
and RESTORE_STATE(M) allow backtracking the state of the constraint store.
We do not enter into details on how backtracking is performed, so that trail-based
(inherited from [War83, AK99]) and copy-based [Sch99] solvers fit into our pro-
posed framework.
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Algorithm 3.2.1 : Linearized CBT Generation Algorithm

1 Algorithm generate(M, β)
Input :A model M and a branching procedure β
Output :A sequence S that represents a generated CBT

2 S←− () /* Empty Sequence */

3 nVisitedNodes←− 0
4 visit(M, β, S,>) /* > is the True clause */

5 return S

6 Algorithm visit(M, β, S, b)
Input :A model M, a branching procedure β, a sequence S and a

branching constraint b
Output :A CBT t

7 nVisitedNodes←− nVisitedNodes + 1
8 if fixPoint(M) = ⊥ then
9 S←− S|〈b, 0, 0〉 /* Infeasibility */

10 else if isSolved(M) then
11 S←− S|〈b, 0, 0〉 /* Solution */

12 else
13 (b1, . . . , bi, . . . , bc)←− β(M)
14 nodeIndex←− nVisitedNodes /* Store the current node index.

*/

15 S←− S|〈b, c, ?〉 /* Number of descendants not known yet. */

16 for i← 1 to c do
17 RECORD_STATE(M)

18 M← M ∪ bi /* Add bi to the constraint store */

19 visit(M, β, S, bi)

20 RESTORE_STATE(M)

21 end
22 SnodeIndex ←− 〈b, c, nVisitedNodes− nodeIndex〉 /* Store the

number of descendants after the recursive call. */

23 end
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replay algorithm: A sequence generated with a baseline model M ∪ φM
can be replayed using any extended model M ∪ φ with Algorithm 3.2.2. Notice
that if the baseline model M∪ φM is replayed, this “linearized" process will behave
exactly as the traditional search. Conversely, if the baseline model is extended with
φ, some additional pruning might occur, implying that the store is either in a
failed or in a solution state at an internal node n of the CBT (i.e., we may have
fixPoint(M) = ⊥ or isSolved(M), see Definition 4 in Chapter 1). This event is
illustrated in Figure 3.3b, where the red node is failed due to additional pruning.
When this happens, the replay process is able to directly skip all the descendants
of the current node. This is illustrated by the light gray branching constraints in
Figure 3.3b. The sequence replayed by M ∪ φ becomes:

〈>, 2, 5〉, 〈b1
j , 3, 3〉, 〈b1

j+1, 0, 0〉, 〈b1
j+1, 0, 0〉, 〈b3

j+1, 0, 0〉,︸ ︷︷ ︸
Skip

〈b2
j , 0, 0〉

Algorithm 3.2.2 : Replay Algorithm for a linearized CBT.

1 Algorithm replay(M, S)
Input :A model M and a sequence of nodes obtained by linearizing the

CBT t
Output : time(t, M), backtracks(t, M)

2 nBacktracks←− 0
3 replayNode(1)
4 return nBacktracks

5 Algorithm replayNode(index)
6 RECORD_STATE(M)
7 〈b, nChildren, nDescendants〉 ←− Sindex
8 newIndex←− index + 1
9 M← M ∪ b

10 if fixPoint(M) = ⊥∨ isSolved(M) then
11 nBacktracks←− nBacktracks + 1
12 RESTORE_STATE(M)
13 return newIndex + nDescendants /* Skip the subtree */

14 end
15 for i← 1 to nChildren do
16 newIndex←− replayNode(newIndex)
17 end
18 RESTORE_STATE(M)
19 return newIndex

sharing sequences An interesting property of this approach is that the
sequence can be serialized into files (as proposed in [DHM00, LDD03]). We can
therefore replay CBTs that do not fit in RAM (if a sequence is too large to fit in one
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file, it can simply be divided into chunks and put in several files). Additionally, those
files can be shared among the community. Provided a well-defined format exists, all
solvers implementing Algorithm 3.2.2 will be able to replay CBTs obtained using
another solver. This opens the doors to common evaluation of propagators in the
community.

3.3 assessing the potential of a propagator

We assume we are interested in reducing the time for computing the output of a
filtering procedure φ, without changing the function definition, i.e., without chang-
ing its input-output behavior. In particular, our goal is to assess the potential of
two improvement directions: 1) increasing the efficiency of the current implemen-
tation/algorithm and 2) guarding the activation of φ with a necessary condition.
Notice that the content of this section is actually orthogonal to the replay technique
presented in Section 3.2. Yet, both can be combined, as exemplified in Section 4.5.
In order to assess the potential of improving the efficiency of φ or controlling

its activation, we instrument the solver to collect detailed information about the
propagator. Specifically, we store the total time for running φ, making a distinction
between activations that actually lead to some pruning and fruitless activations.
The two time statistics are respectively referred to as t+φ and t−φ . Making those
measurements only requires to write a procedure wφ that wraps φ and is used
instead. Every time wφ is called during search, it registers the current domain size
of the decision variables and calls φ. If the size of any domain has changed, the
CPU time required to execute φ is added to the t+φ counter. If not, it is added to
the other counter t−φ . The complexity of using wφ is θ(n) where n is the number
of decision variables. This approach is lightweight and easy to implement on most
solvers.
It is now easy to get a rough, but valuable, estimate of the impact of specific

measures on the solution time. First, we can estimate the impact of reducing the
run time of φ by a factor µ ∈ [0, 1] by computing:

time(t, M ∪ wφ)− µ · (t+φ + t−φ ) (3.4)

i.e., by subtracting a fraction of the total computation time of φ. Similarly, we can
assess the impact of guarding φ with a necessary condition that stops a fraction
µ ∈ [0, 1] of the fruitless propagator activations. This is done by computing:

time(t, M ∪ wφ)− µ · (t−φ ) (3.5)

This simple, linear, approach allows us to compare fictional implementations of φ
with real ones. By doing so, we get a chance to explore which values of µ would be
necessary for beating the baseline, and we get a better understanding of the effort
required to achieve such a goal. In particular, we can approximately evaluate the
impact of having an hypothetical time complexity for a fictional propagator. For
instance, if the current implementation for φ is in O(n3) (where n is the number
of variables), then we can estimate roughly what would be its cost for an O(n2)
algorithm by choosing µ = (n− 1)/n in Equation 3.4.
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3.3.1 Representative Propagator Evaluation with Performance Profiles

While it is interesting to make a quantified evaluation of filtering procedures for
a given CBT, deeper and more general insights can be obtained by making use
of benchmark suites. In order to aggregate the information and derive general
conclusions, we rely on performance profiles [DM02]. A performance profile is a
cumulative distribution function F(τ) of a given performance metric τ. In our case,
the τ value is the ratio between the solving metric (typically, time or number of
backtracks) of a target approach and that of the baseline M ∪ φM.
Formally, let φ0, φ1, . . . be the set of all considered implementations (possibly

fictional, see Section 3.3.2) of φ, and let T be the set of all CBTs generated from
the benchmark instances. Then the performance profile of φi is given by:

FM∪φi (τ) =
1
|T |

∣∣∣∣{t ∈ T :
metric(t, M ∪ φi)

metric(t, M ∪ φM)
≤ τ

}∣∣∣∣ (3.6)

For the sake of clarity, let us provide an introductory visual example in Figure 3.4.
In this plot7, one can see that the profile FM∪φM for the baseline model is a step
function such that FM∪φM (τ < 1) = 0 and FM∪φM (τ ≥ 1) = 1 (by definition, it
will always be the case). Moreover, one can read that FM∪φ(2) = 0.75. This means
that the performance of M ∪ φ is within a factor of 2 from the baseline in 75% of
the benchmark problems. Assuming the benchmark is representative enough, the
value of F(τ) can be interpreted as a probability.
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Input Format

The input to be passed consists of a JSON �le following a JSON schema available at the end this section. A JSON schema helps to

validate the JSON �le. The user can use a validator (http://www.jsonschemavalidator.net/) to ensure its input data is correct according

to the Schema. The following properties must be de�ned in the JSON �le :
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metric
De�nes the name of the metric. It is used to label the x-axis of the plot.

labels
Labels that can be assigned to instances.

instances
An array assigning labels to instances. The i  element of this array gives the indices (in the lables array) corresponding to the labels assigned to the i  instance.th th

data
The actual data for each compared approach. An approach is de�ned by its name and several metric components. For each metric component, a name must be given
as well as an array with the corresponding value for each instance. The i  element gives the metric quantity of the metric component for the i  instance. The total
metric of an instance is the sum on all metric components for this instance.

th th

½

Input Example

The following JSON �le corresponds to the plot that is shown when this page is loaded.

example.json2   Data�
Figure 3.4: Example of a Performance Profile to compare a baseline model M ∪ φM with

an extended model M ∪ φ.

7 The reader might be surprised by the x-axis of the plots, as there is a change of scale on the
right-most side. This helps to have a long-term view of the profiles while keeping the focus on
the τ region of interest.
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An important value of a performance profile FM∪φi (τ) is in τ = 1. For a given φi,
FM∪φi (τ = 1) gives the percentage of instances that can be solved using M ∪ φi
with a value for the target metric that is less than (or equal to) the one of the
baseline model M ∪ φM. For instance, in Figure 3.4, 50% of the instances are
solved by the extended model M ∪ φ in a time smaller or equal to the one of the
baseline. The space of τ is therefore divided in two important regions, τ < 1 and
τ ≥ 1. If FM∪φi (τ) = 1 for some τ < 1, then using the model M ∪ φi is always
better than using the baseline, i.e., M ∪ φi provides a speed-up for every instance.
Unfortunately, this situation rarely happens in practice and it is thus interesting to
read more carefully the performance profile. For a given pair φi, φj it is interesting
to observe FM∪φi (τ) - FM∪φj(τ), which indicates the gain of φi over φj. That is,
FM∪φi (τ) - FM∪φj(τ) reflects how many more (or less) instances can be solved
by using M ∪ φi instead of M ∪ φj within a factor τ of the baseline metric value.
Finally, the region above FM∪φ(τ) for τ < 1 is very informative, as it exhibits
the gain of a given φi compared to the baseline M ∪ φM and to M ∪ φ. Finally,
instances with similar performance give rise to step-like changes in FM∪φ(τ), while
a linearly growing FM∪φ(τ) is symptomatic of a diversified performance across the
benchmark suite.

3.3.2 Fictional Propagators

In order to assess the potential for improvements, we considered the following
classes of fictional implementations:

• φcost
µ , i.e., an implementation for which the time is reduced by a factor µ.

• φcost
O( f (n)), i.e., an implementation for which the time complexity is O( f (n)).

It is a particular case of φcost
µ for which µ is well selected based on the actual

complexity of φ and on the value of the parameter n.

• φoracle
p , i.e., an implementation that guards φ with a necessary condition

causing useless activations with a probability p.

We then use performance profiles as described in Subsection 3.3.1 to derive general
conclusions about the fictional propagators. For fictional implementations of φ,
time(t, M ∪ φi) is computed using Equation (3.4) or (3.5).
Assuming the studied benchmark suite is representative enough, the joint use

of performance profiles and fictional propagators allows us to provide quantitative
and representative potential for improvements. The µ parameter in equations (3.4)
or (3.5) plays an important role, as it allows quantifying how much reduction should
be targeted to obtain the corresponding performance profile. In particular, the
profile of φoracle

0 (perfect necessary condition) bounds the gain that can be obtained
by any necessary condition. The profile of φcost

O(1)(τ) (zero-cost implementation8)
bounds the performance of any possible implementation. Against common intuition,

8 Another way to think of φcost
O(1)(τ) is to consider additional inference made by φ to be integrated

into the baseline model.
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φcost
O(1) is not guaranteed to beat the baseline, since a weak filtering done by φ may

trigger other (possibly expensive) propagators during fix point iteration.

3.3.3 Characterization of Time Efficiency and Potential

The following definitions allow quantifying the gain obtained thanks to the exten-
sion of the baseline model M ∪ φM with φ.

Definition 9. The actual gain Gφ
M∪φM

of a filtering procedure φ compared to a
baseline model M ∪ φM is the probability that time(t, M ∪ φ) ≤ time(t, M ∪ φM)
for any CBT t ∈ T. It can be estimated with FM∪φ(1).

The actual gain quantity represents the proportion over all existing CBTs for which
M ∪ φ is faster to traverse than M ∪ φM. While it is of course impossible to
compute this value, we can estimate it with FM∪φ(1). The next two definitions
provide the same quantity while considering the best fictional propagators that can
be obtained out of φ.

Definition 10. The upper bound gain Ḡφ
M∪φM

of a filtering procedure φ com-
pared to a baseline model M ∪ φM is the probability that time(t, M ∪ φcost

O(1)) ≤
time(t, M ∪ φM) for any t ∈ T. It can be estimated with FM∪φcost

O(1)
(1).

Definition 11. The activation-control upper bound gain G̊φ
M∪φM

of a filtering pro-
cedure φ compared to a baseline model M ∪ φM is the probability that time(t, M∪
φoracle

0 ) ≤ time(t, M ∪ φM) for any t ∈ T. It can be estimated with FM∪φoracle
0

(1).

The quantity Gφ
M∪φM

provides the probability that φ will actually be beneficial to
solve an instance, if it is used to extend the model M ∪ φM. As long as it is non-
zero, it means some gain could be obtained. Of course, the higher the value, the
more φ is actually useful in practice in general. Quantities Ḡφ

M∪φM
and G̊φ

M∪φM

are of great interest when compared to Gφ
M∪φM

, as they allow quantifying the
gap between the current gain, and the one that could be obtained by working on
more efficient algorithms/implementations or finding necessary conditions for the
algorithm to prune. Clearly, if Ḡφ

M∪φM
− Gφ

M∪φM
u 0+, devising a more efficient

algorithm will not be very fruitful in terms of practical efficiency.

potential of inference rules: It is sometimes easier to find inference
rules for a constraint than to directly propose an efficient algorithm to apply those
rules. Instead of directly investing energy in order to find an efficient algorithm,
one could postpone this work until the potential benefit of its discovery is known:
an inefficient but easy algorithm to compute φ might be written in order to apply
the inference rules. The value Ḡφ

M∪φM
can then be used to quantify how fruitful

in practice it would be to actually construct an efficient algorithm performing the
inference rules. Again, if Ḡφ

M∪φM
is very small, investing some time to find such an

algorithm would not be beneficial in practice.
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global constraint maximal propagation: In the same direction,
another aspect that is useful is the gain of the maximum propagation that can
be performed by a global constraint with respect to a given consistency (e.g.,
GAC or Generalized Bound Consistent (GBC)). In particular, studying constraints
for which reaching a given consistency is NP-hard provides a lot of insight. An
inefficient propagator to get the given consistency is straightforward: it is sufficient
to embed a search process in the propagator. In the case of GAC, any instantiation
of the GAC-Schema [BR97] can be used. From that, we can compute Ḡφmax

M∪φM
,

where φmax is the inefficient procedure allowing to reach the level of consistency.
Ḡφmax

M∪φM
gives the maximum gain that could ever be reached using the given level

of consistency. Again, this can be compared with existing approaches in order to
quantify how fruitful it would be to be able to prune more. The gain might again
be negligible, meaning that research time should be better spent looking for new
search strategies or models, rather than improving the consistency level.

3.4 implementation in the oscar solver

This section explains how the proposed framework is used in the OscaR solver
[Osc12]. It also gives some implementation details and design choices. The design
of the replay framework was guided by the motivation of making it orthogonal
to the existing OscaR search and without requiring any modification of existing
default search heuristics (such as [Gay+15]). The existing search of OscaR was
kept unmodified and agnostic to the replay framework. A search observer linearizes
the search by capturing branching decisions into closures.
As an illustrative example, we use the well-known n-Queens problem. The OscaR

model is provided in Figure 3.5. It has been extended to integrate the replay tech-
nique. The additional instructions specific to the replay framework are highlighted
in bold.

initial model: The model without replay is quite straightforward. The posi-
tion variables of the queens are defined in lines 3-8. The constraints imposing that
the queens cannot attack each other are declared in lines 10-12. They are, however,
only added to the constraint store in the startSubjectTo bloc (line 20) where the
search is effectively started (under some additional constraints that will eventually
be removed from the model on search completion). In our case, this allows us
to impose the allDifferent constraints before starting the search. We finally
define the search heuristic in line 15 (the heuristic is here βff , from Example 1 in
Chapter 1).

CBT generation: The generation of the CBT is simply done by passing
an additional search-listener parameter to the standard search. This listener stores
the required sequence of triples used to replay (see Algorithm 3.2.1). The replaying
searches will then re-use this exact same sequence. Notice that Depth First Limited
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1 object Queens extends CPModel with App {
2
3 val nQueens = 10
4 // Number of queens
5 val Queens = 0 until nQueens
6
7 // Variables
8 val queens = Array.fill(nQueens)(CPIntVar.sparse(0, nQueens − 1))
9

10 val allDiffs = Seq(allDifferent(queens),
11 allDifferent(Queens.map(i => queens(i) + i)),
12 allDifferent(Queens.map(i => queens(i) − i)))
13
14 // Search heuristic
15 search(binaryFirstFail(queens))
16
17 val linearizer = new DFSLinearizer()
18
19 // Execution with FC allDifferent
20 val statsInit = startSubjectTo(){
21 add(allDiffs,Weak)
22 }(cp, linearizer)
23
24 // Replay with AC allDifferent
25 val statsReplayAC = cp.replaySubjectTo(linearizer, queens) {
26 add(allDiffs,Strong)
27 }
28 }

Figure 3.5: Model for the n-Queens problem. The additional required instructions to replay
and track a constraint are in bold. The rest of the model remains unchanged.

Discrepancy Search [HG95] and Large Neighborhood Search [PR10] could also be
used to perform the generation, as they are based on a regular OscaR search.
The listener interface defined in OscaR is given in Figure 3.6. This interface

allows defining the expected behavior when a node is expanded in Algorithm 3.2.1,
i.e., after the branching procedure has been called. The only method (onExpand)
takes an Alternative as an argument, which is basically a closure. This closure is to
be applied when the branching is performed. The alternative therefore encapsulates
any branching constraint addition to the model (i.e., M∪ bi). The implementation
of the linearizer (given in Figure 3.7) is then direct: an internal buffer is filled with
preorder elements, i.e., pairs with a branching constraint and a number of children,
each time a node is expanded. The number of descendants of each node is then
computed from this sequence after the generation is completed (without going into
details, the sequence of triples is computed in two passes because the search in
OscaR is slightly different from Algorithm 3.2.1).
From a modeling point of view, to be able to generate the sequence during a

search, the only requirement is to set up a linearizer listener (line 17 in Figure 3.5)
and pass it as a parameter, as in line 22. After this search is finished, the sequence is
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stored and we can replay it as many times as we want, potentially with constraints
having a stronger pruning added to the model (as in line 26).

1 trait DFSearchListener {
2 /∗∗ Called on expand events ∗/
3 def onExpand(currentBranchAlternative: Alternative, nChildren: Int): Unit
4 }

Figure 3.6: Depth-First Search Listener interface

1 class DFSLinearizer extends DFSearchListener {
2 val nodes : ArrayBuffer[PreorderElement] = ArrayBuffer[PreorderElement]()
3 val nDescendantsOf : ArrayBuffer[Int] = ArrayBuffer[Int]()
4 def onExpand(currentBranchAlternative: Alternative, nChildren: Int) = nodes += new

PreorderElement(currentBranchAlternative, nChildren)
5 }
6 class PreorderElement(val alternative: Alternative, val nChildren: Int) extends

Tuple2[Alternative, Int](alternative, nChildren){}

Figure 3.7: Depth-First Search Linearizer. This class implements the interface of Fig-
ure 3.6 to linearize the Depth-First Search of OscaR .

CBT replay: In order to replay the model, we call the replaySubjectTo pro-
cedure (line 25 in Figure 3.5) that implements Algorithm 3.2.2. This procedure
must know what variables must be assigned in order to detect solutions. OscaR
indeed has no explicit store status when the problem is solved. During a replay, we
consider that a solution is found once all constraints are satisfied (i.e., no failure
during the fix point and no domain wipe-out) and all the variables passed to the
replay primitive are assigned.
Once completed, the replay primitive returns the solution time, the number of

found solutions, the number of backtracks and the number of nodes. Those statis-
tics can be used to compare the performance of the baseline and that of the
extended models.

tracking a constraint: It is optionally possible to track the activation
of a propagator/constraint. This is useful to perform a study as described in Sec-
tion 3.3. Basically, the modeler must just use the track function that returns the
constraint passed as a parameter, augmented with code that implements the track-
ing behavior. This allows one to measure the time for each propagation call of the
constraint. In order to separate pruning propagation time (t+φ ) from non-pruning
propagation time (t−φ ), we must specify the variables for which we want to make
this distinction. This is the second argument of the track function. The tracking
behavior then verifies that some pruning happened for those variables by checking
the size of their domains before and after propagation. The complexity for tracking
is therefore O(n).
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3.5 experimentation

We applied our approach to several constraints and ran tests on AMD Opteron pro-
cessors (2.7 GHz) using the Java Runtime Environment 8 and the constraint solver
OscaR [Osc12]. For each solved instance, we limited the run-time of generate(M, β)
to 600 seconds. Instances for which generate(M, β) took less than 1 second were
filtered out. The additional filtering put on top of the baseline model was executed
with a lower priority by the constraint scheduler.

3.5.1 AllDifferent

We analyzed the well-known alldifferent constraint, since it is ubiquitous in
Contraint Satisfaction Problems. The alldifferent forward checking algorithm
[DSVH90, VHD87] (written allDiff FWC) is used in the baseline model, and we
considered the following additional filtering methods:

• the GBC allDifferent, written allDiff BC [LO+03].

• the counting-based allDifferent, written allDiff CB, and described in
[MP15].

• the GAC allDifferent [Rég94], written allDiff AC.

We used the 291 instances from the XCSP 2.1 benchmarks that contain allD-
ifferent constraints, namely bqwh-18-141_glb, medium, bqwh-15-106_glb,
QG3, ortholatin, small, latinSquare, pigeons_glb, compet02 and compet08.
To assess the benefits of allDiff BC, allDiff CB and allDiff AC, we replayed with

all the combinations of additional filtering procedures such that the replayed CBT
is included into the generated one. We also considered models without allDiff FWC
when possible (allDiff CB and allDiff AC subsume allDiff FWC). Finally, the priority
of allDiff AC in the propagation queue was the lowest, allDiff BC and allDiff CB had
the same priority, and allDiff FWC had the highest priority. The branching procedure
used to generate the CBTs is βff , as defined in Example 1.
Figure 3.8 provides the time performance profiles. Notice that we do not report

the thirteen propagator combinations but only the profiles of the most different
approaches in order to make the plots easier to read. From a time perspective,
the approaches that are not shown have a profile with a shape that is generally
in-between the curve of fwc∪ ac and that of cb∪ bc∪ ac.
Our first observation is that even if fwc∪ bc has an actual gain Gφ

M∪φM
' 0.3 (see

Section 3.3.3) compared to the baseline (see the orange line in τ = 1), it is clearly
outperformed by the other approaches. cb∪ bc (red curve) and fwc∪ cb∪ bc (purple
curve) require a bit more time to approximately catch up with the other models.
More importantly, we can see that while fwc ∪ cb has not the highest gain for τ

values close to 0, it actually has the highest actual gain Gφ
M∪φM

' 0.93 (see the
green line in τ = 1) and stays better for larger τ values. This is of great interest
as the counting-based allDifferent algorithm is actually very simple.
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Figure 3.8: Time performance profiles for combinations of AllDifferent propagators for
XCSP instances.

If we now look at the backtrack profiles of Figure 3.9, we better understand why
the fwc∪ bc model is outperformed by the others, its gain in backtracks being way
smaller than the other ones, especially for small τ values. As expected from the
time profiles, the gains of the other models all have the same shape. Still, we can
notice that fwc ∪ bc is one of the “worst” approaches in terms of backtrack gain,
while it has the highest time gain, as just mentioned.

0.0 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.01.0
0

10

20

30

40

50

60

70

80

90

100

Figure 3.9: Backtrack performance profiles for combinations of AllDifferent propagators
for XCSP instances.



3.5 experimentation 51

As a brief conclusion, we learned that Bound Consistency is not a sufficiently
strong level of consistency for the alldifferent constraint, from the point of
view of both time and number of backtracks. On the contrary, the counting-based
allDifferent infers almost as much as the Arc Consistency algorithm, allowing
it to get similar time performances. Still, these conclusions must be taken with
some care, as the problems we consider are quite structured.

3.5.2 Energetic Reasoning for the Cumulative Constraint

We analyzed the Energetic Reasoning (ER) propagator for the cumulative con-
straint [AB93, BLP00] on RCPSPs. The baseline model M employs the Time-
Tabling algorithm from [LBC12] and the ER Checker [BLPN01], which both run in
O(n2) [BLPN01, DP14]. We did not use the improvements proposed in [DP14]. We
use a dynamic search strategy, i.e., the classic SetTimes approach from [LP+94].
We consider two benchmarks: the BL instances [BLP00] (20-25 activities) and the
PSPLIB (j30 and j90, with 30 and 90 activities) [KSS99]. We focus on investigating,
for the chosen benchmarks: 1) the potential benefit of having an ER algorithm run-
ning in O(n2) rather than in O(n3); 2) the potential benefit of a perfect necessary
condition (see [VCLP14] and [BHS11] for related works).
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Figure 3.10: Performance profiles for real and fictional (φcost
µ ) ER propagators on the BL

instances.

Figures 3.10/3.11 and Figures 3.12/3.13 report profiles respectively for the BL
and j90 instances. The real ER propagator has an actual gain Gφ

M∪φM
' 0.5 when

BL instances are considered, but of only ∼ 0.05 for the j90 instances (see the
orange curves in τ = 1 in Figures 3.10/3.11 and Figures 3.12/3.13). The larger
problem size is a likely reason for the performance drop, so it is interesting to
analyze the fictional, reduced-cost implementations (Figures 3.10 and 3.12). In the
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Figure 3.11: Performance profiles for real and fictional (φoracle
p ) ER propagators on the BL

instances.

BL benchmark a cost reduction translates to roughly proportional benefits. On j90,
an O(n2) ER would lead to dramatic performance improvement, but it would beat
the baseline in only 40% of the cases (see the pink curve in Figure 3.12 in τ = 1).
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Figure 3.12: Performance profiles for real and fictional (φcost
µ and φcost

O( f (n))) ER propagators
on the j90 instances.

More interestingly, for the upper bound gain we have Ḡφ
M∪φM

' 0.65 (see the
green curve Figure 3.12, in τ = 1), meaning there is about a 35% portion of
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instances where the baseline would win no matter what the efficiency of ER is, i.e.,
where the additional pruning of ER is sometimes detrimental rather than beneficial:
despite an O(1) hypothetical ER, the additional ER filtering causes a larger number
of iterations to reach the fix point. On such instances, ER cannot lead to benefits
unless we find a way to activate it only when it provides an actual advantage. As
for using a necessary condition, a perfect approach would enable the same gain as
that of a O(n2) ER (see the green curve in Figure 3.13, in τ = 1), but even a small
mistake probability would cancel most of the benefits (in the same plot, compare
the green curve with the red and purple curves).
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Figure 3.13: Performance profiles for real and fictional (φoracle
p ) ER propagators on the j90

instances.

Figures 3.14 and 3.15 compare profiles for different search strategies on the
j30 instances (SetTimes and βff , as defined in Example 1): the potential gain of
reducing the cost (e.g., the green curves) is very different for the two strategies,
even if the performance of the real propagator (orange curves) is roughly identical.
From this experiment, one can realize that although ER is one of the strongest

filtering algorithms for the cumulative constraint, it does not provide much
improvement for PSPLIB instances, even if we were able to perform its computation
more efficiently. This illustrates that ER has two drawbacks when used in addition
to Time-Tabling and the ER checker on those instances: 1) a heavier computation
time, 2) a rather weak additional filtering in practice. Our simple method allows
discovering that information before investing time in the research of a more efficient
algorithm.
In addition, one can see that the possible performance improvements between

the extended and the baseline models differ substantially depending on the kind of
search strategies (static or dynamic) that we use. This points out the importance
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Figure 3.14: Performance profiles for the SetTimes dynamic strategy.
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Figure 3.15: Performance profiles for the binary static strategies.

of having an approach for the rigorous comparison of propagators using practical
search strategies.

3.5.3 Revisited Cardinality Reasoning for BinPacking

In our analysis of the RCRB propagator, we use as a benchmark the instances of
the Balanced Academic Curriculum Problem (BACP) from [Sch09, PSR13]. The
baseline model M employs the BinPacking propagator from [Sha04] and a gcc
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constraint (model A in [PSR13]). The branching procedure is again βff , as defined
in Example 1.
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Figure 3.16: Performance profiles with fictionally cost-reduced RCRB propagators.
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Figure 3.17: Performance profiles with fictionally reduced RCRB propagators (necessary
condition).

Figure 3.16 is very informative about the cost of RCRB. We can see for the
actual gain that Gφ

M∪φM
' 0.2 (see the orange curve in τ = 1 in Figure 3.16),

i.e., ∼ 20% of the instances are solved faster than the baseline model. However,
reducing the propagator cost down to 0 provides only a small gain before τ = 1.1
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(see the green curve in Figure 3.16): similarly to the ER case on j90, even a zero-
cost version of the propagator would not be able to beat the baseline in ∼ 55% of
the instances (see the green curve in τ = 1). For τ > 1.1, reducing the propagator
cost has a stronger effect, but a factor 0.9 reduction is required to solve a lot more
of the instances (see the purple curve in Figure 3.16). Hence, reducing the cost
would improve the RCRB, but not that much compared to the baseline model as
the benefits come “too late" in terms of τ. A similar analysis can be done for Figure
3.17 for the potential gain of introducing a necessary condition.

3.5.4 Unary Constraint with Transition Times

We here report results obtained with a recent approach [DVCS15]. This work ex-
tends the classic unary/disjunctive resource propagation algorithms to include prop-
agation over sequence-dependent transition times between activities. In brief,9 the
unary resource with transition times imposes the following relation:

∀i, j : (endi + tti,j ≤ startj) ∨ (endj + ttj,i ≤ starti) (3.7)

where startj, endi and ttj,i are the start and the end of an activity i, and the
minimum transition time between activities i and j, respectively.
For each considered instance, the three following filterings for the unary con-

straint with transition times were used :

1. Binary constraints10 (φb) given in Equation 3.7. The baseline model M
employs this constraint.

2. Binary constraints given in Equation 3.7 with the Unary global constraint
of [Vil07] (φb+u).

3. The constraint of [DVCS15] (φuTT).

The search strategy used to generate the CBTs was Conflict Ordering Search
[Gay+15]. Figures 3.18 and 3.19 respectively provide the profiles for time and
number of backtracks for all the 960 instances. Figure 3.20 provides a “long-term”
view of Figure 3.18.

From Figure 3.18, we can first conclude that φb+u (orange curve) is clearly worse
than φuTT (green curve) and φb (blue curve) from a time perspective. Moreover,
Figure 3.19 shows that φb+u rarely offers more pruning than φb.
In comparison, we can see from Figure 3.18 that for ∼ 25% of the instances,

φuTT is about 5 times faster than φb (see FφuTT (0.2)), and that ∼ 65% of the
instances are solved faster (see FφuTT (1)). Moreover, it offers more pruning for
∼ 100% of the instances, meaning that the actual gain in terms of the number of
backtracks GφuTT

M ' 1 (see FφuTT (1), in Figure 3.19).
From Figure 3.20, we can see that the constraint does not have too much

overhead, as φuTT is at worst 2 times slower than φb for ∼ 20% percent of the

9 A more detailed and general description will be given in Chapter 4.
10 For efficiency reasons, dedicated propagators have been implemented instead of posting reified

constraints.
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Figure 3.18: Short-term time performance profiles for the Unary Resource with Transition
Times
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Figure 3.19: Backtrack performance profiles for the Unary Resource with Transition Times

instances (FφuTT (2)− FφuTT (1)). It is a bit slower for the remaining ∼ 10%, but
almost all instances are solved in a time at most 5 times slower than the baseline
(since FφuTT (5) = 1).

The conclusion is clear: when transition times are involved, the unary resource
algorithms that do not consider them provide almost no additional filtering and
therefore only incur overhead. On the contrary, the unary resource with transition
times [DVCS15] prunes much more and is therefore often beneficial.
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Figure 3.20: Long-term time performance profiles for the Unary Resource with Transition
Times

3.5.5 Bound Consistent Cumulative

As proposed in Section 3.3.3, we studied the gain that would be provided by a
Bound Consistent cumulative constraint, in order to estimate how far the current
propagators are from the maximal pruning. The baseline model M uses poly-time
propagators that suffice to achieve the strongest propagation we can get so far
in the OscaR solver, namely Energetic Reasoning [BLPN01], Not-First Not-Last
[BLPN01], and Time-Table Disjunctive Reasoning [GHS15b]. The Bound Consis-
tent Cumulative Propagator was constructed as an exponential algorithm into which
we basically embedded a search. A checker and a propagator were constructed and
they were used to replay the generated CBTs. We only used the BL instances
[BLP00] as they remain quite small in terms of the number of activities (20-25).
We measured the backtracks and none of the instances were filtered out in this
case. Figure 3.21 gives the performance profiles and Figure 3.22 gives a zoomed
version near τ = 0. One can notice that there is still a lot to gain (it might not be
possible as Bound Consistency for the Cumulative constraint is NP-hard), and this
kind of measurement allows quantifying an upper bound on this gain. It is especially
impressive to look near 0. For instance, for almost 30% of the instances, there is
a potential gain factor of 100 (see the curves in τ = 0.01 in Figure 3.22) in terms
of the number of backtracks, even if we are already using the strongest poly-time
pruning we know so far. This illustrates that, while working on efficient practical
algorithms (e.g., [GHS15a]) is important, finding complementary poly-time and
efficient algorithms to the ones used so far would clearly provide improvement. An-
other interesting point to notice is that the Bound-Consistent propagator almost
provides no improvement compared to the checker. Devising new efficient checkers
might actually suffice.
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Figure 3.21: Backtrack performance profiles for the Bound Consistent Cumulative Con-
straint
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Figure 3.22: Backtrack performance profiles for the Bound Consistent Cumulative Con-
straint (zoomed in)





Part III

NEW SCALABLE PROPAGATORS





4
GENERAL I ZED UNARY
RESOURCE W ITH TRANS IT ION
T IMES

Unary resources with sequence-dependent transition times (also called set-up times)
for non-preemptive activities are very frequent in real-life scheduling problems. A
first example is the quay crane scheduling in container terminals [Zam+13], where
the crane is modeled as a unary resource and transition times represent the moves of
the crane on the rail between positions where it needs to load or unload containers.
A second example is the continuous casting scheduling problem [GSDS14], where
a set-up time is required between production programs.
Although efficient propagators have been designed for the standard unary re-

source constraint (UR) [Vil07], transition time constraints between activities gen-
erally make the problem harder to solve because the existing propagators do not
take them into account. A propagator for the unary resource constraint with tran-
sition times (URTT) was recently introduced [DVCS15] as an extension to Vilím’s
algorithms, in order to strengthen the filtering in the presence of transition times.
Unfortunately, the additional filtering quickly drops in the case of a sparse tran-

sition time matrix, which typically occurs when activities are grouped into families
with zero transition times within a family. The reason for a weak filtering with
sparse matrices is that it is based on a shortest path problem with free starting
and ending nodes and a fixed number of edges. The length of this shortest path
drops in the case of zero transition times. In addition, while Vilím algorithms allow
to reason with optional activities, the approach from [DVCS15] does not support
them.
The main contribution of the present chapter is to introduce a generalized unary

resource with transition times that unifies filtering rules and algorithms such that
they consider family-based transition times and optional activities. The main asset

63
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of our approach is its scalability: we obtain a strong filtering while keeping a low
time complexity of O(n. log(n). log( f )), for n activities and f families. In general
f � n, hence the theoretical complexity is very close to the one of the propagators
in [Vil07] and [DVCS15]. The filtering is experimentally tested on instances of
the Job-Shop Problem with Sequence Dependent Transition Times (JSPSDTT),
although it can be used for any type of problems, e.g., with other kinds of objective
function than the makespan minimization. We first consider the case where it is
known prior to search on which machine the activities must be executed. We then
experiment with the more general case where activities must be executed by one
of several alternative machines. The results show that our propagator improves the
resolution time over existing approaches and is more scalable.

related work As described in a recent survey [All+08], scheduling problems
with transition times can be classified in different categories. First the activities
can be grouped in batches (i.e., a machine allows several activities of the same
batch to be processed simultaneously) or not. Transition times may exist between
successive batches. A CP approach for batch problems with transition times is
described in [Vil07]. Secondly, the transition times may be sequence-dependent or
sequence-independent. Transition times are said to be sequence-dependent if their
duration depends on both activities between which they occur. On the other hand,
transition times are sequence-independent if their duration only depends on the
activity after which they take place. The problem category we study in this chapter
is non-batch sequence-dependent transition times problems.
Over the years, many CP approaches have been developed to solve such prob-

lems [FLN00, ABF04, Wol09, GH10, DVCS15]. For instance, in [ABF04], a Travel-
ing Salesman Problem with Time Window (TSPTW) relaxation is associated with
each resource. The activities used by a resource are represented as vertices in a
graph, and edges between vertices are weighted with the corresponding transition
times. The TSPTW obtained by adding time windows to vertices from bounds of
corresponding activities is then resolved. If one of the TSPTW is found unsatisfiable,
then the corresponding node of the search tree is pruned. A similar technique is
used in [AF08] with additional propagators, which are, to the best of our knowledge,
the state of the art propagators when families of activities are present.

chapter outline The chapter starts by providing the background for the
considered problems in Section 4.1. The content is then described in a top-down
fashion: Section 4.2 describes the filtering rules for the unary resource with tran-
sition times and the different algorithms to apply those rules. Then, we explain
in Section 4.3 the data structures required by the filtering algorithms. Section 4.4
gives lower bounds for the minimum total transition time that must hold in a given
set of cardinalities. This is required to strengthen the filtering. Finally, Section 4.5
compares the results of the different existing approaches for the unary resource
with transition times.
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4.1 background

Non-preemptive scheduling problems are usually modeled in CP by associating three
variables to each activity i: si, ci, and pi representing respectively the starting time,
completion time, and processing time of i. These variables are linked together by
the following relation: si + pi = ci. Depending on the problem, the scheduling of
the activities can be restricted by the availability of different kinds of resources
required by the activities. In this chapter, we are interested in the unary resource
(sometimes referred to as machine or disjunctive resource) and the propagators
associated with one unary resource. Let T be the set of activities requiring the
unary resource. The unary resource constraint prevents any two activities in T to
overlap in time:

∀i, j ∈ T : i 6= j =⇒ (ci ≤ sj) ∨ (cj ≤ si)

transition times The unary resource can be generalized by requiring tran-
sition times between activities. They are described by a square transition matrix tt
in which tti,j, the entry at line i and column j, represents the minimum amount of
time that must elapse between the activities i and j when i directly precedes j. We
assume that transition times respect the triangular inequality. That is, inserting any
activity between two activities never decreases the transition time between these
two activities: ∀i, j, k ∈ T : tti,j ≤ tti,k + ttk,j.
The unary resource with transition times constraint imposes the following rela-

tion:

∀i, j ∈ T : i 6= j =⇒ (ci + tti,j ≤ sj) ∨ (cj + ttj,i ≤ si) (URTT)

An example of a transition matrix is given in Figure 4.1, where we can notice
that it is not symmetric (e.g., tt1,2 = a 6= c = tt2,1 in Figure 4.1). As exemplified,
it induces a transition graph, that will be used in the forthcoming sections.

tt =


0 a b

c 0 d

e f 0



1

2 3

a

c

b

e

d

f

Figure 4.1: Example of a transition matrix tt and its induced Transition Graph.

family-based transition times When transition times are present, it
is often the case that activities are grouped into families on which the transition



66 generalized unary resource with transition times

times are expressed. Formally, we denote by Fi the family of activity i and by F
the set of all families. Moreover, for a given set of activities Ω, we write FΩ =
{Fi | i ∈ Ω}. In a family-based setting, the transition times are described as a
square family transition matrix ttF of size |F |. The transition time between two
activities i and j is the transition time between their respective families Fi and Fj,
and it is zero if Fi = Fj:

∀i, j ∈ T : tti,j = ttFFi ,Fj
∧
(

Fi = Fj =⇒ ttFFi ,Fj
= 0

)
(4.1)

Given a set of activities, their families and a transition matrix between families, ttF

one can expand ttF into a transition matrix between activities tt. tt is then larger
and sparser than ttF . An example of this expansion is given in Figure 4.2, where
the family transition graph induced by ttF is also illustrated. Notice that tt = ttF

is the special case occurring when each activity is in its own family.

ttF =

 0 a

b 0


1

2

ab tt =



0 0 a a a

0 0 a a a

b b 0 0 0

b b 0 0 0

b b 0 0 0


Figure 4.2: Example of a family transition matrix ttF , its induced Family Transition Graph,

and the expanded transition matrix tt if F1 = F2 = 1 and F3 = F4 = F5 = 2.

optional activities Some activities can optionally be used by the re-
source, i.e., it is unknown a priori if a given optional activity must be processed by
the resource in the final schedule. This case typically occurs when an activity must
run on one of several alternative resources [FLN00]. Following Vilím’s notation,
we call R the set of regular activities (known to be running on the resource, i.e.,
R = {i : vi}) and O the set of optional activities, with R∪O = T and R∩O = ∅.
To model optional activities, an additional boolean variable vi is used to rep-

resent the fact that the activity i is used by the machine. The unary resource
with transition times constraint involving optional activities imposes the following
relation:

∀i, j ∈ T : i 6= j ∧ vi ∧ vj =⇒ (ci + tti,j ≤ sj) ∨ (cj + ttj,i ≤ si) (URTTO)

precedence graph The precedence graph G = 〈T, E〉 is a data struc-
ture [Bru99, FLN00] used to maintain the precedences between activities of a
given resource. In this graph, each vertex represents a given activity, and there is
a directed edge from a vertex i to vertex j if and only if the activity i precedes the
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activity j, i.e., ci + tti,j ≤ sj. In [BČ10], the authors describe propagation rules for
the precedence graph while taking optional activities into account.
One can use the graph in a branching procedure (see Definition 1 in Chapter 1)

where precedences between activities are added by adding edges. A recent CP ap-
proach [GH10] demonstrated experimentally that branching on the precedences can
be effective1, using smart search techniques rather than sophisticated propagators.
Finally, from a filtering perspective, additional precedences can be detected by

computing the transitive closure of the graph.

bounds of a set of activities Ω The earliest starting time of an
activity i is denoted esti and its latest starting time is denoted lsti. The domain
of si is hence the interval [esti; lsti]. Similarly the earliest completion time of i is
denoted ecti and its latest completion time is denoted lcti. The domain of ci is
thus the interval [ecti; lcti]. These definitions can be extended to a set of activities
Ω. For instance, estΩ is the earliest time when any activity in Ω can start and
ectΩ is the earliest time when all activities in Ω can be completed. We also define
pΩ = ∑j∈Ω pj to be the sum of the processing times of the activities in Ω. While
one can directly compute estΩ = min

{
estj|j ∈ Ω

}
and lctΩ = max

{
lctj|j ∈ Ω

}
,

it is NP-hard to compute the exact values of ectΩ and lstΩ [Vil07]. Instead, one
usually computes a lower bound for ectΩ and an upper bound for lstΩ, as we will
see in this chapter.

4.2 global filtering rules and propagation algorithms

This section first describes the inference rules of the unary resource without transi-
tion times. Those rules are then extended in order to handle transition times. We
also provide the different algorithms in order to compute them efficiently. The data
structures required by the algorithms are described in Section 4.3.

4.2.1 Filtering Rules for the Unary Resource

The filtering rules presented in [Vil07] for the UR constraint fall in several categories
known as Overload Checking (OC), Detectable Precedences (DP), Not-First/Not-
Last (NF/NL), and Edge Finding (EF). They are valid for the general definition of
ectΩ of the earliest completion time of a set of activities Ω ⊆ T. However, since
the computation of its exact value is NP-hard, their implementation relies on an
efficient computation of a lower bound ectLB0

Ω , defined as:

ectLB0
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′} (4.2)

To define the different rules, we use the notation ectΩ even if ectLB0
Ω is used in

practice, as we will use a stronger lower bound under the presence of transition

1 In their case, they do not actually use a precedence graph structure explicitly, but reify the
precedence constraints and branch on the associated boolean variables.
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times later in this chapter. Each rule has a symmetric counterpart that can easily
be retrieved from the given definitions.

overload checking This rule tries to detect an inconsistency given the
current domains. Intuitively, for a set of regular activities Ω ⊆ R, if the earliest
completion time is found to be larger than the latest completion time, an infeasibil-
ity is detected. Additionally, if Ω is extended with an optional activity i such that
there would be an inconsistency, we know that the activity cannot be executed by
the machine. Formally, we have:

∀Ω ⊆ R, ∀i ∈ (T \Ω) : ectΩ∪{i} > lctΩ∪{i} =⇒ ¬vi (OC)

Notice that if we have i ∈ R ∧ ¬vi, the constraint is infeasible.

detectable precedences This rule detects new precedences between
pairs of activities. The reasoning uses the set of activities DPrec(R, i) that can be
detected as preceding a given activity i based on the current domains. It is defined
as:

DPrec(R, i) = {j 6= i ∈ R : ecti > lstj} (DPrec)

The inference rule states that the earliest start time of an activity i must at
least be the earliest completion time of the set of activities that are detected as
preceding i, that is DPrec(R, i). Formally:

∀i ∈ T : vi =⇒ esti = max(esti, ectDPrec(R,i)) (DP)

Notice that only the activities known to be running on the resource can be used
to update other activities, hence the use of DPrec(R, i) and not DPrec(T, i). On the
contrary, all activities (including optionals) can be updated. However, the domain
of an optional activity should be updated only once it is known to be running on the
resource (i.e., vi = true). At the same time, the inference about the domain of this
activity if it runs on the resource can be used by other inference rules. Therefore,
the domain is not updated until vi = true, but the inference on the domain if the
activity runs on the resource is saved internally until vi = true. This is also done
for the next inference rules.

not-last When a given activity i has a latest starting time that is strictly
smaller than the earliest completion time of a set of regular activities Ω, this activity
cannot be scheduled as the last one of the set Ω ∪ {i}. Its latest completion time
can therefore be reduced to the maximum latest start time of the activities in Ω:

∀Ω ⊆ R, ∀i ∈ (T \Ω) : vi ∧ ectΩ > lsti =⇒ lcti = min(lcti, max
j∈Ω

lstj) (NL)

edge finding The rule detects new edges in the precedence graph: if adding
an activity i to a set of activities Ω leads to an earliest completion larger than the
latest completion of the set, then the activity i must succeed the activities in Ω:

∀Ω ⊆ R, ∀i ∈ (T \Ω) : vi ∧ ectΩ∪{i} > lctΩ =⇒ esti = max(esti, ectΩ)) (EF)
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t0 5 10 15

A1
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Figure 4.3: Example illustrating the missed failure detection of OC when not considering
transition times.

limitation Under the presence of transition times, the rules can be improved
if they were considered, as illustrated in Example 1. In the next section, we strengthen
the lower bound of ectΩ so that it takes the transition times into account.

Example 1. Consider a set of 3 regular activities Ω = {1, 2, 3} as shown in
Figure 4.3. Consider also, for simplicity, that all pairs of activities from Ω have the
same transition time tti,j = 3 ∀i, j ∈ {1, 2, 3}. The OC rule detects a failure when
ectLB0

Ω > lctΩ. The lower bound is:

ectLB0
Ω = estΩ + ∑

i∈Ω
pi = 0 + 5 + 5 + 3 = 13

As we have lctΩ = maxi∈Ω lcti = lct2 = 17, the OC rule from [Vil07], combined
with the transition times binary decomposition (Equation (URTTO)), does not
detect a failure. However, as there are 3 activities in Ω, at least two transitions
occur between these activities and it is actually not possible to find a feasible
schedule. Indeed, taking these transition times into account, one could compute
ectΩ = 13 + 2 · tti,j = 13 + 2 · 3 = 19 > 17 = lctΩ, and thus detect the failure.

4.2.2 Extending the Filtering Rules with Transition Times

Let ΠΩ be the set of all possible permutations of activities in Ω. For a given
permutation π ∈ ΠΩ, where π(i) is the activity taking place at position i, we can
define the total time spent by transition times, ttπ, as follows:

ttπ =
|Ω|−1

∑
i=1

ttπ(i),π(i+1)

A lower bound for ectΩ that considers transition times can then be defined as:

ectLB1
Ω = max

Ω′⊆Ω

{
estΩ′ + pΩ′ + min

π∈ΠΩ′
ttπ

}
(4.3)

Unfortunately, computing this value is NP-hard as computing the optimal permu-
tation π ∈ Π minimizing ttπ amounts to solving a Traveling Salesman Problem.
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Since embedding an exponential algorithm in a propagator is generally impractical,
a looser lower bound should be used instead.
For each possible subset of cardinality k ∈ {0, . . . , n}, we compute the smallest

transition time permutation on the set T of all activities requiring the resource:

tt(k) = min
{Ω′⊆T: |Ω′ |=k}

{
min

π∈ΠΩ′
ttπ

}
(4.4)

For each k, the lower bound computation thus requires one to find the shortest
node-distinct (k−1)-edge path between any two nodes of the transition graph (see
Section 4.1), which is also NP-hard as it can be cast into a resource-constrained
shortest path problem. We proposed in [DVCS15] various lower bounds to achieve
the pre-computation in polynomial time. They are described in Section 4.4. Our
final lower bound formula for the earliest completion time of a set of activities,
making use of pre-computed lower-bounds on transition times, is:

ectLB2
Ω = max

Ω′⊆Ω

{
estΩ′ + pΩ′ + tt

(
|Ω′|

)}
(4.5)

The different lower bounds of ectΩ can be ordered as follows:

ectLB0
Ω ≤ ectLB2

Ω ≤ ectLB1
Ω ≤ ectΩ

limitation An important limitation of this approach arises in the context
of sparse transition matrices, which typically occurs when activities are grouped
in families (see Section 4.1). Indeed, when there exists a node-distinct path with
K zero-transition edges, we have: tt(k) = 0 ∀k ∈ {0, . . . , K + 1}. The pruning
achieved by the propagator is then equivalent to the one of the original algorithms
from Vilím [Vil07], which has been shown to perform poorly when transition times
are involved (see [DVCS15]). This is illustrated in Example 2.

Example 2. Consider again the three activities Ω = {1, 2, 3} shown in Figure 4.3
with activity 1 belonging to family F1, activity 2 to family F2, and activity 3 to family
F3. The transition times are equal to 3 between activities from different families and
equal to 0 between activities of the same family. Assume that 3 additional activities
(not represented) also belong to family F1. Since the transition times between any
pair of activity from a same family is 0, we have that tt(2) = tt(3) = 0 and
ectLB2

Ω = 13 = ectLB0
Ω , hence the OC of [DVCS15] is unable to detect the failure.

To cope with this limitation, we will use a stronger lower bound by counting
the number of different families present in a set Ω of activities instead of the
cardinality of Ω. This amounts to find the shortest node-distinct (k−1)-edge path
in the family transition graph (see Section 4.1) instead of the transition graph.
Counting the number of families results in non-zero lower bounds even for small
sets, assuming that there are no zero transition times between families. Formally,
Equation (4.5) is replaced by:

ectLB3
Ω = max

Ω′⊆Ω
{estΩ′ + pΩ′ + tt(|FΩ′ |)} (4.6)



4.2 global filtering rules and propagation algorithms 71

where FΩ = {Fi | i ∈ Ω}. The term tt(|FΩ′ |) in Equation (4.6) is pre-computed
using the same lower bounds as before, but using ttF instead of tt. Notice that if
tt = ttF , we have ectLB2

Ω = ectLB3
Ω .

Lemma 1. In the presence of families, ectLB2
Ω ≤ ectLB3

Ω .

Proof. ttF induces a graph that is isomorphic to a subgraph of the graph induced
by tt and any (shortest) path induced by ttF has a corresponding valid path induced
by tt. Moreover, a shortest path of exactly k edges induced by tt has a length that
is at most equal to a shortest path of exactly k edges induced by ttF .

4.2.3 Adapting the Algorithms

We adapt the original algorithms of [Vil07] in order to consider transition times.
Most of the modifications actually impact the underlying Θ-tree and Θ-Λ-tree data
structures (described in Section 4.3), hence the algorithms are similar to the original
ones. We think this is a strength of our approach, since adapting the algorithms can
be done without too much work. Every algorithm has a counterpart that considers
the activities in the opposite order. Those counterparts are not described for brevity.

notation We denote by ect∗Θ a lower bound of ectLB3
Θ that will be used by the

different algorithms. We describe in Section 4.3.1 the Θ-tree data structure that
is used to compute this value. Moreover, following Vilím’s notation, we will use a
specific set of gray activities Λ ⊆ T such that Λ∩Θ = ∅. For a given set Θ, this
set is used to evaluate how ectΘ would evolve if one of the gray activities of Λ
were to be added to the set Θ. Formally, we are interested in computing

ect(Θ,Λ) = max(ectΘ, ectΘ∪{i}, i ∈ Λ)

Again, we will compute a lower bound of this value, written ect∗(Θ,Λ). Section
4.3.2 describes the Θ-Λ-tree data structure, used to compute this value efficiently.

overload checking The checker (see Algorithm 4.2.1) goes over each
activity in non-decreasing order of lcti. For each activity, if it is not yet known if
it will be executed by the resource, it is added to the set Λ (line 4) and the next
activity is considered. If the activity has to run on the resource, it is added to the
set Θ. The OC rule is then applied: if the earliest completion time of the current
set Θ is larger than the latest completion time of the activity i we just added to Θ,
the activity i cannot be executed on the machine. Since i is not optional, a feasible
schedule cannot be found (see lines 7-9). The current optional activities in Λ are
then possibly updated in lines 10-14: as long as it is possible to find an optional
activity o such that adding it to Θ would lead to an overload, it is inferred that o
cannot be executed by the machine, and o is removed from Λ.

detectable precedences Algorithm 4.2.2 describes how the DP infer-
ence rule can be applied. It first sorts the regular activities by non-decreasing order
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Algorithm 4.2.1 : Overload Checker

1 (Θ, Λ)← (∅, ∅)
2 for i ∈ T in non-decreasing order of lcti do
3 if |D(vi)| > 1 then
4 Λ← Λ ∪ {i} /* i is still optional. */

5 else if vi then
6 Θ← Θ ∪ {i} /* i is known to be used by the machine. */

7 if ect∗Θ > lcti then
8 return ⊥ /* Infeasibility detected. */

9 end
10 while ect∗(Θ,Λ) > lcti do
11 o ← optional (gray) activity responsible for ect∗(Θ,Λ)

12 vo ← false /* o cannot run on the machine. */

13 Λ← Λ \{o}
14 end
15 end
16 end

of latest start time and put them into a queue Q (line 2). Then, it traverses all
the activities (including optional ones as they can be updated): for each activity i,
as long as its earliest completion time is strictly larger than the latest start time of
the first activity j in Q, j is removed from the queue and added to the set Θ. Once
this is done, Θ is the set DPrec(R, i) (see DPrec), and we can apply the DP rule
(line 9). Moreover, as transition times are involved, the minimal transition from
any family Fj ∈ FΘ to the family Fi can also be added as it was not taken into
account in the computation of ect∗Θ. This transition is the minimal one from any
family Fj ∈ FΘ to Fi, because we do not know which activity will be just before i
in the final schedule. The update rule becomes:

esti ← max
{

esti, ect∗Θ + min
f∈FΘ

ttFf ,Fi

}
Notice that the value min

f∈FΘ
ttFf ,Fi

can only be available in O(1) if it was pre-

computed for any subset of families, which is exponential in |F | and therefore
problematic if there are many families. It can also be computed in linear time, but
it would increase the time complexity of the overall algorithm. In practice, the im-
plementation can make use of the minimum transition from any family f ∈ F \ Fi
if Fi /∈ FΘ, and 0 otherwise.
When no transition times are involved, Vilím proved that detected precedences

are all eventually propagated (see [Vil07]). In our case, this is not guaranteed: if a
precedence is detected for a given pair of activities i and j, it is not ensured that
after propagation we will have estj ≥ ecti + tti,j and lcti ≤ estj − tti,j. The reason
is that ect∗Θ uses a lower bound on the transition times in Θ.
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Algorithm 4.2.2 : Detectable Precedences

1 Θ← ∅
2 Q← queue of all regular activities r ∈ R in non-decreasing order of lstr
3 j← Q.pop()
4 for i ∈ T in non-decreasing order of ecti do
5 while ecti > lstj do
6 Θ← Θ ∪ {j}
7 j← Q.pop()
8 end

9 est′i ← max
{

est′i, ect∗
Θ \{i} + min

f∈FΘ
ttFf ,Fi

}
10 end

not last The NL inference rule can be applied with Algorithm 4.2.3, similarly
to Algorithm 4.2.2: a queue Q is filled with regular activities, and all activities (reg-
ular and optional) are then traversed in non-decreasing order of latest completion
time. For each activity i, activities from Q having a larger latest starting time than
the latest completion time of i, are removed from the queue and added to the set Θ
(line 5-8). Θ is then the set of activities with a latest starting time strictly smaller
than the latest completion time of i. The NL rule can then be applied (lines 9-11).
An analogous reinforcement to the DP rule due to transition times can be applied
when updating lcti (see line 10).

Algorithm 4.2.3 : Not-Last

1 Θ← ∅
2 Q← queue of all regular activities r ∈ R in non-decreasing order of lstr
3 j← Q.peek()
4 for i ∈ T in non-decreasing order of lcti do
5 while lcti > lstj do
6 Θ← Θ ∪ {j}
7 j← Q.pop()
8 end
9 if ect∗

Θ \{i} > lsti then

10 lct′i ← min
{

lct′i, lstj − min
f∈FΘ

ttFFi , f

}
11 end
12 end

edge finding Unlike the previous algorithms, Algorithm 4.2.4 starts with
a set Θ filled with all regular activities. We also directly fill the set Λ with the
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optional activities2 so that their domain can be updated but they can never be
used to update other activities (since they will not be in the set Ω in the EF rule).
A queue Q of regular activities sorted in non-increasing order of latest completion
time is also initialized. The algorithm traverses this queue and the activities in Θ
will progressively be removed from Θ and added to the set Λ of gray activities.
For each activity j popped out the queue Q, the algorithm first checks for an
overload, before j is removed from Θ (lines 5-7). This is equivalent to what is done
in Algorithm 4.2.1 for regular activities, so it is actually facultative. The activity j
is then grayed : it is transferred from Θ to Λ. This means it is no more in the set
Θ we consider, but it will be part of the activities used to infer what would happen
if one of them was added to Θ. Lines 10-14 try to apply the EF rule for some of
the current gray activities: as long as adding one of the gray activities would imply
an overload (i.e., condition in line 10 is verified), we identify which gray activity
i is responsible for this potential overload, we update its earliest start time, and
remove it from Λ. The EF rule is strengthened using transition times similarly to
the DP and NL rules.

Algorithm 4.2.4 : Edge Finding

1 (Θ, Λ)← (R, O)
2 Q← queue of all regular activities r ∈ R in non-increasing order of lctr
3 j← Q.peek()
4 while |Q| > 1 do
5 if ect∗Θ > lctj then
6 return ⊥
7 end
8 (Θ, Λ)← (Θ \ {j} , Λ ∪ {j})
9 j← Q.pop()

10 while ect∗(Θ,Λ) > lctj do
11 i← gray activity responsible for ect∗(Θ,Λ)

12 est′i ← max
{

esti, ect∗Θ + min
f∈FΘ

ttFf ,Fi

}
13 Λ← Λ \{i}
14 end
15 end

precedence graph propagator The last propagator uses the prece-
dence graph data structure (see Section 4.1). The topological order of all known
precedences (i.e., edges in the digraph) is first constructed so that one can update
the variable domains efficiently. Indeed, the earliest start time of an activity i that
is before an other activity j in this order cannot be influenced by the domain of

2 Notice that this is equivalent to what is proposed in [Vil09b, Vil09a]. The author suggests handling
optional activities by modifying the input data rather than the algorithm: lcto is assumed to be
∞ for all optional activities o ∈ O.
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sj and cj. Algorithm 4.2.5 therefore builds a queue Q of activities in topological
order of the precedence graph. It then simply traverses Q and for each activity i,
it applies the pairwise rule URTTO for all its successors in the precedence graph.
In addition, if a successor j of an activity i is known to be running on the resource
(i.e., vj is true), then one can use j to update the latest completion time of the
activity i (see lines 6-8).

Important note Notice that when transition times are involved, this algorithm
is mandatory in order to ensure the pruning is complete: because we use a lower
bound of the earliest completion time of a set of activities Θ in the other algo-
rithms (ect∗Θ), they are are not sufficient to ensure correctness of a given (partial)
assignment of all si, ∀i ∈ T.

Algorithm 4.2.5 : Precedence Graph Propagation

1 Q← queue of all regular activities r ∈ R in topological order in the
precedence graph G

2 while |Q| > 1 do
3 i← Q.pop()
4 foreach successor s of i do
5 ests ← max{ests, ecti + tti,s}
6 if vs then
7 lcti ← min{lcti, lsti − tti,s}
8 end
9 end

10 end

complexities Section 4.3 describes data structures that allow to retrieve
ect∗Θ in O(1) while addition/removal of an activity to/from Θ are performed in
O(log(n) · log( f )), for n activities and f families. All algorithms but the Prece-
dence Graph have therefore a time complexity of O(n · log(n) · log( f )). The prece-
dence graph propagator runs in O(n2).

4.3 extending the Θ-tree and Θ-Λ-tree data structures

To efficiently use the sets Θ and Λ, the algorithms described in Section 4.2.3 rely
on the so-called Θ-tree and Θ-Λ-tree data structures, introduced by Vilím. Those
structures are used to compute efficiently and incrementally ect∗Θ and ect∗Θ for sets
of activities Θ and Λ. We describe in this section how we extended them to handle
(family-based) transition times.
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4.3.1 Extended Θ-tree

A Θ-tree is a balanced binary tree in which each leaf represents an activity from a
set Θ and internal nodes gather information about the set of activities represented
by the leaves under this node, denoted Leaves(v). We write l(v) for the left child
of v and r(v) for the right one. Leaves are ordered in non-decreasing order of the
earliest start time of the activities: for two activities i and j, if esti < estj, then the
leaf representing i is at the left of the leaf representing j.
The main value stored in a node v is the lower bound of ectLeaves(v), denoted

ect∗v . To be able to compute this value incrementally upon insertion or deletion of
an activity in the Θ-tree, one needs to maintain additional values.
Without any transition times involved, Vilím has shown [Vil07] that by defining

ect∗v = ectLB0
Leaves(v), it suffices to store additionally pv = pLeaves(v). In a leaf v

representing an activity i, one can compute pv = pi and ect∗v = ecti. In an internal
node v, one can compute:

pv = pl(v) + pr(v)

ect∗v = max
{

ect∗r(v), ect∗l(v) + pr(v)

}
Hence, the values only depend on the values stored in the two children.
In our case, we would like instead to define ect∗v = ectLB3

Leaves(v) in order to take
(family-based) transition times into account. However, this value cannot easily be
computed incrementally, so we compute a lower bound, i.e., ect∗v ≤ ectLB3

Leaves(v). In
addition to ect∗v , one needs to store not only pv, but also Fv = FLeaves(v), the set
of the families of the activities in Leaves(v). In a leaf v representing an activity i,
one can compute pv = pi, ect∗v = ecti, and Fv = {Fi}. In an internal node v, one
can compute:

pv = pl(v) + pr(v)

Fv = Fl(v) ∪ Fr(v)

ect∗v = max

 ect∗r(v)

ect∗l(v) + pr(v) + tt
(∣∣∣Fr(v) \ Fl(v)

∣∣∣+ 1
)

Intuitively, ect∗v is maximized either by only considering activities in r(v), or by
adding to ect∗l(v) the processing times and (a lower bound of) the transition times
due to activities in r(v). In the latter case, only additional families are counted to
compute the lower bound on transition times, that is, the families that are present
in the right child but not in the left one. Hence, the cardinality of the set Fr(v) \ Fl(v)
is considered. Notice we always add 1 family to the count because of the definition
of tt(k).
Before we prove this lower bound is correct, let us prove in Lemma 2 a property

of the function tt(k).
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Lemma 2. ∀n ∈ [0, T], k ∈ [0, n] : tt(n) ≥ tt(k) + tt(n− k + 1)

Proof. The optimal path popt in the transition graph leading to the value tt(n) can
be split in two subpaths:

• popt
[1..k] with k− 1 edges. Its total length is greater than or equal to tt(k) (as

tt(k) is the minimum), the length of the optimal path with k− 1 edges.

• popt
[k..n] with n− k edges. Its total length is greater than or equal to

tt(n− k + 1), the length of the optimal path with n− k edges.

Therefore tt(n) = popt
[1..k] + popt

[k..n] ≥ tt(k) + tt(n− k + 1).

Lemma 3. ect∗v ≤ ectLB3
Leaves(v)

Proof. By induction. If v is a leaf representing activity i, then ect∗v = ecti = ectLB3
{i} .

Otherwise, our induction hypothesis is that ect∗l(v) ≤ ectLB3
Leaves(l(v)) and ect∗r(v) ≤

ectLB3
Leaves(r(v)). Let us call ΩLB3 ⊆ Leaves(v) the optimal set to compute ectLB3

Leaves(v).
For space reasons, we write L(Ω) to denote Leaves(Ω).

One can consider two cases:

a) ect∗v = ect∗r(v). We have ect∗r(v) ≤ ectLB3
L(r(v)) (by induction) and ectLB3

L(r(v)) ≤
ectLB3

L(v) (by definition). Therefore, ect∗v ≤ ectLB3
L(v).

b) ect∗v = ect∗l(v) + pr(v) + tt
(
|Fr(v) \ Fl(v)|+ 1

)
. Then, we have:

ect∗v ≤ ectLB3
L(l(v)) + pr(v) + tt

(
|Fr(v) \ Fl(v)|+ 1

)
(by induction)

= max
Ωl⊆L(l(v))

{
estΩl + pΩl + tt

(
|FΩl |

)}
+ pr(v) + tt

(
|Fr(v) \ Fl(v)|+ 1

)
= max

Ωl⊆L(l(v))
{estΩl + pΩl + pr(v) + tt

(
|FΩl |

)
+ tt

(
|Fr(v) \ Fl(v)|+ 1

)
}

= max
Ωl⊆L(l(v))

{estΩl + pΩl∪L(r(v)) + tt
(
|FΩl |

)
+ tt

(
|Fr(v) \ Fl(v)|+ 1

)
}

(since pΩl + pL(r(v)) = pΩl∪L(r(v)))

= max
Ωl⊆L(l(v))

{estΩl∪L(r(v)) + pΩl∪L(r(v)) + tt
(
|FΩl |

)
+ tt

(
|Fr(v) \ Fl(v)|+ 1

)
}

(since estΩl = estΩl∪L(r(v)))

≤ max
Ωl⊆L(l(v))

{estΩl∪L(r(v)) + pΩl∪L(r(v)) + tt
(
|FΩl∪L(r(v))|

)
} (by Lemma 2)

≤ ectLB3
L(v) (by definition)
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complexity We use bit sets to represent the set of families in each node.
The space complexity of the Θ-tree is therefore O(n · |F |). The set operations we
use are union, intersection, difference and cardinality. Using bit sets, the 3 former
ones are O(1) and the latter one is O(log(|F |)) with a binary population count
[War13]. The time complexity of insertion and deletion of an activity in the Θ-tree
is therefore O(log(n) · log(|F |)).

Example 3. Let us consider the activities presented in Figure 4.4 (left). The family
transition matrix ttF is given in Figure 4.4 (center). The pre-computed values of
tt(k) are reported in Figure 4.4 (right). Figure 4.5 illustrates the extended Θ-tree
when all activities are inserted. Note that the value at the root of the tree is indeed
a lower bound since we have ect∗Θ = 75 ≤ ectLB3

Θ = 80 ≤ ectΘ = 85.

1 3 2 4

est 0 15 25 30

p 10 10 20 25

F F1 F2 F3 F3

ttF =


0 10 15

5 0 10

5 15 0



tt(k) k

0 0

1 0

2 5

3 15

Figure 4.4: Four activities and their families (left), transition times for the families (cen-
ter), and pre-computed lower bounds for the transition times (right).

ect∗ = max{70, 25 + 45 + 5} = 75
p = 20 + 45 = 65
F = {F1,F2,F3}

ect∗ = max{55, 45 + 25 + 0} = 70
p = 20 + 25 = 45
F = {F3}

ect∗ = 55
p = 25
F = {F3}
est4 = 30

ect∗ = 45
p = 20
F = {F3}
est2 = 25

ect∗ = max{25, 10 + 10 + 5} = 25
p = 10 + 10 = 20
F = {F1,F2}

ect∗ = 25
p = 10
F = {F2}
est3 = 15

ect∗ = 10
p = 10
F = {F1}
est1 = 0

Figure 4.5: A Θ-tree when all activities of Figure 4.4 are inserted.

4.3.2 Extended Θ-Λ-tree

Algorithms 4.2.1 and 4.2.4 require an extension of the original Θ-tree, called Θ-
Λ-tree [Vil07]. In this extension, leaves are marked as either white or gray. White
leaves represent activities in the set Θ and gray leaves represent activities that are
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in a second set, Λ, with Λ ∩Θ = ∅. In addition to ect∗v , a lower bound to the ect
of Θ, a Θ-Λ-tree also aims at computing ect∗v , which is a lower bound to ect(Θ,Λ),
the largest ect obtained by including one activity from Λ into Θ:

ect(Θ,Λ) = max
i∈Λ

ectΘ∪{i}

In addition to pv, ect∗v , Vilím’s original Θ-Λ-tree also maintains pv and ect∗v , respec-
tively corresponding to pv and ect∗v , if a single gray activity i ∈ Λ in the sub-tree
rooted at v maximizing ectLeaves(v)∪{i} was included.
Our extension to the Θ-Λ-tree is similar to the one outlined in Section 4.3.1 for

the Θ-tree: in addition to the previous values, each internal node also stores Fv
and Fv in order to compute the lower bounds ect∗v and ect∗v . Adapting the rules for
the Θ-Λ-tree requires caution when families are involved. In [Vil07] and [DVCS15],
the rules only use implicitly the information about which gray activity is considered
in the update. In our case, the rules must consider explicitly where the used gray
activity is located: either in the left subtree, denoted (L), or in the right subtree,
denoted (R). The rules are then defined as:

ect∗v = max


ect∗l(v) + pr(v) + tt

(
|Fr(v) \ Fl(v)|+ 1

)
(L)

ect∗l(v) + pr(v) + tt
(
|Fr(v) \ Fl(v)|+ 1

)
(R)

ect∗r(v) (R)

Fv =

 Fl(v) ∪ Fr(v) (L)

Fl(v) ∪ Fr(v) (R)

pv =

 pl(v) + pr(v) (L)

pl(v) + pr(v) (R)

In the rules above, the choice of which formula to use for Fv and pv depends on
the letter, either (L) or (R), associated with the term maximizing ect∗v , hence this
value must be computed first. If a leaf v represents an activity i, then we simply
have ect∗v = ecti, pv = pi, and Fv = {Fi}. The rules for pv, ectv, and Fv are as
presented in Section 4.3.1, but one must also define, for a gray leaf v, ect∗v = −∞,
pv = 0, and Fv = ∅.
As for the extended Θ-tree introduced in Section 4.3.1, the time complexity for

the insertion and the deletion of an activity is O(log(n) · log(|F |)).

4.3.3 Strengthening ect∗Θ and ect∗(Θ,Λ)

ect∗Θ is a lower bound for ectLB3
Θ . One can actually strengthen the value computed

with the Θ-tree to get a value closer to ectLB3
Θ . An idea from [BT96, VB12] that

is also used in [AF08] is to pre-compute the exact minimum total transition time
for every subset of families3.

3 The approach can also be used for sets of activities. The description focuses here on families since
it was initially used in the context of family-based transition times.
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For a subset of families F ′ ⊆ F , let tt (F ′) denote the minimum total transition
time used for any activity set Θ such that FΘ = F ′. Assuming tt (FΘ) is accessible
in O(1), each time we access to the value ect∗Θ in the algorithms of Section 4.2.3,
we can also compute

ecttsp
Θ = estΘ + pΘ + tt (FΘ)

without changing the complexity of the algorithms. tt (FΘ) must be precomputed
for all subsets of families, so this is tractable only if there are few families as it
requires solving many Traveling Salesman Problems of increasing sizes. estΘ can
be easily maintained in the Θ-tree, and the values pΘ and FΘ can be obtained in
O(1) in the root node of the Θ-tree.

ecttsp
Θ can be larger than ect∗Θ because it uses tt (FΘ) instead of tt(|FΘ|). This

typically occurs when ecttsp
Θ = ectLB3

Θ . On the contrary, because ecttsp
Θ considers all

activities in Θ and never a subset, it might be smaller than ect∗Θ. We therefore use
the maximum of those two values in the different propagators.
One can also consider the family of the updated activity: similarly to tt (F ′),

let us write tt (Fi → F ′) the minimum total transition time when the processing
starts with some activity of the family Fi ∈ F ′, and tt (F ′ → Fi) when it completes
with an activity of the family Fi ∈ F ′. We can pre-compute these values for
every set of families F ′ ⊆ F and every family Fi ∈ F ′ with a dynamic program
running in Θ(|F |2 · 2|F |) and requiring Θ(|F | · 2|F |) of memory. For instance, for
tt (Fi → F ′), one defines:

tt (Fi → {Fi}) = 0 ∀Fi ∈ F
tt (Fi → {F ′ ∪ Fi}) = min

Fj∈F ′
{ttFFi ,Fj

+ tt
(

Fj → F ′
)
} ∀F ′ ⊆ F , ∀Fi ∈ F \ F ′

For instance, for the Detectable Precedences algorithm, the update rule becomes:

esti ← max
{

esti, ect∗Θ + min
f∈FΘ

ttFf ,Fi
, estΘ + pΘ + tt (FΘ → Fi)

}
The same idea can be used to strengthen ect∗(Θ,Λ):

ecttsp
(Θ,Λ)

= min{estΘ, estr}+ pΘ∪{r} + tt
(

FΘ∪{r}
)

where r is the gray responsible activity (see line 11 in Algorithm 4.2.4). A subtle
point is that the responsible activity r is not accessible from the Θ-Λ-tree as for
ect∗(Θ,Λ), so we should iterate over all r′ ∈ Λ to maximize ecttsp

(Θ,Λ)
. We therefore

use the responsible activity of ect∗(Θ,Λ) to compute ecttsp
(Θ,Λ)

.

4.4 lower bounds on the minimum total transition of a
set of activities

In this section, we describe different lower bounds [DVCS15] for Equation 4.4,
recalled hereafter:
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tt(k) = min
{Ω′⊆T: |Ω′ |=k}

{
min

π∈ΠΩ′
ttπ

}
For each k, one has to find the shortest node-distinct (k−1)-edge path between

any two nodes of the (family) transition graph (see Section 4.1), which is NP-hard
as it can be cast into a resource-constrained shortest path problem. Even though
tt(k) is to be precomputed, it is desirable to have polynomial precomputation,
which justifies the use of the lower bounds explained in this section. A more detailed
description can be found in [Dej16], we summarize them here so that the chapter
is self-contained. Notice that none of the lower bounds subsume each other, so
the final lower bound for a given cardinality k will be the maximum between the
different lower bounds for this cardinality.

minimum weight forest This lower bound consists of finding the set of
k − 1 edges with a minimum cost. Basically, we use Kruskal’s algorithm [Kru56]
to prevent cycles in our selection. As soon as k− 1 edges have been selected, the
algorithm is stopped. The result being a minimum weight forest in the general
case, it is a lower bound of our original problem since it does not ensure to obtain
a simple path in the graph.

shortest walk A dynamic program can be used to compute a lower bound
on the minimum transition in a set of cardinality k. The idea is to compute a shortest
walk with k− 1 edges in the transition graph. Formally, we define SW(e, n) as the
shortest walk with e edges from any node to node n. To compute this value for
all number of edges e and all nodes n, we rely on the following O(k · T2) dynamic
program:

SW(0, x) = 0, ∀x ∈ [1, T]

SW(e + 1, n) = min
x

SW(e, x) + wx,n

where e < k and wx,n is the weight on the edge from the node x to the node n.
The lower bound for a given cardinality k is finally:

min
x

SW(k, x)

Notice this lower bound ensures the solution to be a walk in the graph but it
does not prevent cycles. However, as suggested in [CMT81], one can strengthen
the bound by avoiding 1-cycles, i.e., cycles of the form x → y→ x.

minimum assignment A lower bound based on a Minimum Assignment
problem was proposed by Brucker and Thiele [BT96]: two sets containing all the
nodes of the transition graph are constructed and a minimum assignment of k
edges is searched for, that is, the edges always link an activity of one set with an
activity of the other set. One can model this problem as a Minimum-Cost Maximum-
Flow problem in a manner similar to the reduction of a minimum weight bipartite
matching.
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lagrangian relaxation To find the shortest simple path with k edges
in the transition graph, one can add a source (node 0) and a sink node (node n
+ 1) to the transition graph so that the edges from the source node to all nodes
(but the sink one) and the edges from the nodes (but the source one) to the sink
node have a transition of zero. Then, one can solve the problem by searching for
the shortest path from the source to the sink with k + 2 edges. This can be solved
with the following integer linear program:

minimize ∑
i

∑
j

tti,j · xi,j

such that ∑
j

x0,j −∑
j

xj,0 = 1

∑
j

xn+1,j −∑
j

xj,n+1 = −1

∑
j

xi,j −∑
j

xj,i = 0

∑
i

∑
j

xi,j = k (CARD)

xi,j ∈ {0, 1}

This problem is NP-hard, so we propose to solve a lagrangian relaxation: we
remove the edge cardinality constraint (i.e., Equation CARD) and penalize its
violation in the objective function. Without the cardinality constraint, the shortest
path can be computed with the Bellman-Ford algorithm [Bel56, Moo59] that is
also able to detect a negative cycle. If this occurs, we use a classic linear relaxation
instead of using the Bellman-Ford algorithm.

exact shortest path for every subset Using the definitions given
in Section 4.3.3, one can compute the best possible lower bound based on the
cardinality of a set of activities/families. We compute the value of the shortest
path for every subset, and for each cardinality k, we take the smallest shortest path
of all subsets of cardinality k:

tt(k) = min
|F ′ |=k

tt
(
F ′
)

The other lower bounds described before are upper bounded by this approach.
However, it is not polynomial, so it can only be used for problems with a few
activities/families.

4.5 experimentations

We split our evaluation in two parts: first, we consider the case where there
are no optional activities, which was more studied in the literature. The experi-
ments were conducted on Job-Shop Problem with Sequence Dependent Transition
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Times (JSPSDTT) instances. In a second time, we consider the same problem with
alternative machines, that is modeled using optional activities from the resource
point of view.

setting We used AMD Opteron processors (2.7 GHz), the Java Runtime En-
vironment 8 and the constraint solver OscaR [Osc12]. The memory consumption
was limited to 4 GB.

4.5.1 Experimentations without Optional Activities

Problem instances

We have used two sets of instances. First, we used the standard t2ps instances from
Brucker and Thiele [BT96]. However, there are only 15 of them, and we wanted
to evaluate instances with more families, jobs, and machines in order to challenge
the scalability of the different approaches. We therefore generated a new set of
315 instances, here referred to as uttf, with up to 50 jobs, 15 machines and 30
families.4

State-of-the-art filtering with Families

Based on the definition of tt (Fi → {F ′}), two propagators are introduced in
[AF08]:

• A DP-like propagator called UpdateEarliestStart running in O(n2 ·
log(n)).

• An EF-like propagator called PrimalEdgeFinding running in O(|F | ·
n2).

Although the filtering obtained with these propagators can be stronger than their
counterpart from [Vil07] and our extensions, the time complexity of the propagators
is quite high as compared toO(n · log(n) · log(|F |)). In addition, they do not make
use of a Not-First/Not-Last rule and the pre-computation of the minimum exact
transition times for every subset of family is only tractable for small (typically less
than 10) values of |F |.

Compared Propagators

We compare models with the following propagators for Equation (URTTO):

• decomp: binary decomposition of Equation (URTTO) only.

• urtt: propagators for URTT from [DVCS15].

• artex: propagators of [AF08] using exact values for tt (F ), tt (F→ F ) and
tt (F → F).

4 The instances are available at http://becool.info.ucl.ac.be/resources/uttf-instances.

http://becool.info.ucl.ac.be/resources/uttf-instances
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• artlb: propagators of [AF08] adapted to make use of cardinality-based lower
bounds from Section 4.4 for tt (F ), tt (F→ F ) and tt (F → F).

• urttf ex: propagators introduced in this chapter making use of the exact
values for tt(|F |) computed with minF ′ :|F ′ |=|F | tt (F ′).

• urttf lb: propagators introduced in this chapter making use of lower bounds
of Section 4.4 for tt(|F |).

Replay Evaluation

We used the Replay Evaluation described in Chapter 3. To generate the CBTs, the
Conflict Ordering Search [Gay+15] was used, as it was shown to be a good search
strategy for scheduling problems. The generation lasted for 300 seconds, and we
enforced a timeout of 1,800 seconds for the replay. The running times reported
here do not take into account the pre-computation step since they are negligible
(generally less than 2 sec. and max 10 sec.). Our performance profiles have here a
logarithmic scale and we use the initial definition from [DM02]: the set of baseline
approaches B (see Definition 2.1 in Chapter 2) contains all the different models.
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Figure 4.6: Performance profiles on t2ps instances for the time metric.

Results on the t2ps Instances

Figures 4.6 and 4.7 provide the performance profiles for the time and number of
backtracks, respectively. Figure 4.7 shows that, interestingly, urttf lb prunes exactly
as much as urttf ex. This is due to the fact that our lower bounds are here able to
compute the same values than minF ′ :|F ′ |=|F | tt (F ′). This suggests that we often
do not have to compute the exact values for tt (F ) with the resource-consuming
dynamic program, which is interesting since it is not tractable when there are many
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Figure 4.7: Performance profiles on t2ps instances for the number of backtracks metric.

families. We can see that from a time perspective (Figure 4.6), our approach is the
fastest for ∼ 80% of the instances (urttf ex being here equivalent to urttf lb, see
the function in τ = 1 in Figure 4.6). But our approach is also robust, as the other
instances (i.e., the remaining 20%) are solved within a factor τ < 2 compared to the
best model for those remaining instances. Considering the number of backtracks,
our approach generally achieves less pruning than artex (not more than three times),
but substantially more than urtt. This lack of pruning as compared to artex is
compensated in practice by the low time complexity. Although not reported, we
tried to combine urttf ex and artex and the performances were close to the ones
of artex alone, thus only inducing a small overhead when urttf ex does not provide
additional pruning.

Results on the uttf Instances

First of all, we consider the approaches artex and urttf ex unable to solve (i.e., times
out by default) the 120 instances (out of 315) with 20 families or more, since
the pre-computation becomes too expensive in terms of CPU and memory usage
according to our 4 GB limitation.
Figures 4.8 and 4.9 provide the time performance profiles for the instances with

strictly less than and with more than 20 families, respectively. Figure 4.8 shows
that our approach still outperforms the other ones, even if it is the fastest on a
smaller percentage of instances than for the t2ps instances. The instances being
less structured, the gain in pruning is weaker as compared to the decomposition.
However, our method catches up very quickly; for example, it is at most ∼ 1.3 and
2 times slower than the best approach for almost 60% and 80% of the instances,
respectively. Another interesting point is that urttf ex and urttf lb have very similar
time performances, while the values for tt(k) were here generally different (not
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Figure 4.8: Performance profiles on uttf instances with strictly less than 20 families for
the time metric.
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Figure 4.9: Performance profiles on uttf instances with more than 20 families for the time
metric.

reported here). This means that computing the exact values for tt (F ) is not
mandatory5 when used with our propagators, which is profitable since we also
target scalability in terms of the number of families.
Regarding the instances with more than 20 families (Figure 4.9), our approach is

significantly better than the other ones, as we are the fastest on almost 70% of the

5 Still, if it is available at a low cost, it can be beneficial to use it.
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instances and it is at most 4 times slower than the best approach on the remaining
instances. This teaches us that when more families are involved, our approach is
both efficient and robust.

4.5.2 Experimentations with Optional Activities

Optional activities are typically used when modeling problems where activities can
be processed on a set of a alternative resources. Hence, in order to experiment with
our approach when optional activities are involved, we experimented on JSPSDTT
with alternative resources. In particular, we used an approach that consists in du-
plicating a times the activities and the resources of an original Job Shop problem
[FLN00]. For each of the original activities, exactly one of its duplicates must then
be executed on its corresponding duplicated machine. This amounts to solving the
same problem as the original one, but with the additional liberty of choosing on
which one of the a alternative machines an activity will be executed.

Formally, for a given activity i and a duplications, we write ik the kth duplicate
of activity i. To ensure that one and only one of the alternative machines is used
by the activity i, we force one and only one of the a duplicates ik to be used by its
corresponding duplicated machine:

∃ ! k ∈ [1, a] : vik

Moreover, the job precedences between activities must be respected by all du-
plicates, i.e., if there is a precedence between two activities i and j in the original
problem, then we must have:

∀k ∈ [1, a] : cik ≤ sjk

search heuristic To our knowledge, few search heuristics are actually de-
voted to the presence of optional activities. For our evaluation, we used a strategy
from Barták that avoids taking decisions about optional activities that will actually
not be executed in the final schedule [Bar08]. This is important, as it prevents the
search to explore several times the exact same schedule.
The heuristic has two levels: on the first level, it decides whether an activity i is

valid or not, i.e., it branches on vi. On the left branch, it imposes vi = true, and
will then branch using the second level, as explained hereafter. On the right branch,
vi = false is posted and the activity i will not be considered deeper in the tree.
An other activity j 6= i will then be considered to be branched on using the first
level. In the second level, precedences between i and all activities j : ¬(vj = false)
(i.e., still possibly running on the same resource) will be imposed, until no more
precedences involving i can be decided. The first level of branching is then used
with a different activity j.

To decide which activity should be branched on first, the activity with the smallest
est is chosen (ties are broken by smallest duration and ect). Finally, once all decisions
have been made, one can assign all activities to their est since the objective is here
to minimize the makespan.
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settings We generated 100 instances similar to the five small t2ps instances,
i.e., with 10 jobs, 5 machines and 5 families. The instances are kept small because
duplicating the alternatives already increase substantially the search space. The
models we compared are the same ones as before, but the approach from Artigues
et al., as they do not deal with optional activities. Our approach uses lower bounds
for tt(|F |). We also consider an additional model, called urV, that uses the filtering
from Vilím.
We used the Replay evaluation (see chapter 3), where the baseline is the binary

decomposition and the generation lasted at most 300 seconds. Finally, we filtered
out instances that were solved within less than a second.

results First, we consider the problem with two alternative resources. The
results are given in Figure 4.10. A first observation if that urttf lb is almost always
the fastest and it solves all instances in τ < 2, which makes our approach appealing.
Interestingly, one can also see that the profiles of the other approaches are in this
case quite similar. Finally, for ∼ 10% of the instances, urttf lb provides a speed-
up of ∼ 32 as compared to the other approaches (see the profiles in τ = 32 in
Figure 4.10).
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Figure 4.10: Performance profiles on generated instances of the Job Shop problem with
two alternative resources.
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Figure 4.11: Performance profiles on generated instances of the Job Shop problem with
three alternative resources.

Let us now consider the results (given in Figure 4.11) when we have three
alternative resources. While our approach is still clearly the best one for similar
reasons, one can now better separate decomp, urV, and urtt: urV is better than
decomp and urtt is better than urV. Still, urtt and urV are close to each other,
and tends to converge. This shows again the benefits of reasoning with families of
activities.





5
RESOURCE -COST
ALLD I FFERENT CONSTRA INT

In this chapter, we consider a family of optimization problems where a set of
items, each requiring a possibly different amount of resource, must be assigned
to different slots for which the price of the resource can vary. In particular, we
first consider the domain of production scheduling in the presence of fluctuating
renewable energy costs. Indeed, some countries tend to decrease the use of fossil and
nuclear energies and to replace them with renewable energies [WB06]. For instance,
in Europe, Germany has started a nuclear phase-out that should be completed by
2022. A consequence of the adoption of renewable energy is the larger fluctuation
of energy prices. At the same time, the Electricity Price Forecast (EPF) at the daily
basis becomes more and more accurate [Wer14]. This high volatility of the prices
combined with EPF tools opens new perspectives and challenges for production
scheduling optimization. A producer can get a competitive advantage if he is able
to schedule his most energy consuming processes when the prices are low. The
production planning should therefore leverage as much as possible the flexibility in
the production process to translate it into energy cost savings.
In the setting we consider, the energy cost is assumed to be known at each future

time slot (provided by an EPF module). The goal is then to schedule each item
over the time slots such that the overall energy bill is minimized. For each item,
its contribution to the cost is the energy required to produce it multiplied by the
energy cost forecast at the time slot it is produced.

Example 1. Let us illustrate this situation with the example given in Figure 5.1.
3 items a, b and c have to be produced and their consumption are C(a) = 2,
C(b) = 4 and C(c) = 3 (see left plot). There are nine time slots where these
items can be produced, each one being associated with an energy price P(s). For
instance, the slot 3 has a price of P(3) = 15. In the given schedule, a, b and c are

91
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produced at slot 1, 3 and 5, respectively. Hence, the total cost is T = 2 · 20 + 4 ·
15 + 3 · 15 = 145.
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Figure 5.1: Energy Consumption of items (left) and energy prices (right).

For a given set of items I , we can formally define the total cost as:

T =
|I|
∑
i=1

C(Ii) · P(s(Ii)) (5.1)

where s(Ii) is the time slot assigned to the item Ii.
In CP, one can model this cost in two ways:

1. with a sum of element [VHC88] constraints.

2. with a MinimumAssignment constraint that has a filtering based on re-
duced costs (referred to IlcAllDiffCost in [FLM99] and MinWeigh-
tAllDiff in [Sel02]). In this case, the cost of an edge linking a variable
(i.e., an item) to a value (i.e., a time slot) is the product of the item con-
sumption with the energy price of the time slot.

Unfortunately, both approaches have limitations. Modeling with a sum of el-
ement constraints does not take into account the fact that the items must all
be assigned to different time slots. For instance, in Figure 5.1, if all items could
be assigned to any time slot, this approach would consider that all items can
be assigned to the slots 2 or 7. The computed minimum cost would therefore be
5 · (2+ 4+ 3) = 45, which is clearly impossible since only 2 items can be produced
at an energy price of 5.
The MinimumAssignment incorporates the all-different constraint, but the

algorithm has quite a high time complexity of O(n3), where n is the number of
items1.

contribution This chapter proposes a third approach by introducing the
ResourceCostAllDifferent constraint and an associated scalable filtering
algorithm. In the particular case where the total cost is computed with Equation 5.1,

1 Although in practice the computation in a search tree is incremental.
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the constraint fills a gap between using a sum of individual element constraints
and solving the general matching problem with cost computed by MinimumAs-
signment. Its goal is to compute the total cost in a scalable and incremental man-
ner, while considering the fact that all assignments must be different. Furthermore,
efficient domain filtering can be performed in O(n ·m), where n is the number of
unbound variables and m is the maximum domain size of unbound variables. While
this is a better time complexity than O(n3) required by MinimumAssignment, it
comes at the price of a weaker inference. However, this trade-off pays off in practice
for the two problems we considered, namely the Continuous Casting Steel Produc-
tion with Electricity Bill Minimization and the Product Matrix Travelling Salesman
Problem. The latter problem illustrates that the ResourceCostAllDifferent
constraint can be used in other domains than production scheduling.
The results on the first problem demonstrate that MinimumAssignment is

always slower than our approach. In addition, ResourceCostAllDifferent is
often faster than the decomposition, sometimes with an important speed-up. This
is especially true for large instances, for which an order of magnitude is gained
in ∼ 20% of the cases, while ∼ 75% of them are solved faster. Moreover, our
algorithm is robust, in the sense that when it is slower, it is by a small factor (3.2
at the very most). Results also illustrate that for a non-negligible number of the
large instances, we can get an important gain in terms of number of backtracks as
compared with a decomposition: a reduction of at least one order of magnitude is
obtained for 30% of the instances.
For the second problem, the results show that our approach is the fastest in

CP. Moreover, it outperforms the Concorde solver[App+06, App+11], a custom
state-of-the-art Branch-and-Cut Mixed Integer Programming solver, for 90% of the
instances, sometimes by an important factor (some instances could not be solved
in a factor 32 as compared with our constraint).

related work The need to compute the total cost related to some assign-
ments in CP is not rare. It is for instance used to solve the Travelling Salesman
Problem and the Travelling Salesman Problem with Time Windows. Focacci et al.
proposed a global optimization constraint [FLM99, Foc+99] (they call it IlcAllD-
iffCost) to compute a lower bound on the total cost when all assignments must
be different and to filter the domains based on reduced costs. However, they use
a linear formulation to compute the reduced costs, and therefore do not obtain
arc-consistency. In [Sel02], Sellmann calls this constraint MinWeightAllDiff
and proposes an arc-consistent filtering algorithm in which exact reduced costs are
used. More recently [DCP16], Ducomman et al. came up with a different com-
putation of the exact reduced costs, by making use of an All-pairs Shortest path
algorithm. In this chapter, we denote by MinimumAssignment these equivalent
constraints and use the algorithm from [Foc+99] in particular for our experiments.2

Finally, Régin introduced the more general GCCCost global constraint [Rég02]

2 We also experimented with the version from [DCP16] to get exact reduced costs, but it appeared
to be very slow for the instances we considered, so we do not report any results regarding that
implementation.
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for which several variables can be assigned to the same value as long as cardinality
constraints are respected.
For all those constraints, there are no assumptions on the costs associated with

the different variable-assignment pairs. The ResourceCostAllDifferent con-
straint we introduce is actually a particular case of a MinimumAssignment con-
straint for which the cost of assigning a variable Xi to a value s amounts to the
product of a given consumption of Xi with the fixed price of assigning the value s
to a variable. This particularity allows getting a more efficient filtering, as we shall
see in the results.
For Scheduling problems, global constraints that consider (electricity) costs have

been defined recently [SH10, SH11]. The particular case of the disjunctivecost
constraint was then further studied when activities have variable durations [WB16].
Finally, a recent application of CP was successfully used to optimize a tissue man-
ufacturing planning problem from an energy viewpoint [Dej+16].

chapter outline We first formally define the constraint. We then describe
an algorithm that checks feasibility, based on the computation of a lower bound for
the total cost. Next, we present our filtering algorithm to prune unfeasible values
of all variables. Finally, we evaluate our work on two problems: the Continuous
Casting Steel Production with Electricity Bill Minimization that is an industrial use
case, and the Product Matrix Travelling Salesman Problem that is more academic.

5.1 constraint definition

Definition 12. Let

• X be a sequence of integer variables that are the production time slots for
each item to produce,

• C be a sequence of integer constants of length |X| that are the amount of
resource required to produce each item,

• H be an integer constant, that is the number of time slots (horizon),

• P be a sequence of H integer constants giving the price of the resource at
each time slot, and

• T be an integer variable that is the total resource cost of the schedule,

the constraint ResourceCostAllDifferent(X, C, P, T) ensures that

∧

 allDifferent(X)

T = ∑
|X|
i=1 C(Xi) · P(Xi)

(5.2)

with D(Xi) ⊆ [0..H[, ∀Xi ∈ X.

Intuitively, all variables Xi must be assigned to a different value. Moreover, they
all have a fixed consumption given by C(Xi). Any variable Xi assigned to a value
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s then implies a resource price of P(s) multiplied by the consumption C(Xi). The
total cost T amounts to the sum, over all the variables, of the product of their
consumption with the price of their assignment.

5.1.1 Lower Bound Computation and Feasibility Check

The constraint can be separated in two parts: all assignments must be differ-
ent, and the assignments must respect the total cost constraint. For the first
part, we rely on well-known propagators (see [Hoe01, Rég94]) devised for the
allDifferent constraint. For the second part, we propose to compute a lower
bound for the minimum total cost T, written Tlb. In the following, for a given
sequence of variables X and a sequence of assignments A, we denote the total
production cost of mapping the ith element of X to the ith element of A, by
Prodcost(X, A) = ∑

min(|X|,|A|)
i=1 C(Xi) · P(Ai).

lower-bound for the cost There is an inherent matching problem in-
volved in the filtering of allDifferent, as the domains of the variables can be
different. To compute our lower bound efficiently, we relax the domain of the vari-
ables by assuming that all variables can be assigned to any value of any current
domain, that is, any s ∈ ⋃Xi∈X D(Xi). But we do not relax the all-different con-
straint. The matching problem can then be solved greedily on the relaxed problem.

Example 2. Let us reconsider the example of Figure 5.1, and let us assume there
are 6 more items d to i to be scheduled for production, with a consumption of
C(d) = 2, C(e) = 3, C( f ) = 4, C(g) = 3, C(h) = 5 and C(i) = 6. Moreover,
D(d) = D( f ) = D(g) = {2, 4, 6, 7, 8, 9}, D(e) = {2, 4, 8} and D(h) = D(i) =
{2, 7}. To compute our lower bound, we first compute the exact cost Cassigned that
has to be paid due to already assigned items. In our example a, b and c are assigned
and Cassigned = 145. Secondly, one must compute the cost due to the set UV of
unbound variables, Cunbound. We ease the matching of those items by assuming that
they can be assigned to any slot s ∈ ⋃Xi∈UV D(Xi) = {2, 4, 6, 7, 8, 9}. To compute
Cunbound, we map the item with the largest consumption with the lowest resource
price slot, so i is matched with slot 2. We then proceed similarly for all remaining
unbound items: h, f , e, g and d are respectively mapped with slot 7, 6, 9, 8 and
4. This computation can be done by sorting unbound variables and time slots by
non-increasing order of consumption and non-decreasing order of price, respectively.
In the end, Cunbound = 6 · 5 + 5 · 5 + 4 · 10 + 3 · 10 + 3 · 15 + 2 · 25 = 220. This
is a lower bound since item e is matched with slot 9 so as to minimize the total
cost, but this value is actually not in its domain. A lower bound for the total cost
is then Tlb = 145 + 220 = 365.

In the general case, Tlb can be computed as follows:

1. Compute the exact cost Cassigned due to the set of assigned variables Xassigned.

2. Sort the unbound variables UV = X\Xassigned by non-increasing order of
C, UVsorted.
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3. Compute the set of unmapped values that are still part of the domains of
the unbound variables, i.e., UA =

⋃
Xi∈UV D(Xi).

4. Sort UA by non-decreasing order of P, UAsorted.

5. Compute the minimal cost mapping of variables of UVsorted to the values of
UAsorted, i.e., Cunbound = Prodcost(UVsorted, UAsorted). Notice that Cunbound
is a lower bound for the cost due to the unbound variables, as a variable
might be mapped to a value that is not in its domain.

6. The lower bound is then Tlb = Cassigned + Cunbound.

As described in Section 5.2, one can achieve this computation efficiently. First,
the sorts of variable and value sequences can be done once and for all, as they
remain correct for the whole search process. Incremental and reversible data struc-
tures allow keeping the use of those sorts at any time. Moreover, the cost Cassigned
due to bound variables and the set

⋃
Xi∈UV D(Xi) can be computed incrementally.

Once we have computed Tlb, a first constraint inference is the feasibility check:

Tlb > T =⇒ Fail (FC)

5.1.2 Domain Filtering

In order to filter a value s of the domain of a variable Xi, one needs to compute
the reduced cost (value of Tlb if Xi = s), written TXi=s

lb . One can then use the
inference rule:

∀Xi ∈ X ∀s ∈ D(Xi) : TXi=s
lb > T =⇒ Xi 6= s (DF)

To compute TXi=s
lb , one has to compute the value Cunbound under the constraint

Xi = s, i.e.:

CXi=s
unbound = C(Xi) · P(s) + Prodcost(UVsorted\{Xi}, UAsorted\{s}) (5.3)

TXi=s
lb is then defined as Cassigned + CXi=s

unbound.

We are interested in computing Equation 5.3 for all variables Xi ∈ UV and
all values s ∈ D(Xi). An inefficient way would be to recompute the second term
for each pair (Xi, s). However, one can notice that when a variable is assigned
to a given value of its domain, to compute the optimal mapping for the other
variables by means of UVsorted and UAsorted, some variables are mapped to the
same assignment as in the original optimal assignment (see Figure 5.2). Moreover,
the variables that must be mapped to other assignments must all be mapped to the
predecessor/successor of the value they were mapped with in the original matching
(see Figure 5.2).
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Xi

s
...

UV by non-increasing C

UA by non-decreasing P

Unchanged UnchangedLeft Shifted

Figure 5.2: Optimal mapping of variables if the variable Xi = s.

This observation allows us to compute the second term of Equation 5.3 in O(1),
provided we have precomputed the 3 arrays CS, CSleft and CSright, for which the
ith element is defined as:

CSi = Prodcost(UVsorted
1..i , UAsorted)

CSleft
i = Prodcost(UVsorted

2..i , UAsorted)

CSright
i = Prodcost(UVsorted

1..i , UAsorted
2..|UA|)

Let us call Xi
pos and spos the positions of Xi in UVsorted and s in UAsorted, respec-

tively. Let us assume spos > Xi
pos as in Figure 5.2 (there is symmetric reasoning

for the case spos < Xi
pos, and the case spos = Xi

pos is already managed by the
feasibility checker). Then, computing the optimal mapping can simply be done
with:

CSXi
pos−1︸ ︷︷ ︸

Unchanged

+

Assignment︷ ︸︸ ︷
C(Xi) · P(s) +CSleft

spos−1 − CSleft
Xi

pos−1︸ ︷︷ ︸
LeftShifted

+

Unchanged︷ ︸︸ ︷
CS|UV| − CSspos

Example 3. Let us reconsider values from Example 2 and let us assume T = 380.
Prior to filtering, we can precompute CS = (30, 55, 95, 125, 170, 220), CSleft =
(25, 45, 75, 105, 135) and CSright = (30, 80, 120, 165, 240). We now wish to com-
pute C f=4

unbound. Since f pos = 3 and 4pos = 6, we have, in O(1), C f=4
unbound = CS2 +

C( f ) · P(4) + CSleft
5 − CSleft

2 + CS6 − CS6 = 55 + 100 + 90 + 0 = 245. If we add
Cassigned, we finally have a cost of 390 > T and therefore 4 /∈ D( f ).

time complexity Computing CS, CSleft and CSright is O(n) in time, where
n = |UV|. Then one must compute CXi=s

unbound for each pair (Xi, s) : Xi ∈ UV, s ∈
D(Xi) and perform a feasibility check in O(1). The time complexity for checking
all pairs variable-value is therefore O(n ·m), where m = maxXi∈UV |D(Xi)|.



98 resource-cost alldifferent constraint

5.2 algorithms

The implementation relies on several incremental and reversible data structures.
First, we use reversible doubly-linked lists to maintain the sequences UV and UA,
ordered by non-increasing C and non-decreasing P, respectively. They are main-
tained during search and their state is retrieved upon backtracking thanks to trailing
(see [War83, AK99]). Second, we use an array of reversible sparse sets [SM+13],
XwithValue, keeping track of the variables whose domain contain a given value s.
This is useful to maintain UA efficiently. We also make use of delta sets. For a
variable Xi, the set ∆Xi contains all the values that were removed from the domain
of Xi since the last call to the algorithm. This is done in an efficient manner, de-
scribed in [SM+13]. For instance, retrieving the set ∆Xi or its size is O(1). Finally,
we maintain the total cost due to assigned variables Cassigned as a reversible integer.

feasibility checker Algorithm 5.2.1 allows computing Tlb and to perform
the feasibility check. Lines 1-11 update the state by means of the freshly bound
variables (i.e., not bound in the previous call): the variable is removed from the
sequence of unbound variables UV, its exact contribution is added to Cassigned, and
its assignment is removed from the possible assignments UA. Moreover, for each
value removed from its domain, the variable is removed from the set of variables
that could be assigned to this value. If this set gets empty, no variable can be
assigned to the value and this time slot is therefore removed from the sequence of
possible assignments. A first check is done with Cassigned. Lines 15-22 update the
set of remaining available assignments, i.e., they remove from UA the values that
are no more contained in any domain. To do so, the sequence UV is traversed and
for each variable, if its delta set is not empty, we update the corresponding sparse
sets of values present in the delta set. Line 23 computes a lower bound for the cost
due to unbound variables, by traversing UV and UA. The feasibility check is done
in lines 24-26 and the total cost is lower bounded in line 27.

domain filtering Algorithm 5.2.2 achieves domain filtering. We assume
CS, CSleft and CSright are computed according to current state. It can be done
by simply traversing the UV and UA sequences. Line 1 computes Passignment that
maps unbound assignments to their position in UA. The loops in lines 2-18 apply
the domain filtering rule for each pair (Xi ∈ UV, s ∈ D(Xi)). Depending on the
relative positions of Xi and s, CXi=s

unbound is computed. At line 10, a feasibility check
for this particular assignment is performed. If it is unfeasible, we remove the time
slot of the domain of the variable and update the corresponding sparse set (and
possibly UA if it is emptied).

5.3 continuous casting steel production with electric-
ity bill minimization

To evaluate the ResourceCostAllDifferent (RCAD) constraint in practice,
we first considered a real-life industrial problem, the Continuous Casting Steel Pro-
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Algorithm 5.2.1 : Incremental Computation of Tlb. The algorithm also serves
as a feasibility checker with inference rule FC.

1 forall Xi ∈ UV : |D(Xi)| = 1 do
2 UV ← UV\{Xi}
3 Cassigned ← Cassigned + C(Xi) · P(Xi)

4 UA← UA\{Xi.value()}
5 forall s ∈ ∆Xi do
6 XwithValue(s)← XwithValue(s)\{Xi}
7 if XwithValue(s) = ∅ then
8 UA← UA\{s}
9 end

10 end
11 end
12 if Cassigned > T then
13 return Fail
14 end
15 forall Xi ∈ UV do
16 forall s ∈ ∆Xi do
17 XwithValue(s)← XwithValue(s)\{Xi}
18 if XwithValue(s) = ∅ then
19 UA← UA\{s}
20 end
21 end
22 end
23 Cunbound ← Prodcost(UV, UA)

24 if Cassigned + Cunbound > T then
25 return Fail
26 end
27 post(T ≥ Cassigned + Cunbound)

duction with Electricity Bill Minimization (CCSPEBM). We compared the perfor-
mances of our filtering algorithm with those of existing approaches. All experiments
were performed with the OscaR solver [Osc12], AMD Opteron processors (2.7 GHz),
the Java Runtime Environment 8, and a memory consumption limit of 4 GB.
We first experimented with small-scale instances: RCAD provides generally addi-

tional pruning as compared with a decomposition in a sum of element constraints,
sometimes by one order of magnitude. This is reflected from a time perspective:
one order of magnitude can be gained and RCAD is at the very most 3 times slower.
MinimumAssignment is always slower than RCAD and almost only brings over-
head if they are used together. Moreover, since the exact reduced costs are not
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Algorithm 5.2.2 : Filter the domains by means of the inference rule DF.

1 Passignment ← mapa→p /* Map from assignments to position in UA */

2 forall Xi ∈ UV do
3 forall s ∈ D(Xi) do
4 spos ← Passignment(s)
5 if Xi

pos < spos then

6
CXi=s

unbound ← CSXi
pos−1 + C(Xi) · P(s) + CSleft

spos−1 − CSleft
Xi

pos−1

+CS|UV| − CSspos

7 else if Xi
pos > spos then

8
CXi=s

unbound ← CSspos−1 + C(Xi) · P(s) + CSright
Xi

pos−1 − CSright
spos−1

+CS|UV| − CSXi
pos

9 end
10 if CXi=s

unbound + Cassigned > T then
11 D(Xi)← D(Xi)\s
12 XwithValue(s)← XwithValue(s)\{Xi}
13 if XwithValue(s) = ∅ then
14 UA← UA\{s}
15 end
16 end
17 end
18 end
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computed in MinimumAssignment as it is too expensive3, it appears RCAD
prunes generally more than MinimumAssignment.
To challenge the scalability of our approach, we also considered larger instances.

We discovered that RCAD is faster than the decomposition in a sum of element
constraints for ∼ 75% of the instances and that at least one order of magnitude is
gained for ∼ 20% of the instances. From a number of backtracks point of view, an
order of magnitude is gained for ∼ 30% of the instances. Finally, RCAD is slower
by a maximum factor of 3.2, showing our approach is not only efficient but also
robust.
Before providing the different results in detail, this section gives the definition of

the problem, a CP model to solve it, and describes the comparison methodology
we used.

5.3.1 Problem Definition

A Continuous Casting Steel Production Problem is a scheduling problem, for which
a CP approach has been proposed in [GSDS14]. The main difference in our problem
is that steel is produced by melting scrap in an Electric Arc Furnace (EAF) instead
of a blast furnace. The total electricity cost minimization becomes the objective of
the problem.
The Continuous Casting Steel Production with Electricity Bill Minimization

(CCSPEBM) consists in scheduling a set of programs P . A program p is made
of a sequence Bp of batches. Each batch must be processed by a given sequence
of machines: the EAF, the Ladle Furnace (LF), the Argon Oxygen Decarburiza-
tion (AOD), and finally the Caster (CAS). For a given program, the AOD might
actually not be used (this is known a priori). A machine can process at most one
batch at any time. An illustration of a CCSPEBM schedule is given in Figure 5.3.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

CAS

AOD

LF

EAF

b1 b2 b1

b1 b2

b1 S b2 b1

b1 b2 b1

Figure 5.3: Example of a CCSPEBM schedule with two programs, respectively with two
batches and one batch. Activities of the first/second program are in light/dark
gray. Only the first program makes use of the AOD and its first batch is stocked
by the LF during one time slot (represented by the S square).

In the process, a batch is first melt using the EAF. Because the steel must be
kept at a high temperature, the subsequent machines must process the batch as
soon as the previous machine has finished. In addition, a batch cannot stay too long
in the whole process, that is, there is a maximum span between the EAF and the

3 According to preliminary experiments we conducted. We do not report any results when exact
reduced costs are used.
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CAS. The CAS must process all batches of a given program without interruption
(see for instance the first program in Figure 5.3). The processing time of a batch
by a machine is known a priori and cannot be modified. However, the LF/AOD
might stock a batch during a small amount of time (see Figure 5.3).
The two electric machines requiring a significant amount of electrical energy are

the EAF and the LF. A consumption profile is associated with the processing of a
batch by a machine, that is, a function that provides the (non-null) consumption of
each time period of the processing time. The profiles follow bounded ramp functions:
the first slot requires a given amount and then stays constant with another higher
consumption for the remaining duration. The profile can be different for each batch
when processed by the EAF but it is the same for all batches processed by the LF.
It is assumed that the LF does not consume energy while it stocks a batch since
the consumption is negligible, i.e., the consumption required to stock a batch is 0.
Finally, the electricity prices can vary at each time slot of the whole horizon.

5.3.2 CP Model

A standard CP scheduling approach is used for solving this problem. The processing
of a batch by a machine is represented by an activity. Each activity is modeled with
three integer variables used to represent its start, duration and end: s, d and e,
such that s + d = e. For a machine m, sm denotes the array of starting times of all
activities executed on m, and sb

m the starting time of the processing of the batch b
by machine m (similar notations are used for duration and ending time). We allow
dlf and daod to vary since the LF/AOD may stock a batch for a moment (see the S
square in Figure 5.3). For every batch b, the different activities must be scheduled
continuously:

∀p ∈ P , ∀b ∈ Bp : eb
eaf = sb

lf ∧ eb
lf = sb

aod ∧ eb
aod = sb

cas

All batches of a given program must be processed in sequence by the caster and
without any interruption:

∀p ∈ P , ∀i ∈ 1..|Bp| − 1 : ebi
cas = sbi+1

cas

A machine can only process one batch at a time. This is modeled with unary
resource constraints [Vil04]:

unary(seaf , deaf , eeaf ) ∧ unary(slf , dlf , elf )∧
unary(saod, daod, eaod) ∧ unary(scas, dcas, ecas)

Finally, a batch can not stay too long in the whole process:

∀b ∈ B : sb
cas − eb

eaf ≤ maxspan

where maxspan is the maximum duration a batch can stay after the EAF and before
the CAS.
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electricity bill minimization To model the objective, we split a given
activity on the EAF/LF that must be processed during d time slots into d consec-
utive chunks with a duration of 1 time slot. Each of these chunks is then an item
to be produced and has a consumption given by the batch consumption profile on
the machine. The objective is modeled with Equation 5.1 and is to be minimized.
We compare the following modelings of Equation 5.1:

• SumElements, using a sum of element constraints. In this case, we do
not split activities into chunks. We precompute the total cost of starting an
activity at a given time and use this cost in the element constraint.

• SumElements∪MinAssignment, using a MinimumAssignment constraint
[Foc+99] additionally for each consuming machine. The cost of assigning a
chunk at a time slot s is simply its consumption in the profile of the activity
multiplied by the price at slot s. We do not use the exact reduced costs
[DCP16] that appeared to require a prohibitive computation time for the
size of the considered instances.

• SumElements∪ RCAD, using our constraint additionally, since RCAD and
SumElements actually do not subsume each other. RCAD alone can miss
some filtering as compared to SumElements because of the union of domains
relaxation in our procedure.

• SumElements∪ RCAD∪MinAssignment, using all constraints altogether.

5.3.3 Comparison Methodology

replay evaluation To compare the different models, we use the Replay
Evaluation framework described in Chapter 3. The baseline model is SumElements.
This model with then be extended with the different propagators considered in this
chapter. To generate the CBTs, we use a simple first-fail search heuristic, the focus
of this evaluation being on propagation: we first branch on the variable with the
smallest domain. For the value heuristic, prior to search and for each consuming
activity, we order the time slots by non-decreasing order of total processing cost
of starting the activity at the time slot. Let s be the available slot minimizing
cost of batch b on machine m, we then branch in a ternary fashion in this order:
sb

m = s, sb
m < s and sb

m > s. For non-consuming activities, we assign the activity
to its minimum starting time on the left branch, and remove this assignment on
the right branch.

instance generation This work being part of an industrial project, we
discussed with consultants of the N-side company4 in order to generate realistic
instances, and we use real historical electricity prices on the EU market. Our in-
stances have between 2 and 15 batches per program, and their duration is between
3 and 4 slots at the EAF, exactly 4 slots at the AOD/LF, and between 4 and 5

4 http://www.n-side.com/

http://www.n-side.com/


104 resource-cost alldifferent constraint

slots at the CAS. 80% of the programs do use an AOD and possible consumptions
vary between 1 and 100. We ensure that there are enough programs so that the
caster is used between 60% and 80% of the horizon. Finally, maxspan amounts to
150% of the sum of processing times of a batch by the LF and the AOD.

5.3.4 Small Instances

We first consider 158 small instances (96 time slots). Search trees were generated
with a time limit of 30 s. and a backtrack limit of 500000. The results are given in
Figures 5.4, 5.5, 5.6.
In Figure 5.4, one can see that SumElements∪ RCAD is sometimes faster than

SumElements, but not always. However, the factor is generally not large when
it is slower (at most ∼ 3). The number of backtracks is almost always reduced,
sometimes significantly. For only a few instances there is no additional pruning,
which explains the slowest execution times due to the overhead induced by our
constraint. We perform an extended comparison of those approaches for larger
instances in the next section.
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Figure 5.4: Comparison of SumElements and SumElements∪ RCAD on small instances.

Comparisons of SumElements∪MinAssignment and SumElements∪RCAD are
reported in Figure 5.5.
An important observation is that SumElements∪MinAssignment is always slower

than SumElements∪RCAD. Interestingly, one can see that SumElements∪RCAD
prunes generally more than SumElements ∪MinAssignment : the reason is that
RCAD is not subsumed by MinAssignment since we use the version from Focacci
et al. [FLM99] that uses the linear programming reduced costs and not the exact
ones. It would be subsumed using the exact reduced costs as in [DCP16] but unfor-
tunately computing them was too costly according to first preliminary experiments
we conducted.
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Figure 5.5: Comparison of SumElements∪MinAssignment and SumElements∪RCAD on
small instances.

We therefore make a last comparison, between SumElements ∪MinAssignment
∪RCAD and SumElements∪ RCAD (see Figure 5.6). One can observe that Min-
imumAssignment often only brings overhead: the data points are generally close
to the equality line for the number of backtracks, while the search times are slower.
In conclusion, MinimumAssignment does not scale well and we will not use it
for our comparison on larger instances.
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Figure 5.6: Comparison of SumElements ∪MinAssignment ∪ RCAD and SumElements ∪
RCAD on small instances.
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5.3.5 Large Instances

To challenge the scalability of our approach, we generated 227 larger instances with
480 time slots. We generated search trees using a time limit of 300 s., in order to
grasp more information about the performances of both approaches during search.
Results are given in Figure 5.7. As for small instances, one can see that there is often
an important gain in terms of the number of backtracks. There is no additional
pruning only for a few instances. From an execution time perspective, one can
observe the replays for SumElements all takes around 300 s., which is expected
since it is the model used to generate CBTs. Moreover, SumElements ∪ RCAD is
faster for most of the instances.
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Figure 5.7: Comparison of SumElements and SumElements∪ RCAD on large instances.

In order to quantify and better visualize the gain obtained by our approach, we
constructed performance profiles following the definition given in Section 3.3.1 (i.e.,
only SumElements is part of the baseline set B ). Figures 5.8 and 5.9 respectively
provide the profiles for the number of backtracks and the time metrics. Let us first
read the profiles for the number backtracks: FSumElements∪RCAD(1) ' 95%, so we
achieve more pruning for ∼ 95% of the instances. Furthermore, one can see that
FSumElements∪RCAD(0.1) ' 30%, which means that we gain at least one order of
magnitude on the number of backtracks for ∼ 30% of the instances.
From an execution time perspective, FSumElements∪RCAD(1) ' 75%, so our ap-

proach is faster for ∼ 75% of the instances. One can also observe that at least
one order of magnitude is gained for ∼ 20% of the instances. Finally, notice that
FSumElements∪RCAD reaches 100% at τ = 3.2 This means that if SumElements ∪
RCAD is slower than SumElements, it is at most by a factor of 3.2. This illustrates
that our approach is also robust as it does not deteriorate much the execution time
in the case where it does not bring any additional filtering.
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Figure 5.8: Backtracks performance profile on large instances of the CCSPEBM.
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Figure 5.9: Time performance profile on large instances of the CCSPEBM.

5.4 the product matrix travelling salesman problem

In order to evaluate our constraint on a second problem, let us consider a particu-
lar case of the well-known Asymmetric Travelling Salesman Problem (ATSP), the
Product Matrix Travelling Salesman Problem (PMTSP), that was first formally
described in [PLC87]. We recently added this problem to the CSPLib [CS]. We
consider this problem because it is more academic than the previous one. The
experiments show that our approach is the fastest for ∼ 90% of the considered in-



108 resource-cost alldifferent constraint
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b c

C(a) · P(b)
C(b) · P(a)

C(a) · P(c)
C(c) · P(a)

C(b) · P(c)

C(c) · P(b)

Figure 5.10: Instance of the Product Matrix Travelling Salesman Problem.

stances, even if we also experimented with the Concorde solver [App+06, App+11],
a custom state-of-the-art Branch-and-Cut Mixed Integer Programming solver for
the Travelling Salesman Problem (TSP).

definition Given two vectors of n elements C and P, one can construct a
simple graph G with n vertices, such that the directed edge from the vertex i to
the vertex j 6= i has a cost equal to C(i) · P(j). The distance matrix is therefore
the matrix product between the vectors C and P, hence the name of the problem.
An instance of the PMTSP is illustrated in Figure 5.10. The problem consists in
finding an Hamiltonian circuit of minimum total cost in the graph G. The problem
was proven to be NP-hard in [Sar80, GLS85].

solving In CP, the ATSP is usually solved with a successor model (see
[Pes+98]): an array of n variables succ is used to represent the successors for each
vertex. One then impose that the array is an Hamiltonian circuit (filtering from
[Pes+98]) :

circuit(succ)

One can model the objective with either: 1) a sum of element constraints, 2)
a MinimumAssignment constraint, or 3) the ResourceCostAllDifferent
constraint. The sum of element constraints misses a lot of pruning in this case,
so we will not consider it here. Let us respectively call RCAD, MinAssignment
and MinAssignment∪ RCAD the models with ResourceCostAllDifferent,
MinimumAssignment, and both algorithms.

results We generated 50 instances with 200 vertices. We compared the per-
formances of the different CP models and those of the Concorde solver[App+06,
App+11], a custom state-of-the-art Branch-and-Cut Mixed Integer Programming
solver for the TSP. Since Concorde does not solve ATSPs, we used the standard re-
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duction from ATSPs to TSP given in [JV83] to solve our instances with this solver.
We used the Conflict Ordering Search heuristic [Gay+15] to solve the problems in
CP. For all approaches, the instances were solved to optimality. All experiments
were performed on a machine with an Intel Core i7 (2,2 GHz) processor. The results
are given in Figure 5.11, as a standard performance profile as defined in [DM02]
(i.e., all approaches are used in the baseline set B).
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Figure 5.11: Performance profile for the different CP models and the Concorde solver on
the 50 generated instances of the PMTSP.

First, one can observe that MinAssignment is the slowest of the CP approaches,
which is a conclusion already done in the last section. Using our propagator ad-
ditionnaly provides some speed-up since it can provide more pruning or detect a
failure faster at a given node since it has a higher priority in the propagation queue.
Yet, only using our algorithm is the best option, since it is always faster than the
other CP models. The overhead of using MinimumAssignment to possibly get
more pruning simply does not pay off in this case.
An interesting observation is that Concorde is only the fastest solver for ∼ 10%

of the instances, while RCAD is the fastest for the remaining ∼ 90% instances.
Moreover, the solving time ratio for Concorde, as compared with RCAD, is often
large: 5% of the instances are even not solved in a factor 32 of the time required
by RCAD. At the same time, when RCAD is not the fastest, it requires at the very
most a factor of 12 as compared with Concorde. This indicates that even when
RCAD is not the fastest, it is more robust. From this experiment, one can conclude
that the CP technology should be the preferred one to solve this problem.
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conclusion

Before we give a general conclusion, let us first provide a conclusion for each
important contribution of this thesis.

global constraints evaluation In this part, we introduced a tool
that allows researchers of the OR community to easily build and export perfor-
mance profiles from their experimental data. In addition, we proposed a framework
to roughly estimate visually improvements brought to specific parts of a solving
process. We believe this methodology can help to avoid falling into pitfalls, where
improving the efficacy of a given algorithm used in a particular context is not
worth experimentally. We showcased this approach for propagators in Constraint
Programming and cuts in Mixed Integer Linear Programming.
Search heuristics can have a significant impact on the outcome of the evalua-

tion of a global constraint (or more generally a filtering procedure). We therefore
proposed a rigorous and yet simple framework that allows preventing any unfair
advantages regarding the compared approaches, by only measuring the effect of
additional filtering. Being able to measure exactly the time gain provided by a fil-
tering algorithm permits to reduce the bias in empirical evaluations. We explained
how to actually implement this framework.
Evaluating the potential advantages of reducing the cost of a given filtering pro-

cedure is of great importance to make our research efforts as fruitful as possible.
As a first step in this direction, we proposed a systematic methodology to simu-
late the performance of fictional implementations of a propagator having reduced
activation cost. This is done before starting time-consuming research activities
to actually reduce the cost. A nice feature of deterministic replays is that mea-
surements can be carried out in different replays, removing imprecisions due to
measurement overhead.
We suggested in this work a broader usage of performance profiles in the CP com-

munity. We showcased that they allow deriving many informative conclusions. We
evaluated several propagators for the following constraints on quite large bench-
marks: alldifferent, cumulative, binpacking and unary with transition
times. In addition, a nice feature of our version of the performance profiles is that
the whole community could continuously add new data and update them on a cen-
tral repository, as a common effort to improve knowledge about the performance
of propagators. This can be done as long as the baseline model remains the same.
As for the estimation of the impact of reducing the cost of a propagator, we illus-

trated the approach for Energetic Reasoning and Revisited Cardinality Reasoning
for BinPacking over popular sets of instances. We found that reducing the propa-
gator cost, even to the point of making it negligible, might actually be beneficial
only on a small subset of a given instance set. Furthermore, this outcome can differ
substantially depending on the considered benchmark and on the search strategy.
We also briefly studied the shortfalls of not being able to achieve bound consistency
for the cumulative constraint. Interestingly, from a pruning point a view, there
is still a lot to gain.
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generalized unary resource with transition times This chap-
ter has extended the algorithms and data structures for the unary resource, taking
into account family-based transition times in order to perform additional propa-
gation. The method also handles optional activities so that one can model more
general problems (e.g., involving alternative resources). The original data structures
and algorithms have been adapted accordingly. The approach is lightweight from
both the time and space perspectives. Experiments conducted on the Job-Shop
Problem with Sequence Dependent Transition Times have demonstrated that our
work provides a substantial gain and is quite robust to changes in instance charac-
teristics (e.g., number of activities and families).

resource-cost alldifferent In this chapter, we considered problems
where a set of items, each requiring a different amount of resource, must be assigned
to different slots, and where the price for a unit of resource can vary at each slot. In
this class of problems, the objective is to assign items such that the overall resource
cost is minimized. We showed two ways of modeling such an objective in Constraint
Programming (CP) and their limitations (limited inference or scalability). To cope
with those limitations, we introduced a new filtering algorithm that we evaluate on
a real and large-scale industrial problem, the Continuous Casting Steel Production
with Electricity Bill Minimization. The results demonstrate that, especially for large
instances, our approach is often faster, sometimes with an important speed-up: an
order of magnitude is gained for ∼ 20% of the large instances and ∼ 75% of them
are solved faster. Moreover, our algorithm is robust, in the sense that when it is
slower, it is by a small factor (3.2 at the very most). Results also illustrate that for
a non-negligible number of the large instances, we can get an important gain in
terms of the number of backtracks as compared with a decomposition: a reduction
of at least one order of magnitude is obtained for ∼ 30% of the instances. We
also considered a more academic problem, the Product Matrix Travelling Salesman
Problem. We compared our approach with existing ones in CP, as well as with
Concorde, a custom TSP solver. The results show that our approach is the fastest
in CP, and that it outperforms Concorde for ∼ 90% of the instances, sometimes by
an important factor (some instances could not be solved in a factor 32 as compared
with our approach).

main conclusion The aim of this thesis was to focus on the design of scal-
able propagators. Low time complexity of algorithms is, of course, always desirable,
but in the case of propagators, it often happens that speed must be traded with
inference strength, i.e., one must decide whether speed at each propagation cal-
l/search node must be preferred to the reduction of the total number of nodes.
There is no final answer to this problem, and one must experiment with this trade-
off when considering small instances. However, once we have to work with larger
instances (and this will be the case), this trade-off does not matter anymore: we
simply cannot use heavy propagators, even if they infer more. When designing new
propagators, we must keep in mind the scalability constraint of our (new) algo-
rithms. Heavy, more-powerful propagators should not be used in the general case
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in the future, as the instance sizes will keep growing. Some of our experiments
made that conclusion for several constraints.
Yet, when designing a new filtering method, one does not necessarily have to

directly come up with an efficient algorithm. One can always first derive a (maybe
naive) inefficient implementation from the inference rules and then probe if reducing
its time complexity will actually pay off.
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perspectives

Let us end this thesis by suggesting a few perspectives for the main contributions
made in this thesis.

global constraints evaluation We might consider generating more
CBTs for a given instance, and gather the results. This would allow the evaluation
approach to be even more robust. For instance, we could use several branching
strategies or use Large Neighborhood Search in order to get more data for a given,
large-scale, instance (and not only data from the beginning of the search tree).
Another way to do so is to bound the search space to be replayed with a set
of no-goods. Replaying a CBT with a model is not always possible, because the
constraints used in the generator model must be subsumed by the one in the
model, which is not always the case. For example, Time-Tabling and Edge-finding
for the cumulative constraint do not subsume each other. Still we can generate
a CBT into which all the replayed CBTs will be included in. To do so, when we
generate the CBTs, we could use a model that prunes only when all the constraints
used in replays are actually able to prune. A broader and long-term vision regarding
propagator evaluation would be to extend this framework with statistical hypothesis
testing. The aim would be to test if on (representatives) benchmarks, the use of a
given propagator has a statistically significant positive impact. Finally, regarding the
potential of necessary conditions, we could study the gain of activating a propagator
only when it prunes several variables or values.

generalized unary resource with transition times We would
like to consider other types of problems (e.g., the Traveling Salesman Problem with
Time Windows) and combine this work with the use of good lower bounds in a
branch-and-bound setting. Moreover, when there are no families defined a priori
in an instance, we want to study the benefit of first creating them by means of
clustering algorithms and then using the filtering introduced in this chapter. This
approach might prove to be helpful when the intra-cluster transition times are
significantly smaller than the inter-cluster ones. Finally, we could generalize the
definition of the families: all activities inside a given family could have the same
positive constant transition time between each other (instead of always being 0).
We would like to adapt our algorithms to take this into account.

resource-cost alldifferent We would like to extend our algorithm to
handle the production of several items at the same time slot. This would therefore
be a particular case of GccCost for cardinalities larger than 1. Moreover, we
would like to study the performances of our algorithm on other kinds of problems
such as discrete lot sizing problems [Hou+14]. Finally, in the case of the CCSPEBM,
an important future work is the evaluation of the robustness of the approach in
function of errors in price prediction, as there is a certain level of uncertainty in
price forecasts.
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