
Available at:
http://hdl.handle.net/2078.1/218062

[Downloaded 2019/09/13 at 15:56:09]

"Global constraints for mining sets and sequences"

Aoga, John

Abstract

The purpose of Pattern Mining (PM) is the discovery of patterns, knowledge,
and information in data (textual or structured). Major concerns in the design
of PM algorithms include the efficiency (in time and memory consumption)
and the flexibility of the mining algorithms. The flexibility means that one can
add preferences/constraints to guide the mining process in finding relevant
patterns. In recent years, the paradigm of Constraint Programming (CP) has been
introduced in PM. CP is a way of solving combinatorial problem by separating
its resolution into two steps: the modeling of the problem and the search for
solutions. This way, CP is sufficiently flexible in the addition of new constraints.
However, existing approaches towards standard and CP-based PM represent
different trade-offs between these concerns (flexibility and efficiency): standard
PM methods are highly efficient but lack in terms of flexibility. On the other hand,
CP-based PM methods are very flexible but less efficie...

Document type : Thèse (Dissertation)

Référence bibliographique

Aoga, John. Global constraints for mining sets and sequences. Prom. : Schaus, Pierre ; Dagba,
Théophile

GLOBAL CONSTRAINTS FOR
MINING SETS AND SEQUENCES

Aoga John Oscar Raoul

July 2019

Thesis submitted in partial fulfillment of the requirements for the degree of:

. Doctor of Science of Engineering and Technology from UCL

. Docteur en Science de l’Ingénieur de l’UAC

at
UCLouvain

Institute of Information and Communication Technologies,
Electronics and Applied Mathematics (ICTEAM)

Louvain-la-Neuve, Belgium
&

Université d’Abomey-Calavi (UAC)
Ecole Doctorale des Sciences de l’Ingénieur (ED-SDI)

Abomey-Calavi, Bénin

Examining board
Prof. Yves Deville, President UCLouvain/ICTEAM, Belgium
Prof. Marco Saerens, Secretary UCLouvain/ICTEAM, Belgium
Prof. Pierre Schaus, Supervisor UCLouvain/ICTEAM, Belgium
Prof. Théophile Dagba, Supervisor UAC/ENEAM, Benin
Prof. Tias Guns VUB/MOBI, Belgium
Prof. Siegfried Nijssen UCLouvain/ICTEAM, Belgium

To my daughter, and my wife.

i

Abstract

The purpose of Pattern Mining (PM) is the discovery of patterns, knowledge,
and information in data (textual or structured). Major concerns in the design
of PM algorithms include the efficiency (in time and memory consumption)
and the flexibility of the mining algorithms. The flexibility means that one
can add preferences/constraints to guide the mining process in finding relevant
patterns. In recent years, the paradigm of Constraint Programming (CP)
has been introduced in PM. CP is a way of solving combinatorial problem
by separating its resolution into two steps: the modeling of the problem and
the search for solutions. This way, CP is sufficiently flexible in the addition
of new constraints. However, existing approaches towards standard and
CP-based PM represent different trade-offs between these concerns (flexibility
and efficiency): standard PM methods are highly efficient but lack in terms
of flexibility. On the other hand, CP-based PM methods are very flexible
but less efficient. Furthermore, standard PM typically relies on effective
data structures and algorithmic improvements, where CP-based PM relies
on the power of declarative tools. In this work we aim to reconnect the
two approaches to maximize both flexibility and efficiency: 1) we propose
new algorithms for PM using CP, in which PM problems are modeled as
global constraints; 2) we show that through these global constraints one can
combine ingredients from both PM and CP to build effective data structures
and efficient filtering algorithms. We experimentally demonstrate that our
approaches perform well in terms of efficiency on a variety of benchmarks
despite its flexibility. We show that these global constraints can be (i)
combined with existing constraints in CP such as regular expression and
grammar constraints, (ii) used as a building block in learning tasks such as
discriminative patterns and rule-based models. All our implementation are
open-source and available online (https://sites.uclouvain.be/cp4dm/).

iii

Resume

Le but du Pattern Mining (PM) est la découverte de motifs, de connaissances
et d’informations dans les données (textuelles ou structurées). L’efficacité
(en temps et en mémoire) et la flexibilité des algorithmes de Data Mining
sont des préoccupations majeures dans la conception des algorithmes de PM.
Par flexibilité, on entend que l’on peut ajouter des préférences/contraintes
pour guider le processus de fouille dans la recherche de motifs pertinents. Ces
dernières années, le paradigme de la programmation par contraintes (PPC)
a été introduit dans les PM. La PPC est un moyen par lequel on résout
un problème combinatoire en séparant la modélisation dudit problème et
la recherche de solutions. Ainsi, la PPC est assez flexible pour l’ajout de
nouvelles contraintes. Cependant, les approches de PM standards existantes
et celles basées sur la PPC représentent des compromis différents entre ces
préoccupations (flexibilité et efficacité) : les méthodes de PM standards
sont très efficaces mais manquent de flexibilité. D’autre part, celles basées
sur la PPC sont très flexibles mais moins efficaces. En outre, les méthodes
standards reposent généralement sur des structures de données efficaces et
des améliorations algorithmiques, alors que celles basées sur la PPC repose
sur la puissance déclarative des outils de modélisation. Le but de cette
thèse est de reconnecter ces deux approches pour maximiser à la fois la
flexibilité et l’efficacité. Pour ce faire : 1) nous proposons de nouveaux
algorithmes pour le PM utilisant la PPC, dans lesquels les problèmes de
PM sont modélisés comme des contraintes globales ; 2) nous montrons qu’à
travers ces contraintes globales, on peut combiner les ingrédients du PM et de
la PPC pour construire des structures et des algorithmes de filtrage efficaces.
Nous démontrons expérimentalement que nos approches donnent des résultats
compétitifs en termes d’efficacité sur une variété de base de données malgré
leur flexibilité. Nous montrons que ces contraintes globales peuvent être (i)
combinées aux contraintes existantes dans les solveurs PPC telles que les

v

vi

expressions régulières et les contraintes grammaticales, (ii) utilisées comme
élément constitutif dans les tâches d’apprentissage telles que la recherche de
motifs discriminants et des listes de règles.

Acknowledgements

“Gratitude is a miracle of its own recognition. It brings out a
sense of appreciation and sincerity of a being.”

–Auliq-Ice

Where to start when there are so many people to thank! To all of you, who
directly or indirectly, have always supported me in this adventure, I say big
THANK YOU. Be fulfilled beyond your expectations. But it would be
ungrateful to not thank some people specifically.

First, I thank my promotors: Pierre Schaus and Mr Théophile Dagba;
without you, this thesis would never have been what it is today. A big thank
you to you Mr Dagba, for the trust you have given to me. After the sudden
death of Mr Adedjouma (my former mentor), you did not hesitate to conduct
my DEA at the end and to be my co-promotor for this PhD adventure despite
your multiple occupations. As for you, Pierre, how can I thank you? Without
your open mind, your expertise and vision, this achievement won’t be what it
is today. Thank you for giving me a taste for research and well-written papers
and algorithms. You are contributing to the development of my country by
accepting all these Beninese PhD students here. Find in this, the beginning
of a long and fruitful collaboration. Why change a team that wins!

I am also very grateful to you, Tias and Siegfried. Your expertise, valuable
comments, and advice contribute significantly to enhance the level of this
achievement. Many thanks to you and to Pierre for all you have done mainly
when the time comes to write a paper. Know that I learned a lot from you
in writing excellent and beautiful papers. Here also finds its place, the jury
which significantly contributed to raising the level of this manuscript. I don’t
forget the fruitful discussion with professors of ICTEAM, EPAC, and IFRI
such as Professors Vianou, Djogbé, Assogba, Ezin, and Dagba.

My thanks also go to the Benin-Belgium cooperation and then to FRIA
(“Fonds pour la Formation à la Recherche dans l’Industrie et dans l’Agriculture”),

vii

viii

which provided substantial financial support for the accomplishment of this
thesis. In particular, Marc Lobelle for all his dedication to the cooperation
and for the co-tutelle agreements of which he has been a true craftsman.
Thanks also to Tias, Pierre, Dagba, and Olivier for their contributions to
the FRIA process.

Going to the work was just as much pleasure because of the great col-
leagues I had in Benin and Belgium: Helène, Ratheil, Gael, Minh, Az,
Maurice, Carlos, Pat, Arsene, and Hypolite. It was a real pleasure to share
the office with you. A special thanks to you Helène my office mate of every
day. Speaking of colleagues, how can I forget my brothers and friend of
Broloutes: François, Michael, Thanh, Raziel, and Nathan, without you, this
adventure would just have no taste. BDM members (Emeline, Min, Natacha,
Quentine, Cigale, Micheline,...) also find their place here. Thank you
for welcoming me without prejudice and for sharing those after-foot and
team-building times. I cannot forget the direction board of MIFY (Ratheil,
Probus, Christian) and all the staff members. Thank you for the great work
you have done. You guys, consider this as a justification for my repeated
absence of board meetings.

Arrive at the turn of my family and I already seem to have exhausted all
the words of thanks, but not for you! I will always find what to say. Thanks
to you Dad and Mom for your vision and your unwavering and unconditional
support. Thank you for always believing in your "Fiston". Francine, Nadine,
Sophie, Astrid, Amael, Grace, Karol, and Sophia thank you for this family
warmth that you cover me.

Honey, it’s your turn, and I can only say thank you. Thank you for
your love. Thank you for your warmth and your understanding. This
adventure together was equally uplifting and revealing how strong we are
beyond everything. Without you, this thesis would have been a vague field
of loneliness. Please, simply consider that this accomplishment is also yours.

For all my friends Sandrine, Egidia, Mylo, Lionel, Parfait, Gael, Ratheil,
Probus, Christian, Francois, Maurel, Thanh, Michael, Sophia, Steaven, Emery
... it’s just beautiful being able to always count on you.

John, July 2019

List of Tables

Table 2.1 Three equivalent representations of itemset databases:a)
Horizontal sparse - H, b) Vertical sparse - V , c) Vertical dense
- D. 20

Table 2.2 A sequence database SDB 25

Table 3.1 CPU runtime for several algorithms vs CoverSize.(TO≡TimeOut;
∗ ≡CoverSize+CoverClosure; ρ ≡ density = 1

|T |×|I|
∑
t∈T ,i∈I Dti) 55

Table 3.2 Runtimes, in seconds, for discriminative itemset mining 58

Table 4.1 Probabilistic rule lists examples: a) From PRL over
Door opening data (Probability=the probability that the door
is opened); and From PRLb), and c) SBRL over Mushroom
data. (Probability=the probability that the mushroom is
edible). 64

Table 4.2 Benchmark features . 80
Table 4.3 Total code lengths for several datasets (θ is the minimum

support for F) . 81

Table 5.1 A sequence database SDB1 and list of last positions. . 97
Table 5.2 Dataset Features. Sparsity is equal to (1

size(SDB) ×∑ size(s)
size(I/s)

) . 104

Table 6.1 a) A sequence database SDB, b) a structure for the
next position of minimum gap time N(precomputed) and c)
the last position map. 114

ix

x LIST OF TABLES

Table 6.2 Seven real-life datasets features. Respectively: data-
set name, number of distinct symbols, number of sequences,
total number of symbols in the dataset, maximum sequence
length, average sequence length, and density computed by
allsymbols(SDB)

size(I)×size(SDB) (Kosarak is the sparsest dataset and Protein
is the densest). 132

Table 6.3 Sequential pattern miners with supported constraints.
1 is any other user-supplied constraint that does not depend
on the embeddings (not implemented but could be). ∗GapSeq
does not consider time but position of events, ∗∗cSPADE does
not support minimum span constraint. 133

Table 6.4 Combination of pattern length, item inclusion/exclusion,
regular expression constraints with gap constraint. 138

Table 7.1 Execution time and memory usage for several non-timed
datasets and thresholds (the maximum size of episodes is set
to 5). 157

Table 7.2 Execution time and memory usage for several timed
datasets and thresholds (the gap and span constraints are:
gap[100, 3600] and span[1, 35000]). 160

Table 7.3 Comparison with MINEPI+ and EMMA for θ = 5%
and W = 10 (rows are sorted by |s|). 161

Table 7.4 Additional constraints on Q08379 Protein (Uniprot). . 161

List of Figures

Figure 1.1 Graph to color (Benin and its neighbouring countries). 7
Figure 1.2 Example of map coloring using CP. a) CP search to

solve this problem and b) an example of solution (a colored
map) . 9

Figure 2.1 a) Transaction database with a target attribute split
into b) positive and c) negative databases. 24

Figure 2.2 a) Projected and equivalent b) Pseudo-projected databases
with θ = 3 for SDB1 . 27

Figure 3.1 Reversible Sparse Bitset techniques example. 39
Figure 3.2 Computing min(c) and max(c) when C is included. . 43
Figure 3.3 a) Plot of χ2 ZDC function in [0, |D+|] × [0, |D−|]

with |D+| = 60 and |D−| = 40; b) Same plot with the plane
representing a threshold at χ2 = 20; c) Same plot with the
score-axis projected in the pn-plane. Note: p = n+, n = n− . . . 51

Figure 3.4 Several cases of χ2 ZDC(|D+|, |D−|, n+, n−, score) cons-
traint filtering. Note: p = n+, n = n− and iso-curve corresponding to
min(score). 52

Figure 4.1 Itemset Database with positive/negative classes 68
Figure 4.2 Powerset lattice of D with equivalence classes. 68
Figure 4.3 Finding greedy and optimal solution base on the exam-

ple of Figure 4.2 . 74
Figure 4.4 Sensitivity of PRL for several settings using mushroom

and soybean datasets . 82

xi

xii LIST OF FIGURES

Figure 4.5 Comparison of Area under ROC among different me-
thods and four datasets, for all 10-folds (θ = 10%, |I| = 1).
. 84

Figure 4.6 a) Comparison of coding length in average among
PRL (g,c) and SBRL for different test datasets and b and c)
evolution of the coding length of data only (top) and the AUC
(bottom) for several rule lists size, for mushroom dataset, for
all 10-folds (θ = 10%, |I| = 2). 85

Figure 5.1 Projected databases tree obtained from SDB1 with
θ = 3 (on top) and the Reversible vectors of the trailed-based
data structure (on bottom). 100

Figure 5.2 Prefix Projection Decreasing Counting Principle . . . 102
Figure 5.3 CPU times for PPIC, PPDC, PPmixed and Gap-Seq

for several minsup (missing points indicate a timeout) 106
Figure 5.4 CPU times for PPIC,PPDC,PPmixed and cSPADE

for several minsup (missing points are due to timeout). . . . 108
Figure 5.5 Incremental impact of our solutions to the different

weaknesses (yaxis is logscale for all plots) 109
Figure 5.6 Handling of different additional constraints 110

Figure 6.1 Embedding (Projected) databases and extension win-
dows for patterns 〈A〉 and 〈AD〉: a) without time constraints
b) with time constraints (gap[3,7]). Note that embeddings are
positions in s, not timings and these positions start from 0. . 116

Figure 6.2 Examples showing sequences a) 〈ADC〉 and b) 〈AC〉
in SDB1 and c) embeddings of sequence 〈ADC〉 in sequence 3.118

Figure 6.3 Trailing-based data structure to store and restore the
embeddings database: a) without time constraints b) with
gap[3,7] constraints . 123

Figure 6.4 CPU times for PPIC (without time constraints) with
several minsup (missing points indicate a timeout). Find more
experiments in [AGS16] or Chapter 5. 133

Figure 6.5 CPU times when considering minimum and maximum
gap constraints for several minsup (missing points indicate a
timeout) . 134

Figure 6.6 CPU times when considering both gap and span cons-
traints for several minsup (missing points indicate a timeout). 135

LIST OF FIGURES xiii

Figure 6.7 CPU times for several maximum gap with fixed minsup
over Bible, Fifa, Leviathan and PubMed datasets (missing
points indicate a timeout). 136

Figure 6.8 Comparing PPICt without time restriction (PPICt[0,Inf])
with PPIC . 137

Figure 7.1 Sequence projection (3 indicates a match, 7 otherwise)
and its reversible vector. 145

Figure 7.2 Efficient frequency computation. 148
Figure 7.3 Data structures used for timed sequences with gap[2, 7]

and span[1, 10]. 152
Figure 7.4 Performance profiles of execution time (top) and Mem-

ory usage (bottom) for Uniprot dataset (2452 instances, where
n ∈ [100, 30000]) with θ = 5%, maximum size of 5 and time
limit of 600 seconds. 158

Figure 7.5 Performance profiles of execution time (top) and Mem-
ory usage (bottom) for Ubiqlog dataset (21 instances) with
gap[100, 3600], span[1, 35000], θ = 5%, maximum size of 5 and
time limit of 600 seconds. 159

List of Algorithms

Algorithm 3.1 Class RSparseBitSet*. 38
Algorithm 3.2 Class CoverSize([I1, . . . Im],D, c) 44
Algorithm 3.3 Class CoverClosure([I1, . . . Im],D) 48
Algorithm 3.4 Class ZDC(|D+|, |D−|, n+, n−, score) 53

Algorithm 4.1 Greedy(F ,D) . 75
Algorithm 4.2 Branch-and-bound (F ,D) 77

Algorithm 5.1 PrefixProjection(SDB,P,i,θ) 95
Algorithm 5.2 ProjectAndGetFreqs(SDB, a, θ) 96
Algorithm 5.3 ProjectAndGetFreqs(SDB, a, θ, sids, poss, φ, ϕ) . 101

Algorithm 6.1 PPICt(P, SDB, θ,M,N,W, Y) 124
Algorithm 6.2 ProjectAndGetFreqs(i, SDB, a,M,N,W, Y) 127
Algorithm 6.3 updateSupport(b, e, sid, pos, visitedI) 128

Algorithm 7.1 propagate(s,Σ, a, P) 146
Algorithm 7.2 sequenceProjection(s,Σ, a) 147
Algorithm 7.3 sequenceProjectionT imed(ss, st, I, a,N,W) 153
Algorithm 7.4 buildInitialT imedSeqProj(ss, st, I, a) 153
Algorithm 7.5 buildT imedSeqProj(ss, st, I, a,N,W) 154

xv

List of Abbreviations

CFIM Closed Frequent Itemset Mining.

CP Constraint Programming.

CPM Constraint-based Pattern Mining.

DFIM Discriminative Frequent Itemset Mining.

FEM Frequent Episode Mining.

FFIM Free Frequent Itemset Mining.

FIM Frequent Itemset Mining.

MDL Minimum Description Length.

PM Pattern Mining.

PPDC Prefix Projection Decreasing Counting.

PPIC Prefix Projection Incremental Counting.

PRL Probabilistic rule lists.

SPM Sequential Pattern Mining.

ZDC Zero Diagonal Convex.

xvii

Contents

Abstract iii

Résumé v

Acknowledgements vii

List of Tables ix

List of Figures xi

List of Algorithms xv

List of Abbreviations xvii

I Introductory Material 1

1 Introduction 3
1.1 Data Mining . 3
1.2 Constraint Programming . 6
1.3 Overview of the contributions and scientific achievements . . 11
1.4 Publications and scientific achievements 13
1.5 Structure of the thesis . 15

2 Background 19
2.1 Pattern Mining . 19

2.1.1 Frequent Itemset Mining 20
2.1.2 Sequential Pattern Mining 24

2.2 Constraint Programming . 28

xix

xx CONTENTS

2.2.1 Constraints and global constraints 29
2.2.2 State restoration in CP 29

2.3 Summary, Outlooks, Further readings 30

II Frequent itemset Mining 31

3 Frequent Itemset Mining using Constraint Programming 33
3.1 Context and motivation . 34
3.2 Preliminaries . 35

3.2.1 Modeling IM problem using CP 35
3.2.2 Table Constraint and Reversible Sparse Bit-Sets . . . 36

3.3 Global constraints for frequency-based itemset mining 37
3.3.1 Computing frequency: the CoverSize constraint 39
3.3.2 Closed itemsets: the CoverClosure constraint 44

3.4 Frequency-based itemset mining with CoverSize and Cover-
Closure . 47
3.4.1 Frequent itemset mining 47
3.4.2 Closed frequent itemset mining 47
3.4.3 Discriminative (closed) itemset mining 47

3.5 Implementation and Practical User Guide 54
3.6 Experiments . 55
3.7 Summary, Outlooks, Further readings 59

4 Frequent Itemset Mining for Compression 61
4.1 Context and motivation . 62
4.2 Related Work . 64
4.3 The probabilistic rule list mining problem 66
4.4 Discovering probabilistic rule lists 67

4.4.1 Coverage and probability of a rule list 67
4.4.2 Minimum Description Length encoding of rule lists . . 70
4.4.3 Coding length related to likelihood and quality of rule

lists . 73
4.4.4 A Greedy algorithm 75
4.4.5 Branch-and-Bound algorithm 76

4.5 Implementation and Practical User Guide 78
4.6 Experiments . 79

4.6.1 Compression power of PRL 80
4.6.2 Impact of the parameters 81

CONTENTS xxi

4.6.3 Comparison of PRL with existing rule learning algorithms 83
4.6.4 Prediction power of PRL and other supervised learning

approaches . 83
4.7 Summary, Outlooks, Further readings 84

III Sequential Pattern Mining 87

5 Sequential Pattern Mining using Constraint Programming 89
5.1 Context and Motivation . 90
5.2 Related works . 91
5.3 Global constraints for projected frequency 93

5.3.1 Existing methods [NG15,KLL+15] 93
5.3.2 Improving propagation 95
5.3.3 Constraints of SPM 102
5.3.4 Time and space complexity 103

5.4 Implementation and Practical User Guide 103
5.5 Experiments . 105
5.6 Summary, Outlooks, Further readings 107

6 Mining time-constrained sequential patterns with constraint
programming 111
6.1 Context and Motivation . 112
6.2 Related work . 113
6.3 Preliminaries . 114

6.3.1 Sequential Pattern Mining 114
6.3.2 CP-based model for SPM problem 118

6.4 Trailing-based data structure for the embedding database . . 120
6.4.1 Embedding database and extension windows 120
6.4.2 Trailing-based data structures 121

6.5 PPICt global constraint under time constraints 122
6.5.1 PPICt filtering algorithm and improvements 122
6.5.2 Additional constraints 126
6.5.3 Time and space complexity 129

6.6 Implementation and Practical User Guide 129
6.7 Experiments . 131

6.7.1 Performances results 133
6.7.2 Handling additional Constraints 137

6.8 Summary, Outlooks, Further readings 138

xxii CONTENTS

7 Frequent Episode Mining using Constraint Programming 139
7.1 Context and Motivation . 140
7.2 Mining Episodes in a Non Timed Sequence 141

7.2.1 Technical Background 141
7.2.2 Problem Modelling . 143
7.2.3 Filtering Algorithm 144

7.3 Mining Episodes in a Timed Sequence 149
7.3.1 Technical Background 149
7.3.2 Filtering Algorithm 150

7.4 Implementation and Practical User Guide 155
7.5 Experimental Results . 156

7.5.1 Memory Bound Analysis 156
7.5.2 Comparison with Decomposed Approaches 157
7.5.3 Comparison with Specialized Approaches 157
7.5.4 Handling Additional Constraints 160

7.6 Summary, Outlooks, Further readings 161

8 Conclusion 163
8.1 Summary and Main Messages 163
8.2 Discussion and perspectives 165

A Algorithms 169

Bibliography 193

Part I

Introductory Material

1

1

C
h

a
p

t
e

r

Introduction

“The journey of a thousand miles begins with one step.”

–Lao Tzu

This thesis is at the frontier between Pattern Mining (PM) and Cons-
traint Programming (CP). Our objective is to create new PM algorithms.
Those algorithms must be flexible to discover relevant and interpretable
patterns. In this chapter, we briefly introduce PM and CP concepts and
present the motivation to combine those fields and our contributions.

1.1 Data Mining

The digitization of company workflows led to a significant accumulation
of data. Most companies consider data as the new oil and are aiming at
developing advanced analytical tools to better extract knowledge out of it.
Extracting information and understanding data is the role of Data Mining
(DM) and Machine Learning (ML), whose utility is now well-established.

One of the most fundamental data mining tasks is Pattern Mining, where
discovered information is structured as a set, list of sets, sequence, tree,
graphs, etc. This information is then called patterns. The interest of Pattern
Mining techniques lies in their ability to find patterns (i) that are hidden
in large databases, (ii) that are interpretable by humans and (iii) that are
therefore useful for understanding data and decision-making [FVLK+17].

3

4 CHAPTER 1. INTRODUCTION

A well-known problem in pattern mining is Frequent Itemset Mining
(FIM). This problem was introduced by the seminal paper of Agrawal [AIS93].
Given a list of itemsets D called an itemset database, FIM aims at finding all
the item-subsets which appear in D more than a given user-defined threshold
θ. This problem has many applications in wide-range fields such as market
basket analysis [AIS93], bioinformatics [NMB+15], web mining [CMS97] and
malware detection [DFL+15], to name just a few. Let us give an example of
a FIM task in Product recommendation systems [MDLN01].

Example 1.1. Product recommendation systems are designed to sug-
gest to customers products that are frequently purchased together by
other customers. To do this, one looks for supermarket products which
are purchased together by more than 75% of customers. Then, when
customers buy some of the products of a set, the other products of that
set are recommended to them. Assuming people frequently buy bread,
coffee and sugar together, if a customer buys coffee and sugar, bread
may be recommended to him/her.

The patterns discovered by the FIM algorithms are sets, and therefore
information on the possible ordering relationship between items is ignored.
As a result, these algorithms may fail to discover important patterns which
would depend on sequential relationships. For example, in text analysis, it is
often relevant to take into account the order of words in sentences [PFM16].
To face this challenge, Agrawal and Srikant [AS95] introduced the Sequential
Pattern Mining (SPM) task. Given a sequences of itemsets, called sequence
database, denoted as D, SPM is aiming at finding all the subsequences that
appear in D more than a given user-defined threshold θ. This problem
differs from the FIM problem in that the order of the itemsets in a pattern
becomes important. Intelligent transportation system is well-known example
of application [Agg14b,GLF+18].

Example 1.2. Intelligent transportation systems aim to solve traffic
congestion and designed new roads. For example, vehicle trajectories can
be stored as sequences of fixed points through which they pass over time.
One can determine from there the key segments in trajectories which are
frequently used. This information may help in road maintenance. The
less frequent segment may be suggested to vehicles to avoid traffic jams,

1.1. DATA MINING 5

longer kilometers, etc.

Despite valuable insights, the discovery of frequent patterns (sets or
sequences) is a challenging task. Indeed, finding all frequent patterns in a
database is a tough task because the search space can be extremely large.
For example, with m items there are 2m possible itemset candidates. Early
research in Pattern Mining focused on how to make the approaches as
effective as possible [Agg14a]. This is no longer a problem today since there
are algorithms such as LCM [UKA05] and Spade [Zak01] which can enumerate
all frequent patterns in a few seconds, even when the database is very large.

Example 1.3. To give an idea of this efficiency, LCM enumerates all
itemsets with minimum support of 10 in less than a second on the Retail
database. This database contains 88162 market baskets of anonymous
customers in an anonymous Belgian supermarket with 16470 products.

Next, come pattern explosion problems. Off-the-shelf frequent pattern
mining algorithms, depending on the defined threshold 1, discover a large
number of patterns which are often redundant and irrelevant. They are
difficult for a user to parse and are often useless. To face these problems,
several solutions were investigated in the literature. One can either try to
present the patterns in a condensed2 form (such as closed [ZjH02,YHA03],
free [SNK07,SR14], maximal patterns [BCG01,LC05],...) or to use measures
which allow evaluating how “interesting”3 a pattern is [VT14]. More generally,
we can express some preferences as constraints (an expert can provide these
constraints) to guide the algorithm towards the relevant patterns. Note that
condensed patterns and interesting metrics approaches can be considered as
constraints based approaches [NZ14].

In this thesis, we are interested in those Constraint-based Pattern Mining
(CPM) approaches because they are more flexibles for real applications.

1There is a real tradeoff in the choice of θ because if the support is low “interesting”
patterns can be discovered but there are often too many of them and if the support is too
high only trivial patterns are discovered.

2The set frequent patterns is compressed by removing redundancies while allowing
losing information or not.

3The notion of an interesting pattern is not trivial to define; it mainly relies on
interestingness measures which yield non-redundant and relevant patterns..

6 CHAPTER 1. INTRODUCTION

Example 1.4. For example, for recommendation systems, we could also
refine the obtained patterns by limiting the products to a given category
(e.g. breakfast and baby products). For transportation systems, one
may want trajectories which are frequent only in mornings or which
necessarily pass through some points in the path.

Problems. A solution, to incorporate these constraints, is to enumerate
all the frequent patterns first and then, in post-processing, filter out those
that do not meet the defined criteria. This approach is limited because it
depends on the success of the mining process. For example, on very large
databases or with low minimum support, this process can take a lot of time
and memory that would make difficult to complete the first step. Another
approach allows pushing these constraints in the mining process directly. This
approach has the potential not to suffer from the two-phase limitations and
has an additional advantage. It enables digging with low supports since one
can filter irrelevant patterns instantly. However, this approach also has its
limitations. The number of constraints is not necessarily known in advance,
so only a limited number of constraints can be taken into account. Hence, a
new constraint often implies a new method. To overcome these limitations,
we study in this thesis generic approaches based on the use of Constraint
Programming.

1.2 Constraint Programming

Constraint Programming is another way of formulating and solving combinato-
rial problems. CP is well-positioned today as the Holy Grail of programming:
the user specifies the problem and the computer solves it [Fre97]. To do this,
CP separates the definition of the problem (modelling) from its resolution
(search) [Lau18,RvBW06] i.e.

CP = Model + Search.

Model. Modelling consists of identifying the decision variables of the prob-
lem to be solved and the domain of each of them. One can then define
constraints on these variables. A typical example is that of the colouring of
a map (graph) using CP.

1.2. CONSTRAINT PROGRAMMING 7

Example 1.5. Assume we want to assign at most three colours (green,
yellow and red) to Benin and its neighbouring countries with the cons-
traint that if these countries share a border, they cannot have the same
colour (Figure 1.1). We model this in CP by first choosing the decision
variables. These are the colour given to each country with the three
possible colours as domains. Let BJ, BF, NE, NG and TG ∈ {G, Y,R }
be these variables. Then, we add as constraints that all neighbour-
ing countries must have different colours: BJ6=BF, BJ 6=NE, BJ 6=NG,
BJ6=TG, BF 6=TG, BF 6=NE and NE6=NG.

TG

BJ NG

NE

BF

Figure 1.1. Graph to color (Benin and its neighbouring countries).

Search. The search (in CP) receives as input a problem as decision variables
plus constraints (over these variables) and outputs the solutions of this
problem. A solution is an assignment to all variables, of the values of their
domains, that satisfies the specified constraints. This search is a simple
recursive algorithm implementing a depth-first search with chronological
backtracking [vB06,Lau18]. The search is done in the solution space which
consists of the union of variables’ domains. To reduce this space, one uses an

8 CHAPTER 1. INTRODUCTION

inference procedure called constraint propagation. Mainly, when a decision
is made on a variable (e.g. an assignment), propagation consists in relaying
this information to the other variables by removing from their domain the
values that have become inconsistent with the constraints plus this decision
through the fix-point algorithm.

Example 1.6. Assuming our running example, as illustrated in Fig-
ure 1.2a, if through the search, Benin (BJ) is assigned to green (G)
(BJ = G) then G will be removed from the domain of all remaining
variables by propagation of the constraints BJ 6=BF, BJ 6=NE, BJ 6=NG
and BJ6=TG. After that, if we assign yellow(Y) to BF, Y will be re-
moved from the domain of TG and NE by propagation of the constraints
BF6=TG and BF6=NE. At this state, all the variables have an assignment
then we have a solution. By backtracking, the search can undo the
decision to assign yellow to BF and then it assigns red (R) to it. This
information is propagated again, and another solution is found. We
obtain the colouring of the map of the Figure 1.2b.

This way of separating modelling from search makes it easy to add other
constraints. For our illustration, we can, for example, add that TG must
be red (R). This new constraint impact is on the search space, which will
be filtered accordingly to satisfy this new constraint. This gives to the
CP framework modularity and flexibility in solving problems. It is this CP
property that interests us in Pattern Mining since it can allow adding many
user-defined preferences (constraints) and make the Pattern Mining method
generic and flexible.

Problem. Presented in this way, CP may seem easy. However, there can be
several ways of representing a problem with constraints and hence choosing
the wrong model can make the problem hard to solve. Generally, creating the
description of the problem which decision variables with their domains is not
time-consuming. Nevertheless, it is crucial to extract the relevant constraints
and properly design the filtering algorithms to get solutions efficiently. The
effectiveness of filtering depends not only on its strength but also the number
of decision variables and the size of their domain. Strong filtering prunes more
the search space, but can consume time to execute while weak filtering will
execute quickly but prunes less. It is then a tradeoff between the efficiency of
the filtering (i.e. its execution time) and its effectiveness (i.e. its strength in

1.2. CONSTRAINT PROGRAMMING 9

G
Y

R

BJ
G
Y

R

BF
G
Y

R

NE
G
Y

R

NG
G
Y

R

TG

G
BJ

Y

R

BF

Y

R

NE

Y

R

NG

Y

R

TG

BJ=G

G
BJ

Y

BF

R

NE

Y

NG

R

TG

BF=Y

G
BJ

R

BF

Y

NE

R

NG

Y

TG

BF=R

(a) (b)

BF=R

NE=Y

NG=RBJ=G

TG
=Y

G
Y

R

BJ
G
Y

R

BF
G
Y

R

NE
G
Y

R

NG
G
Y

R

TG

G
BJ

Y

R

BF

Y

R

NE

Y

R

NG

Y

R

TG

BJ=G

G
BJ

Y

BF

R

NE

Y

NG

R

TG

BF=Y

G
BJ

R

BF

Y

NE

R

NG

Y

TG

BF=R

(a) (b)

BF=R

NE=Y

NG=RBJ=G

TG
=Y

Figure 1.2. Example of map coloring using CP. a) CP search to solve this problem and b)
an example of solution (a colored map)

10 CHAPTER 1. INTRODUCTION

reducing the search space). Therefore, a “good” constraint is the one that has
a filtering algorithm which allows pruning more while having a low execution
time [vHK06].

Several works successfully used CP to make generic and flexible Pat-
tern Mining approaches [GNDR11, MR04, KLL+15, GNDR13, DRGN08,
NG10, NG15, JSS17]. While, in general, most of the existing CP-based
Pattern Mining approaches are considered generic and flexible, their ef-
ficiency compared to specialized approaches is an issue. There is also
a tradeoff between flexibility and efficiency. The first CP-based PM me-
thods [GNDR11,MR04,GNDR13,DRGN08,NG15,JSS17] decomposed PM
problems into several constraints (filtering algorithms) that allowed these
methods to be fully flexible but in return, they lacked efficiency. To address
this, methods [KLL+15,NG10,NG15] using a single constraint (called global
constraint) was proposed. These methods are more efficient than decomposed
methods by sacrificing some flexibility. Despite these efforts, these approaches
are not as efficient as specialised approaches, making their usages/applica-
tions limited. Also, only a few problems in Pattern Mining were tackled in
CP.

In summary, to address the Pattern Mining challenges such as the combina-
torial explosion, and the redundancy and irrelevancy of the found patterns,
constraint based approaches were proposed. One can hence guide the mining
process towards more interesting solutions by imposing preferences/con-
straints. Imposing constraints cannot be done in any way. Thus, constraint
programming, a well-known declarative framework, is introduced to bring
modularity and flexibility to Pattern Mining. However, flexibility comes
at a cost; there is often a trade-off between flexibility and efficiency. So,
the existing hybrid (CP-based) approaches, until now, are very flexible,
sacrificing efficiency.

Putting all together, several research questions therefore arise. The main one
is whether there would be a way to make flexible approaches as effective as
specialised approaches. From this question emerges several others which are
as the following.

Q1 Can we build new CP-based approaches that improve efficiency by
combining ingredients from both Pattern Mining and Constraint Pro-
gramming?

1.3. OVERVIEW OF THE CONTRIBUTIONS AND SCIENTIFIC ACHIEVEMENTS 11

Q2 In the literature, the effectiveness of many approaches is based on the
design of an appropriate data structure, can the same solution boost
the effectiveness of existing CP-based methods?

Q3 Which modeling for new CP-based methods, will give a better efficiency
and genericity?

Q4 How to evaluate the relevancy of the obtained patterns?

In this thesis, we investigate the possibilities of improving the
effectiveness of existing approaches. To do so, we propose new
filtering algorithms (global constraints) for frequent sequence and
itemset mining which are generic, flexible and efficient.

1.3 Overview of the contributions and scientific achieve-
ments

The hybridisation of Pattern Mining with CP has been a great success,
demonstrating the ability of PM to be flexible. However, it has become
clear that the effectiveness (he execution time and memory consumption)
of PM approaches can be sacrificed to allow those approaches to be flexible.
Hence, the main question arises whether there would be a way to make flexible
approaches as effective as specialised approaches. This thesis provides an
affirmative answer to this question and those presented in the previous
section. The main contribution of this thesis is new CP-based Pattern
Mining approaches which either outperform [AGS16,AGS17,CAS18] or are
competitive [SAG17] with specialised approaches.

In detail, the contributions of this work on “Q1: Can we build new CP-based
approaches that improve efficiency by combining ingredients from both Pattern
Mining and Constraint Programming?” can be summarized as follows.

In [AGS16], we showed how by combining Sequential Pattern Mining and
Constraint Programming techniques, one can build flexible and more efficient
approaches than existing both CP-based and specialized approaches. To do
this,

• we, first, compute the projected database efficiently using pre-
computing vectors to avoid to scan the full sequence each time;

12 CHAPTER 1. INTRODUCTION

• and, second, by taking inspiration from the trailing used in CP solvers to
allows fast incremental storing and restoring of the projected
database.

The main approach developed is called PPIC and has become state-of-
the-art in SPM. We have proven that these are key ideas at the origin of
this effectiveness by successfully applying them in the design of new SPM
constraint under time restrictions over sequence database with time [AGS17],
and new constraint for mining episodes in a single and long sequence [CAS18].

As an ingredient of this efficiency, the data structures developed in this
thesis are examples of combinations of techniques from Pattern Mining and
constraint programming. These data structures are answers to “Q2: In the
literature, the effectiveness of many approaches is based on the design of an
appropriate data structure, can the same solution boost the effectiveness of
existing CP-based methods?”.

• The backtracking-aware data structure, that we introduced in
[AGS16], is a set of vectors to store projected databases (Pattern
Mining techniques) plus a cursor on the position in the vectors and
a variable that indicates the size of the current projected database.
The cursor and the size variables are both “Reversible” (CP technique).
This structure offers two significant advantages: storing and restoring
incrementally projected databases and reusing memory space.

• The Reversible sparse Bit-Set data structure [SAG17], for its
part, allows storing and performing binary operations on pattern covers
efficiently. This data structure can also restore covers in backtracking. It
also allows transactions to be carried out only on promising transactions,
thus taking advantage of the structure of the problem.

Contributions mentioned above are integrated into global constraints.
Thus, one answer to question “Q3: Which modeling for new CP-based
methods, will give a better efficiency and genericity? ” is that modeling plays
a significant role in the effectiveness of the approaches developed.

• First, we showed that global constraints are the pieces of modeling code
that make an impact. Indeed, they allow using appropriate data
structures and facilitating algorithmic improvements.

• We also showed that by exposing the frequency as a vari-
able [SAG17], it is possible to solve several problems based on this

1.4. PUBLICATIONS AND SCIENTIFIC ACHIEVEMENTS 13

model, namely Frequent Itemset Mining (FIM), Closed FIM, and Dis-
criminative FIM.

We contributed on “Q4 : Which modeling for new CP-based methods,
will give a better efficiency and genericity?” by investigating Discriminative
FIM and Probabilistic rule lists (PRL).

• We proposed a Zero Diagonal Convex (ZDC) constraint using cons-
traint programming, which combined with the CoverSize constraint
allows solving the DFIM problem. The ZDC constraint shows an ex-
ample of transforming a continuous function into a discrete output
function [SAG17].

• We used the Minimum Description Length (MDL) princi-
ple to characterize small-and-good sets of probabilistic rules,
and we devised a branch-and-bound with a best-first search strat-
egy to find better-than-greedy and optimal solutions for the proposed
task [AGNS18].

Putting all together, we end up with nine realizations: PPIC, PPDC,
PPMixed, PPICt, CoverSize, CoverClosure, ZDC, EpisodeSupport, and PRL.
One of the problems encountered during this thesis is the unavailability of the
implementation of some algorithms. We, therefore, contribute by making
available online4 all the codes of our realizations. We also provide
additional experiments, test datasets, user guides and some demos. We keep
all this up-to-date and regularly fix bugs. Most of our implementation are
also directly available in the open-source CP-Solver OscaR [Osc12] whose
implementation we are involved in.

These contributions led to publications at conferences or journals which
will be detailed in the next section.

1.4 Publications and scientific achievements

The five mains publications discussed in this thesis are the following.

4https://sites.uclouvain.be/cp4dm/

https://sites.uclouvain.be/cp4dm/

14 CHAPTER 1. INTRODUCTION

Journal paper

[AGS17] John O. R. Aoga, Tias Guns, and Pierre Schaus, “Mining time-
constrained sequential patterns with constraint programming”, Cons-
traints, 22(2017), no. 4, 548–570.

Conference papers

[AGS16] John O. R. Aoga, Tias Guns, and Pierre Schaus, “An efficient
algorithm for mining frequent sequence with constraint programming”,
Machine Learning and Knowledge Discovery in Databases - European
Conference, ECML PKDD 2016, Riva del Garda, Italy, September
19-23, 2016, Proceedings, Part II (Paolo Frasconi, Niels Landwehr,
Giuseppe Manco, and Jilles Vreeken, eds.), Lecture Notes in Computer
Science, vol. 9852, Springer, 2016, pp. 315–330.

[SAG17] Pierre Schaus, John O. R. Aoga, and Tias Guns, “Coversize: A
global constraint for frequency-based itemset mining”, Principles and
Practice of Constraint Programming - 23rd International Conference,
CP 2017, Melbourne, VIC, Australia, August 28 September 1, 2017,
Proceedings (J. Christopher Beck, ed.), Lecture Notes in Computer
Science, vol. 10416, Springer, 2017, pp. 529–546.

[CAS18] Quentin Cappart, John O. R. Aoga, and Pierre Schaus, “Episo-
desupport: A global constraint for mining frequent patterns in a long
sequence of events”, Integration of Constraint Programming, Artificial
Intelligence, and Operations Research - 15th International Conference,
CPAIOR 2018, Delft, The Netherlands, June26-29, 2018, Proceedings,
2018, pp. 82–99.

[AGNS18] John O. R. Aoga, Tias Guns, Siegfried Nijssen, and Pierre
Schaus, “Finding probabilistic rule lists using the minimum description
length principle”, Discovery Science - 21st International Conference,DS
2018, Limassol, Cyprus, October 29-31, 2018, Proceedings,2018, pp.
66–82.

Abstract and poster

JFPC,17 (Abstract) John O. R. Aoga, Tias Guns, and Pierre Schaus,
“Algorithme Efficace pour la Fouille de Séquences Fréquentes avec la

1.5. STRUCTURE OF THE THESIS 15

Programmation par Contraintes”. Treizièmes Journées Francophones
de Programmation par Contraintes, Montreuil-sur-mer, juin, (2017).

Benelearn,16 (Abstract+poster) John O. R. Aoga, Tias Guns, and
Pierre Schaus, “Scalable Constraint Programming approach for Mi-
ning Frequent Sequence with gap constraints”.Benelearn, (2016).

In addition to those, two papers have been written during this thesis.
They were published at the beginning of this thesis and are not discussed in
this thesis because they are outside its scope.

Journal paper

[ADF16] John O. R. Aoga, Théophile K. Dagba, and Codjo C. Fanou,
“Integration of Yoruba language into marytts”, International Journal of
Speech Technology, 19(2016), no. 1, 151–158.

Conference papers

[DAF16] Théophile K. Dagba, John O. R. Aoga, and Codjo C. Fanou,
“Design of a Yoruba language speech corpus for the purposes of text-to-
speech (TTS) synthesis”, Intelligent Information and Database Systems
- 8th Asian Conference, ACIIDS 2016, Da Nang, Vietnam, March 14-16,
2016, Proceedings, Part I (Ngoc Thanh Nguyen,Bogdan Trawinski,
Hamido Fujita, and Tzung-Pei Hong, eds.), Lecture Notes in Computer
Science, vol. 9621, Springer, 2016,pp. 161–169.

1.5 Structure of the thesis

The rest of the thesis is divided into seven chapters grouped into three parts.

In the remainder of PART I, we give, in Chapter 2, the background
information on Pattern Mining (i.e. Frequent Itemset Mining and Sequential
Pattern Mining) and Constraint Programming.

PART II, which is dedicated to Itemset Mining problems is divided into
two chapters.

Chapter 3 presents CoverSize, the new global constraint to solve several
types of Itemset Mining problems using CP. In this chapter, we demonstrate

16 CHAPTER 1. INTRODUCTION

how the techniques used in CP can be adapted to obtain flexible Itemset
Mining approaches. We begin this chapter by presenting the context and
motivation of this work. Then, we introduce specific notions of FIM through
the technical background. Subsequently, we describe the CP model of FIM
problem as a decomposition-based approach. Next, we show how this problem
is close to Table constraints. Finally, we presented our approaches and
experimentally evaluated their performance.

Chapter 4 introduces PRL, the new Pattern Mining method that uses
itemsets obtained from CoverSize to build rule lists (set of itemsets). In this
chapter, we show that by using the Minimum description length principle,
one can obtain highly interpretable rule lists. We propose a greedy- and a
branch-and-bound based algorithm to find this rule lists. For that, we first
present related work following by the problem of finding probabilistic rule
lists. After that, we describe our Minimum Description Length (MDL)-based
approach in terms of formalisation and algorithms for solving it. Finally, we
show experiments in which we demonstrate the quality, the accuracy and the
predictive power of our method.

PART III discusses Sequential pattern mining problems. It is divided
into three chapters.

Chapter 5 presents new global constraints (PPIC, PPDC, PPmixed) which
can solve Sequential Pattern Mining problems. In this chapter, we show
how, by combining the right ingredients from both (CP and PM) research
communities in a novel way, we can design new global constraint for SPM.
We begin this chapter by presenting the context, the motivation and the
related work. Then, We describe how the existing CP-based methods model
SPM problem and their limitations. Subsequently, we show how to improve
on these methods using a backtracking-aware trailing-based data structure
and some algorithmic improvements. Finally, we experimentally show the
resulting system improves both on previous CP-based sequence miners as
well as state-of-the-art specialised systems.

Chapter 6 presents new global constraints which can solve Sequential
Pattern Mining problems on data with time stamps. In this chapter, we show
how to extend the work in the previous chapter to handle sequence database
with time. Unfortunately, some ingredients that made PPIC successful no
longer apply. Thus, after presenting the context and motivation of this work,
we show how the backtracking-aware trailing-based data structure can be
adapted to support time constraints. Next, we introduced a new approach

1.5. STRUCTURE OF THE THESIS 17

based on this. Finally, we demonstrate through experiments that the new
approach maintains better performance while handling many constraints.

Chapter 7 presents global constraints capable of solving Frequent Episode
Mining (FEM) problem. This problem applies to a single very long sequence.
In this chapter, we show that this problem, even being similar to SPM
problems, presents many challenges, particularly that of memory management.
Thereafter, we showed that by using ingredients similar to those used in
SPM, we could overcome this problem. Finally, we experimentally evaluated
the performance of this approach.

Finally, in the concluding chapter, we present a summary of this thesis,
and then we discuss some future directions.

2

C
h

a
p

t
e

r

Background

“Be a lifelong student. The more you learn, the more you
earn and more self confidence you will have..”

–Brian Tracy

Overview In this chapter, we discuss Frequent Pattern Mining and
Constraint Programming concepts useful for later chapters. In brief, the
Frequent Pattern Mining task consists of finding relationships among
items in a database, and Constraint Programming is a generic framework
to solve combinatorial problems by separating the modeling of the problem
from its resolution.

Main source This chapter is based on the background material in
journal paper [AGS17] and conference papers [SAG17,CAS18].

2.1 Pattern Mining

Pattern mining is a well-known and a widely studied field of research because
of the numerous real-life applications (health, DNA analysis, errors tracking
and detectors, marketing, ...) it offers and it uses in many other knowledge
discovery problems such as feature engineering, classification, prediction and
clustering [Agg14b]. There are tons of articles on pattern mining, especially

19

20 CHAPTER 2. BACKGROUND

Table 2.1. Three equivalent representations of itemset databases:a) Horizontal sparse - H,
b) Vertical sparse - V, c) Vertical dense - D.

tid itemset
1 {A,B,D}
2 {B,C,D}
3 {A,B,D}
4 {A,B,C,D}
5 {B,C}

(a)

item tid-set
A {1,3,4}
B {1,2,3,4,5}
C {2,4,5}
D {1,2,3,4}

(b)

item tid-bitvector
[1, 2, 3, 4, 5]

A [1 0 1 1 0]
B [1 1 1 1 1]
C [0 1 0 1 1]
D [1 1 1 1 0]

(c)

on Frequent Pattern Mining. The reader interested in more details can refer
to the Frequent Pattern Mining book [AH14]. In the following sections, we
quickly review the relevant definitions.

2.1.1 Frequent Itemset Mining

Frequent itemset mining is concerned with finding a set of items that fre-
quently appears in a database of sets [AIS93]. The database is often called a
transaction database, and each entry in the database is called a transaction
(such as a purchase of products).

Let I = { 1, . . . ,m } be a set of items and T = { 1, . . . , n } be a set of
transaction identifiers. Formally, a transaction database is defined as follows.

Definition 2.1 (Transaction database (TDB)). A transaction database
TDB = { (t, Tt) | t ∈ T , Tt ⊆ I } is a set of tuples where each tuple is com-
posed of a transaction identifier t and the transaction Tt itself which is a
subset of I.

FIM algorithms use several database representations that are equivalent
such as

• horizontal representation: H = TDB ;
• vertical representation: V = { (i, Ii) | i ∈ I, Ii ⊆ T } (transposed H) or
• dense representation: D ⊆ I ×T which is a binary matrix of size n×m

with Dti ∈ { 0, 1 } and Dti = 1 iff the item i is in transaction t.

2.1. PATTERN MINING 21

Example 2.1. Assume I = {A,B,C,D }, Tables 2.1(a,b,c) show an
example of a transaction database on these three equivalent forms.

In this thesis, we mainly use the dense representation. However, we overuse
D to represent any of these databases in particular when clear from context.

Before defining the FIM problem, we first introduce the notions of coverage
and support of an itemset.

Definition 2.2 (Coverage and Support/Frequency). Assume an itemset I
and a database D, The coverage is the set of transactions that contain I:
CoverD(I) = { t ∈ T | ∀i ∈ I : Dti = 1 }. The size of the coverage is called its
frequency: FreqD(I) = |CoverD(I)| and its support is the relative frequency:
SuppD(I) = FreqD(I)/n.

Example 2.2. Assuming, the TDB of Figure 2.1a and I = {A,B },
CoverD(I) = { 1, 3, 4 } and FreqD(I) = 3.

Definition 2.3 (Frequent Itemset Mining problem). Given a set I of n
possible items and a transaction database of size m, the goal of the frequent
itemset mining problem is to enumerate all itemsets I ⊆ I such that
FreqD(I) ≥ θ with θ a user-supplied threshold.

Itemset I with its FreqD(I) ≥ θ is called frequent itemset and the set of
all frequent itemsets wrt. θ is denoted as Fθ. For example, the problem of
FIM applied to market basket analysis, consists in finding all the products
(items) that are purchased together (itemsets) by more than θ = 75% of
registered customer baskets. There exists many other applications for FIM
such as web-log mining, bio-informatics, etc [Agg14a].

Computing Fθ efficiently is a core aspect of itemset mining algorithms.
Indeed, enumerating all itemset is a challenging task because there are 2m
possible itemsets in the search space and so it will take a lot of time to list
them all even on a TDB of hundred of items and thousands of transactions.
To successfully reduce the search space, FIM algorithms often rely on the
anti-monotonicity property, also known as the apriori property [NLHP98].

22 CHAPTER 2. BACKGROUND

Property 2.1 (anti-monotone constraint). If a pattern p satisfies an anti-
monotone constraint C then all the sub-patterns of p also satisfy C and
conversely if p does not satisfy C none of its super-patterns satisfies C.

Corollary 2.1 (Coverage is a anti-monotone constraint). ∀I1, I2 ⊆ I, I1 ⊆
I2 ⇒ CoverD(I1) ⊇ CoverD(I2).

Corollary 2.2 (Frequency1 is a anti-monotone constraint). ∀I1, I2 ⊆ I, I1 ⊆
I2 ⇒ FreqD(I1) ≥ FreqD(I2).

The frequency constraint allows reducing the size of Fθ but this is closely
related to the choice of θ. If θ is high, the size of Fθ is relatively small but the
obtained itemsets are often trivial (e.g. products listed individually). Rather,
if θ is low, the size of Fθ can be very large with many redundant itemsets.
An itemset will be considered redundant if it does not provide additional
information and can be found from other itemsets.

Example 2.3. For example, if bread and cheese are always bought
together then listing bread and cheese separately as itemset is redun-
dant because from the frequency of bread and cheese taken together,
one can directly derive the frequency of bread alone and cheese alone:
FreqD({bread, cheese }) = FreqD({ bread }) = FreqD({ cheese })

To prevent this redundancy, many condensed representations of frequent
itemsets have been investigated. Among those closed and free representations
are useful [AH14].

Closed representation. Closed Frequent Itemset Mining (CFIM) adds
to FIM the additional constraint that an itemset must not have a super-set
with the same frequency:

I is closed⇔ @I ′ ⊃ I : FreqD(I) = FreqD(I ′) (2.1)

Free representation. Conversely, Free Frequent Itemset Mining (FFIM)
adds to FIM the additional constraint that an itemset must not have a
subset with the same frequency:

I is free⇔ @I ′ ⊂ I : FreqD(I) = FreqD(I ′) (2.2)
1The Frequency function also enjoys the property of supramodularity [SD14] i.e.

∀I1, I2 ⊆ I, F reqD(I1 ∪ I2) + FreqD(I1 ∩ I2) ≥ FreqD(I1) + FreqD(I2).

2.1. PATTERN MINING 23

Another task in FIM is the Discriminative Frequent Itemset Mining
(DFIM). In this task, there is a dataset with a Boolean target attribute which
we want to explain using the other attributes. This Boolean target attribute
contains two class labels (+,−). The objective is to either enumerate all
frequent itemsets with high discriminating power or find the best top-k ones.

Assume transaction database with a Boolean target attribute D ={
(t, Tt, at) | t ∈ T , Tt ⊆ I, at ∈ {+,−}

}
consists of triplets (t, Tt, at) of

an transaction identifier t, a transaction itself Tt and the class label at to
which this transaction belongs. This database can be split into a positive D+

and negative D− itemset database, based on the target attribute value (+ or
−).

Example 2.4. For instance, in market analysis, each customer’s basket
is associated with his or her gender, and therefore it becomes possible
to perform analyses based on gender. Typically, for instance, one could
study whether some products are purchased more by men than women
or vice versa.

DFIM [NGDR09] answers this type of question. Formally, It is defined as
follows.

Definition 2.4 (Discriminative Itemset Mining problem). Given an itemset
database D with a target attribute and a discriminative score, DFIM aims at
enumerating all the frequent itemsets which discriminate one class label in
relation to the other with respect to this score; itemsets that are very frequent
in one and barely frequent in the other.

Example 2.5. Assuming the TDB in Figure 2.1, I = { apple, kiwi }
is an interesting itemset because its frequency in the positive TDB
is CoverD+(I) = 3 and CoverD−(I) = 0 in the negative TDB i.e.
{ apple, kiwi } are bought together by only men.
A range of discriminative measures (such as χ2 and information gain),

also called correlation measures, have been studied [MS00]. A property
that we will exploit later is that these measures can be computed using
just information on the frequency of the sets plus the total number of
transactions of the databases. We can hence denote these measures by
a function f(|D+|, |D−|, n+, n−) where n+ = FreqD+(I), n− = FreqD−(I)
represents the frequency of the itemset in the two databases.

24 CHAPTER 2. BACKGROUND

1

A

1

B

0

C

1

D

1

0 1 1 12

1 1 0 13

1 1 1 14

0 1 1 05

+/

+

+

+

1

A

1

B

0

C

1

D

1

1 1 0 13

1 1 1 14

A B C D

0 1 1 05

0 1 1 12

(a) (b)
+ (c)

−

Figure 2.1. a) Transaction database with a target attribute split into b) positive and c)
negative databases.

In an optimisation setting, one can search for the most or least frequent
itemsets (typically under some other constraints) or find the most discrimi-
nating itemsets.

Other constraints on items and transactions have been investigated as
well [NZ14]. In the literature, advanced forms of patterns such as sequences,
trees and graphs have been discussed. We present the problem of mining
sequences in the next section.

2.1.2 Sequential Pattern Mining

Similar to FIM, Frequent Sequence Mining is concerned with finding a set
of sequences that appear frequently in a database of sequences [AS95]. The
database is called a sequence database (SDB), and each entry in the database
is called a sequence (such as a DNA sequence). In this subsection, we revisit
the basic concepts for Sequential Pattern Mining (SPM). Most of these
concepts can be found in [AH14,ZB03].

Let I = { 1, . . . ,m } be a set of items and S = { 1, . . . , N } be a set of
sequence identifiers.

Definition 2.5. Sequence and sequence database. A sequence s =
〈s1s2 . . . sn〉 over I is an ordered list of (potentially repeating) symbols sj,
j ∈ [1 . . n] with #s = n the length of the sequence s. A set of tuples (sid,s)

2.1. PATTERN MINING 25

Table 2.2. A sequence database SDB

sid sequence
sid1 〈ABCBC〉
sid2 〈BABC〉
sid3 〈AB〉
sid4 〈BCD〉

where sid is a sequence identifier and s a sequence, is called sequence database
(SDB).

Example 2.6. Table 2.2 shows an example SDB over symbols I =
{A,B,C,D}. For the sequence s = 〈BABC〉: #s = 4 and s1 = B, s2 =
A, s3 = B, s4 = C.

Coverage and Frequency constraints are based on the sub-sequence relation
between a sequence and the SDB.

Definition 2.6. Sub-sequence (�), Super-sequence, and Embed-
dings. A sequence α = 〈α1 . . . αl〉 is called a sub-sequence of s = 〈s1s2 . . . sn〉
and s is a super-sequence of α iff (i) l ≤ n and (ii) for all i ∈ [1 . . l] there
exist integers ji s.t. 1 ≤ j1 ≤ · · · ≤ jl ≤ n, and αi = sji. Integers ji are
called embeddings and denoted as Embs(α).

Example 2.7. For instance 〈BD〉 is a sub-sequence of 〈BCCD〉, and
inversely 〈BCCD〉 is the super-sequence of 〈BD〉 : 〈BD〉 � 〈BCCD〉.
Emb〈BCCD〉(〈BD〉) = { 1, 4 }

From this relationship, we can define the notion of coverage and frequency,

Definition 2.7. Coverage and Frequency. The coverage of sequence p
in SDB, denoted by CoverSDB(p), is the subset of sequences in SDB that
are a super-sequence of p, i.e. CoverSDB(p) = { (sid, s) ∈ SDB | p � s }.
The frequency of p in SDB, denoted as FreqSDB(p), is the number of super-
sequences of p in SDB: FreqSDB(p) = |CoverSDB(p)|.

26 CHAPTER 2. BACKGROUND

Example 2.8. Assume that p = 〈BC〉 and θ = 2, CoverSDB(p) =
{(sid1, 〈ABCBC〉), (sid2, 〈BABC〉), (sid4, 〈BCD〉)} and hence
FreqSDB(p) = 3. Hence, p is a frequent pattern for that given
threshold.

The sequential pattern mining (SPM) problem, first introduced by
Agrawal and Srikant [AS95], is the following:

Definition 2.8. Sequential Pattern Mining (SPM). Given a minimum
support threshold θ and a sequence database SDB, the SPM problem is to
find all patterns p such that FreqSDB(p) ≥ θ.

Sequential pattern is commonly used to mean frequent sequence pattern
in the literature therefore in this thesis, we will use sequential pattern and
sequence pattern if the frequency of the pattern does not matter.

Enumerating sequential patterns is a challenging task. The apriori prop-
erty 2.1 is also used to reduce the search space. However, in general, a
well-developed resolution strategy is required to enumerate all sequential
pattern. In this thesis, our algorithms are based on the idea of a prefix and
prefix-projected database for enumerating the frequent patterns. These con-
cepts were first introduced in the seminal paper that presented the PrefixSpan
algorithm [PHMA+01].

Definition 2.9. Prefix, prefix-projected database. Let α = 〈α1 . . . αk〉
be a pattern. If a sequence β = 〈β1 . . . βn〉 is a super-sequence of α: α � β,
then the prefix of β w.r.t. α is the ‘smallest prefix’ of β that is still a
super-sequence of α: 〈β1 . . . βj〉 s.t. α � 〈β1 . . . βj〉 and @j′ < j : α �
〈β1 . . . βj′〉. The sequence 〈βj+1 . . . βn〉 = suffixα(β) is called the suffix and
it represents the prefix-projection obtained by projecting the prefix away. A
prefix-projected database of a pattern α, denoted by SDB|α, is the set of
prefix-projections of all sequences in SDB that are super-sequences of α:
SDB|α = {(sidi, suffixα(sidi)) |α � SDB[sidi]}.

2.1. PATTERN MINING 27

Example 2.9. In SDB, assume α = 〈A〉, then SDB|α =
{(sid1, 〈BCBC〉), (sid2, 〈BC〉), (sid3, 〈B〉)}. Figure 2.2a shows the pro-
jected databases that are obtained from SDB1 when θ = 3.

B C B C
B C

B

1
2
3

C B C
A B C

C D

1
2
3
4

B C

D

1
2

4

A B C B C
B A B C
A B
B C D

1
2
3
4

1
2
3
4

1
1
1
1

A B C

CB

1
2
3
4

2
3
2
4

1
2
3
4

3
2
3
2

1
2
3
4

4
5
3
3

1
2
3
4

3
4
3
4

1
2
3
4

4
5
3
3

A B C

C
B

C B C
C

1
2
3

B C

D

1
2

4

(a) (b)

Figure 2.2. a) Projected and equivalent b) Pseudo-projected databases with θ = 3 for
SDB1

The prefix-projected frequency of the symbol a ∈ I (freqs(a, SDB|α)) is
the number of sequences in SDB|α where this symbol appears in the suffix:
freqs(a, SDB|α) = |{(sid, s) ∈ SDB|α | a ∈ suffixα(s)}|.

We use freqs(a) instead of freqs(a, SDB|α) when no ambiguity is possible
about the database.

Example 2.10. The prefix-projected frequencies of SDB|〈A〉 are:
freqs(A) = 0, freqs(B) = 3, freqs(C) = 2 and freqs(D) = 0.

28 CHAPTER 2. BACKGROUND

The PrefixSpan algorithm solves the SPM problem by starting from the
empty pattern and extending this pattern using a depth-first search. At each
step, it extends a pattern by a symbol and projects the database accordingly.
The appended symbol is removed on backtrack. It hence grows the pattern
incrementally, which is why it is called a pattern-growth method. A frequent
pattern in the projected database is also frequent in the original database.

There are two important considerations for the efficiency of the method.

1. The first is that one does not have to consider during search any symbol
that is not frequent in the prefix-projected database.

2. The second is that of pseudo-projection: to store the prefix-projected
database during the depth-first search. It is not necessary to store (and
later restore) an entire copy of the projected database. Instead, one
only has to store for each sequence the pointer to the position j that
marks the end of the prefix in that sequence (remember, the prefix of
α in β is the smallest prefix 〈β1 . . . βj〉 � α).

Example 2.11. Extending prefix 〈A〉 with 〈B〉 over SDB|〈A〉 gives
SDB|〈AB〉 = {(sid1, 〈CBC〉), (sid2, 〈C〉), (sid3, 〈〉)} and can be repre-
sented as the pseudo-projected database: pSDB|〈AB〉 = {(sid1, 3),
(sid2, 4), (sid3, 3)}. Figure 2.2b shows the pseuso-projected databases
that are obtained from SDB1 when θ = 3.

2.2 Constraint Programming

In this section, we briefly introduce Constraint Programming notions
which will be used in the following chapters. These notions can be found
in [RvBW06].

CP is a powerful declarative paradigm to solve combinatorial satisfaction
and optimization problems (see, e.g., [RvBW06]). A CP problem (V,D,C) is
defined by a set of variables V with their respective domains D (the values
that can be assigned to a variable), and a set of constraints C on these
variables. A solution of a CP problem is an assignment of the variables to a
value from its domain, such that all constraints are satisfied.

2.2. CONSTRAINT PROGRAMMING 29

At its core, CP solvers are depth-first search algorithms that iterate
between searching over unassigned variables and propagating constraints.
Propagation is the act of letting the constraints in C remove unfeasible values
from the domains of its variables. This is repeated until fixed-point, that
is, no more constraint can remove any unfeasible values. Then, a search
exploration step is taken by choosing an unassigned variable and assigning
it to a value from its current domain, after which propagation is triggered
again.

Example 2.12. Consider two variables x, y with domains D(x) =
{1, 2, 3}, D(y) = {3, 4, 5}. Then constraint x + y ≥ 5 can infer during
propagation that 1 /∈ D(x) because the lowest value y can take is 3 and
hence x ≥ 5−min(D(y)) ≥ 5− 3 ≥ 2.

2.2.1 Constraints and global constraints

Many different constraints and their propagation algorithms have been
investigated in the CP community. This includes logical and arithmetic
ones like the above, up to constraints for enforcing regular expressions or
graph-theoretic properties. A constraint that enforces some non-trivial or
application-dependent property is often called a global constraint [BH03]. For
example, [NG15] introduced a global constraint for the pseudo-projection
of a single sequence, and [KLL+16,AGS16,CAS18,AGS17] for the entire
projected frequency sub-problem.

2.2.2 State restoration in CP

In any backtracking search solver, there must be some mechanism to store and
restore some state, such that computations can be performed incrementally
and intermediate values can be stored and restored. In most of the CP
solvers2 a general mechanism, called trailing is used for storing and restoring
the state (on backtrack) [Knu15,SC06,Lau18]. Externally, the CP solvers
typically expose some "reversible" objects whose values are automatically
stored and restored on the trail when they change. The most important
example are the domains of CP variables [dSMSSL13]. Hence, for a variable

2One notable exception is the Gecode copy-based solver.

30 CHAPTER 2. BACKGROUND

the domain modifications (assign, removeValue) are automatically reversible
operations. A CP solver also exposes reversible versions of primitive types
such as integers and sets for use within constraint propagators. They are
typically used to store incremental computations. CP solvers consist of an
efficient implementation of the DFS backtracking algorithm, as well as many
constraints that can be called by the fix-point algorithm. The modularity of
constraint solvers stems from this ability to add any set of constraints to the
fix-point algorithm.

2.3 Summary, Outlooks, Further readings

In this chapter, we have presented the concepts of frequent pattern mining
and constraint programming that we use in the following chapters. A com-
plementary and specific background will be provided, in each chapter, for
the particular pattern mining problems that we have solved in this thesis.

The objective here was to present the background briefly. The interested
reader can find more details in Pattern Mining book [Agg14a]. These recent
surveys on Frequent itemset mining [FLV+17] and Sequential pattern mi-
ning [FVLK+17] are also worth looking because they provide an overview of
prominent papers/methods and present possible future research directions.
As for CP, the interested reader can find more details in the CP’s Hand-
book [RvBW06] and MiniCP [Lau18]. MiniCP is a minimalist version of a
CP solver that allows understanding the main concepts in CP.

Part II

Frequent itemset Mining

31

3

C
h

a
p

t
e

r

Frequent Itemset Mining us-
ing Constraint Programming

“Intelligence is the handmaiden of flexibility and change.”

–Vernor Vinge

Overview There is always a trade-off between flexibility and efficiency
in combining Frequent Itemset Mining and Constraint programming. Our
objective is to maximize both flexibility and efficiency while employing a
global constraint for itemset mining. Hence, this chapter is dedicated to
the CoverSize constraint for itemset mining problems, a global constraint
for counting and constraining the number of transactions covered by the
itemset decision variables.

Contribution We show how advances in data structures for table
constraints can benefit global constraints for itemset mining too; we
propose that global constraints for itemset mining expose the frequency
through a variable, and demonstrate how this allows, for example, to
not only solve Frequent Itemset Mining, but also discriminative itemset
mining; empirically our experiments with a generic CP solver show that
this approach outperforms other CP approaches and is on par with a
special-purpose CP solver, thereby decreasing the gap to the highly efficient
specialized itemset miners.

33

34 CHAPTER 3. FIM USING CP

Main source This chapter is based on our paper [SAG17].

3.1 Context and motivation

Frequent itemset mining (FIM) is one of the well-known and most studied
data mining problems [Bor12] and first introduced in [AIS93]. Guns et
al. [GNDR11] showed that FIM problems could be modelled and solved
using Constraint Programming (CP) with the additional benefit that new
constraints can easily be integrated into the models. Since then several CP
(also SAT) approaches have been proposed for other data-mining problems
such as frequent sequence mining [KLL+15,NG15], dominance-based pattern
mining [NDGN13] and closed FIM [JSS13,JSS17,LLL+16].

The flexibility of adding constraints when using a generic CP solver
typically comes at the cost of efficiency; a well-known tradeoff. We can hence
look at itemset mining papers in terms of where they are on the efficiency
versus generality scale. Most works in itemset mining focus primarily on
efficiency [Bor12, UKA05], while typical constraint-based mining papers
hard-code a selected number of constraints based on properties like (anti-
)monotonicity [NZ14]. Earlier articles on using CP for itemset mining focus
mostly on generality and decompose the itemset mining constraints into many
(reified) linear constraints [GNDR11] at the cost of efficiency. In line with
recent works in CP for sequence mining [AGS16,AGS17,KLL+15], Lazaar et
al. [LLL+16] have shown that a single global constraint for closed frequent
itemset mining can outperform a decomposition approach. This comes at a
significant cost for generality though, because 1) by encapsulating all but the
itemset variables, only syntactic constraints on the items can be added; 2)
only closed frequent patterns can be found and adding syntactic constraints
can have unwanted side-effects [BL04].

Consequently, we aim at maximising both generality and efficiency
while employing a global constraint for itemset mining. We achieve
this by introducing the CoverSize global constraint.

For the problem of Frequent, Closed and Discriminative IM, the reader is
invited to look at the Section 2.1.1 of Chapter 2.

3.2. PRELIMINARIES 35

3.2 Preliminaries

CoverSize is a global constraint which solves FIM problems using CP. Thus,
in this section, we present the preliminary concepts. Namely, how to model
IM problems using CP and the Reversible Sparse Bit-Sets data structure.

3.2.1 Modeling IM problem using CP

Following [DRGN08], we use an array of Boolean decision variables I =
[I1, I2, . . . , Im] to represent an itemset X ⊂ I. Each Ii is a binary variable
with domain dom(Ii) = {0, 1} and an item i ∈ X ⇐⇒ Ii = 1. We say that Ii
is unbound if there is more than one value in dom(Ii). Ii is bound to 1 (0)
means the item i is part (not part) of the itemset. Hence, one assignment to
I corresponds to one itemset.

The decomposition formulation of frequent itemset mining [GNDR11]
introduces an extra array of Boolean decision variables T = [T1, T2, . . . , Tn],
one for each of the n transactions. A Boolean variable Tt indicates whether the
transaction with identifier t belongs to the cover of I: { (t, S) ∈ H | I ⊆ S }.
This is enforced with a constraint for every transaction as follows:

Coverage constraint: ∀(t, S) ∈ H : Tt = 0⇐⇒
∨

i/∈S
Ii. (3.1)

In other words: if an item i is in the itemset I and not in the transaction
(t, S) then this transaction is not covered by I and equivalently if a transaction
is not covered any of the items then i ∈ I do belong to (t, S). The size of the
cover can then be constrained as follows:

Frequency constraint:
∑

t
Tt ≥ θ. (3.2)

This model is not domain consistent for the frequent itemset mining
problem that aims to enumerate all frequent patterns for a specific θ. As
suggested in [DRGN08], one can further add the redundant constraints
(3.3) to achieve domain consistency for the frequent itemset problem: these
constraints enforce that an item is only supported if adding it to the current
itemset will not violate the frequency constraint.

Redundant constraint: ∀i : Ii = 1 =⇒
(∑

(t,S)∈H,i∈S
Tt
)
≥ θ. (3.3)

36 CHAPTER 3. FIM USING CP

3.2.2 Table Constraint and Reversible Sparse Bit-Sets

In contrast to most constraints in CP, what is typical about global constraints
for data mining is that they must be able to handle large amounts of data. A
traditional global constraint that shares this property is the table constraint,
which has a rich history in CP literature [BR97,CY10, Lec11, PR14]. Its
link with a global constraint for itemset mining (IM) is even stronger, as
both can be seen as operating on a binary matrix; for IM the columns are
items (Boolean variables) and for table the columns are (variable, value)
pairs. The use of bitvectors and fast bitvector operations is common in
itemset mining implementations. Indeed, it was also used for the closed FIM
constraint [LLL+16].

Related, a column-based bitvector representation for the table constraint
was recently proposed [DHL+16], and the propagator was shown to out-
perform all other approaches. Inspired by this relation, we show that the
reversible sparse bitset data structure that was devised for table can also be
used to implement efficient itemset mining propagators. In this section, we
present this data structure.

Indeed, a table constraint enforces that an array of integer decision vari-
ables1 [V1, . . . , Vm] corresponds to one of the provided tuples

Γ =
{
(t, τ)|t ∈ { 1, . . . , n }

}
,

where t is the tuple identifier and each tuple τ = (v1, . . . , vm) consists of m
values corresponding to the m variables:

table
(
[V1, . . . , Vm], Γ

)
⇐⇒ ∃(t, τ) ∈ Γ : V1 = τ1 ∧ . . . ∧ Vm = τm. (3.4)

A key property to maintain is the set of tuples supported by the current
domain:

currTable =
{
(j, τ) ∈ Γ | τ1 ∈ dom(V1) ∧ . . . ∧ τm ∈ dom(Vm)

}
.

In [DHL+16], a reversible sparse bitset was proposed to maintain the set
of tuple indices during the search. In the propagator, a dense vertical
representation of Γ is used: for every variable/value combination (Vi, v), v ∈
dom(Vi), a bitvector

support[Vi, v] =
{
(j, τ) ∈ Γ | τi = v

}
1An integer decision variable is a decision variable with intergers in its domain.

3.3. GLOBAL CONSTRAINTS FOR FREQUENCY-BASED ITEMSET MINING 37

is pre-computed that stores the tuple identifiers in which the pair (Vi, v)
appears. The indices of currTable and the consistency of each (Vi, v) is
computed using bitwise operations, e.g. (Vi, v) is supported if support[Vi, v]∩
currTable 6= ∅.

We briefly recall the RSparseBitSet data structure [DHL+16] which
we will use in our propagators. The pseudo-code of this data structure is
given in Algorithm 3.1 and some illustrative methods are also shown. The
Reversible Sparse BitSet represents a set as a bitset (array of 64-bit Long
words) and is “reversible” means that it can restore itself on backtrack. The
reversibility relies on a global trail mechanism well known in the folklore
of constraint programming (see [Knu15] for an introduction to trailing and
time-stamping).

The originality of this structure is that it borrows the idea of reversible
sparse-sets [dSMSSL13] to discard all-zero words. When a bitvector is
sparse (contains many zero words), this can save unnecessary iterations and
computations over those words.

The following class invariant is maintained to ignore zero words: the
number of non-zero words is a reversible integer denoted limit; and the
limit first entries of index are indexes to the non-zero words in the bitvector.
All the words beyond that limit are the indexes of zero words.

For the intersect method, which is also crucial for itemset mining, one
can see how this is maintained by exchanging a detected zero word with the
last non-zero one before decreasing the limit (swapping).

Apart from skipping entire words, the bitvector representation allows
using highly efficient operations over whole words such as and and bitCount.

Example 3.1. Figure 3.1 shows how the RSparseBitSet works for
an example where we have a 16bits bitvector splits by 4bits. Especially,
the intersection operation is illustrated.

3.3 Global constraints for frequency-based itemset mi-
ning

There is a close relationship between a table constraint that reasons over a
binary representation of the table and itemset mining. Each variable/value
pair (Vi, v) is a column and can be seen as an item (in the itemset mining

38 CHAPTER 3. FIM USING CP

Algorithm 3.1: Class RSparseBitSet*.
1 words: array of rlong // reversible longs, array length = p
2 index: array of int // array length = p
3 limit: rint // a reversible integer
4 Method intersect(m: array of long)

/* this← this & m */
5 foreach i from limit downto 0 do
6 o← index[i]
7 w ← words[o] & m[o] // bitwise AND
8 words[o]← w
9 if w = 064 then

10 swap(index[i], index[limit])
11 limit← limit− 1

12 Method size(): int
/* number of bits set */

13 cnt← 0
14 foreach i from 0 to limit do
15 o← index[i]
16 cnt← cnt + bitCount(words[o])
17 return cnt

18 Method contains(m: array of long): bool
/* m ⊆ this */

19 foreach i from 0 to limit do
20 o← index[i]
21 if (words(o) & ~ m[o]) 6= 064 then
22 return false

23 return true

*t[0] denotes the first element of array t and 0k denotes a sequence of k bits set to 0.

problem), and internally a dense vertical representation of the table can be
used. Because each tuple in table Γ is of size n, in a binary representation of
the table there will be exactly n non-zero entries per row. Further knowing
that there are exactly n variables that each must be assigned one value, one
can see that checking whether the set representation of V : {(Vi, v) | Vi =
v ∈ V } is a subset of the set representation of a tuple τ : {(Vi, τi) | τi ∈ τ}
coincides with checking whether they can be equal as both sets will have
equal length when V is fully assigned. The cover relation of itemset mining
is hence equivalent to the table support relation in this case, and the table
constraint can be seen as enforcing a minimum frequency constraint with

3.3. GLOBAL CONSTRAINTS FOR FREQUENCY-BASED ITEMSET MINING 39

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

1 0 1 1 1 0 1 0 0 0 0 0 1 0 1 1

0 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1

11 10 0 13

0 0 0 0 1 0 0 0 0 0 0 0 1 0 1 1

0 8 0 13

15 15 15 15

1 2 3 4

0 1 2 3 4

0 8 0 13

4 2 1 3

0 1 2 3 4

11 10 0 13

1 2 4 3

0 1 2 3 4

(1) (2) (3)

Figure 3.1. Reversible Sparse Bitset techniques example.

θ = 1.
Earlier work has proposed a single global constraint for minimum frequent

closed itemset mining. For efficiency reasons, we propose to use the reversible
sparse bitset to maintain the set of transactions that can still be covered.
For generality reasons, we aim to separate the computation of the frequency
from the minimum (or maximum) frequency restriction and to separate that
from enforcing the closedness property.

3.3.1 Computing frequency: the CoverSize constraint

Given a set of Boolean variables I representing the pattern (selected items),
a dense vertical bitvector representation of the database D (see Figure 2.1c
for an example), and an integer variable c, the CoverSize global constraint
enforces the relation

CoverSize([I1, . . . , Im],D, c)⇐⇒ c =

∣∣∣∣∣∣
⋂
Ii=1
D(Ii)

∣∣∣∣∣∣ (3.5)

such that c represents the number of bits set in the intersection of the vertical
bitvectors (D) of the selected items. Using bitwise operations it can be

40 CHAPTER 3. FIM USING CP

formulated as

CoverSize([I1, . . . , Im],D, c)⇐⇒ c = size(&Ii=1D(Ii)) (3.6)

Example 3.2. For example in Figure 2.1 and for itemset {C,D}, c =
|D(IC) & D(ID))| = 2.

Lazaar et al. [LLL+16] have argued that a global constraint is preferred
over a decomposition into a constraint per transaction because the many
constraints that need to be handled create overhead for the solver. This
was shown earlier in [NG10], which proposed a CP-inspired dedicated solver
with a global constraint for (reified) matrix-wide operations over bitvector
variables.

When not exporting the cover as individual Boolean variables, we can
use an internal data structure to store the cover such as RSparseBitSet.
Note that not exposing the cover also limits the generality of the approach:
no constraints can be put on the cover so that constraints such as closedness,
maximality, non-frequency-based quality measures, etc either require changes
to the global constraint, or a separate global constraint that recomputes the
cover. However, there are some constraints that depend only on the size of
the cover and hence for added flexibility we propose to hide the cover but
expose the cover size.

Consistency of CoverSize

Theorem 3.1 is used to demonstrate that it is NP-hard to check the consistency
for CoverSize.

Theorem 3.1. Given a collection of sets {S1, . . . , Sm}, the problem of finding
a subset of these such that their union is of fixed cardinality k is NP-hard.

Proof. We build a reduction from the NP-hard exact cover by three sets
(X3C) problem: given a collection {C1, C2, . . . , Cm } of 3-element subsets
built from a universe X with |X| = 3q (a multiple of 3), can we find exactly
q subsets of C to cover X? We reduce this X3C problem into our problem
such that Si = Ci ∪ {ai1, . . . , ai|X|+1} ∀i ∈ { 1, . . . ,m }. All the artificial aij
elements added are different and not in universe X. Each set Si has thus a
cardinality of 3 + |X|+ 1 = 4 + 3q. We are looking for a collection of sets

3.3. GLOBAL CONSTRAINTS FOR FREQUENCY-BASED ITEMSET MINING 41

such that their union is of size k = q(4 + 3q). Only q sets can be selected;
even when counting just the artificial elements (|X|+ 1 = 3q + 1 per set),
more than q sets is not possible because k − ((q + 1) · (3q + 1)) < 0. Fewer
then q sets is also not possible because k − ((q − 1) · (3q + 1)) > |X| and
hence there would need to be more than |X| unique elements in universe
X to achieve cardinality k. For exactly q sets, one can verify that these
q sets will cover |X| after the removal of the q(|X| + 1) added elements:
q(4 + 3q)− q(|X|+ 1) = q(4 + 3q − 3q − 1) = 3q = |X|.

Corollary 3.1. Given a collection of sets {S1, . . . , Sm}, the problem of
finding a subset of these such that their intersection is of fixed cardinality k
is NP-hard.

Proof. We reduce the problem of Theorem 3.1. Let X = ⋃
i Si be the universe

and Si = X \ Si the complement set of Si w.r.t. X. There exists a subset
Ω ⊆ {1, . . . ,m} such that |⋃i∈Ω Si| = k if and only if

∣∣∣⋂i∈Ω Si
∣∣∣ = |X|−k.

Theorem 3.2. Determining the satisfiability for CoverSize is NP-hard.

Proof. The problem of Corollary 3.1 is reduced to finding a feasible solution
for CoverSize([I1, . . . , Im],D, c = k) with D(Ii) the bitvector representation
for set Si.

Despite this hardness result, we can still propagate many conditions
efficiently. The hardest part is to propagate from an upper bound on c to
the item variables.

CoverSize Propagator

We denote by U = { Ii ∈ I | dom(Ii) = { 0, 1 } } the set of undecided items
and by P = { Ii ∈ I | dom(Ii) = { 1 } } the set of included items. The filtering
rules for CoverSize are:

1. (Rule 1) computes the maximum cover size (exact upper-bound) that
corresponds to discarding all the undecided items:

max(c) ≤

∣∣∣∣∣∣
⋂
Ij∈P
D(Ij)

∣∣∣∣∣∣ (3.7)

42 CHAPTER 3. FIM USING CP

2. (Rule 2) computes the minimum cover size (exact lower-bound) that
corresponds to including all the undecided items:

min(c) ≥

∣∣∣∣∣∣
⋂

Ij∈(P∪U)
D(Ij)

∣∣∣∣∣∣ (3.8)

3. (Rule 3) discards item Ii if including it would result in a cover size that
is below the minimum threshold:

∀Ii ∈ U :

∣∣∣∣∣∣
⋂
Ij∈P
D(Ij) ∩ D(Ii)

∣∣∣∣∣∣ < min(c) =⇒ Ii = 0 (3.9)

This rule is also implemented in [LLL+16] and can be achieved in the
decomposition with a redundant constraint for each item separately.

4. (Rule 4) detects mandatory items. If the lower-bound is equal to the
maximum allowed cover size, then if the cover size lower-bound would
increase while excluding an item Ii then this item Ii is mandatory.
∀Ii ∈ U :∣∣∣∣∣∣

⋂
Ij∈(P∪U)

D(Ij)

∣∣∣∣∣∣ = max(c)

 ∧
∣∣∣∣∣∣

⋂
Ij∈(P∪U)

D(Ij)

∣∣∣∣∣∣ <
∣∣∣∣∣∣

⋂
Ij∈(P∪U)\{Ii}

D(Ij)

∣∣∣∣∣∣
 =⇒ Ii = 1

(3.10)

Algorithm 3.2 gives the filtering algorithm for the CoverSize constraint
implementing the Rules 1-4. N denotes the newly bound item variables
since the previous call to the propagate method. The algorithm is thus
incremental.

The block at Line 5 updates the current cover to reflect the new items
included in the itemset2. The second block at Line 8 filters out the items
that if included would induce a cover size below the allowed threshold min(c).
This corresponds to Rule 3.

Line 11 computes the upper-bound of the cover size according to Rule 1.
The lower-bound (Line 12) is obtained by including all the unbound items
according to Rule 2.

Line 13 is triggered when the smallest possible intersection size (lb) is the
largest allowed size of the frequency variable (max(c)). In this case, all the

2This is similar to the update of currTable in [DHL+16] for filtering table constraints.

3.3. GLOBAL CONSTRAINTS FOR FREQUENCY-BASED ITEMSET MINING 43

items that are mandatory to reach the lower-bound can be forcefully included
(this is not necessarily true when min(c) = max(c) as min(c) can be externally
set, resulting in min(c) > lb). An unbound item I is mandatory if it is the
only item that does not contain a transaction that all the other unbound
and included ones do; in that case lb would increase to lb′ > max(c). In
the algorithm, m← cover &Ij∈U\Ii D(Ij) is the cover if one would include
all unbound items except I. If m * D(Ii) then m ∩ D(Ii) would be a smaller
set than m and hence Ii is mandatory to obtain the smallest cover size lb.

Example 3.3. For the example of Figure 2.1, let C be included then
lb = 1, ub = 3 (See illustration in Figure 3.2). Let max(c) = 1 then A is
mandatory: not including it results in m = {2, 4},m * {1, 3, 4} because
of transaction 2.

= 1IC

1 2 3 4 5

1 1 1 1 1

1 1 1 1 1

0 1 2 3 4 5

0 1 0 1 1

cove =r∅

0 1 0 1 1 C

0 1 0 1 1cove =r{C}

1 2 3 4 5

0 1 0 1 1

1 0 1 1 0 A

1 1 1 1 1

cove =r{C}

B

1 1 1 1 0 D

0 0 0 1 0cove =r{C}∪{A,B,D}

lb ub
c :

Figure 3.2. Computing min(c) and max(c) when C is included.

This condition is equivalent to Rule 4 but slightly more efficient to
compute as it does not require to consider every non-zero words by returning
true as soon as one word of m is not included.

Time and space complexity

The time complexity for executing propagate is O(|I| × m/64) with |I|
the number of items and m/64 the number of words necessary to represent
the cover. In practice, the reversible sparse bitset will only iterate on the
non-zero words in the cover bitvector.

44 CHAPTER 3. FIM USING CP

Algorithm 3.2: Class CoverSize([I1, . . . Im],D, c)
1 cover: RSparseBitSet // Current cover
2 N, U // New bound variables, Unbound variables
3 D // D[Ii] = bit-set for item Ii

4 Method propagate()
/* update current cover */

5 foreach variable Ii ∈ N do
6 if Ii = 1 then
7 cover← cover & D[Ii]

/* remove items that if included induce cover < min(c) */
8 foreach variable Ii ∈ U do
9 if size(cover & D[Ii]) < min(c) then

10 Ii ← 0

/* cover bounds */
11 ub← size(cover); max(c)← min(max(c), ub)
12 lb← size(cover &Ii∈U D[Ii]); min(c)← max(min(c), lb)

/* propagating maximum size */
13 if lb < ub ∧ lb = max(c) then
14 foreach variable Ii ∈ U do

/* include items mandatory for a cover size = lb */
15 m← cover &Ij∈U\Ii

D[Ij]
16 if m * D[Ii] then
17 Ii ← 1

The space complexity is O(|I| × m) similar to that of other approaches
and due to the space needed to store the database.

Since domain consistency CoverSize is NP-hard we can unfortunately not
clearly characterize3 the filtering of Algorithm 3.2. Only in the case of an
unconstrained max(c) (for instance for the frequent itemset problem), the
filtering reaches domain consistency.

3.3.2 Closed itemsets: the CoverClosure constraint

The idea of mining for closed frequent itemsets is to reduce the set of extracted
itemsets to a smaller, more interesting one. The intuitive idea is that if a

3As for many NP-hard global constraints like bin-packing, cumulative, circuit, etc.

3.3. GLOBAL CONSTRAINTS FOR FREQUENCY-BASED ITEMSET MINING 45

frequent pattern has a cover that is exactly the same as a super pattern, then
only the super pattern should be enumerated.

An itemset I is hence a closed itemset if there is no superset with the
same cover (we recall that H represents a Horizontal Sparse database, see
Table 2.1a):

@I ′ ⊃ I : {(t, T) ∈ H | I ′ ⊆ T} = {(t, T) ∈ H | I ⊆ T}.

Hence, the closure of an itemset can be computed by verifying which items
could be added to the itemset without changing the cover:

cloH(I) = I ∪
{
j /∈ I |

{
(t, T) ∈ H | I ∪ {j} ⊆ T

}
=
{

(t, T) ∈ H | I ⊆ T
}}
.

(3.11)

As argued in [BL04] there are two ways of interpreting the closed property
when combined with other constraints: 1) of all closed itemsets, keep only
those that satisfy the constraints 2) take the closure such that the new itemset
satisfies all constraints

This can have far-reaching consequences. Let us take the database in
Figure 2.1, where item B is in all transactions and so will be in all closed
itemsets. If we now add the constraint B /∈ I, then under interpretation 1
there would not be any valid itemset, while under interpretation 2 there is
D,C,AD and ACD namely all closed itemsets when ignoring B. It should
be clear that interpretation 1) should not be taken by default. On the other
hand, enforcing interpretation 2) requires one to reason not in terms of local
constraints but over valid solutions to the CSP, for example with dominance
properties [NDGN13]. Nonetheless, interpretation 1) is valid as long as all
constraints have the property that adding a cover-preserving item to the
set can never violate another constraint; for example, one can freely add
a minimum size or maximum frequency constraint [BL04]. In case of such
constraints, it must be expressed as a preference over solutions of the CSP,
e.g. by adding constraints each time a solution is found [NDGN13]. We
hence propose to offer the widely used unconstrained closure operator as a
separate CoverClosure constraint.

Another argument for separating the closure constraint is that in case of
discriminative itemset mining, we may want to enforce closedness on only one
of the two databases or the entire database [GNDR11]. A separate constraint
allows this freedom.

46 CHAPTER 3. FIM USING CP

CoverClosure Propagator

Two filtering rules are enforced similar to [LLL+16]:

1. (Rule 5) Closure inclusion. This rule checks for each unbound item Ii
if including it would result in an unchanged cover. If yes, this item
should be included in the final pattern. More formally

∀Ii ∈ U :
(⋂
Ij∈P
D(Ij) ∩ D(Ii)

)
=
(⋂
Ij∈P
D(Ij) =⇒ Ii = 1

)

2. (Rule 6) Closure exclusion. This rule detects if extending the pattern
with an item would result in a cover for which there is an already
excluded item that should be added by the closure operator. Hence,
including the first item would lead to an inconsistency and so it should
be excluded. More formally, assuming Ik ∈ I, Ik = 0 represents the
excluded items:

∀Ii ∈ U, Ik ∈ I, Ik = 0(((⋂
Ij∈P
D(Ij)

)
∩ D(Ii)

)
⊆
((⋂

Ij∈P
D(Ij)

)
∩ D(Ik)

))
=⇒ Ii = 0

(3.12)

Algorithm 3.3 implements the domain consistent filtering for the CoverClosure
constraint. This constraint also uses the RSparseBitSet data structure to
store the cover. It has a complexity of O(|I|2 × m/64).

A faster (but not domain consistent) filtering is obtained by replacing
Rule 6 with a consistency check verifying that for each discarded item (Ii = 0),
including it changes the cover:

∀Ik ∈ I, Ik = 0 :
(⋂
Ij∈P
D(Ij) ∩ D(Ik)

)
=

⋂
Ij∈P
D(Ij) =⇒ fail

This version has a complexity of O(|I| × m/64), similar to CoverSize.

3.4. FREQUENCY-BASED ITEMSET MINING WITH COVERSIZE AND COVERCLOSURE47

3.4 Frequency-based itemset mining with CoverSize
and CoverClosure

3.4.1 Frequent itemset mining

Our model for frequent itemset mining contains just one CoverSize and a
constraint that the size of the cover is above a fixed minimum frequency θ:{

enumerateCoverSize([I1, . . . , Im],D, c)
c ≥ θ (3.13)

Notice that as c is a variable, one can also add a maximum frequency
constraint, or use it in branch-and-bound to search for the most frequent
itemsets under constraints such as a minimum itemset cardinality:

maximize c
s.t.
CoverSize([I1, . . . , Im],D, c)∑
i Ii ≥ β

(3.14)

3.4.2 Closed frequent itemset mining

Looking for the frequent closed itemset amounts to adding CoverClosure:
enumerate CoverSize([I1, . . . , Im],D, c)

CoverClosure([I1, . . . , Im],D)
c ≥ θ

(3.15)

As explained in Sect. 3.3.2, other constraints should only be added if they
do not constrain the addition of (frequency-preserving) items.

3.4.3 Discriminative (closed) itemset mining

Given a split database D+ and D− containing positive (+) and negative
(−) transactions defined on a same set of items, the objective is to find the
highest scoring itemsets (discriminating one class over another) w.r.t. a
correlation (discriminative) measure4 such as accuracy, χ2 measure (3.16),

4By convention for all formula here we use 0/0 = 0 and 0 log 0 = 0.

48 CHAPTER 3. FIM USING CP

Algorithm 3.3: Class CoverClosure([I1, . . . Im],D)
1 cover: RSparseBitSet // Current cover
2 N, U // New bound variables, Unbound variables
3 D // D[Ii] = bit-set for item Ii
4 Method propagate()

/* update current cover */
5 foreach variable Ii ∈ N do
6 if Ii = 1 then
7 cover← cover & D[Ii]

/* Rule 5 */
8 foreach variable Ii ∈ U do
9 if cover = (cover & D[Ii]) then

10 Ii ← 1

/* Rule 6 */
11 foreach variable Ii ∈ U do
12 foreach variable Ik ∈ I with Ik = 0 do
13 if (cover & D[Ii]) ⊆ (cover & D[Ik]) then
14 Ii ← 0; break

information gain (3.17), Gini index (3.18), etc. Those itemsets are interesting
as classification rules directly [BZ05,CYHP08,FZC+08], or as features (if the
itemset is present or not) for another classifier [BZDRN06,DKWK05].

Some ZDC functions

Assume I, D+, and D+ be an itemset and the positive and negative trans-
actions, the ZDC measure is a function of four parameters: |D+|, |D−|, n+,
and n− which are respectively the size of positive (|D+|) and negative (|D−|)
transactions, and the number of positive and negative transactions cover by
I. The measures are the follows.

χ2(|D+|, |D−|, n+, n−) = Q(|D+|, |D−|, n+, n−)+
Q(|D+|, |D−|, |D+| − n+, |D−| − n−) (3.16)

where Q(X,Y, x, y) = q(X,Y, x, y) + q(Y,X, y, x),

q(X,Y, x, y) =
(
x−p(X,Y,x,y)

)2

p(X,Y,x,y)
and p(X,Y, x, y) = (x+ y) X

X+Y

3.4. FREQUENCY-BASED ITEMSET MINING WITH COVERSIZE AND COVERCLOSURE49

Gain(|D+|, |D−|, n+, n−) = H(|D+|
|D+|+|D−|)−

n++n−
|D+|+|D−|H(n+

n++n−)−
|D+|+|D−|−n+−n−

|D+|+|D−| H(|D+|−n+

|D+|+|D−|−n+−n−)
(3.17)

where H(p) = −p log p− (1− p) log(1− p) is the entropy.

Gini(|D+|, |D−|, n+, n−) = G(|D+|
|D+|+|D−|)−

n++n−
|D+|+|D−|G(n+

n++n−)−
|D+|+|D−|−n+−n−

|D+|+|D−| G(|D+|−n+

|D+|+|D−|−n+−n−)
(3.18)

where G(p) = 1− p2 − (1− p)2.

Discriminative problem and its CP model

Using accuracy as a discriminative measure leads to the following problem
(n+ and n− are CP decision variable, representing the cover size of the
positive and negative transactions):

maximize n+ − n−
s.t.
CoverSize([I1, . . . , Im],D+, n+)
CoverSize([I1, . . . , Im],D−, n−)

(3.19)

Another standard discriminative measure is the χ2 one depicted on Fig-
ure 3.3. As explained in [NGDR09] the standard discriminative functions
such as χ2 have the property that they are zero on the diagonal (relative
to the possible values of p, n) and convex (denoted by ZDC). A general
ZDC-based model for discriminative itemset mining is composed of

• two constraints CoverSize([I1, . . . , Im],D+, n+) and
CoverSize([I1, . . . , Im],D−, n−) to compute the cover size on the
positive and negative transactions;

• a Zero Diagonal Convex constraint ZDC(|D+|, |D−|, n+, n−, score) that
links n+, n− and score using a discriminative function (such as χ2) to
maximise;

50 CHAPTER 3. FIM USING CP

• CoverClosure([I1, . . . , Im],D− ∪ D+) to obtain the closedness property.
Note that posting CoverClosure separately on the positive (negative)
can decrease n+ (n−) and is hence not allowed for symmetric ZDC
measures.

This approach which employs a separate ZDC constraint that takes only the
cardinalities n+ and n− as input, is novel and favours reusability in a different
context: it is itemset-agnostic, meaning that it could also be used for example
to find discriminating sequences instead of itemsets. In [NGDR09] the
authors also employ a global constraint for the discriminative itemset mining
problem, but one that reasons at the transaction level with one variable per
transaction. The filtering they achieve is stronger than our decomposition
into three constraints. They perform what they call a redundant look-ahead
filtering5 on each item separately.

We now describe our filtering for ZDC, presented in the Algorithm 3.4 and
illustrated in Figure 3.4. Because of the ZDC property, the minimum and
maximum is located at one of the four corners of the box [min(n+),max(n−)]×
[min(n−),max(n−)] (see Figure 3.3c), and hence only these extremes need to
be computed for pruning min(score). Given a minimum value for min(score),
for example as enforced during branch-and-bound maximisation, the value
of max(n+) and max(n−) can be reduced as shown in the Algorithm 3.4 at
Lines 14 & 18 and illustrated on Figures 3.4c & d. For example, on Figure 3.4c,
the iso-curve corresponding to min(score) is visualised. The ZDC property
implies that any larger score must lay outside of the region enclosed by the
iso-curves. The gray zone on Figures 3.4c & d corresponds to inconsistent
combinations for n+ and n−, hence discovering the new minimum for n+

requires to find v such that ZDC(|D+|, |D−|, v,max(n−)) = min(score). To
do that, we use a dicotomic search described at Lines 19. Any value larger than
v for n+ would be inconsistent. The upper-cardinality of n+ is constrained
and therefore the filtering of CoverSize([I1, . . . , Im],D+, n+) based on this
upper cardinality is important to prune the search tree. A similar reasoning
is used to prune min(n+) and min(n−) (Lines 12 & 16). As specified at the
Line 7, if the box [min(n+),max(n−)] × [min(n−),max(n−)] is under the
iso-curve, as illustrated in Figure 3.4a, the algorithm throws an inconsistency
error. Conversely, if the box is entirely above the iso-curve (Figure 3.4b)
then the domain of score is entirely valid. In the case where the box is

5A related generic technique in CP is shaving [Lho05].

3.4. FREQUENCY-BASED ITEMSET MINING WITH COVERSIZE AND COVERCLOSURE51

(a) (b)

(c)

Figure 3.3. a) Plot of χ2 ZDC function in [0, |D+|]×[0, |D−|] with |D+| = 60 and |D−| = 40;
b) Same plot with the plane representing a threshold at χ2 = 20; c) Same plot with the
score-axis projected in the pn-plane. Note: p = n+, n = n−

52 CHAPTER 3. FIM USING CP

in the two zones above the iso-curve (Figure 3.4e), the lower bound of the
score is updated to the minimum of ZDC(|D+|, |D−|,max(n+),min(n−))
and ZDC(|D+|, |D−|,min(n+),max(n−)) (Line 10). Therefore, one of the
previous situations is retrieved.

0 10 20 30 40 50 60

0
10

20
30

40-

+

(a)

0 10 20 30 40 50 60

0
10

20
30

40-

+

d
o
m

(n
)

dom(p)

(b)

0 10 20 30 40 50 60

0
10

20
30

40-

+

(c)

0 10 20 30 40 50 60

0
10

20
30

40-

+

d
o
m

(n
)

dom(p)

(d)

0 10 20 30 40 50 60

0
10

20
30

40-

+

d
o
m

(n
)

dom(p)

0 10 20 30 40 50 60

0
10

20
30

40-

+

d
o
m

(n
)

dom(p)

(e)

Figure 3.4. Several cases of χ2 ZDC(|D+|, |D−|, n+, n−, score) constraint filtering. Note:
p = n+, n = n− and iso-curve corresponding to min(score).

3.4. FREQUENCY-BASED ITEMSET MINING WITH COVERSIZE AND COVERCLOSURE53

Algorithm 3.4: Class ZDC(|D+|, |D−|, n+, n−, score)
1 Method propagate()
2 py ← max(n+); px← min(n+); ny ← max(n−); nx← min(n−)
3 fpxny ← f(px, ny); fpyny ← f(py, ny)
4 fpxnx← f(px, nx); fpynx← f(py, nx)
5 fx← min(score)

// when out of both opposite corner ⇐⇒ not correct f
6 if fpxny < fx ∧ fpynx < fx then
7 throw Inconsistency

// ub=the max between top-left (ftl) and bottom-right (fbr) values of f
8 max(score) = max(fpynx, fpxny)

// lb= min(ftl, fbr) if both ftl and fbr are over/under diagonal and valid
9 if

(
ny
|D−| <

px
|D+| ∧ nx

|D−| <
py
|D+|

)
∨(

ny
|D−| >

px
|D+| ∧ ny

|D−| >
py
|D+| ∧ fpynx ≥ fx∧ fpxny ≥ fx

)
∨(

|dom(n+)| = 1 ∧ |dom(n−)| = 1
)
then

10 min(Score) = min(fpynx, fpxny)
// Pruning of n+ and n−
// both bottom-(left,right) f points are out of corner ⇒ GROW min(n−)

11 if fpxnx < fx ∧ fpynx < fx then
12 min(n−)← dicotomicSearch(nx, ny, px, fx)

// both top-(left,right) f points are out of corner ⇒ DECREASE max(n−)
13 if fpxny < fx ∧ fpyny < fx then
14 max(n−)← dicotomicSearch(nx, ny, py, fx)

// both left-(bottom,top) f points are out of corner ⇒ GROW min(n+)
15 if fpxnx < fx ∧ fpxny < fx then
16 min(n+)← dicotomicSearch(px, py, nx, fx)

// both right-(bottom,top) f points are out of corner ⇒ DECREASE
max(n+)

17 if fpyny < fx ∧ fpynx < fx then
18 max(n+)← dicotomicSearch(px, py, ny, fx)

19 Method dicotomicSearch(x, y, t, s)
20 a← x; b← y
21 if a > b then
22 b, a← swap(a, b)
23 while b− a > 1 do
24 mid← a+ (b− a)/2
25 if f(t,mid) < s then
26 a← mid
27 else
28 b← mid

29 return b

54 CHAPTER 3. FIM USING CP

3.5 Implementation and Practical User Guide

The implementation of the problem of Discriminative FIM in Scala is shown
in A.1 as well the Reversible Sparse bit-set data structure A.2 and Cover-
size A.3. The other implementations are available in the CP-Solver Os-
caR [Osc12] which is available online6 in free access. In OscaR, one can
combine our constraints with the existing constraints in the solver such as
All-Different [Rég94], Global cardinality [QLvBG04], Grammar [QW06], etc.

For developers who are willing to modify the code directly, a lightweight
version is also available7. One can hence add several constraints for a specific
usage without understanding OscaR deeply. The installation procedure is
described in the Install file in the code directory and merely consists of
“importing the project” into your favourite IDE.

Users can directly download the jar-file which is available on our website 8.
To find the frequent itemsets with θ = 600 given the database mushroom
(|T | = 8124 and |I| = 119), we run this command

java -jar coversize.jar F mushroom 600

and here is the output:

/** CoverSize for FIM (OscaR Solver) v1.0
Bugs reports : johnaoga@gmail.com , pschaus@gmail.com

*/

Start FIM on mushroom
support:600 nTrans:8124 nItems:120
nNodes: 1890618
nFails: 945310
time(ms): 3519
completed: true
timeInTrail: 278
nSols: 945310

...done fim.examples.CoverSizeRunner$
0 0 3.519 945310 0 1890618 945310 0 0
0.0 0.0

6https://bitbucket.org/oscarlib/oscar/wiki/Home
7https://projetsJOHN@bitbucket.org/projetsJOHN/coversize
8https://sites.uclouvain.be/cp4dm/fim/

https://bitbucket.org/oscarlib/oscar/wiki/Home
https://projetsJOHN@bitbucket.org/projetsJOHN/coversize
https://sites.uclouvain.be/cp4dm/fim/

3.6. EXPERIMENTS 55

Table 3.1. CPU runtime for several algorithms vs CoverSize.(TO≡TimeOut;
∗ ≡CoverSize+CoverClosure; ρ ≡ density = 1

|T |×|I|

∑
t∈T ,i∈I Dti)

Na
me

|T
| ×
|I|

ρ(%
)

θ
Frequent Closed

CP-based Specialized CP-based Specialized

FI
M
CP

D
M
CP

Co
ve
rS
ize

-b
its
et

Co
ve
rS
ize

Ap
rio

ri

Ec
la
t

No
no
rd
fp

LC
M
v3

FI
M
CP

Cl
os
ed
Pa

tt
er
n

Co
ve
rS
ize

-D
C
∗

Co
ve
rS
ize
∗

D
M
CP

Ap
rio

ri-
clo

se

LC
M
v3

ret
ail

881
62
×

164
70

(ρ
=

0.0
6)

80 TO 6.91 25.76 5.33 0.60 5.81 0.98 0.21 TO TO 394.48 45.09 16.95 0.82 0.26
60 TO 10.45 33.87 7.37 0.71 8.26 1.31 0.24 TO TO 952.83 67.74 25.10 1.03 0.31
40 TO 15.96 65.13 11.19 0.77 11.42 1.83 0.27 TO TO TO 125.67 41.78 1.29 0.49
20 TO 26.81 132.53 19.74 1.10 17.86 2.56 0.43 TO TO TO 226.32 94.24 1.61 0.48
10 TO 40.03 191.05 37.08 1.73 24.63 3.68 0.39 TO TO TO 366.83 238.71 2.48 0.66

on
lin
e-r
eta
ils

541
909
×

260
3

(ρ
=

0.1
)

70 TO 11.00 54.19 8.27 2.75 14.27 0.31 1.59 TO TO 242.80 98.67 11.00 1.28 1.43
40 TO 11.33 59.60 8.00 4.78 15.07 0.40 1.43 TO TO 497.14 111.34 12.06 1.28 1.51
10 TO 11.49 86.66 8.49 2.15 15.61 0.43 1.51 TO TO 907.68 131.94 13.31 1.36 1.52
5 TO 15.64 84.05 8.82 2.13 14.56 0.31 1.32 TO TO TO 148.29 13.72 1.31 1.65
1 TO TO TO TO 2.18 15.66 0.42 1.22 TO TO TO TO 14.99 1.44 1.60

BM
SW

ebV
iew

1

596
02
×

497

(ρ
=

0.5
)

48 TO 1.92 1.51 0.69 0.08 0.51 0.11 0.03 TO TO 3.10 2.54 48.04 0.29 0.11
36 TO 17.83 7.23 1.87 0.88 0.37 0.30 0.11 TO TO 3.77 3.74 512.09 1.55 0.26
34 TO 63.93 23.07 8.12 7.04 0.43 0.60 0.10 TO TO 3.99 4.57 746.61 10.46 0.37
32 TO TO TO TO TO 0.68 60.63 0.28 TO TO 5.12 8.24 TO TO 0.47
30 TO TO TO TO TO 0.53 TO 1.22 TO TO 6.61 13.50 TO TO 0.67

T1
0I4
D1
00K

100
000
×

870

(ρ
=

1.0
)

500 TO 1.07 3.58 0.79 0.48 3.32 0.80 0.36 TO 8.32 8.20 7.81 1.04 0.81 0.34
400 TO 0.98 4.1 1.03 0.49 3.74 0.58 0.29 TO 13.06 9.27 8.88 1.12 0.67 0.43
300 TO 1.39 4.96 1.27 0.69 4.14 0.94 0.30 TO 25.28 11.12 10.51 1.30 0.85 0.41
200 TO 2.65 6.59 1.28 0.63 3.95 0.70 0.39 TO 77.20 12.95 10.98 1.61 1.07 0.38
100 TO 2.35 7.27 1.78 1.02 5.08 1.01 0.53 TO 125.26 15.79 15.07 2.11 1.15 0.58

pu
ms
b-s
tar

490
46
×

208
8

(ρ
=

2.0
)

18000 302.06 1.02 1.26 0.84 6.34 0.77 0.25 0.21 TO 56.55 0.99 0.89 2.11 5.11 0.22
16000 375.07 2.57 2.55 1.52 18.81 1.04 0.27 0.22 TO 120.33 0.80 0.93 4.04 15.59 0.27
14000 563.21 9.14 4.72 3.36 81.93 1.34 0.31 0.26 TO 275.23 1.65 2.25 6.22 57.99 0.30
12000 TO 33.66 20.12 10.16 285.36 1.95 0.62 0.38 TO 601.72 4.51 5.55 14.04 284.39 0.44
10000 TO TO TO TO TO 3.45 164.76 0.45 TO TO 10.37 13.97 26.96 TO 0.54

pu
ms
b

490
46
×

211
3

(ρ
=

3.0
)

40000 237.09 2.82 2.02 1.51 1.45 0.87 0.14 0.15 TO 212.83 1.84 2.14 7.22 1.46 0.15
35000 889.08 33.87 13.20 10.26 15.92 3.36 0.21 0.20 TO TO 12.71 16.76 43.48 15.98 0.27
30000 TO 220.03 124.65 63.91 356.90 10.55 0.54 0.27 TO TO 62.81 82.47 121.24 370.78 0.60
25000 TO TO TO 602.72 TO 66.46 3.56 1.04 TO TO 468.99 611.62 TO TO 1.54

acc
ide
nts

340
183
×

468

(ρ
=

7.0
)

300000 50.02 0.78 0.16 0.05 1.23 1.02 0.23 0.21 221.80 0.13 0.08 0.07 0.80 1.48 0.19
250000 55.69 1.08 0.18 0.17 1.75 1.26 0.33 0.40 253.90 1.71 0.17 0.14 1.16 2.00 0.21
200000 112.55 0.99 0.34 0.33 2.46 1.76 0.35 0.62 302.97 8.57 0.56 0.68 1.41 2.55 0.56
150000 386.51 2.87 1.52 1.32 17.83 3.12 0.52 1.06 575.32 61.60 5.00 5.09 3.71 18.91 0.99
100000 TO 18.08 10.69 7.79 116.26 7.32 0.74 1.73 TO 570.38 47.55 43.75 23.63 140.26 1.47

mu
shr
oo
m

812
4×

119

(ρ
=

19.
0)

600 33.06 0.85 2.14 1.92 14.61 0.30 0.05 0.04 8.38 0.62 0.73 0.84 0.16 10.09 0.06
400 106.71 3.48 5.52 5.43 58.46 0.29 0.09 0.04 14.86 1.08 0.70 0.67 0.20 36.11 0.11
200 449.85 16.77 23.37 20.10 133.54 0.37 0.27 0.07 20.12 2.35 0.75 1.56 0.35 112.82 0.17
100 TO 67.09 96.13 68.46 264.69 0.65 0.95 0.10 27.10 4.30 1.11 2.91 0.63 284.15 0.24

soy
be
an
s

630
×

50

(ρ
=

32.
0)

16 1.21 0.47 1.02 1.03 0.45 0.03 0.02 0.00 0.31 0.20 0.36 0.35 0.08 0.71 0.02
13 1.57 0.70 1.40 1.44 0.44 0.03 0.02 0.01 0.32 0.25 0.32 0.28 0.12 0.95 0.02
10 2.54 0.75 1.69 1.44 0.71 0.04 0.03 0.02 0.34 0.29 0.40 0.29 0.11 1.20 0.02
7 3.54 1.46 2.35 2.07 0.84 0.05 0.03 0.01 0.47 0.33 0.23 0.22 0.14 1.61 0.03
4 7.05 3.86 4.02 3.87 1.69 0.05 0.07 0.02 0.42 0.42 0.25 0.20 0.18 2.98 0.03

che
ss

319
6×

75

(ρ
=

49.
0)

2000 3.71 0.30 1.59 1.39 3.14 0.11 0.01 0.01 1.85 1.71 1.11 1.02 0.42 3.48 0.09
1500 46.05 3.05 4.81 3.88 77.85 0.39 0.11 0.07 14.06 15.53 4.73 3.42 1.88 69.56 0.59
1000 577.29 35.16 52.60 44.94 849.49 2.15 0.68 0.37 101.68 96.65 28.11 22.76 14.96 885.14 4.90
500 TO 959.16 TO TO TO 19.06 12.35 2.96 882.16 900.45 304.74 282.50 144.04 TO 51.66
250 TO TO TO TO TO 72.69 129.05 14.42 TO TO TO TO 580.64 TO 211.99

3.6 Experiments

In this section, we report the experimental results on frequent, closed as well
as discriminative itemset mining. A concrete question drives each experiment.
All experiments were run in the JVM with maximum memory set to 8GB on
PCs with Intel Core i5 64bits processor (2.7GHz) and 8GB of RAM running

56 CHAPTER 3. FIM USING CP

Linux Mint 17.3. Execution time is limited to 1000 seconds.
Datasets and mining algorithms. We use data from the FIMI9 repos-

itory and from the CP4IM10 website. The properties of the datasets are
presented in Table 3.1 (first column) and Table 3.2a (these latter are labelled
positive/negative datasets). We compare with the following methods:

• Frequent Itemset Mining: FIMCP [GNDR11] using the Gecode
solver [Gec06], DMCP [NG10] a custom CP bitvector solver, and
four dedicated algorithms namely Borgelt’s Apriori and Eclat imple-
mentations [Bor03], Nonordfp [Rác04] and LCMv3 11 [UKA05].

• Closed Frequent Itemset Mining: FIMCP, DMCP, Borgelt’s Apriori
and LCMv3 again, as well as ClosedPattern [LLL+16] using the or-tools
solver [Goo15].

• Discriminative Itemset Mining: CIMCP [GNDR11] based on Gecode
and the specialised algorithm corrmine [NGDR09].

We denote our approach by CoverSize and it uses the OscaR solver [Osc12].

Q1: What is the impact of using a reversible “sparse”-bitset over
a reversible non-sparse one? In Table 3.1 CoverSize-bitset is the same
implementation as CoverSize but using a reversible bitset implementation
that does not check for zero words. The results on Frequent in Table 3.1
convincingly show that using the sparse data structure is always better
and sometimes an order of magnitude faster, especially on large and sparse
datasets.

For closed, we can also compare Coversize-DC* to ClosedPat-
tern [LLL+16] which uses the same filtering rules but in a single global
constraint and with a different solver and non-reversible non-sparse bit-
sets [LLL+16]. We only have the binaries, and although different solvers will
perform differently, or-tools has won MiniZinc challenge [SBF10] gold medals
and so the remarkable difference in runtime with our method provides strong
evidence that the reversible sparse bitset is a well suited and very scalable
data structure for itemset propagators.

9http://fimi.ua.ac.be/data/
10https://dtai.cs.kuleuven.be/CP4IM/datasets/
11http://research.nii.ac.jp/~uno/codes.htm (v3 is fastest of all versions in our experiments)

http://fimi.ua.ac.be/data/
https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://research.nii.ac.jp/~uno/codes.htm

3.6. EXPERIMENTS 57

Q2: Is domain consistency interesting for closed frequent itemset
mining? In [LLL+16] the authors concluded that using the domain consistent
version of Rule 6 dominates the simpler non-domain consistent one because
of the resulting reduction in number of explored nodes. We reran the same
experiment, CoverSize-DC* and CoverSize* in Table 3.1, and the conclusion
changes when using reversible sparse bitsets: while on pumsb and pumsb-star
the runtime increases when using the simpler non-DC version, on the other
datasets it is similar or faster to use the simpler one. For the largest and
sparsest datasets retail and online-retails, the difference is even up to an
order of magnitude.

Q3: How does CoverSize compare with existing approaches? The
CoverSize approach clearly outperforms the decomposition-based FIMCP.
For frequent, CoverSize is on par (sometimes somewhat better or worse)
with DMCP, the dedicated CP solver which uses bitvector variables. By
profiling the execution we observed that for the instances where DMCP was
faster (such as mushroom) only 1% of the time was spent in CoverSize. The
remaining time is devoted to the solver (propagation management, search,
trailing), which a dedicated solver like DMCP has less overhead in. Hence,
here we show that similar performance can be achieved with a generic solver,
through the use of global constraints with carefully designed data structures.

For closed, our approach outperforms FIMCP, and also ClosedPattern as
discussed in Q2. The differences between CoverSize and DMCP become more
varied and pronounced, for example for the sparsest retail and online-retails
dataset in favor of DMCP, and for BMSWebView1 in favor of CoverSize.

Specialised algorithms. There remains a significant gap between CP-based
methods and specialised methods though, and especially the highly praised
LCMv3 algorithm lives up to its reputation. It should be pointed out that
these algorithms do not allow any constraints and for example a version of
LCM (LCMv5) that allow some constraints is also remarkably slower. For
denser datasets, our method does typically outperform Apriori.

Q4: What is the difference in performance for discriminative
itemset mining with CoverSize? The state-of-the-art for this problem is
the generic CP-based CIMCP method and the specialized corrmine method
which implement the same bounds [NGDR09]. Table 3.2b shows a comparison
using Information Gain as the ZDC measure, which is the one implemented

58 CHAPTER 3. FIM USING CP

Table 3.2. Runtimes, in seconds, for discriminative itemset mining
a) Dataset features. b) Discriminative

Name Dense Trans Item CI
MC

P

Co
ver
Siz
e

cor
rm
ine

anneal 0.45 812 93 0.167 0.24 0.014
australian-cr 0.41 653 125 0.166 0.195 0.012
breast-wisc 0.5 683 120 0.193 0.345 0.037
diabetes 0.5 768 112 1.564 1.769 0.28
german-cr 0.34 1000 112 1.521 1.659 0.09
heart-clevel 0.47 296 95 0.175 0.221 0.055
hypothyroid 0.49 3247 88 0.592 0.118 0.016
ionosphere 0.5 351 445 1.047 0.336 0.23
kr-vs-kp 0.49 3196 73 0.698 0.145 0.01
letter 0.5 20000 224 54.255 4.547 0.367
mushroom 0.18 8124 119 15.979 0.069 0.025
pendigits 0.5 7494 216 2.939 1.196 0.138
primary-t 0.48 336 31 0.02 0.058 0.003
segment 0.5 2310 235 1.154 0.15 0.052
soybean 0.32 630 50 0.046 0.048 0.003
splice-1 0.21 3190 287 22.341 0.113 0.025
vehicle 0.5 846 252 0.551 0.55 0.094
yeast 0.49 1484 89 3.386 1.366 0.818

Average. when found 5.933 0.729 0.126

in corrmine. Despite the stronger filtering of CIMCP, CoverSize outperforms
CIMCP for the most challenging instances showing the importance of globals
with a suitable data structure. Corrmine is superior though specialized to
this specific problem.

3.7. SUMMARY, OUTLOOKS, FURTHER READINGS 59

3.7 Summary, Outlooks, Further readings

We showed that compared to the ClosedPattern approach [LLL+16] of using
a global constraint for frequent closed itemset mining, both generality and
efficiency can be significantly improved. Generality can be improved by a
separation of concerns in terms of global constraints. We propose to use
one global constraint that exposes the frequency through a decision variable
which can then be used in other constraints (e.g. frequency constraints,
objective functions or discrimination scores). Another global constraint can
be used to enforce the closure property, though care has to be taken when
combining it with other constraints.

Efficiency-wise we showed the connection with a well-known constraint
that also has to handle a lot of data: the table constraint. Using the Reversible
Sparse bitset data structure that was recently proposed [DHL+16] allows our
global constraints to scale to even larger and sparser datasets while still in
a generic CP solver. This is relevant not just for frequency-based itemset
mining, but also for other existing as well as novel data mining problems in
CP, and perhaps beyond.

4

C
h

a
p

t
e

r

Frequent Itemset Mining for Compression

“The greatest artist is the simplifier.”

–Donald M. Murray

Overview One of the growing data mining task is the search for the
most relevant subset of frequent patterns. This set is called pattern-set.
Several measures are then used to judge its relevancy. In this chapter,
we present a new method that searches for a small rule list (pattern-set)
where each rule captures the probability of the Boolean target attribute
being true. This rule list is able to compress data well.

Contribution Our contribution is a new method to discover a small
rule list in labeled data which is built on a novel combination of two
main building blocks: (i) the use of the Minimum Description Length
(MDL) principle to characterize good-and-small sets of probabilistic rules,
(ii) the use of branch-and-bound with a best-first search strategy to find
better-than-greedy and optimal solutions for the proposed task. We ex-
perimentally show the effectiveness of our approach, by providing a
comparison with other supervised rule learning algorithms on real-life
datasets.

Main source This chapter is entirely based on our paper [AGNS18].

61

62 CHAPTER 4. FIM FOR COMPRESSION USING MDL

4.1 Context and motivation

Rule learning in supervised data is a well-established problem in data mining
and machine learning. Compared to many other methods, a clear benefit of
rule-based methods is that the rule format is more comfortable to interpret
and hence is useful in knowledge discovery. Well-known examples of rule
learning are

Rule-based classification, in which the aim is to find a set of rules that
predicts the class of examples well;

Subgroup discovery, in which the aim is to find a set of rules that describes
subgroups of examples in the data; in these subgroups, the distribution
of the target attribute is different from the overall population.

The main difference between subgroup discovery and rule-based classifi-
cation is that rule-based classification aims to find a set of rules that can be
applied on any example to obtain a prediction for that example. Subgroup
discovery aims to characterise subgroups of examples, but not necessarily all
examples.

Similar to rule-based classification, in this work we are also interested
in finding a set of rules that describe a target attribute entirely and in an
interpretable manner. However, we make a specific assumption that is not
common in rule-based classification: we assume that the class attribute has a
skewed distribution, and that exact prediction is certainly not possible. The
following example illustrates a problem that has these characteristics.

Example 4.1. Assume that we characterise every minute in a year in
terms of the following attributes: the part of the day the minute belongs
to (morning, afternoon), the day the minute belongs to (Sunday, Monday,
. . .), the month the minute belongs to (January, . . .) and the minute of
the day (1, 2, . . ., 24× 60); furthermore, over a year we use a sensor to
monitor when an individual opens a specific door in his house. Can we
use rules to characterise when this individual opens her door?

In this example, the event of “opening a door” is expected to be a rare
event; if we use a classification algorithm on the above dataset, we will notice
that the class attribute is very unbalanced. Most classification algorithms

4.1. CONTEXT AND MOTIVATION 63

will either prefer always to predict the default label (the door is closed) or
will construct many very specific rules to cover the small number of examples
that are the exception. The reason for this is that many rule-based classifiers
find lists of rules; a rule that makes an error in its prediction, cannot be
corrected by a later rule. Hence, most classification rule learning algorithms
favour rules with lower recall but high precision.

In this work, we propose a new algorithm for finding rule lists,
designed to work well in this specific setting. It identifies simple
probabilistic rule lists, such as in Tables 4.1a & b; in contrast to
other rule learners that will prefer default or very specific rules
(in Table 4.1c).

Hence, the rule mining setting studied in this work can be characterised
by these properties:

• it learns rules with probabilities in the head; these probabilities represent
the class distribution for the examples covered by the rule, and should
not be understood as class prediction;

• the list of rules is intended to characterise the class distribution over
the entire data, in contrast to subgroup discovery;

• it favours smaller rule lists to ease interpretation.

Finding lists of rules that satisfy these requirements is not a straightfor-
ward task. To address these challenges, this work proposes the following
contributions.

1. We propose a new optimisation criterion based on the Minimum De-
scription Length (MDL) principle [Grü07]; this criterion aims to find
small rule lists, yet characterizing the target distribution well.

2. We propose a new search algorithm based on branch-and-bound search;
this search algorithm aims to find the global optimum for the proposed
optimisation criterion under given constraints.

The approach that we take in this work is a pattern set mining approach. We
first use itemset mining algorithms to find a candidate set of itemsets. From
this set, we select a subset that describes the target attribute well. From the
pattern set mining perspective, we propose a new supervised optimisation
criterion for selecting a set of free patterns and a new search algorithm for
finding a set of patterns that optimises the criterion.

64 CHAPTER 4. FIM FOR COMPRESSION USING MDL

Table 4.1. Probabilistic rule lists examples: a) From PRL over Door opening data
(Probability=the probability that the door is opened); and From PRLb), and c) SBRL
over Mushroom data. (Probability=the probability that the mushroom is edible).

(a) PRL (Our approach) output

rule list Probability
IF Wednesday and Morning 0.879

ELSE IF Holidays and Thursday 0.011
ELSE IF Thursday and Afternoon 0.987
ELSE IF Sunday 0.001

ELSE (default rule) 0.101
(b) PRL (Our approach) output

rule list Probability
IF Gill-spacing is closed and No odor 0.95

ELSE IF Gill-spacing is closed and Stalk-shape is tapering 0.0
ELSE IF Stalk-color-above-ring is white and Gill-size is broad 1.0
ELSE IF Gill-spacing is closed 0.0

ELSE (default rule) 0.56
(c) SBRL (other rule learner) output

rule list Probability
IF no bruises and odor is not-in-(none,foul) 0.00112

ELSE IF odor is foul and gill-attachment is free 0.0007
ELSE IF gill-size is broad and there is one ring 0.999
ELSE IF stalk-root is unknown and stalk-surface-above-ring is smooth 0.996
ELSE IF stalk-root is unknown and there is one ring 0.0385
ELSE IF bruises is foul and veil-color is white 0.995
ELSE IF stalk-shape is tapering and there is one ring 0.986
ELSE IF habitat is paths 0.958

ELSE (default rule) 0.001

4.2 Related Work

This work builds on a number of areas in the literature.
Rule-based classification. There is a large literature on rule-based classifi-
cation; a good overview of these algorithms, including classic algorithms such
as CN2 and RIPPER, can be found in a textbook by Fürnkranz et al. [FGL14].
Two types of rule-based classifiers can be distinguished: classifiers based
on rule sets and on rule lists. In set-based classifiers, all rules that match
an example are used to obtain a prediction for that example. In list-based

4.2. RELATED WORK 65

classifiers, the first matching rule is used; we build on this class of methods.
Covering algorithms are the most popular type of rule learning algorithm.

These algorithms iteratively search for a rule to add to a rule set or list. Most
often, in each iteration, a greedy search algorithm is used, which constructs
a rule by iteratively adding the condition that improves the quality of the
rule the most.

The main challenge faced by pure covering algorithms is that later rules
cannot correct errors made by earlier rules in a rule list. Such algorithms
hence need to favour precision over recall to obtain accurate classifiers. As
a result rule lists may become unnecessarily long. One way to solve this is
using pruning: the rule set is reduced in a post-processing step.
Pattern-based classification. Compared to traditional rule learning al-
gorithms, pattern-based classifiers use pattern mining algorithms, such as
frequent itemset mining algorithms, to identify candidate rules [ZN14]. These
frequent itemsets are post-processed to construct rule sets or rule lists. Most
of these post-processing approaches use heuristic search algorithms, although
the use of exact search has also been studied [GNDR13].
Pattern set mining. From a pattern mining perspective, selecting a small
set of patterns from a larger set of patterns can be seen as a pattern set
mining problem [ZN14]. In contrast to unsupervised methods, supervised
methods aim to find a balance between pattern sets that are non-redundant
and that are accurate. One popular approach for evaluating the quality of
a pattern set is based on the Minimum Description Length principle, as
pioneered in the unsupervised setting by the KRIMP algorithm [VvLS11].
Exact methods for pattern set mining were studied by Guns et al. [GNDR13],
among others, but these studies did not consider scoring functions based on
MDL or did not exploit freeness, as we do.
Subgroup discovery. Strongly related to both pattern mining and rule-
based classification is subgroup discovery. Subgroup discovery differs from
classification in that it does not aim to build a predictive model; rather,
subgroup discovery algorithms are intended to return small and interpretable
sets of local patterns; subgroups are not necessarily ordered in a specific
manner. For this reason, traditional subgroup discovery algorithms were
modifications of covering-based rule-learning algorithms to allow for overlap
between patterns explicitly [LKFT04].
Bayesian rule lists. Most related to this work is recent work by Yang
et al. [YRS17] on probabilistic rule lists. This work also finds ordered
lists of probabilistic rules. Contrary to our work, however, the aim of the

66 CHAPTER 4. FIM FOR COMPRESSION USING MDL

work of Yang et al. is to identify accurate classifiers, and not to identify as
small and interpretable representations of the class distribution as possible.
Furthermore, Yang et al. use a sampling-based algorithm to identify good
sets of patterns. We propose an alternative, exact algorithm in this work.

4.3 The probabilistic rule list mining problem

This work is motivated by the creation of a probabilistic rule list that
summarizes labeled data well. In order to be easily interpretable, the rule
list and the individual rules should be concise.

We assume a set of discrete attributes describing the data. These at-
tributes can be represented as a set of Boolean properties using a one-hot
encoding. These properties are referred to as items in the following, in line
with the itemset mining literature.

More formally, let I = { 1, · · · ,m } represent a set of m possible items and
let F ⊆ 2I be a set of itemsets built on those items. A probabilistic rule
list (PRL) built on F is a sequence of rules of the form R =

〈
(I(1), p(1)),

(I(2), p(2)), · · · , (I(k), p(k))
〉
with p(i) being a probability and I(i) ∈ F ,∀i =

1, . . . , k − 1 and I(k) = ∅. This latter is the default rule. The sequence
of itemsets in the rule list can be expressed as membership to the regular
language: 〈I(1), . . . , I(k)〉 ∈ L(F∗ · ∅) with F∗ the Kleene operator on F .
Table 4.1 shows three example rule lists (generated from different data).

The rule list has a sequential interpretation, in that the set of data
instances that match the first rule I(1) are assumed to have a positive label
with probability p(1). The other data instances, those that do not match I(1),
but do match I(2) have a probability of p(2) to be positive, etc. The final
empty set I(k) = ∅ hence captures all instances not matched by the other
rules.

We now formalise the problem of creating the probabilistic rule list based
on F and a dataset D.

Definition 4.1. As input we receive a set of itemsets F that can be used to
compose the rule list, and a database D of instances, with for each a Boolean
target attribute: D = { (t, It, at) | t ∈ T , It ⊆ I, at ∈ {+,−}}, where the set
T contains the instance or transaction identifiers T = { 1, . . . , n }. The

4.4. DISCOVERING PROBABILISTIC RULE LISTS 67

database can be split into a positive D+ and negative D− database, based on
the target attribute value (+ or −).

The problem of finding a probabilistic rule list is formalised as:

argminR score(R,F ,D) (4.1)

where R =
〈

(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))
〉
is a probabilistic rule list

such that 〈I(1), . . . , I(k)〉 ∈ L(F∗ · ∅) and score is an optimisation criterion.
Various optimisation criteria can be defined, including criteria inspired by
classification rule learning, subgroup discovery and pattern set mining. Our
aim in this work is to develop an optimisation criterion that explicitly favours
smaller rule lists that describe the entire target distribution well. For this
purpose, we will use the Minimum Description Length principle1, discussed
in the next section.

4.4 Discovering probabilistic rule lists

4.4.1 Coverage and probability of a rule list

To evaluate the quality of a rule set on a given dataset, we will use some
concepts taken from the itemset mining literature [AIS93]. In particular, we
use the notions of Coverage and Frequency defined in the background chapter
(Section 2.1.1 of Chapter 2) that we recall here.
Definition 4.2 (Coverage and support of an itemset). The set of transactions
in a database D containing an itemset I is called the cover: CoverD(I) =
{ (t, It, at) ∈ D | I ⊆ It }. The size of the cover is called the support FreqD(I)
= |CoverD(I)|.

Example 4.2. An example itemset database is given in Figure 4.1. I =
{A,C } is an example itemset; ϕ(D, I) contains transaction identifiers
{ 1, 2, 5 }, so ψ(D, I) = 3. The set of frequent itemsets with support at

1If the criterion is the entropy over the distribution, then the principle of maximum
entropy; which states that the probability distribution which best represents the current
state of knowledge is the one with largest entropy; can be used. This principle does not fit
with our objectives. However, it has been proven in [Fed86] that the maximum entropy
principle is a special case of the Minimum Description Length principle.

68 CHAPTER 4. FIM FOR COMPRESSION USING MDL

A B C E

1 1 1 1 1 +

2 1 1 1 1 −

3 1 1 0 1 +

4 0 1 1 1 −

5 1 0 1 0 −

D Itemset Database

Figure 4.1. Itemset Database with positive/negative classes

least 4 is { ∅, {A } , {B } , {C } , {E } , {B,E } } (Figure 4.2).

{
φ
}

: 5

{
A
}

: 4
{
B
}

: 4
{
C
}

: 4
{
E
}

: 4

{
A,B

}
: 3

{
A,C

}
: 3

{
A,E

}
: 3

{
B,C

}
: 3

{
B,E

}
: 4

{
C,E

}
: 3

{
A,B,C

}
: 2

{
A,B,E

}
: 3

{
A,C,E

}
: 2

{
B,C,E

}
: 3

{
A,B,C,E

}
: 2

Frequent Closed Free Equivalence Class Subset relation Shared cover

Figure 4.2. Powerset lattice of D with equivalence classes.

4.4. DISCOVERING PROBABILISTIC RULE LISTS 69

In the remainder of this chapter, for the sake of simplicity we denote
CoverD(I) as ϕ(D, I) and as ϕ(I) when no ambiguity regarding D is
possible. Similarly, we will use ϕ+(I) to denote ϕ(D+, I) = CoverD+(I)
where D+ = {(t, It, at) ∈ D | at = +} and likewise for ϕ−(I) with at = −.

We are interested in finding a list of rules. Each itemset in the list has a
cover that is defined as follows.

Definition 4.3 (Coverage of an itemset in a sequence). Assume the sequence
of itemsets 〈I(1), . . . , I(k)〉, the coverage of an itemset I(j) over D is its cover
in the database of transactions not covered by the previous itemsets I(1),
I(2), . . . , I(j−1):

Φ
(
D, 〈I(1), . . . , I(k)〉, j

)
= ϕ

(
D \

(
ϕ(I(1)) ∪ ϕ(I(2)) ∪ · · · ∪ ϕ(I(j−1))

)
, I(j)

)
(4.2)

with Φ
(
D, 〈I(1), . . . , I(k)〉, 1

)
= ϕ(D, I(1)).

Note that in a rule list R, the last itemset is always I(k) = ∅, which
is the default rule or final else-case. This empty set inherently covers all
instances not covered by any of the k − 1 previous rules since ϕ(D, ∅) =
{ (t, It, at) ∈ D | ∅ ⊆ It } = D for any D.

Given a rule list R =
〈
(I(1), p(1)), (I(2), p(2)), · · · , (I(k), p(k))

〉
we will

denote by Φ
(
D,R, j

)
the cover of the jth itemset in the rule list’s sequence

of itemsets. If no ambiguity is possible we simply write Φj . Similarly
Φ+
j = Φ

(
D+,R, j

)
and Φ−j = Φ

(
D−,R, j

)
.

When creating a rule list R from a dataset D given F , we define the
probability p(j) of a rule I(j) as p(j) = P

(
at = +|(t, It, at) ∈ Φ

(
D,R, j

))
=

|Φ+
j |

|Φ+
j |+|Φ

−
j |
.

Example 4.3. Assume the running example database (Figure 4.1) and a
rule list with corresponding sequence of itemsets

〈
{A,B,C } , {C } , ∅

〉
.

The coverage of I(2) = {C } over D is Φ2 = { 4, 5 }, instead of { 1, 2, 4, 5 },
as the transactions 1 and 2 were already covered by I(1) = {A,B,C }.

70 CHAPTER 4. FIM FOR COMPRESSION USING MDL

Its probability is hence p(2) = |Φ+
2 |

|Φ+
2 |+|Φ

−
2 |

= 0
0+2 = 0, which indicates that

no positive transaction was observed with the condition of the rule, after
observing the previous rules.

At this stage, an open question is how to evaluate the quality of a
probabilistic rule list R. In this work, we propose to evaluate how well the
rule list allows to compress the values for the class attribute observed in
a training dataset. For this, we will use the Minimum Description Length
(MDL) principle.

4.4.2 Minimum Description Length encoding of rule lists

The Minimum Description Length (MDL) principle [Grü07,Ris78] is a general
method for inductive inference, based on the idea that ‘the more we can
compress the data, the more there are regularities in it and the more we learn
from it’ [Grü07]. MDL allows making a trade-off between the complexity of
rules and their ability to capture the distribution of the class attribute. To
do this, we use a two-part code that minimizes the number of bits needed to
encode the data with a model, as well as the number of bits to encode the
model itself. As stated earlier, the focus in this work is on a code that favors
simplicity.

Let M = M1,M2, . . . be a list of model candidates. In two-part MDL,
the best model M ∈ M to capture information in a given database D is
the one which minimizes the code length L(M) = Lmodel

(
M
)

+ Ldata
(
D|M

)
,

where Lmodel
(
M
)
is the length, in bits, of the description of the model itself

and Ldata
(
D|M

)
the length of the data, in bits, when it is encoded with this

model.
In our case, models correspond to rule lists of the form R =

〈
(I(1), p(1)),

(I(2), p(2)), · · · , (I(k), p(k))
〉
with I(j) ∈ F ,∀j ∈ 1, . . . , k − 1, I(k) = ∅ and

p(j) = |Φ+
j |

|Φ+
j |+|Φ

−
j |
. We thus need to define an encoding with Lmodel

(
R
)
, an

encoding of the rule list, and Ldata
(
D|R

)
such that Ldata

(
D|R

)
can be

interpreted as the coding length of the distribution of +/−’s in D when it is
encoded with R. The best rule list (R∗) is then the one that minimizes the
total length L(R):

R∗ = argminR∈L(F∗·∅) Ldata
(
D|R

)
+ Lmodel

(
R
)
, (4.3)

4.4. DISCOVERING PROBABILISTIC RULE LISTS 71

where we identified R by its sequence of itemsets to ease notation; each
itemset has a probability p(j) as defined earlier.

We now first discuss how we encode R when k ≤ 2 (i.e. R =
〈
(∅, p(1)

〉
or R =

〈
(I(1), p(1)), (∅, p(2))

〉
) and then generalize to the case k > 2.

Case k = 2: To understand the computation of the coding length of R, we
first show how we can encode a target attribute if we have an itemset I and
then a default rule. Given a rule (I(1), p(1)), we assume that the positive and
negative labels in ϕ(D, I(1)) follow a Bernoulli distribution, with a probability
p(1) for the class label. The probability mass of the observed labels according
to I is hence (omitting D from the notation):

Pr
(
at = + | ϕ(I)

)
=

∏
(c,Ic,ac)∈ϕ(I)

(
p(1)

)ac=+(
1− p(1)

)ac=−
, (4.4)

which can be simply rewritten:

Pr
(
at = + | ϕ(I)

)
=
(
p(1)

)|ϕ+(I)|(
1− p(1)

)|ϕ−(I)|
. (4.5)

We estimate p(1) by |ϕ+(I)|
|ϕ+(I)|+|ϕ−(I)| .

Definition 4.4 (Local Coding length of data). Using Shannon’s Noiseless
Channel Coding Theorem [BRY98,CT06,Grü07] the number of bits needed to
encode the class labels of D using I is at least the logarithm2 of the probability
mass of the class labels in D given I:

Llocal data
(
D|I

)
= − logPr

(
at = + | ϕ(D, I)

)
.

Using (4.5) we can hence encode each label (positive/negative) at a cost of

Llocal data
(
D|I

)
= Q

(
|ϕ+(I)|, |ϕ−(I)|

)
+Q

(
|ϕ−(I)|, |ϕ+(I)|

)
, (4.6)

with Q
(
a, b
)

= −a log a
a+b .

We will use this bound, which can be approximated closely using arithmetic
coding, as the coding length for the class labels. Based on the above definition
and assuming a rule list is R =

〈
(I(1), p(1)), (∅, p(2))

〉
, the coding length of Φ

is the sum of local data coding lengths [Grü07]
Ldata

(
D|R

)
= Llocal data

(
D|I(1))+ Llocal data

(
D \ ϕ(I(1))|∅

)
. (4.7)

2All logarithms are to base 2 and by convention, we use 0 log 0 = 0.

72 CHAPTER 4. FIM FOR COMPRESSION USING MDL

Example 4.4. Assume the rule list is R =
〈
({A,B,C } , 0.50),

(∅, 0.33)
〉
and that our database D (Figure 4.1) is duplicated 256 times.

Llocal data
(
D| {A,B,C }

)
= −256 log 0.5− 256 log(1− 0.5) = 512bits and

Llocal data
(
D\ϕ(I1)|∅

)
= −256 log 0.33−512 log(1−0.33) = 705bits; then

Ldata
(
D|R

)
= 1217bits.

When we encode the class label using this model, we do not only need to
encode the data, but also the model itself.

Definition 4.5 (Length of the model). Assume a rule list R =
〈

(I(1), p(1)),

(∅, p(2))
〉
, m the number of items and n the number of transactions, we

represent (I(1), p(1)) as a string “m1 I
(1)
1 . . . I

(1)
m1 n

+
1 ” where, m1 = |I(1)| is

the number of items in I(1), followed by the identifiers of each item in I(1)

and finally the number of positive labels in D: n+
1 = |ϕ+(I(1))|. The length,

in bits, to encode this string is:

Llocalmodel
(
I(1)) = logm︸ ︷︷ ︸

|I(1)|

+ |I(1)| logm︸ ︷︷ ︸
I

(1)
1 ... I

(1)
|I(1)|

+ logn︸ ︷︷ ︸
n+

1

, (4.8)

where logm bits are required to represent m1, as m1 ≤ m = |I|, and also
logm bits for each item identifier plus logn bits to encode n+

1 . Coding
n−1 is unnecessary as it can be retrieved from the data using the itemset:
n−1 = |ϕ(D, I(1))| − n+

1 . From there, assuming that the itemset database D
and the set of items I are known, one can easily retrieve the coverage of I(1)

and then compute the probability p(1) using the number of positive labels n+
1 .

The coding length of the model R is

Lmodel
(
R
)

= Llocalmodel
(
I(1))+ Llocalmodel

(
∅
)
.

Example 4.5. We continue on Example 4.4. To encode the model,
the string “3 A B C 256” is encoded: Llocalmodel

(
{A,B,C }

)
=

log 4 + 3 log 4 + log 1280 = 19bits similarly Llocalmodel
(
∅
)

= log 4 +
0 log 4 + log 1280 = 13bitsa then Lmodel

(
R
)

= 32bits. Together with
Ldata

(
D|R

)
= 1217bits computed in Example 4.4, the total coding

4.4. DISCOVERING PROBABILISTIC RULE LISTS 73

length of R is L(R) = 1217 + 32 = 1249bits.
aNote that by convention the size of the default rule is m2 = 0.

Case k > 2: Assuming now a rule list R =
〈
(I(1), p(1)), (I(2), p(2)),

· · · , (I(k), p(k))
〉

with k > 2. For k > 1 we need to modify the defini-
tion of Llocal data such that it does not consider parts of the data covered by
a previous itemset in the sequence. Hence,

Llocal data
(
D|I(j)) = Q

(
|Φ+
j |, |Φ−j |

)
+Q

(
|Φ−j |, |Φ+

j |
)

(4.9)

and the total coding length is the summation of local lengths:

Ldata
(
D|R

)
=

k∑
j=1

Llocal data
(
D|I(j)); (4.10)

the coding length of the model is:

Lmodel
(
R
)

= logn+
k−1∑
j=1

(
logm+mj logm+ logn

)
(4.11)

To encode the size of R itself, we need logn bits. Because all rule list include
the default rule, we omit these logm+ logn bits.

Example 4.6. Figure 4.3 shows example rule lists with coding lengths.

4.4.3 Coding length related to likelihood and quality of rule lists

The coding length of the class labels given a model R is the number of
bits needed to encode the class labels with R. As a consequence of our
choice to use Shannon’s theorem, this coding length corresponds to the (-log)
likelihood of the class labels according to the model. In other words, if we
would minimize the coding length of the data only, we would maximize the
likelihood of the data under the model. However, as stated earlier, in this
work our aim is also to find small and interpretable rule lists. We choose
our code such that a relatively large weight is given to the complexity of the
model.

74 CHAPTER 4. FIM FOR COMPRESSION USING MDL

〈
(φ, 2

5)
〉

1243bits

〈
({A } , 2

4), (φ, 0
1)
〉

1039 + 0bits

〈
({A,B,C } , 1

2), (φ, 1
3)
〉

531 + 706bits

〈
({C } , 1

4), (φ, 1
1)
〉

846 + 0bits

〈
({B,C } , 1

3), (φ, 1
2)
〉

722 + 512bits

〈
({B } , 2

4), (φ, 0
1)
〉

1039 + 0bits

〈
({A,B } , 2

3), (φ, 0
2)
〉

722 + 0bits

〈
({A,C } , 1

3), (φ, 1
2)
〉

722 + 512bits

〈
({A,B,C } , 1

2), ({A } , 1
2), (φ, 0

1)
〉

531 + 527 + 0bits

〈
({A,B,C } , 1

2), ({C } , 0
2), (φ, 1

1)
〉

531 + 15 + 0bits

〈
({A,B,C } , 1

2), ({E } , 1
2), (φ, 0

1)
〉

531 + 527 + 0bits

Greedy Solution

Optimal Solution

Figure 4.3. Finding greedy and optimal solution base on the example of Figure 4.2

Example 4.7. Assuming the database of Example 4.4, the size of
the original data is 5 × 256 = 1280. Encoding this data with R1

=
〈
({A,B,C } , 0.50), (∅, 0.33)

〉
we obtained Ldata

(
D|R1

)
= 1217bits,

Lmodel
(
R1
)

= 32bits and in total L(R1) = 1249bits. Instead, when we en-
code this data with R2 =

〈
(∅, 0.40)

〉
we obtain Ldata

(
D|R2

)
= 1243bits,

Lmodel
(
R2
)

= 6bits and in total L(R2) = 1249bits.

Looking at likelihoods only, one can see that R1 is a better model for
representing this data, as it captures more information than R2. However,
in total, it is not preferable over R2, since it is more complex to encode. The
model coding length penalizes the likelihood and ensures a simple model is
preferred.

For our example, the only way to improve R1 is to add (if possible)
a new rule that reduces the error made by R1 by assuming that the part

4.4. DISCOVERING PROBABILISTIC RULE LISTS 75

not covered by {A,B,C } is for the default rule. Thus, by adding the
itemset {C } to R1, which covers all 0s still present, we obtain the best
model R =

〈
({A,B,C } , 1

2), ({C } , 0
2), (φ, 1

1)
〉
with L(R) = 546bits since

the default rule now covers only remaining 1s.

4.4.4 A Greedy algorithm

The probabilistic rule list that minimizes the MDL score (4.3) can be con-
structed greedily, extending the list by one rule at each step. Greedy algo-
rithms are known to be efficient and approximate optimal solutions well in
other rule learning tasks.

Algorithm 4.1 shows a greedy algorithm that starts with the empty rule
list R, and then iteratively finds within a given set of patterns the rule that
minimises the coding length. The local best rule is obtained by considering
at each iteration the sub-problem of finding the optimal rule list with k ≤ 2
on the remaining data. This corresponds to finding the itemset I(1) such that
the coding length is smallest (Line 3). Once the local best rule is selected the
rule list is updated in Line 6 and in Line 7; its coverage is removed from D.
The process is then run again until D is empty or the default rule is selected.

Algorithm 4.1: Greedy(F ,D)
1 R← 〈〉
2 do
3 I∗ ← argminI∈F∗ L

(〈
(I, p(1)), (∅, p(2))

〉)
4 if L

(〈
(I, p(1)), (∅, p(2))

〉)
≥ L

(〈
(∅, p(1))

〉)
then

5 I∗ ← ∅

6 R← R∪ (I∗, p(1)) . Add this rule to the rule list
7 D ← D \ ϕ(I∗)
8 while I∗ 6= ∅
9 return R

Example 4.8. Assuming our running example, at the first iteration
of the greedy algorithm, the minimum code-length L(〈{A,B } , ∅〉) =
722bits and then it is the greedy solution (See Figure 4.3).

76 CHAPTER 4. FIM FOR COMPRESSION USING MDL

The greedy algorithm may be sub-optimal. For instance it fails to discover
the L(〈{A,B,C } , {C } , ∅〉) = 546bits on our example.

4.4.5 Branch-and-Bound algorithm

For finding solutions that are better than the greedy solution, we propose
a best-first branch-and-bound algorithm that can prune away candidates
based on a lower-bound on the MDL value. Each node in the search tree is
a partial rule list, consisting of a sequence of rules without the default rule.
The children of each node correspond to appending one additional rule from
F to the partial rule list.

Algorithm 4.2 shows the pseudo-code of this branch-and-bound expansion
search. For clarity, we omit the probabilities in the rule list representation.
The algorithm receives as input a list of rule candidates F and database
D. A priority queue is used to store the set of rule lists not yet expanded,
ordered by the code-length obtained when extending the partial rule with
the default rule (best-first strategy). The initial best rule is the default rule
(Line 2) and the empty rule list is added as initial search node. As long as
the queue is not empty, the priority queue is dequeued and the returned
partial rule list is expanded (Line 6). Each new partial rule list is evaluated
as if it was completed with the default rule (∅) and checked whether it is
better than the current best rule list (Lines 7,8).

Before adding the new partial rule list to the queue, a lower-bound on the
code length is computed, that is, an optimistic estimate of the code length
achievable (see next section). Only if the lower-bound is better than the
current best value is the rule list added to the queue (Lines 9,10). If not, this
part of the search tree is effectively pruned.

Lower-bound on a partial rule list A good lower-bound is difficult to
compute since there is an exponential number of rules that can be added
to the list. Because the rule list itself is already evaluated in the algorithm,
we are seeking a lower-bound on any expansion of the rule list. The coding
length is determined by L(R) = Lmodel

(
R
)

+Ldata
(
D|R

)
according to (4.10)

and (4.11).
The most optimistic expansion is hence achieved with the smallest possible

expansion of the rule list yielding the most significant reduction of the coding
length for the data. In the best case, this is a rule of length one (|I(j+1)| = 1)
that perfectly separates the positives from the negatives. In this case, the

4.4. DISCOVERING PROBABILISTIC RULE LISTS 77

Algorithm 4.2: Branch-and-bound (F ,D)
1 PQ : PriorityQueue . Partial rule lists ordered by code-length when adding default

rule
2 bestR← 〈∅〉, best← L(bestR)
3 PQ.enqueue-with-priority

(
〈〉, L

(
〈∅〉
))

4 while R← PQ.dequeue() do
5 for each I ∈ F \ R do
6 R′ ← 〈R, I〉
7 if L

(
〈R′, ∅〉

)
< best then

8 bestR = 〈R′, ∅〉, best← L(bestR)
9 if lower-bound(R′) < best then

10 PQ.enqueue-with-priority
(
R′, L

(
〈R′, ∅〉

))
11 return bestR

additional code length of the rule list corresponds to a rule of length one:

Llocalmodel
(
Ij+1) = logm+ 1 logm+ logn

and the addition to the code length of the data is:

Llocal data
(
D|Ij+1) = Q

(
|Φ+
j+1|, 0

)
+Q

(
0, |Φ−j+1|

)
= 0

with the data coding length of the default rule also being 0.
While such a rule expansion may not exist, the resulting value is a valid

lower-bound on the code length achievable by any expansion of the partial
rule list. This is because any expansion has to be greater than or equal in
size to 1, and any expansion will achieve at best a data compression of 0.

Implementation details Choice of F . The complexity of Algorithm 4.2
is O(|F|d) where d is the depth in the best-first search tree. The efficiency of
the algorithm strongly depends on |F| since in the worst case the number of
nodes is in O(|F||F|).

To control the size of F one can consider all frequent itemsets with a
given minimum frequency threshold. Because we are interested in a small
coding length, we propose to further restrict the set of patterns to the set of
frequent free itemsets [SNK07]. Known also as generators, a free itemset is
the smallest itemset (in size) that does not contain a subset with the same

78 CHAPTER 4. FIM FOR COMPRESSION USING MDL

cover: if I is free, @J ⊂ I s.t. ϕ(I) = ϕ(J). There may be multiple free
itemsets with the same cover and for our purposes just a single one of them
is sufficient. In Figure 4.2, all the itemsets in a double bordered rectangle
are free.

Set representation as bitvectors. Each candidate itemset in F is repre-
sented by the tuple (set of items, set of covered transactions). Operations
on sets such as union, intersection and count being at the core of our imple-
mentation, they must be implemented very effectively. For this, we represent
each set by bitvectors, and all the cover computation are bitwise operations
on bitvectors. A rule list is represented by an array of itemset indices into F .
From the index, one can identify the itemset and its coverage. During the
search process at each iteration, a new itemset I is added to the partial rule
list (Line 6 of Algorithm 4.2). This operation involves updating the cover
of the rule list computed using (4.2) which depends on all the transactions
already covered. To do this effectively, we keep the transactions already
covered in a single bitvector T (j)

covered = ϕ(I(1)) ∪ ϕ(I(2)) ∪ · · · ∪ ϕ(I(j)). The
coverage after the addition of a new itemset I(j+1) is then

Φ
(
D,R∪ I(j+1), j + 1

)
= ¬T (j)

covered ∩ ϕ(I(j+1)). (4.12)

4.5 Implementation and Practical User Guide

The implementation of PRL is in Scala and is available online3 in free access.
For developers, the installation procedure is described in the Install file in

the code directory and merely consists of “importing the project” into your
favourite IDE.

Users can directly download the jar-file which is available on our website 4.
For example, given the train- and the test- sets (from mushroom dataset),
we can find the best rule-list, using the branch-and-bound algorithm and
limiting the size of each rule to 10, by running the following command.

java -jar prl.jar F train.txt -p test.txt -i 10

and here is the result:

3https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets
4https://sites.uclouvain.be/cp4dm/prl/

https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets
https://sites.uclouvain.be/cp4dm/prl/

4.6. EXPERIMENTS 79

>mushroom.1.train.txt 7310 112 3796 1462 10
112 1145 1947
Best Rule List (k=4) =
<
({gill_spacing_c, stalk_surface_above_ring_s, odor_n},2058/2126,
488bits),
({gill_spacing_c, stalk_shape_t},0/1806, 47bits),
({stalk_color_below_ring_w, gill_size_b},1593/1593, 47bits),
({gill_spacing_c, ring_number_o},0/1509, 47bits),
({}, 145/276, 276bits)
> : score=905bits (629.0)
Time(s) : 715.290714503

4.6 Experiments

Our objective being to find a small-and-good rule list, we evaluate our
approach from three perspectives: (i) the quality of obtained solutions: how
expressive and concise are the rule lists; what is the log-likelihood of the
data given the lists; (ii) the accuracy and sensitivity of our method under
various parameters, evaluated using the area under ROC curves (AUC), (iii)
the predictive power of our method, using AUC as well.

Note that we add a comparison with other classification methods to
properly position our work; our aim is not to build a classification model
that is more accurate on commonly used datasets.
Datasets. We use nine annotated datasets publicly available from the
CP4IM 5 and UCI6 repositories. We also used the door dataset as described
in the introduction (Example 4.1). Furthermore, we used the Gallup data-
set [ERP18], from a project with the same name on migratory intentions.
This data set is not publicly available, but can be purchased. Our objective
here is to understand the migratory intentions between two countries by
considering the socio-parameters of education, health, security and age. All
these datasets have been preprocessed and their characteristics are given in
Table 4.2.
Algorithms. We compare with popular tree-based classification methods
such as Random Forests (RF) and decision trees (CART) from the scikit-
learn library, as well as the rule-learning methods JRIP (Weka version of

5https://dtai.cs.kuleuven.be/CP4IM/datasets/
6http://archive.ics.uci.edu/ml/datasets.html

https://dtai.cs.kuleuven.be/CP4IM/datasets/
http://archive.ics.uci.edu/ml/datasets.html

80 CHAPTER 4. FIM FOR COMPRESSION USING MDL

Table 4.2. Benchmark features
name anneal car australian-cr. heart-cl. krvskp mushroom
|D| 812 1728 653 296 3196 8124
|I| 89 21 124 95 73 112
|D+|
|D| 0.77 0.7 0.55 0.54 0.52 0.52

name primary-tu. dermatology gallup door soybean
|D| 336 366 15734 3216 630
|I| 31 133 41 11 50
|D+|
|D| 0.24 0.2 0.19 0.16 0.15

RIPPER) and SBRL [YRS17] available in R CRAN (see Sect. 2). We run
SBRL with the default setting (number of iterations set to 30.000, number of
chains 10 and a lambda parameter of 10).
Protocols. All experiments were run in the JVM with maximum memory
set to 8GB on PCs with Intel Core i5 64bits processor (2.7GHz) and 16GB of
RAM running MAC OS 10.13.3. Our approach is called PRL (for probabilistic
rule lists) and is implemented in Scala. The candidate itemsets F are
the frequent free itemsets. PRL name can be followed by g for greedy
or c for complete branch-and-bound. Evaluation of AUC is done using
stratified 10-fold cross-validation. For the reproducibility of results, all our
implementations are open source and available online7.

4.6.1 Compression power of PRL

Table 4.3 gives the total code length obtained for the greedy PRLg and
the complete branch-and-bound PRLc approaches. As can be observed, the
compression ratio (total code length/size of the datasets) is substantial. For
instance, it is 10% for the dermatology dataset. For 8/11 instances PRLc
discovers a probabilistic rule list compressing better than the one obtained
with PRLg. The gain obtained with PRLc is sometimes substantial, for
instance on the krvskp and mushroom data sets.

7https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets

https://projetsJOHN@bitbucket.org/projetsJOHN/mdlrulesets

4.6. EXPERIMENTS 81

Table 4.3. Total code lengths for several datasets (θ is the minimum support for F)
name anneal car australian-cr. heart-cl. krvskp mushroom
θ 20 5 20 20 5 20
|F| 1361 22 2495 2024 65 1145

PRLg 587 710 386 262 2594 1978
PRLc 532 628 380 249 845 967

name primary-tu. dermatology gallup door soybean
θ 20 20 10 1 1
|F| 214 763 15 35 49

PRLg 249 39 10327 1876 356
PRLc 249 39 10163 1876 314

4.6.2 Impact of the parameters

The set of possible itemsets F to create the rule list is composed of the frequent
free itemsets generated with a minimum support threshold θ. Figure 4.4a
reports the compression ratio for decreasing values of θ. As expected the
compression ratio becomes smaller whenever θ decreases. The reason is that
the set F is growing monotonically, allowing more flexibility to discover a
probabilistic rule list that compresses well.

Both the greedy and the complete branch-and-bound algorithms can
easily limit the size of the probabilistic rule list they produce. This is
done by stopping the expansion of the list beyond a given size limit k.
Figure 4.4b reports the compression ratio for increasing values of k. As
expected the compression ratio becomes smaller whenever k increases for
PRLc and stabilises at some point when the limit k becomes larger than the
length of the optimal rule list. Surprisingly this is not necessarily the case
for the greedy approach that is not able to take advantage of longer rule lists
on this benchmark.

Regarding the execution time according to the size of the rules, as shown
in Figure 4.4c, with a time limit of 10 minutes, we can see that the greedy
approach is more scalable. PRLc and SBRL execution time evolve expo-
nentially, PRLc being faster than SBRL though. Note that as soon as the
optimal solution is found, in the case of PRLc, the execution time does not
increase so much anymore. The reason is that most of the branches are
cut-off by the branch-and-bound tree exploration beyond that depth limit.

82 CHAPTER 4. FIM FOR COMPRESSION USING MDL

335

340

345

350

10203040
Minimum support θ (%)

C
o
d
in

g
−

le
n
g
th

 (
b
it
s
)

Methods PRLc PRLg

(a) Soybean

1200

1500

1800

2100

1 2 3 4 5 6 7 8 9 10
Size of all rulej in rule−list

C
o
d
in

g
−

le
n
g
th

 (
b
it
s
)

Methods PRLc PRLg

(b) Mushroom (θ = 20%)

0

200

400

1 2 3 4 5 6 7 8 9 10
Size of all rulej in rule−list

T
im

e
 (

s
)

Methods PRLc PRLg SBRL

(c) Mushroom (θ = 20%)

Figure 4.4. Sensitivity of PRL for several settings using mushroom and soybean datasets

4.6. EXPERIMENTS 83

4.6.3 Comparison of PRL with existing rule learning algorithms

We compare the rule list produced by our approaches (PRLg and PRLc)
and by SBRL [YRS17]. Figure 4.6a gives the code length for the model and
for the data (class labels) for various datasets for the different approaches.
Note that the code length for the data corresponds to the log-likelihood of
the class labels under the rule list. From the rule lists obtained using the
training set, the probability (to be positive) of each transaction in the test
set is predicted and the coding lengths are computed using the (4.10) and
(4.11). The reported values are averaged over 10 folds. The model coding
length represents the size of the encoding of the initial rule list.

One can see that the PRL approaches are competitive with SBRL. On
Figure 4.6a, it often obtains the smallest data coding length except for the
mushroom dataset. The reason is that the test set of mushroom is classified
perfectly by SBRL. The rule lists produced are arguably shorter with PRLg
and PRLc than with SBRL.

The mushroom dataset is investigated further in Figures 4.6b and 4.6c.
The data coding length and the area under the ROC curve are computed for
increasing prefixes of the lists. As we can see, at equal prefix size (k < 5) our
approach obtains better likelihood and is more accurate than SBRL. Then
beyond k ≥ 5 SBRL continues to improve on accuracy while PRLg and PRLc
stagnate. The lists indeed have reached their optimal length at k = 5. This
evolution is a clear illustration of the difference between the type of rule lists
produced by SBRL and our approach. While SBRL lists are more focused
on classification, MDL-based lists are a trade-off between the data-coding
length (classification) and the complexity of lists (model code length).

4.6.4 Prediction power of PRL and other supervised learning ap-
proaches

Although our approach is not designed to generate the best rule list for
classification, we evaluate its prediction power in the light of well-known clas-
sification methods: CART, RF, SBRL and JRIP using 10-fold cross-validation
and default settings. For PRL the classification is done by associating with
each transaction the probability that its label is positive. This probability is
that of the first rule of the rule list (obtaining from the training set) that
matches with this transaction. The results are shown in Figure 4.5.

In general, the AUC of our methods are greater than 0.6 and the best

84 CHAPTER 4. FIM FOR COMPRESSION USING MDL

CART RF JRIP SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Ar
ea
 U
nd
er
 R
OC

Mushroom

CART RF JRIP SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Primary-tu.

CART RF JRIP SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

Krvskp

CART RF JRIP SBRL PRLc PRLg
Methods

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0 Gallup

Figure 4.5. Comparison of Area under ROC among different methods and four datasets,
for all 10-folds (θ = 10%, |I| = 1).

solution always has a greater or equal accuracy compared to the greedy
approach. The difference becomes significant on databases like Krvskp where
the difference in compression ratio is also high (Figure 4.3).

State-of-the-art methods are often more accurate, except in unbalanced
datasets (Gallup, primary-tu.) where our approaches are very competitive.
One can see that rule-based methods do better on very unbalanced databases
like Gallup.

4.7 Summary, Outlooks, Further readings

This work proposed a supervised rule discovery task focused at finding
probabilistic rule lists that can concisely summarize a boolean target attribute,
rather than accurately classify it. Our method is in particular applicable when
the target attribute corresponds to rare events. Our approach is based on
two ingredients, namely, the Minimum Description Length (MDL) principle,

4.7. SUMMARY, OUTLOOKS, FURTHER READINGS 85

Ann. Au-Cr. Derm. Gall. heart. Krkp. mush. pr-tu. soyb.

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

PR
Lc

PR
Lg

SB
RL

400
300
200
100

0

1200

1000

800

600

400

200

Methods

Co
di
ng

-le
ng

th
(b
its
)

Coding-length of: data model

(a)

0

100

200

300

400

1 2 3 4 5 6 7 8 9 10
Size of Rule−lists

C
o

d
in

g
−

L
e

n
g

th
 o

f
d

a
ta

 (
b

it
s
)

Methods PRLc PRLg SBRL

(b)

0.900

0.925

0.950

0.975

1.000

1 2 3 4 5 6 7 8 9 10
Size of Rule−lists

A
re

a
 u

n
d
e
r

R
O

C

Methods PRLc PRLg SBRL

(c)

Figure 4.6. a) Comparison of coding length in average among PRL (g,c) and SBRL for
different test datasets and b and c) evolution of the coding length of data only (top)
and the AUC (bottom) for several rule lists size, for mushroom dataset, for all 10-folds
(θ = 10%, |I| = 2).

86 CHAPTER 4. FIM FOR COMPRESSION USING MDL

and a branch-and-bound search strategy. We have experimentally shown that
obtained rule lists are compact and expressive. Future work will investigate
the support of multivariate target attributes (> 2 classes) and new types of
patterns, such as sequences.

Part III

Sequential Pattern Mining

87

5

C
h

a
p

t
e

r

Sequential Pattern Mining us-
ing Constraint Programming

“The greatest challenge to any thinker is stating the problem
in a way that will allow a solution.”

–Bertrand Russell

Overview The main advantage of Constraint Programming (CP) ap-
proaches for pattern mining is their modularity, which includes the ability
to add new constraints (regular expressions, length restrictions, etc).
However, there is always a trade-off between flexibility and efficiency. In
this chapter, our objective is to build global constraints for the sequential
pattern mining (SPM) problem by maximizing both efficiency and flexi-
bility. We will investigate SPM problem both on sequence database with
or without time consideration.

Contribution The main contribution of this work is to show how by
combining SPM and CP techniques, one can build flexible and more effi-
cient approaches than existing both CP-based and specialized approaches.
This was made possible by, first, computing efficiently the projected data-
base using pre-computing the positions at which a symbol can become
unsupported by a sequence, thereby avoiding to scan the full sequence
each time; and second by taking inspiration from the trailing used in

89

90 CHAPTER 5. SPM USING CP

CP solvers to devise a backtracking-aware data structure that allows fast
incremental storing and restoring of the projected database.

Main source This chapter is mainly based on our paper [AGS16].

5.1 Context and Motivation

Sequence mining is a widely studied problem concerned with discovering
subsequences in a dataset of given sequences, where each (sub) sequence is an
ordered list of symbols. It has applications ranging from web usage mining,
text mining, biological sequence analysis and human mobility mining [ME10].
We focus on the problem of finding patterns in sequences of individual
symbols, which is the most commonly used setting in those applications.

In recent years, constraint programming (CP) has been proposed as a
general framework for pattern mining [GNDR11,CJSS12,NG15,KLL+16].
The main benefit of CP-based approaches over dedicated algorithms is that it
is modular. In a CP framework, a problem is expressed as a set of constraints
that the solutions must satisfy. Each such constraint can be seen as a module,
and can range from being as simple as ensuring that a subsequence does not
contain a certain symbol at a certain position, up to computing the frequency
of a pattern in a database. This modularity allows for flexibility, in that
certain constraints such as symbol restrictions, length, regular expressions etc
can easily be added and removed to existing problems. Another advantage is
that improving the efficiency of one constraint will improve the efficiency of
all problems involving this constraint.

However, this increased flexibility can come at a cost. Negrevergne et
al. [NG15] have shown that a fine-grained modular approach to sequence
mining can support any type of constraints, including gap and span constraints
and any quality function beyond frequency, but that this is not competitive
with state-of-the-art specialized methods. On the other hand, they showed
that by using a global constraint (a module) that computes the pseudo-
projection of the sequences in the database similar to PrefixSpan [PHMA+01],
this overhead can be reduced. Kemmar et al. [KLL+16,KLL+15] propose
to use a single global constraint for pseudo-projection as well as frequency
counting over all sequences. This approach is much more efficient than
the one of [NG15] that uses many reified constraints. These CP-based
methods obtain reasonable performance, especially for mining under regular

5.2. RELATED WORKS 91

expressions. While they improve scalability compared to each other, they
are not on par with some of the best specialized systems such as Zaki’s
cSpade [Zak00].

In this work, we show for the first time that a generic CP system
with a custom global constraint can outperform existing specialised
systems including Zaki’s.

Our global constraint improves on earlier global constraints for sequence
mining by combining ideas from both pattern mining and constraint pro-
gramming as follows:

• first, we improve the efficiency of computing the projected database and
the projected frequency using last-position lists, similar to the LAPIN
algorithm [YK05] but within a PrefixSpan approach.

• Second, we take into account not just the efficiency of computing the
projected database, but also that of storing and restoring it during
depth-first search. For this we use the trailing mechanism from CP
solvers to avoid unnecessary copying of the pseudo-projection data
structure. Such an approach is in fact applicable to any depth-first
algorithm in pattern mining and beyond.

By combining the right ingredients from both research communities in a
novel way, we end up with an elegant algorithm for the projected frequency
computation. When added as a module to a generic CP solver, the resulting
system improves both on previous CP-based sequence miners as well as
state-of-the-art specialized systems. Furthermore, we show that by improving
this one module, these improvements directly translate to other problems
using this module, such as regular-expression based sequence mining.

5.2 Related works

We review specialized methods as well as CP-based approaches. A more
thorough review of algorithmic developments is given in [ME10].

Specialized methods. Introduced by Srikant and Agrawal [AS95], GSP
was the first approach to extract sequential patterns from a sequential data-
base. Many works have improved on this apriori-based method, typically em-
ploying depth-first search. A seminal work is that of PrefixSpan [PHMA+01].

92 CHAPTER 5. SPM USING CP

A prefix in this context is a sequential pattern that can only be extended
by appending symbols to it. Given a prefix, one can compute the projected
database of all suffixes of the sequences that have the prefix as a subsequence.
This projected database can then be used to compute the frequency of the
prefix and of all its 1-extensions (projected frequency). A main innovation in
PrefixSpan is the use of a pseudo-projected database: instead of copying the
entire (projected) database, one only has to maintain pointers to the position
in each sequence where the prefix matched.

Alternative methods such as SPADE [Zak00] and SPAM [AFGY02] use
a vertical representation of the database, having for each symbol a list of
sequence identifiers and positions at which that symbol appears.

Yang et al. [YWK07] have shown that algorithms with either data repre-
sentation can be improved by precomputing the last position of each symbol
in a sequence. This can avoid scanning the projected database, as often the
reason for scanning is to know whether a symbol still appears in the projected
sequence.

The standard sequence mining settings have been extended in a number of
directions, including user-defined constraints on length or on the gap or span of
a sequence such as in the cSPADE algorithm [Zak00], closed patterns [YHA03]
and algorithms that can handle regular expression constraints on the patterns
such as SMA [TBG08]. These constraints are typically hard-coded in the
algorithms.

CP-based approaches for SPM. CP-based approaches for sequence
mining are gaining interest in the CP community. Early work has focused
on fixed-length sequences with wildcards [CJSS12]. More generally, [NG15]
proposed two approaches: a full decomposition of the problem in terms of
constraints and an approach using a global constraint to construct the pseudo-
projected database similar to PrefixSpan. It uses one such constraint for each
sequence. Kemmar et al [KLL+15] propose to gather all these constraints into
a unique global constraint to reduce the overhead of the multiple constraints.
They further showed how the constraint could be modified to take a maximal
gap constraint into account [KLL+16].

5.3. GLOBAL CONSTRAINTS FOR PROJECTED FREQUENCY 93

The reader who is not familiar with frequent sequence mining problems and
Constraint Programming is referred to Chapter 2, Sections 2.1.2 and 2.2.
The notions of prefix-projected database in SPM and the mechanism of
storing and restoring states through “Reversibles” will be particularly useful.

5.3 Global constraints for projected frequency

We first introduce the basic CP model of frequent sequence mining introduced
in [NG15] and extended in [KLL+15]. Then, we present how we improve the
computation of the pseudo-projection, followed by the projected frequency
counting and pruning.

5.3.1 Existing methods [NG15,KLL+15]

A constraint model consists of variables, domains and constraints. The CP
model will be such that a single solution corresponds to a frequent sequence,
meaning that all sequences can be extracted by enumerating all solutions.

Notation: We use the dom and size functions to designate respectively
the domain of a decision variable in CP and the size of an object. We also
use, the array[i] to denote the element at the index i in this array.

Variables and domains. Let I = { 1, . . . ,m } be a set of items identifiers
and L be an upper bound on the pattern length, e.g. the length of the
longest sequence in the sequence database. The variables used to represent
the unknown pattern P is modelled as an array of L integer variables P =
[P1, P2, . . . , PL]. Each variable has an initial domain dom(Pi) = { 0 } ∪ I,
corresponding to all possible symbol identifiers and augmented with an
additional identifier 0. The symbol with identifier 0 represents ε, the empty
symbol. It will be used to denote the end of the sequence in P , using a
trailing suffix of such 0’s.

SPM constraints. Let us now introduce SPM constraints over variables
P .

94 CHAPTER 5. SPM USING CP

Definition 5.1. A CP model over P represents the frequent sequence mining
problem with threshold θ, iff the following three conditions are satisfied by
every valid assignment to P :

1. P1 6= 0
2. ∀i ∈ { 2, · · · , L− 1 } : Pi = 0⇒ Pi+1 = 0

3.
{

size
({

(sid, s) ∈ SDB | 〈P1 . . . Pj〉 � s
})
≥ θ

s.t. j = max({i ∈ { 1, · · · , L } |Pi 6= 0})
The first requirement states that the sequence may not start with the

empty symbol, e.g. no empty sequence. The second requirement enforces
that the pattern is in a canonical form such that after the empty symbol, all
other symbols are the empty symbol too. Hence, a sequence of length l < L
is represented by l non-zero symbols, followed by L− l zero symbols. The
last requirement states that the frequency of the non-zero part of the pattern
must be above the threshold θ.

Prefix projection global constraint

Initial work [NG15] proposed to decompose these three conditions into
separate constraints, including a dedicated global constraint for the inclusion
relation 〈P1 . . . Pj〉 � s for each sequence separately. It used the pseudo-
projection technique of PrefixSpan for this, with the projected frequency
enforced on each symbol in separate constraints.

Kemmar et al. [KLL+15] extended this idea by encapsulating the fil-
tering of all three conditions into one single (global) constraint called
PrefixProjection. It also uses the pseudo-projection idea of PrefixSpan,
but over the entire database. The propagation algorithm for this constraint,
as executed when the next unassigned variable Pi is assigned during search,
is given in Algorithm 5.1.

An initial assumption is that the database SDB does not contain any
infrequent symbols, which is a simple preprocessing step. The code is divided
in three parts: (i) if Pi is assigned to 0 the remaining Pk with k > i is
assigned to 0; else (ii) from the second position onwards (remember that
the first position can take any symbol and be guaranteed to be frequent
as every symbol is known to be frequent), the projected database and the
projected frequency of each symbol is computed; and (iii) all symbols that
have a projected frequency below the threshold are removed from the domain
of the subsequent pattern variables.

5.3. GLOBAL CONSTRAINTS FOR PROJECTED FREQUENCY 95

Algorithm 5.1: PrefixProjection(SDB,P,i,θ)
1 . Input: SDB is a sequence database;
2 P is the list of decision variables;
3 i is the position in P representing the current bound variable;
4 θ is the support threshold.
5 . Pre: variables 〈P1, . . . , Pi〉i∈[1..l] are bound;
6 Pi is the new assigned variable since previous call.
7

8 if Pi = 0 then
9 foreach j ∈ { i+ 1, · · · , L } do Pj .assign(0)

10 else if i ≥ 2 then
11 projFreqs ← ProjectAndGetFreqs(SDB,Pi, θ)
12 foreach j ∈ { i+ 1, · · · , L } do
13 foreach a ∈ D(Pj) do
14 if a 6= 0 ∧ projFreqs[a] < θ then Pj .removeV alue(a)

The algorithm for computing the (pseudo) projected database and the
projected frequencies of the symbols is given in Algorithm 5.2. It operates as
follows with a the new symbol appended to the prefix of assigned variables
since previous call. The first loop at Line 8 attempts to discover for each
sequence s in the projected database if it can be a sub-sequence of the
extended prefix. If yes, this sequence is added to the next projected database
at Line 14. The second loop at Line 17 computes the frequency of each
symbol occurring in the projected database but counting it at most once per
sequence.

5.3.2 Improving propagation

Although being the state-of-art approach for solving SPM with CP, the
filtering algorithm of Kemmar et al [KLL+16] presents room for improvement.
We identify four weaknesses and propose solutions to them.

Weakness 1 (Pruning the search tree). Databases with long sequences
will have a large upper-bound L. For such databases, removing infrequent
symbols from all remaining pattern variables P in the loop defined at Line 12
of Algorithm 5.1 can take time. This is not only the case for doing the action,
but also for restoring the domains on backtracking. On the other hand, only
the next pattern variable Pi+1 will be considered during search, and in most
cases a pattern will never actually be of length L, so all subsequent domain

96 CHAPTER 5. SPM USING CP

Algorithm 5.2: ProjectAndGetFreqs(SDB, a, θ)
1 . Input: SDB is a sequence database;
2 a is the current projected symbol;
3 θ is the support threshold.
4 . Output: freq list of projected frequencies
5 . Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).
6

7 PSDBi ← ∅
8 foreach (sid,start) ∈ PSDBi−1 do
9 s←SDB[sid] pos← start

10 while pos < size(s) ∧ a 6=s[pos] do
11 pos = pos+ 1
12

13 if pos < size(s) then
14 PSDBi = PSDBi ∪ {(sid, pos)}

15 projFreqs[b]← 0 ∀b ∈ { 1, · · · ,m }
16 if size(PSDBi) ≥ θ then
17 foreach (sid,start) ∈ PSDBi do
18 s← SDB[sid] existsSymbol[b] = false ∀b ∈ { 1, · · · ,m }
19 foreach i ∈ {start, · · · , size(s) } do
20 if ¬ existsSymbol[s[i]] then
21 projFreqs[s[i]] ← projFreqs[s[i]]+1
22 existsSymbol[s[i]] ← true

23 return projFreqs

changes are unnecessary. This weakness is a peculiarity of using a fixed-length
array P to represent a variable-length sequence. Mining algorithms typically
have a variable length representation of the pattern, and hence only look one
position ahead. In our propagator we only remove values from the domain of
Pi+1.

Weakness 2 (Computing frequencies). When computing the projected
frequencies of the symbols, one has to scan each sequence from its current
pseudo-projection pointer start till the end of the sequence. This can be
time-consuming in case of many repetitions of only a few symbols for example.
Thanks to the lastPosList defined next, it is possible to visit only the last
position of each symbol occurring after start. This idea was first introduced
in [YWK07] and exploited in the LAPIN family of algorithms.

Definition 5.2. (Last position list). For a current sequence s,

5.3. GLOBAL CONSTRAINTS FOR PROJECTED FREQUENCY 97

sid sequence lastPosList lastPosMap

sid1 〈ABCBC〉 [(C,5),(B,4),(A,1)] {A→1, B→4, C→5,D→0}
sid2 〈BABC〉 [(C,4),(B,3),(A,2)] {A→2, B→3, C→4,D→0}
sid3 〈AB〉 [(B,2),(A,1)] {A→1, B→2, C→0,D→0}
sid4 〈BCD〉 [(D,3),(C,2),(B,1)] {A→0, B→1, C→2,D→3}

Table 5.1. A sequence database SDB1 and list of last positions.
1) SDB, 2) lastPosList, 3) lastPosMap

lastPosList is a sequence of pairs (symbol, pos) giving for each symbol that
occurs in s its last position: pos = max

{
p ≤ size(s) | s[p] = symbol

}
. The

sequence is of length m, the number of distinct symbols in s. This sequence is
decreasing according to positions: lastPosList[i].pos > lastPosList[i+1].pos
∀i ∈ { 1, · · · ,m− 1 }.

Example 5.1. Table 5.1 shows the lastPosList sequences for SDB1.
We consider the sequence with sid1 and a prefix 〈A〉. The computation
of the frequencies starts at position 2, remaining suffix is 〈BCBC〉.
Instead of visiting all the 4 positions of this suffix, only the last two
can be visited thanks to the information contained in lastPosList[sid1].
Indeed according to lastPosList[sid1][1] the maximum last position is 5
(corresponding to the last C). Then according to lastPosList[sid1][2]
the second maximum last position is 4 (corresponding to the last position
of symbol B). The third maximum last position is 1 for symbol A. Since
this position is smaller than 2 (our initial start), we can stop.

Weakness 3 (finding a new item position). Related to weakness 2,
Line 11 in Algorithm 5.2 finds the new position (poss) of a in SDB[sid]. This
code is executed even if the new symbol no longer appears in that sequence.
Currently, the code has to loop over the entire sequence until it reaches the
end before discovering this.

Assume that the current position in the sequence s is already larger than
the position of the last occurrence of a. Then we immediately know this
sequence cannot be part of the projected database. To verify this in O(1)
time, we use a lastPosMap as follows:

98 CHAPTER 5. SPM USING CP

Definition 5.3. (Last position map of symbols). For a given sequence
s with id sid, lastPosMap[sid] is a map such that lastPosMap[sid][i] is the
last position of symbol i in the sequence s. In case the symbol i is not present:
lastPosMap[sid][i] = 0 (positions are assumed to start at index 1).

Example 5.2. Table 5.1 shows the lastPosMap arrays next to SDB1.
For instance for sid2 the last position of symbol C is 4. Assume we want
to build the projected database of A SDB|〈A〉. We don’t visit sid4 since
its last position is 0, which means that A does not exist in this sequence.
In Figure 5.1 one can see all the sequences (with the symbol þ) that
won’t be visited through the tree for enumeration of all the solutions for θ = 3.

Weakness 4 (storing projected databases). Algorithm 5.2 creates a
new set PSDBi to represent the projected database. This projected database
is computed many times during the search, namely at least once in each
node of the search tree (more if there are other constraints in the fixPoint
set). This is a source of inefficiency for garbage collected languages such as
Java but also for C since it induces many "slow" system calls such as free
and malloc leading to fragmentation of the memory. We propose to store
and restore the pseudo-projected databases with reversible vectors making
use of CP trailing techniques. The idea is to use one and the same array
throughout the search in the propagator, and only maintain the relevant
start/stop position during search. Each call to propagate will read from the
previous start to stop position, and write after the previous stop position plus
store the new start/stop position. The projected databases are thus stacked
in the array along a branch of the search tree. We implement the pseudo-
projected database with two reversible vectors: sids and poss respectively
for the sequence ids and the current position in the corresponding sequences.
The position φ is the start entry (in sids and poss) of the current projected
database, and ϕ is the size of the projected database. We thus have the
current projected database contained in sub-arrays sids[φ, . . . , φ+ϕ− 1] and
poss[φ, . . . , φ+ ϕ− 1]. In order to make the projected database reversible, φ
and ϕ are reversible integers. That is on backtrack to an ancestor node those
integers retrieve their previous value and entries of sids and poss starting
from φ can be reused.

5.3. GLOBAL CONSTRAINTS FOR PROJECTED FREQUENCY 99

Example 5.3. Figure 5.1 is an example using SDB1. Initially all the
sequences are present ϕ = 4 and position is initialized φ = 0. The
〈A〉-projected database contains sequence 1, 2, 3 at positions 1, 2, 1 with
φ = 4 and ϕ = 3. To build the 〈B〉-projected database since we have
finished with the AB-branch, we can reuse the reversible vectors from
position 4 i.e. the old values will be overwritten.

Prefix Projection Incremental Counting propagator (PPIC).

Putting all the solutions to the identified weaknesses together, we list the
code of the main function of our propagator’s in Algorithm 5.3.

The main loop at Line 10 iterates over the previous (parent) projected
database. In case the sequence at index i in the projected database contains
the new symbol at a subsequent position larger or equal to start, the matching
position is searched and added to the new projected database (at index j of
reversible vectors sids and poss) at Line 17. Then the contribution of the
sequence to the projected frequencies is computed in the loop at Line 19.
Only the entries in the lastPosList with position larger than current
pos are considered (recall that his list is decreasing according to positions).
Finally, Line 23 updates the reversible integers φ and ϕ to reflect the newly
computed projected database. Based on these projected frequencies a filtering
similar to the one of Algorithm 5.1 is achieved except that only the domain
of the next variable D(Pi+1) is filtered according to the solution to Weakness
1.

Prefix Projection Decreasing Counting propagator (PPDC).

The key idea of this approach is not to count the projected frequencies
from scratch, but rather to decrement them. More specifically, when scan-
ning the position of the current symbol at Line 15, if pos happens to be
the last position of a symbol (pos==lastPosMap[sid][s[pos]]) then
projFreqs[s[pos]] is decremented. This requires projFreqs to be an
array of reversible integers. With this strategy the loop at Line 19 disappears,
but in case the current sequence is not added to the projected database, the
frequencies of all its last symbols occurring after pos must also be decre-
mented. This can be done by adding an else block to the if defined at

100 CHAPTER 5. SPM USING CP

A
B

C
B

C
B

A
B

C
A

B
B

C
D

1 2 3 4

B
C

D

1 2 3 4

C
B

C
A

B
C

C
D

1 2 3 4

B
C

B
C

B
C

B

1 2 3 4

B
C

D

1 2 3 4

C
B

C
C

1 2 3 4

A

B

C

B

C

Legend
Visited sequence
Unvisited sequence

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14
sids = 1 2 3 4 1 2 3 1 2 3

poss = 0 0 0 0 1 2 1 2 3 2

φ = 0
ϕ = 4

φ = 4
ϕ = 3

φ = 7
ϕ = 3 . . .

4 5 6 7 8 9 10 11 12 13 14
1 2 3 4 1 2 4

2 1 2 1 3 4 2

φ = 4
ϕ = 4

φ = 8
ϕ = 3 . . .

Figure 5.1. Projected databases tree obtained from SDB1 with θ = 3 (on top) and the
Reversible vectors of the trailed-based data structure (on bottom).

Line 12 that will iterate over the lastPosList and decrement the symbol
frequencies.

5.3. GLOBAL CONSTRAINTS FOR PROJECTED FREQUENCY 101

Algorithm 5.3: ProjectAndGetFreqs(SDB, a, θ, sids, poss, φ, ϕ)
1 . Input: SDB is a sequence database;
2 a is the current projected symbol;
3 θ is the support threshold;
4 sids and poss are the reversible vectors.
5 . Output: freq list of projected frequencies
6 . Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).
7

8 projFreqs[b]← 0 ∀b ∈ { 1, · · · ,m }
9 i← φ j ← φ+ ϕ sup← 0

10 while i < φ+ ϕ do
11 sid← sids[i] pos← poss[i] s← SDB[sid]
12 if lastPosMap[sid][a]− 1 ≥ start then
13 . find the next position of a in s
14 while pos < size(s) and a 6=s[pos] do
15 pos← pos+ 1
16 . update projected database
17 sids[j]← sid poss[j]← pos+ 1 j ← j + 1 sup← sup+ 1
18 . recompute projected frequencies
19 foreach (symbol, posx) in lastPosList[sid] do
20 if posx ≤ pos then break
21 projFreqs[symbol] ← projFreqs[symbol] + 1

22 i← i+ 1
23 φ← φ+ ϕ ϕ← sup
24 return projFreqs

Example 5.4. Assume SDB1. The initial projected frequency array is
projFreqs= [A:3,B:4,C:3,D:1]. Consider now the 〈A〉-projected
database illustrated on Figure 5.2. The projected frequency array be-
comes projFreqs=[A:0,B:3,C:2,D:0]. The entry at A is decre-
mented three times as pos moved beyond its lastPos for each of the
sequences sid1, sid2 and sid3. The entry B at position 1 in sid2 won’t
be decremented because its lastpos is at position 3. Since sid4 is re-
moved from the projected database, the frequency of all its last symbols
occurring after pos is also decremented, that is for entries B, C and D.

PP-mixed. Both PPIC and PPDC approaches can be of interest depend-
ing on the number of removed sequences in the projected database. If the
number of sequences removed is large, then PPIC is preferable. On the other

102 CHAPTER 5. SPM USING CP

A

A B C D
3 4 3 1

A B C D
0 3 2 0

A B C B C
B A B C
A B
B C D

1
2
3
4

B C B C
B C

B

1
2
3
4

A

A
B
C
D

3
4
3
1

A
2

B A
1

A
0

B

3

C

2

D

0

0
2
2
0

Figure 5.2. Prefix Projection Decreasing Counting Principle

hand, if only a few sequences are removed then PPDC can be more interesting.
Inspired from the reset idea of [PR14] the PP-mixed approach dynamically
chooses the best strategy: if projFreqsSDB(a) < size(PSDBi)/2 (i.e., more
than half of sequences will be removed) then PPIC is used otherwise PPDC.

5.3.3 Constraints of SPM

We implemented common constraints such as minimum and maximum pattern
size, symbol inclusion/exclusion, and regular expression constraints. Time
constraints (maxgap, mingap, maxspan, etc) are outside the scope of this
work: they change the definition of what a valid prefix is, and hence require
changing the propagator (as in [KLL+16]). We discuss this in the following
chapter.

5.4. IMPLEMENTATION AND PRACTICAL USER GUIDE 103

5.3.4 Time and space complexity

Let us denote by l = size(SDB) the number of sequences, L = size(P) the
length of the longest sequence, m = size(I) the size of item alphabet. In
the worst case, the time and the space complexity of our propagator is in
O(l × (L+m)).

Space complexity. Storing the database itself costs O(l × L). The same
amount of memory is necessary to store the data structure (at most l embed-
dings by search node entry and at most a pattern with size L will be found).
The pre-computed lists cost O(l × (L+m)). Hence the space complexity of
our algorithms is O(l × L+ l × (L+m)) = O(l × (L+m)).

Time complexity. PPIC needs O(l × (L+m) +m) = O(l × (L+m)) time
to be complete since building the projected database costs O(l × (L+m))
(Line 6 of the Algorithm 5.1) and the pruning costs O(m).

5.4 Implementation and Practical User Guide

All our software, datasets and results are available online as open source in
order to make this research reproducible (http://sites.uclouvain.be/cp4dm/).

The implementation of PPIC, PPDC and PPmixed is available in the CP-Solver
OscaR [Osc12] which is available online1 in free access. We also provide the im-
plementation of PPIC in Section A.4. In OscaR, one can combine our constraints
with the existing constraints in the solver such as All-Different [Rég94], Global
cardinality [QLvBG04], Grammar [QW06], etc.

For developers who are willing to modify the code directly, a lightweight version
is also available2. One can hence add several constraints for a specific usage without
understanding OscaR deeply. The installation procedure is described in the Install
file in the code directory and merely consists of “importing the project” into your
favourite IDE.

1https://bitbucket.org/oscarlib/oscar/wiki/Home
2https://bitbucket.org/pschaus/cp4d

http://sites.uclouvain.be/cp4dm/
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/pschaus/cp4d

104 CHAPTER 5. SPM USING CP

Users can directly download the jar-file which is available on our website 3. On
this website, there is a user guide. The general format of the command to run PPIC
is:

java -jar ppic.jar [options] <SDB File> <Lmin > < Lmax>

with several options available, including:

• −f : for the frequency constraint (i.e. θ),
• −i: for items inclusion/exclusion constraints,
• −e: for the regular expression constraint,
• etc.

For example, to find the frequent sequences with size between 2 and 3 given
a database (named test.txt) and the minimum support θ = 2 (-f 2), we run the
following command:

java -jar ppic.jar test.txt 2 3 -f 2

Here is the result:

Input Output
(each line is a sequence) (<sub-sequence> : <support>)

1 2 3 2 3
2 1 2 3
1 2
2 3 4

< 1 2 > : 3
< 1 2 3 > : 2
< 1 3 > : 2
< 2 2 > : 2
< 2 2 3 > : 2
< 2 3 > : 3

Table 5.2. Dataset Features. Sparsity is equal to (1
size(SDB) ×

∑ size(s)
size(I/s))

SDB size(SDB) size(I) avg.size(s) avg.size(I/s) max.size(s) sparsity description
BIBLE 36369 13905 21.64 17.85 100 1.2 text
FIFA 20450 2990 36.24 34.74 100 1.2 web click stream
Kosarak 69999 21144 7.98 7.98 796 1.0 web click stream
Leviathan 5834 9025 33.81 26.34 100 1.3 text
PubMed 17237 19931 29.56 24.82 198 1.2 bio-medical text
data200k 200000 26 50.25 18.25 86 2.8 synthetic data
protein 103120 25 482.25 19.93 600 24.2 protein sequences

3https://sites.uclouvain.be/cp4dm/spm/

https://sites.uclouvain.be/cp4dm/spm/

5.5. EXPERIMENTS 105

5.5 Experiments

In this section, we report our experimental results on the performance of our
approaches with six real-life datasets4 and one synthetic (data200k [TBG08]) with
various characteristics shown in Table 5.2. Sparsity, representing the average of the
number of symbols that appear in each sequence, is a good indicator of how sparse
or dense a dataset is.

Our work is run under JVM with maximum memory set to 8GB. We used
a machine with a 2.7Hz Intel core i5 processor and 8GB of RAM with Linux
3.19.0-32-generic 64 bits distribution Mint 17.3. Execution time limit is set to 3600
seconds (1 hour). Our proposals are compared, first, with CPSM5 [NG15] and
Gap-Seq6 [KLL+16], the recently CP-based approaches including Gap constraint
and the previous version of Gap-Seq, PP7 [KLL+15] without Gap but with reg-
ular expression constraint. Second, we made comparison with cSpade8 [Zak00],
PrefixSpan [PHMA+01]9 and SPMF10.

PPIC vs PPDC vs PPmixed. The CPU time of PPIC, PPDC and PPmixed
models are shown in Figure 5.3. PPIC is more efficient than PPDC in 80% of
datasets. This is essentially because in many cases at the beginning of mining, there
are many unsupported sequences for which the symbol counters must be decremented
(compared to not having to increase the counters in PPIC). For instance with BIBLE
SDB and minsup = 10% PPDC need to see 21,979,585 symbols to be complete
while only 15,916,652 is needed for PPIC. Unsurprisingly, PPmixed is between these
approaches.

Our proposals vs Gap-Seq (CP method). Figure 5.3 confirms CPSM is
outperformed by Gap-Seq which itself improves PP (without gap). We can clearly
notice our approaches outperform Gap-Seq (and hence PP) in all cases. In the
case of FIFA SDB, Gap-Seq reach time limit when minsup ≤ 9%. PPIC is very
effective in large and dense datasets regarding of CPU-times.

Comparison with specialized algorithms. Our third experience is the
comparison with specialized algorithms. As we can see in the Figure 5.4, we perform
better on 84% of the datasets. However, cSpade is still the most efficient for
Kosarak. Kosarak doesn’t contain any symbol repetition in its sequences. So it is a

4http://www.philippe-fournier-viger.com/spmf/
5https://dtai.cs.kuleuven.be/CP4IM/cpsm/
6https://sites.google.com/site/cp4spm/
7https://sites.google.com/site/prefixprojection4cp/
8http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
9http://illimine.cs.uiuc.edu/software/

10http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php

http://www.philippe-fournier-viger.com/spmf/
https://dtai.cs.kuleuven.be/CP4IM/cpsm/
https://sites.google.com/site/cp4spm/
https://sites.google.com/site/prefixprojection4cp/
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
http://illimine.cs.uiuc.edu/software/
http://www.philippe-fournier-viger.com/spmf/index.php?link=download.php

106 CHAPTER 5. SPM USING CP

2 4 6 8 10

Minsup (%)

T
im

e
 (

s
,

lo
g
s
c
a

le
)

 1.0

 500.5

1000.0

BIBLE

CPSM

GapSeq

PPDC

PPmixed

PPIC

6 8 10 12 14 16 18 20

Minsup (%)

T
im

e
 (

s
,

lo
g
s
c
a

le
)

 1.0

 500.5

1000.0

FIFA

CPSM

GapSeq

PPDC

PPmixed

PPIC

0.2 0.4 0.6 0.8 1.0

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a

le
)

 1.0

 500.5

1000.0

Kosarak−70k

CPSM

GapSeq

PPDC

PPmixed

PPIC

2 4 6 8 10

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a

le
)

 1

 34

 67

100

LEVIATHAN

CPSM

GapSeq

PPDC

PPmixed

PPIC

99.960 99.965 99.970 99.975 99.980 99.985 99.990

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 10

 340

 670

1000

Protein

CPSM

GapSeq

PPDC

PPmixed

PPIC

1 2 3 4 5

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 1.0

 500.5

1000.0

PubMed

CPSM

GapSeq

PPDC

PPmixed

PPIC

Figure 5.3. CPU times for PPIC, PPDC, PPmixed and Gap-Seq for several minsup
(missing points indicate a timeout)

5.6. SUMMARY, OUTLOOKS, FURTHER READINGS 107

bad case for prefix-projection-based algorithms which need to scan all the positions.
On the contrary, with protein dataset (the sparse one) cSpade requires much more
CPU time. The SPMF implementation of SPAM, PrefixSpan and LAPIN appears to
be consistently slower than cSpade but there is no clear domination among these.

Impact of the improvements. Figure 5.5 shows the incremental impact of
our proposed solutions to the weaknesses defined in Section 5.3.2, starting from
reversible vectors (fix of weakness 4) up to all our proposed modifications. Fix 1 has
limited effect, while adding fix 3 is data dependent but adding fix2 always improves
further.

Handling different additional constraints. In order to illustrate the mod-
ularity of our approach we compare with a number of user-defined constraints that
can be added as additional modules without changing the main propagator (Fig-
ure 5.6). (a) We compared PPIC and PP (unfortunately the Gap-Seq tool does not
support a regular expression command-line argument) under various size constraints
on the protein dataset with minsup = 99.984. (b,c) We also selected data200k
adding a regular expression constraint RE10 = A ∗B(B|C)D ∗ EF ∗ (G|H)I∗ and
RE14 = A ∗ (Q|BS ∗ (B|C))D ∗E(I|S) ∗ (F |H)G ∗R [TBG08]. The last experiment
reported on Figure 5.6d consists in combining size and symbols constraints on the
protein dataset: only sequential patterns that contain VALINE and GLYCINE
twice and ASPARATE and SERINE once are valid. PPIC under constraints still
dominates PP.

5.6 Summary, Outlooks, Further readings

This work improved the existing CP-based sequential pattern mining ap-
proaches [NG15, KLL+16] up to the point that it also outperforms specialized
mining systems in terms of efficiency. To do so, we combined and adapted some
ideas from both the sequence mining literature and the constraint programming
literature; correspondingly last-position information [YK05] and reversible data-
structures for storing and restoring state during backtracking search. We introduced
the PrefixProjection-Inc (PPIC) global constraint and two variants proposing
different strategies to compute the projected frequencies: from scratch, by decreasing
the counters, or a mix of both. These can be plugged in as modules in a CP solver.
These constraints are implemented in Scala and made available in the generic OscaR
solver. Furthermore, the approach is compatible with some constraints including
size and regular expression constraints. There are other constraints which change
the subsequence relation and which would hence require hardcoding changes in the
propagator (gap [KLL+16], span, etc). We think many of our improvements can be
applied to such settings as well.

108 CHAPTER 5. SPM USING CP

0.2 0.4 0.6 0.8 1.0

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 10

 340

 670

1000

BIBLE

PrefixSpan

spmf.SPAM

spmf.LAPIN

spmf.CMSPADE

cSPADE

PPIC

6 8 10 12 14

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 10

 340

 670

1000

FIFA

PrefixSpan

spmf.SPAM

spmf.LAPIN

spmf.CMSPADE

cSPADE

PPIC

0.20 0.22 0.24 0.26 0.28 0.30

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 1

 34

 67

100

Kosarak−70k

PrefixSpan

spmf.SPAM

spmf.LAPIN

spmf.CMSPADE

cSPADE

PPIC

2 4 6 8 10

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 1.0

 500.5

1000.0

LEVIATHAN

PrefixSpan

spmf.SPAM

spmf.LAPIN

spmf.CMSPADE

cSPADE

PPIC

99.960 99.965 99.970 99.975 99.980 99.985 99.990

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 10

 340

 670

1000

Protein

PrefixSpan

spmf.SPAM

spmf.LAPIN

spmf.CMSPADE

cSPADE

PPIC

0.5 1.0 1.5 2.0

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 10

 340

 670

1000

PubMed

PrefixSpan

spmf.SPAM

spmf.LAPIN

spmf.CMSPADE

cSPADE

PPIC

Figure 5.4. CPU times for PPIC,PPDC,PPmixed and cSPADE for several minsup
(missing points are due to timeout).

5.6. SUMMARY, OUTLOOKS, FURTHER READINGS 109

0.2 0.4 0.6 0.8 1.0

 10

 340

 670

1000

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

BIBLE

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

 6 8 10 12 14

 10

 340

 670

1000

Minsup (%)

FIFA

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

0.20 0.22 0.24 0.26 0.28 0.30

 10

 40

 70

100

Minsup (%)

Kosarak−70k

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

 2 4 6 8 10

 1

 4

 7

10

Minsup (%)

LEVIATHAN

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

0.2 0.4 0.6 0.8 1.0

 10

 340

 670

1000

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

BIBLE

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

 6 8 10 12 14

 10

 340

 670

1000

Minsup (%)

FIFA

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

0.20 0.22 0.24 0.26 0.28 0.30

 10

 40

 70

100

Minsup (%)

Kosarak−70k

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

 2 4 6 8 10

 1

 4

 7

10

Minsup (%)

LEVIATHAN

PPIC.fix4

PPIC.fix4+1

PPIC.fix4+1+3

PPIC.fix4+1+3+2

Figure 5.5. Incremental impact of our solutions to the different weaknesses (yaxis is logscale
for all plots)

Our work shows that generic CP solvers can indeed be used as framework to
build scalable mining algorithms, not just for generic yet less scalable systems as
was done for itemset mining [GNDR11]. Furthermore, advanced data-structures
for backtracking search, such as trailing and reversible vectors, can also be used
in non-CP algorithms. This appears to be an understudied aspect of backtracking
algorithms in pattern mining and data mining in general. We believe there is much

110 CHAPTER 5. SPM USING CP

1 2 3 4 5 6

Size (nItem)

T
im

e
 (

s
)

0.5

1.0

1.5

2.0

2.5

3.0

(a) LEVIATHAN − minsup=4%

GapSeq.size
cSPADE.size
PPIC.size

0 50000 100000 150000

Minfreq (seq)

T
im

e
 (

s
)

 0

 20

 40

 60

 80

100

120

140

(b) Data200k − RE10

PP.RE10
PPIC.RE10

0 50000 100000 150000

Minfreq (seq)

T
im

e
 (

s
)

 0

10

20

30

40

50

(c) Data200k − RE14

PP.RE14
PPIC.RE14

99.980 99.982 99.984 99.986 99.988 99.990

Minsup (%)

T
im

e
 (

s
,
lo

g
s
c
a
le

)

 10

 340

 670

1000

(d) Protein − items+size

PP.item.size
PPIC.item.size

Figure 5.6. Handling of different additional constraints

more potential for combinations of techniques from data mining and CP.

6

C
h

a
p

t
e

r

Mining time-constrained sequential pat-
terns with constraint programming

“It is upon the old string that we weave the new rope.”

–African Wisdom

Overview In the previous chapter, we showed that by combining techniques
from Constraint Programming and Sequential Pattern Mining, we could build
new flexible and efficient approaches which outperform both CP-based and Spe-
cialized approaches becoming the state-of-the-art of standard sequential pattern
mining. Commonly, the sequence dataset contains time information. However,
this information is often ignored because it is a challenging task to take it into
account. In this chapter, we introduce a new constraint, called PPICt, which
adapted ideas from PPIC, to address Sequential Pattern Mining with timed
dataset.

Contribution The main contribution in this work, is to improve
on [KLL+16] and [AGS16] by modifying the global frequency constraint (PPIC)
to capture the most common time-related constraints: explicitly timed events,
minimum/maximum gap (i.e. time between two matching events in a sequence),
and minimum/maximum span (i.e. time between the first and last matching
event). To maintain scalability, we also ensure that we don’t needlessly scan the
sequences in the database during the search.

Main source This chapter is mainly based on our paper [AGS17].

111

112 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

6.1 Context and Motivation

Sequential pattern mining (SPM) is an important research domain within data
mining and widely used in applications such as weblog mining, disease diagnoses
mining, event sequence mining, etc [AH14]. The problem of SPM is to find frequent
sequence patterns (also called sequential patterns) in a database of sequences, i.e.
an ordered list of events which together occur in the data more than a given number
of times. This task is a great challenge since the search space is extremely large;
O(mn) solutions are available for patterns with length at most n and for sequences
with an average number of m events.

In practice, finding all sequential patterns is typically not enough, as often an
overwhelming number of patterns is returned. Hence, there is a need to guide the
search towards patterns of interest to the practitioner. This calls for techniques
which can incorporate preferences or restrictions on the length and content of the
patterns (constraints). In many applications, the time elapsed between events is
also important to take into account.

Assume for instance a database containing sequences of web pages visited by
users on a given website. One could be interested in access patterns within a single
browsing session, for example with no more than 20 minutes between two pages.
Also in biological sequence mining the position and distance of the symbols in the
sequence matter. A constraint on the maximum time between any two consecutive
symbols in the pattern is called a gap constraint, while a constraint on the time
from the first to the last event is called a span constraint.

In this work, we assume all sequences have explicit timestamps and
the goal is to support gap and span constraints as well as constraints on
frequency and syntax of patterns.

In this work, we wish to improve on [KLL+16] and [AGS16] by modifying the
global frequency constraint to capture the most common time-related constraints:
explicitly timed events, minimum/maximum gap, and minimum/maximum span. To
maintain scalability, we must ensure that we do not needlessly scan the sequences in
the database during the search. Our contributions can be summarized as follows:

1. we adapt the backtracking-aware data structure introduced in [AGS16] to
store all possible occurrences of the pattern in a sequence, including the first
matching symbol to support span constraints;

2. we avoid scanning a sequence for a symbol beyond the (precomputed) last
occurrence of that symbol in the sequence;

3. we introduce the concept of extension window of an embedding and avoid to
scan overlapping windows multiple times;

4. we avoid scanning for the start of an extension window, which is specific to
the minimum gap constraint, by precomputing these in advance; and finally

6.2. RELATED WORK 113

5. we experimentally show that using this global constraint we outperform
other sequence mining algorithms in all but a few cases. Furthermore, we
show that in a CP framework this global constraint can be combined with a
number of other independent constraints: item inclusion/exclusion constraints,
pattern length constraints or string constraints [HFPZ13] such as regular
expression [Pes04] and grammar [KS10,QW06] constraints.

6.2 Related work

The problem of sequential pattern mining, first introduced by Agrawal et al. [AS95],
is widely studied [AS95, HPYM04, PHMA+01, SA96,YHA03, Zak98, Zak00] with
many applications as well [HAM14,HM14]. These works can be categorized into
1) apriori-based (horizontal/vertical formatting) [AFGY02, SA96, Zak00] and 2)
projection-based [PHMA+01] methods. In general, users only need a small subset of
the found patterns. Hence, some works have focused on the addition of user-defined
constraints such as inclusion/exclusion items, pattern length (minimum/maximum),
super-pattern, aggregate function (sum, average, maximum, minimum and standard
deviation), regular expression and span/gap. They are discussed in more detail
in [PHW07].

GSP [SA96] was the first approach including gap and span constraints. This
method is not very efficient since it requires to generate all candidate patterns and
to scan the dataset several times. Some approaches added the constraints in a
post-processing step [PZOD99]. In the cSPADE algorithm [Zak00], the constraints
are directly integrated into the sequential pattern search process. It efficiently takes
into account constraints such as length and width restrictions on the pattern, item
constraints, minimum and maximum gaps between events, as well as a maximum
span. Unlike cSPADE, GenPrefixSpan [AO03] is an extension of the depth-first
PrefixSpan [PHMA+01] algorithm to allow gap constraints. Time constraints on the
sequences (instead of events) have also been investigated in [DG15]. Special classes of
SPM problem or constraints was also tackled: the closed/maximal SPM [FVWT13,
LW08,LL04,WHL07,YHA03] the multi-dimensional SPM [PHP+01], the episodes
events [MTV97], etc. However, all the above-mentioned approaches lack flexibility at
the algorithmic level, since adding a new constraint often involves changing the whole
algorithm and may hinder scalability. For instance, methods that can efficiently
take regular expression constraints into account together with time constraints are
rare in specialized methods. An exception is PG [PHW07], which starts from the
observation that many constraints are prefix-monotone. This property is weaker than
standard (anti)monotonicity when used in pruning, but still valid. PG’s pruning
principles are specific to prefix-monotonicity however, which does not allow it to
fully exploit regular expression constraints for example.

As an alternative, the use of Constraint Programming (CP) has been inves-
tigated [AGS16, CJSS12, GNDR13, KLL+17, KLL+15, KLL+16,MBC+11, NG15].

114 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

a) Sequence database (SDB) b) nextPosGap c) lastPosMap

sid sequence 1 2 3 4 5 6 7 A B C D E

sid1 〈(A, 2)(B, 5)(D, 6)(C, 10)(B, 11)〉 2 4 4 6 6 1 5 4 3 0
sid2 〈(B, 1)(A, 2)(A, 9)(D, 12)(C, 15)(A, 18)(B, 24)〉 3 3 4 5 6 7 8 6 7 5 4 0
sid3 〈(A, 2)(B, 4)(D, 6)(D, 8)(B, 10)(E, 12)(C, 14)〉 3 4 5 6 7 8 8 1 5 7 4 6
sid4 〈(A, 1)(C, 2)(C, 3)(B, 4)〉 4 5 5 5 1 4 3 0 0

Table 6.1. a) A sequence database SDB, b) a structure for the next position of minimum
gap time N(precomputed) and c) the last position map.

Kemmar et al. [KLL+15] have subsequently shown that this approach can be made
more scalable by grouping all low-level constraints involving the frequency compu-
tation into one global constraint. Moreover, they investigated the top-k sequential
pattern mining problem [KLL+17]. More recently, we have shown that combining
this approach with algorithmic techniques from both the CP community and the
data mining community can result in a global constraint that outperforms generic
as well as specialized methods [AGS16].

While the above CP methods can handle constraints on the pattern syntax,
gap and span constraints are only supported by the much less efficient approach
of [NG15]. The reason is that the timing information is hidden in the global frequency
constraint. Hence, Kemmar et al. [KLL+16] extended their global constraint for the
gap constraint specifically.

6.3 Preliminaries

In this section, we revisit the notions around Sequential pattern mining through
an example, then we consider the problem of Sequential pattern mining with time
constraints such as the gap and span. Finally, we will discuss how these problems
are modelled in CP.

6.3.1 Sequential Pattern Mining

Assume I = { 1, . . . ,m } is a list of possible symbols. Table 6.1a represents an
example sequence database (SDB) with timestamps. The database is a set of
tuples (sid, s) where sid is the sequence identifier and s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉
is a sequence; an ordered list of symbols/events (sk) occurred at time tk, where
t1 ≤ t2 ≤ . . . ≤ tn. We use ssi , respectively sti, to represent just the list of symbols,
respectively timestamps, of sequence i.

6.3. PRELIMINARIES 115

In the rest of the chapter, we assume a sequence database has timestamps, and when
the exact timing is not important we will write 〈ABC〉 to mean 〈(A, 1)(B, 2)(C, 3)〉.

Example 6.1. Assume s = 〈(A, 2)(B, 4)(D, 6)(D, 8)(B, 10)(E, 12)(C, 14)〉 is a
sequence, ss = {A,B,D,D,B,E,C}, st = {2, 4, 6, 8, 10, 12, 14} and its length
size(s) = 7.

SPM without time consideration

Let’s first consider the database without timestamps. Then, the problem of the
SPM [AS95] is to enumerate all the frequent sequences with the coverage and
frequency constraints (this is what we discussed in Chapter 5).

The reader can refer to the background Chapter 2 for definitions and specific
details. Here we will only give a concrete example.

Example 6.2. Assuming the sequence database in Table 6.1a without times-
tamps, sequence α = 〈ADC〉 is a subsequence of s, denoted as α � s, with
embedding (1, 3, 7). Another valid embedding would be (1, 4, 7). Note that for
this standard subsequence relation, timing is not important. Sequence α is a sub-
sequence of sequences 1, 2 and 3, hence CoverSDB(〈ADC〉) = {sid1, sid2, sid3}
and its frequency is FreqSDB(〈ADC〉) = 3.

There exist multiple algorithms for the SPM problem. The PrefixSpan algo-
rithm [PHMA+01] is among the most famous ones and relies on the idea of the
prefix-projected database. Our approaches are built on this concept.

Example 6.3. Consider our running example in Table 6.1a, where we omit
timing information. Assume α = 〈A〉, then SDB|α = {(sid1, 〈BDCB〉),
(sid2, 〈ADCAB〉), (sid3, 〈BDDBEC〉), (sid4, 〈CCB〉)}. The prefix-projected
frequencies of SDB|〈A〉 are: freqs(A) = 1, freqs(B) = 4, freqs(C) = 4,
freqs(D) = 3, freqs(E) = 1. Extending prefix 〈A〉 with 〈D〉 over SDB|〈A〉
gives SDB|〈AD〉 = {(sid1, 〈CB〉), (sid2, 〈CAB〉), (sid3, 〈DBEC〉)} and can be
represented as the pseudo-projected database: pSDB|〈A〉 = {(sid1, 4), (sid2, 5),
(sid3, 4)} (details in Figure 6.1a).

116 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

A B D C B
B A A D

A C C B

1
2
3
4
A B D D B E C

A
D

C A B

B D C B
A D

C C B

1
2
3
4

B D D B E C
C A B

1

2
1

1

3

4
3

C A B
C B1

2
3
4

D B E C

1
2
3
4

A 2 B 5 B 11D 6 C 10

B 1 A 2 C 15A 9 D 12 B 24A 18

A 2 B 4 B 10D 6 D 8 C 14E 12

A 1 C 2 C 3 B 4

A

1
2
3
4

A 2 B 5 B 11D 6 C 10

B 1 A 2 C 15A 9 D 12 B 24A 18

A 2 B 4 B 10D 6 D 8 C 14E 12

A 1 C 2 C 3 B 4

1

2
1

1

3 6

D

1
2
3
4

A 2 B 5 B 11D 6 C 10

B 1 A 2 C 15A 9 D 12 B 24A 18

A 2 B 4 B 10D 6 D 8 C 14E 12

A 1 C 2 C 3 B 4

(1,3)

(1,3)

(3,4)

(1,4)

(a) (b)
*(a) Without time constraints: Projected and Pseudo-projected databases
sid pSDB|〈A〉 SDB|〈A〉’s of pSDB|〈A〉 pSDB|〈AD〉 SDB|〈AD〉’s of pSDB|〈AD〉
sid1 1 〈BDCB〉 3 〈CB〉
sid2 2 〈ADCAB〉 4 〈CAB〉
sid3 1 〈BDDBEC〉 2 〈DDBEC〉
sid4 1 〈CCB〉

**(b) Considering time constraints: Embedding database and extension windows
sid embSDB|[3,7]

〈A〉 ewgap[3,7]
e (s)’s of embSDB|[3,7]

〈A〉 embSDB|[3,7]
〈AD〉 ewgap[3,7]

e (s)’s of embSDB|[3,7]
〈AD〉

sid1 (1) 〈(B, 5)(D, 6)〉 (1,3) 〈(C, 10)(B, 11)〉
sid2 (2),(3),(6) 〈(A, 9)〉,〈(D, 12)(C, 15)〉,〈(B, 24)〉 (3,4) 〈(C, 15)(A, 18)〉
sid3 (1) 〈(D, 6)(D, 8)〉 (1,3),(1,4) 〈(B, 10)(E, 12)〉,〈(E, 12)(C, 14)〉
sid4 (1) 〈(B, 4)〉

Figure 6.1. Embedding (Projected) databases and extension windows for patterns 〈A〉
and 〈AD〉: a) without time constraints b) with time constraints (gap[3,7]). Note that
embeddings are positions in s, not timings and these positions start from 0.

6.3. PRELIMINARIES 117

SPM with time consideration

We now look at the subsequence relation under a gap[M,N] constraints, with M
the minimum and N the maximum gap between two subsequent events, and under
a span[W,Y] constraints with W the minimum and Y the maximum span between
the first and last event. This requires changing the subsequence definition in
Definition 2.6.

Definition 6.1. Subsequence relation under gap (�gap[M,N]). A sequence
α = 〈α1α2 . . . αk〉 is a subsequence of s = 〈(s1, t1)(s2, t2) . . . (sn, tn)〉 under gap[M,N]

constraint (α �gap[M,N]
s) iff (i) k ≤ n; (ii) there exists a list of integers (e1, . . . , ek),

an embedding, with 1 ≤ e1 . . . ≤ ek ≤ n such that ss[ei] = αi; and (iii) the time
between two consecutive events tei−1 and tei must be between M and N for all
i ∈ [2 . . k], M ≤ tei

− tei−1 ≤ N . An embedding (e1, . . . , ek) for α �gap[M,N]
s is

called a gap[M,N]-embedding.

We can similarly define �span[W,Y] where condition (iii) becomes: the time
between the first event te1 and the last tek

must be between W and Y i.e. W ≤
tek
− te1 ≤ Y . We can similarly define the gap + span subsequence relation which

contains both conditions.

Example 6.4. Given sid1 with st1 = {2, 5, 6, 10, 11} and sid2 with st2 =
{1, 2, 9, 12, 15, 18, 24} in Table 6.1a. Then, 〈ADB〉 �gap[3,7]

SDB[sid1] with
embedding
(e1, e2, e3) = (1, 3, 5) because

{
3 ≤ (st1[e2]− st1[e1] = 4) ≤ 7 and 3 ≤ (st1[e3]−

st1[e2] = 5) ≤ 7
}
. Note the difference between the positions ei of the embedding

and its time st1[ei]. As another example, 〈ADB〉 �gap[3,7]
SDB[sid2] because

3 ≤ (st2[e3]−st2[e2] = 12) � 7. Similarly, this embedding and hence the sequence
respects a span[8,10] constraint in sid1: 8 ≤ st1[e3]− st1[e1] = 9 ≤ 10.

The definition of CoverSDB(α), FreqSDB(α) and the SPM problem can be easily
adapted to use the gap/span subsequence relation instead of the original relation �.

Example 6.5. Assume α = 〈ADC〉, θ = 3 and gap[3,7], Covergap
[3,7]

SDB (α) =
{sid1, sid2, sid3} and hence Freqgap

[3,7]

SDB (α) = 3. Thus, α is a gap-constrained
sequential pattern for the given threshold.

The problem of SPM under time constraints is as follows:

118 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

Definition 6.2. SPM under time constraints problem. Find all subsequences
(α) in sequence database (SDB) such that Freqgap

[M,N],span[W,Y]

SDB (α) ≥ θ where θ is
the given support threshold and M , N , W , Y are the minimum and maximum gap
and span.

The search space to find the sequential patterns can become intractably large.
Hence, to reduce this space, several algorithms rely on the anti-monotonicity prop-
erty 2.1. However, only the frequency with minimum gap (M) and maximum span
(Y) are anti-monotone constraints but the frequency with maximum gap (N) and
the minimum span (W) constraints violate this property.

Example 6.6. Assuming our running example, as illustrated in Figure 6.2a
and 6.2b, 〈ADC〉 is frequent under gap[3,7] with θ = 3 but 〈AC〉 is not frequent
(Freqgap

[3,7]

SDB (〈AC〉) = 1 < 3).

1
2
3
4

A 2 D 6 C 10

C 15A 9 D 12

A 2 D 8 C 14

4 4

6 3

6 6

(a)

1
2
3
4

A 2 C 10

C 15A 9

A 2 C 14

A 1 C 3

8

6

12

2

(b)

3 A 2 D 6 C 14

3 A 2 D 8 C 14

 4 8

 6 6

(c)

Figure 6.2. Examples showing sequences a) 〈ADC〉 and b) 〈AC〉 in SDB1 and c) embed-
dings of sequence 〈ADC〉 in sequence 3.

Fortunately, the maximum gap constraint is prefix anti-monotone i.e. every
prefix of p satisfies the maximum gap constraint if p satisfies it [PHW07]. We use
this property to filter embeddings which helps us discover if a prefix is infrequent.
The minimum span (W) does not satisfy this property, hence we use it only to verify
embeddings of fully assigned patterns (post-processing step).

6.3.2 CP-based model for SPM problem

A constraint satisfaction problem [RvBW06] is defined as a triplet (V,D,C) where
V is a set of decision variables with their domains D (possible values of V). C
is a set of constraints, each constraint is defined over V and restricts the possible
values that these variables can take. Solving the problem of SPM using Constraint
Programming (CP) consists of defining the model (V,D,C).

We present CP model of sequential pattern mining introduced in [NG15] and
the GapSeq [KLL+16] and PPIC (Prefix Projection Incremental Counting) [AGS16]
global constraints.

6.3. PRELIMINARIES 119

Definition 6.3. Variables and Domains for SPM [NG15]. Let l be the length
of the longest sequence in SDB (l = max({size(s) | s ∈ SDB})); P = [P1, P2, . . . , Pl]
is an array of variables, representing a pattern, where each Pi represents the ith
symbol in the pattern. The domain Di of Pi is the set of symbols I plus the empty
symbol ε: Di(Pi) = {ε} ∪ I.

Example 6.7. For instance for the dataset in Table 6.1a, l = 7, P =
[P1, . . . , P7] and for all i ∈ [1 . . l], Di = {ε, A,B,C,D,E}. 〈A,D,C〉 corre-
sponds to P = [A,D,C, ε, ε, ε, ε].

Definition 6.4. Filtering rules. Assume ∀i ≤ l, p = 〈p1, . . . , pi〉 is the assigned
values of variables {P1, . . . , Pi}, a CP model over P represents the SPM problem
given a threshold θ, gap[M,N] and span[W,Y] iff the following conditions are satisfied
by every valid assignment to P :

1. P1 6= ε (to avoid an empty pattern);
2. ∀i ∈ { 2, · · · , l − 1 } : Pi = ε⇒ Pi+1 = ε (to allow pattern with length < l);
3. Frequency constraint: FreqSDB(p) ≥ θ;

4. Frequency under gap[M,N] constraint: Freqgap
[M,N]

SDB (p) ≥ θ;

5. Frequency under span[W,Y] constraint: Freqspan
[W,Y]

SDB (p) ≥ θ.

PPIC [AGS16] global constraint. PPIC(P, SDB, θ) is a global constraint
for the SPM problem without gap/span, built on the prefix-projection principle,
which enforces filtering rules 1, 2 and 3 in a single propagator. It improved on the
state-of-the-art with four elements: (a) a backtracking-aware data structure inspired
by trailing-based CP technique, (b) efficient support counting by precomputing the
last positions of each symbol, (c) not scanning sequences whose prefix can not
contain the symbol (precomputed) and (d) removing the infrequent symbols of the
projected database only from the next domain Di+1.

GapSeq [KLL+16] global constraint. GapSeq(P, SDB, θ,M,N) is a global
constraint for SPM problem under gap[M,N] which enforces filtering rules 1, 2, 3
and 4 in a single propagator with the limitation that gap constraints are expressed
in terms of position distances i.e. the gap are measured according to the number of
events hence time does not matter.

Our global constraint. PPICt(P, SDB, θ,M,N,W, Y) is a global constraint
for SPM problem under gap[M,N] and span[M,N] over time-stamped databases which
enforces filtering rules 1 to 5 in a single propagator. Hence, gap/span constraints
are expressed in terms of time, but it can be used for position distances as well.

120 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

6.4 Trailing-based data structure for the embedding
database

In this section, we introduce the notions of embedding database and extension
windows which reconsider the concept of projected database to incorporate time
constraints. Then, we present a trailing-based data structure to store this database.

6.4.1 Embedding database and extension windows

In fact, when having a gap constraint and using prefix-projection (see Definition 2.9),
the assumption that a pattern can be extended with the symbol appearing after the
smallest matching prefix does not hold anymore. That is, given a sequence, if the
first embedding of the prefix cannot be extended because the gap is too small or
large, there could exist another embedding that can be extended.

Example 6.8. Assume the pattern α = 〈ADC〉 and gap[3,7]. There are two
embeddings of α in sid3: (1, 3, 7) and (1, 4, 7). The first embedding is not
a gap[3,7]-embedding since 3 ≤ (t7 − t3 = 8) � 7) while the second one is
(Figure 6.2c illustrates this).

Hence, it is not sufficient to store just the (suffix of the) smallest embedding as
is done in the pseudo-projected database. Instead, we can store all embeddings. One
can draw the parallel of this notion with the notion the pseudo-projected database
pSDB|α but instead of only storing the first embedding, we store all available
embeddings:

Definition 6.5. Embedding database (embSDB|α). Assume a sequence s =
〈(s1, t1)(s2, t2) . . . (sn, tn)〉 and a subsequence α = 〈α1α2 . . . αk〉 with k ≤ n. The
set of all embeddings of α in s is embα(s) = {(e1, . . . , ek)|1 ≤ e1 ≤ ek ≤ n such
that ss[ei] = αi}. The embedding database of α is now defined as embSDB|α =
{ (sid, embα(s)) |(sid, s) ∈ SDB}.

The embedding database under gap[M,N] of a sequence s is the set of transactions
identifiers together with all embeddings of s that satisfy the gap[M,N] constraint;
denoted as embSDB|[M,N]

α . Similarly for the embedding database under span[W,Y]

and the combination of gap and span.
GapSeq [KLL+16] stores for each embedding the position after the last embedding,

called right pattern extensions, but this is not sufficient to support a span constraint.
Our method will store the start and stop position of each embedding, which is
sufficient for span, gap and the combination of the two.

6.4. TRAILING-BASED DATA STRUCTURE FOR THE EMBEDDING DATABASE 121

Given a span and/or gap constraint, an embedding can only be extended with
events whose timing satisfies the span/gap constraints. We call this subsequence of
events the extension window of an embedding:

Definition 6.6. Extension Window (ew). Assume a given sequence s = 〈(s1, t1)
(s2, t2) . . . (sn, tn)〉, a subsequence α = 〈α1α2 . . . αk〉 and a gap[M,N] constraint. Let
e = (e1, e2, . . . , ek) be any valid gap[M,N]-embedding of α in s. The extension window
of this embedding, denoted ewgap[M,N]

e (s), is the subsequence 〈(su, tu)(su+1, tu+1) . . .
(sv−1, tv−1)(sv, tv)〉 such that (tek

+M ≤ tu)∧ (tv ≤ tek
+N)∧ (@t′u ∈ st, tek

+M ≤
t′u < tu) ∧ (@t′v ∈ st, tv < t′v ≤ tek

+ N}. The start and the end position of this
extension window are respectively u and v.

Example 6.9. Assume gap[3,7] and α = 〈A〉. For sid3 in Table 6.1a, there is
one gap[3,7]-embedding: (1) with extension window 〈(D, 6)(D, 8)〉; hence, if 〈A〉
is extended with any symbol other than D it will no longer be covered. For
α = 〈A,D〉 there are now two possible embeddings: (1, 3) and (1, 4). Their
extension windows are: 〈(B, 10)(E, 12)〉,〈(E, 12)(C, 14)〉. Figure 6.1b shows the
embeddings and extension windows for these two patterns for all sequences in
the SDB of Table 6.1a. A comparison can be made with the same versions
without time restrictions presented in Figure 6.1a.

6.4.2 Trailing-based data structures

Trailing as a mechanism to restore the state. CP-Solvers implementing
the depth-first search backtracking algorithms need an efficient state restoration
system [Knu15]. The interested reader can refer to Section 2.2.2 of the background
chapter or the papers [Knu15,Lau18] for a comprehensive introduction. Our trailing-
based data structure also uses this mechanism.

Trailing the embedding database. We introduce a trailing-based data
structure to efficiently store and restore the embedding database. The key idea is to
store the embedding database in ’backtracking aware’ vectors. This data structure
briefly described here, is the one presented in the (previous) chapter 5.

This idea was introduced in PPIC [AGS16] allowing to drastically speeding up
the search for sequential patterns without time constraints. See an illustration of this
data structure based on the projected database examples of the Figure 6.1a in the
Figure 6.3a. Two reversible integers store respectively the start position in the vector
(φ) and the number of entries (ϕ) in the embedding database. When branching, data
is appended at the φ+ ϕ position and φ and ϕ are updated. When backtracking,
only the start position and number of elements need to be restored/trailed; the

122 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

vector can stay unchanged in memory, with the parts after φ+ ϕ overwritten later.
In [AGS16], only the sequence ids (sids vector) and the start position of the suffixes
(embs vector) must be stored1. This is not sufficient to handle time constraints
information.

Trailing-based embedding database. We use reversible vectors to store
the start and the end positions of all the possible time-constrained embeddings
for every sequence. The vectors: sids, embsize and embs respectively represent
the sequence ids, the number of embeddings and the start/end positions of the
embeddings. These start and end positions are sufficient to verify the span and gap
constraints during pattern extension.

Example 6.10. Figure 6.3b depicts an example of this data structure: for
pattern 〈A〉, the data of embSDB|[3,7]

〈A〉 is stored between indices φ = 1 and
φ + ϕ − 1 = 4. This pattern 〈A〉 is then further extended by the symbol D
and embSDB|[3,7]

〈AD〉 is stacked next to it, between indices φ = 5 and φ + ϕ −
1 = 7. This pattern 〈AD〉 is then further extended by the symbol C and
embSDB|[3,7]

〈ADC〉 is stacked between indices φ = 8 and φ + ϕ − 1 = 10. The
gap[3,7]-embedding of 〈ADC〉 in sid2 is (3, 4, 5) but we only store the start (3)
and end (5) as (3, 5) we can compute the valid extension window based on gap
and span constraint.

6.5 PPICt global constraint under time constraints

This section presents PPICt (Prefix Projection Incremental Counting with time
restrictions), our filtering algorithm for finding sequential patterns under gap and
span constraints. This algorithm support sequences with timestamps (as presented
in Table 6.1a). Constraints such as regular expression, item inclusion/exclusion,
pattern length and all other constraints that do not depend on the embeddings can
be added to the model. Constraints that can change what a valid embedding is
would need to be added to the propagator, as we do for the time-based gap and
span constraints.

6.5.1 PPICt filtering algorithm and improvements

The PPICt(P, SDB, θ,M,N,W, Y) global constraint is given in Algorithm 6.1. The
filtering procedure is triggered whenever a pattern is extended by a new symbol

1We discussed this in the Chapter 5.

6.5. PPICT GLOBAL CONSTRAINT UNDER TIME CONSTRAINTS 123

(Pi+1). If that symbol is ε then by Rule 2 all Pj , j > i should also be ε. The pattern
is hence fully assigned and so we can filter with the minimum span constraint which
is not prefix-monotone. If the pattern is still frequent then this is a new solution.

If Pi+1 was assigned a non-ε value, then the procedure ProjectAndGetFreqs
counts for each symbol what the size of the projected database would be if the
new pattern is extended with that symbol. The computed result, denoted freqs
in the pseudo-code, is used to prune the domain of the next pattern variable Pi+1
by removing infrequent symbols; this is valid because the constraints filtered in
ProjectAndGetFreqs are prefix anti-monotone.

The main difference with PPIC [AGS16] is that all embeddings must be stored
instead of just the prefix (see Section 6.4.1). Embeddings can only be extended
by symbols appearing in its extension windows. The projected frequency counting

(a) Trailing-based data structure for SPM problem without time constraints
- in PPIC

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sids 1 2 3 4 1 2 3 1 2 3

embs 1 2 1 1 3 4 2 4 5 7

〈A〉

(φ = 1, ϕ = 4)

〈AD〉

(φ = 5, ϕ = 3)

〈ADC〉

(φ = 8, ϕ = 3)

(b) Trailing-based data structure for SPM problem with gap/span
constraints - in PPICt

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
sids 1 2 3 4 1 2 3 1 2 3

embsize 1 3 1 1 1 1 2 1 1 1

embs

(1,1)(2,2)(1,1)(1,1)(1,3)(3,4)(1,3)(1,4)(3,5)(1,7)

. (3,3) (1,4)

. (6,6)

〈A〉

(φ = 1, ϕ = 4)

〈AD〉

(φ = 5, ϕ = 3)

〈ADC〉

(φ = 8, ϕ = 3)

Figure 6.3. Trailing-based data structure to store and restore the embeddings database:
a) without time constraints b) with gap[3,7] constraints

124 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

Algorithm 6.1: PPICt(P, SDB, θ,M,N,W, Y)
1 . Input: P is the list of decision variables;
2 SDB is the sequence database ;
3 θ is the support threshold;
4 M and N are the gap min and max bound;
5 W and Y are the span min and max bound.
6 . Pre: variables 〈P1, . . . , Pi〉i∈[1..l] are bound
7 Pi is the new assigned variable since previous call (let’s Pi = a).
8

9 if a = ε then
10 for j ∈ { i+ 1, · · · , l } do
11 Pj .assign(ε) . Filtering rule.2
12 Remove all embeddings that do not satisfy minimum span W and fail if the

pattern should no longer be frequent
13 else
14 freqs = ProjectAndGetFreqs(i, SDB, a,M,N,W, Y) . Detailed in Alg. 6.2.
15 foreach b ∈ D(Pi+1) do
16 if b 6= 0 ∧ freq[b] < θ then
17 Pi+1.remove(b)

should only count symbols appearing in an extension window. Indeed, a symbol not
appearing in an extension window of any embedding of the sequence would not be
a valid support for extending the current pattern as it would not satisfy the time
constraints.

This leads to the following key ingredients of the ProjectAndGetFreqs function:
1) as presented in Section 6.4.2, we adapt the backtracking-aware data structure
introduced in [AGS16] to store all possible occurrences of the pattern in a sequence,
including the starting symbol to support span constraints; 2) we avoid scanning a
sequence for a symbol beyond the (precomputed) last occurrence of that symbol in
the sequence; 3) we introduce the concept of extension window of an embedding
and avoid to scan overlapping windows multiple times; 4) we avoid searching for the
position of the start of an extension window, which depends on the minimum gap
time, by precomputing these position in advance. These ingredients are detailed
next.

Ingredient 1. Avoid scanning all sequences

We reuse the lastPosMap precomputed structure of PPIC to avoid scanning a
sequence if the last position of that sequence is before the start of the extension
window. For a symbol a, the lastPosMap[a] is the last position of this symbol in
the sequence: lastPosMap[a] = max{p ≤ size(s) : s[p] = a}.

6.5. PPICT GLOBAL CONSTRAINT UNDER TIME CONSTRAINTS 125

Example 6.11. Assuming the lastPosMap precomputed structure provided
in Table 6.1c and the symbol A, lastPosMap[A] is {1, 6, 1, 1}. Hence, when
searching for A, we must stop at the first position for the sequences sid1, sid3
and sid4 but for the sequence sid2 we stop at position 6.

However, we cannot use the same structure for support counting (which also
need to search symbols over sequences) as PPIC did, since this assumes that all
symbols up to the end of the sequence must be counted, while we should only
count symbols in the extension windows. This can have a significant impact if the
sequences contain many duplicates symbols as shown in [AGS16]. In our case, this
problem is minimised since extension windows are often smaller.

Ingredient 2. Avoid scanning more than once the events occurring in
overlapping extension windows

The extension windows of a sequence can overlap. For instance in Figure 6.1b with
α = 〈AD〉, in sid3, 〈(E, 12)〉 is present in both extension windows. Then when
computing the freqs vector, some positions could be revisited several times. This
source of inefficiency can be avoided by keeping track of the current largest position
visited so far in any extension window. This position is denoted pos in Algorithms 6.2
and 6.3. When the next extension window for the current sequence is considered by
updateSupport in Algorithm 6.3, all symbols before pos have already been counted,
so only positions after pos should be visited and afterwards pos is updated.

Ingredient 3. Avoid scanning the sequences when given a minimum gap

Given the current pattern α = 〈α1α2 . . . αk〉, a sequence s and a valid
gap[M,N]span[W,Y]-embedding e = (e1, e2, . . . , ek), all the symbols in the extension
window ewgap[M,N]span[W,Y]

e (s) must be visited for updating the frequency counters.
While it is easy to compute the start time of the extension window using the
minimum gap M : tek

+ M ; finding the first position u in the sequence such that
tu ≥ tek

+ M requires scanning the sequence starting from ek. To avoid this, we
propose to precompute, for the given minimum gap, the position of the beginning of
the extension window from any possible position. This can be done with one linear
scan over each sequence when the propagator is initialised; and the precomputed
positions are stored in a structure called nextPosGap.

Definition 6.7. Building the nextPosGap structure. Assume s = 〈(s1, t1)
(s2, t2) . . . (sn, tn)〉 is a sequence. Given k ∈ [1 . . n] a position in s andM a minimum
gap, the nextPosGap[s][k] is the position of the smallest time satisfying the minimum
gap: nextPosGap[s][k] = i such that (i > k)∧(ti ≥ tk+M)∧(@i′ < i : ti′ ≥ tk+M).

126 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

Example 6.12. Assume s = 〈(A, 2)(B, 5), (D, 6), (C, 10)(B, 11)〉, k = 2 and
M = 3 nextPosGap[s][k] = 4 because t4 = 10 is the smallest time such
that t4 ≥ 5 + 3 = 8. Table 6.1b shows the nextPosGap of SDB (the values
nextPosGap[s][k] > size(s) + 1 means the minimum gap is not available for
that position).

Putting it all together

The core of the algorithm is in the ProjectAndGetFreqs procedure (presented in
Algorithm 6.2) that gathers all the ingredients. We distinguish two cases. Assuming
i ∈ [1 . . l], if i == 1 it means that the pattern was previously empty and is now
composed of one unique symbol. If (i > 1) the pattern is composed of at least two
symbols which means that the gap/span must be considered.

In the first case (i == 1), all sequences of SDB are considered. For every
sequence, all the positions having the symbol a are stored as an embedding. As the
embedding is a singleton, there is not need to consider the gap/span constraints at
this point.

The call to updateSupport (Algorithm 6.3) will update the freqs vector by
visiting each symbol present in the extension window of the current embedding
(position of symbol a). Variable pos is used to avoid incrementing the frequency of
a symbol twice in the same sequence.

In the second case (i > 1), the main loop at line 21 iterates over the previous
(parent) projected database stored between φ and φ + ϕ − 1 and builds the new
one starting at index φ + ϕ. For each embedding of a sequence, s (line 24), the
maximum of the time window is computed. We search all positions only in extension
window ensuring to have time greater than minimum gap time and lower than the
maximum gap and span times computed based on the first and the last element
of the embedding (line 26). The updateSupport is also called to update the freqs
vector for every extended embedding created.

Finally, lines 19 and 35 update sids and embsize in order to ensure the consistency
of the data structure. Then, line 36 updates the reversible integers φ and ϕ to reflect
the newly computed projected database.

6.5.2 Additional constraints

The advantage of CP based sequence mining is its capacity to accept additional
constraints. The global constraint approach PPICt is less flexible than the decompo-
sition approach of [NG15] as it does not expose the embeddings. Nevertheless many
useful syntax constraints [HFPZ13] can be added on the sequence pattern variables:

6.5. PPICT GLOBAL CONSTRAINT UNDER TIME CONSTRAINTS 127

Algorithm 6.2: ProjectAndGetFreqs(i, SDB, a,M,N,W, Y)
1 . Input: i is the position in P representing the current bound variable;
2 SDB is the sequence database ;
3 M and N are the gap min and max bound;
4 W and Y are the span min and max bound.
5 . Output: freq list of projected frequencies.
6 . Internal State: φ, ϕ, sids, embsize, embs.
7

8 φ′ ← φ+ ϕ ϕ′ ← 0 freqs[b]← 0 ∀b ∈ I
9 if i = 1 then . first assigned symbol, scan for symbol

10 for sid = 1 to size(SDB) do . for every sequence in SDB
11 seq ← SDB[sid] nEmb← 0 pos← 0
12 visitedI[b]← false ∀b ∈ I
13 for j ← 0 to lastPosMap[sid][a] do . find each symbol a
14 if seq[j] = a then . new match
15 embs[φ′ + ϕ′][nEmb]← (j, j) nEmb← nEmb+ 1
16 pos← updateSupport(j, j, sid, pos, visitedI) . See Alg. 6.3.
17 if pos ≥ size(seq) then break . window ends with seq

18 if nEmb > 0 then . store sequence meta-data
19 sids[φ′ + ϕ′]← sid embsize[φ′ + ϕ′]← nEmb ϕ′ ← ϕ′ + 1

20 else . non-empty prefix
21 for c← φ to φ+ ϕ− 1 do . for all seq in projected database
22 sid← sids[c] seq ← SDB[sid] nEmb← 0 pos← 0
23 visitedI[b]← false ∀b ∈ I
24 for k ← 1 to embsize[c] do . for each prefix embedding
25 (b, e)← embs[c][k] . begin and end position of embedding
26 maxT ← min(seqt[sid][b] + Y, seqt[sid][e] +N) . max time window
27 j ← nextPosGap[sid][e] . precomputed position of minT
28 while j < lastPosMap[sid][a] ∧ seqt[sid][j] ≤ maxT do
29 if seq[j] = a then . new embedding
30 embs[φ′ + ϕ′][nEmb]← (b, j) nEmb← nEmb+ 1
31 pos← updateSupport(b, j, sid, pos, visitedI) . See Alg. 6.3.
32 if pos ≥ size(seq) then break . window ends with seq
33 j ← j + 1

34 if nEmb > 0 then . store sequence meta-data
35 sids[φ′ + ϕ′]← sid embsize[φ′ + ϕ′]← nEmb ϕ′ ← ϕ′ + 1

36 φ← φ′ ϕ← ϕ′

37 return freqs

128 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

Algorithm 6.3: updateSupport(b, e, sid, pos, visitedI)
1 . Input: sid is the sequence id;
2 b and e are the beginning and end of the time window in sid;
3 pos is the current position in sid;
4 visitedI is the list of the status of items.
5 . Output: k is the new position in sid to consider.
6

7 s←SDB[sid] k ← max(nextPosGap[sid][e], pos)
8 maxT ← min(st[sid][e] +N, st[sid][b] + Y)
9 while k < size(s) ∧ st[sid][k] ≤ maxT do

10 if ¬ visitedI[s[k]] then
11 freqs[s[k]]← freqs[s[k]] + 1 visitedI[s[k]]← true

12 k ← k + 1
13 return k

P = [P1, P2, . . . , Pl]. Note that these constraints are directly2 posted as independent
constraints in the solver constraint store and run together with the mining process.
We can indeed post any such constraint, for example:

Pattern length constraints. One can impose a minimum and a maximum over
the length of the pattern. These constraints are easy to handle considering all patterns
are terminated by the empty symbol (ε). Hence, the minimum pattern length (Lmin)
is defined as ∀i ∈ [1 . . Lmin] and Lmin < l, Pi 6= ε. The Maximum pattern length
(Lmax) is obtained by limiting the length of P to Lmax: P = [P1, P2, . . . , PLmax]
with Lmax < l.

Symbol inclusion/exclusion. The number of occurrences of symbols in
the sequence pattern can be modeled with Among [BC94] and global cardinality
(GCC) [Rég96] constraints largely available in CP-Solvers. Considering v ≥ 0 a
given number of occurrences of symbol i ∈ I, the Among(P, i, v) constraint will
only allow a number v times i (v = 0 prohibits i). To handle several symbols
inclusion/exclusion, one can use several Among constraints or GCC(P,V) constraint
with V a collection of pairs (v, i). GCC also offers the possibility of defining range
of values of occurrences.

Regular expression and grammar. The Regular global constraint [Pes04]
can be used to enforce that P satisfies a given regular expression. Most of CP-
based approaches [AGS16,KLL+16,KLL+15] hence easily support regular expression
constraints. Considering e a user-supplied regular expression and A its determinis-
tic finite automaton, the Regular(P,A) constraint only allows patterns matching
A. Since a regular expression is a formal language, the grammar constraint can
also be used. However, grammar constraint could also use to define context-free
languages [KS10] or general languages [QW06].

2It is neither post-processing nor hard-coded

6.6. IMPLEMENTATION AND PRACTICAL USER GUIDE 129

6.5.3 Time and space complexity

Let us denote by L = size(SDB) the number of sequences, l the length of the longest
sequence, m = size(I) the size of item alphabet. In the worst case, the time and
space complexities of our propagator is in O(L× l2).

Space complexity. Our data structure needs O(l) memory entries to store the embed-
dings for one sequence of length one. The projected database for such a sequence thus
requires O(L× l). During search, the search will branch over each sequence variable
in turn which corresponds to extending the pattern by one symbol at a time. Each
time a symbol is added, an extra layer of embeddings is stored in our trailing-based
data structure (Figure 6.3). Given that each pattern has a length of at most l, the
space complexity of our data structure is hence O(l × L× l) = O(L× l2).

Time complexity. PPICt needs O(l+ (L× l2) +m) = O(L× l2 +m) time to be com-
plete since the lines 10-11 of the Algorithm 6.1 cost O(l), the ProjectAndGetFreqs
method O(L× l2) and line 15 costs O(m). The complexity of the loops 13 and 28
including the updateSupport in Algorithm 6.2 is O(l) since we avoid scanning
overlapping symbols. Hence, the complexity of the ProjectAndGetFreqs method is
O(L× l + L× l × l) = O(L× l2).

6.6 Implementation and Practical User Guide

All our software, datasets and results are available online as open source in order to
make this research reproducible (http://sites.uclouvain.be/cp4dm/).

The implementation of PPICt is available in the CP-Solver OscaR [Osc12] which
is available online3 in free access. In OscaR, one can combine our constraints
with the existing constraints in the solver such as All-Different [Rég94], Global
cardinality [QLvBG04], Grammar [QW06], etc.

For developers who are willing to modify the code directly, a lightweight version
is also available4. One can hence add several constraints for a specific usage without
understanding OscaR deeply. The installation procedure is described in the Install
file in the code directory and merely consists of “importing the project” into your
favourite IDE.

3https://bitbucket.org/oscarlib/oscar/wiki/Home
4https://bitbucket.org/projetsJOHN/cp4dt

http://sites.uclouvain.be/cp4dm/
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/projetsJOHN/cp4dt

130 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

Users can directly download the jar-file which is available on our website5. On
this website, there is a user guide. The general format of the general command is

java -jar ppict.jar [options] <SDB File> <Lmin > < Lmax>

with several options available, including:

• −t: to indicate that the database is provided with timestamps.
• −f : for the frequency constraint (i.e. θ),
• −i: for items inclusion/exclusion constraints,
• −e/−r: for the regular expression constraint,
• −m: for the minimum gap constraint,
• −n: for the maximum gap constraint,
• −w: for the maximum span constraint,
• −y: for the maximum span constraint,
• etc.
Given a sequence database with timestamps (named test.txt), here are some

examples of command:

[Cmd 1]
java -jar ppict.jar test.txt 1 0 -f 2 -t -m 3 -n 7
[Cmd 2]
java -jar ppict.jar test.txt 1 0 -f 2 -t -m 3 -n 7 -y 3
[Cmd 3]
java -jar ppict.jar test.txt 2 0 -f 2 -t -m 3 -n 7 -r "A+B*" A=20,B=30

The test-file input and the outputs of those commands are:

5https://sites.uclouvain.be/cp4dm/spm/ppict/

https://sites.uclouvain.be/cp4dm/spm/ppict/

6.7. EXPERIMENTS 131

Input Output
<sid> <timestamps> <size_of_itemset> <itemset> <sup> : <patern>

1 2 1 10
1 5 1 20
1 6 1 40
1 10 1 30
1 11 1 20
2 1 1 20
2 2 1 10
2 9 1 10
2 12 1 40
2 15 1 30
2 18 1 10
2 24 1 20
3 2 1 10
3 4 1 20
3 6 1 40
3 8 1 40
3 10 1 20
3 12 1 50
3 14 1 30
4 1 1 10
4 2 1 30
4 3 1 30
4 4 1 20

[output 1]
4 : < 10 >
3 : < 10 20 >
3 : < 10 40 >
3 : < 10 40 30 >
4 : < 20 >
2 : < 20 20 >
2 : < 20 30 >
3 : < 40 >
2 : < 40 20 >
3 : < 40 30 >
4 : < 30 >

[output 2]
4 : < 10 >
2 : < 10 20 >
4 : < 20 >
3 : < 40 >
4 : < 30 >

[output 3]
2 : < 20 20 >
2 : < 20 30 >

6.7 Experiments

This section reports the experiments we made to evaluate our approach in com-
parison with other CP-based and specialized methods. More specially, we answer
the following questions: Q1. What is the performance of the state-of-the-art for
sequential pattern mining without time constraints? Q2. What is the difference in
performance of PPICt for sequential patterns mining with time restrictions? Q3.
What is the effect of a standalone constraint in the mining process? Q4. What is
the impact of the computation of the additional embeddings in PPICt?

Before answering these questions, we present in Table 6.2 the features of the
seven real-life datasets that we use, as well as the experimental protocol and the
alternative sequential pattern miners used for the comparisons. Note that the data
and framework are available online and open source6.

6http://sites.uclouvain.be/cp4dm/spm/ppict/

http://sites.uclouvain.be/cp4dm/spm/ppict/

132 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

SDB size(I) size(SDB) allsymbols(SDB) max size(s) avg. size(s) density
BIBLE 13905 36369 787066 100 21.64 0.0016
FIFA 2990 20450 741092 100 36.24 0.0121
Kosarak 21144 69999 558373 796 7.98 0.0004
LEVIATHAN 9025 5834 197251 100 33.81 0.0037
MSNBC 17 31790 423776 100 13.33 0.7841
PubMed 19931 17237 509440 198 29.56 0.0015
protein 25 103120 49729890 600 482.25 19.2901

Table 6.2. Seven real-life datasets features. Respectively: dataset name, number of distinct
symbols, number of sequences, total number of symbols in the dataset, maximum sequence
length, average sequence length, and density computed by allsymbols(SDB)

size(I)×size(SDB) (Kosarak is the
sparsest dataset and Protein is the densest).

Experimental protocol

PPICt is implemented in the Scala language in the CP-Solver OscaR [Osc12]. All
experiments are run in the JVM with maximum memory set to 8GB. All the
experiments are conducted using a 2.7GHz Intel Core i5 64 bit processor and 8GB
of RAM with Linux 3.19.0-32-generic from Mint 17.3. We set the execution time
limit to 3600 seconds (1 hour). We also restrict the output of all software to only
the mining statistics and do not print the patterns found. Minsup denotes the
minimum support θ.

Alternative sequential patterns miners

We make comparisons with GapSeq7 [KLL+16], a CP approach that outperforms
other CP-based methods supporting gap constraints; cSPADE8 [Zak00] a highly
scalable specialized sequence miner that supports gap and span constraints. Its
search is not based on pattern extension as GapSeq and PPICt are, but on repeated
(temporal) joins of embeddings. We also provide a comparison to PPIC 9 [AGS16]
without gap constraints, PPIC has shown to outperform both specialized and generic
miners for standard frequent sequence mining. Table 6.3 shows the supported
constraints for these miners.

7https://sites.google.com/site/cp4spm/
8http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
9http://sites.uclouvain.be/cp4dm/spm/

https://sites.google.com/site/cp4spm/
http://www.cs.rpi.edu/~zaki/www-new/pmwiki.php/Software
http://sites.uclouvain.be/cp4dm/spm/

6.7. EXPERIMENTS 133

Methods Frequency Gap Span Regular Among Length other constraints1

PPICt x x x x x x x
GapSeq x x∗ x x x
cSPADE x x x∗∗ x

Table 6.3. Sequential pattern miners with supported constraints. 1 is any other user-
supplied constraint that does not depend on the embeddings (not implemented but could
be). ∗GapSeq does not consider time but position of events, ∗∗cSPADE does not support
minimum span constraint.

6.7.1 Performances results

Q1: GapSeq vs PPIC vs cSPADE for SPM without time restriction

As shown in [AGS16] and illustrated in Figure 6.4, PPIC clearly outperforms both
CP-based and specialized approaches for many datasets (with several different
features) except for the sparsest dataset Kosarak-70k where it is competitive with
cSPADE. The protein dataset is large and dense10 with many patterns even at high
support. For such a challenging dataset, PPIC is at least one hundred times faster.

0.30 0.28 0.26 0.24 0.22 0.200.30 0.28 0.26 0.24 0.22 0.20

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Kosarak−70k

GapSeq
cSPADE
PPIC

99.990 99.980 99.970 99.96099.990 99.980 99.970 99.960

 10

 340

 670
1000

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Protein

GapSeq
cSPADE
PPIC

Figure 6.4. CPU times for PPIC (without time constraints) with several minsup (missing
points indicate a timeout). Find more experiments in [AGS16] or Chapter 5.

10A dataset is dense if its density, computed by allsymbols(SDB)/
(
size(I)×size(SDB)

)
,

is closed to 1.

134 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

1.0 0.8 0.6 0.4 0.2

 10

 40

 70

100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

BIBLE + Gap[10,30]

cSPADE
GapSeq
PPICt

9 8 7 6 5

3

4

5

6

7

8

9

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

FIFA + Gap[10,30]

cSPADE
GapSeq
PPICt

0.30 0.28 0.26 0.24 0.22 0.20

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Kosarak−70k + Gap[10,30]

cSPADE
GapSeq
PPICt

5 4 3 2 1

 1

 4

 7

10

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

LEVIATHAN + Gap[10,30]

cSPADE
GapSeq
PPICt

99.990 99.985 99.980 99.975 99.970 99.965 99.960

 10

 40

 70

100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Protein + Gap[10,30]

cSPADE
GapSeq
PPICt

10 8 6 4 2

 3.4

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

MSNBC + Gap[10,30]

cSPADE
GapSeq
PPICt

Figure 6.5. CPU times when considering minimum and maximum gap constraints for
several minsup (missing points indicate a timeout)

6.7. EXPERIMENTS 135

Q2: Time performance for PPICt under gap and span constraints

We first compare PPICt with GapSeq and PPIC for gap constraints. Then, we
combine gap and span constraints.

Figure 6.5 shows the CPU time for the sequence mining task under minimum
and maximum gap for several θ (Minsup) values over six datasets. PPICt dominates
both CP-based and specialized methods. Except for the Kosarak dataset, PPICt
is often faster, and increasingly so for low-frequency thresholds. Upon inspecting
the output of the Kosarak dataset we see that several frequent patterns have the
same size and cover the same set of sequences. The temporal join approach used by
cSPADE is very fast in this case. This was also the case for PPIC in the non-time
constrained case.

1.0 0.8 0.6 0.4 0.2

 10

 340

 670
1000

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

BIBLE + Gap[3,10] + Span[0,30]

cSPADE
PPICt

14 12 10 8 6

 1

 34

 67
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

FIFA + Gap[3,10] + Span[0,30]

cSPADE
PPICt

99.990 99.980 99.970 99.960

 10

 40

 70
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

Protein + Gap[3,10] + Span[0,30]

cSPADE
PPICt

2.0 1.5 1.0 0.5

 10

 40

 70
100

Minsup (%)

T
im

e
 (

s
,

lo
g

s
c
a

le
)

PubMed + Gap[3,10] + Span[0,30]

cSPADE
PPICt

Figure 6.6. CPU times when considering both gap and span constraints for several minsup
(missing points indicate a timeout).

We also combine the gap and span constraints, which is not supported by GapSeq.
The results are presented in Figure 6.6. Our approach outperforms cSPADE by

136 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

a wide margin in this case. These results show that PPICt is still efficient when
combining time constraints.

Q3: Effect of maximum gap constraint

We now look at the sensitivity of the methods to the threshold of the maximum
gap constraint. We fix the frequency threshold to a low value that makes mining
without further constraints challenging and increase the maximum gap constraint
from 1 to 9. As can be seen in Figure 6.7, the runtime of cSPADE increases much
more quickly with increasing maximum gap. For GapSeq it depends on the dataset,
but PPICt’s performance is more stable and increases more moderately compared
to the other methods.

2 4 6 8

 0

 200

 400

 600

 800

1000

1200

1400

Maximum gap (N)

T
im

e
 (

s
)

BIBLE + minsup=0.1%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

 200

 400

 600

 800

1000

1200

1400

Maximum gap (N)

T
im

e
 (

s
)

FIFA + minsup=2%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

20

40

60

Maximum gap (N)

T
im

e
 (

s
)

LEVIATHAN + minsup=0.8%

cSPADE
GapSeq
PPICt

2 4 6 8

 0

100

200

300

400

Maximum gap (N)

T
im

e
 (

s
)

PubMed + minsup=0.5%

cSPADE
GapSeq
PPICt

Figure 6.7. CPU times for several maximum gap with fixed minsup over Bible, Fifa,
Leviathan and PubMed datasets (missing points indicate a timeout).

6.7. EXPERIMENTS 137

Q4: Experiments over databases without time restrictions

To answer Q4., we use PPICt to find only the sequential patterns without any
time considerations. That is PPICt where minimum gap/span is 0 and maximum
gap/span is the infinity, denoted by PPICt[0,Inf]. Hence, we compare PPIC with
PPICt[0,Inf]. The results are reported in Figure 6.8. We can notice that PPIC is
always faster. This is possible since such PPIC improvements could not be used
under time restrictions. Moreover, to preserve the structure of datasets the reduction
of datasets by preprocessing is forbidden.

1.0 0.8 0.6 0.4 0.2

 0

100

200

300

400

Minsup (%)

T
im

e
 (

s
)

BIBLE

PPICt[0,Inf]
PPIC

14 12 10 8 6

 0

100

200

300

400

500

600

700

Minsup (%)

T
im

e
 (

s
)

FIFA

PPICt[0,Inf]
PPIC

0.30 0.28 0.26 0.24 0.22 0.20

2

4

6

8

Minsup (%)

T
im

e
 (

s
)

Kosarak−70k

PPICt[0,Inf]
PPIC

5 4 3 2 1

 5

10

15

Minsup (%)

T
im

e
 (

s
)

LEVIATHAN

PPICt[0,Inf]
PPIC

Figure 6.8. Comparing PPICt without time restriction (PPICt[0,Inf]) with PPIC

6.7.2 Handling additional Constraints

To demonstrate the ability to accommodate additional constraints we experiment
the combination of PPICt with some other syntax constraints. The result is shown
in Table 6.4; the constraint parameters were artificially constructed in an interactive
setting. We can observe that the addition of the constraints reduces the number

138 CHAPTER 6. SPM WITH TIME CONSTRAINTS USING CP

of solutions and the computation time. A generate-and-filter approach using a
specialized algorithm would not be able to benefit from stronger filtering.

Gap +Pattern Length +Among +Regular
nSols time(s) nSols time(s) nSols time(s) nSols time(s)

BIBLE∗ 32307 46.181 1542 45.622 171 43.390 8 0.191
PubMed∗∗ 13086 22.632 1304 21.600 235 19.889 3 0.091

∗ θ = 0.1% ∧ Gap[10, 30] ∧ (Lmin = Lmax = 5) ∧ the number of A equal
to 1 ∧ E is forbidden ∧ Regular(A+(B{2,}|C*|D+)B*C*D*) where
(A = 11829, B = 2, C = 8212, D = 6556, E = 5590)
∗∗ θ = 0.3% ∧ Gap[10, 30] ∧ (Lmin = Lmax = 4) ∧ the number of A and B
equal to 1 ∧ Regular(B+A*C*A*) where (A = 3335, B = 12155, C = 16599)

Table 6.4. Combination of pattern length, item inclusion/exclusion, regular expression
constraints with gap constraint.

6.8 Summary, Outlooks, Further readings

We introduced PPICt, a global constraint to solve sequential pattern mining problem
under time constraints. It integrates gap and span constraints for databases with or
without timestamps. Our approach often outperforms cSPADE, the state-of-the-art
specialized method and always outperforms GapSeq, the state-of-the-art CP based
approach allowing to handle time constraints. This was made possible thanks to
the backtracking-aware data structure to store embeddings of pattern based on
trailing techniques. Also, algorithmic ingredients help to improve further: the
precomputed next position of minimum gap, the avoidance of scanning all dataset
and the avoidance of the overlapping between extension windows when computing
the frequencies of symbols. Moreover, we report experimental results over several
real-life datasets which demonstrate that our proposal is mostly competitive with or
outperforms both specialized and CP-based methods. Additional constraints such
as regular expression, item inclusion/exclusion, pattern length constraints are also
available to increase the flexibility of users and practitioners.

7

C
h

a
p

t
e

r

Frequent Episode Mining us-
ing Constraint Programming

“A teacher is one who makes himself progressively unnecessary..”

–Thomas Carruthers

Overview The number of applications generating sequential data is exploding.
This work studies the discovering of frequent patterns in a large sequence of
events, possibly time-stamped. This problem is known as the Frequent Episode
Mining (FEM). Similarly to the mining problems recently tackled by Constraint
Programming (CP) in Chapters 5 and 6, FEM would also benefit from the
flexibility offered by CP to accommodate easily additional constraints on the
patterns. These advantages do not offer a guarantee of efficiency. Therefore,
we introduce two global constraints for solving FEM problems with or without
time consideration.

Contribution The contribution of this work is a flexible and efficient ap-
proach for solving the frequent episode mining problem, which use an implicit
decomposition having a O(n) spatial complexity. This is impressive because
spatial complexity is often a main issue for existing FEM methods. To achieve
this, we adapt the backtracking-aware data structure and we are also able to
take some algorithmic advantages in the filtering algorithms using the property
that the (implicit) database is composed of sorted suffixes from a same sequence.

Main source This chapter is mainly based on our paper [CAS18].

139

140 CHAPTER 7. FEM USING CP

7.1 Context and Motivation

The trend in data science is to automate the data-analysis as much as possible.
Examples are the Automating machine learning project [HKV19], or the commer-
cial products www.automaticstatistician.com and www.datarobot.com. The Auto-
Weka [KTH+17] and Auto-sklearn [FKE+15] modules can automate the selection
of a machine learning algorithm and its parameters for solving standard classifi-
cation or regression tasks. Most of these automated tools target tabular datasets,
but not yet sequences and time-series data. Data-mining problems on sequences
and time series remain challenging [YW06] but are nevertheless of particular inter-
est [DLM+98,SYCC+15]. We believe that CP, because of the flexibility it offers, may
play a role in the portfolio of techniques available for automating data-science on
sequential data. As an illustration of this flexibility, Negrevergne and Guns [NG15]
identified some constraints that could be stated on the patterns to discover in a
database of sequences: length, exclusion/inclusion on symbols, membership to a
regular language [Pes04], etc. The idea of using CP for data-mining is not new.
It was already used for item-set mining [GDT+13, GNDR11, NG10, SAG17], for
SPM [AGS16,AGS17,KLL+16,NG15] or even for mobility profile mining [KNGO15].

In this work we address the Frequent Episode Mining (FEM), first introduced
with the apriori-like method WINEPI [MTV95] and improved on MINEPI [MT96],
with a CP approach. Contrarily to the traditional SPM, FEM aims at discovering
frequent patterns in a single but very long sequence of symbols possibly time-stamped.
Assume for instance a non time-stamped sequence 〈a, b, a, c, b, a, c〉 and we are looking
for patterns of length three occurring at least two times. Such a subsequence is 〈a, b, c〉
that occurs exactly two times. A first occurrence is 〈a,b, a, c, b, a, c〉 and a second
one is 〈a, b,a, c,b, a, c〉. The attentive reader may wonder why 〈a,b, a, c, b, a, c〉 is
not counted. The reason is that the head/total frequency measure [ITN04] avoids
duplicate counting by restricting a counting position to the first one. This measure
has some interesting properties such as the well-known anti-monotonicity which
states that if a sequence is frequent all its subsequences are frequent too and reversely.
This property makes it possible to design faster data-mining algorithm. Indeed, based
on these properties, Huang and Chang [HC08] proposed two algorithms, MINEPI+
and EMMA. While the first one is only a small adaptation of MINEPI [MT96],
the second uses memory anchors in order to accelerate the mining task with the
price of a greater memory consumption. Variants of this problem such as closed
episodes [TC10,ZLC10], episode or itemset in tream [LSU07,CDG07], and set of
sequences [CGR09,] can be considered. When considering time-stamped sequences
such as 〈(a, 1), (b, 3), (a, 5), (c, 6), (b, 7), (a, 8), (c, 14)〉, one may also want to impose
time constraints on the time difference between any two matched symbols or between
the first and last matched ones. Such constraints, called gap and span were also
introduced for the SPM [AGS17] with CP.

The problem of discovering frequent pattern in a very long sequence can be

www.automaticstatistician.com
www.datarobot.com

7.2. MINING EPISODES IN A NON TIMED SEQUENCE 141

reduced do the standard SPM problem [AMS+96]. The reduction consists in
creating a database of sequences composed of all the suffixes of the long sequence.
For our example, the sequence database would be: 〈a, b, a, c, b, a, c〉, 〈b, a, c, b, a, c〉,
〈a, c, b, a, c〉, 〈c, b, a, c〉, 〈b, a, c〉, 〈a, c〉, 〈c〉. A small adaptation of existing algorithms
is required though to match any sequence of the database on its first position in
accordance with the head/total frequency measure. This reduction has one main
drawback. The spatial complexity is O(n2) with n the length of the sequence. Such
a complexity will quickly exceed the available memory for sequence lengths as small
as a few thousands.

We introduce flexible and efficient approaches (two global constraints)
for solving the frequent episode mining problem, which use an implicit
decomposition having a O(n) spatial complexity.

Our global constraints are inspired by the state-of-the-art approaches [AGS16,
AGS17,KLL+16] but keeping the reduction into a suffix database implicit instead
of explicit. We propose two versions: with and without considering gap and span
constraints. We are also able to take some algorithmic advantages in the filtering
algorithms using the property that the (implicit) database is composed of sorted
suffixes from a same sequence. To the best of our knowledge, this work is the first
CP-based approach proposed for solving efficiently this family of problems with the
benefit that several other constraints such as Regular expression and Grammar can
be added.

7.2 Mining Episodes in a Non Timed Sequence

7.2.1 Technical Background

Let I = {1, . . . ,m} be an alphabet representing a set of possible symbols. We define
a non timed sequence s =

〈
s1, . . . , sn

〉
over I as an ordered list of symbols such

that ∀i ∈ [1 . . n], si ∈ I. Let us consider the following definitions based on the
formalization of Aoga et al. [AGS16] and Huang and Chang [HC08].

Definition 7.1 (Subsequence relation, Embedding). α = 〈α1, . . . , αk〉 is a subse-
quence of s = 〈s1, . . . , sn〉, denoted by a � s, if k ≤ n and if there exists a list of
indexes (e1, . . . , ek) with 1 ≤ e1 ≤ · · · ≤ ek ≤ n such that sei = αi. Such a list is
referred as an embedding of s. Sequence s is also referred as a super-sequence of α.

Example 7.1. 〈a, b, c〉 is a subsequence of the sequence s = 〈a, b, a, c, b, a, c〉
with embeddings (1, 2, 4) or (1, 2, 7) or (3, 5, 7).

142 CHAPTER 7. FEM USING CP

Definition 7.2 (Episode-embedding). Let us consider α = 〈α1, . . . , αk〉 � s. Em-
bedding (e1, . . . , ek) is an episode-embedding if it is an embedding of s and if all the
other embeddings (e1, e

′
2, . . . , e

′
k) are such that (e2, . . . , ek) �L (e′2, . . . , e′k) where �L

represents a lexicographic ordering.

Example 7.2. 〈a, b, c〉 is a subsequence of s with (1, 2, 4) and (3, 5, 7) as
episode-embeddings. Besides, (1, 2, 7) is not an episode-embedding because
(2, 7) is lexicographically greater than (2, 4).

Definition 7.3 (Support). The support Sups(α) of a subsequence α in a sequence
s is the number of episode-embeddings of α in s.

Example 7.3. For s of Example 7.1, we have Sups(〈a, b, c〉) = 2.

Frequent Episode Mining (FEM) problem can then be formalised. Let us
underline that this definition is related to the total frequency measure introduced by
Iwanuma et al. [ITN04]. The goal is to count up occurrences without duplication. To
do so, we use the concept of prefix-projection introduced in PrefixSpan [HPMA+01]
and used thereafter by Kemmar et al. [KLL+16] and Aoga et al. [AGS16] for SPM.

Definition 7.4 (Frequent Episode Mining (FEM)). Given a set of symbols I, a
sequence s over I and a threshold θ, the goal is to find all the subsequences α in s
such that Sups(α) ≥ θ. These subsequences are called episodes.

Let now recall the notion of Prefix-Projection.

Definition 7.5 (Prefix, Projection, Suffix). Let α = 〈α1, . . . , αk〉 and s =
〈s1, . . . , sn〉 be two sequences. If α � s, then the prefix of s w.r.t. α is the small-
est prefix of s that remains a super-sequence of α. Formally, it is the sequence
〈s1, . . . , sj〉 such that α � 〈s1, . . . , sj〉 and such that there exists no j′ < j where
α � 〈s1, . . . , sj′〉. The sequence 〈sj+1, . . . , sn〉 is then called the suffix of s w.r.t.
α, or the α-projection, and is denoted by s|α. If α is not a subsequence of s, the
α-projection is empty.

Example 7.4. Given sequence s of Example 7.1 and α = 〈b〉, sequence 〈a, b〉
is a prefix of s w.r.t. α and 〈a, c, b, a, c〉 is a suffix (s|α = 〈a, c, b, a, c〉).

Definition 7.6 (Initial Projection). An initial projection of a sequence s =
〈s1, . . . , sn〉 w.r.t. a symbol x, denoted by s|Ix , is the list of all the suffixes
s′ = 〈si, . . . , sn〉 such that si−1 = x for all i ∈ (1 . . n].

7.2. MINING EPISODES IN A NON TIMED SEQUENCE 143

Example 7.5. For s and a symbol a, we have s|Ia =
[
〈b, a, c, b, a, c〉, 〈c, b, a, c〉,

〈c〉
]
.

Definition 7.7 (Internal Projection). Given a list of sequences Ω, an internal
projection of Ω w.r.t. pattern α, denoted by Ω|α, is the list of the α-projection of all
sequences in Ω. All the empty sequences are removed from Ω|α.

Example 7.6. For α = 〈b〉 and Ω =
[
〈b, a, c, b, a, c〉, 〈c, b, a, c〉, 〈c〉

]
, we obtain

Ω|α =
[
〈a, c, b, a, c〉, 〈a, c〉

]
.

Definition 7.8 (Projected Frequency). Given the list of sequences Ω, and a projec-
tion s|α for each sequence s ∈ Ω, the projected frequency of a symbol is the number
of α-projected sequences where the symbol appears.

Example 7.7. Given the internal projection Ω|α of Example 7.6, the projected
frequencies are freq(a) = 2, freq(b) = 1 and freq(c) = 2.

In practice, the initial projections and internal projections can be efficiently stored
as a list of pointers in the original sequence s. In our example (s = 〈a, b, a, c, b, a, c〉),
we have s|Ia = [2, 4, 7] and starting from Ω = s|Ia we can represent Ω|〈b〉 =

[
3, 6
]
. This

representation introduced in PrefixSpan [HPMA+01] is called the pseudo projection
representation (find more detail in Chapter 2).

Since the search follows a depth-first-search strategy, the pseudo projections can
be stacked on a same vector allowing to reuse allocated entries on backtrack. This
memory management is known as a trailing in CP and was introduced for SPM by
Aoga et al. [AGS16,AGS17].

7.2.2 Problem Modelling

Our first contribution is a global constraint, episodeSupport, dedicated to find
frequent patterns (or episodes [MTV95]) in a sequence without considering time.
Let s = 〈s1, . . . , sn〉 be a sequence of n symbols over I, the set of distinct symbols
appearing in s, and θ, the minimum support threshold desired.

Decision Variables Let P = 〈P1, . . . , Pn〉 be a sequence of variables representing a
pattern. The domain of each variable is defined as Pi = I ∪ {ε} for all i ∈ [1 . . n]. It
indicates that each variable can take any symbol appearing in s as value in addition
to ε, which is defined as the empty symbol. An assignment of Pi to ε means that Pi

144 CHAPTER 7. FEM USING CP

has matched no symbol. It is used to model patterns having a length lower than n.
A solution is an assignation of each variable in P .

EpisodeSupport Constraint The episodeSupport(P , s, θ) constraint enforces
the three following constraints:

1. P1 6= ε

2. Pi = ε→ Pi+1 = ε, ∀i ∈
[
2 . . n

)
and

3. Sups(P) ≥ θ.

The first constraint states that a pattern cannot begin with the empty symbol.
It indicates that a valid pattern must contain at least one symbol. The second
constraint ensures that ε can only appear at the end of the pattern. It is used
in order to prevent same patterns with ε in different positions to be part of the
same solution (such as 〈a, b, ε〉 and 〈a, ε, b〉). Finally, the last constraint states that
a pattern must occur at least θ times in the sequence. The goal is then to find
an assignment of each Pi satisfying the three constraints. The episodeSupport
constraint filters from the domains of variables P the infrequent symbols in s at
each step in order to find an assignment representing a frequent pattern according
to θ. All the inconsistent values of the next uninstantiated variables in the pattern
are then removed. Assuming the pattern variables are labeled in static order from
left to right, the search is failure free when only this constraint must hold (i.e. all
the leaf nodes are solution). Besides, episodeSupport is domain consistent: the
remaining values in the domain of each variable are part of a solution because all of
them have, at least, one support. Additional constraints can also be integrated to
the model in order to define properties that the patterns must satisfy. For instance,
we can enforce patterns to have at most k symbols or to follow a regular expression.

7.2.3 Filtering Algorithm

Preprocessing The index of the last position of each symbol in s is stored into a
map (lastPos). For instance, s = 〈a, b, a, c,b,a, c〉 gives

{
(c→ 7), (a→ 6), (b→ 5)

}
.

The map can be iterated in a decreasing order by the last positions.

Sequence Projection and Pseudo Projection The key idea is to successively
compute a projection from the previous one each time a variable has been assigned.
The assignment of the first variable of the pattern (P1) involves an initial projection.
It splits s into a list of subsequences such that each one begins with the projected
symbol. The assignment of the other variables (P2 to Pn) implies an internal
projection. This behavior is illustrated in the upper part of Figure 7.1 for an
arbitrary example. The steps leading to pattern 〈a, b, c, c〉 are detailed. Three
subsequences are obtained after an initial projection of symbol a

(
(0)→ (1)

)
. While

there are non-empty sequences, internal projections are successively performed(
(1)→ (4)

)
and the pattern (P) is incrementally built.

7.2. MINING EPISODES IN A NON TIMED SEQUENCE 145

〈a, b, a, c, b, a, c〉

(0)

s

3 〈b, a, c, b, a, c〉
3 〈c, b, a, c〉
3 〈c〉

(1)

Ω1 : s|Ia
P : 〈a〉

3 〈a, c, b, a, c〉
3 〈a, c〉
7

(2)

Ω2 : Ω1|〈b〉
P : 〈a, b〉

3 〈b, a, c〉
3 〈〉
7

(3)

Ω3 : Ω2|〈c〉
P : 〈a, b, c〉

3 〈〉
7
7

(4)

Ω4 : Ω3|〈c〉
P : 〈a, b, c, c〉

a b c c

posv

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

1 2 3 4 5 6 7 2 4 7 3 6 5 8 8 . .

φ = 1
ϕ = 7
ψ = 0

(0)

φ = 8
ϕ = 3
ψ = 1

(1)

φ = 11
ϕ = 2
ψ = 2

(2)

φ = 13
ϕ = 2
ψ = 3

(3)

φ = 15
ϕ = 1
ψ = 4

(4)

Figure 7.1. Sequence projection (3 indicates a match, 7 otherwise) and its reversible
vector.

In practice, only pointers to the position in each sequence where the prefix has
matched are stored. It is the mechanism of pseudo projection. As Aoga et al. [AGS16],
we implement it with a reversible vector (posv) and a trail-based structure (lower
part of Figure 7.1). The idea is to use the same vector during all the search inside
the propagator, and only to maintain relevant start and stop positions. At each
propagator call, three steps are performed. First, the last recorded start and stop
positions are taken. Secondly, the propagator records the new information in the
vector after the previous stop position. Finally, the new positions are updated
in order to retrieve the information added. The reversible vector is then built
incrementally. For each projection, the corresponding start index (φ) in the vector
as well as the number of sequences inside the projection (ϕ) are stored. In other
words, information related to a projection are located between indexes i ∈ [φ, φ+ϕ).
Besides, the index of the variable Pi that has been assigned (ψ) is also recorded
after each projection step. Before the first assignation ψ is equal to zero. The three
variables are implemented as reversible integers. Initially, all the indexes are present
in the vector, but all along the pseudo-projections, only the non-empty sequences
are considered.

Propagation The goal is to compute a projection each time a variable has been
assigned to a symbol a. Assignments of variables are done successively from the first
variable to the last one. The propagator is then called after each assignment. It is
shown in Algorithm 7.1. Initialisation of reversible structures is done when ψ = 0
(lines 8-9). If the last assigned variable (Pψ) has been bound to ε, the algorithm
enforces all the next variables to be also bound to ε (lines 10-12). The pattern
is then completed and the propagation is finished. Otherwise, after each variable

146 CHAPTER 7. FEM USING CP

Algorithm 7.1: propagate(s,Σ, a, P)
1 . Input: s is the initial long sequence of size n.
2 Σ is the set of symbols and a is a symbol.
3 If ψ > 0 then 〈P1, . . . , Pψ〉 ∈ P are bound and Pψ is assigned to a.
4 θ is the support threshold.
5 posv, φ, ϕ and ψ are the reversible structures as defined before.
6 . Internal State: posv, φ, ϕ and ψ.
7

8 if ψ = 0 then
9 φ := 1 ϕ := n ψ := 1 posv[i] := i i ∈

[
1 . . n

]
10 if Pψ = ε then
11 for j ∈ [ψ + 1, n] do
12 Pj .assign(ε)

13 else
14 freq := sequenceProjection(s,Σ, a) . Detailed in Alg. 7.2.
15 foreach b ∈ Domain(Pψ+1) do
16 if b 6= ε ∧ freq[b] < θ then
17 Pψ+1.removeV alue(b)

binding, the projected sequence and the projected frequencies are computed (line
14). Finally, all the infrequent symbols are removed from the domain of Pψ+1 (lines
15-17). Projected frequency of each symbol in the domain of Pψ+1 (except ε) is
compared to the threshold and removed if it is infrequent.

Sequence Projection Let us now present how sequences are projected (Algo-
rithm 7.2). First, the projected frequency of each symbol for the current pseudo
projection is set to 0 (freq on line 9). The main loop (lines 10-24) iterates over the
previous projection thanks to the reversible integers φ and ϕ. At each iteration a
value in posv is considered. The next condition (line 13) is used to distinguish the
initial from an internal projection. If a is the first projected symbol and if it does
not match with the first symbol of the sequence, then the sequence is not included
in the projection. Otherwise, an internal projection is applied.

The next expression (lines 14-15) is an optimization we introduced, called early
projection stopping. This optimization is based on one invariant of our structure: it
stores suffixes of s with a decreasing order by their size. Each suffix in a projection is
then strictly included in all the previous ones. When a no-match has been detected
in a sequence, all the next ones can be directly discarded without being checked. It
stops the internal projection as soon as possible. The early projection stopping gains
importance when the number of sequences is large. Then, if a is not present in the
current considered sequence, the loop can be stopped and unnecessary computation
is avoided.

7.2. MINING EPISODES IN A NON TIMED SEQUENCE 147

Algorithm 7.2: sequenceProjection(s,Σ, a)
1 . Input: s is the initial long sequence.
2 Σ is the set of symbols.
3 a is the current projected symbol (a = Pψ).
4 posv, φ, ϕ and ψ are reversible structures as defined before.
5 posv[i] with i ∈ [φ, φ+ ϕ) is initialized.
6 . Output: freq list of projected frequencies
7 . Internal State: posv, φ, ϕ and ψ.
8

9 j ← ϕ sup← 0 prevPos← −1 freq[b]← 0 ∀b ∈ Σ
10 posStack ← Stack()
11 for i ∈ [φ, φ+ ϕ− 1] do
12 pos← posv[i]
13 if ψ > 1 ∨ a = s[pos] then
14 if pos > lastPos[a] then
15 break . Early projection stopping
16 else
17 if prevPos < pos then
18 while a 6= s[pos] do
19 pos← pos+ 1
20 prevPos← pos . Position caching
21 else
22 pos← prevPos

23 posStack.push(pos+ 1)
24 posv[j]← pos+ 1 j ← j + 1 sup← sup+ 1

25 foreach (x, posx) in lastPos do
26 while posStack.notEmpty ∧ posStack.top > posx do
27 posStack.pop

28 freq[x]← posStack.size . Projected frequency
29 if posStack.isEmpty then break
30 φ← φ+ ϕ ϕ← sup ψ ← ψ + 1
31 return freq

At this step, we are sure that a appears at least once in the current sequence
in the projection. Lines 17 to 22 make the search for the match, either by position
caching, or by iteration on the positions. Position caching is a second optimization
we introduced. Once a match has been detected in a sequence, the position of the
match is recorded. Thanks to the aforementioned invariant, we are sure that the
match cannot occur before this position (because we only have one sequence). If
this position is greater than the start position of the sequence (in posv), a match is
directly detected. The reversible vectors are then updated (line 24). Variable sup is

148 CHAPTER 7. FEM USING CP

used to store the size of the new projection.
The last loop (lines 25-29) updates the projected frequency of each symbol.

The projected frequency of a symbol in a projection corresponds to the number
of sequences of the projection beginning at an index lower than the index of the
last position of the symbol. This idea was introduced in LAPIN [YWK07] and
exploited by Aoga et al. [AGS16]. It can be implemented efficiently thanks to
the invariant and lastPos map. It is illustrated in Figure 7.2 (upper part) with
lastPos = {(c→ 7), (a→ 6), (b→ 5)}. The position just after each match is pushed
in a LIFO structure, posStack. The last matched position is located on the top of
the stack.

3 〈a, b, a, c, b, a, c〉
3 〈a, c, b, a, c〉
3 〈a, c〉

(1)

Ω1 : s|Ia

a
7
4
2

posStack(Ω1)

7
4
2

(c→ 7)

freq[c] = 3
7
4
2

(a→ 6)

pop()

4
2

(a→ 6)

freq[a] = 2

4
2

(b→ 5)

freq[b] = 2

Figure 7.2. Efficient frequency computation.

Once the stack is obtained, the idea is to successively compare in a decreasing
order the last position of each symbol with the top of the stack. Illustration of this
behavior is presented in Figure 7.2 (lower part). If the last position of a symbol is
greater than the top of the stack, it indicates that the symbol occurs at least once
in the current sequence and consequently in all the previous ones in the stack. The
projected frequency of this symbol corresponds then to the remaining size of the
stack and the next symbol in lastPos can be processed. Otherwise, we are sure that
the symbol has no occurrence in the current sequence. Its position is popped and
the comparison is done with the new top. The resulting projected frequencies are
c = 3, a = 2 and b = 2. This mechanism has a time complexity of O(n+ |I|). For
comparison, projected frequencies are computed in O(n×|I|) by Aoga et al. [AGS16]
(each subsequence is scanned at each projection). Finally, the reversible integers are
updated and the projected frequency map is returned.

Time and Spatial Complexity Main loop of Algorithm 7.2 (lines 11-24) is
computed in O(n2) and the projected frequencies (lines 25-29) in O(n+ |I|) = O(n)
(because the number of different symbols is bounded by the sequence size). In
Algorithm 7.1, lines 8-9 cost O(n) and the domain pruning (lines 15-17) is performed
in O(|I|). It gives O(n+(n2 +n)+ |I|) = O(n2). For the spatial complexity, we have
O(n+n× d) = O(n× d) with d the maximum depth of the search tree, which is the
maximum size of the reversible vector. For comparison, an explicit decomposition of
the problem gives O(n2 + n× d) = O(n2).

7.3. MINING EPISODES IN A TIMED SEQUENCE 149

7.3 Mining Episodes in a Timed Sequence

7.3.1 Technical Background

So far, episodeSupport can only deal with sequences of symbols where time is
not considered. In practice, sequences can also be time-stamped. Such sequences
are most often referred as sequences of events instead of sequences of symbols and
new constraints can then be expressed. For instance, we can be interested in finding
episodes such that the elapsed time between two events does not exceed one hour.
We define a sequence of events s =

〈
(s1, t1), . . . , (sn, tn)

〉
over I as an ordered list

of events (si) occurring at time ti such that for all i ∈ { 1, . . , n } we have si ∈ I
and t1 ≤ t2 ≤ . . . ≤ tn. The list containing only the events is denoted by ss and
the list of timestamps by st. All the principles defined in the previous sections are
reused. In addition, we are now able to enforce time restrictions. Two of them are
often used in practice: gap and span. The former (gap) restricts the time between
two consecutive events while the latter (span) restricts the time between the first
and the last event. Considering such restrictions cannot be done only by imposing
additional constraints in the model [AGS17]. It requires to adapt the subsequence
relations (Definition 7.9) and to design a dedicated propagator. We need to define
the extension window. The extension window of an embedding contains only events
whose timing satisfies gap constraint.

Definition 7.9 (Subsequence under gap/span). α = 〈α1, . . . , αx〉 is a subsequence
of s =

〈
(s1, t1), . . . , (sn, tn)

〉
under gap[M,N], denoted by α �gap[M,N] s, if and

only if ss is a subsequence of embedding (e1, . . . , ek) according to Definition 7.1,
and if ∀i ∈ [2 . . k] we have M ≤ tei

− tei−1 ≤ N . The embedding (e1, . . . , ek)
under �gap[M,N] relation is called a gap[M,N]-embedding. (e1, . . . , ek) is an episode-
embedding of α according to Definition. 7.2 where �gap[M,N] is considered for the
subsequence relation. The support of α, denoted by Supgap

[M,N]

s (e) , is the number of
gap[M,N]-embeddings of α in s. Similarly, α is a subsequence of s under span[W,Y],
denoted by α �span[W,Y] s, if and only if ss is a subsequence of embedding (e1, . . . , ek)
according to Definition 7.1, and if W ≤ tek

− te1 ≤ Y . Relation �span[W,Y] and
Supspan

[W,Y]

s (e) are also defined similarly.

Example 7.8. Let us consider s =
〈
(a, 2), (b, 4), (a, 5), (c, 7), (b, 8), (a, 9),

(c, 12)
〉
. 〈a, b, c〉 is a subsequence of s under gap[1, 3] with embedding (1, 2, 4).

(3, 5, 7) is not a gap[1, 3]-embedding because te3 − te2 = 12− 8 > 3. In addition,
〈a, b, c〉 is a subsequence of s under span[6, 10] with embedding (3, 5, 7). (1, 2, 4)
is not valid because te3 − te1 = 7− 2 < 6.

150 CHAPTER 7. FEM USING CP

Definition 7.10 (Extension window). Let e = (e1, e2, . . . , ek) be any gap[M,N]-
embedding of a subsequence α in a sequence s. The extension window of this
embedding, denoted ewgap[M,N]

e (s), is the subsequence
〈
(su, tu), . . . , (sv, tv)

〉
such

that (tek
+M ≤ tu) ∧ (tv ≤ tek

+N) ∧ (tu−1 < tek
+M) ∧ (tv+1 > tek

+N). Each
embedding has a unique extension window, which can be empty.

Example 7.9. Let (3, 4) be a gap[2, 6]-embedding of 〈a, c〉 in sequence s

(Example 7.8). We have ewgap[2,6]
e (s) =

〈
(a, 9), (c, 12)

〉
.

The goal is to find the all patterns having a support, possibly under gap and
span, greater than the threshold. Let P = 〈P1, . . . , Pn〉 be a sequence of variables
representing a pattern. the timed version of episodeSupport(P ,s,θ,M ,N ,W ,Y)
enforces the four following constraints:

1. P1 6= ε,
2. Pi = ε→ Pi+1 = ε, ∀i ∈

[
1, n
)
,

3. Supgap
[M,N]

s (P) ≥ θ and
4. Supspan

[W,Y]

s (P) ≥ θ.

7.3.2 Filtering Algorithm

Precomputed Structures The three structures are shown in Figure 7.3a. First,
the lastPos map is adapted from the previous section in order to store the last
position of each event that can be matched while satisfying the maximum span (Y).
The last position of each event inside each range [t, t+ Y] is recorded, where t is the
timestamp of the event. Maximum span is then implicitly handled by this structure,
which is not done by Aoga et al. [AGS17]. Besides, for each position i in s, the
index of the first (u) and the last (v) positions after i such that tu ≥ ti +M and
tv ≥ ti +N are stored into a map (nextPosGap), where M and N are the minimum
and maximum gap. The nextPosGap is used after each projection in order to directly
access the next extension window. Finally, for each position i in s, the number of
times that each event has occurred inside the range [1, i] in s is stored (freqMap). It
is used in order to efficiently compute the projected frequency of each symbol during
a projection. We can be sure that an event a appears at least once in a window of
range [u, v] if the occurrence of a at the end of the window is strictly greater than
the occurence of a just before the window (freqMap[v][a] > freqMap[u− 1][a]). It
has not been used by Aoga et al. [AGS17].

Storing Several Embeddings When a gap constraint is considered, the anti-
monotonicity property does not hold anymore [AGS17]. The main consequence is

7.3. MINING EPISODES IN A TIMED SEQUENCE 151

that all the possible embeddings must be considered, and not only the first one.
The projection mechanism (described in Figure 7.1) has then to be adapted. This
is illustrated in Figure 7.3b. For instance, two embeddings are considered for the
projection from (1) to (2) of the first sequence. It is required to record all of the
corresponding extension windows in order to miss no supporting event. To do so, a
reversible vector (startv) recording the start index in s for each sequence is used
(Figure 7.3c). Besides, other reversible vectors are added: esize, which represents
the number of embeddings related at each projected sequence and embs, which
records the start index of the different embeddings. It is a simplified adaptation of
the structure proposed by Aoga et al. [AGS17].

Minimum Span The minimum span is not anti-monotonic. Therefore, we do not
consider it during the projection but a posteriori: it is only checked when a complete
pattern is obtained and not before. It requires slight modifications in the propagate
method (Algorithm 7.1). A variable γs(P) representing the number of supports
satisfying the minimum span constraint for P is recorded and computed during the
projection. Once the projections are completely done for this episode (after the line
12), γs(P) is compared with the support threshold and an inconsistency is raised if
it is below the threshold.

Sequence Projection The projection mechanism is presented in Algorithm 7.3.
Initially, the projected frequencies of each event is set to 0 (line 10). When ψ = 1,
an initial projection is performed (lines 11-12). In the buildInitialT imedSeqProj
function (Algorithm 7.4), we are looking for events that match with a (line 12). Once
a match is detected, reversible vectors are updated (line 13). Projected frequencies
are computed using nextPosGap and freqMap structures (lines 14-19). First, the
window where the events must be considered is computed. Secondly, the projected
frequency of each event appearing in the window is incremented. When ψ > 1, we
have an internal projection (lines 13-14), which is performed in buildT imedSeqProj
function of Algorithm 7.5. Each embedding is successively considered (line 15).
For each one, the sequence is iterated from the first next position satisfying the
minimum gap to the last one satisfying the maximum gap, or to the last symbol
of the sequence (line 17). Once a match has been detected, the number of possible
embeddings is incremented and its position is recorded (line 19). If the embedding of
the current pattern satisfies the minimum span constraint, γs is incremented (lines
20-21). It is used in the propagate method as explained before. Then, projected
frequencies are computed as in the initial projection (lines 22-28).

Time and Spatial Complexity Let us assume k is the maximum length of time
window (often k � n) and d the maximum depth of the tree search (d ≤ k). Initial
projection (lines 10-19) in Algorithm 7.4 is computed in O(n× |I|): the sequence
is completely processed and frequencies are computed at each match. Internal
projection (lines 11-31) in Algorithm 7.5 is computed in O(n× |I| × k2). It gives
O(n × |I| + n × |I| × k2) = O(n × |I| × k2). For the spatial complexity, vectors
have a maximum length of k × d and there are at most k embeddings, which gives

152 CHAPTER 7. FEM USING CP

1 2 3 4 5 6 7

a 1 1 2 2 2 3 3

b 0 1 1 1 2 2 3

c 0 0 0 1 1 1 1

freqMap

1 2 3 4 5 6 7

a 6 6 6 6 6 6 .

b 5 5 7 7 7 7 7

c 4 4 4 4 . . .

lastPosMap for span[Y = 10]

1 2 3 4 5 6 7

1 2 3 5 6 7 7 .

2 6 6 6 6 7 . .

nextPosGap for gap[2, 7]

(a) Precomputed structures.

〈
(a, 1), (b, 3), (a, 5), (c, 6), (b, 7), (a, 8), (b, 14)

〉
(0) s

3
〈
(b, 3), (a, 5), (c, 6), (b, 7), (a, 8)

〉
3
〈
(b, 7), (a, 8)

〉
3
〈
(b, 14)

〉(1) Ω1 : s|Ia

3

{〈
(a, 5), (c, 6), (b, 7), (a, 8)

〉〈
(b, 14)

〉
3
〈
(b, 14)

〉
3
〈〉(2) Ω2 : Ω1|〈b〉

{
3
〈
(a, 8)

〉
7

7

7

(3) Ω3 : Ω2|〈c〉

a

b

c

(b) Sequence projection.

startv

esize

embs

1 2 3 4 5 6 7 8

1 3 6 1 3 6 1 .

1 1 1 2 1 1 1 .

1 3 6 2 5 7 4 .

. . . 5

.

φ = 1
ϕ = 3
ψ = 1

(1)

φ = 4
ϕ = 2
ψ = 2

(2)

φ = 7
ϕ = 1
ψ = 3

(3)

(c) Reversible vectors.

Figure 7.3. Data structures used for timed sequences with gap[2, 7] and span[1, 10].

7.3. MINING EPISODES IN A TIMED SEQUENCE 153

Algorithm 7.3: sequenceProjectionT imed(ss, st, I, a,N,W)
1 . Input: ss and st are the event/timestamp list of the initial long sequence.
2 I is the set of symbols;
3 a is the current projected symbol (a = Pψ);
4 startv[i], esize[i] and embs[i] with i ∈ [φ, φ+ ϕ) are initialized;
5 γs(P:ψ) = 0 with P:ψ the episode represented by 〈P1, . . . , Pψ〉;
6 N and W are the gap max bound and of the span min bound.
7 . Output: freq list of projected frequencies
8 . Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).
9

10 freq[b]← 0 ∀b ∈ I
11 if ψ = 1 then
12 (j, freq) ← buildInitialT imedSeqProj(ss, st, I, a) . Detailed in Alg. 7.4.
13 else
14 (j, freq) ← buildT imedSeqProj(ss, st, I, a,N,W) . Detailed in Alg. 7.5.
15 φ← φ+ ϕ ϕ← j − φ
16 return freq

Algorithm 7.4: buildInitialT imedSeqProj(ss, st, I, a)
1 . Input: ss and st are the event/timestamp list of the initial long sequence.
2 I is the set of symbols;
3 a is the current projected symbol (a = Pψ);
4 startv[i], esize[i] and embs[i] with i ∈ [φ, φ+ ϕ) are initialized;
5 γs(P:ψ) = 0 with P:ψ the episode represented by 〈P1, . . . , Pψ〉.
6 . Output: j position in vectors and freq list of projected frequencies.
7 . Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).
8

9 freq[b]← 0 ∀b ∈ I
10 j ← 1
11 for pos ∈

[
1, |ss|

]
do

12 if ss[pos] = a then
13 startv[j]← pos esize[j]← 1 embs[j][1]← pos j ← j + 1
14 (u, v)← nextPosGap[pos] . Precomputed structure
15 if u ≤ |ss| then
16 for b ∈ Domain(Pψ+1) do
17 l←min

(
v, |ss|

)
18 if freqMap[l][b] > freqMap[u− 1][b] then
19 freq[b]← freq[b] + 1 . Projected frequency

20 return (j , freq)

154 CHAPTER 7. FEM USING CP

Algorithm 7.5: buildT imedSeqProj(ss, st, I, a,N,W)
1 . Input: ss and st are the event/timestamp list of the initial long sequence;
2 I is the set of symbols;
3 a is the current projected symbol (a = Pψ);
4 startv[i], esize[i] and embs[i] with i ∈ [φ, φ+ ϕ) are initialized;
5 γs(P:ψ) = 0 with P:ψ the episode represented by 〈P1, . . . , Pψ〉;
6 N and W are the gap max bound and of the span min bound.
7 . Output: j position in vectors and freq list of projected frequencies.
8 . Internal State: startv, esize, embs, φ, ϕ, ψ, γs(P:ψ).
9

10 freq[b]← 0 ∀b ∈ I
11 j ← φ+ ϕ
12 for i ∈ [φ, φ+ ϕ− 1] do
13 id← startv[i] nEmb← 0 k ← 1 v ← −1 isIncremented← false
14 isV isited[b]← false ∀b ∈ I
15 while v < |ss| ∧ k ≤ esize[i] do
16 e← embs[i][k] (pos,_)← nextPosGap[e] . 2nd element unused
17 while v < |ss| ∧ pos ≤ lastPosMap[id][a] ∧ st[pos] ≤ st[e] +N do
18 if ss[pos] = a then
19 nEmb← nEmb+ 1 embs[j][nEmb]← pos
20 if not isIncremented ∧ st[pos]− st[id] ≥W then
21 isIncremented← true γs(P:ψ)← γs(P:ψ) + 1
22 (u, v)← nextPosGap[pos] . Precomputed structure
23 if u ≤ |ss| then
24 for b ∈ Domain(Pψ+1) do
25 l←min

(
v, |ss|

)
26 if

(
freqMap[l][b] > freqMap[u− 1][b]

)
∧ not

isV isited
[
b
]
then

27 isV isited
[
b
]
← true

28 freq[b]← freq[b] + 1 . Projected frequency

29 pos← pos+ 1
30 k ← k + 1
31 if nEmb > 0 then startv[j]← id esize[j]← nEmb j ← j + 1
32 return (j , freq)

O(d× k2).

7.4. IMPLEMENTATION AND PRACTICAL USER GUIDE 155

7.4 Implementation and Practical User Guide

For the reproducibility of results, the implementation of both constraints is open
source and available online (http://sites.uclouvain.be/cp4dm/).

The implementation of EpisodeSupport is available in the CP-Solver Os-
caR [Osc12] which is available online1 in free access. In OscaR, one can combine our
constraints with the existing constraints in the solver such as All-Different [Rég94],
Global cardinality [QLvBG04], Grammar [QW06], etc.

For developers who are willing to modify the code directly, a lightweight version
is also available2. One can hence add several constraints for a specific usage without
understanding OscaR deeply. The installation procedure is described in the Install
file in the code directory and merely consists of “importing the project” into your
favourite IDE.

Users can directly download the jar-file which is available on our website 3. On
this website, there is a user guide. The general format of the command to run
EpisodeSupport is:

java -jar episodesupport.jar [options] <SDB File> <Lmin > < Lmax>

with several options available, including:
• −f : for the frequency constraint (i.e. θ),
• −i: for items inclusion/exclusion constraints,
• −t: to indicate that the database is provided with timestamps,
• −m: for the minimum gap constraint,
• −n: for the maximum gap constraint,
• −w: for the maximum span constraint,
• −y: for the maximum span constraint,
• etc.
For example, to find the frequent episodes given a database (named test.txt) and the

minimum support θ = 2 (-f 2), we run the following command:

java -jar episodesupport.jar test.txt -f 2

Here is the result:

1https://bitbucket.org/oscarlib/oscar/wiki/Home
2https://bitbucket.org/projetsJOHN/episodesupport
3https://sites.uclouvain.be/cp4dm/fem/

http://sites.uclouvain.be/cp4dm/
https://bitbucket.org/oscarlib/oscar/wiki/Home
https://bitbucket.org/projetsJOHN/episodesupport
https://sites.uclouvain.be/cp4dm/fem/

156 CHAPTER 7. FEM USING CP

Input Output
(each line is a sequence) (<sub-sequence> : <support>)

1 2 3 2 3
2 1 2 3
1 2
2 3 4

< 1 2 > : 3
< 1 2 3 > : 2
< 1 3 > : 2
< 2 2 > : 2
< 2 2 3 > : 2
< 2 3 > : 3

7.5 Experimental Results

This section evaluates the performance of episodeSupport on different datasets with and
without time consideration. Experiments have been realised on a computer with a 2.7 GHz
Intel Core i5 64 bits processor and with a RAM of 8 Go using a 64-Bit HotSpot(TM) JVM
1.8 running on Linux Mint 17.3. Execution time is limited to 1800 seconds unless otherwise
stated. The algorithms have been implemented in Scala with OscaR solver [Tea12] and
memory assessment has been performed with java Runtime classes. For the reproducibility
of results, the implementation of both constraints is open source and available online.4 One
synthetic and three real-data sets are considered: proteins from Uniprot database [C+08],
UCI Unix dataset [Lic13] and UbiqLog [RMD+15,RTWT13].

Our approach is compared with the existing methods. We identified two ways to mine
frequent patterns in a sequence. On the one hand, we can resort to a specialized algorithm.
To the best of our knowledge, MINEPI+ and EMMA [HC08] are the state-of-the-art
methods for that. On the other hand, we can explicitly split the sequence into a database
and then reduce the problem into an SPM problem. Once done, CP-based methods can
be used [AGS16,AGS17,KLL+16,NG15]. Our comparisons are based on the approach
of Aoga et al. [AGS16,AGS17] that turns out to be the most efficient. We refer to it as
the Decomposed Frequent Episode Mining (DFEM) approach, or DFEMt when time is
considered.

7.5.1 Memory Bound Analysis

We applied DFEM and episodeSupport on synthetic sequences of different sizes with
100 distinct symbols uniformly distributed in order to define what are the largest se-
quences that can be processed. We observed that with decomposed approaches, sequences
greater than 30000 symbols cannot be processed when memory is limited to 8GB. With
episodeSupport memory is not a bottleneck.

4https://bitbucket.org/projetsJOHN/episodesupport (also available in [Osc12])

https://bitbucket.org/projetsJOHN/episodesupport

7.5. EXPERIMENTAL RESULTS 157

7.5.2 Comparison with Decomposed Approaches

Experiments and results with Uniprot and UbiqLog datasets are shown in Figure 7.4 & 7.5
and Table 7.1 & 7.2. The figures shows the performance profiles [DM02] and the tables
present results for different settings for both the memory consumption and the computation
time.

We can observe that episodeSupport outperforms both decomposed approaches in
terms of execution time and memory consumption for most of the instances. Both gains
become more important when the sequence is large. Besides, decomposed approaches
cannot process the largest sequences regarding the time limitation imposed.

Table 7.1. Execution time and memory usage for several non-timed datasets and thresholds
(the maximum size of episodes is set to 5).

Na
me

|s|
×
|Σ|

Memory (Mb) Execution time (s)

θ nSol DFEM
episode
Support DFEM

episode
Support

Q0
837

9

100
2×

20
100 437048 45 34 9.08 2.45
90 533395 46 38 8.68 1.97
70 645834 35 16 9.16 1.67
50 10481 1226 505 118.56 57.48

Q5
4C
U4

111
03
×

20
1110 0 1969 31 0.11 0.02
999 157003 2057 33 113.32 3.49
777 1178939 1980 33 657.68 14.90
555 1515789 1849 31 1414.83 18.41

Q9
I7U

4

181
41
×

20
1814 336842 6898 38 946.54 20.90
100 38061 3301 1179 745.41 488.32
1269 705640 6819 21 1674.80 22.63
907 1515791 6819 21 timeout 52.79

7.5.3 Comparison with Specialized Approaches

Experiments on Unix dataset with a threshold of 5% and a maximum span of 10 are
provided in [HC08]5. Comparisons of these specialized approaches with ours are presented
in Table 7.3. It shows that episodeSupport seems competitive with MINEPI+ and
EMMA. For the largest sequences (USER8 and USER6), episodeSupport is the most
efficient. For some instances (USER5 and USER7) that are quickly solved, the cost of

5Results provided in [HC08] are directly used since the implementation is not available.

158 CHAPTER 7. FEM USING CP

Figure 7.4. Performance profiles of execution time (top) and Memory usage (bottom)
for Uniprot dataset (2452 instances, where n ∈ [100, 30000]) with θ = 5%, maximum size
of 5 and time limit of 600 seconds.

7.5. EXPERIMENTAL RESULTS 159

Figure 7.5. Performance profiles of execution time (top) and Memory usage (bottom)
for Ubiqlog dataset (21 instances) with gap[100, 3600], span[1, 35000], θ = 5%, maximum
size of 5 and time limit of 600 seconds.

160 CHAPTER 7. FEM USING CP

Table 7.2. Execution time and memory usage for several timed datasets and thresholds
(the gap and span constraints are: gap[100, 3600] and span[1, 35000]).

Na
me

|s|
×
|Σ|

Memory (Mb) Execution time (s)

θ nSol DFEMt
episode
Support DFEMt

episode
Support

10M
com

ple
te

107
2×

30
300 10 107 35 0.24 0.20
100 3113 999 469 67.83 29.53
50 1128537 67 43 13.29 2.59
20 51108 1110 599 204.98 80.93

9M
com

ple
te

112
8×

45
10 6724 244 139 1.00 1.35
8 11626 318 173 1.35 0.71
6 19340 339 142 1.42 0.86
4 23225 349 138 1.48 1.05

8M
com

ple
te

330
5×

44
300 3734 1888 506 197.16 143.94
1632 505263 6426 40 1146.22 24.20
50 123133 3594 1496 1489.18 740.97
20 516478 3859 1309 timeout 1163.34

initializing the data structures with our approach is higher than the gain obtained. In
general, the gain becomes more important when sequences are larger or harder to solve.
Finally, given that the implementation of MINEPI+ and EMMA is missing, it is difficult
to perform a fair comparison of the approaches.

7.5.4 Handling Additional Constraints

Additional constraints can be considered in order to define properties that the patterns
must satisfy. No modification of episodeSupport is required. Results of experiments are
presented in Table 7.4. The goal was to find frequent episodes (θ ≥ 20) having a maximum
length of 6, containing at least three Q (atLeast constraint) but no D (exclusion), and
satisfying the regex M(A|T).∗F (regular). Two episodes (MTQQQF and MAQQQF) have been
discovered. As observed, the additional constraints reduce the execution time as CP takes
advantage of the stronger filtering to reduce the search space. This reduction would not be
observed with a generate and filter approach.

7.6. SUMMARY, OUTLOOKS, FURTHER READINGS 161

Table 7.3. Comparison with MINEPI+ and EMMA for θ = 5% and W = 10 (rows are
sorted by |s|).

Databases Features Execution Time (s)

name |s| |Σ| nSol MINEPI+ EMMA episodeSupport
USER3 16866 273 46 13.2 0.4 0.173
USER7 17329 449 25 0.6 0.2 0.563
USER2 18738 310 38 43.3 0.6 0.259
USER1 19881 288 57 93.7 1.2 0.232
USER5 34821 563 37 4.8 0.3 0.724
USER4 37817 479 48 165.3 1.3 0.636
USER8 54042 706 40 1362.3 9.8 2.214
USER6 64152 609 68 2853.3 14.6 2.178

Table 7.4. Additional constraints on Q08379 Protein (Uniprot).
Only episodeSupport + exclusion + atLeast + regular

nSol time(s) nSol time(s) nSol time(s) nSol time(s)
46,221,933 83.2 33,388,768 62.6 104,536 0.642 2 0.002

7.6 Summary, Outlooks, Further readings

There is a growing interest for solving data-mining challenges with CP. In addition to the
flexibility it brings, recent works have shown that it can provide similar performances, or
even better, than specialized algorithms [AGS16,AGS17]. So far CP has not been considered
yet for mining frequent episodes. We introduced two global constraints (episodeSupport)
for solving this problem with or without time-stamps. It relies on techniques used for
SPM such as pattern growth, pseudo projections and reversible vectors but also on new
ideas specific to this problem for improving the efficiency of the filtering algorithms (early
projection stopping, position caching and efficient frequency computation). Experimental
results have shown that our approach provides better performances in terms of execution
time and memory consumption than state-of-the-art methods, with the additional benefits
that it can accommodate additional constraints.

8

C
h

a
p

t
e

r

Conclusion

“In literature and in life we ultimately pursue, not conclusions, but begin-
nings..”

–Sam Tanenhaus

The key message of this thesis is that the hybridization of techniques from several
fields can lead to efficient and flexible tools. With this flexibility, one can plug humans
(experts) into the loop and they can express some preferences (as Constraints) to guide
the mining process. This opens up other fields of application.

8.1 Summary and Main Messages

The main motivation for this work is to maximise the flexibility and efficiency of CP-based
approaches.

At the beginning of this thesis, in late of 2015, the use of Constraint Programming
(CP) in Pattern Mining (PM) allowed developing general and flexible approaches [GNDR11,
DRGN08, JSS13,MBC+11, NG15, KLL+15]. Frequent Itemset and Sequential Pattern
Mining problems were addressed using CP. Several constraints were proposed, ranging from
decomposition-based approaches [GNDR11,DRGN08, JSS13,MBC+11,NG15] to global
constraints [NG15,KLL+15] in CP. However, the general observation was that there was
always a tradeoff between flexibility and efficiency. The contribution of the flexibility
degrades efficiency. Flexible approaches (CP-based ones) were not as (or more) efficient
as specialized approaches. The question then arose: whether there was a way to find the
best tradeoff between flexibility and efficiency having flexible approaches that consume less
time and memory?

Through this thesis, we answer YES to this question. To do so, we showed one could
combine the right techniques and ideas from both CP and PM communities to build new
flexible and efficient methods for DM using CP.

163

164 CHAPTER 8. CONCLUSION

Here are the main take away messages of this thesis, which are answers to our research
questions:
Q1 Can we build new CP-based approaches that improve efficiency by combining

ingredients from both Pattern Mining and Constraint Programming?
Q2 In the literature, the effectiveness of many approaches is based on the design of an

appropriate data structure, can the same solution boost the effectiveness of existing
CP-based methods?

Q3 Which modeling for new CP-based methods, will give a better efficiency and gener-
icity?

Q4 How to evaluate the relevancy of the obtained patterns?

Message 1: The combination of several ingredients can lead to
new and successful approaches. In this thesis, we showed that by combining
(or adapting) properly techniques from CP and PM communities and some algorithmic
knowledge, one could achieve very efficient and flexible CP-based approach for PM. In
Chapter 5, thanks to the combination of:

(i) “reversible” structures and the trailing mechanism from CP [Lau18] and
(ii) the principle of (pseudo-) projected database [PHMA+01] and pre-computed struc-

ture of last item positions [YK05],
we designed PPIC (also PPDC and PPmissed) which became the state-of-the-art of both
CP-based and specialized methods. This result is impressive because, to the best of our
knowledge, none of CP-based approaches had ever achieved this before and SPADE [Zak01]
stayed the state-of-the-art for more than 15 years.

Message 2: The design of proper data structures is often a key
element in the design of new PM approaches using CP. The first
element that makes the difference in our approaches was the data structures. In chapter 3,
we showed that by using the “reversible” sparse bitset, inspired by the data structures used
in constraint tables [DHL+16], we can very efficiently perform set operations (intersection,
counting,...) which are several times used in the mining process.

For SPM and FEM problems (Chapters 5-7), we showed that our backtracking-aware
trailing-based data structure is an essential ingredient for efficient management of (projected)
sequence databases and memory usage during the mining process. In addition, this data
structure can be used in any depth-first search.

Message 3: Pre-computed structures allow drastically speeding up
the mining process. In chapters 5, 6 and 7, we showed that pre-computing the
last position of the items, an idea introduced by [YK05], can lead to several constant-time
operations. For example, in O(1), one can check the presence of an item in a sequence.
These pre-computed structures also allow efficiently counting items, a task at the core of
apriori-based methods.

8.2. DISCUSSION AND PERSPECTIVES 165

Message 4: The choice of modelling does matter. In Chapter 3, we
demonstrated that by exposing a variable that represents frequency, it becomes possible to
solve several FIM problems. This ease the use of FIM as a building block in solving other
problems such as finding the discriminating itemsets (Chapter 3) and, in Chapter 4, the
most significant or relevant set of itemsets (rule list).

Message 5: The choice of a good measure is essential in the search
for more relevant and interpretable approaches. In Chapter 4, we
showed that by combining several itemsets, we can build a new rule list that captures as
much information as possible based on the Minimum description length (MDL) principle
(compression of data). Thanks to this principle, one can iteratively build small-and-good
rule lists using branch-and-bound.

8.2 Discussion and perspectives

In this section, we discuss the perspectives for this research.

Perspective 1: Quality of patterns. The most important concern in pattern
mining is the quality of the patterns. A lot of effort is focused on defining what a “good”
pattern is and how to get it. This hot topic opens up many interesting scientific perspectives.
We stick to this philosophy in the perspectives we propose here.

In Chapter 3, we proposed a model of frequent itemset problems that allowed outputting
patterns which were interesting in terms of their discriminating power. We believe this is
an exciting direction to explore in depth. We can highlight two paths to investigate.

The first one is a modeling effort. The question is how to model pattern mining tasks
in order to solve several problems? The CoverSize constraint presented in Chapter 3 is
an attempt to answer this question. The model of CoverSize consists of exposing cover
size as a variable. This way, we can solve Frequent Itemset Mining (FIM), Closed FIM,
and Discriminative FIM problems efficiently. Modeling Pattern-set Mining problem was
investigated in Guns et al. [GNDR13]. This work showcases different constraints which
can be used to solve number of mining problems. They exemplified their modeling with
the concept learning problem [GNR11]. Several other applications are also possible in
the same direction. MiningZinc [GDT+13], a language for modeling constraint-based
pattern mining problems, is another example of modeling. More generally, many supervised
and unsupervised learning problems based on patterns such as the concept learning, rule
learning, decision trees amount to parameter learning; where parameters represent decisions
to include (or not) a feature (item) in patterns of pattern-set solution. Efforts in that
direction can allow solving several problems.

The second track is the consideration of the continuous aspect of real problems
in the modeling of problems in Constraint Programming. The optimization criteria
for DFIM (Information gain, χ2, Gini index, etc) and rule learning (Minimum Description
Length score) problems, presented in Chapters 3 and 4, are examples of functions expressed
in a continuous domain. The ZDC constraint presented in Algorithm 3.4 (Chapter 3), is
a starting point in this type of modeling of continuous functions in discrete domains. A

166 CHAPTER 8. CONCLUSION

more global approach, in this direction, is the complete modeling of pattern-based learning
tasks as parameter learning problems in discrete domains; similar to neural networks in
continuous domains.

It is worth noting that the majority of approaches to finding “interesting” solution are
based on pattern-set mining [VT14,ZAV14,ZN14]. Effective pattern-set problem modeling
itself is a challenging task. Pattern-set modeling in CP, developed by Guns et al. [GNR11],
is based on repeating the modeling of mining a pattern at the size of the pattern-set plus
the constraints to link the patterns in the pattern-set to each other. This approach is not
very efficient in practice, mainly due to unavoidable sum constraints. We have shown in
this thesis that the use of a global constraint and the reduction of Boolean variables (in
Chapter 3) can boost overall efficiency.

Perspective 2: Extension of our work Given the encouraging work obtained
in the fields of Frequent Itemset Mining and Sequential Pattern Mining, it is interesting to
consider building constraints in other mining problems such as tree mining, graph
mining, etc.

In Chapter 4, we used an MDL score to find small-and-good rule list. This work can
be extended to two aspects. The MDL score can be improved because the two-part version
is a basic one. The more sophisticated scores, with more gain, are possible. Namely,
the Normalised Maximum Likelihood (NML) and the Prequential Plug-In Model can yield
models with higher prediction power [Grü07]. Besides, one can investigate a tighter
lower-bound. We believe that one way of doing this is to find the minimal increase in
the local code length obtained by the new itemset to add in the rule list plus the default
rule (see (4.7) in Chapter 4).

With regard to the problems of frequent sequence mining discussed in Chapters 5, 6
and 7, a number of future directions is possible.

The type of patterns found by our approach are the commonly used sequences of single
events. We do not consider other related pattern types such as sequences of sets
of events (sequences of itemsets), multivariate temporal patterns [BFH+12]. These require
changes to the pattern representation and the embedding (constraint). One could build on
the principles and data structures investigated in this paper for those purposes.

It should also be pointed out that in the literature, to the best of our knowledge, the
problems of closed, free, and discriminative frequent sequences have not been
addressed using Constraint Programming. These problems are worth investigating
because they are commonly used as a building block in finding interesting patterns [AMS+96,
VvLS11,VT14].

Putting all together, throughout this thesis four key ingredients contributed to
maximizing the flexibility and effectiveness of frequent itemset and sequence mining tasks
using the Constraint Programming (CP) paradigm: Global constraints, appropriate data
structures, pre-computed data, and suitable models. As a result, we were able to prove
that by combining these ingredients, we can efficiently (in time and memory consumption)
enumerate frequent sequences and episodes in various sequence databases (single and long
sequence, sequence database with or without timestamps) being flexible. Those approaches
become state-of-the-art in sequence mining. For itemset mining problems, this efficiency
is undoubtedly reduced, but we are still behind the specialized methods. Our CP-based

8.2. DISCUSSION AND PERSPECTIVES 167

approaches compared to other existing CP-based approaches, are more efficient but often
at the cost of sacrificing a bit of flexibility. It is therefore clear that a further step has been
taken in the use of CP in Pattern Mining. However, there is still a long way to go because
many questions remain, especially concerning the quality of the patterns obtained. It is
not trivial to incorporate quality measurements (which are often continuous functions, see
Chapter 3 and 4) as constraints to ensure relevancy and non-redundancy on the obtained
patterns, given that CP operates in discrete domains. My conviction is that further efforts
are needed in this direction implementing new constraints which can guide the mining
process to relevant patterns. Besides, the implementation of new applications might allow
us to face real constraints.

A

A
p

p
e

n
d

ix

Algorithms

A.1 Example of Implementation of Discriminative FIM
in OscaR

Listing A.1. DFIM Runner
1 package fim.examples
2 import java.io.File
3 import fim.constraints._
4 import fim.utils.ZDCScaled
5 import oscar.cp._
6 import scala.io.Source
7

8 object DiscriminativeCoverSizeZDCRunner extends App {
9

10 printHead()
11

12 //parser
13 val parser = argsParser()
14

15 //parsing
16 parser.parse(args, Config()) match {
17 case Some(config) =>
18

19 //initialisation
20 System.err.println("Start CoverZize+ZDC (Optimal

Discriminative FIM) on " + config.tdbFile.

169

170 APPENDIX A. ALGORITHMS

getAbsolutePath)
21

22 //get data from file
23 val fileLines = Source.fromFile(config.tdbFile.

getAbsolutePath).getLines
24

25 //set horizontal dataset with the positive and
negative datasets

26 val tdbHorizontal: Array[Array[Int]] = fileLines.map
{ line => line.mkString.split("\\s+").map(_.

toInt) }.toArray
27 val tdbHorizontalP: Array[Array[Int]] =

tdbHorizontal.filter(_.last == 1).map(line =>
line.dropRight(1))

28 val tdbHorizontalN: Array[Array[Int]] =
tdbHorizontal.filter(_.last == 0).map(line =>
line.dropRight(1))

29 val hTdb: Array[Array[Int]] = tdbHorizontal.map(line
=> line.dropRight(1))

30

31 //transform horizontal to vertical hTdb -> vTdb
32 val max: Int = tdbHorizontal.map(_.max).max
33 val tdbVerticalP: Array[Set[Int]] = Array.tabulate(

max + 1)(i => tdbHorizontalP.indices.filter(t =>
tdbHorizontalP(t).contains(i)).toSet)

34 val tdbVerticalN: Array[Set[Int]] = Array.tabulate(
max + 1)(i => tdbHorizontalN.indices.filter(t =>
tdbHorizontalN(t).contains(i)).toSet)

35 val vTdb: Array[Set[Int]] = Array.tabulate(max + 1)(
i => hTdb.indices.filter(t => hTdb(t).contains(i
)).toSet)

36

37 println("------start------")
38 //initialize size of dataset (Positive -> P,

Negative -> N)
39 val nTrans = tdbHorizontal.length
40 val nTransP = tdbHorizontalP.length
41 val nTransN = tdbHorizontalN.length
42 val nItems = max + 1
43

44 // --------------------------------
45

46 implicit val cp = CPSolver()

A.1. EXAMPLE OF IMPLEMENTATION OF DISCRIMINATIVE FIM IN OSCAR 171

47

48 ////Variables I , P, N, Minsup
49 val I = Array.fill(nItems)(CPBoolVar())
50 var P = CPIntVar(0 to nTransP)
51 var N = CPIntVar(0 to nTransN)
52

53 var score = CPIntVar(0 to 1000000)
54

55 ////BEGIN
56 val zdc = new ZDCScaled(new fim.utils.InfGain(),

100000)
57

58 ///Create Constraints
59

60 //--//MAIN: (CoverSize-) + (CoverSize+) + (ZDC)
61 val consP = new CoverSizeVar(I, P, nItems, nTransP,

tdbVerticalP)
62 val consN = new CoverSizeVar(I, N, nItems, nTransN,

tdbVerticalN)
63

64 ///Post it
65 add(consP)
66 add(consN)
67

68 //COP, optimum
69 maximize(score)
70

71 //Discriminative eval function, look utils/
ZDCFunction for the availability functions

72 val zdcConstraint = new ZDC(P, N, nTransP, nTransN,
zdc, score)

73 add(zdcConstraint)
74

75 val Isorted: Array[CPIntVar] = I.indices.sortBy(vTdb
(_).size).map(I(_)).toArray[CPIntVar]

76

77

78 search {
79 if (config.algo == 1) {
80 println("With Binary Static Search ")
81 binaryStatic(Isorted, _.min)
82 }
83 else {

172 APPENDIX A. ALGORITHMS

84 println("With Conflict Search ")
85 new MyConflictOrderingSearch(Isorted, i => i, i

=> I(i).min)
86 }
87 }
88

89

90 onSolution {
91 println("items:" + (0 until nItems).filter(I(_).

isTrue) + s" pos:$P/$nTransP neg:$N/$nTransN
score:" + score)

92 }
93

94 val stat = start()
95 println(stat)
96

97 case None =>
98 // parser.showUsage
99 // arguments are bad, error message will have been

displayed
100 }
101

102 }

A.2 Reversible sparseBitSet data structure

Listing A.2. RSparseBitSet
1 /∗∗
2 ∗ Data s t ru c tu r e (Reve r s i b l e Sparse BitSet)
3 ∗
4 ∗ @author John Aoga johnaoga@gmail . com
5 ∗ @author P i e r r e Schaus pschaus@gmail . com
6 ∗ Relevant paper : Compact t ab l e and http ://

becoo l . i n f o . uc l . ac . be/ b i b l i o / cove r s i z e−g loba l−
cons t ra in t−f requency−based−i temset−mining

7 ∗
8 ∗/
9

10 package f im . u t i l s
11

A.2. REVERSIBLE SPARSEBITSET DATA STRUCTURE 173

12 object BitSetOp2 {
13

14 def bitLength (s i z e : Int) : Int = (s i z e + 63) >>> 6
15

16 // = s i z e / 64 + 1
17 def oneBitLong (pos : Int) : Long = 1L << pos
18

19 // = pos / 64 (64 = 2^6)
20 def b i tO f f s e t (pos : Int) : Int = pos >>> 6
21

22 // = pos % 64
23 def bitPos (pos : Int) : Int = pos & 63
24

25 // = pos % 63
26 def s e tB i t (b i t S e t : Array [Long] , pos : Int) : Unit = {
27 b i tS e t (b i tO f f s e t (pos)) |= oneBitLong (bitPos (pos))
28 }
29

30 }
31

32

33 import oscar . a lgo . r e v e r s i b l e . BitSetOp ._
34 import oscar . a lgo . r e v e r s i b l e . { Revers ib leContext ,

Tra i lEntry }
35

36 /∗ Tra i l ab l e entry to r e s t o r e the value o f the i t h Long o f
the va l i d tup l e s ∗/

37 f ina l class Rever s ib l eSpar seBi tSetEntry (s e t :
Rever s ib l eSpar seB i tSe t2 , numberOfValues : Int) extends
Trai lEntry {

38 @i n l i n e override def r e s t o r e () : Unit = se t . r e s t o r e (
numberOfValues)

39 }
40

41 /∗∗
42 ∗ A r e v e r s i b l e s e t with an i n t e r n a l b i t−s e t

r ep r e s en t a t i on .
43 ∗ This s e t can remove e f f i c i e n t l y i t s e lements from

another b it−s e t
44 ∗ This s e t can compute e f f i c i e n t l y i t s i n t e r s e c t i o n with

another b it−s e t
45 ∗
46 ∗ @param context

174 APPENDIX A. ALGORITHMS

47 ∗ @param n i n i t i a l va lue s must be taken from { 0 , . . . , n−1}
48 ∗ @param i n i t i a l V a l u e s the i n i t i a l va lue s conta ined in

the s e t
49 ∗ @author P i e r r e Schaus pschaus@gmail . com
50 ∗/
51 class Rever s ib l eSpar s eB i tSe t2 (val context :

Revers ib leContext , val n : Int , val i n i t i a l V a l u e s :
I t e r a b l e [Int]) {

52

53 /∗∗
54 ∗ Immutable bi t−s e t that can be used to remove/

i n t e r s e c t
55 ∗ with the the Reve r s ib l eSpar s eB i tSe t
56 ∗
57 ∗ @param va lues i n i t i a l va lues , they must be in

{ 0 , . . . , n−1}
58 ∗/
59 class BitSet (va lue s : I t e r a b l e [Int]) {
60 protected [Reve r s ib l eSpar s eB i tSe t2] var l a s tSuppor t = 0
61 protected [Reve r s ib l eSpar s eB i tSe t2] var words : Array [

Long] = Array . f i l l (nWords) (0L)
62 a s s e r t (va lue s . f o r a l l (v => v < n && v >= 0))
63 va lue s . f o r each (v => s e tB i t (words , v))
64

65 def &=(bs : BitSet) = {
66 var i = words . l ength
67 while (i > 0) {
68 i −= 1
69 words (i) = words (i) & bs . words (i)
70 }
71 }
72

73 def &~=(bs : BitSet) = {
74 var i = words . l ength
75 while (i > 0) {
76 i −= 1
77 words (i) = words (i) & ~bs . words (i)
78 }
79 }
80

81 def i sZ e r o : Boolean = {
82 words . f o r a l l (_ == 0)
83 }

A.2. REVERSIBLE SPARSEBITSET DATA STRUCTURE 175

84

85 def |=(bs : BitSet) = {
86 var i = words . l ength
87 while (i > 0) {
88 i −= 1
89 words (i) = words (i) | bs . words (i)
90 }
91 }
92

93 val mask : Long = ~0L >>> (64 − (n % 64))
94 def unary_~ = {
95 var i = words . l ength
96 while (i > 0) {
97 i −= 1
98 words (i) = ~words (i)
99 }

100 words (words . l ength − 1) = words (words . l ength − 1) &
mask

101 }
102

103 def indexOfFirstNonZero : Int = {
104 var i = 0
105 while (i < words . l ength && words (i) == 0) {
106 i += 1
107 }
108 (i + 1) ∗ 64 − java . lang .Long . numberOfLeadingZeros (

words (i)) − 1
109 }
110

111 override def t oS t r i ng : S t r ing = {
112 val s i z e = n min 64
113 words .map(e => St r ing . format (s "%${ s i z e } s " , java . lang

.Long . t oBinaryStr ing (e)) . r ep l a c e (’ ␣ ’ , ’ 0 ’)) .
mkString (" ␣ ")

114 }
115 }
116

117 private [this] var timeStamp = −1L
118

119 /∗ Compute number o f Long in a b i t s e t ∗/
120 private [this] var nWords = bitLength (n)
121

176 APPENDIX A. ALGORITHMS

122 private [this] val words : Array [Long] = Array . f i l l (nWords
) (0L)

123 private [this] val l a s tMag i c s = Array . f i l l (nWords) (−1L)
124 private [this] var nonZeroIdx : Array [Int] = Array .

t abu la t e (nWords) (i => i)
125 private [this] var nNonZero : Int = nWords
126 private [this] val tempMask = Array . f i l l (nWords) (0L)
127

128 a s s e r t (i n i t i a l V a l u e s . f o r a l l (v => v < n && v >= 0))
129 i n i t i a l V a l u e s . f o r each (v => s e tB i t (words , v))
130

131 private [this] var i n n e rT r a i l S i z e = 1000
132 private [this] var nTra i lEnt r i e s = 0
133 private [this] var wordIndex = Array . ofDim [Int] (

i n n e rT r a i l S i z e)
134 private [this] var wordValue = Array . ofDim [Long] (

i n n e rT r a i l S i z e)
135

136 @i n l i n e private [this] def growInnerTra i l () : Unit = {
137 val newWordIndex = new Array [Int] (i n n e rT r a i l S i z e ∗ 2)
138 val newWordValue = new Array [Long] (i n n e rT r a i l S i z e ∗ 2)
139 System . arraycopy (wordIndex , 0 , newWordIndex , 0 ,

i n n e rT r a i l S i z e)
140 System . arraycopy (wordValue , 0 , newWordValue , 0 ,

i n n e rT r a i l S i z e)
141 wordIndex = newWordIndex
142 wordValue = newWordValue
143 i n n e rT r a i l S i z e ∗= 2
144 }
145

146 // Remove the zero words from spar s e s e t
147 var i : Int = nNonZero
148 while (i > 0) {
149 i −= 1
150 i f (words (nonZeroIdx (i)) == 0L) {
151 nNonZero −= 1
152 nonZeroIdx (i) = nonZeroIdx (nNonZero)
153 nonZeroIdx (nNonZero) = i
154 }
155 }
156

157 def isEmpty () : Boolean = {
158 nNonZero == 0

A.2. REVERSIBLE SPARSEBITSET DATA STRUCTURE 177

159 }
160

161 override def t oS t r i ng () : S t r ing = {
162 val s i z e = n min 64
163

164 def format (l : Long) = St r ing . format (s "%${ s i z e } s " , java
. lang .Long . t oBinaryStr ing (l)) . r ep l a c e (’ ␣ ’ , ’ 0 ’)

165

166 "NonZeroWords : " + nNonZero + " ␣words : " + words .map(
format (_)) . mkString (" ␣ , ␣ ")

167 }
168

169 @i n l i n e f ina l def r e s t o r e (numberOfValues : Int) : Unit = {
170 var k = numberOfValues
171 while (k > 0) {
172 var pos = nTra i lEn t r i e s − k
173 words (wordIndex (pos)) = wordValue (pos)
174 k −= 1
175 }
176 nTra i lEnt r i e s −= numberOfValues
177 nNonZero = numberOfValues
178 }
179

180 private [this] def t r a i l () : Unit = {
181 while (nTra i lEn t r i e s + nNonZero > i nn e rT r a i l S i z e)

growInnerTra i l ()
182 var i : Int = nNonZero
183 while (i > 0) {
184 i −= 1
185 val o f f s e t = nonZeroIdx (i)
186 val word = words (o f f s e t)
187 wordIndex (nTra i lEn t r i e s) = o f f s e t
188 wordValue (nTra i lEn t r i e s) = word
189 nTra i lEnt r i e s += 1
190 }
191 val t r a i lEn t r y = new Rever s ib l eSpar seBi tSetEntry (this ,

nNonZero)
192 context . t r a i l (t r a i lEn t r y)
193 }
194

195 /∗∗
196 ∗ Clear a l l the c o l l e c t e d e lements
197 ∗/

178 APPENDIX A. ALGORITHMS

198 def c l e a rCo l l e c t e d () : Unit = {
199 var i : Int = nNonZero
200 while (i > 0) {
201 i −= 1
202 tempMask(nonZeroIdx (i)) = 0L
203 }
204 }
205

206 /∗∗
207 ∗ Add the e lements in s e t in the s e t o f c o l l e c t e d

e lements
208 ∗ to be used with a subsequent i n t e r s e c tCo l l e c t e d () or

removeCol lected () opera t i on
209 ∗
210 ∗ @param se t
211 ∗/
212 def c o l l e c t (s e t : Bi tSet) : Unit = {
213 var i : Int = nNonZero
214 while (i > 0) {
215 i −= 1
216 val o f f s e t = nonZeroIdx (i)
217 tempMask(o f f s e t) |= s e t . words (o f f s e t)
218 }
219 }
220

221 def i n t e r s ec tWith (s e t : Bi tSet) : Boolean = {
222 i f (context . magic != timeStamp) {
223 t r a i l ()
224 timeStamp = context . magic
225 }
226 var changed = fa l se
227 var i : Int = nNonZero
228 while (i > 0) {
229 i −= 1
230 val o f f s e t = nonZeroIdx (i)
231 val oldLong : Long = words (o f f s e t)
232 val setLong : Long = se t . words (o f f s e t)
233 val newLong : Long = (i f (setLong != 0L) oldLong &

setLong else 0L)
234 words (o f f s e t) = newLong
235 /∗ Remove the word from the spar s e s e t i f equal to 0

∗/
236

A.2. REVERSIBLE SPARSEBITSET DATA STRUCTURE 179

237 i f (newLong == 0L) {
238 nNonZero −= 1
239 nonZeroIdx (i) = nonZeroIdx (nNonZero)
240 nonZeroIdx (nNonZero) = o f f s e t
241 }
242 changed |= oldLong != newLong
243 }
244 changed
245 }
246

247 /∗∗
248 ∗ @param se t
249 ∗ @re turn the number o f b i t s o f the i n t e r s e c t i o n o f

the b i tS e t and t h i s
250 ∗/
251 def i n t e r s ec tCount (s e t : Bi tSet) : Int = {
252 var count = 0
253 var i : Int = nNonZero
254 while (i > 0) {
255 i −= 1
256 val o f f s e t = nonZeroIdx (i)
257 count += java . lang .Long . bitCount (words (o f f s e t) & s e t

. words (o f f s e t))
258 }
259 count
260 }
261

262 def i n t e r s ec tCount (s e t : BitSet , minsup : Int) : Int = {
263 var count = 0
264 //Constantes . nLoops += nNonZero
265 var i : Int = nNonZero
266 while (i > 0 && i ∗ 64 >= minsup − count) {
267 //Constantes . curSupport += 1
268 i −= 1
269 val o f f s e t = nonZeroIdx (i)
270 val setLong : Long = se t . words (o f f s e t)
271 i f (setLong != 0L) {
272 count += java . lang .Long . bitCount (words (o f f s e t) &

setLong)
273 }
274 }
275 count
276 }

180 APPENDIX A. ALGORITHMS

277

278 def i n t e r s e c tCountA l l (s e t s : Array [B i tSet] , itemIdx :
Array [Int] , l im i t : Int) : Int = {

279 var count = 0
280 var i : Int = nNonZero
281 while (i > 0) {
282 i −= 1
283 val o f f s e t = nonZeroIdx (i)
284 var j = l im i t
285 var myWord : Long = ~0L
286 while (j > 0 && myWord != 0) {
287 j −= 1
288 myWord = myWord & s e t s (itemIdx (j)) . words (o f f s e t)
289 }
290 i f (myWord != 0L) count += java . lang .Long . bitCount (

words (o f f s e t) & myWord)
291 }
292 count
293 }
294

295 def count () : Int = {
296 var count = 0
297 var i : Int = nNonZero
298 while (i > 0) {
299 i −= 1
300 val o f f s e t = nonZeroIdx (i)
301 count += java . lang .Long . bitCount (words (o f f s e t))
302 }
303 count
304 }
305

306 def i sSubSetOf (s e t : Bi tSet) : Boolean = {
307 var i : Int = nNonZero
308 while (i > 0) {
309 i −= 1
310 val o f f s e t = nonZeroIdx (i)
311 i f ((words (o f f s e t) & ~ s e t . words (o f f s e t)) != 0L) {
312 return fa l se
313 }
314 }
315 return true
316 }
317 }

A.3. FREQUENT ITEMSET MINING: COVERSIZE 181

A.3 Frequent Itemset Mining: CoverSize

Listing A.3. CoverSize
1 package f im . c on s t r a i n t s
2

3 import f im . u t i l s . Reve r s ib l eSpar s eB i tSe t2
4 import oscar . a lgo . r e v e r s i b l e ._
5 import oscar . cp ._
6 import oscar . cp . core . CPPropagStrength
7

8 /∗∗
9 ∗

10 ∗ CoverSize with Support as a CP va r i ab l e (same f o r a l l
c on t r a i n t s end with Var)

11 ∗
12 ∗ @author John Aoga johnaoga@gmail . com
13 ∗ @author P i e r r e Schaus pschaus@gmail . com
14 ∗ Relevant paper : Compact t ab l e and http ://

becoo l . i n f o . uc l . ac . be/ b i b l i o / cove r s i z e−g loba l−
cons t ra in t−f requency−based−i temset−mining

15 ∗
16 ∗ PART OF SOLVER OSCAR (https : // b i tbucket . org /

o s c a r l i b / oscar /wik i /Home)
17 ∗/
18 class CoverSizeVar (val I : Array [CPBoolVar] , Sup : CPIntVar ,

val nItems : Int , val nTrans : Int , TDB: Array [Set [Int
]]) extends Constra int (I (0) . s to re , " CoverSizeVar ") {

19

20 private [this] val coverage = new Rever s ib l eSpar s eB i tSe t2
(s , nTrans , 0 u n t i l nTrans)

21 ///Create matrix B (nItems x nTrans) (i = item , j =
t r an sa c t i on)

22 // I s such that columns (i) i s the coverage o f item i .
23 private [this] val columns = Array . t abu la t e (nItems) { x

=> new coverage . BitSet (TDB(x)) }
24 /// conta in s a l l the unbound va r i a b l e s that are not in

the c l o s u r e o f the cur rent i t emset .
25 // c l o s u r e => f r e q (I (D)U{ i }) = f r e q (I (D))
26 private [this] val unboundNotInClosure = Array . t abu la t e (I

. l ength) (i => i)

182 APPENDIX A. ALGORITHMS

27 private [this] val nUnboundNotInClosure = new
Reve r s i b l e I n t (s , I . l ength)

28 private [this] val updateSupLB = new Revers ib l eBoo lean (s ,
true)

29 private [this] var supLB = 0
30

31 /∗∗
32 ∗
33 ∗ @param l
34 ∗ @re turn CPOutcome s t a t e
35 ∗/
36 override def setup (l : CPPropagStrength) : Unit = {
37 for (i <− 0 un t i l nItems ; i f ! I (i) . isBound) {
38 I (i) . callPropagateWhenBind (this)
39 }
40 i f (! Sup . isBound) Sup . callPropagateWhenBoundsChange (

this)
41 propagate ()
42 }
43

44 /∗∗
45 ∗
46 ∗ @re turn CPOutcome s t a t e
47 ∗/
48 override def propagate () : Unit = {
49 coverage . c l e a rCo l l e c t e d ()
50 var coverChanged = fa l se
51

52 // update the coverage
53 var nU = nUnboundNotInClosure . va lue
54 var i = nU
55 while (i > 0) {
56 i −= 1
57 val idx = unboundNotInClosure (i)
58 i f (I (idx) . isBound) {
59 nU = removeItem (i , nU, idx)
60 //when bound to 1 , then idx in coverage , make

i n t e r s e c t i o n
61 i f (I (idx) . min == 1) {
62 coverChanged |= coverage . in t e r s ec tWith (columns (

idx))
63 } else {

A.3. FREQUENT ITEMSET MINING: COVERSIZE 183

64 // need to recompute upper bound only i f one
item i s newly s e t to 0

65 updateSupLB . value = true
66 }
67 }
68 }
69

70 // remove items that i f inc luded induce a too smal l
coverage

71 i = nU
72 while (i > 0) {
73 i −= 1
74 val idx = unboundNotInClosure (i)
75 //cond1 : f requency cond i t i on
76 i f (coverage . in t e r s ec tCount (columns (idx)) < Sup . min)

{
77 nU = removeItem (i , nU, idx)
78 I (idx) . a s s i gnFa l s e ()
79 updateSupLB . value = true
80 }
81 }
82

83 val supUB = coverage . count ()
84 Sup . updateMax (supUB)
85 // update the Sup . min by i n t e r s e c t a l l the remaining

unbound items
86 // i f (updateSupLB . value) {
87 supLB = coverage . i n t e r s e c tCountA l l (columns ,

unboundNotInClosure , nU)
88 Sup . updateMin (supLB)
89 updateSupLB . value = fa l se
90 //}
91

92 i f (supUB == Sup . min) {
93 // remove a l l unbound items that are not super s e t s

o f coverage
94 // because these would n e c e s s a r i l y dec r ea se the

coverage
95 i = nU
96 while (i > 0) {
97 i −= 1
98 val idx = unboundNotInClosure (i)
99 i f (! coverage . i sSubSetOf (columns (idx))) {

184 APPENDIX A. ALGORITHMS

100 nU = removeItem (i , nU, idx)
101 I (idx) . a s s i gnFa l s e ()
102 updateSupLB . value = true
103 }
104 }
105 }
106 nUnboundNotInClosure . va lue = nU
107 }
108

109 /∗∗
110 ∗
111 ∗ @param item
112 ∗ @param nU the number o f not unbound item which

are not in the cur rent c l o s u r e
113 ∗ @param index the index o f cur rent item
114 ∗ @re turn
115 ∗/
116 def removeItem (item : Int , nU: Int , index : Int) : Int = {
117 val lastU = nU − 1
118 unboundNotInClosure (item) = unboundNotInClosure (lastU)
119 unboundNotInClosure (lastU) = index
120 lastU
121 }
122 }

A.4 Sequential Pattern Mining: PPIC

Listing A.4. PPIC
1 package cp4d . spm . c on s t r a i n t s
2

3 import oscar . a lgo . r e v e r s i b l e . { Reve r s i b l e I n t }
4 import oscar . cp . core . CPOutcome ._
5 import oscar . cp . core ._
6 import oscar . cp . core . v a r i a b l e s ._
7

8 /∗∗
9 ∗ PPIC [Constra int Programming & Sequent i a l Pattern

Mining with Pre f i x p r o j e c t i o n method]
10 ∗ i s the CP ve r s i on o f Pr e f i x p r o j e c t i o n method o f

Sequent i a l Pattern Mining (with s e v e r a l improvements

A.4. SEQUENTIAL PATTERN MINING: PPIC 185

)
11 ∗ which i s based on pro j e c t ed database (We use here

pseudo−pro jec ted−database \{ (s id , pos) \}) .
12 ∗
13 ∗ This c on s t r a i n t generate a l l a v a i l a b l e s o l u t i o n given

such parameters
14 ∗
15 ∗ @param P, i s pattern where P_i i s the item in

po s i t i o n $ i$ in P
16 ∗ @param SDB, [sequence database] i t i s a s e t o f

sequences . Each l i n e SDB_i or t_i r ep r e s en t a
sequence

17 ∗ s1 abcbc
18 ∗ s2 babc
19 ∗ s3 ab
20 ∗ s4 bcd
21 ∗
22 ∗ @param lastPosOfItem i s the l a s t r e a l p o s i t i o n o f an

item in a sequence , i f 0 i t i s not pre sent
23 ∗ s1 s2 s3 s4
24 ∗ a 1 2 1 0
25 ∗ b 4 3 2 1
26 ∗ c 5 4 0 2
27 ∗ d 0 0 0 3
28 ∗ @param itemsSupport i s the i n i t i a l support (number o f

sequences where a item i s appeared) o f a l l i tems
29 ∗ a : 3 , b : 4 , c : 3 , d : 1
30 ∗ @param minsup i s a th r e sho ld support , item must appear

in at l e a s t minsup sequences $support (item)>=
minsup$

31 ∗ @param nItems i s the number o f i tems in SDB
32 ∗
33 ∗ @author John Aoga (johnaoga@gmail . com) and P i e r r e

Schaus (pschaus@gmail . com)
34 ∗/
35

36 // VSDB = v e r t i c a l database
37 class PPIC(val P: Array [CPIntVar] , val SDB: Array [Array [

Int]] , val SDBlastPos : Array [Array [Int]] , val
f i r s tPosOf I t em : Array [Array [Int]] , val lastPosOfItem :
Array [Array [Int]] , val i temsSupport : Array [Int] , val
minsup : Int , val nItems : Int) extends Constra int (P

(0) . s to re , "PPIC") {

186 APPENDIX A. ALGORITHMS

38

39 idempotent = true
40

41 private [this] val ep s i l o n = 0 // t h i s i s f o r empty item
42 private [this] val lenSDB = SDB. s i z e
43 private [this] val patternSeq = P. c lone ()
44 private [this] val l enPatternSeq = P. l ength
45

46 /// r ep r e s en t a t i on o f pseudo−pro jec ted−database
47 private [this] var i n n e rT r a i l S i z e = lenSDB∗5
48 private [this] var psdbSeqId = Array . t abu la t e (

i n n e rT r a i l S i z e) (i => i) // the No o f Sequence (s i d)
49 private [this] var psdbPosInSeq = Array . t abu la t e (

i n n e rT r a i l S i z e) (i => −1) // po s i t i o n o f p r e f i x in
t h i s s i d

50 private [this] val psdbStart = new Reve r s i b l e I n t (s , 0) //
cur rent s i z e o f t r a i l

51 private [this] val psdbSize = new Reve r s i b l e I n t (s , lenSDB)
// cur rent p o s i t i o n in t r a i l

52

53 ///when Inne rTra i l i s f u l l , i t a l l ows to double s i z e o f
t r a i l

54 @i n l i n e private def growInnerTra i l () : Unit = {
55 val newPsdbSeqId = new Array [Int] (i n n e rT r a i l S i z e ∗2)
56 val newPsdbPosInSeq = new Array [Int] (i n n e rT r a i l S i z e ∗2)
57 System . arraycopy (psdbSeqId , 0 , newPsdbSeqId , 0 ,

i n n e rT r a i l S i z e)
58 System . arraycopy (psdbPosInSeq , 0 , newPsdbPosInSeq , 0 ,

i n n e rT r a i l S i z e)
59 psdbSeqId = newPsdbSeqId
60 psdbPosInSeq = newPsdbPosInSeq
61 i n n e rT r a i l S i z e ∗= 2
62 }
63

64 /// support counter conta in support f o r each item , i t i s
r e v e r s i b l e f o r e f f i c i e n t backtrack

65 private [this] var supportCounter = itemsSupport
66 var curPre f ixSupport : Int = 0
67

68 /// cur rent p o s i t i o n in P $P_i = P[curPosInP . va lue] $
69 private [this] val curPosInP = new Reve r s i b l e I n t (s , 0)
70

71 /// check i f pruning i s done s u c c e s s f u l l y

A.4. SEQUENTIAL PATTERN MINING: PPIC 187

72 private [this] var pruneSuccess = true
73

74 /∗∗
75 ∗ Entry in cons t ra in t , f unc t i on f o r a l l i n i t
76 ∗ @param l
77 ∗ @re turn The outcome o f the f i r s t propagat ion and

con s i s t ency check
78 ∗/
79 f ina l override def setup (l : CPPropagStrength) : CPOutcome

= {
80 i f (propagate () == Failure) Failure
81 else {
82 var i = patternSeq . l ength
83 while (i > 0) {
84 i −= 1
85 patternSeq (i) . callPropagateWhenBind (this)
86 }
87 Suspend
88 }
89 }
90

91 /∗∗
92 ∗ propagate
93 ∗ @re turn the outcome i . e . Fa i lure , Success or Suspend
94 ∗/
95 f ina l override def propagate () : CPOutcome = {
96 var v = curPosInP . va lue
97

98 i f (P(v) . isBoundTo (ep s i l o n)) {
99 i f (!P(v−1) . isBoundTo (ep s i l o n)) {

100 enforceEpsi lonFrom (v)
101 }
102 return Success
103 }
104

105 while (v < P. l ength && P(v) . isBound && P(v) . min !=
ep s i l o n) {

106 i f (! f i l t e r P r e f i x P r o j e c t i o n (P(v) . getMin)) return
Failure

107 curPosInP . i n c r ()
108 v = curPosInP . va lue
109 }
110

188 APPENDIX A. ALGORITHMS

111 i f (v > 0 && v < P. l ength && P(v) . isBoundTo (ep s i l o n))
{

112 enforceEpsi lonFrom (v)
113 }
114 Suspend
115 }
116

117 /∗∗
118 ∗ when $P_i = eps i l on$, then $P_i+1 = ep s i l on$
119 ∗ @param i cur rent p o s i t i o n in P
120 ∗/
121 def enforceEpsi lonFrom (i : Int) : Unit = {
122 var j = i
123 while (j < lenPatternSeq) {
124 P(j) . a s s i gn (ep s i l o n)
125 j += 1
126 }
127 }
128

129 /∗∗
130 ∗ P[curPosInP . va lue] has j u s t been bound to " p r e f i x "
131 ∗ a l l the i n d i c e s be f o r e (< currPosInP) are a l r eady

bound
132 ∗
133 ∗ i f p r e f i x i s not ep s i l o n we can compute next pseudo

−pro jec ted−database
134 ∗ with projectSDB func t i on
135 ∗
136 ∗ @param p r e f i x
137 ∗ @re turn the Boolean i s to say i f cur r ent p r e f i x i s a

s o l u t i o n or not
138 ∗/
139 private def f i l t e r P r e f i x P r o j e c t i o n (p r e f i x : Int) :

Boolean = {
140 val i = curPosInP . va lue + 1
141 ////// p r i n t l n (" f i l t e r p r e f i x "+ p r e f i x+" at p o s i t i o n "+

i)
142 i f (i >= 2 && p r e f i x == ep s i l o n) { return true }
143 else {
144 val sup = projectSDB (p r e f i x)
145

146 i f (sup < minsup) { return fa l se }
147 else {

A.4. SEQUENTIAL PATTERN MINING: PPIC 189

148 pruneSuccess = true
149 ///Prune next po s i t i o n pattern P domain i f i t

e x i s t s unfrequent items
150 prune (i)
151 return pruneSuccess
152 }
153 }
154 }
155

156 /// i n i t i a l i s a t i o n o f domain
157 val dom = Array . ofDim [Int] (nItems)
158

159 /∗∗
160 ∗ pruning s t r a t e gy
161 ∗ @param i cur rent p o s i t i o n in P
162 ∗/
163 private def prune (i : Int) : Unit = {
164 val j = i
165 i f (j >= lenPatternSeq) return
166 var k = 0
167 val l en = P(j) . f i l l A r r a y (dom)
168 while (k < len) {
169 val item = dom(k)
170 i f (item != ep s i l o n && supportCounter (item) <

minsup) {
171 i f (P(j) . removeValue (item) == Failure) {
172 pruneSuccess = fa l se
173 return
174 }
175 }
176 k += 1
177 }
178 }
179

180 /∗∗
181 ∗ Computing o f next pseudo pro j e c t ed database
182 ∗ @param p r e f i x
183 ∗ @re turn
184 ∗/
185 private def projectSDB (p r e f i x : Int) : Int = {
186 val s t a r t I n i t = psdbStart . va lue
187 val s i z e I n i t = psdbSize . va lue
188

190 APPENDIX A. ALGORITHMS

189 //Count sequences va l i da t ed f o r next s tep
190 curPre f ixSupport = 0
191

192 // a l low to p r ed i c t f a i l e d s i d (sequence) and remove i t
193 val nbAddedTarget = itemsSupport (p r e f i x)
194

195 // r e s e t support to 0
196 supportCounter = Array . f i l l [Int] (nItems) (0)
197

198 //
199 var i = s t a r t I n i t
200 var j = s t a r t I n i t + s i z e I n i t
201 var nbAdded = 0
202 ////// p r i n t l n (" s t a r t I n i t = "+ s t a r t I n i t +" s i z e I n i t = "+

s i z e I n i t)
203 // Tias optim : nbAdded < nbAddedTarget
204 // because we know how many need to be added so we can

stop when t h i s t a r g e t i s reached
205 while (i < s t a r t I n i t + s i z e I n i t && nbAdded <

nbAddedTarget) {
206

207 val s i d = psdbSeqId (i)
208 val t i = SDB(s i d)
209 val l t i = t i . l ength
210 val start = psdbPosInSeq (i)
211 var pos = start
212

213 i f (lastPosOfItem (s i d) (p r e f i x) != 0) {
214 // here we know at l e a s t that p r e f i x i s pre sent in

sequence s i d
215

216 // search f o r next va lue " p r e f i x " in the sequence
s t a r t i n g from

217 i f (lastPosOfItem (s i d) (p r e f i x) − 1 >= pos) {
218 // we are sure p r e f i x next p o s i t i o n i s a v a i l a b l e

and so we add the sequence in the new
pro j e c t ed data base

219 nbAdded += 1
220

221 // f i nd next po s i t i o n o f p r e f i x
222 i f (start == −1) { pos = f i r s tPosOf I t em (s i d) (

p r e f i x) − 1}

A.4. SEQUENTIAL PATTERN MINING: PPIC 191

223 else {while (pos < l t i && p r e f i x != t i (pos)) {
pos += 1}}

224 //update pseudo pro j e c t ed database and support
225 psdbSeqId (j) = s i d
226 psdbPosInSeq (j) = pos + 1
227 j += 1
228 i f (j >= inn e rT r a i l S i z e) growInnerTra i l ()
229

230 curPre f ixSupport += 1
231

232 // recompute support
233 var break = fa l se
234 val t i La s t = SDBlastPos (s i d)
235

236 var c = 0
237 while (t i La s t (c)−1 > pos) {
238 supportCounter (t i (t i La s t (c)−1))+= 1
239 c += 1
240 }
241 }
242 }
243

244 i += 1
245 }
246

247 psdbStart . va lue = s t a r t I n i t + s i z e I n i t
248 psdbSize . va lue = curPre f ixSupport
249

250 return curPre f ixSupport
251 }
252 }

Bibliography

[] Scala standard library 2.11.6, http://www.scala-lang.org/api/current/index.
html#scala.Long.

[ADF16] John O. R. Aoga, Théophile K. Dagba, and Codjo C. Fanou, Integration
of yoruba language into marytts, I. J. Speech Technology 19 (2016), no. 1,
151–158.

[AFGY02] Jay Ayres, Jason Flannick, Johannes Gehrke, and Tomi Yiu, Sequential
pattern mining using a bitmap representation, Proceedings of the 8th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
July 23-26, 2002, Edmonton, Alberta, Canada, ACM, 2002, pp. 429–435.

[Agg14a] CC Aggarwal, An introduction to frequent pattern mining, pp. 1–17, Springer,
2014.

[Agg14b] Charu C. Aggarwal, Applications of frequent pattern mining, in Aggarwal and
Han [AH14], pp. 443–467.

[AGNS18] John O. R. Aoga, Tias Guns, Siegfried Nijssen, and Pierre Schaus, Finding
probabilistic rule lists using the minimum description length principle, Dis-
covery Science - 21st International Conference, DS 2018, Limassol, Cyprus,
October 29-31, 2018, Proceedings (Larisa N. Soldatova, Joaquin Vanschoren,
George A. Papadopoulos, and Michelangelo Ceci, eds.), Lecture Notes in
Computer Science, vol. 11198, Springer, 2018, pp. 66–82.

[AGS16] John O. R. Aoga, Tias Guns, and Pierre Schaus, An efficient algorithm for
mining frequent sequence with constraint programming, Machine Learning and
Knowledge Discovery in Databases - European Conference, ECML PKDD
2016, Riva del Garda, Italy, September 19-23, 2016, Proceedings, Part II
(Paolo Frasconi, Niels Landwehr, Giuseppe Manco, and Jilles Vreeken, eds.),
Lecture Notes in Computer Science, vol. 9852, Springer, 2016, pp. 315–330.

[AGS17] , Mining time-constrained sequential patterns with constraint program-
ming, Constraints 22 (2017), no. 4, 548–570.

[AH14] Charu C. Aggarwal and Jiawei Han (eds.), Frequent pattern mining, Springer,
2014.

[AIS93] Rakesh Agrawal, Tomasz Imieliński, and Arun Swami, Mining association
rules between sets of items in large databases, International Conference on
Management of Data (SIGMOD) 22 (1993), no. 2, 207–216.

193

http://www.scala-lang.org/api/current/index.html#scala.Long
http://www.scala-lang.org/api/current/index.html#scala.Long

194 BIBLIOGRAPHY

[AMS+96] Rakesh Agrawal, Heikki Mannila, Ramakrishnan Srikant, Hannu Toivonen,
A Inkeri Verkamo, et al., Fast discovery of association rules., Advances in
knowledge discovery and data mining 12 (1996), no. 1, 307–328.

[AO03] Cláudia Antunes and Arlindo L. Oliveira, Generalization of pattern-growth
methods for sequential pattern mining with gap constraints, Machine Learn-
ing and Data Mining in Pattern Recognition: 3rd International Conference,
MLDM 2003 Leipzig, Germany, July 5–7, 2003 Proceedings (Berlin, Heidel-
berg) (Petra Perner and Azriel Rosenfeld, eds.), Springer Berlin Heidelberg,
2003, pp. 239–251.

[AS95] Rakesh Agrawal and Ramakrishnan Srikant, Mining sequential patterns, Data
Engineering, 1995. Proceedings of the Eleventh International Conference on,
IEEE, 1995, pp. 3–14.

[BC94] Nicolas Beldiceanu and Evelyne Contejean, Introducing global constraints in
chip, Mathematical and computer Modelling 20 (1994), no. 12, 97–123.

[BCG01] Douglas Burdick, Manuel Calimlim, and Johannes Gehrke, MAFIA: A maxi-
mal frequent itemset algorithm for transactional databases, Data Engineering,
2001. Proceedings. 17th International Conference on, IEEE, 2001, pp. 443–452.

[BFH+12] Iyad Batal, Dmitriy Fradkin, James Harrison, Fabian Moerchen, and Milos
Hauskrecht, Mining recent temporal patterns for event detection in multivari-
ate time series data, Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining, ACM, 2012, pp. 280–288.

[BH03] Christian Bessière and Pascal Van Hentenryck, To be or not to be ... a global
constraint, Principles and Practice of Constraint Programming - CP 2003, 9th
International Conference, CP 2003, Kinsale, Ireland, September 29 - October
3, 2003, Proceedings (Francesca Rossi, ed.), Lecture Notes in Computer
Science, vol. 2833, Springer, 2003, pp. 789–794.

[BL04] F. Bonchi and C. Lucchese, On closed constrained frequent pattern mining,
ICDM ’04. Fourth IEEE International Conference on Data Mining, Nov 2004,
pp. 35–42.

[Bor03] Christian Borgelt, Efficient implementations of Apriori and Eclat, FIMI:
Workshop on Frequent Itemset Mining Implementations, 2003.

[Bor12] , Frequent item set mining, Wiley Interdisciplinary Reviews: Data
Mining and Knowl. Discovery 2 (2012), no. 6, 437–456.

[BR97] Christian Bessiere and Jean-Charles Régin, Arc consistency for general cons-
traint networks: preliminary results, International Joint Conference on Artifi-
cial Intelligence (IJCAI), 1997.

[BRY98] Andrew R. Barron, Jorma Rissanen, and Bin Yu, The minimum description
length principle in coding and modeling, IEEE Trans. Information Theory 44
(1998), no. 6, 2743–2760.

[BZ05] Björn Bringmann and Albrecht Zimmermann, Tree 2–Decision Trees for
tree structured data, European Conference on Principles of Data Mining and
Knowledge Discovery, Springer, 2005, pp. 46–58.

BIBLIOGRAPHY 195

[BZDRN06] Björn Bringmann, Albrecht Zimmermann, Luc De Raedt, and Siegfried
Nijssen, Don’t be afraid of simpler patterns, PKDD, vol. 4213, Springer, 2006,
pp. 55–66.

[C+08] UniProt Consortium et al., The universal protein resource (uniprot), Nucleic
acids research 36 (2008), no. suppl 1, D190–D195.

[CAS18] Quentin Cappart, John O. R. Aoga, and Pierre Schaus, Episodesupport: A
global constraint for mining frequent patterns in a long sequence of events,
Integration of Constraint Programming, Artificial Intelligence, and Opera-
tions Research - 15th International Conference, CPAIOR 2018, Delft, The
Netherlands, June 26-29, 2018, Proceedings (Willem Jan van Hoeve, ed.),
Lecture Notes in Computer Science, vol. 10848, Springer, 2018, pp. 82–99.

[CDG07] Toon Calders, Nele Dexters, and Bart Goethals, Mining frequent itemsets
in a stream, Data Mining, 2007. ICDM 2007. Seventh IEEE International
Conference on, IEEE, 2007, pp. 83–92.

[CGR09] Boris Cule, Bart Goethals, and Céline Robardet, A new constraint for mining
sets in sequences, Proceedings of the 2009 SIAM International Conference on
Data Mining, SIAM, 2009, pp. 317–328.

[CJSS12] Emmanuel Coquery, Saïd Jabbour, Lakhdar Saïs, and Yakoub Salhi, A sat-
based approach for discovering frequent, closed and maximal patterns in a
sequence, ECAI 2012 - 20th European Conference on Artificial Intelligence.
Montpellier, France, August 27-31 , 2012 (Luc De Raedt, Christian Bessière,
Didier Dubois, Patrick Doherty, Paolo Frasconi, Fredrik Heintz, and Peter
J. F. Lucas, eds.), Frontiers in Artificial Intelligence and Applications, vol.
242, IOS Press, 2012, pp. 258–263.

[CMS97] Robert Cooley, Bamshad Mobasher, and Jaideep Srivastava, Web mining:
Information and pattern discovery on the world wide web, 9th International
Conference on Tools with Artificial Intelligence, ICTAI ’97, Newport Beach,
CA, USA, November 3-8, 1997, IEEE Computer Society, 1997, pp. 558–567.

[CT06] Thomas M. Cover and Joy A. Thomas, Elements of information theory (2.
ed.), Wiley, 2006.

[CY10] Kenil CK Cheng and Roland HC Yap, An MDD-based generalized arc consis-
tency algorithm for positive and negative table constraints and some global
constraints, Constraints 15 (2010), no. 2, 265–304.

[CYHP08] Hong Cheng, Xifeng Yan, Jiawei Han, and S Yu Philip, Direct discriminative
pattern mining for effective classification, Data Engineering, 2008. ICDE 2008.
IEEE 24th International Conference on, IEEE, 2008, pp. 169–178.

[DAF16] Théophile K. Dagba, John O. R. Aoga, and Codjo C. Fanou, Design of a
yoruba language speech corpus for the purposes of text-to-speech (TTS) syn-
thesis, Intelligent Information and Database Systems - 8th Asian Conference,
ACIIDS 2016, Da Nang, Vietnam, March 14-16, 2016, Proceedings, Part
I (Ngoc Thanh Nguyen, Bogdan Trawinski, Hamido Fujita, and Tzung-Pei
Hong, eds.), Lecture Notes in Computer Science, vol. 9621, Springer, 2016,
pp. 161–169.

196 BIBLIOGRAPHY

[DFL+15] Yiheng Duan, Xiao Fu, Bin Luo, Ziqi Wang, Jin Shi, and Xiaojiang Du,
Detective: Automatically identify and analyze malware processes in forensic
scenarios via dlls, 2015 IEEE International Conference on Communications,
ICC 2015, London, United Kingdom, June 8-12, 2015, IEEE, 2015, pp. 5691–
5696.

[DG15] Niti Ashish Kumar Desai and Amit Ganatra, Efficient constraint-based se-
quential pattern mining (spm) algorithm to understand customers buying
behaviour from time stamp-based sequence dataset, Cogent Engineering 2
(2015), no. 1, 1072292.

[DHL+16] Jordan Demeulenaere, Renaud Hartert, Christophe Lecoutre, Guillaume
Perez, Laurent Perron, Jean-Charles Régin, and Pierre Schaus, Compact-
Table: Efficiently filtering table constraints with reversible sparse bit-sets,
Principles and Practice of Constraint Programming - 22nd International
Conference, CP’16, Proceedings (Michel Rueher, ed.), Lecture Notes in
Computer Science, vol. 9892, Springer, 2016, pp. 207–223.

[DKWK05] Mukund Deshpande, Michihiro Kuramochi, Nikil Wale, and George Karypis,
Frequent substructure-based approaches for classifying chemical compounds,
IEEE Transactions on Knowledge and Data Engineering 17 (2005), no. 8,
1036–1050.

[DLM+98] Gautam Das, King-Ip Lin, Heikki Mannila, Gopal Renganathan, and Padhraic
Smyth, Rule discovery from time series, KDD, vol. 98, 1998, pp. 16–22.

[DM02] Elizabeth D. Dolan and Jorge J. Moré, Benchmarking optimization software
with performance profiles, Math. Program. 91 (2002), no. 2, 201–213.

[DRGN08] Luc De Raedt, Tias Guns, and Siegfried Nijssen, Constraint programming for
itemset mining, International Conference on Knowledge Discovery and Data
Mining (SIGKDD), ACM, 2008, pp. 204–212.

[dSMSSL13] Vianney le Clément de Saint-Marcq, Pierre Schaus, Christine Solnon, and
Christophe Lecoutre, Sparse-sets for domain implementation, CP workshop
on - Techniques foR Implementing Constraint programming Systems (TRICS),
2013, pp. 1–10.

[ERP18] N Esipova, J Ray, and A Pugliese, Number of potential migrants worldwide
tops 700 million, Gallup (2018).

[Fed86] Meir Feder, Maximum entropy as a special case of the minimum description
length criterion, IEEE Trans. Information Theory 32 (1986), no. 6, 847–849.

[FGL14] Johannes Fürnkranz, Dragan Gamberger, and Nada Lavrač, Foundations of
rule learning, Springer Publishing Company, Incorporated, 2014.

[FKE+15] Matthias Feurer, Aaron Klein, Katharina Eggensperger, Jost Springenberg,
Manuel Blum, and Frank Hutter, Efficient and robust automated machine
learning, Advances in Neural Information Processing Systems 28 (C. Cortes,
N. D. Lawrence, D. D. Lee, M. Sugiyama, and R. Garnett, eds.), Curran
Associates, Inc., 2015, pp. 2962–2970.

[FLV+17] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Bay Vo, Tin Chi Truong,
Ji Zhang, and Hoai Bac Le, A survey of itemset mining, Wiley Interdiscip.
Rev. Data Min. Knowl. Discov. 7 (2017), no. 4, e1207.

BIBLIOGRAPHY 197

[Fre97] Eugene C. Freuder, In pursuit of the holy grail, Constraints 2 (1997), no. 1,
57–61.

[FVLK+17] Philippe Fournier-Viger, Jerry Chun-Wei Lin, Rage Uday Kiran, Yun Sing
Koh, and Rincy Thomas, A survey of sequential pattern mining, Data Science
and Pattern Recognition 1 (2017), no. 1, 54–77.

[FVWT13] Philippe Fournier-Viger, Cheng-Wei Wu, and Vincent S Tseng, Mining maxi-
mal sequential patterns without candidate maintenance, Advanced Data Mining
and Applications, Springer, 2013, pp. 169–180.

[FZC+08] Wei Fan, Kun Zhang, Hong Cheng, Jing Gao, Xifeng Yan, Jiawei Han, Philip
Yu, and Olivier Verscheure, Direct mining of discriminative and essential
frequent patterns via model-based search tree, Proceedings of the 14th ACM
SIGKDD international conference on Knowledge discovery and data mining,
ACM, 2008, pp. 230–238.

[GDT+13] Tias Guns, Anton Dries, Guido Tack, Siegfried Nijssen, and Luc De Raedt,
Miningzinc: A modeling language for constraint-based mining, Proceedings
of the Twenty-Third international joint conference on Artificial Intelligence,
AAAI Press, 2013, pp. 1365–1372.

[Gec06] Gecode Team, Gecode: Generic constraint development environment, 2006,
Available from http://www.gecode.org.

[GLF+18] Wensheng Gan, Jerry Chun-Wei Lin, Philippe Fournier-Viger, Han-Chieh
Chao, and Philip S. Yu, A survey of parallel sequential pattern mining, CoRR
abs/1805.10515 (2018).

[GNDR11] Tias Guns, Siegfried Nijssen, and Luc De Raedt, Itemset mining: A constraint
programming perspective, Artificial Intelligence 175 (2011), no. 12-13, 1951–
1983.

[GNDR13] , k-Pattern set mining under constraints, IEEE Transactions on Knowl.
and Data Eng. 25 (2013), no. 2, 402–418.

[GNR11] Tias Guns, Siegfried Nijssen, and Luc De Raedt, Evaluating pattern set mining
strategies in a constraint programming framework, Advances in Knowledge
Discovery and Data Mining - 15th Pacific-Asia Conference, PAKDD 2011,
Shenzhen, China, May 24-27, 2011, Proceedings, Part II (Joshua Zhexue
Huang, Longbing Cao, and Jaideep Srivastava, eds.), Lecture Notes in Com-
puter Science, vol. 6635, Springer, 2011, pp. 382–394.

[Goo15] Google, Google optimization tools, 2015, Available from https://developers.
google.com/optimization/.

[Grü07] Peter D Grünwald, The minimum description length principle, MIT press,
2007.

[HAM14] Rui Henriques, Cláudia Antunes, and Sara C. Madeira, Methods for the
efficient discovery of large item-indexable sequential patterns, New Frontiers
in Mining Complex Patterns: Second International Workshop, NFMCP 2013,
Held in Conjunction with ECML-PKDD 2013, Prague, Czech Republic,
September 27, 2013, Revised Selected Papers (Cham) (Annalisa Appice,
Michelangelo Ceci, Corrado Loglisci, Giuseppe Manco, Elio Masciari, and
Zbigniew W. Ras, eds.), Springer International Publishing, 2014, pp. 100–116.

http://www.gecode.org
https://developers.google.com/optimization/
https://developers.google.com/optimization/

198 BIBLIOGRAPHY

[HC08] Kuo-Yu Huang and Chia-Hui Chang, Efficient mining of frequent episodes
from complex sequences, Information Systems 33 (2008), no. 1, 96–114.

[HFPZ13] Jun He, Pierre Flener, Justin Pearson, and Wei Ming Zhang, Solving string
constraints: The case for constraint programming, International Conference on
Principles and Practice of Constraint Programming, Springer, 2013, pp. 381–
397.

[HKV19] Frank Hutter, Lars Kotthoff, and Joaquin Vanschoren (eds.), Automated
machine learning - methods, systems, challenges, The Springer Series on
Challenges in Machine Learning, Springer, 2019.

[HM14] Rui Henriques and Sara C. Madeira, Bicspam: flexible biclustering using
sequential patterns, BMC Bioinformatics 15 (2014), no. 1, 130.

[HPMA+01] Jiawei Han, Jian Pei, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and MC Hsu, Prefixspan: Mining sequential patterns effi-
ciently by prefix-projected pattern growth, proceedings of the 17th international
conference on data engineering, 2001, pp. 215–224.

[HPYM04] Jiawei Han, Jian Pei, Yiwen Yin, and Runying Mao, Mining frequent patterns
without candidate generation: A frequent-pattern tree approach, Data mining
and knowledge discovery 8 (2004), no. 1, 53–87.

[ITN04] Koji Iwanuma, Yo Takano, and Hidetomo Nabeshima, On anti-monotone
frequency measures for extracting sequential patterns from a single very-long
data sequence, Cybernetics and Intelligent Systems, 2004 IEEE Conference
on, vol. 1, IEEE, 2004, pp. 213–217.

[JSS13] Said Jabbour, Lakhdar Sais, and Yakoub Salhi, The top-k frequent closed
itemset mining using top-k sat problem, Joint European Conference on Machine
Learning and Knowledge Discovery in Databases, Springer, 2013, pp. 403–418.

[JSS17] Saïd Jabbour, Lakhdar Sais, and Yakoub Salhi, Mining top-k motifs with a
sat-based framework, Artif. Intell. 244 (2017), 30–47.

[KLL+15] Amina Kemmar, Samir Loudni, Yahia Lebbah, Patrice Boizumault, and
Thierry Charnois, Prefix-projection global constraint for sequential pattern
mining, Principles and Practice of Constraint Programming: 21st Interna-
tional Conference, CP 2015, Cork, Ireland, August 31 – September 4, 2015,
Proceedings (Cham) (Gilles Pesant, ed.), Springer, Springer International
Publishing, 2015, pp. 226–243.

[KLL+16] Amina Kemmar, Samir Loudni, Yahia Lebbah, Patrice Boizumault, and
Thierry Charnois, A global constraint for mining sequential patterns with GAP
constraint, Integration of AI and OR Techniques in Constraint Programming
- 13th International Conference, CPAIOR 2016, Banff, AB, Canada, May 29
- June 1, 2016, Proceedings (Claude-Guy Quimper, ed.), Lecture Notes in
Computer Science, vol. 9676, Springer, Springer, 2016, pp. 198–215.

[KLL+17] Amina Kemmar, Yahia Lebbah, Samir Loudni, Patrice Boizumault, and
Thierry Charnois, Prefix-projection global constraint and top-k approach for
sequential pattern mining, Constraints 22 (2017), no. 2, 265–306.

BIBLIOGRAPHY 199

[KNGO15] Lars Kotthoff, Mirco Nanni, Riccardo Guidotti, and Barry O’Sullivan, Find
your way back: Mobility profile mining with constraints, International Confer-
ence on Principles and Practice of Constraint Programming, Springer, 2015,
pp. 638–653.

[Knu15] D.E. Knuth, The art of computer programming: Combinatorial algorithms,
vol. 4, Addison-Wesley, 2015.

[KS10] Serdar Kadioglu and Meinolf Sellmann, Grammar constraints, Constraints
15 (2010), no. 1, 117–144.

[KTH+17] Lars Kotthoff, Chris Thornton, Holger H Hoos, Frank Hutter, and Kevin
Leyton-Brown, Auto-weka 2.0: Automatic model selection and hyperparameter
optimization in weka, Journal of Machine Learning Research 17 (2017), 1–5.

[Lau18] Laurent Michel, Pierre Schaus, Pascal Van Hentenryck, MiniCP: A
lightweight solver for constraint programming, 2018, Available from
https://minicp.bitbucket.io.

[LC05] Congnan Luo and Soon Myoung Chung, Efficient mining of maximal se-
quential patterns using multiple samples, Proceedings of the 2005 SIAM
International Conference on Data Mining, SDM 2005, Newport Beach, CA,
USA, April 21-23, 2005 (Hillol Kargupta, Jaideep Srivastava, Chandrika
Kamath, and Arnold Goodman, eds.), SIAM, 2005, pp. 415–426.

[Lec11] Christophe Lecoutre, STR2: optimized simple tabular reduction for table
constraints, Constraints 16 (2011), no. 4, 341–371.

[Lho05] Olivier Lhomme, Quick shaving, Proceedings of the 20th national conference
on Artificial intelligence-Volume 1, AAAI Press, 2005, pp. 411–415.

[Lic13] M. Lichman, UCI machine learning repository, 2013.
[LKFT04] Nada Lavrac, Branko Kavsek, Peter A. Flach, and Ljupco Todorovski, Sub-

group discovery with CN2-SD, Journal of Machine Learning Research 5 (2004),
153–188.

[LL04] S Lu and C Li, Aprioriadjust: An efficient algorithm for discovering the
maximum sequential patterns, Proc. Intern. Workshop Knowl. Grid and Grid
Intell, 2004.

[LLL+16] Nadjib Lazaar, Yahia Lebbah, Samir Loudni, Mehdi Maamar, Valentin
Lemière, Christian Bessiere, and Patrice Boizumault, A global constraint
for closed frequent pattern mining, International Conference on Principles
and Practice of Constraint Programmingn (CP), Springer, 2016, pp. 333–349.

[LSU07] Srivatsan Laxman, PS Sastry, and KP Unnikrishnan, A fast algorithm for
finding frequent episodes in event streams, Proceedings of the 13th ACM
SIGKDD international conference on Knowledge discovery and data mining,
ACM, 2007, pp. 410–419.

[LW08] Chun Li and Jianyong Wang, Efficiently mining closed subsequences with
gap constraints, Proceedings of the SIAM International Conference on Data
Mining, SDM 2008, April 24-26, 2008, Atlanta, Georgia, USA, SIAM, 2008,
pp. 313–322.

200 BIBLIOGRAPHY

[MBC+11] J Metivier, Patrice Boizumault, Bruno Crémilleux, Mehdi Khiari, and Samir
Loudni, A constraint-based language for declarative pattern discovery, Data
Mining Workshops (ICDMW), 2011 IEEE 11th International Conference on,
IEEE, 2011, pp. 1112–1119.

[MDLN01] Bamshad Mobasher, Honghua Dai, Tao Luo, and Miki Nakagawa, Effective
personalization based on association rule discovery from web usage data, 3rd
International Workshop on Web Information and Data Management (WIDM
2001), Friday, 9 November 2001, In Conjunction with ACM CIKM 2001,
Doubletree Hotel Atlanta-Buckhead, Atlanta, Georgia, USA. ACM, 2001
(Roger H. L. Chiang and Ee-Peng Lim, eds.), ACM, 2001, pp. 9–15.

[ME10] Nizar R. Mabroukeh and C. I. Ezeife, A taxonomy of sequential pattern mining
algorithms, ACM Comput. Surv. 43 (2010), no. 1, 3:1–3:41.

[MR04] Nicolas Méger and Christophe Rigotti, Constraint-based mining of episode
rules and optimal window sizes, European Conference on Principles of Data
Mining and Knowledge Discovery, Springer, 2004, pp. 313–324.

[MS00] Shinichi Morishita and Jun Sese, Traversing itemset lattice with statistical
metric pruning, Proceedings of the Nineteenth ACM SIGMOD-SIGACT-
SIGART Symposium on Principles of Database Systems, May 15-17, 2000,
Dallas, Texas, USA (Victor Vianu and Georg Gottlob, eds.), ACM, 2000,
pp. 226–236.

[MT96] Heikki Mannila and Hannu Toivonen, Discovering generalized episodes using
minimal occurrences., KDD, vol. 96, 1996, pp. 146–151.

[MTV95] Heikki Mannila, Hannu Toivonen, and A Inkeri Verkamo, Discovering fre-
quent episodes in sequences extended abstract, 1st Conference on Knowledge
Discovery and Data Mining, 1995.

[MTV97] , Discovery of frequent episodes in event sequences, Data mining and
knowledge discovery 1 (1997), no. 3, 259–289.

[NDGN13] Benjamin Negrevergne, Anton Dries, Tias Guns, and Siegfried Nijssen, Dom-
inance programming for itemset mining, Data Mining (ICDM), 2013 IEEE
13th International Conference on Data Mining, IEEE, 2013, pp. 557–566.

[NG10] Siegfried Nijssen and Tias Guns, Integrating constraint programming and
itemset mining, ECML PKDD 2010 European Conference on Machine Learn-
ing and Principles and Practice of Knowledge Discovery in Databases, 2010,
pp. 467–482.

[NG15] Benjamin Négrevergne and Tias Guns, Constraint-based sequence mining using
constraint programming, Integration of AI and OR Techniques in Constraint
Programming - 12th International Conference, CPAIOR 2015, Barcelona,
Spain, May 18-22, 2015, Proceedings (Laurent Michel, ed.), Lecture Notes in
Computer Science, vol. 9075, Springer, 2015, pp. 288–305.

[NGDR09] Siegfried Nijssen, Tias Guns, and Luc De Raedt, Correlated itemset mining in
ROC space: a constraint programming approach, International Conference on
Knowledge Discovery and Data Mining (SIGKDD), ACM, 2009, pp. 647–656.

BIBLIOGRAPHY 201

[NLHP98] Raymond T. Ng, Laks V. S. Lakshmanan, Jiawei Han, and Alex Pang,
Exploratory mining and pruning optimizations of constrained association
rules, SIGMOD 1998, Proceedings ACM SIGMOD International Conference
on Management of Data, June 2-4, 1998, Seattle, Washington, USA. (Laura M.
Haas and Ashutosh Tiwary, eds.), ACM Press, 1998, pp. 13–24.

[NMB+15] Stefan Naulaerts, Pieter Meysman, Wout Bittremieux, Trung-Nghia Vu,
Wim Vanden Berghe, Bart Goethals, and Kris Laukens, A primer to frequent
itemset mining for bioinformatics, Briefings in Bioinformatics 16 (2015), no. 2,
216–231.

[NZ14] Siegfried Nijssen and Albrecht Zimmermann, Constraint-based pattern mining,
pp. 147–163, Springer, 2014.

[Osc12] OscaR Team, OscaR: Scala in OR, 2012, Available from
https://bitbucket.org/oscarlib/oscar.

[Pes04] Gilles Pesant, A regular language membership constraint for finite sequences
of variables, International conference on principles and practice of constraint
programming, Springer, 2004, pp. 482–495.

[PFM16] Yao Jean Marc Pokou, Philippe Fournier-Viger, and Chadia Moghrabi, Au-
thorship attribution using small sets of frequent part-of-speech skip-grams,
Proceedings of the Twenty-Ninth International Florida Artificial Intelligence
Research Society Conference, FLAIRS 2016, Key Largo, Florida, USA, May
16-18, 2016. (Zdravko Markov and Ingrid Russell, eds.), AAAI Press, 2016,
pp. 86–91.

[PHMA+01] Jian Pei, Jiawei Han, Behzad Mortazavi-Asl, Helen Pinto, Qiming Chen,
Umeshwar Dayal, and Mei-Chun Hsu, Prefixspan: Mining sequential pat-
terns efficiently by prefix-projected pattern growth, proceedings of the 17th
international conference on data engineering, IEEE, 2001, pp. 215–224.

[PHP+01] Helen Pinto, Jiawei Han, Jian Pei, Ke Wang, Qiming Chen, and Umeshwar
Dayal, Multi-dimensional sequential pattern mining, Proceedings of the tenth
international conference on Information and knowledge management, ACM,
2001, pp. 81–88.

[PHW07] Jian Pei, Jiawei Han, and Wei Wang, Constraint-based sequential pattern mi-
ning: the pattern-growth methods, Journal of Intelligent Information Systems
28 (2007), no. 2, 133–160.

[PR14] Guillaume Perez and Jean-Charles Régin, Improving GAC-4 for table and
MDD constraints, International Conference on Principles and Practice of
Constraint Programmingn (CP), Springer, 2014, pp. 606–621.

[PZOD99] Srinivasan Parthasarathy, Mohammed Javeed Zaki, Mitsunori Ogihara, and
Sandhya Dwarkadas, Incremental and interactive sequence mining, Proceed-
ings of the 8th international conference on Information and knowledge man-
agement, ACM, 1999, pp. 251–258.

[QLvBG04] Claude-Guy Quimper, Alejandro López-Ortiz, Peter van Beek, and Alexander
Golynski, Improved algorithms for the global cardinality constraint, Principles
and Practice of Constraint Programming - CP 2004, 10th International

202 BIBLIOGRAPHY

Conference, CP 2004, Toronto, Canada, September 27 - October 1, 2004,
Proceedings (Mark Wallace, ed.), Lecture Notes in Computer Science, vol.
3258, Springer, 2004, pp. 542–556.

[QW06] Claude-Guy Quimper and Toby Walsh, Global grammar constraints, Inter-
national Conference on Principles and Practice of Constraint Programming,
Springer, 2006, pp. 751–755.

[Rác04] Balázs Rácz, nonordfp: An FP-growth variation without rebuilding the FP-
tree., FIMI: Workshop on Frequent Itemset Mining Implementations, 2004.

[Rég94] Jean-Charles Régin, A filtering algorithm for constraints of difference in csps,
Proceedings of the 12th National Conference on Artificial Intelligence, Seattle,
WA, USA, July 31 - August 4, 1994, Volume 1. (Barbara Hayes-Roth and
Richard E. Korf, eds.), AAAI Press / The MIT Press, 1994, pp. 362–367.

[Rég96] Jean-Charles Régin, Generalized arc consistency for global cardinality cons-
traint, Proceedings of the thirteenth national conference on Artificial
intelligence-Volume 1, AAAI Press, 1996, pp. 209–215.

[Ris78] Jorma Rissanen, Modeling by shortest data description, Automatica 14 (1978),
no. 5, 465–471.

[RMD+15] Reza Rawassizadeh, Elaheh Momeni, Chelsea Dobbins, Pejman Mirza-Babaei,
and Ramin Rahnamoun, Lesson learned from collecting quantified self in-
formation via mobile and wearable devices, Journal of Sensor and Actuator
Networks 4 (2015), no. 4, 315–335.

[RTWT13] Reza Rawassizadeh, Martin Tomitsch, Katarzyna Wac, and A Min Tjoa,
Ubiqlog: a generic mobile phone-based life-log framework, Personal and ubiq-
uitous computing 17 (2013), no. 4, 621–637.

[RvBW06] Francesca Rossi, Peter van Beek, and Toby Walsh (eds.), Handbook of cons-
traint programming, Foundations of Artificial Intelligence, vol. 2, Elsevier,
2006.

[SA96] Ramakrishnan Srikant and Rakesh Agrawal, Mining sequential patterns:
Generalizations and performance improvements, Springer, 1996.

[SAG17] Pierre Schaus, John O. R. Aoga, and Tias Guns, Coversize: A global constraint
for frequency-based itemset mining, Principles and Practice of Constraint
Programming - 23rd International Conference, CP 2017, Melbourne, VIC,
Australia, August 28 - September 1, 2017, Proceedings (J. Christopher Beck,
ed.), Lecture Notes in Computer Science, vol. 10416, Springer, 2017, pp. 529–
546.

[SBF10] Peter J Stuckey, Ralph Becket, and Julien Fischer, Philosophy of the minizinc
challenge, Constraints 15 (2010), no. 3, 307–316.

[SC06] Christian Schulte and Mats Carlsson, Finite domain constraint programming
systems, in Rossi et al. [RvBW06], pp. 495–526.

[SD14] Dan A. Simovici and Chabane Djeraba, Mathematical tools for data mining -
set theory, partial orders, combinatorics. second edition, Advanced Information
and Knowledge Processing, Springer, 2014.

BIBLIOGRAPHY 203

[SNK07] Laszlo Szathmary, Amedeo Napoli, and Sergei O. Kuznetsov, ZART: A
multifunctional itemset mining algorithm, Proceedings of the 5th International
Conference on Concept Lattices and Their Applications, CLA 2007 (Peter W.
Eklund, Jean Diatta, and Michel Liquiere, eds.), vol. 331, 2007.

[SR14] Arnaud Soulet and François Rioult, Efficiently depth-first minimal pattern
mining, Advances in Knowledge Discovery and Data Mining - 18th Pacific-Asia
Conference, PAKDD 2014, Tainan, Taiwan, May 13-16, 2014. Proceedings,
Part I (Vincent S. Tseng, Tu Bao Ho, Zhi-Hua Zhou, Arbee L. P. Chen, and
Hung-Yu Kao, eds.), Lecture Notes in Computer Science, vol. 8443, Springer,
2014, pp. 28–39.

[SYCC+15] Mohammad Shokoohi-Yekta, Yanping Chen, Bilson Campana, Bing Hu, Jesin
Zakaria, and Eamonn Keogh, Discovery of meaningful rules in time series,
Proceedings of the 21th ACM SIGKDD international conference on knowledge
discovery and data mining, ACM, 2015, pp. 1085–1094.

[TBG08] Roberto Trasarti, Francesco Bonchi, and Bart Goethals, Sequence mining
automata: A new technique for mining frequent sequences under regular
expressions, Data Mining, 2008. ICDM’08. 8th IEEE International Conference
on, IEEE, 2008, pp. 1061–1066.

[TC10] Nikolaj Tatti and Boris Cule, Mining closed strict episodes, Data Mining
(ICDM), 2010 IEEE 10th International Conference on, IEEE, 2010, pp. 501–
510.

[Tea12] OscaR Team, OscaR: Scala in OR, 2012.
[UKA05] Takeaki Uno, Masashi Kiyomi, and Hiroki Arimura, LCM Ver.3: Collabora-

tion of array, bitmap and prefix tree for frequent itemset mining, Proceedings of
the 1st international workshop on open source data mining: frequent pattern
mining implementations (OSDM ’05), OSDM ’05, ACM, 2005, pp. 77–86.

[vB06] Peter van Beek, Backtracking search algorithms, in Rossi et al. [RvBW06],
pp. 85–134.

[vHK06] Willem-Jan van Hoeve and Irit Katriel, Global constraints, in Rossi et al.
[RvBW06], pp. 169–208.

[VT14] Jilles Vreeken and Nikolaj Tatti, Interesting patterns, in Aggarwal and Han
[AH14], pp. 105–134.

[VvLS11] Jilles Vreeken, Matthijs van Leeuwen, and Arno Siebes, Krimp: mining
itemsets that compress, Data Min. Knowl. Discov. 23 (2011), no. 1, 169–214.

[WHL07] Jianyong Wang, Jiawei Han, and Chun Li, Frequent closed sequence mining
without candidate maintenance, IEEE Transactions on Knowledge and Data
Engineering 19 (2007), no. 8, 1042–1056.

[YHA03] Xifeng Yan, Jiawei Han, and Ramin Afshar, Clospan: Mining: Closed sequen-
tial patterns in large datasets, Proceedings of the 2003 SIAM International
Conference on Data Mining, SIAM, 2003, pp. 166–177.

[YK05] Zhenglu Yang and Masaru Kitsuregawa, LAPIN-SPAM: An Improved Al-
gorithm for Mining Sequential Pattern, International Conference on Data
Engineering, 2005.

204 BIBLIOGRAPHY

[YRS17] Hongyu Yang, Cynthia Rudin, and Margo Seltzer, Scalable bayesian rule
lists, Proceedings of the 34th International Conference on Machine Learning,
ICML’17 (Doina Precup and Yee Whye Teh, eds.), Proceedings of Machine
Learning Research, vol. 70, PMLR, 2017, pp. 3921–3930.

[YW06] Qiang Yang and Xindong Wu, 10 challenging problems in data mining research,
International Journal of Information Technology & Decision Making 5 (2006),
no. 04, 597–604.

[YWK07] Zhenglu Yang, Yitong Wang, and Masaru Kitsuregawa, LAPIN: effective
sequential pattern mining algorithms by last position induction for dense
databases, Advances in Databases: Concepts, Systems and Applications, 12th
International Conference on Database Systems for Advanced Applications,
DASFAA 2007, Bangkok, Thailand, April 9-12, 2007, Proceedings (Kotagiri
Ramamohanarao, P. Radha Krishna, Mukesh K. Mohania, and Ekawit Nan-
tajeewarawat, eds.), Lecture Notes in Computer Science, vol. 4443, Springer,
2007, pp. 1020–1023.

[Zak98] Mohammed J Zaki, Efficient enumeration of frequent sequences, Proceed-
ings of the seventh international conference on Information and knowledge
management, ACM, 1998, pp. 68–75.

[Zak00] , Sequence mining in categorical domains: incorporating constraints,
Proceedings of the ninth international conference on Information and knowl-
edge management, ACM, 2000, pp. 422–429.

[Zak01] , Spade: An efficient algorithm for mining frequent sequences, Machine
learning 42 (2001), no. 1-2, 31–60.

[ZAV14] Arthur Zimek, Ira Assent, and Jilles Vreeken, Frequent pattern mining algo-
rithms for data clustering, in Aggarwal and Han [AH14], pp. 403–423.

[ZB03] Qiankun Zhao and Sourav S Bhowmick, Sequential pattern mining: A survey,
ITechnical Report CAIS Nayang Technological University Singapore (2003),
1–26.

[ZjH02] Mohammed J. Zaki and Ching jui Hsiao, CHARM: An efficient algorithm for
closed itemset mining, SIAM 2002, 2002, pp. 457–473.

[ZLC10] Wenzhi Zhou, Hongyan Liu, and Hong Cheng, Mining closed episodes from
event sequences efficiently, Pacific-Asia Conference on Knowledge Discovery
and Data Mining, Springer, 2010, pp. 310–318.

[ZN14] Albrecht Zimmermann and Siegfried Nijssen, Supervised pattern mining and
applications to classification, in Aggarwal and Han [AH14], pp. 425–442.

	Abstract
	Résumé
	Acknowledgements
	List of Tables
	List of Figures
	List of Algorithms
	List of Abbreviations
	I Introductory Material
	Introduction
	Background

	II Frequent itemset Mining
	Frequent Itemset Mining using Constraint Programming
	Frequent Itemset Mining for Compression

	III Sequential Pattern Mining
	Sequential Pattern Mining using Constraint Programming
	 Mining time-constrained sequential patterns with constraint programming
	Frequent Episode Mining using Constraint Programming
	Conclusion
	Algorithms
	Bibliography

