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ABSTRACT

An important aspect of cancer research is the development of better tools to understand underlying
cellular processes. These tools are crucial as they help clinicians choose the best treatment strategy
for each patient or develop new treatment strategies. Gene expression data is typically represented as
a large matrix of gene expression levels across various samples. The study of such data is a valuable
tool to improve the understanding of biological processes. Therefore, grouping genes according to their
expression under certain conditions or group conditions based on the expression of some genes is a
frequent objective of gene expression analysis. Biclustering, also known as co-clustering, is one of the
most common approaches for such a task. It identifies specific subsets of rows and columns that jointly
form homogeneous entries. However, relevant gene/sample combinations can be missed when they lack
the assumed homogeneity of expression values. It is a growing concern as cancer is a heterogeneous
disease. Thus, there is an ongoing trend for the study of cellular processes by combining heterogeneous
data sources. This thesis is centered around the development of approaches that find patterns of high
values in large data matrices. It encompasses the definition of optimization problems and algorithmic
solutions to find such patterns. The relevance of these contributions is evaluated through implementation
and comparative experiments on biological data.
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Preamble

An important aspect of cancer research is the development of better tools to
understand underlying cellular processes. These tools are crucial as they help
clinicians choose the best treatment strategy for each patient or develop new
treatment strategies.

Gene expression data is typically represented as a large matrix of gene
expression levels across various samples. The study of such data is a valuable
tool to improve the understanding of biological processes. Grouping genes
according to their expression under certain conditions or group conditions
based on the expression of some genes is a frequent objective of gene ex-
pression analysis. Biclustering, also known as co-clustering, is one of the
most common approaches for such a task. It identi�es speci�c subsets of
rows and columns that jointly form homogeneous entries. However, relevant
gene/sample combinations can be missed when they lack the assumed homo-
geneity of expression values. It is a growing concern as cancer is a heteroge-
neous disease. Moreover, there is an ongoing trend for the study of cellular
processes by combining heterogeneous data sources.

This thesis is centered around the development of approaches that �nd
patterns of high values in large data matrices. It encompasses the de�nition
of optimization problems and algorithmic solutions to �nd such patterns. The
relevance of these contributions is evaluated through implementation and
comparative experiments on biological data. The main focus of this thesis is
not methodological but rather consists in solving di�cult optimization prob-
lems to guide biologists. In particular, the main contributions of this thesis
are the following.

� Proposition of new optimization problems to model biological problems.

Three problems related to the extraction of patterns in biological data
are considered. It includes the search for a single pattern of globally
high value, the search for multiple patterns that do not overlap, and
the search for multiple patterns that may overlap.

� Proposition of algorithmic solutions to address the new optimization prob-

lems.
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ii Preamble

It encompasses the contributions aiming at providing simple and ef-
�cient algorithms to solve the combinatorial problems presented ear-
lier. These contributions include the study of upper and lower bounds,
the de�nition of �ltering and dominance rules, variable heuristics, and
large neighborhood searches.

� Implementation of the algorithmic contributions.

It encompasses the contributions aiming to test, evaluate, and share
the implementations to solve the optimization problems that are ad-
dressed. These implementations include several constraint program-

ming approaches, new constraints implementation, a column generation

approach, integer programming approaches, and an R package.

� Illustration of the relevance of the previous contributions to biological

data.

It encompasses the evaluation of the relevance of the mathematical ob-
jectives and the time performance of our implementations, as compared
to existing algorithms. It includes a rigorous statistical validation pro-
tocol to assess and prove the quality of the patterns found in gene ex-
pression data.

The thesis is organized as follows.
Chapter 1, The maximal sum submatrix problem, presents the problem

of �nding a subset of rows and columns that maximizes the sum of covered
entries from an input matrix. This chapter can be seen as the intersection of
the work presented in all publications done during the thesis.

Chapter 2,Mining a submatrix of maximal sum, presents a simple yet ef-
�cient constraint programming approach to solve themaximal sum submatrix

problem. This chapter corresponds to the work published in [BSD17; BSD18].
Then, Chapter 3, Mining K disjoint submatrices of maximal sum, and

Chapter 4, Mining k overlapping submatrices of maximal sum, presents two
extensions to the maximal sum submatrix problem that concern the identi�-
cation of 𝑘 submatrices that cannot andmay overlap, respectively. Chapter 3
corresponds to the work published in [Bra+19b]. Chapter 4 corresponds to
the work published in [Der+19]. My main contributions, as a second author,
of that last publication consist of the bounds and dominance rules proposi-
tions, the experiments, and the evaluation of the results.

Subsequently, Chapter 5,Mining submatrices of maximal sum in gene ex-

pression data, presents an application of themaximal sum submatrix problem
to biological data. This chapter corresponds to thework published in [BSD19].
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Chapter 6, Mining submatrices of maximal sum quicker, presents an im-
proved solution to the maximal sum submatrix problem to �nd submatrices
in di�cult instances. This chapter is an ongoing work not yet published.

Finally, Chapter 7, Conclusions and perspectives, summarises the main
conclusions and results obtained and investigates some directions for future
works.
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The maximal sum
submatrix problem 1

The problem of �nding a maximal sum submatrix is a core

contribution of this thesis because it served as a starting point

for other contributions. This chapter, dedicated to that prob-

lem, is organized as follows. The problem is formally stated

and later interpreted in the context of gene expression analy-

sis. Extensions to the identi�cation of multiple submatrices

are subsequently approached, and an overview of the related

works is given. Constraint programming, which has a major

role in all contributions of this thesis, is �nally presented.

1.1 De�nition

Consider a matrix M ∈ R𝑚×𝑛 with 𝑚 rows and 𝑛 columns. The matrix is
associated with a set of rows R = {r1, . . . , r𝑚} and a set of columns C =
{c1, . . . , c𝑛}. EntryM𝑖, 𝑗 is the real value in row 𝑖 and column 𝑗 of the matrix,
with 𝑖 ∈ R and 𝑗 ∈ C. Figure 1.1a presents an illustrative instance matrix M.

A submatrix is a subset of rows and columns from an input matrix. For-
mally, the submatrix (I, J) denotes all the elementsM𝑖, 𝑗 of the matrixM such
that 𝑖 ∈ I and 𝑗 ∈ J with I ⊆ R and J ⊆ C. We say that (I, J) covers all these
elements. Alternatively, we say that these elements are covered by (I, J).

The weight of a submatrix refers to the sum of entries it covers. The
weight of a submatrix (I, J) ismaximal if any other subset of rows and columns
is of smaller weight. That submatrix (I, J) is of maximal sum.

Figure 1.1b presents the maximal sum submatrix associated with the in-
put matrixM in Figure 1.1a. The weight of ({r1, r2, r4, r5}, {c2, c4, c5, c6}) is
27.3. There is no other combination of rows and columns with larger weight.

The problem of �nding such a maximal sum submatrix (MSS) is formally
stated in Definition 1.

Definition 1. The Maximal Sum Submatrix Problem
Let M ∈ R𝑚×𝑛 be a matrix of 𝑚 rows and 𝑛 columns. Let 𝜃 be a minimum

threshold to consider entries as potentially relevant or informative. Let R =

1



2 Chapter 1. The maximal sum submatrix problem
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(b) Submatrix of weight𝑤 = 27.3.

Figure 1.1: An example matrix and one of the possible submatrices associ-
ated. Low and high values are indicated in blue and red, respectively.

{r1, . . . , r𝑚} and C = {c1, . . . , c𝑚} be the set of rows and columns ofM, respec-

tively. The maximal sum submatrix problem consists in �nding the submatrix

(I∗, J∗), with I∗ ⊆ R and J∗ ⊆ C, such that:

(I∗, J∗) = argmax
I⊆R
J⊆C

∑︁
𝑖∈I
𝑗 ∈J

(
M𝑖, 𝑗 − 𝜃

)
. (1.1)

The maximization term in Eqation (1.1) rewards matrix entries with
values above the threshold 𝜃 . Matrix entries with values below 𝜃 are pe-
nalized. Changing this threshold allows controlling the size of the optimal
submatrix. Figure 1.2 illustrates solutions for two de�nitions of 𝜃 and Fig-
ure 1.1b presents the solution with 𝜃 = 0. One only considers matrices with
values both above and below the threshold. The optimal solution is trivially

-9.3 -7.2 -8.3 -1.2

c4

-3.0 -0.1

-10.2 -2.8 -9.2 -2.0 -1.1 -6.0

-8.3 -3.2 -1.1 -1.7 -7.2 -9.2

-10.3 -4.2 -4.8 -9.2 -2.1 -3.1

-5.2r5 -5.0 -6.3 0.1 -4.2 -3.2

-9.3 -10.1 -4.2 -2.4 -4.9 -7.0

(a) Threshold 5.1.

1.3r1

c1

3.4

c2

2.3

c3

9.4

c4

7.6

c5

10.5

c6

0.4r2 7.8 1.4 8.6 9.5 4.6

2.3r3 7.4 9.5 8.9 3.4 1.4

0.3r4 6.4 5.8 1.4 8.5 7.5

5.4r5 5.6 4.3 10.7 6.4 7.4

1.3r6 0.5 6.4 8.2 5.7 3.6

(b) Threshold −5.5.

Figure 1.2: The submatrices of maximal sum obtained from di�erent thresh-
olds applied on the instance matrix in Figure 1.1a.
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de�ned otherwise.
In the remaining of this work, we consider the simpler formulation of the

problem de�ned below:

(I∗, J∗) = argmax
I⊆R
J⊆C

∑︁
𝑖∈I
𝑗 ∈J

M𝑖, 𝑗 . (1.2)

The latter formulation implicitly assumes that the threshold 𝜃 is equal
to zero. A domain expert can set a di�erent threshold by subtracting some
constant to all matrix entries. The threshold 𝜃 is explicitly subtracted during
themaximization in Eqation (1.1). Alternatively, that threshold is implicitly
subtracted prior to the maximization in Eqation (1.2).

Themaximal sum submatrix problem isNP-hard from a simple reduction
of the maximum edge weight biclique problem [DKT96].

Theorem 1.
The maximal sum submatrix problem is NP-hard.

Proof. The NP-hard maximum edge weight biclique problem (MWBP) in-
troduced by Dawande, Keskinocak, and Tayur [DKT96] is de�ned as follows:
given a bipartite graph B = (V1 ∪ V2, E), �nd U1 ⊆ V1, U2 ⊆ V2 such that
∀(𝑢, 𝑣) ∈ U1×U2 : (𝑢, 𝑣) ∈ E (biclique constraint) and such that the sum of the
edge weights

∑
(𝑢,𝑣) ∈U1×U2

𝑤 (𝑢, 𝑣) is maximum. That problem can be reduced

to the maximal sum submatrix problem by de�ning a |V1 | × |V2 | matrix with
valuesM𝑖, 𝑗 = 𝑤 (𝑖, 𝑗) if (𝑖, 𝑗) ∈ E, −∞ otherwise. Any solution to the maximal
sum submatrix problem with an objective value larger than −∞ corresponds
to a biclique in B and its objective is the same as in the original maximum
edge weight biclique problem.

This maximal sum submatrix problem is di�cult to solve, especially in
gene expression analysis, as one is typically interested in solving it for large
instances made of thousands of genes and possibly hundreds of samples.

1.2 Interpretation in gene expression analysis

Gene expression data is typically represented as a large matrix of gene ex-
pression levels across various samples. Values are generally in a continuous
range, for instance on a logarithmic scale, and properly normalized: negative
and positive values represent expression values below and above a thresh-
old 𝜃 , respectively. That threshold may correspond to the median expression
level over the whole matrix, or a row-speci�c value representing the average
expression level of a gene across all samples.
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The objective function de�ned in Eqation (1.2) seeks for subsets of rows
and columns with globally high values. In biological terms, one looks for
a subset of biomarkers that are, after appropriate normalization, relatively
highly expressed among a subset of samples.

After proper normalization, positive values are considered the interesting
ones for the maximal sum submatrix problem. They correspond, by default,
to the high levels of expression one is interested in �nding in the instance
matrix. One could also look for low expression levels by replacing such a
normalized matrixM by its opposite −M.

1.3 Identifying k submatrices

A natural extension to the MSS problem is to identify 𝐾 submatrices that to-
gether maximize the sum of the entries covered. Such an extension has many
practical data-mining applications where one is interested in discovering 𝐾
strong relations between two groups of variables (rows and columns) repre-
sented or representable as a matrix.

In gene expression analysis, rows correspond to genes and columns to
samples, and the value in M𝑖, 𝑗 is the measurement of the expression of gene
𝑖 in sample 𝑗 . One is typically interested in �nding a subset of genes that
present high expression in a sample subset. It would indicate that a particu-
lar biological pathway made of these genes is active in these samples. Finding
multiple pathways is a common task in gene expression analysis. Indeed, a
gene might participate in multiple pathways speci�c to di�erent subsets of
samples. Similarly, several biological pathways might be active simultane-
ously in a sample.

In migration data, rows correspond to source location and columns to
destinations. The value M𝑖, 𝑗 represents the number of persons that moved
from source location 𝑖 to destination 𝑗 . The goal is to �nd multiple groups of
source and destination pairs characterized by large, conjoint migration �ow.
The data could be a square matrix with identical row and column labels. The
matrix content above the diagonal would be redundant with the content be-
low it, and the diagonal does not appear relevant for migration studies. In
practice, however, countries could be split into source locations and destina-
tions, without overlaps, based on:

� the continent they belong to,

� the richness of the countries,

� common governments policies,

� . . .
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Such splits allow to answermore speci�c questions regardingmigration �ows
among continents, poor and rich countries, or between locations with major
policies di�erences. Likewise, locations could be divided between free and
infected regions when studying the spread of a pandemic.

A sports journalist could be interested in Olympic games to discover mul-
tiple pairs of (countries subsets, sports subsets) of strong performance. The
matrix valueM𝑖, 𝑗 then represents the number of medals obtained by the coun-
try 𝑖 in sport 𝑗 . Similarly tomigration data, the aim is to �nd speci�c countries
with high performance in speci�c sports and conversely.

A simple adaptation of the problem in Definition 1 to maximize the sum
of the weights of the 𝐾 submatrices is not relevant. Indeed, the optimal solu-
tion is trivially de�ned as selecting𝐾 times the maximal sum submatrix. Such
a solution does not bring any useful information other than the maximal sum
submatrix. One must modify the objective function or impose additional con-
straints to �nd pairwise-di�erent submatrices.

We considered two such alternatives. Chapter 3 presents an extension
with disjunction constraints preventing any overlap of the 𝐾 submatrices.
Then, an extension with overlap opportunities is presented in Chapter 4.
The problem is de�ned as the sum of entries covered by at least one subma-
trix. These extensions are de�ned such that the ordering of the submatrices
is irrelevant.

1.3.1 Disjoint submatrices

Chapter 3 presents an extension to the MSS problem to �nd 𝐾 submatrices.
It relies on amodi�cation of the problem introducing a disjunction constraint.
The disjunction constraint enforces that the intersection of entries covered by
any pair of submatrices is empty. In other words, each matrix entry cannot
be selected more than once. It must be stressed that any submatrix pair may
share rows or columns. The disjunction constraint only prevents submatrices
from sharing both rows and columns at the same time.

Such a structure of the solution is commonly called nonoverlapping nonex-
clusive nonexhaustive in the context of biclustering:

� each matrix entry can be covered by at most one bicluster,

� every bicluster pair can share some row or some columns but not both,

� some rows and columns can be excluded from all biclusters.

1.3.2 Possibly overlapping submatrices

Chapter 4 presents an extension to the identi�cation of 𝐾 possibly over-
lapping submatrices with maximal weight. It relies on a modi�cation of the
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objective function such that covered entries contribute strictly once to the
objective. In other words, the coverage is important, not the number of times
an entry is covered. The objective is to discover 𝐾 submatrices that together
cover the largest sum of entries of the input matrix.

1.4 Related work

The maximal sum submatrix problem and its extensions have several close
and distant variants. This section presents the main similarities and di�er-
ences with related works.

1.4.1 Biclustering

Biclustering, also known as co-clustering, is one of the most common ap-
proaches in gene expression analysis as it identi�es speci�c subsets of rows
and columns which jointly form homogeneous entries.

A substantial number of biclustering methods and applications have been
described since the application of biclustering, introduced in [Har72], to gene
expression data analysis [CC00]. Several biclustering algorithms reviews have
been published emphasizing on various characteristics of the biclustering al-
gorithms, applications, or results.

For example, Madeira et al. study in [MO04] a collection of sixteen biclus-
tering methods and categorize them according to the structures and patterns
of biclusters they can �nd, the methods used to perform the search, and the
approach used to evaluate the solution. In [PGA15], the survey mentioned
above is updated and extended to forty-seven biclustering algorithms. Each
method is further categorized based on the use, or not, of evaluation metrics
within the search.

Padilha et al. conduct, in [PC17a], a comparative study on seventeen al-
gorithms on a large collection of synthetic and real datasets. They conclude
that algorithms only achieved satisfactory results in a speci�c context, and
that the best results are obtained by selecting an algorithm depending on the
speci�c task at hand. A similar conclusion is presented in [Ere+12], based on
results from a comparative study on twelve algorithms on a suite of synthetic
datasets and eight real datasets.

A systematic summary of basic and advanced biclustering applications
for biological and biomedical data is presented in [Xie+18]. Guidance on the
appropriate algorithms and tools to e�ectively analyze speci�c data types and
to generate valuable biological knowledge is provided.

Biclustering is typically applied on a dataset in the form of a matrix M
where the entry M𝑖, 𝑗 represents the value of a speci�c row 𝑖 (e.g. a gene)
obtained for a speci�c column 𝑗 (e.g. a sample). A bicluster is a submatrix
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of M de�ned by a subset of selected rows and a subset of selected columns.
The selected rows or selected columns need not be contiguous in the original
matrixM.

Biclustering algorithms tend to produce biclusters sharing similar expres-
sion values, such as minimizing the variance across the selected genes and
selected samples. However, some relevant biclusters may be missed when,
due to the presence of a few outliers, they lack the assumed homogeneity of
expression values among a few gene/sample combinations.

As an alternative, the maximal sum submatrix problem seeks for subsets
of rows and of columns with globally high values. They form a rectangular,
and not necessarily contiguous, submatrix of the original data matrix exactly
like biclusters do. Yet, the mathematical criterion used to �nd such submatrix
di�ers and is less in�uenced by the presence of some outliers. There is no
assumption of homogeneity in the maximal sum submatrix problem. The
di�erence is illustrated in Figure 1.1b where a highly negative entry −4.1 in
(r4, c4) is selected. This results from the sums of the entries in r4 and in c4
which contribute positively to the maximal sum. In contrast, as one looks for
a rectangular submatrix, a positive entry may be excluded from the optimal
solution if it is penalized by the presence of negative values along its row
and its column. This is the case, for example, for entry 4.0 in row r3 and
column c3 of this toy example. In the biclustering context, any entry that
di�ers from entries of a bicluster or from entries in its row or its column is
not expected to be selected. Figure 1.3 represents the results obtained with
two di�erent biclustering algorithms, namely CCA and ISA (further described
in the section 5.2 Mining approaches), starting from the same toy example
(Figure 1.1a). Both their solutions strongly di�er from the one represented
in Figure 1.1b. In particular, the CCA solution includes many negative entries
as they imply a lower variance along selected rows and selected columns. In
contrast, the ISA solution only includes positive entries but is missing several
genes and samples that should arguably be selected as in Figure 1.1b.

1.4.1.1 Cohesive biclusters

Cohesive biclusters, with high average values, are build by aggregating en-
tries that are higher than a certain threshold such that the average value of the
bicluster is higher than a second threshold [Pio+13; Pio+15]. Then all entries
must be higher than the �rst threshold, while in the maximal sum submatrix
problem, there is no expected minimum value for an entry to be selected.

1.4.2 Maximum subarray

The maximum (contiguous) subarray problem introduced in [Ben84] iden-
ti�es a subarray of maximal sum from an array. For a one-dimensional ar-
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-5.2r4 0.9 0.3 -4.1 3.0 2.0
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(a) CCA solution.
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c5
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-5.1r2 2.3 -4.1 3.1 4.0 -0.9

-3.2 1.9 4.0 3.4 -2.1 -4.1

-5.2r4 0.9 0.3 -4.1 3.0 2.0

-0.1 0.1 -1.2 5.2 0.9 1.9

-4.2 -5.0 0.9 2.7 0.2 -1.9

(b) ISA solution.

Figure 1.3: Bicluster found using CCA and ISA on the instance matrix in Fig-
ure 1.1a.

ray, this problem can be solved in linear time by Kadane’s algorithm [Ben84].
Cubic and sub-cubic time complexity algorithms have been proposed in the
two-dimensional case [Ben84; Tak02; TT98]. This problem is however sim-
pler than the maximal sum submatrix problem since the selected submatrix is
constrained to be formed of contiguous rows and contiguous columns from
the original matrix. Such a restriction is however not justi�ed in the general
context of transcriptomics since it would require to know in advance unique
and speci�c orders in which the genes and the samples can be clustered.

1.4.3 Maximal ranked tile mining

The maximal ranked tile mining problem has been introduced in [Le +14].
This is a special case of the maximal sum submatrix problem for which the
matrix entries are discrete ranks, corresponding to a permutation of column
indices on each row.

Two extensions to the maximal ranked tile mining problem to mine 𝐾
submatrices have been considered. The diverse ranked tiling imposes a dis-
junction constraint on the rows: no two submatrices can have overlaps on
their rows. The ranked tiling considers penalties for the possible overlaps of
submatrices.

While the discrete ranking is an important characteristic of the maximum
ranked tile mining problem, and the associated extensions, the corresponding
constraint programming solutions do not require discrete entries nor bene�t
from it. In this work, we present optimization approaches to solve problems
with arbitrary continuous entries.
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1.4.4 Subgroup discovery

Subgroup discovery is a data mining technique that extracts classi�cation
rules concerning a target variable [Atz15; Her+11]. It departs from the stan-
dard learning of a classi�er as the extracted rules are not necessarily intended
to cover all possible instances. Besides, such a technique focuses on the inter-
pretability of the classi�cation rules rather than the generalization capability
to classify new instances. Mining a maximal sum submatrix is somewhat
similar to subgroup discovery, but there is no supervision by a speci�c target
class variable. The hotspot detection problem, which can be considered as a
particular form of subgroup discovery, aims at identifying subgroups that are
unexpected with respect to some baseline information [FG15]. In the maxi-
mal sum submatrix problem, one does consider globally high values without
any baseline distribution of the data.

1.5 Constraint programming

Constraint programming (CP) is a �exible programming paradigm that is ca-
pable of solving optimization problems. It received an increasing interest
for solving unsupervised (clustering) data-mining problems [Le +14; SAG17;
Kuo+18; AGS16; Bes+16; DV+17; CS17].

As a declarative approach, it only requires to model the problem and, by
using existing solvers, let it search and �nd solutions.

A model is de�ned as a constraint satisfaction problem 𝐶𝑆𝑃 = (𝑉 , 𝐷,𝐶)
where𝑉 is the set of variables, 𝐷 is their respective domains, and𝐶 is a set of
constraints de�ned over the variables. A feasible solution is an assignment of
the variables to values of their domains such that all constraints are satis�ed.

1.5.1 Constraints

Constraints are exploited to iteratively reduce the domains of variables. Such
constraint propagation reduces the number of variable assignments to con-
sider. Once all unfeasible values are removed from the domains of variables,
the �x-point of the propagation is reached. Then the solver selects a variable
𝑋 ∈ 𝑉 that is unbound and recursively calls the solver while assigning a value
to this variable.

Through depth-�rst-search (DFS) exploration of a search tree, the solver
either reaches a solution or backtracks when the domain of variables becomes
empty. Using a branch & bound (B & B) depth-�rst-search avoids the explo-
ration of proven suboptimal solutions.



10 Chapter 1. The maximal sum submatrix problem

1.5.2 E�cient backtracking

E�cient backtracking is achieved through trailing, a state management strat-
egy that facilitates the restoration of the computation state to an earlier ver-
sion, e�ectively undoing changes that were imposed since then.

The trail exposes two methods: saveState and restoreState to re-
spectively time-stamp the current state and restore it. Its implementation is
captured in terms of two simple stacks. The �rst stack holds entries to undo,
the second one holds the frame sizes stacked between two consecutive calls to
saveState. Trailing enables the design of reversible objects de�ned on the
trail. We refer to MiniCP [MSV18] for a detailed description of trailed-based
solvers.

1.5.2.1 LNS

The search space of some problems can be so large that proving optimality re-
quires excessive computational time. To overcome this limitation, exhaustive
CP search can be embedded into a large neighborhood search (LNS) [Sha98].
LNS is a local search approach using CP to discover improvements around
the current best solution:

� First the CP exhaustive search is used during a limited time, to discover
an initial solution.

� For a given number of iterations, the CP exhaustive search is used again
but this time with some variables partially �xed as in the current best
solution.

The LNS strategy is commonly implemented as follows: after a given
number of backtracking, the constraints on a fraction of the variables of the
best solution found so far are removed and the search restarts in another re-
gion.

LNS may improve the time to identify a good solution at the cost of losing
the possibility to prove optimality since the search is no longer complete.

1.6 Submatrix modeling

Submatrices are modeled in subsequent chapters using either binary decision
variables or set variables. Preference is given to the model that best clari�es
the description and simpli�es the notations. In practice, however, all origi-
nal CP implementations rely on sparse-sets. A sparse-set is an e�cient data
structure to store, add and remove elements from a collection [BT93]. Storing
the dynamic size of the sparse-set in the trail allows restoring the collection
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to earlier versions in O(1). A submatrix is modeled using four sparse-sets to
encode:

1. the rows that might or might not be in the submatrix,

2. the columns that might or might not be in the submatrix,

3. the rows required in the submatrix,

4. the columns required in the submatrix.

Rows and columns excluded from a submatrix are implicitly de�ned as the
rows and columns absent from the four sparse-sets.





Mining a submatrix of
maximal sum 2

The maximal sum submatrix problem requires dedicated algo-

rithms to be applied in gene expression data with hundreds of

thousands of entries. This chapter presents such algorithms.

A reduction of the search space is exposed �rst. Then, opti-

mization approaches relying on constraint programming and

mixed integer linear programming are presented. Finally, ex-

periments on gene expression and synthetic data are presented.

These experiments provide guidance on the best strategies to

solve problems with large instance matrices.

2.1 Introduction

The problem of �nding a maximal sum submatrix (MSS) is presented in the
previous chapter. The particular application of the MSS problem to biological
data is presented in Section 1.2. Le Van et al. [Le +14] proposed a constraint
programming approach combined with large neighborhood search (LNS) to
solve the special case where matrix entries are discrete ranks.

This chapter aims at proving the applicability of the problem in instances
matrices with orders of magnitude more rows and columns as is common
in biological applications. Gene expression data is typically represented as a
large matrix of tens of thousands of gene expression levels across hundreds
of samples. A submatrix of maximal sum de�nes in such data a subset of
genes that present a high expression pattern for a speci�c subset of samples.
The study of such data is a valuable tool to improve the understanding of the
underlying biological processes.

The main contributions are:

1. the re�nement of the search space of the maximal sum submatrix prob-
lem;

2. the de�nition of an upper bound that is easy to compute, speedying up
the search for a solution;

13
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3. the design and implementation of two CP and two mixed integer linear
programming models;

4. experiments on real gene expression data and synthetic data showing
the performance of each implementation;

5. the study of the relative bene�ts of the proposed methods across vari-
ous problem instances.

2.2 Search space

For a de�ned subset of columns J, the objective function can be formulated
as 𝑓 (I, J) = ∑

𝑖∈I
𝑟 𝑖 with 𝑟 𝑖 being the contribution of the row 𝑖 . In other words,

𝑟 𝑖 is the sum of entries in row 𝑖 and in the set of columns J:

𝑟 𝑖 =
∑︁
𝑗 ∈J

M𝑖, 𝑗 . (2.1)

This is important as the actual search can be limited to one dimension
through independent computation of the contributions along the other di-
mension. Indeed, for any of the two dimensions being �xed, optimization
along the other dimension is straightforward since it amounts to select only
the subset of entries whose contribution is positive. The subset of rows IJ∗ ⊆
R that maximizes the weight of a submatrix with a �xed subset of columns
J ⊆ C is identi�ed as:

IJ
∗ = argmax

I⊆R

∑︁
𝑖∈I
𝑗 ∈J

M𝑖, 𝑗 = {𝑖 ∈ R | 𝑟 𝑖 ≥ 0} . (2.2)

In the gene expression analysis context, with order(s) of magnitude more
rows (the genes) than columns (the samples), one typically searches for a
subset of columns and selects the associated optimal subset of rows.

The search space of the maximal sum submatrix problem contains 2𝑚 ×
2𝑛 feasible solutions that are rectangular submatrices (I ⊆ R, J ⊆ C) of the
original𝑚 by 𝑛 matrixM. Thanks to the independent contribution along one
dimension, the number of feasible solutions to be explicitly evaluated is thus
reduced to 2𝑛 ×𝑚.

2.3 Optimization approaches

There is more than a single way to address the maximal sum submatrix prob-
lem. Two types of approaches are considered: constraint programming and
mixed integer linear programming. A submatrix is modeled using boolean de-
cision variables to insert or exclude rows and columns in a submatrix. That
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common modeling is �rst presented. Three CP approaches and two MILP
models are subsequently given.

Note that the actual constraint programming implementations rely on
sparse-sets (see Section 1.6).

2.3.1 Modeling with boolean decision variables

A submatrix from an 𝑚 by 𝑛 matrix M can be modeled with two boolean
decision vectors R and C associated with the rows and columns, respectively.

Definition 2. Boolean decision vectors for the rows and columns
Let R = (R1, . . . ,R𝑚) denote a boolean decision vector associated with the rows

{r1, . . . , r𝑚} of matrix M. The domain of R𝑖 is Dom(R𝑖) = {0, 1} for any 𝑖 ∈
{1, . . . ,𝑚}. The boolean decision variable R𝑖 is assigned the value:

� 1 if the row r𝑖 is selected, or belongs to the submatrix;

� 0 if the row r𝑖 is excluded, or does not belong to the submatrix.

Similarly, C = (C1, . . . ,C𝑛) denotes the columns of matrix M. The domain of

C𝑗 is Dom(C𝑗 ) = {0, 1} for any 𝑗 ∈ {1, . . . , 𝑛}. The boolean decision variable

C𝑗 is assigned the value:

� 1 if the column c𝑗 is selected, or belongs to the submatrix;

� 0 if the column c𝑗 is excluded, or does not belong to the submatrix.

De�ning a submatrix (I, J) consists in assigning a value to each variable
of R and C such that I = {𝑖 ∈ R | R𝑖 = 1} and J = { 𝑗 ∈ C | C𝑖 = 1}.

Definition 3. Unbound, selected and unselected rows and columns
Let R∈ = {𝑖 ∈ R | R𝑖 = 1} denote the selected rows. Let C∈ = { 𝑗 ∈ C | C𝑗 = 1}
denote the selected columns.

Let R∉ = {𝑖 ∈ R | R𝑖 = 0} denote the rows that do not belong to the submatrix.

Let C∉ = { 𝑗 ∈ C | C𝑗 = 0} denote the columns that do not belong to the

submatrix.

Let R? = {𝑖 ∈ R | Dom(R𝑖) = {0, 1}} denote the unbound rows, or rows that

are not assigned a value yet. Let C? = { 𝑗 ∈ C | Dom(C𝑗 ) = {0, 1}} denote the
unbound columns.

An assignment of the variables (R1, . . . ,R𝑚) and (C1, . . . ,C𝑛) is complete
if R? = ∅ and C? = ∅. Any complete assignment de�nes a submatrix which is
a feasible solution to the MSS problem. Finding a best solution requires some
way of specifying which feasible solutions are better than others. An objective
function allows to specify which solutions are better than others. The weight
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of a submatrix is an objective function to compare submatrices. It maps any
feasible solution to a real value that can be maximized.

Finding a maximal sum submatrix consists in �nding a complete assign-
ment of the variables in R and C such that 𝑓 (R∈,C∈) is maximal:

𝑓 (R∈,C∈) =
∑︁
𝑖∈R∈
𝑗 ∈C∈

M𝑖, 𝑗 . (2.3)

2.3.2 Constraint programming

The performance of constraint programming techniques, introduced in Sec-
tion 1.5, depends on the model representing a problem. Three di�erent mod-
els are shown in this subsection. First, the original model proposed by Le Van
et al. [Le +14] is presented. A re�nement of that model is subsequently given,
exploiting the reduction of the search space presented in Section 2.2. Finally,
a new algorithm capturing the whole MSS problem in a global constraint is
de�ned.

2.3.2.1 CP-LNS0

The maximal sum submatrix problem is modeled by Le Van et al. [Le +14] as
follows:

maximize
∑︁

𝑖∈R, 𝑗 ∈C
R𝑖 × C𝑗 ×M𝑖, 𝑗 , (2.4)

∀𝑖 ∈ R : R𝑖 = 1⇔
∑︁
𝑗 ∈C

C𝑗 ×M𝑖, 𝑗 ≥ 0 , (2.5)

∀𝑗 ∈ C : C𝑗 = 1⇔
∑︁
𝑖∈R

R𝑖 ×M𝑖, 𝑗 ≥ 0 . (2.6)

Expression (2.4) states the optimization problem. The exploration of the
depth-�rst-search tree leads to a leaf, or feasible solution, as soon as all rows
and columns variables are bound.

The model relies on the idea that any row should be selected if and only
if the sum of entries along the selected columns is positive. These constraints
on the rows are rei�ed in Eqation (2.5). A constraint c is rei�ed if there is
a Boolean variable b associated with c such that c is satis�ed if and only if
b is true. Rei�ed constraints are similarly de�ned on the columns in Eqa-
tion (2.6).

Redundant constraints are constraints that can be omitted without chang-
ing the solution space. The constraints in Eqation (2.5) and Eqation (2.6)
are redundant as they are implicitly de�ned in the maximization term in
Expression (2.4). However, these constraints are usefull as they permit a
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stronger �ltering during the search. Assume a complete assignment on the
columns, C? = ∅. The optimal solution can be found by applying |R? | redun-
dant constraints from Eqation (2.5). These constraints �lter 2 |R? | − 1 nodes
of the search tree.

The large neighborhood search strategy, presented in Section 1.5.2.1, is
implemented here as follows:

1. Search for a solution until a given number of backtracking happens.

2. Perform a uniform random selection of half of the columns.

3. Constrain these variables to their value in the current best solution.

4. Repeat 1 on the other variables.

LNS may improve the time to identify a good solution at the cost of losing
the possibility to prove optimality since the search is no longer complete.

2.3.2.2 CP-LNS

An improved CP model obtaining the same �ltering as the original one but
resulting in a lighter propagation of the constraints is proposed as follows:

maximize
∑︁
𝑖∈R

R𝑖 × 𝑟 𝑖 , (2.7)

with ∀𝑖 ∈ R : 𝑟 𝑖 =
∑︁
𝑗 ∈C

C𝑗 ×M𝑖, 𝑗 , (2.8)

such that ∀𝑖 ∈ R : R𝑖 = 1⇔ 𝑟 𝑖 ≥ 0 . (2.9)

Expression (2.7) states the optimization problem. The objective is tomax-
imize the sum of rows contributions 𝑟 𝑖 , formalized in Eqation (2.8), for the
rows that are selected.

First, the search is performed on the column variables until all are bound.
By virtue of the search space reduction presented in Section 2.2, the tree
reaches a leaf as soon as the column variables are bound. The rows contri-
butions are computed afterwards in Eqation (2.8). Finally, each row with
positive contribution is constrained in Eqation (2.9) to be selected. Rows
with negative contributions are excluded.

This improved model avoids the computation of the quite-heavy rei�ed
sum constraints in Eqation (2.6) and reduces the number of terms in the ob-
jective function. As each product between variables in the objective is trans-
lated into a small binary constraint, reducing their number from |R| × |C| to
|R| makes a signi�cant di�erence in the time spent to compute the �x-point
in each node.
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In the gene expression analysis context, 𝑚 = |R| can easily be orders of
magnitude larger than 𝑛 = |C|. Then, the following symmetrical counterpart
of CP-LNS would bene�t of a smaller number of terms in the objective and a
smaller number of rei�ed constraints:

maximize
∑︁
𝑗 ∈C

C𝑗 × 𝑐 𝑗 ,

with ∀𝑗 ∈ C : 𝑐 𝑗 =
∑︁
𝑖∈R

R𝑖 ×M𝑖, 𝑗 ,

such that ∀𝑗 ∈ C : C𝑗 = 1⇔ 𝑐 𝑗 ≥ 0 .

However, the bene�ts are balanced by the branching performed on the
rows rather than on the columns as in Eqations (2.7-2.9). The size of the
search space is signi�cantly increased from 2𝑛 ×𝑚 to 2𝑚 × 𝑛 .

Note that the CP-LNSmodel and its symetrical counterpart have an iden-
tical search space and identical depth-�rst-search exploration if they are given
as input matrixM and its transpose M>, respectively.

2.3.2.3 CP Global Constraint

A global constraint is a constraint that captures a relation between a non-�xed
number of variables. An example is the constraintalldifferent(𝑥1, . . . , 𝑥𝑛),
which speci�es that values assigned to the variables 𝑥1, . . . , 𝑥𝑛 must be pair-
wise distinct. Typically, the relations between variables in a global constraint
can be expressed as the conjunction of several simpler constraints. A global
constraint facilitate the work of the constraint solver by providing it with a
better view of the structure of the problem [HK06].

The CP models CP-LNS0 and CP-LNS employ rei�ed constraints to ex-
press the relations between row and column variables R1, . . . ,R𝑚,C1, . . . ,C𝑛 .
Theses relations can equivalently be expressed as a global constraint captur-
ing the whole MSS problem. Algorithm 1 presents the pseudo-code of an
algorithm encapsulated inside a global constraint. The call to the bounding
and �ltering procedures has been made explicit. In practice, the lines 10 to
16 would be encapsulated in the global constraint triggered by the �x-point
algorithm.

The key characteristics of the global constraint approach described in Al-
gorithm 1 are:

� A feasible solution at each node of the search tree.

� An e�cient bounding procedure.

� An e�cient procedure to �lter the domains.
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Algorithm 1: CP Global Constraint
Data: M, C, R
Output: Columns of the maximal sum submatrix inM

1 best ← −∞ // best so far objective
2 bestCol ← ∅ // best so far columns
3 𝑟 psum: array[𝑚] // partial sums of rows

4 Function dfs():
5 if C? ≠ ∅ then
6 𝑗 ← selectUnboundVar( C?)
7 foreach 𝑣 ∈ {0, 1} do
8 saveState()
9 Dom(C𝑗 ) ← 𝑣

10 currentBest ← evaluate()
11 if currentBest > best then
12 best ← currentBest

13 bestCol ← C∈

14 ub← upperBound()
15 if ub > best then
16 filter()
17 dfs()

18 restoreState()

19 return bestCol



20 Chapter 2. Mining a submatrix of maximal sum

The actual implementation of Algorithm 1 bene�ts from the use of re-
versible objects to allow e�cient backtracking (see Section 1.5.2 E�cient
backtracking) for each call to the restoreState() function.

The CPGC name comes from the fact that the implementation captures
relations between the rows and columns and provides a bound on the sum
of covered entries. However, it also presents dominance rules and �ltering
procedures to reduce the time spent �nding a solution. Consequently, Al-
gorithm 1 is rather a dedicated solution to the MSS problem than an actual
global constraint.

A feasible solution at each node of the search tree. CP usually updates
its feasible solution and best so far lower bound in the leaf-node of the search
tree, that is when every variable of the problem is bound. One can observe
that for the maximal sum submatrix problem, any partial assignment of the
variables can be extended implicitly as a complete solution for which the un-
bound variables would be set to 0. In other words, all C? variables are con-
sidered unselected in each node. Consequently, there is no need to wait that
every variable is actually bound to evaluate the solution and possibly update
the best so far lower bound. The value of the objective function of the feasible
solution is computed in the evaluate() function, Algorithm 2, as the sum
of the positive rows contributions of the partial solution:∑︁

𝑖∈R
max(0, 𝑟 𝑖psum) , (2.10)

with 𝑟 𝑖
psum =

∑︁
𝑗 ∈C∈

M𝑖, 𝑗 . (2.11)

That de�nition is a direct consequence from the search space reduction pre-
sented in Section 2.2.

An e�cient bounding procedure. CP uses a branch & bound depth-�rst-
search to avoid the exploration of proven suboptimal solutions. The B & B
performance depends on the strength and e�ciency of the procedure to com-
pute the upper bound. A simpler yet e�cient bounding procedure for the
maximal sum submatrix problem is presented hereafter. Intuitively, one com-
putes an upper bound on the row contribution of each row and sums up all
the positive bounds on the rows.

The upper bound on the contribution of a row is the sum of the matrix
entries in the selected columns plus the sum of the positive entries in the
unbound columns:

𝑟 𝑖
ub = 𝑟 𝑖

psum +
∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

)
. (2.12)
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Algorithm 2: Evaluating the objective value
Data: M, C, R, 𝑟 psum
Output: The weight of the best submatrix with columns C∈

1 Function evaluate():
2 for 𝑗 ∈ C? do
3 if Dom(C𝑗 ) ≠ {0, 1} then
4 C? ← C? \ 𝑗
5 if Dom(C𝑗 ) = {1} then
6 foreach 𝑖 ∈ R? do
7 𝑟 𝑖

psum ← 𝑟 𝑖
psum +M𝑖, 𝑗

8 obj ← 0
9 foreach 𝑖 ∈ R? do
10 obj ← obj +max(0, 𝑟 𝑖psum)
11 return obj

The upper bound for any partial assignment is the sum of positive bounds
on the rows: ∑︁

𝑖∈R
max ©­«0, 𝑟 𝑖psum +

∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

)ª®¬ . (2.13)

The bound is admissible but not tight as it may optimistically evaluate the
objective:∑︁

𝑖∈R
max ©­«0, 𝑟 𝑖psum +

∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

)ª®¬︸                                              ︷︷                                              ︸
Upper bound from Eqation 2.13

≥
∑︁
𝑖∈R∗
𝑗 ∈C∗

M𝑖, 𝑗

︸    ︷︷    ︸
Optimal solution

. (2.14)

Indeed, it relies on a per-row relaxation of the problem, each row selecting a
possibly di�erent set of columns.

The upperBound() function, Algorithm 3, is an implementation of the
proposed upper bound using reversible double to store the incremental mod-
i�cations of the partial contribution of the rows. Using a reversible sparse-set
for the candidate row variables R? allows an e�cient exclusion or inclusion
of the rows through descent or backtrack [Sai+13]. Indeed, as soon as the
bound on the row contribution becomes negative it should not be considered
in the descendant nodes of the search tree. The number of rows to consider
goes from exactly |R| to at most |R|.
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Algorithm 3: Computing the upper bound
Data: M, C, R, 𝑟 psum
Output: The upper bound of a partial assignment

1 Function upperBound():
2 ub← 0
3 for 𝑖 ∈ R? do
4 𝑟 𝑖

ub ← 𝑟 𝑖
psum

5 foreach 𝑗 ∈ C? do
6 𝑟 𝑖

ub ← 𝑟 𝑖
ub +max(0,M𝑖, 𝑗 ) // see equation 2.12

7 if 𝑟 𝑖ub > 0 then
8 ub← ub + 𝑟 𝑖ub
9 else
10 R? ← R? \ 𝑖 // 𝑟 𝑖

psum always ≤ 0

11 return ub

An e�cient �ltering procedure. The filter() function, Algorithm 4,
evaluates the upper bound result for two one-step look-ahead scenarios:

1. if column 𝑗 would be selected,

� that look-ahead upper bound is denoted ub 𝑗
∈;

� any column 𝑗 such that ub 𝑗 ∈ ≤ best is discarded: its inclusion can
only lead to worst solution than the best solution found so far;

2. if 𝑗 would not be selected,

� that look-ahead upper bound is denoted ub 𝑗
∉;

� any column 𝑗 such that ub 𝑗 ∉ ≤ best is included: its exclusion can
only lead to worst solution than the best solution found so far.

The time complexity for computing all the look-ahead upper bounds is
in O ( |R? | × |C? |) . Indeed the look-ahead bound update of each line for each
column can be obtained in O (1) from 𝑟 𝑖

ub.

2.3.3 Mixed Integer Linear Programming

Mixed integer linear programming (MILP) [NW88] involves the optimization
of a linear objective function, subject to linear constraints. Some or all of the
variables are required to be integer. AMILP solver explores a branch & bound
tree using linear programming (LP) bounds at each node of the search tree.
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Algorithm 4: Filtering impossible values
Data: M, C, R, 𝑟 ub

1 Function filter():
2 for 𝑗 ∈ C? do
3 ub 𝑗

∈ ← 0 // upper bound if 𝑗 was selected
4 ub 𝑗

∉ ← 0 // upper bound if 𝑗 was excluded
5 for 𝑖 ∈ R? do
6 if M𝑖, 𝑗 > 0 then
7 if 𝑟 𝑖ub −M𝑖, 𝑗 > 0 then
8 ub 𝑗

∉ ← ub 𝑗
∉ + 𝑟 𝑖ub −M𝑖, 𝑗

9 ub 𝑗
∈ ← ub 𝑗

∈ + 𝑟 𝑖ub
10 else if M𝑖, 𝑗 < 0 then
11 ub 𝑗

∉ ← ub 𝑗
∉ + 𝑟 𝑖ub

12 if 𝑟 𝑖ub +M𝑖, 𝑗 > 0 then
13 ub 𝑗

∈ ← ub 𝑗
∈ + 𝑟 𝑖ub +M𝑖, 𝑗

14 if ub 𝑗
∈ ≤ best then

15 Dom(C𝑗 ) ← Dom(C𝑗 ) \ {1}
16 if ub 𝑗

∉ ≤ best then
17 Dom(C𝑗 ) ← Dom(C𝑗 ) \ {0}
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It di�ers from a classical branch and bound as a linear programming (LP)
relaxation, obtained by removing all the integrality constraints of a node,
is solved before branching. The domain of all rows and columns variables
changes from {0, 1} to [0, 1]. That relaxed problem can be solved in polyno-
mial time and the solution is an upper bound on the objective value of the con-
strained problem. As an upper bound, the LP relaxation solution can be used
to prune out suboptimal solutions. If any integer variable is associated with
a fractional value in the linear programming relaxation, two subproblems are
generated imposing restrictions on the domain of that variable. When all in-
tegrality constraints are satis�ed in the solution of a node, then it corresponds
to a feasible solution and the lower bound is possibly updated.

In an initial formulation, each entry of the matrix is associated with a
decision variable that takes the value 1 if and only if both rows and columns
are selected. The objective function is computed as the sum of the selected
matrix entries.

2.3.3.1 Initial model

The maximal sum submatrix problem can be linearized as:

maximize
∑︁
𝑖∈R
𝑗 ∈C

M𝑖, 𝑗 × 𝑥𝑖, 𝑗 , (2.15)

subject to 𝑥𝑖, 𝑗 ≤ R𝑖 , ∀𝑖 ∈ R,∀𝑗 ∈ C , (2.16)
𝑥𝑖, 𝑗 ≤ C𝑗 , ∀𝑖 ∈ R,∀𝑗 ∈ C , (2.17)
𝑥𝑖, 𝑗 ≥ R𝑖 + C𝑗 − 1 , ∀𝑖 ∈ R,∀𝑗 ∈ C , (2.18)
R𝑖 ∈ {0, 1} , ∀𝑖 ∈ R , (2.19)
C𝑗 ∈ {0, 1} , ∀𝑗 ∈ C , (2.20)
𝑥𝑖, 𝑗 ∈ {0, 1} , ∀𝑖 ∈ R,∀𝑗 ∈ C , (2.21)

where:

� each row 𝑖 is associated with a binary decision variable R𝑖 ;

� each column 𝑗 is associated with a binary decision variable C𝑗 ;

� each matrix entry is associated with a binary decision variable 𝑥𝑖, 𝑗 .

The objective function is computed as the sum ofmatrix entries whose de-
cision variable is set to one. Equations (2.16-2.18) enforce that variable 𝑥𝑖, 𝑗 = 1
if and only if R𝑖 = 1 and C𝑗 = 1. All these decision variables are relaxed to
the interval [0, 1] at each node of the search tree of the MILP solver.
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2.3.3.2 Big M model

An improved andmore compactMILP formulation of the problem is proposed
hereafter. It relies on the search space study in Section 2.2: a row is selected
if and only if its contribution to the weight of a submatrix is positive.

A variable 𝑟 𝑖+ is de�ned for each row 𝑖 ∈ R. Variable 𝑟 𝑖+ takes the value
of the contribution of row 𝑖 if the contribution is positive, 0 otherwise:

∀𝑖 ∈ R : 𝑟 𝑖+ =


∑
𝑗 ∈C∈

M𝑖, 𝑗 , if
∑
𝑗 ∈C∈

M𝑖, 𝑗 > 0 ,

0 , otherwise .
(2.22)

That formulation is equivalent to the following:

∀𝑖 ∈ R : 𝑟 𝑖+ = max(0,
∑︁
𝑗 ∈C∈

M𝑖, 𝑗 ) . (2.23)

The objective is to maximize the sum over these variables 𝑟 𝑖+. This model
uses “big 𝑀” constants to linearize Eqation (2.23). The big 𝑀 method ex-
tends the use of the simplex algorithm to problems that containsmaller-than
constraints. It does so by associating the constraints with large positive con-
stants which would not be part of any optimal solution, if it exists.

The maximal sum submatrix problem using big 𝑀 constants is stated as
follows:

maximize
∑︁
𝑖∈R

𝑟 𝑖
+ , (2.24)

subject to 𝑟 𝑖 =
∑︁
𝑗 ∈C

M𝑖, 𝑗 × C𝑗 , ∀𝑖 ∈ R , (2.25)

𝑟 𝑖
+ ≤ R𝑖 ×𝔐𝑖

+ , ∀𝑖 ∈ R , (2.26)
𝑟 𝑖
+ ≤ 𝑟 𝑖 + (1 − R𝑖) ×𝔐𝑖

− , ∀𝑖 ∈ R , (2.27)
R𝑖 ∈ {0, 1} , ∀𝑖 ∈ R , (2.28)
C𝑗 ∈ {0, 1} , ∀𝑗 ∈ C , (2.29)

where 𝔐𝑖
+ and 𝔐𝑖

− are the upper bound and lower bound, respectively, on
the sum of entries in row 𝑖 .

The combination of the maximization term in Eqation (2.24) and Eqa-
tions (2.26) and (2.27) linearize 𝑟 𝑖+ = max(0, 𝑟 𝑖) with 𝑟 𝑖 being the sum of the
selected entries in row 𝑖 . Speci�cally, Eqations (2.26) and (2.27) ensure that
𝑟 𝑖
+ ≤ max(0, 𝑟 𝑖).
Consider the in�uence of the possible values of the decision variable R𝑖
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on the model:

∀𝑖 ∈ R : R𝑖 = 1 =⇒ 𝑟 𝑖
+ ≤ 𝑟 𝑖 + (1 − R𝑖) ×𝔐𝑖

− ≤ R𝑖 ×𝔐𝑖
+ , (2.30)

𝑟 𝑖
+ ≤ 𝑟 𝑖 , (2.31)

∀𝑖 ∈ R : R𝑖 = 0 =⇒ 𝑟 𝑖
+ ≤ R𝑖 ×𝔐𝑖

+ ≤ 𝑟 𝑖 + (1 − R𝑖) ×𝔐𝑖
− , (2.32)

𝑟 𝑖
+ ≤ 0 . (2.33)

From the maximization term in Eqation (2.24),

𝑟 𝑖 > 0 =⇒ 𝑟 𝑖
+ = 𝑟 𝑖 =⇒ {0} ∉ Dom(R𝑖) . (2.34)

Indeed, if 𝑟 𝑖 ≥ 0, the best assignment for 𝑟 𝑖+ is 𝑟 𝑖+ = 𝑟 𝑖 which requires that
R𝑖 = 1. Otherwise, the best assignment is 𝑟 𝑖+ = 0 which requires that R𝑖 = 0.
This formulation is valid if and only if 𝔐𝑖

+ ≥ 𝑟 𝑖 and 𝔐𝑖
− + 𝑟 𝑖 ≥ 0 for any

row 𝑖 ∈ R.
To avoid rounding errors and ill conditionedmatrices, the big𝑀 constants

can be replaced in Eqations (2.26) and (2.27) as:

∀𝑖 ∈ R : 𝔐𝑖
+ =

∑︁
𝑗 ∈C

max(0,M𝑖, 𝑗 ) , (2.35)

∀𝑖 ∈ R : 𝔐𝑖
− = −

∑︁
𝑗 ∈C

min(0,M𝑖, 𝑗 ) . (2.36)

2.4 Experiments

This section describes experiments conducted to assess the relative perfor-
mance of three algorithms to solve the maximal sum submatrix problem.
CP-LNS denotes the improved version of themethodCP-LNS0 proposed by Le
Van et al. [Le +14]. The other algorithms are original methods proposed in
the present work:

1. CPGC: a CP approach with a global constraint;

2. MILP: a mixed integer linear programming approach using “big 𝑀”
constants.

These algorithms are �rst compared on datamatrices which are generated
in a controlled setting. Experiments on the breast cancer gene expression data
used in [Le +14] are reported next.

The main criterion to assess the performance of the various methods is
the computing time to solve a particular problem instance.

All algorithms have been implemented in the Scala programming lan-
guage (2.11.4). Each run is executed with a single thread on a MacBook Pro
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(OS version 10.10.5) laptop (Intel i7-2720 CPU@ 2.20-3.30GHz, 4GB RAM per
run). Constraint programming implementations are based on OscaR [Osc12]
(version 4.0.0) and MILP is based on Gurobi (version 7.0.2). The code, datasets
and supplementary results are provided in [BS19].

2.4.1 Evaluation

One could assess algorithms performance through runtime or number of fea-
sible solutions. While the former may depend on implementation details, the
latter strongly depends on the time spent in each node. As an example, the
large number of rei�ed constraints in CP-LNS0 has amajor impact on the time
spent to compute the �x-point in each node while the �ltering is as strong as
the �ltering of the CP-LNS model. While both should perform equally well
in terms of the number of feasible solutions, it was observed in preliminary
experiments that CP-LNS0 is signi�cantly slower than CP-LNS.

We prefer the runtime comparisons as it is a more common approach and
we made sure to implement the algorithms in the most comparable fashion.
This is technically assessed through an any-time pro�le de�ned below.

2.4.1.1 Any-time pro�le

In practice, an important criterion for the user is the time required to solve
an instance and the ability to �nd the best solution within a given budget of
time. Using any-time pro�les, one can summarize these characteristics.

The idea behind any-time pro�les is that an algorithm should produce as
high quality solution as possible at any moment of its running time [LS14]. It
directly provides a cumulative probability for a method to solve an arbitrary
instance after a given budget of time. In the MSS problem, a high solution
quality corresponds to a submatrix of large sum. For each instance, runs not
completed in a maximum budget of time tmax are interrupted.

Definition 4. Any-time pro�le
Let 𝑓 (i, t)a be the objective value of the best solution found by an algorithm

a, from a set of algorithms A, at a given time t on an instance i from a set of

instances S.
Let tmax

be the maximal time allocated for any algorithm to solve an instance.

The any-time pro�le of an algorithm a is the solution quality Q(a, t, A, tmax, S)
computed on all instances as a function of time:

Q(a, t, A, tmax, S) = 1
|S|

∑︁
𝑖∈S

𝑓 (i, t)a
𝑓 (i, tmax)a∗ , (2.37)

with 𝑓 (i, tmax)a∗ = argmax
a

𝑓 (i, tmax)a . (2.38)
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2.4.2 Synthetic data

Synthetic data are generated by implanting a submatrix (I, J) of interest in
a larger matrix M = (R, C) made of𝑚 rows and 𝑛 columns, following a sim-
ilar protocol as proposed by Le Van et al. [Le +14]. The implanted subma-
trix (I, J) forms a speci�c selection of rows and columns chosen uniformly
at random. For each row index 𝑖 in {1, . . . ,𝑚} and each column index 𝑗 in
{1, . . . , 𝑛} of M, a binary variable 𝑥𝑖 and 𝑦 𝑗 , respectively, is sampled from a
Bernoulli distribution B (𝑝). The associated row or column is included in the
submatrix (I, J) if B (𝑝) = 1. Hence, I = {𝑖 ∈ R | 𝑥𝑖 ∼ B (𝑝) = 1} and
J = { 𝑗 ∈ C | 𝑦 𝑗 ∼ B (𝑝) = 1}. Next, the full matrix M is generated according
to two normal distributions:

� N (1, 1) whenever the particular entry belongs to the implanted sub-
matrix,

� N (−3, 1) otherwise.
More formally, an instance is de�ned from parameters𝑚, 𝑛, and 𝑝 as:

∀𝑖 ∈ {1, . . . ,𝑚}, 𝑗 ∈ {1, . . . , 𝑛} : (2.39)
𝑥𝑖 ∼ B (𝑝) , (2.40)
𝑦 𝑗 ∼ B (𝑝) , (2.41)

M𝑖, 𝑗 ∼
{
N (1, 1) , if 𝑥𝑖 = 1 ∧ 𝑦 𝑗 = 1 ,

N (−3, 1) , otherwise .
(2.42)

Such a generation protocol favors the occurrence of higher values in the
implanted submatrix and lower values elsewhere. Yet, given the standard
deviations chosen equal to 1, both ranges of values may overlap. Therefore,
the implanted submatrix is not guaranteed to be an optimal solution to the
maximal sum submatrix problem. This generation protocol looks however
realistic to de�ne a rectangular (and not necessarily contiguous) submatrix of
interest in a larger matrix.

Problem instances are generated for various matrix sizes (𝑚,𝑛) and a
varying parameter 𝑝 . As 𝑝 increases, the size of the implanted submatrix
is expected to increase as well. In the gene expression analysis context,𝑚 can
easily be two orders of magnitude larger than 𝑛 and the submatrix of interest
is typically small as compared to the full matrix. Such cases are included in
the controlled experiments reported below but a larger spectrum of problem
instances is also considered.

2.4.3 Gene expression data

The proposed case study concerns biomarker discovery for breast cancer sub-
types using heterogeneous molecular data types. For a biological analysis and
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interpretation of the results, the reader is redirected to the work of Le Van et
al. [Le +14]. The preprocessed data consists of a matrix of 𝑚 = 2, 211 rows
and 𝑛 = 94 columns.

Matrix entries are �rst transformed to discrete ranks along each row.
Ranking allows to easily combine heterogeneous data with di�erent scales.
A given threshold 𝜃 × 𝑛 is then subtracted from each entry. As 𝜃 increases,
the proportion of positive entries decreases and, consequently, a smaller sub-
matrix of interest is expected to be found. Hence, the control parameter 𝜃
plays a similar role as the parameter 𝑝 , de�ned in Section 2.4.2, but in an
opposite way.

2.4.4 Results

Figure 2.1 presents the any-time pro�le on 50 synthetic data with 100 rows
and 𝑝 = {0.05, 0.3, 0.7} for 20 columns (column 1) or 100 columns (column 2).
The CP-LNS0 method is clearly outperformed by the CP-LNS method when
the number of columns increases.

These results clearly illustrate the bene�ts of CP-LNS over CP-LNS0:
while both have identical �ltering, the latter uses a lot of rei�ed constraints
and more terms in the objective function which imply longer time spent to
compute the �x-point in each node of the search tree.

Figure 2.2 presents the any-time pro�le on 50 synthetic data with 10, 000
rows and 𝑝 = {0.05, 0.3, 0.7} for 100 columns (column 1) or 1, 000 columns
(column 2) and the any-time pro�le on breast cancer gene expression data
with 2, 211 rows, 94 columns and variable choices of 𝜃 (columns 3 and 4).

Results on synthetic data. The CP-LNS method is clearly outperformed
by the two other methods. It can barely produce any solution within the
allocated time budget. The best approach is CPGC followed by MILP. The
reported curves are stopped whenever the proof of optimality is obtained or
else the maximal running time is reached. Hence, CPGC also exhibits best
results whenever proving optimality is possible in the allocated running time.

Results on gene expression data. Each curve corresponds here to the
performance of an algorithm on a single instance, the one obtained for a spe-
ci�c choice of 𝜃 . On the whole spectrum of instances considered, the clear
winner is CPGC. The most interesting instances are those for which 𝜃 ≥ 0.9
since such settings correspond to small submatrices which are more likely to
illustrate an interesting biological pattern. In such cases, the best approaches
are CPGC and CP-LNS.
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Figure 2.1: Any-time pro�les of the constraint programming method with
large neighborhood search by Le Van et al. [Le +14], called CP-LNS0, and an
adapted version of it, CP-LNS.

Reported curves correspond to the average solution quality over synthetic
instances as a function of time, in seconds. Results are computed on 50 syn-
thetic instances with 100 rows, 20 columns (left) or 100 columns (right), a
variable 𝑝 and a maximum budget of time of 10 seconds.
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Figure 2.2: Any-time pro�les of constraint programming with a global con-
straint (CPGC), the constraint programmingmethodwith large neighborhood
search (CP-LNS) and a mixed integer linear programming method (MILP).

Columns 1 and 2: reported curves correspond to the average solution qual-
ity over all synthetic instances as a function of time, in seconds. Results are
computed on 50 synthetic instances with 10, 000 rows, 100 (column 1) or 1, 000
(column 2) columns, a variable 𝑝 and amaximum running time of 20 (column
1) or 200 (column 2) seconds.

Columns 3 and 4: reported curves correspond to the solution quality over
each gene expression problem instance obtained for a speci�c 𝜃 as a function
of the time (in seconds). Results are computed on breast cancer gene expres-
sion data with 2, 211 rows, 94 columns and various 𝜃 values for a maximum
CPU time of 1, 000 seconds.
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In�uence of randomness on LNS. Each restart of the LNS allows explor-
ing the neighborhood of the best solution found so far. However, the restart
frequency in�uences the ability to �nd improving solutions in the neighbor-
hood. In practice, the LNS restarts after a parametrized number of backtracks.
There are two extreme cases:

1. restart on the �rst backtrack, which is equivalent to generating solu-
tions without exploration of the solution neighborhood,

2. restart after an in�nite number of backtracks, or no restart, which is
somewhat equivalent to a complete search.

The best parameter value for LNS restart probably lies between these extreme
cases and is in�uenced by the restart strategy and the problem to solve. These
elements could be tuned to �t certain contexts or problems. However, the
quality of the LNS restarts also depends on the randomness when �xing some
of the variables.

We performed additional experiments to evaluate the in�uence of ran-
domness in the restart strategy. We generated a set of instances, and each
instance is solved ten times with LNS and di�erent seeds. This provides ten
di�erent exploration LNS for each instance. We also considered 12 di�erent
parameter values for the number of backtracks to perform before restarting
the LNS. We then compare the solution quality of each run with the best so-
lution found overall for each instance. We considered instances as provided
in the synthetic data. All runs have the same solution after the allocated time.
We considered more di�cult instances for which the di�erence between the
implanted submatrix and background noise is smaller. We considered 10 syn-
thetic 1, 000 × 200 matrices with 𝑝 = 0.5 and a background noise following
theN (−1, 1) distribution and the implanted submatrix following theN (0, 1)
distribution. Figure 2.3 reports the impact of the randomness and the in�u-
ence of the number of backtracks before restarting the LNS. The randomness
has a limited impact on the solution quality in these experiments. The in�u-
ence of the number of backtracks is minor but exists. While there may be a
trend, the optimal parameter value may change with the optimal solution to
�nd. The actual expectation of the user should also in�uence the parameter.
If the goal is to �nd a good solution within a short time, it would be best to
increase the restarts. If the goal is to �nd the best solution within a long time,
it would be worth spending some of the time in a larger exploration of the
neighborhood.

2.4.4.1 Summary

As expected by the size of the search tree, CP-LNS is sensible to the size
of the instance matrix producing barely no results on the larger synthetic



2.5. Conclusions 33

Figure 2.3: Solution quality found by CP-LNS as a function of the number of
backtrack before restarting the LNS. The quality corresponds to the objective
value of an instance divided by the maximal objective value found for that
instance over all runs. The reported values correspond to the average quality
of 10 instances and 10 repeats per instance.

instances within the time budget. On the opposite, CPGC achieves the best
results. Indeed the model uses a dedicated global constraint with e�cient �l-
tering through computation of an upper bound and fast update of the lower
bounds. The results of MILP are surprisingly good given its inability to ex-
press specialized constraints such as these of constraint programming. This
is explained by the bene�ts of the linear programming relaxation to tighten
the gap between the lower and the upper bounds. The current major issue is
related to the “big𝑀” approach that fails to guide the search in some settings
on the gene expression data. When 𝜃 is smaller, the big 𝑀 constant 𝔐− is
tighter. As a consequence, the result of the LP relaxation as a higher chance
to be a tighter bound. It follows a speed-up of the search as it implies a more
e�cient pruning of the tree.

2.5 Conclusions

The maximal sum submatrix problem consists in �nding a rectangular sub-
matrix in a large matrix whose sum is maximal. This problem is originally
motivated, in the context of gene expression analysis, by the search of a sub-
set of highly expressed genes in a speci�c subset, to be found, of relevant
samples exhibiting such a pattern. A close variant of this problem, known
asmaximal ranked tile mining problem, has already been studied and tackled
with constraint programming (CP) combined with large neighborhood search
(LNS) [Le +14].

We present here key properties of the maximal sum submatrix problem
to speed up the search for a solution. This results in an improved CP-LNS
implementation. We also propose two new algorithms to solve this problem.
Experiments reported both on synthetic data and the original gene expression
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data used by Le Van et al. [Le +14] illustrate the bene�ts of our proposed
methods. In particular, a CP approach with a global constraint, CPGC, is the
most e�ective one in a large spectrum of problem instances. Overall, the CPGC
method is also best at proving optimality when such proof can be obtained
within the allocated process time budget.

The second approach proposed here, called MILP, relies on mixed integer
linear programming. It is arguably the simplest to formulate and to address
with a standard solver for such problems. It is competitive with the other
methods and largely outperforms CP-LNS as well in our controlled experi-
ments. It exhibits however some performance degradation on some instances
from gene expression data, most likely as a consequence of the speci�c relax-
ation it is based on.

The proposed experiments are only concerned with implementation ef-
�ciency. Le Van et al. [Le +14] illustrated the relevance to biological data
studies of a special case of the MSS problem for which the matrix entries are
discrete ranks. An actual evaluation of the maximal sum submatrix problem
on biological data is proposed in Chapter 5.
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3

There aremany data-mining applications of themaximal sum

submatrix (MSS) problem where one could bene�t from �nding

more than one submatrix of maximal sum. Finding multiple

gene subsets speci�c to subsets of samples is a common task in

gene expression analysis. This chapter presents an extension to

the MSS problem to �nd 𝐾 di�erent submatrices. The speci-

�city of that extension is the de�nition of disjunction con-

straints that prevent overlap between submatrices. Optimiza-

tion approaches relying on column generation, constraint pro-

gramming andmixed integer linear programming to solve that

problem are presented. Then, experiments on synthetic data are

conducted. These experiments show the bene�ts of a hybrid col-

umn generation approach using constraint programming to

generate columns over the MILP approach.

3.1 Introduction

The objective of the maximum weighted set of disjoint submatrices problem
is to discover 𝐾 disjoint submatrices that together cover the largest sum of
entries of an input matrix. It has many practical data-mining applications, as
the related biclustering problem, such as gene module discovery in bioinfor-
matics. It relies on an explicit formulation of disjunction constraints: subma-
trices must not overlap. In other words, all matrix entries must be covered by
at most one submatrix. The particular case of 𝐾 = 1, called the maximal sum
submatrix (MSS) problem, was successfully tackled with constraint program-
ming (CP) in the previous chapter. Unfortunately, the case of 𝐾 > 1 is more
challenging to solve as the selection of rows cannot be decided in polynomial
time solely from the selection of 𝐾 sets of columns. It can be proved to be
NP-hard.

We introduce in this chapter an hybrid column generation approach using

35
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CP to generate columns. It is compared to a standard mixed integer linear
programming (MILP) through experiments on synthetic datasets. Overall,
fast and valuable solutions are found by column generation while the MILP
approach cannot handle a large number of variables and constraints.

3.1.1 Problem de�nition

The maximal sum submatrix problem, introduced in the Chapter 1, consists
in �nding a subset of rows and columns of an input matrixM that maximizes
the sum of the covered entries.

In this chapter, we consider an extension to the identi�cation of 𝐾 sub-
matrices. It relies on:

1. a modi�cation of the objective function computed as the sum of the 𝐾
submatrices weights, and

2. the explicit addition of disjunction constraints.

The disjunction constraints prevents the identi�cation of 𝐾 identical sub-
matrices corresponding to the maximal sum submatrix. By allowing over-
laps on the rows or the columns, but not both simultaneously, we avoid the
identi�cation of redundant submatrices. Moreover, the interpretability of the
solution by a domain expert is eased. Such a solution is usually called nonover-
lapping nonexclusive nonexhaustive in the biclustering context [MO04]:

� each matrix entry can be covered by at most one bicluster,

� every bicluster pair can share some row or some columns but not both,

� some rows and columns can be excluded from all biclusters.

From a biological viewpoint, the studied problem consists in �nding mul-
tiple pairs of rows and columns such that:

� a gene should be speci�c enough to participate in at most one pathway,

� a sample should be only considered if it presents a (single) clear pat-
tern of expression and not a combination of multiple highly expressed
pathways.

Definition 5. The Maximum Weighted Set of Disjoint Submatrices
Problem
Let M ∈ R𝑚×𝑛 be a matrix of 𝑚 rows and 𝑛 columns. Let K = {1, . . . , 𝐾}
be the index-set for a target number 𝐾 of submatrices to �nd. The maximum
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weighted set of disjoint submatrices problem is to select a set of 𝐾 submatrices(
I1∗, J1∗) , . . . , (I𝐾∗, J𝐾∗) such that:

(
I1∗, J1∗) , . . . , (I𝐾∗, J𝐾∗) = argmax

(I1,J1),...,(I𝐾 ,J𝐾 )

𝐾∑︁
𝑘=1

∑︁
𝑖∈I𝑘
𝑗 ∈J𝑘

M𝑖, 𝑗 , (3.1)

s.t.: I𝑘 ⊆ R , ∀𝑘 ∈ K , (3.2)

J𝑘 ⊆ C , ∀𝑘 ∈ K , (3.3)(
I𝑘 × J𝑘

)
∩
(
I𝑘
′ × J𝑘′

)
= ∅ , ∀𝑘, 𝑘 ′ ∈ K : 𝑘 ≠ 𝑘 ′ . (3.4)

The maximization term in Eqation (3.1) enforces that the sum of the
covered entries is maximal. The disjunction constraints in Eqation (3.4)
enforce that each matrix entry is selected by at most one submatrix. Restrict-
ing to 𝐺 (> 1) overlaps would result in d𝐾/𝐺e groups of 𝐺 identical subma-
trices. While any submatrix pair may share rows or columns, the constraint
prevents any pair from sharing rows and columns simultaneously. Note that
the speci�c submatrix ordering is irrelevant given the de�nition provided.

3.1.2 Applications

The maximum weighted set of disjoint submatrices (MWSDS) problem has
many practical data-mining applications where one is interested in discover-
ing 𝐾 speci�c relations between two groups of variables. A few examples are
provided hereafter.

� In gene expression analysis.

The rows correspond to genes and columns to samples, and the value
inM𝑖, 𝑗 is the measurement of the expression of gene 𝑖 in sample 𝑗 . One
is typically interested in �nding a subset of genes that present high ex-
pression in a subset of the samples. It would indicate that a particular
biological pathwaymade of these genes is active in these samples. Find-
ing multiple pathways is a common task in gene expression analysis.
Interpreting submatrices overlaps can be challenging in such a context.
The disjunction constraint ensures that the role of a matrix entry M𝑖, 𝑗

in a submatrix is clear: its contribution to the decision of including gene
𝑖 and sample 𝑗 in the submatrix isM𝑖, 𝑗 . It follows that the contribution
of each gene, and each sample, in the de�nition of the pathway can be
easily computed as the sum of matrix entries for each of the selected
samples and genes respectively.
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� In migration data.

The valueM𝑖, 𝑗 represents the number of persons thatmoved from source
location 𝑖 to destination 𝑗 . The goal is to �ndmultiple groups of sources
and destinations pairs characterized by large, conjoint migration �ow.
Using di�erent source and destination locations may allow �nding mi-
gration �ows between locations based on some features such as rich-
ness or government policies. Overlaps on both the rows and columns
would not necessarily be desirable. Indeed, the shared set of rows of
overlapping submatrices would correspond to source location where
migration is not highly speci�c to some destination. Similarly, the shared
set of columns of overlapping submatrices would correspond to desti-
nations that attract many immigrants from various origins.

� In sports data.

A sports journalist could be interested in Olympic games to discover
multiple pairs of (countries subsets, sports subsets) of strong perfor-
mance. The matrix value M𝑖, 𝑗 then represents the number of medals
obtained by the country 𝑖 in sport 𝑗 . Similarly to migration data, the
aim is to �nd speci�c countries with high performance in speci�c sports
and conversely.

3.1.3 Related work

The work presented in this chapter extends the maximal sum submatrix prob-
lem to 𝐾 > 1 by adding disjunction constraints and adapting the objective
function.

The work related to the maximal sum submatrix problem is introduced in
Section 1.4. Additional work is presented and notable di�erences with the
maximum weighted set of disjoint submatrices problem are enlighted.

� The minimum sum-of-squares clustering problem.

It involves the de�nition of non-overlapping sets of rows, or columns,
covering all matrix entries. Although the problem di�ers, we use a sim-
ilar approach as in [AHL12]: the combination of an integer linear pro-
gramming (ILP) and delayed column generation.

� The biclustering problem.
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There is a variety of biclustering problems. These problem are con-
cerned with the discovery of homogeneous submatrices rather than
maximizing the weight of covered entries.

� The maximum subarray problem.

That problem is simpler than the maximum weighted set of disjoint
submatrices as a single submatrix is required and it is constrained to be
formed of contiguous subsets of rows and columns.

� The maximal ranked tile mining problem and extensions.

It is a special case of the maximal sum submatrix problem for which
matrix entries are discrete ranks. The diverse ranked tiling problem
impose disjunction on the rows, while in the maximum weighted set
of disjoint submatrices problem, disjunction is imposed on the matrix
entries. In the ranked tiling problem, overlaps might exists even if they
are penalized.

3.1.4 Contributions

The contributions of this chapter are the following.

1. The introduction of the maximum weighted set of disjoint submatrices
(MWSDS) problem as a generalization of the maximal sum submatrix
(MSS) problem.

2. A mathematical programming approach to solve the MWSDS problem.

3. The formulation of the MWSDS problem as an integer linear program-
ming (ILP) relying on constraint programming to produce relevant vari-
ables.

4. An evaluation of the performance of these two alternatives and the ben-
e�t of the ILP+CP combination over a greedy approach on synthetic
datasets.

3.2 Constraint programming approaches

The general constraint programming paradigm is introduced in Section 1.5.
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3.2.1 Search space

The search space of the maximal sum submatrix problem can be limited to
searching on a single dimension, as explained in Section 2.2 Search space.
Indeed, the optimal subset of rows I∗ can be found in polynomial time from
a �xed selection of columns J ⊆ C :

∀𝑖 ∈ R :
∑︁
𝑗 ∈J

M𝑖, 𝑗 > 0 =⇒ 𝑖 ∈ I∗ .

Let us consider the MWSDS problem when all columns are �xed. This is
formally stated in Definition 6 as the MWSDS problem with �xed column
selections.

Definition 6. The MWSDSP with �xed column selections
The problem is a particular case of the maximumweighted set of disjoint subma-

trices problem presented in Definition (5). In this case, the selections of columns

for each submatrices, J1, . . . , J𝐾 , are given. The problem is to de�ne the rows of

each submatrix:

I1∗, . . . , I𝐾∗ = argmax
I1,...,I𝐾

,
𝐾∑︁
𝑘=1

∑︁
𝑟 ∈I𝑘
𝑐∈J𝑘

M𝑖, 𝑗 (3.5)

s.t.: I𝑘 ⊆ R , ∀𝑘 ∈ K , (3.6)

J𝑘 ⊆ C , ∀𝑘 ∈ K , (3.7)(
I𝑘 × J𝑘

)
∩
(
I𝑘
′ × J𝑘′

)
= ∅ , ∀𝑘, 𝑘 ′ ∈ K : 𝑘 ≠ 𝑘 ′ . (3.8)

For 𝐾 > 1, once the columns J𝑘 of all the 𝐾 submatrices are �xed, it
remains to decide for each row 𝑖 and each submatrix 𝑘 whether 𝑖 is to be
selected (𝑖 ∈ I𝑘 ) or not. These 𝐾 decisions per row cannot be optimally taken
in polynomial time, as stated in Theorem (2). As a consequence, the search
will have to assign both the row and column set variables, as opposed to the
simpler 𝐾 = 1 problem.

Theorem 2.
The maximum weighted set of disjoint submatrices problem with �xed column

selections is NP-hard
Proof. We reduce the Maximum Weighted Independent Set (MWIS) problem
to our problem. MWIS is NP-hard (by immediate reduction from the Inde-
pendent Set problem [GJ90]), and aims at �nding, in a graph𝐺 =< 𝑉 , 𝐸 >with
weights 𝑤𝑣 on each vertex 𝑣 ∈ 𝑉 , the set of vertices with the maximum sum
such that they do not share edges in𝐺 . For simplicity, we represent edges and
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vertices as numbers: 𝑉 = {1, . . . , |𝑉 |} and 𝐸 = {1, . . . , |𝐸 |}. We reduce an in-
stance of the MWIS to an instance of the MWSDS problem with �xed column
selections. We create a 1 by ( |𝑉 | + |𝐸 |) matrix𝑀 : 𝑀1,𝑖 = 𝑤𝑖 if 𝑖 ∈ {1, . . . , |𝑉 |},
and 𝑀1,𝑖 = 0 otherwise. The columns sets 𝐶1, . . . ,𝐶 |𝑉 | are constructed as fol-
lows: 𝐶𝑣 = {𝑣} ∪ {|𝑉 | + 𝑒 | 𝑒 ∈ 𝐸 ∧ edge 𝑒 has 𝑣 as origin or destination}.
Each vertex in the graph 𝐺 is transformed in a submatrix. If the single row
of matrix 𝑀 is selected by a submatrix, then the vertex is included in the
MWIS. The non-overlapping constraint of MWSDS problem forbids two adja-
cent vertices (i.e., submatrices) to both be included in the solution (construct-
ing an independent set), due to the way the column selections 𝐶1, . . . ,𝐶 |𝑉 |

are constructed. Resolving the MWSDS problem then leads to the same opti-
mal objective result as the original MWIS problem, and the selected rows 𝑅𝑣 ,
∀𝑣 ∈ [1, . . . , |𝑉 |], indicates, for each node 𝑣 , if the node is inside the MWIS
(𝑅𝑣 = {1}) or not (𝑅𝑣 = ∅). As computing the MWIS in general graphs isNP-
hard, and as the MWSDS problem with �xed column selections can encode
the MWIS problem, we conclude that the MWSDS problemwith �xed column
selections is NP-hard.

3.2.2 Greedy baseline

A simple approach to solving the maximum weighted set of disjoint subma-
trices problem is to solve the maximal sum submatrix repeatedly using the
CPGC implementation presented in Chapter 2. For each new maximal sum
submatrix found, the corresponding values are replaced by −∞, forbidding
subsequent iterations from selecting these entries again.

Each iteration is performed until the �rst of these scenarios occurs:

1. optimality is proved;

2. absence of solution is proved;

3. at least one solution is found and a given time-out is reached.

3.2.3 Column generation

We propose a column generation (CG) approach [DDS06] to �nd solutions to
the MWSDS problem. It relies on CP, introduced in Section 1.5, in an integer
linear programming (ILP) setting. The CP part identi�es candidate submatri-
ces. The ILP e�ciently combines submatrices and guides the CP part. ILP is
equivalent to mixed integer linear programming, introduced in Section 2.3.3,
except that all variables are required to be integer in the ILP.

Let us represent the given matrixM of𝑚×𝑛 entries as the vector V of size
𝑣 (=𝑚×𝑛) obtained by stacking the columns of the matrixM. The maximum
weighted set of disjoint submatrices problem is formulated using a 𝑣 × 2𝑚+𝑛
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binary matrix B representing all 2𝑚+𝑛 possible submatrices. Each column 𝑙
of B corresponds to a submatrix 𝑙 such that B𝑖,𝑙 = 1 if and only if entry V𝑖
is covered by the submatrix 𝑙 ∈ L where L = {1, . . . , 2𝑚+𝑛} denotes all the
possible submatrices. The weight 𝑤𝑙 of submatrix 𝑙 is the sum of entries it
covers: 𝑤𝑙 =

∑𝑣
𝑖=1 V𝑖 ×B𝑖,𝑙 . Eqations (3.1) and (3.4) can be formulated as an

ILP:

maximize
∑︁
𝑙 ∈L

𝑤𝑙 × 𝑥𝑙 , (3.9a)

s.t.
∑︁
𝑙 ∈L

B𝑖,𝑙 × 𝑥𝑙 ≤ 1 , ∀𝑖 ∈ {1, . . . , 𝑣} , (3.9b)∑︁
𝑙 ∈L

𝑥𝑙 ≤ 𝐾 , (3.9c)

𝑥𝑙 ∈ {0, 1} , ∀𝑙 ∈ L , (3.9d)
B𝑖,𝑙 ∈ {0, 1} , ∀𝑖 ∈ {1, . . . , 𝑣},∀𝑙 ∈ L . (3.9e)

The binary decision variable 𝑥𝑙 encodes the selection of submatrix 𝑙 . Eqa-
tion (3.9b) ensures submatrices disjunction and Eqation (3.9c) enforces the
selection of at most 𝐾 submatrices. Eqation (3.9d) de�nes the integrality
constraints on the variables 𝑥𝑙 .

De�ning the matrix B before solving the ILP is computationally not fea-
sible, even for small input matrices M. In subproblem solving, the master
problem (or ILP), in Eqations (3.9a)-(3.9d), is restricted to a subset L ′ ⊆ L
of submatrices e�ectively de�ning a restricted master problem (RMP). Itera-
tively, an RMP is solved, and one or multiple new submatrices (columns) are
inserted inL ′, de�ning a new RMP. Submatrices (columns) are candidates for
insertion to an RMP if its insertion can improve the objective function of the
RMP.

To �nd such candidate submatrices, we de�ne a linear programming re-
laxation of the restricted master problem (LP-RMP) which comes along the
integrality constraints relaxation of the ILP in an LP, and the subsetting of L.
We use the dual of the LP-RMP to �nd submatrices with a positive reduced
cost, given that the problem is a maximization problem. Such submatrix can
improve the LP-RMP. If no such submatrix exists, the optimal solution to the
LP-RMP is an optimal solution to the LP [Bar+98]. The dual of the LP-RMP
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is:

minimize 𝜃 × 𝐾 +
𝑣∑︁
𝑖=1

𝜆𝑖 , (3.10a)

s.t. 𝜃 +
𝑣∑︁
𝑖=1

B𝑖,𝑙 × 𝜆𝑖 ≥ 𝑤𝑙 , ∀𝑙 ∈ L ′ , (3.10b)

𝜆𝑖 ≥ 0 , ∀𝑖 ∈ {1, . . . , 𝑣} , (3.10c)
𝜃 ≥ 0 . (3.10d)

The dual values 𝜆𝑖 and 𝜃 corresponding to the primal constraints de�ned
in Eqations (3.9b) and (3.9c), respectively, are obtained by solving an LP-
RMP. Each column 𝑥𝑙 of the RMP is associated with a constraint, in Eqa-
tion (3.10b), in the dual.

Finding a submatrix with a positive reduced cost is called pricing. Such a
submatrix is de�ned as any submatrix 𝑙 ∈ L for which

− 𝜃 −
𝑣∑︁
𝑖=1

B𝑖,𝑙 × 𝜆𝑖 +𝑤𝑙 < 0 . (3.11)

The LP-RMP is optimal if the pricing problem has no solution. Moreover, if
the LP-RMP (being optimal) and the RMP have the same objective value, then
the solution to the ILP is optimal.

The pricing problem can be reformulated as:
𝑣∑︁
𝑖=1

[
B𝑖,𝑙 × (V𝑖 − 𝜆𝑖)

]
> 𝜃 . (3.12)

This problem amounts to identifying a submatrix (B𝑙 ) in the input matrix (V)
modi�ed by the 𝜆𝑖 values such that its weight is larger than some 𝜃 . It is
equivalently reformulated as a maximal sum submatrix problem:

(I∗, J∗) = argmax
I⊆R
J⊆C

∑︁
𝑖∈I, 𝑗 ∈J

M𝑖, 𝑗 , (3.13)

with M𝑖, 𝑗 = V𝑖×𝑚+𝑗 − 𝜆𝑖×𝑚+𝑗 − 𝜃 , (3.14)
R = {1, . . . ,𝑚} , (3.15)
C = {1, . . . , 𝑛} , (3.16)

and submatrix (I∗, J∗) is transformed into B𝑙 .
Such pricing problem can then be solved using an exact CP or mixed in-

teger linear programming implementation. An optimal solution is associated
with maximal reduced cost. Solving to optimality is not a trivial task, how-
ever, as the problem isNP-hard (see Theorem 1). Alternatively, any subma-
trix with positive reduced cost, or positive weight, is a (possibly suboptimal)
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solution to the pricing problem. The pricing can then be solved using the
CPGC implementation presented in Chapter 2 or even with the greedy ap-
proach presented in the previous section.

The greedy approach produces up to 𝐾 solutions to the pricing problem,
whereas the CPGC approach produces a single solution. Preliminary experi-
ments showed that using the greedy approach to �nd solutions to the pricing
problem slightly improves the column generation approach as compared to
CPGC. In practice, we use the greedy approach to solve each pricing problem.

3.2.3.1 Important considerations

Implementation details may have an important role in the e�ectiveness of the
approach. Such details are presented next.

Redundant constraints. To maximize the information given by the dual
values, we avoid having redundant constraints, notably the constraints in
Eqation (3.9b). For example, if two submatrices overlap on more than one
cell, we enforce only one constraint representing all the overlapping cells.
Precisely, constraint in Eqation (3.9b) is replaced by the following:∑︁

𝑙 ∈𝑆
𝑥𝑙 ≤ 1 , ∀𝑆 ∈

{{
𝑙 ∈ L | B𝑖,𝑙 = 1

} ��� 𝑖 ∈ {1, . . . , 𝑣}}. (3.17)

That is, we enforce one non-overlap constraint per group of entries sharing
the same intersecting submatrices, or an overlapping group. Eqation (3.17)
uses the set notation to implicitly remove duplicates. We then redistribute the
dual value of the constraint equally (we divide it by the number of entries)
over all the entries in this overlapping group. This allows the method to avoid
a pitfall of most solvers: when facing multiple equivalent constraint, only one
will be tight, i.e. having a non-zero dual value. Redistributing the duals on
all the entries in an overlapping group allows the subproblem solver to �nd
more interesting submatrices.

Linear relaxation. The LP-RMP does not necessarily provide a binary de-
cision on the submatrix selection. To e�ectively identify a solution to the
original MWSDS problem, the RMP is solved for any solution to the LP-RMP.
Observe that the objective value of the LP-RMP is an upper bound to the
objective value of the RMP. All experiments present the results of the RMP
solution.

A greedy hot-start. The subset 𝐿′ de�ning the �rst RMP to solve is ob-
tained using the greedy approach searching for𝐾 submatrices. This serves as
a greedy hot-start for the column generation approach.
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Given the non-trivial pricing problem, there is no guarantee that the greedy
subroutine identi�es an optimal solution to the pricing problem. While it
would be possible to use a branch-and-price algorithm [Sav97], it would be
non-trivial to solve the pricing problem to optimality. The running time
needed to solve the LP-RMP to optimality (i.e. to the point where no new
submatrix with positive reduced cost exists) is already quite high, as shown
in the experiment section below.

Number andweight of the submatrices. Guidance on the search for bet-
ter submatrices requires many submatrices in the RMP with large weight.
Moreover, the greedy subroutine may identify many solutions (i.e. submatri-
ces) to the pricing problem. As the number of submatrices to �nd increases,
the weight of these submatrices likely decreases. It is then more useful to
seek multiple submatrices later in the column generation process. As a con-
sequence, at iteration 𝑝 of the column generation, up to 𝑝 solutions, or sub-
matrices, to the pricing problem are identi�ed and are inserted in the RMP.

3.2.4 Mixed Integer Linear Programming

Wepropose amixed integer linear programming (MILP)model with analogies
to the “big𝑀” formulation of the maximal sum submatrix problem presented
in Section 2.3.3.2. The model uses the binary variables R𝑖𝑘 and C𝑗𝑘 to rep-
resent the selection of row 𝑖 and column 𝑗 in the submatrix 𝑘 . These decision
variables are used to compute the contribution 𝑟 𝑖𝑘+ of the row 𝑖 to the sub-
matrix 𝑘 . The sum of the row contributions is the objective function to be
maximized. The model presented below is based on a “big𝑀” formulation of
the MWSDS where:

∀𝑖 ∈ R : 𝔐𝑖
+ =

∑︁
𝑗 ∈C

max(0,M𝑖, 𝑗 ) , (3.18)

∀𝑖 ∈ R : 𝔐𝑖
− =

∑︁
𝑗 ∈C

min(0,M𝑖, 𝑗 ) , (3.19)
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and𝔐𝑖
+ and𝔐𝑖

− are the upper bound and lower bound, respectively, on the
sum of entries covered by row 𝑖 . The MILP model is formulated as follows:

maximize
∑︁
𝑖∈R
𝑘∈K

𝑟 𝑖
𝑘+ , (3.20a)

s.t.: 𝑟 𝑖
𝑘+ ≤

∑︁
𝑗 ∈C

(
M𝑖, 𝑗 × C𝑗𝑘

)
+(R𝑖𝑘 − 1) ×𝔐𝑖

− , ∀𝑖 ∈ R, 𝑘 ∈ K , (3.20b)
𝑟 𝑖
𝑘+ ≤ 𝔐𝑖

+ × R𝑖𝑘 , ∀𝑖 ∈ R, 𝑘 ∈ K , (3.20c)
2 × 𝑣𝑘𝑖,𝑗 ≤ R𝑖𝑘 + C𝑗𝑘 , ∀𝑖 ∈ R, 𝑗 ∈ C, 𝑘 ∈ K , (3.20d)

R𝑖𝑘 + C𝑗𝑘 ≤ 1 + 𝑣𝑘𝑖,𝑗 , ∀𝑖 ∈ R, 𝑗 ∈ C, 𝑘 ∈ K , (3.20e)∑︁
𝑘∈K

𝑣𝑘𝑖,𝑗 ≤ 1 , ∀𝑖 ∈ R, 𝑗 ∈ C . (3.20f)

Constraints in Eqations (3.20b) and (3.20c) ensure that the row contri-
bution 𝑟 𝑖𝑘+ is computed correctly. If R𝑖𝑘 = 0, constraint in Eqation (3.20c)
ensures the row contribution is zero, with the right hand side of constraint in
Eqation (3.20b) being always positive. Otherwise (R𝑖𝑘 = 1), constraints in
Eqations (3.20b) and (3.20c) ensure

𝑟 𝑖
𝑘+ =

∑︁
𝑗 ∈C

(
M𝑖, 𝑗 × C𝑗𝑘

)
,

thus computing the e�ective value of the contribution.
Eqations (3.20d) and (3.20e) linearize

𝑣𝑘𝑖,𝑗 = R𝑖𝑘 × C𝑗𝑘 .

The binary variable 𝑣𝑘𝑖,𝑗 indicates if cell (𝑖, 𝑗) is selected by submatrix 𝑘 and
ensures submatrices disjunction through constraint in Eqation (3.20f).

This model is plagued by the number of variables and constraints which
are both in 𝑂 (𝑚 × 𝑛 × 𝐾), mainly due to the non-overlap constraints.

3.3 Experiments

This section describes experiments conducted to assess the performance of
the proposed algorithms and to provide guidance on the selection of the ap-
propriate solution.

3.3.1 Evaluation

Given enough time and memory, both the column generation (CG) approach
and the MILP approach converge to the optimal solution. Therefore compar-
ing performance solely on the objective value of an approach is irrelevant. As
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a consequence, CG and MILP approaches are evaluated and compared given
a budget of time, the time-out 𝑡max, on synthetic datasets with implanted sub-
matrices using any-time pro�les. The de�nition of an any-time pro�le is pro-
vided in Section 2.4.1.1, Definition 4.

All experiments are performed using Java 1.8.0 on an AMD Bulldozer
clocked at 2.1 GHz; one core and 6 GB of RAM per instance and a time-out
𝑡max of 2 hours. MILP and CG approaches rely on Gurobi 8.1.0 [Gur18]. The
greedy hot-start of the CG process is given 5 minutes evenly split between
each of its 𝐾 iterations of solving a maximal sum submatrix problem. Solu-
tions to the MSS problem are carried out on OscaR [Osc12] using a constraint
programming approach relying on a global constraint, called CPGC. The algo-
rithm CPGC is provided in Section 2.3.2.3. It is a depth-�rst-search approach
composed of major CP ingredients:

� �ltering rules,

� bounding procedure,

� dominance rules,

� variable-value heuristic.

3.3.2 Datasets

Datasets are generated by implanting 𝐾 submatrices, called + entries, on a
background noise, called - entries. In a �rst dataset, we consider alterna-
tive dispositions of + and - entries drawn from di�erent distributions. Each
combination de�nes a scenario presented in Figures 3.1a to 3.1b. For each
scenario, 14 di�erent matrices are generated according to di�erent input ma-
trix size and number of implanted submatrices, as presented in Figure 3.1c.

A total of 70 instances is generated such that the hot-start is bound to
�nd suboptimal solutions, giving very little information to the CG method.
The bene�t of CG is evaluated relatively to the suboptimal hot-start solution
through the objective value improvement.

3.3.3 Results

Figure 3.2a presents the any-time pro�le of each method for the �rst dataset.
It clearly illustrates that column generation can escape the suboptimal regions
of the search space trapping the hot-start. Given roughly 25 times larger time-
out than the suboptimal hot-start, MILP is outperformed by both the greedy
hot-start and the column generation approach.

Local optimums (trapping the hot-start) are provided as starting solutions
for CG. Such local optimum can be found before the given time-out. The
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(a) Layout.

Scenario + entries - entries
1 and 3 𝐾 + 1 −1
2 and 4 ∼ N(𝐾 + 1, 1) ∼ N (−1, 0.8)

5 ∼ N(2, 2) ∼ N (−2, 1)
(b) Generative distributions.

𝑚 × 𝑛 𝐾 = 2 𝐾 = 5 𝐾 = 8 𝐾 = 10 𝐾 = 20
50 × 50 𝑠 = 𝑠1 𝑠 = 𝑠1
100 × 100 𝑠 = 𝑠1 𝑠 = 𝑠1 𝑠 = 𝑠1
200 × 200 𝑠 = 𝑠1 𝑠 = 𝑠1 𝑠 = 𝑠1 𝑠 = 𝑠1 𝑠 = 𝑠1
500 × 500 𝑠 = 𝑠1 𝑠 = 𝑠1 𝑠 = 𝑠1 𝑠 = 𝑠1

(c) Parameters for the �rst dataset.

𝑚 × 𝑛 𝐾 = 2 𝐾 = 5 𝐾 = 10
400 × 100 𝑠 = 𝑠2 𝑠 = 𝑠2 𝑠 = 𝑠2
320 × 125 𝑠 = 𝑠2 𝑠 = 𝑠2 𝑠 = 𝑠2
200 × 200 𝑠 = 𝑠2 𝑠 = 𝑠2 𝑠 = 𝑠2

(d) Parameters for the second dataset.

Figure 3.1: Dataset construction. 3.1a and 3.1b: layout and generative distri-
butions of the implanted + and - entries, respectively. 3.1c and 3.1d: Param-
eters considered in the generation of the �rst dataset, with 𝑠1 = {1.0}, and the
second dataset, with 𝑠2 = {0.05, 0.01, 0.2, 0.5}, respectively. Implanted subma-
trices are of size

(𝑚×𝑠
𝐾 ; 𝑛×𝑠𝐾

)
.
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shift between hot-start and CG curves in the �rst 300 seconds is explained
by the fact that CG can re�ne solutions as soon as the hot-start subroutine is
completed.

In the second dataset, 720 instances are generated according to the layout
of scenarios 3 and 4 from Figure 3.1a. It di�ers, however, by the size of the in-
put matrix, the number, and size of implanted submatrices. More importantly,
values are drawn from di�erent distributions:

� - entries ∼ N(−1, 1);
� + entries ∼ N(1, 0.5).

The de�nition of closer distribution averages is considered as more realis-
tic, for gene expression analysis, than the very di�erent distributions used in
the scenarios of the �rst dataset. The generation script is available on Zen-
odo [Bra+19a].

Figure 3.2b presents the any-time pro�le of CG and MILP on the second
dataset. Whereas the average solution quality of CG and MILP should rise
to 1, given enough time, it is clear that CG is signi�cantly faster than MILP,
with higher solution quality within reasonable time limits, even for small in-
stance matrices. The poor performance of MILP are explained by the number
of variables and constraints required to model the problem: MILP obtains
satisfactory results for the smaller problems, with 𝐾 = 2, only. Figure 3.2c
presents the any-time pro�le of CG and MILP on the second dataset while
only considering the instances with two implanted submatrices. The hot-
start rarely ends before the allocated 5 minutes, explaining the near-perfect
overlap between hot-start and CG curves.

3.4 Conclusions and perspectives

We present a new optimization problem, called the maximum weighted set
of disjoint submatrices (MWSDS) problem along with two methods to solve
it. One is based on mathematical programming, the other on constraint pro-
gramming.

Ourmain contribution, the column generation (CG)method for theMWSDS
problem, �nds new candidate submatrices using dual variables of a linear re-
laxation of the submatrix selection problem. Experiments on synthetic datasets
indicate that CG �nds better solutions than the mixed integer linear program-
ming (MILP) approach.

The performance of the CG can be further improved by complementing
the exploration with a branch-and-price algorithm [Sav97]. Such improve-
ment is non-trivial, however: the time taken to solve the underlying LP prob-
lem is already quite long but is nonetheless an attractive direction for future
work.
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(a) Averaged results on the �rst dataset.

(b) Averageg results on the second dataset.

(c) Subset of the second dataset with 𝐾 = 2.

Figure 3.2: Comparison of the di�erent methods proposed to solve the max-
imum weighted set of disjoint submatrices problem. Each graph presents
any-time pro�les as described in Definition 4, Section 2.4.1.1. For each
instance, the time-out is �xed at 2 hours. The hot-start time-out is set to 5
minutes. Col.Generation starts as soon as the hot-starts is completed.
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Experiments proposed here are only concerned with implementation ef-
�ciency. Chapter 5 consists of an evaluation of the problem of �nding 𝐾
submatrices of maximal sum with overlap. Biological evaluations of the pro-
posed implementations should be performed. Moreover, results should be
compared to standard biclustering algorithms to evaluate the relevance of
the maximum weighted set of disjoint submatrices problem as compared to
the maximal sum submatrix problem and common biclustering problems.





Mining k overlapping
submatrices of maximal
sum

4

The previous chapter presents an extension to the maximal

sum submatrix problem to �nd𝐾 submatrices that do not over-

lap. In many applications, overlaps might be desirable. This

chapter presents an extension to the maximal sum submatrix

problem to �nd 𝐾 di�erent submatrices that might overlap.

The speci�city ot that extension is the objective function de-

signed to avoid �nding identical submatrices. A complete con-

straint programming approach to solve that problem is pro-

posed. Then, experiments on synthetic data and real datasets

are conducted. These experiments provide evidences of the prac-

ticality of the approach both in terms of computational time

and quality of the solutions discovered.

4.1 Introduction

A natural extension to the maximal sum submatrix (MSS) problem is to iden-
tify 𝐾 submatrices. In the previous chapter, disjunction constraints are stated
to prevent amatrix entry from being selectedmore than once in the �nal solu-
tion. An alternative approach to seek for multiple non-repetitive submatrices
is to modify the objective function.

4.1.1 Problem de�nition

An example matrix and two submatrices are presented in Figure 4.1. The
maximal sum submatrix, of weight 27.3, is illustrated with a dark red frame.
Let us assume that one seeks for 𝐾 = 2 submatrices that together maximize
the sum of covered entries. It is clear from that example that the best solution
is to select the maximal sum submatrix twice: 27.3×2 = 54.6. Such a solution
does not provide any additional information. We therefore need to de�ne a
new objective function to prevent the identi�cation of redundant submatrices.

53
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-4.2r1 -2.1

c2

-3.2

c3

3.9

c4

2.1

c5

5.0

c6

-5.1r2 2.3 -4.1 3.1 4.0 -0.9

-3.2r3 1.9 4.0 3.4 -2.1 -4.1

-5.2r4 0.9 0.3 -4.1 3.0 2.0

-0.1r5 0.1 -1.2 5.2 0.9 1.9

-4.2r6 -5.0 0.9 2.7 0.2 -1.9

The submatrix framed in dark red, with rows
{r1, r2, r4, r5} and columns {c2, c4, c5, c6}, is
of maximal sum, with weight equal to 27.3.
The submatrix framed in dark blue, with rows
{r3, r4} and columns {c3, c4, c6}, weights 7.2.
The combination of these two submatrices de-
�nes an optimal solution to the MWSC prob-
lem with an objective value of 38.6.

Figure 4.1: Example of matrix and associated submatrices of maximal sum.

The objective of the maximum weighted submatrix coverage (MWSC)
problem is to discover 𝐾 submatrices that together cover the largest sum of
entries of the input matrix. The problem is formally stated in Definition 7
and an example is provided in Figure 4.1.

Definition 7. TheMaximumWeighted Submatrix Coverage Problem
LetM ∈ R𝑚×𝑛 be a matrix of𝑚 rows and 𝑛 columns. LetK = {1, . . . , 𝐾} be the
index-set for a target number 𝐾 of submatrices to �nd. The maximum weighted

submatrix coverage problem is to select a set of 𝐾 submatrices

(
I1∗, J1∗) , . . . ,(

I𝐾∗, J𝐾∗
)
such that the sum of the matrix entries covered by at least one sub-

matrix is maximal:(
I1∗, J1∗) , . . . , (I𝐾∗, J𝐾∗) = argmax

(I1,J1),...,(I𝐾 ,J𝐾 )

∑︁
𝑖∈I
𝑗 ∈J

M𝑖, 𝑗 × 1cover ((𝑖, 𝑗)) , (4.1)

where cover is the set of all entries covered by a submatrix,

cover =
⋃
𝑘∈K

R𝑘 × C𝑘 , with R𝑘 × C𝑘 = {(𝑖, 𝑗) | 𝑖 ∈ R𝑘 ∧ 𝑗 ∈ C𝑘 } , (4.2)

and 1cover is the indicator function

1cover ((𝑖, 𝑗)) =
{
1 if (𝑖, 𝑗) ∈ cover ,
0 if (𝑖, 𝑗) ∉ cover .

(4.3)

4.1.2 Applications

Themaximumweighted submatrix coverage problem has similar applications
to the maximum weighted set of disjoint submatrices problem presented in
the previous chapter, in Section 3.1.2. Submatrices overlap appear as a rea-
sonnable assumption in many cases. Consider gene expression analysis. It is
likely that, in real data, some rows or columns do not belong to any submatrix
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at all and that the submatrices overlap in some places. However, overlap can
be challenging from the point of view of interpretability:

� For a gene participating in multiple pathways (submatrices), what is
the actual in�uence of the gene on each pathway?

� For a matrix entry covered by multiple submatrices, what is its in�u-
ence on each submatrix?

� For a particular submatrix overlapping with others, would it still be
relevant if other submatrices were discarded?

� ...

4.1.3 Related work

The work related to the maximal sum submatrix problem is introduced in
Section 1.4. Notable di�erences with the maximum weighted set of disjoint
submatrices problem are enlighted.

� The biclustering problem [Har72; MO04; PGA15; PC17a].

There is a variety of biclustering problems. These problem are con-
cerned with the discovery of homogeneous submatrices rather than
maximizing the sum of the covered entries. Common approaches are
heuristic based and greedily selects the next bicluster after randomiza-
tion of entries covered by the previously discovered submatrices.

� The maximum subarray problem [Ben84].

That problem is simpler than the maximum weighted set of disjoint
submatrices as a single submatrix is required and it is constrained to be
formed of contiguous subsets of rows and columns.

� The ranked tiling [Le +14].

It is a special case of the maximum weighted set of disjoint submatri-
ces problem for which matrix entries are discrete ranks. In the ranked
tiling problem, overlaps might exists even if they are penalized. In the
maximumweighted set of disjoint submatrices problem, there is an im-
plicit penalty to enforce that each matrix entry contributes only once
to the objective value.
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4.1.4 Contributions

The contributions of this chapter are the following.

� The introduction of themaximumweighted submatrix coverage (MWSC)
problem as a generalization of the maximal sum submatrix problem.

� A constraint programming (CP) approach for solving the maximum
weighted submatrix coverage problem including

– �ltering,
– bounding,
– dominance rules,
– a variable-value heuristic,
– a large neighborhood search.

� A comparative evaluation, on synthetic and real datasets, of the perfor-
mance of

– the CP approach,
– a greedy baseline approach, using the maximal sum submatrix

problem as subroutine, and
– two mathematical programming models.

4.2 Constraint programming approach

The general constraint programming paradigm is introduced in Section 1.5.

4.2.1 Notations

We model a submatrix using the set variables R and C for the rows and
columns, respectively. The domain of a set variable S is the set of all the
(sub)sets of S. That domain is approximated by a closed interval denoted[S ∈,S ∈ ∪ S?] , in CP, bymeans of the set domain bounds representation [Ger97].
S ∈ are the mandatory elements and S? are the possible additional ones, with
S ∈ ∩ S? = ∅. Such an interval represents all the sets in between those two
bounds according to the inclusion relation {S | S ∈ ⊆ S ⊆ (S ∈ ∪ S?)}. A set
variable is bound whenever it contains a single set in its domain. This situa-
tion happens when set interval bounds are equal, or equivalently, the possible
set is empty: S? = ∅.

For a set variable S, the update operations of the domain are:

� The inclusion of an item 𝑗 in the mandatory set S ∈:
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– denoted require( 𝑗,S),
– implies that S∈ ← S∈ ∪ { 𝑗} and S? ← S? \ { 𝑗}.

� The exclusion of an item 𝑗 from the possible set S?:

– denoted exclude( 𝑗,S),
– implies that S? ← S? \ { 𝑗}, and 𝑗 ∉ S∈.

For each submatrix 𝑘 ∈ K = {1, . . . , 𝐾}, a set variable R𝑘 and a set vari-
able C𝑘 are introduced to represent the rows and columns of a submatrix 𝑘 .
Then, R𝑘,∈ denotes the set of mandatory rows in submatrix 𝑘 .

We de�ne R𝑘,∈+𝑗 and R𝑘,∈−𝑗 as the subsets of R𝑘,∈ whose matrix value in col-
umn 𝑗 is positive and strictly negative, respectively. Similar notations holds
for the columns:

R𝑘,∈+𝑗 = {𝑖 ∈ R𝑘,∈ | M𝑖, 𝑗 ≥ 0} , C𝑘,∈+𝑖 = { 𝑗 ∈ C𝑘,∈ | M𝑖, 𝑗 ≥ 0} , (4.4)

R𝑘,∈−𝑗 = {𝑖 ∈ R𝑘,∈ | M𝑖, 𝑗 < 0} , C𝑘,∈−𝑖 = { 𝑗 ∈ C𝑘,∈ | M𝑖, 𝑗 < 0} . (4.5)

Similar notations holds for R𝑘,? and for C𝑘,?:

R𝑘,?+𝑗 = {𝑖 ∈ R𝑘,? | M𝑖, 𝑗 ≥ 0} , C𝑘,?+𝑖 = { 𝑗 ∈ C𝑘,? | M𝑖, 𝑗 ≥ 0} , (4.6)

R𝑘,?−𝑗 = {𝑖 ∈ R𝑘,? | M𝑖, 𝑗 < 0} , C𝑘,?−𝑖 = { 𝑗 ∈ C𝑘,? | M𝑖, 𝑗 < 0} . (4.7)

The sum of the elements in a given row 𝑖 and in a column set S is noted
as sum

row 𝑖
(𝑆). Similarly, the sum of elements in column 𝑗 and row set S is:

sum
row 𝑖
(S) =

∑︁
𝑗 ∈S

M𝑖, 𝑗 , sum
col 𝑗
(S) =

∑︁
𝑖∈S

M𝑖, 𝑗 . (4.8)

The set of matrix entries selected by at least one submatrix is denoted
cover

∈. The set ofmatrix entries excluded by all submatrices is denoted cover∉:

cover
∈ = {(𝑖, 𝑗) | ∃𝑘 : 𝑖 ∈ R𝑘,∈ ∧ 𝑗 ∈ C𝑘,∈} (4.9)

cover
∉ = {(𝑖, 𝑗) | ∀𝑘 : 𝑖 ∉ (R𝑘,∈ ∪ R𝑘,?) ∨ 𝑗 ∉ (C𝑘,∈ ∪ C𝑘,?)} (4.10)

The CP resolution is made via a depth-�rst-search exploration. The following
subsections discuss the search space, sketch the algorithm and its key com-
ponents.
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4.2.2 Search Space

As explained in the Section 3.2.1 of the previous chapter, the search space
of the MWSC problem with 𝐾 = 1 can be limited to searching on a single
dimension, for instance C1. Indeed, the variable R1 can be �xed optimally in
polynomial time by a simple inspection argument:

∀𝑖 ∈ R1,? : sum
row 𝑖
(C1) > 0 =⇒ 𝑖 ∈ R1,∈ . (4.11)

For 𝐾 > 1, once all the columns set variables are �xed (C𝑘,? = ∅ for all
𝑘 ∈ K) it remains to decide for each row 𝑖 and each submatrix 𝑘 whether 𝑖
should be part of R𝑘 or not. Those 𝐾 decisions per row does not enjoy the
monotonicity or the anti-monotonicity properties as illustrated on the next
example.

Example 1.
Let us consider a 1 × 3 input matrix M:

M =
[
2 2 −3] . (4.12)

Let us consider 𝐾 = 2 with column selection C1 = {1, 3}, C2 = {2, 3}. The sum
of entries covered by selecting the row in both R1

and R2
is negative (−1) for

each submatrix individually. But since weights of covered elements count only

once, the value −3 is added only once and the objective value obtained is 1. Now
consider the matrixM:

M =
[−2 −2 3

]
. (4.13)

Individually for each submatrix, the sum of entries covered by selecting the row

in both R1
and R2

is positive (1). But since weights of covered elements count

only once, the value 3 is added only once and the �nal objective value is −1.
Actually, those 𝐾 decisions per row cannot be optimally taken in poly-

nomial time anymore as stated in Theorem 3. As a consequence, the CP
search will have to branch both on the rows and columns variables rather
than branching on the columns only.

Theorem 3.
Fixing optimally the row set variables R𝑘 for all 𝑘 ∈ K , given �xed column set

variables C𝑘 for all 𝑘 ∈ K , is NP-hard.
Proof. We reduce the NP-hard Set Cover Problem [Kar72] to our problem:
Given a universe 𝑈 = {1, · · · , 𝑛} and a set {𝑆1, · · · , 𝑆𝐾 } of 𝐾 subsets of 𝑈 ,
the Set Cover Problem is to �nd the minimum number of sets such that their
union covers the universe. We construct a matrix with a single row and 𝑛 +
𝐾 columns. The unique row values of this matrix are given by the regular
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expression [𝐾 + 1]{𝑛}[−1]{𝐾} (value 𝐾 + 1 repeated 𝑛 times followed by −1
repeated 𝐾 times). The column variables are �xed to C𝑘 = 𝑆𝑘 ∪ {𝑛 + 𝑘}.
In this reduction, 𝑆𝑘 is selected if and only if R𝑘 = {1} for every set 𝑘 . A
�rst observation is that any optimal solution covers the universe otherwise
it could be improved by 𝐾 by selecting any additional set that contains an
uncovered element. The optimal objective function can thus be written as
𝑁 · (𝐾 + 1) − |{𝑘 | R𝑘 = {1}}|. As 𝑁 · (𝐾 + 1) is �xed, maximizing this
expression amounts at minimizing |{𝑘 | R𝑘 = {1}}| which is exactly the set
cover objective.

4.2.3 Resolution via Depth-First-Search

The CP resolution through DFS exploration is sketched in Algorithm 5.
All the procedures are assumed to take the decision variables {R1, · · · ,R𝐾 ,
C1, · · · , C𝐾 } and the input matrix M as parameters.

Algorithm 5: Sketch of the DFS resolution
1 Function solveDFS():
2 if !allVariablesBound() then
3 S ← selectUnboundSetVar()
4 𝑖 ← selectValue( S?)
5 foreach action ∈ [require(i, S), exclude(i, S)] do
6 saveState()
7 post(action)
8 propagateDominanceRule()
9 (lb, cb, ub) ← updateBounds()

10 best ← max(best, cb)
11 if ub > best then
12 solveDFS()

13 restoreState()

The procedure selectUnboundSetVar chooses a not yet bound set
variable among {R1,?, · · · ,R𝐾,?, C1,?, · · · , C𝐾,?}. The subsequent line chooses
for the selected row or column set of some submatrix 𝑘 , the speci�c row or
column 𝑖 (among the possible ones) to be included on the left branch and to
be excluded on the right branch. The explored search tree is binary. The com-
bination of the two lines and the recursion corresponds to the insertion and
exclusion of all rows and all columns in each submatrix. Once the constraint
is posted, and the previous state saved for later backtracking, the procedure
propagateDominanceRule can include (exclude) rows or columns in every
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submatrix that can be proven to participate (or not) in any optimal solution.
The updateBounds function updates and returns the lower, current and up-
per bounds for the state. The current bound is obtained by transforming the
partial assignment into two complete feasible solutions,

1. one that excludes all rows in R,?, and
2. one that excludes all columns in C,?.

If the current bound cb is better than the best value found so far, stored in
variable best, the current state (R1,∈, · · · ,R𝐾,∈, C1,∈, · · · , C𝐾,∈) is a better so-
lution, then:

� the value of variable best is updated,

� the submatrices of the solution are stored.

Then, a check is made to ensure that better solution exists down the tree
node. That is done by verifying that the upper bound is greater than the best
objective value found so far; if that is the case, the DFS continues recursively.
Once these steps are done, the state is backtracked and the next state visited.

E�cient backtracking is achieved through trailing, a state management
strategy that facilitates the restoration of the computation state to an earlier
version. Trailing enables the design of reversible objects. We refer to MiniCP
[MSV18] for a detailed description of trailed-based solvers and to [Sai+13] for
a trailed based implementation of set domains with sparse-sets.

Only four functions are speci�c to our method to solve the maximum
weighted submatrix coverage problem:

� propagateDominanceRule that prunes the domains of the set vari-
ables,

� updateBounds that prunes the bounds on the objective, helping the
branch & bound algorithm to prune impossible values,

� selectUnboundSetVar and selectValue that de�ne the strategy
of the depth-�rst-search.

The following subsections are dedicated to the main functions of the algo-
rithm.

The other functions are method available in most constraint program-
ming solvers:

� saveState and restoreState save and restore, respectively, the
state of the reversible variables to allow e�cient backtracking,

� post adds a new constraint to the solver.
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4.2.4 Functions selectUnBoundSetVar and selectValue

selectUnboundSetVar chooses, at each step of the DFS, the next (un-
bounded) row or column interval set S to branch on, while selectValue
selects the value 𝑙 ∈ S? to include or exclude from this set when branching.
That is, when a pair (S, 𝑙) has been chosen, the DFS branches on the left, by
setting require(𝑙,S), and on the right, by setting exclude(𝑙,S). The decision
of the interval set and of the value are not done independently. To choose the
next (set, value) pair to branch on, our algorithm maintains two (reversible)
counters per row or column and per submatrix:

� 𝑡 row
𝑘,𝑖

contains the sum of matrix entry values that will be immediately
added to the objective value if row 𝑖 is included in R𝑘 . Similarly, 𝑡 col

𝑘,𝑗
contains the sum of matrix entry values that will be immediately added
to the objective value if col 𝑗 is included in C𝑘 :

𝑡 row𝑘,𝑖 = sum
row 𝑖

(
{ 𝑗 | 𝑗 ∈ C𝑘,∈ ∧ (𝑖, 𝑗) ∉ cover

∈}
)
, (4.14)

𝑡 col𝑘,𝑗 = sum
col 𝑗

(
{𝑖 | 𝑖 ∈ R𝑘,∈ ∧ (𝑖, 𝑗) ∉ cover

∈}
)
. (4.15)

� 𝑝row
𝑘,𝑖

contains the sum of positive values in the line 𝑖 that could be taken
by submatrix 𝑘 , i.e. whose columns have not been excluded:

𝑝row𝑘,𝑖 = sum
row 𝑖

(
{ 𝑗 | 𝑗 ∈ (C𝑘,∈ ∪ C𝑘,?) ∧ (𝑖, 𝑗) ∉ cover

∈}
)
, (4.16)

𝑝col𝑘,𝑗 = sum
col 𝑗

(
{𝑖 | 𝑖 ∈ (R𝑘,∈ ∪ R𝑘,?) ∧ (𝑖, 𝑗) ∉ cover

∈}
)
. (4.17)

The algorithm then selects the (submatrix, row), or (submatrix, column), pair
(𝑘, 𝑖), or (𝑘, 𝑗), that maximizes 𝑡 row

𝑘,𝑖
, or 𝑡 col

𝑘,𝑗
. Ties are broken by maximizing

𝑝row
𝑘,𝑖

, or 𝑝col
𝑘,𝑗
. The selected interval set and value are then R𝑘 and 𝑖 , or C𝑘 and

𝑗 .
Recomputing these counters at each iteration is costly as this operation

is in O(𝐾𝑚𝑛 + 𝐾 (𝑚 + 𝑛)) for the MWSC problem with an𝑚 × 𝑛 matrix and
𝐾 submatrices. We propose here to maintain these counters using the �nite
statemachine (FSM) shown in Figure 4.2. The algorithmwe propose virtually
maintains an FSM for each (row, column, submatrix) triplet. The FSMs are
updated each time a row/column is added to/excluded from a submatrix:

� When a row 𝑖 is included in, or removed from, the submatrix 𝑘 , at most
𝑛 FSMs must be updated: one for each matrix entry in the row.

� When a column 𝑗 is included in, orremoved from, the submatrix 𝑘 , at
most𝑚 FSMsmust be updated: one for eachmatrix entry in the column.
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� Updating a matrix entry is in O(1), if it does not become selected by a
submatrix (i.e. the row and column of the matrix entry are both in the
mandatory sets of the submatrix).

� If a matrix entry becomes selected, 𝐾 − 1 other matrix entries must be
updated.

𝑝rows
𝑘,𝑖
+= 𝑣+

𝑝cols
𝑘,𝑗
+= 𝑣+start

𝑝rows
𝑘,𝑖
−= 𝑣+

𝑝cols
𝑘,𝑗
−= 𝑣+

𝑝rows
𝑘,𝑖
−= 𝑣+ 𝑝cols

𝑘,𝑗
−= 𝑣+

𝑡cols
𝑘,𝑗
+= 𝑣 𝑡 rows

𝑘,𝑖
+= 𝑣

𝑡cols
𝑘,𝑗
−= 𝑣

𝑝cols
𝑘,𝑗
−= 𝑣+

𝑡 rows
𝑘,𝑖
−= 𝑣

𝑝rows
𝑘,𝑖
−= 𝑣+

require the cell

cell required by

other submatrix

require(𝑖,R𝑘 ) require( 𝑗, C𝑘 )

exclude( 𝑗, C𝑘 ) exclude(𝑖,R𝑘 )

cell required by

other submatrix

cell required by

other submatrix

require( 𝑗, C𝑘 ) require(𝑖,R𝑘 )

Figure 4.2: Finite state machine maintained for each (row, column, subma-
trix) 𝑖, 𝑗, 𝑘 in the variable and value selection algorithms. For simplicity,
𝑣 = M𝑖, 𝑗 , 𝑣+ = max(𝑣, 0) and 𝑣− = min(𝑣, 0). FSMs states in blue are termi-
nal states.

Let Δrows denote the number of added or excluded (submatrix, row) tables
between two calls of the algorithm. Let Δcols denote the number of added or
excluded (submatrix, column) tables between two calls of the algorithm. Let
Δselected denote the number of selected matrix entries between two calls of the
algorithm.

The update of the �nite state machine between two calls of the algorithm
runs in O(Δrows𝑛 +Δcols𝑚 +Δselected𝐾). To that update process must be added
the veri�cation of the counters to select the best set/value pair, which is in
O(𝐾 (𝑚 + 𝑛)).

Over a complete branch of the DFS tree, which has a maximum depth of
𝐾 (𝑚 + 𝑛), we have that: ∑︁

branch
Δrows ≤ 𝐾 ·𝑚 , (4.18)∑︁

branch
Δcols ≤ 𝐾 · 𝑛 , (4.19)∑︁

branch
Δselected ≤ 𝑛 ·𝑚 . (4.20)

Over a complete branch, the FSM-based algorithm maintains the states
and returns the best set/value pair in O(𝐾2(𝑚 + 𝑛)2), which is a signi�-
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cant improvement over the recomputation-based algorithm which runs in
O(𝐾2(𝑛2𝑚 + 𝑛𝑚2)) over a complete branch.

4.2.5 Function propagateDominanceRule

In some cases, given a partial assignment with some rows and columns al-
ready included in the set variables C𝑘 and R𝑘 , dominance rules permit to de-
tect additional rows or columns that must be included in any optimal solution
extending this partial assignment, or rows or columns that never participate
in an optimal solution. The current state is de�ned by (R𝑘,∈,R𝑘,?, C𝑘,∈, C𝑘,?),
and we denote the optimal solution extending this state as (R𝑘,∗∈, ∅, C𝑘,∗∈, ∅)
with R𝑘,∈ ⊆ R𝑘,∗∈, R𝑘,∗∈ ⊆ (R𝑘,∈∪R𝑘,?), C𝑘,∈ ⊆ C𝑘,∗∈, C𝑘,∗∈ ⊆ (C𝑘,∈∪C𝑘,?).

Theorem 4 gives the condition to be satis�ed to detect that a row 𝑖 should
be included in submatrix 𝑙 in any optimal solution extending the current state.

Theorem 4.

∀𝑖 ∈ R𝑙,? : sum
row 𝑖

©­«(C𝑙,∈ ∪ C𝑙,?−𝑖 ) \ (
⋃
𝑘 |𝑘≠𝑙
C𝑘,∈+𝑖 ∪ C𝑘,?+𝑖 )

ª®¬ > 0⇒ 𝑖 ∈ R𝑙,∗∈ (4.21)

Proof. (sketch) Let us assume the worst-case scenario: despite selecting all
the columnswith negative values in this row 𝑖 , while other submatrices would
take the columns with positive values, the submatrix still has a positive sum
contribution for this row 𝑖 . Therefore this row must be included in submatrix
𝑙 in any optimal solution extending the current state.

Theorem 5 gives the condition to be satis�ed to detect that a row 𝑖 will
never be included submatrix 𝑙 in any optimal solution extending the current
state, using the best-case scenario.

Theorem 5.

∀𝑖 ∈ R𝑙,? : sum
row 𝑖

©­«(C𝑙,∈ ∪ C𝑙,?+𝑖 ) \ (
⋃
𝑘 |𝑘≠𝑗

C𝑘,∈−𝑖 ∪ C𝑘,?−𝑖 )
ª®¬ < 0⇒ 𝑗 ∉ R𝑙,∗∈ (4.22)

These two properties, and their symmetric counterparts for the columns,
can be used in any node of the search tree to reduce the search space.

Recomputing the rules at each call to propagateDominanceRule is ex-
pensive:

� O(𝐾𝑚𝑛) at each call,
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� O(𝐾2(𝑚2𝑛 +𝑚𝑛2)) over a complete branch of the DFS.

We describe below how to maintain the rules on rows. The method is sym-
metric for columns.

We maintain virtual FSMs for each triplet (row, column, submatrix) as
shown in Figure 4.3. The FSMs collectively maintain two reversible values,
shared between FSMs, for each (submatrix 𝑘 , row 𝑖) table:

� lb𝑘,𝑖 is the value of the worst-case scenario for submatrix 𝑘 and row 𝑖 .
It corresponds to the left part of Eqation (4.21):

lb𝑘,𝑖 = sum
row 𝑖

©­«(C𝑙,∈ ∪ C𝑙,?−𝑖 ) \ (
⋃
𝑘 |𝑘≠𝑙
C𝑘,∈+𝑖 ∪ C𝑘,?+𝑖 )

ª®¬ . (4.23)

� ub𝑘,𝑖 is the value of the best-case scenario for submatrix 𝑘 and row 𝑖 . It
corresponds to the left part of Eqation (4.22):

ub𝑘,𝑖 = sum
row 𝑖

©­«(C𝑙,∈ ∪ C𝑙,?+𝑖 ) \ (
⋃
𝑘 |𝑘≠𝑗

C𝑘,∈−𝑖 ∪ C𝑘,?−𝑖 )
ª®¬ . (4.24)

The FSMs alsomaintain the number of supports of eachmatrix entry (𝑖, 𝑗),
i.e. the number of submatrices that could still select the matrix entry:

support𝑖, 𝑗 =
���{𝑘 | 𝑖 ∈ (R𝑘,∈ ∪ R𝑘,?) ∧ 𝑗 ∈ (C𝑘,∈ ∪ C𝑘,?)}��� . (4.25)

Each support𝑖, 𝑗 , shared across all FSMs, is maintained as reversible integer by
the solver. Its state can then be backtracked.

lb𝑘,𝑖 += 𝑣−
ub𝑘,𝑖 += 𝑣+start

support𝑖, 𝑗 −= 1

lb𝑘,𝑖 −= 𝑣−
ub𝑘,𝑖 −= 𝑣+

support𝑖, 𝑗 −= 1

lb𝑘,𝑖 += 𝑣+
ub𝑘,𝑖 += 𝑣−

exclude( 𝑗, C𝑘 )

exclude(𝑖,R𝑘 )require( 𝑗, C𝑘 ) support𝑖, 𝑗 = 1

exclude(𝑖,R𝑘 )

support𝑖, 𝑗 = 1

exclude(𝑖,R𝑘 )
exclude( 𝑗, C𝑘 )

require( 𝑗, C𝑘 )

Figure 4.3: Finite state machine maintained for each (row, column, subma-
trix) 𝑖, 𝑗, 𝑘 in propagateDominanceRule method. For simplicity, 𝑣 = M𝑖, 𝑗 ,
𝑣+ = max(𝑣, 0) and 𝑣− = min(𝑣, 0). FSMs states in blue are terminal states.

The transition and update operations of our �nite state machines are the
following:
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� When a row (resp. column) is excluded from a submatrix, the FSMs of
at most 𝑛 (resp.𝑚) matrix entries must be updated.

The contribution of the matrix entry to ub and lb is removed, and the
support of the matrix entry is decremented. Each of these operations
are in constant time, and overall takes O(𝑛) (resp. O(𝑚)).

� When a matrix entry (𝑖, 𝑗) becomes supported by only one remaining
submatrix 𝑘 , support𝑖, 𝑗 = 1, and column 𝑗 is included in that submatrix
𝑘 , 𝑗 ∈ C𝑘,∈, the value of ub𝑘,𝑖 and lb𝑘,𝑖 are updated.

Since 𝑗 ∈ C𝑘,∈ and support𝑖, 𝑗 = 1, it implies that 𝑖 ∈ (R𝑘,∈ ∪ R𝑘,?). The
contribution of the matrix entry to ub and lb is added. That operation
is also in constant time, and in O(𝐾) for all submatrices.

� When a row 𝑖 (resp. column 𝑗 ) is included in a submatrix 𝑘 , a check on
all columns 𝑗 (resp. rows 𝑖) must be performed.

If a matrix entry (𝑖, 𝑗) with support𝑖, 𝑗 = 1 and 𝑖 ∈ R𝑘,∈ and 𝑗 ∈ C𝑘,∈
exists, 𝑙𝑏𝑘,𝑖 and 𝑢𝑏𝑘,𝑖 are updated to include the value of the matrix
entry. Overall, this operation is in O(𝑛) (resp. O(𝑚)).

Once the updates of the FSMs are done, each (row, submatrix) pair is veri-
�edwith respect to the rules inO(𝐾𝑚). A call topropagateDominanceRule
is inO(𝐾𝑚+Δrows𝑛+Δcols𝑚+Δrequired𝐾+Δsupport=1𝐾). Over a complete branch,
the number of operations required is inO(𝐾𝑚2+𝐾𝑚𝑛). If the rules are applied
symmetrically on columns, the overall running time is in O(𝐾 max(𝑚,𝑛)2).

4.2.6 Function updateBounds

Upper bounds on the objective for the current tree node must be computed
e�ciently, in order to run the branch & bound. The chosen method also pro-
vides a lower bound, with no additional (marginal) computational cost.

The upper bound ub is the sum of everymatrix entry that is either selected
in a submatrix or that is positive and could still be selected. The lower bound
lb is similarly de�ned, but keeping negative-valued matrix entries. Formally,
they are computed as follows:

ub =
∑︁
{M𝑖, 𝑗 | (𝑖, 𝑗) ∈ cover ∈ ∨ (M𝑖, 𝑗 > 0 ∧ (𝑖, 𝑗) ∉ cover

∉)} , (4.26)

lb =
∑︁
{M𝑖, 𝑗 | (𝑖, 𝑗) ∈ cover ∈ ∨ (M𝑖, 𝑗 < 0 ∧ (𝑖, 𝑗) ∉ cover

∉)} . (4.27)

Recomputing these bounds from scratch in each node is costly: O(𝐾𝑛𝑚).
The running time can be improved by incrementally maintaining the number
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of submatrices supporting each matrix entry, in the same way as done for the
propagateDominanceRule function. These bounds, stored as reversible
�oating point numbers, can be maintained easily:

� When a row 𝑖 is included in a submatrix 𝑘 , check if any column 𝑗 is
already in C𝑘,∈, and that (𝑖, 𝑗) ∉ cover

∈ yet. If that is the case and
M𝑖, 𝑗 > 0 (resp. < 0), increase ub (resp. lb) by M𝑖, 𝑗 . This operation runs
in O(𝑛).

� The similar operation must be performed when a column is included in
a submatrix. Each of these operations runs in O(𝑚).

� When a row 𝑖 is excluded from a submatrix 𝑘 , check if any column 𝑗
is not already excluded ( 𝑗 ∉ (C𝑘,∈ ∪ C𝑘,?)). If that is the case, decrease
support𝑖, 𝑗 by one. This operation runs in O(𝑛).

� The same operation goes for excluded columns in O(𝑚).

� When the support𝑖, 𝑗 is reduced to zero, if M𝑖, 𝑗 > 0 (resp. < 0), then
decrease ub (resp. lb) byM𝑖, 𝑗 . This operation runs in O(1).

The whole maintenance process for the bounds behaves in O(Δ𝑟𝑜𝑤𝑠𝑛 +
Δ𝑐𝑜𝑙𝑠𝑚). Over a complete branch, the incremental method is in O(𝐾𝑛𝑚),
while the one based on recomputations is in O(𝐾2(𝑛2𝑚 + 𝑛𝑚2)).

4.2.7 Large neighborhood search

The exhaustive approach presented above eventually �nds and proves the op-
timum value provided enough time is given. Unfortunately, the search space
is so large that even for small matrices and a limited number of submatri-
ces, it tends to quickly �nd a good solution but is not able to improve it. To
overcome this limitation, we propose to embed the exhaustive CP search into
a large neighborhood search (LNS)[Sha98]. LNS is a local search approach
using CP to discover improvements around the current best solution:

� First the CP exhaustive search is used during a limited time, to discover
an initial solution.

� For a given number of iterations, the CP exhaustive search is used again
while �xing some of the variables (fragment), as detailed below, to their
value in the current best solution.

In addition, to limit the risk of having an iteration stuck for too long, we
limit the DFS to 1000 failures.
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The current best solution at iteration 𝑡 has the form ((R1,𝑡,∗∈, · · · ,R𝐾,𝑡,∗∈);
(C1,𝑡,∗∈, · · · , C𝐾,𝑡,∗∈)). We propose three di�erent fragment selection heuris-
tics that de�ne parts of the solution to constrain when restarting the LNS for
next iteration:

1. Select uniformly at random a subset of rows and columns in the set
of rows and columns used by some submatrix: 𝑅𝑝 ⊆ (⋃𝑘∈𝑀𝑝 R𝑘,𝑡,∗∈),
𝐶𝑝 ⊆ (⋃𝑘∈𝑀𝑝 C𝑘,𝑡,∗∈), then for each submatrix, include the set of rows
and columns intersecting with those sets:

R𝑘,𝑡+1,∈ = R𝑘,𝑡,∈ ∩ 𝑅𝑝 , and R𝑘,𝑡+1,? = 𝑅 \ R𝑘,𝑡+1,∈ , (4.28)

and similarly for the columns.

2. A similar operator is de�ned with rows and columns selected inside the
whole matrix: 𝑅𝑝 ⊆ 𝑅, 𝐶𝑝 ⊆ 𝐶 . This allows for greater diversi�cation,
notably by allowing discovery of previously unselected rows/columns.

3. Selecting uniformly at random a subset of submatrices𝑀𝑝 ⊆ {1, · · · , 𝐾}.
For each of these submatrices, select at randomdi�erent subsets of rows
and columns 𝑅𝑝

𝑘
⊆ R𝑘,𝑡,∗∈, 𝐶𝑝

𝑘
⊆ C𝑘,𝑡,∗∈ that is constrained: R𝑘,𝑡+1,∈ =

R𝑘,𝑡,∈ ∩ 𝑅𝑝
𝑘
, R𝑘,𝑡+1,? = 𝑅 \ R𝑘,𝑡+1,∈ and similarly for columns.

Experiments show that these three operators are complementary.

4.3 Experiments

This section describes experiments conducted to assess the performance of
the proposed algorithms and to provide guidance on the selection of the ap-
propriate solution. We �rst evaluate themethods on synthetic datasets, where
the optimum is known, then on real datasets.

We compare our exhaustive CP and LNS methods against a greedy base-
line approach, CP-Greedy, that solves at each step the maximal sum subma-
trix (𝐾 = 1) problem using the constraint programming approach presented
in Chapter 2. That approach iteratively selects the next best submatrix, on a
modi�ed matrix in which the previously selected entries are set to 0 such that
there is no incentive to select several times the same positive entries. Each
iteration is performed within 𝑡max

𝐾 with 𝑡max the allocated budget of time.
The implementation has been carried out on OscaR [Osc12], using Java

1.8.0 on an AMD Bulldozer clocked at 2.1 GHz; one core and 3 Go of RAM
per instance. The source code is available here: https://github.com/
GuillaumeDerval/MWSCP.

https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP
https://github.com/GuillaumeDerval/MWSCP
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4.3.1 Evaluation

Approaches are compared using any-time pro�les as described in Defini-
tion 4 in Section 2.4.1.1.

4.3.2 Synthetic dataset

A synthetic dataset composed of 1,617 instances has been generated using a
Python script which is available on Zenodo [Der+18]. For those, the optimal
solution is known as they were all generated by implanting randomly 𝐾 sub-
matrices before adding some noise. Note that the optimal solution may be
slightly di�erent than the implanted submatrices because of the noise addi-
tion. Table 4.1 describes parameter values considered in the generation.

Table 4.1: Parameters for the synthetic dataset generation

Parameter Values used Description
(𝑚,𝑛) (800, 200), (640, 250), (400, 400) Size of the matrixM ∈ R𝑚×𝑛
𝐾 2, 4, 8 Number of submatrices
𝑜 0, 0.3, 0.6 Minimum overlap between

submatrices (in % of matrix
entries)

𝜎 0, 0.5, 1.0 Background noise variance
(mean is 0)

(𝑟, 𝑠) (35, 70), (50, 50) Size of submatrices (noisy,
Gaussian with 𝜎 = 𝑟 or 𝑠

20 )
seed [0, 9] Seed for matrix generation

Figure 4.4 gives the any-time pro�les of the CP-Greedy baseline method,
along with CP-Exhaustive (the exhaustive process presented above) and CP-
LNS. The results clearly illustrates the overall better performance of the CP-
LNS whenever the computation time roughly exceeds 20 seconds.

Table 4.2a presents the performance of the algorithms for each parameter
value considered in the synthetic data generation. Reported performance is
computed as the average performance of each algorithm obtained before a
certain limit of computation time.

4.3.3 Real dataset

We also experiment with non-synthetic datasets of several types described in
Section 4.1.2:

1. olympic,

2. migration, and
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Figure 4.4: Comparison between CP-Greedy, CP-Exhaustive and CP-LNS on
1, 617 matrices generated as described in Section 4.3.2. The graph presents
the any-timepro�les as described inDefinition 4 (Section 2.4.1.1). For each
instance, 18 minutes were allocated for computations.

3. genes.

The results presented in Table 4.2b are similar to those obtained for syn-
thetic datasets. CP-LNS is the best method on most datasets given 10 seconds
of computation time. There are two notable exceptions (alizadeh and gar-

ber datasets), in which case LNS did not �nd the optimum in the 20 minutes
allowed for each dataset.

4.3.4 Comparison against Mixed Integer Linearly and Quadratically
Constrained Programming

We tested our methods against MIP (linear) and MIQCP (quadratic terms in
the constraints) methods. As these two methods do not perform well on big-
ger instances, we do not integrate them in our experiments presented above
on large matrices.

MIP model MIQCP model
max

∑
𝑖, 𝑗 M𝑖, 𝑗 · 𝑠𝑖, 𝑗 max

∑
𝑖, 𝑗 M𝑖, 𝑗 · 𝑠𝑖, 𝑗

𝑠𝑖, 𝑗 ≥ 𝑒𝑖, 𝑗,𝑘 ∀𝑖, 𝑗, 𝑘 𝐾 · 𝑠𝑖, 𝑗 ≥
∑
𝑘 𝑟𝑘,𝑖 · 𝑐𝑘,𝑗 ∀𝑖, 𝑗

𝑠𝑖, 𝑗 ≤
∑
𝑘 𝑒𝑖, 𝑗,𝑘 ∀𝑖, 𝑗 𝑠𝑖, 𝑗 ≤

∑
𝑘 𝑟𝑘,𝑖 · 𝑐𝑘,𝑗 ∀𝑖, 𝑗

𝑒𝑖, 𝑗,𝑘 + 1 ≥ 𝑟𝑘,𝑖 + 𝑐𝑘,𝑗 ∀𝑖, 𝑗, 𝑘
2 · 𝑒𝑖, 𝑗,𝑘 ≤ 𝑟𝑘,𝑖 + 𝑐𝑘,𝑗 ∀𝑖, 𝑗, 𝑘

All variables ∈ {0, 1}

MIP and MIQCP methods are plagued by the number of variables, that is
in O(𝐾𝑛𝑚) for MIP and O(𝐾 (𝑛 + 𝑚)) for MIQCP, and by the number of
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Table 4.2: Comparison between CP-Greedy (GRE), CP-Exhaustive (EX) and
CP-LNS (LNS). The table shows the Q(a, t) for each algorithm𝑎 given a certain
amount of time 𝑡 (see Definition 4 in Section 2.4.1.1). Migration, olympic
and gene expression data are described by Dao et al. [Dao+18], IOC Research
and Reference Service, The Guardian [IOC], and de Souto et al. [de +08], re-
spectively.

(a) Synthetic dataset

10s 20s 100s 1080s
Parameters GRE EX LNS GRE EX LNS GRE EX LNS GRE EX LNS
{𝑚 = 400, 𝑛 = 400} 0.70 0.33 0.37 0.74 0.57 0.76 0.76 0.75 0.95 0.77 0.75 0.97
{𝑚 = 640, 𝑛 = 250} 0.71 0.34 0.32 0.75 0.48 0.79 0.77 0.74 0.95 0.77 0.75 0.97
{𝑚 = 800, 𝑛 = 200} 0.73 0.34 0.29 0.77 0.48 0.61 0.79 0.77 0.94 0.79 0.78 0.96

𝐾 = 2 0.85 0.78 0.32 0.85 0.88 0.83 0.85 0.90 0.96 0.85 0.91 0.97
𝐾 = 4 0.72 0.20 0.30 0.77 0.51 0.72 0.78 0.74 0.94 0.78 0.75 0.96
𝐾 = 8 0.57 0.03 0.36 0.64 0.13 0.61 0.68 0.62 0.94 0.68 0.62 0.97
𝑜 = 0% 0.58 0.27 0.34 0.67 0.45 0.71 0.71 0.66 0.97 0.71 0.66 0.98
𝑜 = 30% 0.71 0.34 0.31 0.73 0.50 0.69 0.75 0.75 0.93 0.75 0.76 0.95
𝑜 = 60% 0.85 0.40 0.34 0.86 0.57 0.77 0.86 0.86 0.94 0.86 0.86 0.97
𝜎 = 0.0 0.73 0.34 0.78 0.78 0.63 0.80 0.81 0.77 0.98 0.81 0.78 1.00
𝜎 = 0.5 0.72 0.33 0.04 0.75 0.44 0.67 0.78 0.74 0.94 0.78 0.74 0.97
𝜎 = 1.0 0.69 0.33 0.16 0.73 0.44 0.68 0.73 0.75 0.93 0.73 0.75 0.94

{𝑟 = 50, 𝑠 = 50} 0.71 0.34 0.34 0.75 0.52 0.73 0.77 0.76 0.94 0.77 0.77 0.96
{𝑟 = 35, 𝑠 = 70} 0.71 0.32 0.32 0.76 0.50 0.71 0.78 0.75 0.95 0.78 0.75 0.97

(b) Real datasets

𝐾 = 4 1s 5s 20s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS

migration migration_0.001 0.96 0.92 0.96 0.96 0.92 0.99 0.96 0.92 1.00
migration migration_0.003 0.87 0.89 0.93 0.87 0.89 0.99 0.87 0.89 1.00
migration migration_0.005 0.83 0.79 0.96 0.83 0.79 1.00 0.83 0.79 1.00
olympic olympic_0.01 0.88 0.69 0.92 0.88 0.91 0.97 0.91 0.91 1.00
olympic olympic_0.02 0.79 0.69 0.87 0.84 0.84 0.97 0.84 0.84 1.00
olympic olympic_0.04 0.62 0.81 0.91 0.76 0.82 0.96 0.93 0.82 1.00
olympic olympic_0.06 0.80 0.92 0.93 0.97 0.92 0.98 0.97 0.92 0.99
𝐾 = 4 10s 20s 100s
Type Dataset GRE EX LNS GRE EX LNS GRE EX LNS
gene alizadeh-2000-v1_095 1.00 0.48 0.82 1.00 0.48 0.82 1.00 0.48 0.92
gene armstrong-2002-v1_095 0.73 0.60 0.92 0.73 0.60 0.99 0.73 0.60 1.00
gene bhattacharjee-2001_095 0.82 0.31 0.98 0.91 0.86 0.99 0.91 0.96 1.00
gene bittner-2000_095 0.96 0.53 0.86 0.96 0.53 0.98 0.96 0.53 0.98
gene bredel-2005_095 0.98 0.86 1.00 0.98 0.86 1.00 0.98 0.86 1.00
gene chen-2002_095 0.74 0.80 1.00 0.89 0.80 1.00 0.89 0.80 1.00
gene chowdary-2006_095 0.82 0.83 1.00 0.82 0.83 1.00 0.87 0.83 1.00
gene dyrskjot-2003_095 0.97 0.94 0.99 0.97 0.94 1.00 0.97 0.94 1.00
gene garber-2001_095 0.59 0.24 0.58 0.82 0.32 0.58 1.00 0.50 0.86
gene golub-1999-v1_095 0.86 0.88 0.92 0.86 0.88 0.95 0.86 0.88 0.96
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constraints, which is O(𝐾𝑛𝑚) for MIP and O(𝑛𝑚) for MIQCP. Tables 4.3a
and 4.3b show that both models are slow compared to our LNS method, and
are heavily a�ected by matrix size, number of submatrices to �nd and noise.
For bigger submatrices, such as the synthetic and real ones presented in the
previous section, both methods timeout either without returning solutions or
with comparatively poor solutions.

4.4 Conclusions

We presented a generalization of themaximal sum submatrix problem tomul-
tiple submatrices, called the maximum weighted submatrix coverage prob-
lem, along with a method to solve that problem based on constraint pro-
gramming and large neighborhood search. Experiments on both synthetic
and real datasets show that our CP-LNS method �nds consistently better so-
lutions (when more than 10 seconds are allocated) than both MIP/MIQCP, an
exhaustive CP method and a greedy approach using the method presented in
Chapter 2 to solve the MSS problem.

The proposed experiments are only concerned with implementation e�-
ciency. An evaluation of themaximumweighted submatrix coverage problem
on biological data is proposed in Chapter 5.
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Table 4.3: Comparison between CP-LNS, MIP and MIQCP, on a synthetic
dataset, generated as described in Section 4.3.2. All methods were given
a �xed time limit of 300 seconds. The metric used is the any-time pro�le
(see Definition 4 in Section 2.4.1.1). CP-LNS �nds the optimum on each
dataset. The time when the best found solution was found is indicated in-
side parentheses. Experiments made on Gurobi 8.1.0.

(a) Varying number of submatrices and noise, with matrices of
size 50 × 50 and submatrices of size 16 × 16

K 𝜎 CP-LNS MIP MIQCP
2 0.0 1.00 (1s) 1.00 (0s) 1.00 (1s)
2 0.5 1.00 (1s) 1.00 (7s) 1.00 (7s)
2 1.0 1.00 (1s) 0.89 (233s) 0.79 (57s)
3 0.0 1.00 (2s) 1.00 (1s) 1.00 (2s)
3 0.5 1.00 (3s) 1.00 (140s) 1.00 (138s)
3 1.0 1.00 (3s) 0.74 (254s) 0.48 (256s)
4 0.0 1.00 (2s) 1.00 (1s) 1.00 (62s)
4 0.5 1.00 (3s) 1.00 (252s) 0.88 (290s)
4 1.0 1.00 (6s) 0.64 (260s) 0.69 (225s)
5 0.0 1.00 (4s) 1.00 (79s) 1.00 (275s)
5 0.5 1.00 (5s) 0.82 (257s) 0.69 (237s)
5 1.0 1.00 (6s) 0.77 (24s) 0.36 (38s)

(b) Varying size of thematrix and noise, withmatrices of size𝑚×𝑚
and 𝐾 = 2 submatrices of size b𝑚3 c × b𝑚3 c

m 𝜎 CP-LNS MIP MIQCP
50 0.0 1.00 (0s) 1.00 (1s) 1.00 (3s)
50 0.5 1.00 (1s) 1.00 (5s) 1.00 (7s)
50 1.0 1.00 (1s) 0.95 (207s) 0.82 (204s)
100 0.0 1.00 (4s) 1.00 (1s) 1.00 (33s)
100 0.5 1.00 (1s) 0.86 (293s) 1.00 (45s)
100 1.0 1.00 (3s) 0.65 (269s) 0.82 (191s)
200 0.0 1.00 (17s) 1.00 (8s) 1.00 (135s)
200 0.5 1.00 (21s) 0.37 (191s) 3% (81s)
200 1.0 1.00 (6s) 0% (0s) 5% (134s)
400 0.0 1.00 (1s) 1.00 (31s) 1.00 (54s)
400 0.5 1.00 (1s) 0% (1s) 0% (0s)
400 1.0 1.00 (1s) 0% (1s) 4% (301s)



Mining submatrices of
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5

The previous chapters addressed the maximal sum submatrix

problem and extensions to the identi�cation of 𝐾 submatrices.

This chapter explores the relevance of maximal sum subma-

trices to discover genes subsets associated with subgroups of
samples to be identi�ed. The K-CPGC method is introduced

�rst. It is a computationally e�cient algorithm to identify 𝐾
submatrices of maximal sum in a large gene expression ma-

trix. Comparisons show that it identi�es more signi�cantly

enriched subsets of genes and speci�c subgroups of samples

which are easily interpretable by biologists. Experiments also

show its ability to identify more reliable Gene Ontology terms.

These results illustrate the bene�ts of the proposed approach in

terms of interpretability and of biological enrichment quality.

5.1 Introduction

Gene expression data is typically represented as a large matrix of gene ex-
pression levels across various samples. The study of such data is a valuable
tool to improve the understanding of the underlying biological processes. A
frequent objective of gene expression analysis is to group genes according to
their expression under certain conditions or to group conditions based on the
expression of a number of genes. Biclustering, also known as co-clustering,
is one of the most common approaches for such a task as it identi�es spe-
ci�c subsets of rows and of columns which jointly form homogeneous en-
tries [MO04; Xie+18].

Biclustering algorithms tend to produce biclusters sharing similar expres-
sion values, for example by minimizing the variance across the selected genes
and selected samples. However, some relevant biclustersmay bemissedwhen,
due to the presence of a few outliers, they lack the assumed homogeneity of
expression values among a few gene/sample combinations.

73
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As an alternative, the maximal sum submatrix (MSS) problem seeks for
subsets of rows and of columns with globally high values. In biological terms,
one looks for a subset of biomarkers which are, after appropriate normaliza-
tion, relatively highly expressed among a subset of samples. One could also
look for patterns of low expression simply by considering the opposite values
of a normalized version of the original matrix. By default, we will look for
high expression patterns. Both subsets of selected genes and of selected sam-
ples are a priori unknown and must be identi�ed. They form a rectangular,
and not necessarily contiguous, submatrix of the original data matrix exactly
like biclusters do. Yet, the mathematical criterion used to �nd such submatrix
di�ers and is less in�uenced by the presence of some outliers. In the sequel,
we use the terms submatrix and bicluster interchangeably and, depending on
the context, they refer to the solution of existing biclustering algorithms or
of our own method.

From a biological viewpoint, there might be several biclusters to be iden-
ti�ed from the same original data matrix. Indeed, a single gene may partici-
pate in multiple pathways which may or may not be co-active under several
conditions [MO04]. Speci�c genes may also be representative of expression
patterns among some samples, while other genes would be more informative
for other subsets of samples. In other words, one typically looks at several
biclusters which might partially overlap in terms of genes or of samples they
contain.

5.1.1 Biclustering and maximal sum submatrix

Themaximal sum submatrix problem, introduced inDefinition 1, Section 1,
consists in �nding a submatrix with maximal sum of the selected entries.

The data matrix typically represents gene expression values in a continu-
ous range, for instance on a logarithmic scale and properly normalized: neg-
ative values, respectively positive values, represent expression values below,
respectively above, a threshold 𝜃 . For example, 𝜃 may correspond to the me-
dian expression level over the whole data matrix, or a row-speci�c value rep-
resenting the average expression level of a gene across all samples. After such
normalization, positive values are considered as the interesting ones. By de-
fault, they correspond to the high levels of expression one is interested in
�nding in the data matrix. One could also look for low levels of expression
by replacing such a normalized matrixM by its opposite −M.

Figure 5.1a depicts a toy example of such a normalized data matrix. Posi-
tive values, in red, are considered to have high expression levels and negative
values, in blue, correspond to low expression levels. Figure 5.1b represents
the optimal solution to the maximal sum objective. It de�nes a speci�c rect-
angular submatrix, or bicluster, of genes and samples, maximizing the sum of
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its entries. It can include a few outliers in terms of high expression levels. For
example, the −4.1 entry (row r4, column c4) is included in the optimal solu-
tion because such a low value is compensated along its row and its column by
other positive values, hence all selected rows and selected columns contribute
positively to the objective function. In contrast, as one looks for a rectangular
submatrix, a positive entry may be excluded from the optimal solution if it
is penalized by the presence of negative values along its row and its column.
This is the case, for example, for the entry 4.0 in row r3 and column c3 of this
toy example.

Figures 5.1c and 5.1d represent the results obtained with two di�erent
biclustering algorithms, namely CCA and ISA (further described in the Sec-
tion 5.2Mining approaches), starting from the same toy example Figure 5.1a.
Both their solutions strongly di�er from the one represented in Figure 5.1b.
In particular, the CCA solution includes many negative entries as they imply
a lower variance along selected rows and selected columns. In contrast, the
ISA solution only includes positive entries but is missing several genes and
samples that should arguably be selected as in Figure 5.1b. Experimental re-
sults reported in Section 5.4 Results illustrate the bene�ts of the proposed
approach to extract biologically relevant gene subsets.

The maximum weighted submatrix coverage (MWSC) problem is an ex-
tension to the maximal sum submatrix problem that consists in �nding𝐾 sub-
matrices such that the sum of all entries covered by the submatrices is max-
imum. In this chapter, we study the applicability of that maximum weighted
submatrix coverage problem to discover several, and possibly overlapping,
biclusters from gene expression data and we show its bene�ts compared to
existing biclustering algorithms.

5.1.2 Contributions

The main contributions of this chapter are:

1. K-CPGC, a greedy extension to theCPGCmethod provided in Section 2.3.2.3
to produce several, possibly overlapping, biclusters of maximal sums in
gene expression data,

2. a rigorous statistical validation protocol to assess the performance of
sixwell-known biclusteringmethods compared between them andwith
K-CPGC,

3. practical experiments on 17 gene expression cDNAmicroarray datasets
from Saccharomyces cerevisiae samples under various controlled condi-
tions,
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Figure 5.1: An instance matrix, the submatrix of maximal sum, the bicluster
found with CCA and with ISA algorithms. Low and high values are indicated
in blue and red, respectively.
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4. practical experiments on 18 single-channel A�ymetrix chip datasets
from various Human tissue samples,

5. a gene enrichment analysis showing that the proposed K-CPGCmethod
outperforms biclustering algorithms to �nd biologically relevant biclus-
ters,

6. a freely available R package implementing K-CPGC.

5.2 Mining approaches

This section brie�y presents six biclustering algorithms frequently cited in
the literature and for which software implementations are publicly avail-
able [PC17a; Li+09; Pre+06; BKC10; Ere+12; Yu+12]. Next, we present the
constraint programming approach, CPGC, to identify a submatrix of maximal
sum and its extension to extract 𝐾 submatrices. Our evaluation protocol, in-
cluding the data collection and experimental setup, is also detailed.

5.2.1 Biclustering algorithms

5.2.1.1 Cheng and Church’s algorithm

Cheng and Church’s Algorithm (CCA) is based on iteratively adding or remov-
ing rows and columns to a current bicluster in order to minimize the variance
within it [CC00]. The variance in a bicluster (I, J) is evaluated as a mean
squared residue MSR:

MSR(I, J) = 1
|I| |J|

∑︁
𝑖∈I
𝑗 ∈J

(M𝑖, 𝑗 −M𝑖,J −MI, 𝑗 +MI,J)2 , (5.1)

whereM𝑖,𝐽 is the average of the 𝑖th row in the bicluster,

M𝑖,J =
1
|J|

∑︁
𝑗 ∈J

M𝑖, 𝑗 , (5.2)

M𝐼 , 𝑗 the average of the 𝑗th column,

MI, 𝑗 =
1
|I|

∑︁
𝑖∈I

M𝑖, 𝑗 , (5.3)

andM𝐼 ,𝐽 the average of all elements in the bicluster,

MI,J =
1
|I| |J|

∑︁
𝑖∈I
𝑗 ∈J

M𝑖, 𝑗 . (5.4)
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A parameter 𝛿 de�nes a threshold of maximum MSR for a bicluster to be
accepted. The identi�cation of multiple biclusters is achieved iteratively by
replacing all entries of the previously identi�ed bicluster(s) by random values
within the range of the original data matrix.

5.2.1.2 Conserved gene expression motifs

Conserved Gene Expression Motifs (xMOTIFs) �nds biclusters with simul-
taneously conserved genes in subsets of samples in a discretized data ma-
trix [MK02]. Each discretized entry corresponds to a continuous range of
expression values from the original matrix. Genes are considered conserved
across a subset of samples if the discretized expression values are identical.
This approach greedily searches for a largest xMOTIF starting from various
random seeds. When such an xMOTIF is found, the corresponding samples
are removed from the original matrix and the whole process is iterated. This
approach is thus constrained to return biclusters without overlap between the
respective samples they contain.

5.2.1.3 Iterative signature algorithm

Iterative Signature Algorithm (ISA) starts from a randomly selected bicluster
and greedily adds or removes columns and rows till reaching some prescribed
minimal average value 𝑇𝐶 (𝑇𝑅) across the selected columns (rows) [BIB03].
Several biclusters can be found by restarting from another randomly selected
bicluster.

5.2.1.4 Qualitative biclustering

QUalitative BIClustering (QUBIC) discretizes the original matrix and builds
a graph where each node corresponds to a gene, and each edge weight is
the number of samples for which two genes have the same nonzero dis-
cretized value. It then searches for biclusters corresponding to heavy sub-
graphs [Li+09].

5.2.1.5 Plaid

Plaid �ts a generative statistical model with 𝐾 components from which each
entry M𝑖, 𝑗 of the original matrix is assumed to have been generated [LO02].

M𝑖, 𝑗 = 𝐵 +
∑𝐾
𝑘=1(𝜇𝑘 + 𝛼𝑖𝑘 + 𝛽 𝑗𝑘 )𝜌𝑖𝑘𝜅 𝑗𝑘 + 𝜀𝑖 𝑗

where 𝐵 is a background level, 𝜇𝑘 is a speci�c bicluster e�ect, 𝛼𝑖𝑘 and 𝛽 𝑗𝑘 are
row and column e�ects, 𝜌 and 𝜅 are cluster memberships respectively along
the rows and the columns, 𝜀 is a random noise. The Plaid algorithm �ts such
an additive model by minimizing a mean square error between the modeled
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and observed data [TBK05]. This algorithm may actually return less than 𝐾
biclusters because a speci�c bicluster is returned only if it o�ers a better �t
(= a lower residue) than biclusters found from random permutations of the
original matrix.

5.2.1.6 Spectral

Spectral relies on singular value decomposition to cluster genes and samples
simultaneously after a speci�c normalization of rows and columns [Klu+03].
It looks for distinctive checkerboard patterns which form biclusters including
contiguous rows and contiguous columns. The net result is a set of biclusters
of low variance such that each gene and each sample exactly belong to a single
bicluster.

5.2.1.7 CPGC

The CPGC algorithm to solve the maximal sum submatrix problem is provided
in Section 2.3.2.3. It is a depth-�rst-search (DFS) approach composed of ma-
jor CP ingredients:

� �ltering rules,

� bounding procedure,

� dominance rules,

� variable-value heuristic.

A solution to the maximal sum submatrix problem is represented by two
vectors of boolean decision variables R = (R1, . . . ,R𝑚) for the rows and
C = (C1, . . . ,C𝑛) for the columns, with R𝑖 ∈ {0, 1} and C𝑗 ∈ {0, 1}. When a
decision variable is equal to 1, its corresponding row or column is selected in
the solution. When it is equal to 0, its corresponding row or column is not
part of the selected submatrix. The algorithm searches through the space of
possible variable assignments in the form of a tree as depicted in Figure 5.2.
Initially, at the root, all decision variables are unbound and the algorithm ex-
plores such a tree in a depth-�rst-search fashion. Any con�guration with no
unbound variable de�nes a speci�c submatrix and is called a feasible solution.
The goal is to �nd an optimal solution, i.e. a solution of maximal sum, among
the feasible solutions.

The complexity of this approach is de�ned by the number of nodes ex-
plored and the complexity of the methods executed at each node. The CPGC
approach explores𝑂 (2𝑛) nodes, or possible assignments of column variables.
The time complexity of the methods performed at each node of the search
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r ? ? ? ? ? ?

c ? ? ? ? ? ?

r 1 ? ? ? ? ?

c ? ? ? ? ? ?

r 1 1 ? ? ? ?

c ? ? ? ? ? ?

r 1 1 1 1 1 1

c 1 1 1 1 1 1

r 1 0 ? ? ? ?

c ? ? ? ? ? ?

r 0 ? ? ? ? ?
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r 0 0 0 0 0 0
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? Unknown

1 Selected

0 Excluded

Figure 5.2: Search tree. This �gure illustrates the search tree de�ned on the
set of possible submatrices. A question mark refers to an unbound variable
that can be equal to 0 or 1.

tree is in 𝑂 (𝑚 × 𝑛). The global time complexity of CPGC is therefore in
𝑂 (2𝑛 ×𝑚 × 𝑛).

The space complexity of the nodes is in 𝑂 (𝑚 + 𝑛). The number of nodes
to maintain e�ectively is in 𝑂 (𝑛), by virtue of the DFS exploration strategy.
The global space complexity of CPGC is therefore in 𝑂 (𝑛 × (𝑚 + 𝑛)).

These bounds on the space and time complexities do not consider the sub-
stantial reduction of the search space induced by the �ltering procedures. In
experiments with instance matrices of 10, 000 rows by 1, 000 columns, the best
solutions are found within short periods of time, usually less than a few sec-
onds. Moreover, providing more time (up to 1, 000 seconds) never improves
the objective value. Further technical details, experiment and result descrip-
tions are provided in Chapter 2 Mining a submatrix of maximal sum. These
results suggest that CPGC is scalable to tackle reasonably large problems from
biological to biomedical domains.

5.2.2 The greedy K-CPGC

The CPGC algorithm looks for a single submatrix of maximal sum from an
original data matrix while there might be several biclusters to be identi�ed.
In gene expression analysis, the same gene may indeed participate in mul-
tiple pathways. Hence one would like to identify 𝐾 biclusters with possible
overlaps between them. The control parameter 𝐾 must be chosen by the data
analyst (e.g. 𝐾 = 10) but, as illustrated in the Section 5.4 Results, a biolog-
ical interpretation of the biclusters found may help in this regard. Formally,
any row and any column of the original data matrix may belong to zero, one
or up to 𝐾 biclusters. Hence, each decision variable can now take 2𝐾 values.
The extension to the MSS problem to identify 𝐾 solutions would thus lead
to a search space containing 𝑂 (2𝐾𝑚 × 2𝐾𝑛 ) feasible solutions. A complet as-
signment of the column variables does not help in this regard. Indeed, each
decision for row 𝑖 in submatrix 𝑘 depends on the decisions on row 𝑖 for the
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𝐾 − 1 other submatrices, as stated in Theorem 3, Section 4.2.2.
Consequently, one can no longer hope to �nd optimal solutions in a rea-

sonable time from gene expression datasets. Instead, we propose to follow a
greedy strategy as commonly adopted in several biclustering algorithms [MO04;
CC00; PGA15].

A �rst submatrix is found by solving the maximal sum submatrix opti-
mization problem with CPGC. Next, the values of the selected entries in this
solution are replaced in the original matrix by zeros. A zero value is indeed
neutral with respect to the maximal sum objective. In other words, any par-
ticular entry that has already been selected can again be selected but with-
out any bene�t nor loss in the objective value. Such a strategy allows for a
possible overlap between several biclusters, neither forcing such overlap nor
discarding it a priori. This process can be iterated till producing 𝐾 biclusters.

The time complexity of themethod is computed as𝐾 times the complexity
of the CPGC subroutine. The greedy procedure does not alter the space com-
plexity. Identifying 𝐾 submatrices with a large total sum is performed within
a reasonable time (in the order of a minute with the computational power
described in the experiments), which is unsurprising given the performance
of the CPGC subroutine.

An implementation of this greedy algorithm, called K-CPGC, is freely
available as an R package [Bra20].

5.3 Experiments on human tissues and on Saccharomyces

cerevisiae

5.3.1 Datasets

In this study, we look for biologically relevant biclusters computed from 35
publicly available gene expression microarray datasets. The �rst 18 datasets
were obtained from human tissues using single-channel A�ymetrix chips
(A�y), proposed and preprocessed by de Souto et al. [de +08]. Similarly to
the latter work, expression values are transformed prior to further analyzes:

M𝑖, 𝑗
∗ ← log2(M𝑖,𝑗𝑚𝑖

) ,
where𝑚𝑖 is the median of row 𝑖 and M𝑖, 𝑗

∗ is the value in row 𝑖 and column
𝑗 after transformation. The subsequent 17 datasets, proposed and prepro-
cessed by Jaskowiak, Campello, and Costa Filho [JCC13], were obtained from
Saccharomyces cerevisiae samples under various controlled conditions using
double-channel cDNA (cDNA) technology. These expression values are left
unaltered. Table 5.1 summarizes this collection by reporting the number of
genes and samples measurements in each dataset.

The datasets analyzed during the current study are available in the bi-
clustlib repository [PC17a; PC17c; PC17b].
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Table 5.1: Data collection summary.

Name Chip Genes Samples Organism Tissue/Condition
1 armstrong-v1 A�y 1081 72 Human Blood

2 armstrong-v2 A�y 2194 72 Human Blood

3 bhattacharjee A�y 1543 203 Human Lung

4 chowdary A�y 182 104 Human Breast, Colon

5 dyrskjot A�y 1203 40 Human Bladder

6 gordon A�y 1626 181 Human Lung

7 laiho A�y 2202 37 Human Colon

8 nutt-v1 A�y 1377 50 Human Brain

9 nutt-v2 A�y 1070 28 Human Brain

10 nutt-v3 A�y 1152 22 Human Brain

11 pomeroy-v1 A�y 857 34 Human Brain

12 pomeroy-v2 A�y 1379 42 Human Brain

13 ramaswamy A�y 1363 190 Human Multi-tissue

14 shipp A�y 798 77 Human Blood

15 singh A�y 339 102 Human Prostate

16 su A�y 1571 174 Human Multi-tissue

17 west A�y 1198 49 Human Breast

18 yeoh-v1 A�y 2526 248 Human Bone marrow

19 alpha factor cDNA 1099 18 Yeast Cell cycle synchronisation

20 cdc 15 cDNA 1086 24 Yeast Cell cycle synchronisation

21 cdc 28 cDNA 1044 17 Yeast Cell cycle synchronisation

22 elutriation cDNA 935 14 Yeast Cell cycle synchronisation

23 1mM menadione cDNA 1050 9 Yeast Environmental modi�cations

24 1M sorbitol cDNA 1030 7 Yeast Environmental modi�cations

25 15mM diamide cDNA 1038 8 Yeast Environmental modi�cations

26 25mM DTT cDNA 991 8 Yeast Environmental modi�cations

27 constant 32nM H2O2 cDNA 976 10 Yeast Environmental modi�cations

28 diauxic shift cDNA 1016 7 Yeast Environmental modi�cations

29 complete DTT cDNA 962 7 Yeast Environmental modi�cations

30 heat shock 1 cDNA 988 8 Yeast Environmental modi�cations

31 heat shock 2 cDNA 999 7 Yeast Environmental modi�cations

32 nitrogen depletion cDNA 1011 10 Yeast Environmental modi�cations

33 YPD 1 cDNA 1011 12 Yeast Environmental modi�cations

34 YPD 2 cDNA 1022 10 Yeast Environmental modi�cations

35 Yeast sporulation cDNA 1006 7 Yeast Sporulation
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5.3.2 Experimental setup

Our objective is to assess to which extent biclustering algorithms and our own
K-CPGC approach are able to �nd biclusters representative of the controlled
conditions in our evaluation study. To do so, we analyze the gene subsets
found by each approach and we check which of them are signi�cantly en-
riched.

To compare all approaches on a fair basis, we look for (up to) 𝐾 = 10
biclusters for each controlled experiment. As detailed below, some algorithms
do not produce so many solutions while others, including K-CPGC, could be
tuned to produce more solutions. Ten biclusters from each data matrix are
also considered as reasonable for the subsequent biological interpretation of
the results.

All algorithms used in this work are available through R packages: bi-
clust [Kai+18], isa2 [CKB10] and mssm [Bra20] for K-CPGC. By default, the
control parameters of each biclustering algorithm are those recommended by
their original authors. For example, as proposed by the authors of CCA, the
original data matrices are initially multiplied by 100 to match the range of
data values their control parameters are assuming. The discretization step
of xMOTIFs is performed with 10 equally spaced intervals from minimum to
maximum. The K-CPGC threshold 𝜃 (seeSection 1.2 Interpretation in gene
expression analysis) is set to the 75th percentile of expression values, specif-
ically to each dataset. We consider such a threshold as representative of the
objective of capturing high expression patterns. Given the performance of
the CPGC approach on larger datasets, the K-CPGC method waits for conver-
gence of the CPGC method. In other words, each call to the CPGC method is
interrupted whenever the solution is proved optimal, or the best solution has
not been improved for 10 seconds. We additionally compare the performance
of the CPGC subroutine to the other approaches.

5.3.3 Evaluation

In order to evaluate the biological relevance of the biclusters returned by the
various algorithms in this study, a gene enrichment analysis is performed
from the selected genes in each bicluster. Speci�cally, we perform an enrich-
ment step for the selected genes through the Gene Ontology (GO; consid-
ering the Biological Process Ontology) [Ash+00] using the clusterPro�ler R
package [Yu+12].

For each of the 35 datasets, each of the 8 algorithms produces up to 10
biclusters. For each bicluster, the enrichment step provides a list of GO terms
and false discovery rate (FDR) corrected p-values [BH95]. This p-value refers
to the probability of selecting at random 𝑛 genes out of the 𝑁 genes from
the original expression matrix, with 𝑐 out of 𝑛 being associated with the same
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functional class𝐶 . Let 𝑠 be the true proportion of the 𝑁 genes associated with
the functional class 𝐶 , the p-value associated with a GO term, or functional
class 𝐶 , is computed as:

Pr (𝑐 | 𝑁, 𝑠, 𝑛) =
(𝑠𝑁
𝑐

) ( (1−𝑠)𝑁
𝑛−𝑐

)(𝑁
𝑛

) . (5.5)

For each GO term, or functional class 𝐶 , we calculate the p-value of the
current submatrix enrichment as the probability of selecting at random at
least 𝑐 genes of this functional class 𝐶 in the submatrix, where 𝑐 is the actual
number of genes from this class present in the current submatrix [Li+09]. The
smaller the p-values of the terms associated with a submatrix, the more likely
the selected genes come from the same biological process.

According to themethodology proposed in [PC17a; Li+09; Pre+06; Ere+12],
a speci�c bicluster is considered enriched if there is at least one GO term with
a FDR corrected p-value below 5%. An algorithm is considered better if it
produces more enriched biclusters.

A re�ned analysis has also been proposed in [PC17a; JCC14] through pair-
wise comparison of the smallest p-value among the GO terms found from the
selected genes returned by each algorithm. Such a comparison could be criti-
cized as it is limited to a single p-value for each algorithm, not necessarily
computed for comparable GO terms. Instead, when comparing two algo-
rithms 𝐴1 and 𝐴2, for any GO term considered signi�cantly enriched (FDR
corrected p-value < 5%) by both algorithms, one computes a performance
di�erence as:

di� (𝐴1, 𝐴2) = − log(
𝑝𝐴1

𝑝𝐴2

) . (5.6)

The larger di� (A1,A2), the smaller the corrected p-value of 𝑝𝐴1 compared to
𝑝𝐴2 with a positive di�erence whenever 𝐴1 outperforms 𝐴2.

5.4 Results

While this work focuses on the biological relevance of identi�ed submatrices,
it must be stressed that K-CPGC usually �nds the best solutions in less than a
minute. On average, K-CPGC requires 14.7 seconds, the median being equal
to 1.7 seconds. The longest run is performed within 195.7 seconds on dataset
18 (Yeoh-v1).

All reports of time in the present work are computed from experiments on
a MacBook Pro (OS version 10.10.5) laptop (Intel i7-2720 CPU 2.20-3.30GHz,
1GB RAM per run) with a single thread using the CPGC implementation pre-
sented in Chapter 2 combinedwith a python script to identify𝐾 submatrices.
That implementation is equivalent to that of the mssm R package developed
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in this work. Time performances have not been thoroughly studied but are
similar with both implementations.

5.4.1 Signi�cantly enriched biclusters

Table 5.2 gives a global overview of the ability of the various algorithms to
�nd signi�cantly enriched biclusters among the 35 gene expression datasets
from human tissues and Saccharomyces cerevisae. The K-CPGC algorithm
clearly outperforms the other approaches in this global overview: it is the
best in terms of the number of enriched biclusters found. Some algorithms
are only able to produce a limited number of distinct biclusters, even less
enriched ones. This is due to the speci�cs of each algorithm. For instance,
several random initializations used by ISA do not guarantee to �nd distinct
solutions. Plaid only returns biclusters that o�ers a better �t to their under-
lying statistical model than those obtained through random permutations of
the original matrix. As for K-CPGC, a slight increase of the threshold 𝜃 would
lead to producing more biclusters while constraining further the objective of
�nding high expression patterns. The reported setting looks sound anyway as
the prescribed number of 10 biclusters for each dataset is very close to being
found with this approach.

Table 5.2: Total number of identi�ed and enriched biclusters.

Algorithm Biclusters Enriched biclusters
CCA 349 108
ISA 163 90
K-CPGC 342 177
Plaid 102 57
QUBIC 269 107
Spectral 147 44
xMOTIFs 309 60
CPGC 35 35

Results reported for each algorithm on the 35 gene expression datasets from
human tissues and Saccharomyces cerevisae. The de�ned target is 𝐾 = 10 bi-
clusters for each dataset, for amaximumof 350 biclusters overall. A bicluster
is considered signi�cantly enriched if the subset of genes it contains is asso-
ciated with at least one GO term with an FDR corrected p-value below 5%.

5.4.2 Statistical assessment

Anon-parametric Friedman test [Fri37] is routinely used in themachine learn-
ing literature to assess the relative performance of various classi�cation algo-
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rithms across several datasets [Dem06]. We adopt here the samemethodology
to compare biclustering algorithms and our own K-CPGC method. For each
dataset, the algorithms under study are ranked according to the number of
enriched biclusters they return. Table 5.3 reports the number of enriched bi-
clusters identi�ed per dataset by each algorithm and its associated rank. The
last row reports the average rank 𝑅𝐴 of algorithm 𝐴 over all datasets. The
Friedman statistic has a 𝜒2𝐹 distribution with 𝜈 − 1 degrees of freedom where
𝑁 is the number of datasets and 𝜈 the number of algorithms being tested:

𝜒2𝐹 =
12𝑁

𝜈 (𝜈 + 1)

[
𝜈∑︁
𝐴=1

𝑅2𝐴 −
𝜈 (𝜈 + 1)2

4

]
. (5.7)

The results presented in Table 5.3 lead to reject the null hypothesis of
no di�erence between the 𝜈 = 8 algorithms over 𝑁 = 35 datasets with an
associated p-value equal to 1.33 × 10−11. It should be highlighted that some
algorithms present performance discrepancies regarding the data collections.
Namely, ISA, QUBIC and Spectral present higher enrichment performance
on theHuman tissues collection than on the Yeast collection. Each of the other
approaches provides comparable performance on both collections of datasets.

We proceedwith a post hoc test, theHochberg’s sequential procedure [Hoc88],
to determinewhetherK-CPGC signi�cantly outperforms the other algorithms.
Figure 5.3 reports a diagram of critical di�erences between the ranks of the
various algorithms. The horizontal lines in bold represent the di�erences
between ranks that are required for statistical signi�cance. Such intervals
increase as more approaches are included in the comparison following the
Hochberg’s correction for multiple testing. In conclusion, K-CPGC has a sig-
ni�cantly better rank compared to all other approaches.

7 6 5 4 3 2 1

K-CPGC

CCA
QUBIC
ISA
xMOTIFs
Plaid
CPGC
Spectral

Figure 5.3: Critical di�erence of ranks. Comparison between the average
rank of each algorithm over 𝑁 = 35 datasets, with a 5% level of signi�cance
and Hochberg’s correction for multiple testing.
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Table 5.3: Number of enriched biclusters found by each algorithm on each
dataset.

dataset CCA ISA K-CPGC Plaid QUBIC Spectral xMOTIFs CPGC
1 1 (5.0) 7 (1.0) 6 (2.0) 1 (5.0) 0 (7.5) 0 (7.5) 2 (3.0) 1 (5.0)
2 0 (7.5) 8 (1.0) 6 (2.0) 1 (5.0) 1 (5.0) 0 (7.5) 2 (3.0) 1 (5.0)
3 1 (6.0) 8 (1.0) 7 (2.0) 1 (6.0) 5 (3.0) 0 (8.0) 3 (4.0) 1 (6.0)
4 1 (5.5) 2 (2.5) 1 (5.5) 2 (2.5) 0 (8.0) 5 (1.0) 1 (5.5) 1 (5.5)
5 2 (4.0) 6 (1.5) 2 (4.0) 1 (6.5) 6 (1.5) 0 (8.0) 2 (4.0) 1 (6.5)
6 1 (5.5) 7 (1.0) 5 (2.0) 2 (4.0) 0 (7.5) 0 (7.5) 3 (3.0) 1 (5.5)
7 2 (5.0) 3 (4.0) 8 (1.0) 1 (7.0) 7 (2.5) 7 (2.5) 1 (7.0) 1 (7.0)
8 3 (5.0) 8 (1.5) 8 (1.5) 1 (7.5) 6 (3.0) 5 (4.0) 2 (6.0) 1 (7.5)
9 1 (7.0) 2 (4.5) 7 (1.0) 1 (7.0) 6 (2.5) 6 (2.5) 2 (4.5) 1 (7.0)
10 1 (5.0) 1 (5.0) 5 (1.0) 1 (5.0) 0 (8.0) 2 (2.0) 1 (5.0) 1 (5.0)
11 0 (7.5) 1 (4.5) 4 (1.5) 0 (7.5) 4 (1.5) 1 (4.5) 1 (4.5) 1 (4.5)
12 2 (3.5) 8 (1.0) 7 (2.0) 0 (7.5) 2 (3.5) 0 (7.5) 1 (5.5) 1 (5.5)
13 0 (7.0) 3 (1.5) 3 (1.5) 0 (7.0) 2 (3.5) 0 (7.0) 2 (3.5) 1 (5.0)
14 2 (4.5) 3 (2.5) 1 (6.5) 0 (8.0) 2 (4.5) 10 (1.0) 3 (2.5) 1 (6.5)
15 3 (2.0) 3 (2.0) 2 (4.5) 0 (8.0) 3 (2.0) 2 (4.5) 1 (6.5) 1 (6.5)
16 1 (5.5) 8 (1.5) 8 (1.5) 0 (7.5) 4 (3.0) 0 (7.5) 2 (4.0) 1 (5.5)
17 0 (7.0) 3 (2.0) 1 (4.5) 0 (7.0) 3 (2.0) 0 (7.0) 3 (2.0) 1 (4.5)
18 2 (2.0) 1 (4.0) 3 (1.0) 0 (7.0) 1 (4.0) 0 (7.0) 0 (7.0) 1 (4.0)
19 8 (2.5) 0 (7.0) 9 (1.0) 6 (4.0) 8 (2.5) 0 (7.0) 0 (7.0) 1 (5.0)
20 6 (2.0) 3 (4.5) 10 (1.0) 3 (4.5) 4 (3.0) 0 (8.0) 2 (6.0) 1 (7.0)
21 2 (4.0) 1 (6.5) 8 (1.0) 4 (2.0) 2 (4.0) 0 (8.0) 2 (4.0) 1 (6.5)
22 6 (2.0) 1 (6.5) 8 (1.0) 0 (8.0) 3 (4.5) 5 (3.0) 3 (4.5) 1 (6.5)
23 2 (2.5) 0 (7.0) 4 (1.0) 0 (7.0) 2 (2.5) 0 (7.0) 1 (4.5) 1 (4.5)
24 4 (1.5) 0 (6.5) 4 (1.5) 0 (6.5) 0 (6.5) 0 (6.5) 1 (3.5) 1 (3.5)
25 5 (1.5) 0 (7.0) 5 (1.5) 3 (3.0) 0 (7.0) 0 (7.0) 1 (4.5) 1 (4.5)
26 4 (1.5) 0 (7.5) 4 (1.5) 2 (4.5) 2 (4.5) 0 (7.5) 3 (3.0) 1 (6.0)
27 4 (1.0) 1 (6.5) 3 (2.0) 2 (4.0) 2 (4.0) 0 (8.0) 2 (4.0) 1 (6.5)
28 5 (1.0) 0 (7.0) 4 (2.0) 2 (3.5) 2 (3.5) 0 (7.0) 0 (7.0) 1 (5.0)
29 3 (3.5) 1 (6.0) 6 (1.0) 3 (3.5) 4 (2.0) 0 (8.0) 1 (6.0) 1 (6.0)
30 5 (1.0) 0 (7.5) 2 (2.5) 1 (5.0) 1 (5.0) 0 (7.5) 2 (2.5) 1 (5.0)
31 4 (2.5) 1 (5.5) 5 (1.0) 4 (2.5) 1 (5.5) 0 (8.0) 1 (5.5) 1 (5.5)
32 8 (1.5) 0 (7.5) 5 (4.5) 7 (3.0) 8 (1.5) 0 (7.5) 5 (4.5) 1 (6.0)
33 6 (3.0) 0 (8.0) 7 (2.0) 3 (4.0) 9 (1.0) 1 (6.0) 1 (6.0) 1 (6.0)
34 6 (2.0) 0 (7.5) 4 (3.0) 3 (4.5) 7 (1.0) 0 (7.5) 3 (4.5) 1 (6.0)
35 7 (1.0) 0 (6.5) 5 (2.0) 2 (3.0) 0 (6.5) 0 (6.5) 0 (6.5) 1 (4.0)

avg. rank 3.7 4.5 2.1 5.4 3.9 6.2 4.7 5.6

Numbers in parentheses are the associated ranks. In case of ties, average
ranks are assigned. The last row corresponds to the algorithm ranks aver-
aged over the 35 datasets. Best performances are highlighted in bold. It is
observed that all enriched biclusters have di�erent GO enrichment. Note
that CPGC is the original algorithm identifying a single submatrix of maxi-
mal sum per dataset.
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The analysis so far has been focusing on the number of biclusters for
which the subset of genes they contain is associated with at least one signi�-

cant GO term. Since K-CPGC and CCA are the best methods according to this
analysis, one looks now at all signi�cant GO terms identi�ed by both algo-
rithms. Figure 5.4 reports the di�erence metric between p-values of these
GO terms according to Eqation (5.6). It shows that K-CPGC outperforms
CCA in this regard since it exhibits a positive di�erence in 638 out of 1,054
cases. In other words, K-CPGC identi�es gene subsets which are generally
estimated more signi�cant as they correspond more often to lower p-values.
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Figure 5.4: Comparison of K-CPGC and CCA p-values for enriched GO terms.
This �gure presents the (logarithmic) ratio of corrected p-values associated
with each GO term identi�ed by both K-CPGC and CCA. Positive values (638
GO terms) are in favor of K-CPGC.

5.4.3 Biological relevance

We further analyze the actual gene subsets identi�ed by K-CPGC from Saccha-

romyces cerevisae samples to checkwhether the 20most signi�cantly enriched
GO terms it identi�es in each dataset are consistent with the controlled con-
ditions under which these experiments were conducted. K-CPGC produces
up to 10 submatrices of maximal sum per dataset. Each submatrix is associ-
ated with a subset of genes and a subset of samples. Up to 10 gene subsets are
identi�ed by K-CPGC per dataset. An enrichment step provides a list of GO
terms and FDR corrected p-values [BH95] for each gene subset.

The 20 most signi�cantly enriched GO terms are reported in Tables 2
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to 18 (in Additional tables). Each table presents the results of one dataset.
One GO term is listed per row and the associated rank is provided in the �rst
column. The second column gives the unique GO identi�er of a term. The
third column contains a short description for each term. Finally, the corrected
p-value of the enrichment step is given in the last column. These tables con-
�rm that identi�ed GO terms are consistent with the controlled conditions
under which these experiments were conducted.

The GO terms identi�ed in the �rst four datasets, representative of cell cy-
cles, are associated with some form of biogenesis, including ribosome, RNA,
peptide and macromolecules synthesis. The GO terms identi�ed in the next
12 datasets are indeed associated with various forms of response to stress-
induced environments, including many representatives of the response to
the stimulus, oxidation-reduction processes, and cellular responses to stress.
Some GO terms also refer to generic responses to stress which are less spe-
ci�c to the controlled condition. For example, in the complete DTT dataset,
many GO terms relate to alteration in the general patterns of protein biosyn-
theses as reported by Miller et al. [MXG79]. The last experiment related to
yeast sporulation includes GO terms referring to cell cycle, sporulation, and
reproductive processes.

5.4.4 In�uence of the parameters

The proposed K-CPGC method could be considered as including two control
parameters: the number 𝐾 of biclusters one looks for and the threshold 𝜃
de�ning the level of expression abovewhich interesting patterns are searched.

We �x 𝜃 to the 75th percentile of expression values and we argue that this
is a reasonable choice to �nd high expression patterns. Yet, the user may be
interested in playing with this parameter as it in�uences indirectly the sizes
of the biclusters found. In the limit, if 𝜃 is set below the minimal expression
value, all entries of the normalized matrix will be positive and the solution to
the maximal sum problem is trivially identi�ed as the full matrix. Similarly,
if 𝜃 is set above the maximal expression value, all entries of the normalized
matrix become negative and the optimal solution is the empty matrix. An
intermediate 𝜃 value between these extreme cases is typically chosen. For a
�xed data matrix increasing 𝜃 tends to produce smaller biclusters. The actual
bicluster sizes found is di�cult to predict exactly, as it also depends on the ac-
tual distribution of expression value in the matrix, but the analyst may easily
play with 𝜃 to �nd biclusters of interest.

For a fair comparison between all algorithms, we �x the maximal number
of biclusters to be found to 𝐾 = 10. In practice, however, this is not a critical
choice since the analyst can start with 𝐾 = 1 and use the proposed gene
enrichment analysis to check whether the successive biclusters returned by
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increasing 𝐾 are still signi�cantly enriched. Let us consider the evolution of
the GO enrichment as a function of 𝐾 .

We report here the evolution of the number of enriched biclusters and the
evolution of the number of enriched GO terms as a function of 𝐾 . Value of
parameter 𝐾 ranges from 1 up to no signi�cant improvement.

Each dataset is separately normalized by subtracting a threshold 𝜃 to all
matrix entries before using K-CPGC. The threshold 𝜃 is set to the 75th per-
centile of expression values, speci�cally to each dataset, as default value. We
consider such a threshold as representative of the objective of capturing high
expression patterns. We also examine the 65th and 85th percentiles of ex-
pression values to complement analyzes. We report as K-CPGC_0_xx the
results of our approach after normalization through subtraction of the xxth
percentile.

Figure 5.5 presents the evolution of the number of enriched biclusters as
a function of 𝐾 . We observe a rapidly growing number of enriched biclusters
up to the chosen value in the main manuscript (𝐾 = 10). Our approach, with
its three di�erent 𝜃 values, essentially identi�esmore enriched biclusters than
other approaches in the �rst part of the graph. Nevertheless, CCA produces
more enriched biclusters in the long run. We explain the absence of important
improvements in our approach by the size of the discovered gene subsets. In-
deed, biclusters are identi�ed only when there is some signal remaining in the
matrix. Therefore, identifying larger subsets of genes is penalized, as the re-
maining signal depends on the previously identi�ed (and masked) biclusters.
Table 5.4 presents the average size of gene subsets for𝐾 = 10 and𝐾 = 40. We
observe that the di�erence between CCA and the three variants of K-CPGC in-
creases with 𝐾 . A data analyst would consider smaller values of 𝐾 given the
size of the datasets, the size of the identi�ed subsets of genes and the results
from Figure 5.5.

Figure 5.6 presents the number of di�erent enriched GO terms identi�ed
by each approach for increasing values of 𝐾 . We observe a rapidly growing
number of enriched GO terms up to the chosen value in the main manuscript
(𝐾 = 10), for most approaches, as in Figure 5.5. It con�rms the ability of
K-CPGC to quickly identify a large part of the relevant signal. It is furthermore
noticeable that K-CPGC_0_65 and K-CPGC_0_75 identify more GO terms
than all others approaches for any value of the parameter 𝐾 .

Interpretations of both graphs can be reunited by observing that:

1. 𝐾 should be large enough to observe di�erences regarding the enrich-
ment,

2. 𝐾 should, however, be small enough to ensure that there still is a signal
to be found, regarding the number of biclusters and the number of GO
terms.
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Figure 5.5: Evolution of the number of enriched biclusters as a function of𝐾 .
The left axis presents the cumulated number of biclusters identi�ed as𝐾 , the
maximal number of biclusters to be found, increases. The right axis presents
a performance computed as the number of enriched biclusters divided by the
number of enriched biclusters identi�ed by the best algorithm at𝐾 = 40. The
100% performance corresponds to identifying 142 enriched biclusters.

Table 5.4: Size of gene subsets averaged on 17 Saccharomyces cerevisae

datasets.

Name 𝐾 = 10 𝐾 = 40
K-CPGC_0_65 129 98
K-CPGC_0_75 110 93
K-CPGC_0_85 81 69

CCA 84 40
ISA 82 82

QUBIC 170 122
Plaid 130 126

Spectral 6 6
xMOTIFs 38 17
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Figure 5.6: Evolution of the number of enriched GO terms as a function of
𝐾 . The left axis presents the cumulated number of di�erent GO terms iden-
ti�ed as 𝐾 , the maximal number of biclusters to be found, increases. The
right axis presents a performance computed as the number of di�erent en-
riched GO terms identi�ed divided by the number of di�erent enriched GO
terms identi�ed by the best algorithm at 𝐾 = 40. The 100% performance cor-
responds to identifying 2879 enriched GO terms.

5.5 Discussion

The experiments and results reported in this work show that the K-CPGC
method outperforms six well-known biclustering algorithms to identify bio-
logically relevant gene subsets among subgroups of samples. The various al-
gorithms are compared essentially based on their ability to return gene sub-
sets which are associated with signi�cantly enriched GO terms. One could
consider that such a performance assessment validates only part of the results
as it focuses on the genes (rows) and does not validate a posteriori the identi-
�ed subgroups of samples (columns). This is actually a common limitation of
the assessment of biclustering methods from gene expression data [PC17a].
For the Saccharomyces cerevisae experiments reported here, there is no gold
standard in terms of subgroups of samples to be identi�ed. Yet, these sub-
groups of samples are, at least indirectly, validated because their components
directly in�uence the subsets of genes which are returned. This is particu-
larly clear for the CPGC approach as one looks for a rectangular submatrix
of maximal sum and the returned genes are directly constrained by the se-
lected samples in such a submatrix. This is also true for biclustering algo-
rithms since, for instance, they look for homogeneous expression patterns
both across rows and columns. Notwithstanding, in a medical context, for
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example, the actual samples are typically associated with speci�c patients.
In such a case, direct validation of the identi�ed subgroups of samples could
be performed by comparing these subgroups with actual clinical annotations.
Interpreting the evaluation of unsupervised method on their ability to re-
cover an expected structure is di�cult, however. As an illustrative example,
Padilha et al. [PC17a] evaluated the ability of several biclustering algorithms
to recover the prede�ned sample classes. They showed that the best meth-
ods are biased towards methods that force every row and every column to be
biclustered.

The K-CPGC approach can also be used to �nd low expression patterns
instead of high-level ones simply by considering the opposite of the normal-
ized data matrix. These are two obvious possibilities but it is straightforward
to generalize this approach. For instance, if one would be interested in �nd-
ing patterns of average expression values (neither over-expressed nor under-
expressed), one can easily transform the original matrix to a new one, e.g.
according to a Gaussian or RBF kernel, in which a higher value would repre-
sent an original entry closer to the average expression value. This average (or
median) value can be computed overall, row-wise or column-wise. Countless
variants are easy to de�ne and illustrate the �exibility of this approach.

5.6 Conclusions

Wepropose a novel algorithm, K-CPGC, to �nd𝐾 non-redundant and possibly
overlapping submatrices ofmaximal sum from a large gene expressionmatrix.
The returned solutions have the same bi-dimensional structure as biclusters
produced by existing biclustering algorithms. Yet, the mathematical objective
is di�erent and more explicitly optimized with the proposed methodology.
Indeed, the role of a matrix entry (𝑖, 𝑗) in a submatrix is clear: its contribution
to the decision of including gene 𝑖 and sample 𝑗 in the submatrix is M𝑖, 𝑗 . It
follows that the contribution of each gene in the de�nition of a gene subset,
respectively each sample, can be easily computed as the sum of matrix entries
for each of the selected samples, respectively genes.

Through enrichment analysis performed on 35 gene expression datasets
from human tissues and Saccharomyces cerevisae samples, we show that the
K-CPGC method outperforms biclustering algorithms when looking for bi-
ologically relevant gene subsets. Not only is our approach e�cient, but it
also identi�es more enriched biclusters than other biclustering methods. The
K-CPGC approach provides stronger results (lower p-values of gene subsets
or GO terms) than these alternative algorithms. These results illustrate the
bene�ts of the proposed approach in terms of biological enrichments and bi-
ological relevance.

The K-CPGC is, however, not limited to gene expression analysis. For ex-
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ample, Liu andWang [LW03] use a drug activity dataset consisting of amatrix
of 10,000 compounds with 30 features for each compound. The K-CPGC al-
gorithm could be used to identify subsets of compounds presenting highly
valued entries in subsets of features.

This method has the potential to �nd relevant gene subsets across various
-omics technologies since, unlike biclustering algorithms, it does not look for
homogeneous gene expression values. The speci�c search order it follows
could also be easily adapted to discover small relevant submatrices rather than
large biclusters, hence focusing on rare but relevant expression patterns.

The K-CPGC method and the biclustering algorithms it is compared to
are unsupervised methods since they do not require any particular annota-
tion of the analyzed samples. A di�erent and interesting setting arises when
the samples, or at least a fraction of them, are labeled according to various
conditions or clinical variables. In such a context, a new objective would be to
identify subsets of genes that are maximally relevant to discriminate between
subsets of samples from di�erent conditions.
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maximal sum quicker 6

Constraint programming approaches presented in previous

chapters are dedicated to solving a particular task. Modi�-

cations of the objective function and addition of constraint

may not always be trivial. It may require changing some or all

functions of the presented algorithms. In this chapter, we de-

sign a constraint that can be used in any constraint program-

ming (CP) model. A tighter bound and new �ltering rules are

also provided to de�ne a new model for the maximal sum sub-

matrix problem. A CP implementation using that model re-

quires less computational time than an implementation using

a model with an upper bound and �ltering rules as presented

in Chapter 2, particularly for the di�cult instances. The im-

proved upper bound and stronger �ltering reduce the size of the

search space by removing infeasible solutions. Evaluation on

synthetic data suggests that the new model is globally prefer-

able in terms of computational time and size of the search space

than the original approach.

6.1 Introduction

CPGC, a constraint programming (CP) approach relying on an upper bound
to the weight of the maximal sum submatrix is introduced in Chapter 2,
Section 2.3.2.3. That approach has two limitations that this chapter aims at
overcoming:

1. CPGC has shorter time requirements to solve instances than competing
approaches. Such better performance is particularly clear withmatrices
containing only a few positive entries or when the optimal solution
covers a small fraction of the input matrix. The upper bound struggles
to solve matrix instances containing many positive entries, however.

2. CPGC is a dedicated algorithm. E�cient propagation of additional con-
straint might require a thorough modi�cation of the algorithm.

95
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6.1.1 Contributions

The main contributions of the chapter are:

� The formal de�nition of the SubmatrixWeight constraint to model
the sum of entries covered by a submatrix.

� The de�nition and implementation of an upper bound and �ltering
rules specifying a competitive constraint programming approach.

� An evaluation of the bene�ts of the new approach on synthetic data as
compared to CPGC, the CP approach with global constraint, de�ned in
Chapter 2.

6.2 Constraint programming model

CP is a �exible programming paradigm for solving (discrete) optimization
problems. A constraint programming model is a triplet (𝑉 , 𝐷,𝐶) where 𝑉 is
the set of variables, 𝐷 their domains, and 𝐶 is a set of constraints. A feasible
solution is an assignment of the variables to values of their domains such that
all constraints are satis�ed. Constraints are exploited to reduce iteratively the
number of variable assignments to consider. Once all unfeasible values are re-
moved from the domains of the variables, the solver selects a variable 𝑋 ∈ 𝑉
that is non�xed and recursively calls itself while assigning a value to this vari-
able. By exploring a depth-�rst-search (DFS) tree, the solver either reaches a
solution or backtracks when the domain of a variable becomes empty.

6.2.1 Model

We model a submatrix using the set variables R and C for the rows and
columns, respectively. A variable 𝑤 denotes the weight of the submatrix
(R ;C). The maximal sum submatrix can be modeled by maximizing the vari-
able𝑤 under the constraint that

𝑤 =
∑︁

𝑖∈R , 𝑗 ∈C
M𝑖, 𝑗 . (6.1)

The domain of a set variable S is the set of all the (sub)sets of S. That
domain is approximated by a closed interval denoted

[S ∈,S ∈ ∪ S?] , in CP,
by means of the set domain bounds representation [Ger97].

� S ∈ are the mandatory elements,

� S? are the possible additional ones (S∈ ∩ S? = ∅).
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Such an interval represents all the sets in between those two bounds accord-
ing to the inclusion relation {S | S ∈ ⊆ S ⊆ (S ∈ ∪ S?)}. A set variable is
�xed whenever it contains a single set in its domain. This situation happens
when set interval bounds are equal, or equivalently, the possible set is empty:
S? = ∅.

6.2.2 Notations

Definition 8. Mandatory and possible rows and columns
Let R∈ (resp. C∈) denote the mandatory rows (resp. columns) and R?

(resp. C?)
the possible rows (resp. columns) that might be added to the mandatory rows

(resp. columns).

Definition 9. Partial assignment and optimal extension
Let

(R∈,R?, C∈, C?) and (R ∈∗, ∅, C∈∗, ∅) denote a partial assignment and the

optimal solution extending it, respectively, with R ∈ ⊆ R∈∗, R∈∗ ⊆ (R ∈ ∪ R?)
,

C∈ ⊆ C∈∗, C∈∗ ⊆ (C∈ ∪ C?) . Let (R ∈∗;C∈∗) denote the submatrix correspond-

ing to the optimal assignment extending the partial assignment.

We refer to (R∈∗;C∈∗) as the best extension since the optimal solution
extending a partial assignment might be suboptimal for the pure maximal
sum submatrix problem, which has no variable �xed. We refer to the sum of
entries covered by the best extension as the best value, or simply best, with
best =

∑
𝑖∈R∈∗, 𝑗 ∈C∈∗

M𝑖, 𝑗 .

Example 2.
Let us consider the following matrix with the partial assignment ({r1}, {r2, r3,
r4, r5, r6}, {c1}, {c2, c3, c4, c5}). Mandatory variables are depicted in grey. The

best extension is de�ned by variables ({r1, r4, r5}; {c1, c2}), depicted in light-

grey, and best = 12.
c1 c2 c3 c4 c5

r1 2 -3 -2 -8 -1

r2 -2 -7 -7 -5 3

r3 -10 1 6 1 3

r4 -1 7 -2 -3 3

r5 4 3 -1 5 -4

r6 -4 -1 -3 3 -5

Definition 10. Partial sum of a row or column
Let 𝑟 𝑖

psum
denote the partial sum of a row 𝑖 with 𝑟 𝑖

psum =
∑
𝑗 ∈C∈ M𝑖, 𝑗 . Let the

partial sum of column 𝑗 be symmetrically de�ned: 𝑐 𝑗
psum =

∑
𝑖∈R∈ M𝑖, 𝑗 .

Definition 11. Contribution of an element
Let C(a→ b) denote the contribution (or impact) of a on the computation of b.
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Definition 11 let us clarify concepts as follows:

� C(𝑖 ∈ R∈∗ → best) is the contribution of row 𝑖 ∈ R∈∗ to the weight (or
sum of entries) of the best extension (R∈∗;C∈∗):

C(𝑖 ∈ R∈∗ → best) =
∑︁
𝑗 ∈C∈∗

M𝑖, 𝑗 . (6.2)

� C(𝑖 ∉ R∈∗ → best) is the contribution of 𝑖 ∉ R ∈∗ to the best value:

C(𝑖 ∉ R ∈∗ → best) = 0 . (6.3)

The variable𝑤 of ourmodel of themaximal sum submatrix corresponds to
the weight of submatrix (R ;C). The SubmatrixWeight constraint enforc-
ing 𝑤 =

∑
𝑖∈R , 𝑗 ∈C M𝑖, 𝑗 is introduced in the next section. Filtering algorithms

tightening the domain of the variables and dominance rules are subsequently
presented, achieving the same level of �ltering as the CPGC approach intro-
duced in Chapter 2.

6.3 The SubmatrixWeight constraint

The maximal sum submatrix can be modeled by maximizing the variable 𝑤
under the constraint that

𝑤 =
∑︁

𝑖∈R , 𝑗 ∈C
M𝑖, 𝑗 . (6.4)

The latter constraint is equivalent to the SubmatrixWeight constraint de-
�ned below:

SubmatrixWeight(R , C,M,𝑤) . (6.5)

That constraint enforces variable 𝑤 to be equal to the weight of submatrix
(R ;C) given a matrix M. The domain of R (resp. C ) is the set of all the
(sub)sets of rows (resp. columns) of the matrix M and the domain of 𝑤 is R.
A submatrix of maximal sum is an assignment of R , C , and 𝑤 , such that the
value of𝑤 is maximal and constraint SubmatrixWeight holds.

6.3.1 Filtering the domain of the weight variable

The objective of a �ltering algorithm is to remove values that do not partici-
pate in any solution of the constraint. E�ective �ltering algorithms remove as
many inconsistent values as possible. We are interested in achieving bound-
consistency for the SubmatrixWeight constraint. In a bound-consistent
constraint, every variable bound (maximum or minimum) occurs in a solu-
tion of the constraint.
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Definition 12. Values𝑤min and𝑤max

Let 𝑤min
(resp. 𝑤max

) denote the minimal (resp. maximal) value in the domain

of variable𝑤 :

[
𝑤min,𝑤max

]
.

Two opposite optimization problems must be solved to �lter the domain
of𝑤 and achieve bound-consistency: minimizing and maximizing the sum of
entries covered by sets of rows and columns.

Definition 13. Values𝑤
¯
and 𝑤̄

Let𝑤
¯

and 𝑤̄ denote the optimal values to the following optimization problems:

𝑤
¯

= min
∑︁

𝑖∈R , 𝑗 ∈C
M𝑖, 𝑗 , 𝑤̄ = max

∑︁
𝑖∈R , 𝑗 ∈C

M𝑖, 𝑗 . (6.6)

Values𝑤
¯
and 𝑤̄ can be used to �lter the domain of𝑤 :[
𝑤min,𝑤max] ← [

max(𝑤min,𝑤
¯
),min(𝑤max, 𝑤̄)] . (6.7)

Unfortunately, �nding 𝑤̄ and𝑤
¯
areNP-hard problems, as stated in The-

orem 1. However, we can design good bounds for them. An upper bound
to 𝑤̄ , baseUB, which can be computed in O(𝑚 + 𝑛), has been introduced in
Chapter 2:

baseUB =
∑︁
𝑖∈R∈


∑︁
𝑗 ∈C∈

M𝑖, 𝑗 +
∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

)
+
∑︁
𝑖∈R?

max
0,

∑︁
𝑗 ∈C∈

M𝑖, 𝑗 +
∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

) .

(6.8)

A lower bound to𝑤
¯
, baseLB, can be de�ned from baseUB by replacing all

maximization terms by minimization terms. The �ltering on the domain of𝑤
becomes:[

𝑤min,𝑤max] ← [
max

(
𝑤min, baseLB

)
,min (𝑤max, baseUB)

]
. (6.9)

We de�ne 𝑟 𝑖pub and 𝑐 𝑗 pub (see Definition 14) and rewrite baseUB for the
sake of clarity: baseUB =

∑
𝑖∈R∈ 𝑟 𝑖pub +

∑
𝑖∈R? max

(
0, 𝑟 𝑖pub

)
.

Definition 14. Bound to a row or a column
Let 𝑟 𝑖

pub
, denoted the bound to the row 𝑖 , be the partial sum of 𝑖 plus all the

positive entries in the possible columns:

𝑟 𝑖
pub = 𝑟 𝑖

psum +
∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

)
. (6.10)

Let 𝑐 𝑗
pub

denote the bound to the column 𝑗 :

𝑐 𝑗
pub = 𝑐 𝑗

psum +
∑︁
𝑖∈R?

max
(
0,M𝑖, 𝑗

)
. (6.11)
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6.3.2 Filtering the domain of the set variables

It happens that decisions leading to unfeasible solutions can be detected be-
fore taking them. Filtering such decisions from the domains of the variables
reduces the size of the solution space.

Definition 15. Inclusion and exclusion operations
Let S ← 𝑒 denote a situation where element 𝑒 is included in the mandatory set

S ∈:

S ∈ ← S ∈ ∪ {𝑒} , and S? ← S? \ {𝑒} . (6.12)

Let S \ 𝑒 denote a situation where element 𝑒 is excluded from the possible set:

S? ← S? \ {𝑒} , and 𝑒 ∉ S ∈ . (6.13)

Let 𝑣S←𝑒 and 𝑣S\𝑒 denote the value 𝑣 under the hypothesis that S ← 𝑒 and

S \ 𝑒 , respectively.
Filtering rule in Eqation (6.14) de�nes a su�cient condition to keep

only assignments of R including a row 𝑖 , therefore forcing R ← 𝑖 . Excluding
𝑖 from the set variable R would lead to unfeasible solutions: baseUBR\𝑖 <

𝑤min =⇒ 𝑤max
R\𝑖 < 𝑤min and the domain of 𝑤 would be empty. Similarly,

Eqation (6.15) de�nes a su�cient condition to exclude row 𝑖 from R (R \ 𝑖).

∀(R ∈,R?, C∈, C?), 𝑖 ∈ R? : baseUBR\𝑖 < 𝑤min =⇒ R ← 𝑖 , (6.14)
∀(R ∈,R?, C∈, C?), 𝑖 ∈ R? : baseUBR←𝑖 < 𝑤min =⇒ R \ 𝑖 . (6.15)

Those two �ltering rules are evaluated for all possible rows in O(𝑚) at
each node of the search tree from incremental updates of 𝑟 𝑖pub:

baseUBR←𝑖 = baseUB +min
(
0, 𝑟 𝑖pub

)
, and (6.16)

baseUBR\𝑖 = baseUB −max
(
0, 𝑟 𝑖pub

)
. (6.17)

6.3.3 Dominance rules

Dominance rules de�ne decisions leading to suboptimal solutions and pos-
sible alternative decisions leading to better solutions. Considering only the
alternative decisions bene�ts to the search by reducing the size of the search
tree.

A partial assignment may satisfy the maximization constraint on 𝑤 only
if its best extension may improve upon the best solution found so far. Invalid
assignments are �ltered out by �xing the maximal weight so far as the lower
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bound of the domain of𝑤 . Theorem 6 reduces the domain of𝑤 by de�ning a
new, possibly better, submatrix in each node of the search tree. Fortunately,
that lower bound comes at no additional computational cost as it is already
computed in baseUB.

Theorem 6.
For any partial assignment

(R ∈,R?, C∈, C?) ,
[
𝑤min,𝑤max

] ← max(𝑤min,
∑︁

𝑖∈R∈, 𝑗 ∈C∈
M𝑖, 𝑗 ),min (𝑤max, baseUB)

 . (6.18)

Proof. Let
∑

𝑖∈R∈, 𝑗 ∈C∈
M𝑖, 𝑗 be the weight of the extension (R ∈, ∅, C∈, ∅) of a par-

tial assignment. Let us de�ne any other extension (X, ∅,Y, ∅), with R∈ ⊆
X ⊆ (R ∈ ∪ R?) and C∈ ⊆ Y ⊆ (C∈ ∪ C?) . Such (X, ∅,Y, ∅) is not a solution
to the maximal sum submatrix problem if∑︁

𝑖∈X, 𝑗 ∈Y
M𝑖, 𝑗 <

∑︁
𝑖∈R∈, 𝑗 ∈C∈

M𝑖, 𝑗 (6.19)

as its weight is not maximum. The partial assignment
(R∈,R?, C∈, C?) and

its extensions can be �ltered out of the search space.

Theorem 7 de�nes a rule to detect a row that never belongs to the best
extension to an assignment.

Theorem 7.
Given a partial assignment, any row 𝑖 ∈ R?

with 𝑟 𝑖
pub < 0 never belongs to the

best extension:

∀𝑖 ∈ R? : 𝑟 𝑖pub < 0 =⇒ 𝑖 ∉ R ∈∗ . (6.20)

Proof. Let us de�ne X, Y and 𝑖 such that:

X ∈
{
X | R∈ ⊆ X ⊆

(
R∈ ∪ R? \ {𝑖}

)}
, (6.21)

𝑖 ∈ R? ∧ 𝑟 𝑖
pub < 0 , (6.22)

Y ∈
{
Y | C∈ ⊆ Y ⊆

(
C∈ ∪ C?

)}
. (6.23)

For any partial assignment (X, {𝑖},Y, ∅):
𝑤R←𝑖 = 𝑤R\𝑖 +

∑︁
𝑗 ∈Y

M𝑖, 𝑗 , (6.24)

and 𝑟 𝑖
pub =

∑︁
𝑗 ∈C∈

M𝑖, 𝑗 +
∑︁
𝑗 ∈C?

max
(
0,M𝑖, 𝑗

) ≥ ∑︁
𝑗 ∈Y

M𝑖, 𝑗 , (6.25)

then 𝑟 𝑖
pub < 0 =⇒

∑︁
𝑗 ∈Y

M𝑖, 𝑗 < 0 =⇒ 𝑤R←𝑖 < 𝑤R\𝑖 . (6.26)
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Any extension (X, ∅,Y, ∅) is a better solution than (X ∪ {𝑖}, ∅,Y, ∅). Conse-
quently, 𝑖 never belongs to the best extension:

𝑖 ∉
(
R? ∩ R ∈∗

)
=⇒ 𝑖 ∉ R∈∗ . (6.27)

The dominance rules in Theorem 7 are evaluated for all the possible rows
in O(𝑚) at each node of the search tree. The time complexity is explained by
incremental updates of 𝑟 psum, 𝑟 pub: all 𝑟 𝑖psum and 𝑟 𝑖pub for all possible rows are
updated in O(𝑚) at each node of the search tree.

Note that Eqations (6.14) and (6.15) and Theorem 7 have symmetrical
counterparts for the columns, which can also be used to reduce the solution
space at each node of the search tree.

6.4 A tighter bound and new dominance rules

The SubmatrixWeight constraint and the dominance rules proposed in
Section 6.3 achieve the same level of �ltering as the global constraint im-
plemented in Chapter 2. This section introduces a tighter upper bound to
𝑤̄ and new dominance rules to reduce further the domains of the variables.
Many positive entries contributing to baseUB do not contribute to the tighter
bound, as suggested by theorems and de�nitions presented in this section.
Note that most of the theorems and de�nitions have a symmetrical coun-
terpart on the columns or the rows. All dominance rules are presented in a
di�erent subsection from the bound subsection, even if some allow to de�ne
the bound parts, to distinguish them from the bound.

6.4.1 Tighter upper bound

Only columns { 𝑗 ∈ C? | 𝑐 𝑗 pub ≥ 0} should contribute to 𝑤̄ as none of the
columns in { 𝑗 ∈ C? | 𝑐 𝑗 pub < 0} belong to the best extension (from the
symmetrical counterpart of Theorem 7). By extension, only columns { 𝑗 ∈
C? | 𝑐 𝑗 pub ≥ 0} should contribute to baseUB as well as its constituents 𝑟 pub.

Definition 16. Modi�ed-bound of a row or a column
The modi�ed-bound 𝑟 𝑖pub+ is an adjustment of 𝑟 𝑖

pub
to only consider columns

{ 𝑗 ∈ C? | 𝑐 𝑗 pub ≥ 0}:
𝑟 𝑖

pub+ = 𝑟 𝑖psum +
∑︁

𝑗 ∈C? |𝑐 𝑗 pub≥0
max

(
0,M𝑖, 𝑗

)
. (6.28)

Let 𝑐 𝑗
pub+

be symmetrically de�ned:

𝑐 𝑗
pub+ = 𝑐 𝑗 psum +

∑︁
𝑖∈R? |𝑟 𝑖 pub≥0

max
(
0,M𝑖, 𝑗

)
. (6.29)
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Only columns { 𝑗 ∈ C? | 𝑐 𝑗 pub+ ≥ 0} should contribute to 𝑤̄ as none of
the columns in { 𝑗 ∈ C? | 𝑐 𝑗 pub+ < 0} belong to the best extension (from
the symmetrical counterpart of the dominance rule presented in Theorem 9).
Consider c4 of Example 2: the maximal contribution of c4 is 𝑐c4pub+ = −2 as
r6 is never to be selected (given that 𝑟r6pub = −1). Column c4 cannot be in
the best extension as it may only decrease the objective value (𝑐c4pub+ < 0).

EntryM𝑖, 𝑗 should contribute to 𝑟 𝑖pub+ only if 𝑗 ∈ C? can belong to the best
extension (𝑐 𝑗 pub+ ≥ 0). Then, C(M𝑖, 𝑗 → 𝑟 𝑖

pub+) should be diminished by the
part of M𝑖, 𝑗 that ensures that 𝑐 𝑗 pub+ ≥ 0. Let 𝑥 be the maximal contribution
ofM𝑖, 𝑗 (0 ≤ 𝑥 ≤ M𝑖, 𝑗 ) to the row andM𝑖, 𝑗 − 𝑥 be the rest for 𝑐 𝑗 pub+: 𝑐 𝑗 pub+ ←
𝑐 𝑗

pub+ − 𝑥 . The largest value 𝑥 such that 𝑐 𝑗 pub+ − 𝑥 ≥ 0 is min(M𝑖, 𝑗 , 𝑐 𝑗
pub+).

The best scenario for row 𝑖 is to consider only positive 𝑥 . This de�nes 𝑟 𝑖 eub,
computed in O(𝑚 × 𝑛).
Definition 17. Explicit-bound of a row or a column
The explicit-bound 𝑟 𝑖 eub is an adjustment of 𝑟 𝑖

pub+
to explicitly account for the

contribution ofM𝑖, 𝑗 to 𝑐 𝑗
pub+

(to ensure 𝑐 𝑗
pub+ ≥ 0):

𝑟 𝑖
eub = 𝑟 𝑖

psum +
∑︁
𝑗 ∈C?

max
(
0,min

(
M𝑖, 𝑗 , 𝑐 𝑗

pub+
))

, or equivalently (6.30)

𝑟 𝑖
eub = 𝑟 𝑖

pub+ +
∑︁

𝑗 ∈C? |M𝑖,𝑗>𝑐 𝑗 pub+≥0

(
𝑐 𝑗

pub+ −M𝑖, 𝑗

)
. (6.31)

The explicit-bound 𝑐 𝑗 eub is symmetrically de�ned.

The remainder of this section introduces newUB, computed in O(𝑚 × 𝑛),
and tunes a component of it, speci�cally the term 𝑐 𝑗

𝑠 , to ensure that 𝑤̄ ≤
newUB. The dominance rule showing that 𝑟 𝑖 eub < 0 =⇒ 𝑖 ∉ R∈∗ helps de�n-
ing the bound but is presented in Theorem 11, Section 6.4.2 Dominance
Rules.

Definition 18. Tighter upper bound to the MSS problem
For any partial assignment

(R∈,R?, C∈, C?) ,
newUB =

∑︁
𝑖∈R∈

𝑟 𝑖
psum

+
∑︁

𝑖∈R? |𝑟 𝑖 eub≥0
𝑟 𝑖

psum

+
∑︁

𝑗 ∈C? |𝑐 𝑗 𝑠 ≥0
𝑐 𝑗

psum

+
∑︁

𝑖∈R? |𝑟 𝑖 eub≥0
𝑗 ∈C? |𝑐 𝑗 pub+≥0

max
(
0,M𝑖, 𝑗

)
.

(6.32)
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The weight of the best extension, best, can be rewritten as sums of contri-
butions from mandatory and possible rows and columns, similarly to Eqa-
tion (6.32):

best =
∑︁
𝑖∈R∈

𝑟 𝑖
psum

+
∑︁

𝑖∈(R?∩R∈∗)
𝑟 𝑖

psum

+
∑︁

𝑗 ∈(C?∩C∈∗)
𝑐 𝑗

psum

+
∑︁

𝑖∈(R?∩R∈∗)
𝑗 ∈(C?∩C∈∗)

M𝑖, 𝑗 .

(6.33)

Theorem 8 proves that the sum of the second and fourth term of Eqa-
tion (6.32) is higher than that of Eqation (6.33). More formally, it proves
that the possible rows, together, contribute more to newUB than to best.

Theorem 8.
For any partial assignment (R∈,R?, C∈, C?),∑︁

𝑖∈R? |𝑟 𝑖 eub≥0
𝑟 𝑖

psum +
∑︁

𝑖∈R? |𝑟 𝑖 eub≥0
𝑗 ∈C? |𝑐 𝑗 pub+≥0

max
(
0,M𝑖, 𝑗

)
≥

∑︁
𝑖∈(R?∩R∈∗)

𝑟 𝑖
psum +

∑︁
𝑖∈(R?∩R∈∗)
𝑗 ∈(C?∩C∈∗)

M𝑖, 𝑗 .
(6.34)

Proof. The symmetrical counterpart of dominance rule in Theorem 9 states
that for any 𝑗 ∈ C?:

𝑐 𝑗
pub+ < 0 =⇒ 𝑗 ∉ C∈∗ . (6.35)

Then,
(C? ∩ C∈∗) ⊆ { 𝑗 ∈ C? | 𝑐 𝑗 pub+ ≥ 0} and for any 𝑖 ∈ R?:

𝑟 𝑖
psum +

∑︁
𝑗 ∈C? |𝑐 𝑗 pub+≥0

max
(
0,M𝑖, 𝑗

) ≥ 𝑟 𝑖psum + ∑︁
𝑗 ∈(C?∩C∈∗)

M𝑖, 𝑗 . (6.36)

Moreover, dominance rule in Theorem 11 states that for any 𝑖 ∈ R?:

𝑟 𝑖
eub < 0 =⇒ 𝑖 ∉ R ∈∗ , (6.37)

which implies that
(R? ∩ R ∈∗) ⊆ {𝑖 ∈ R? | 𝑟 𝑖 eub ≥ 0}. Then, Eqation (6.34)

holds if there is no row 𝑖 ∈ R? such that:

𝑟 𝑖
eub ≥ 0 ∧ 𝑟 𝑖

psum +
∑︁

𝑗 ∈C? |𝑐 𝑗 pub+≥0
max

(
0,M𝑖, 𝑗

)
< 0 . (6.38)
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Such a row cannot exist as, for any possible row 𝑖 ,

𝑟 𝑖
psum +

∑︁
𝑗 ∈C? |𝑐 𝑗 pub+≥0

max
(
0,M𝑖, 𝑗

) ≥ 𝑟 𝑖 eub . (6.39)

Consider any column 𝑗 ∈ (C? \ C∈∗) with 𝑐 𝑗 pub+ ≥ 0. Entries in 𝑗 and
rows {𝑖 ∈ R? | 𝑟 𝑖 eub ≥ 0} with M𝑖, 𝑗 ≥ 0 should not contribute to the left-
hand side of Eqation (6.34) as they do not contribute to the right-hand side.
However, such entries do contribute to the left-hand side to compensate for
the (possibly negative) 𝑟 𝑖psum.

Let us compute the part of M𝑖, 𝑗 required to compensate for 𝑟 𝑖psum and
the part that makes the left-hand side exceed the right-hand side of Eqa-
tion (6.34). From de�nition of 𝑟 𝑖 eub, max(0,min(M𝑖, 𝑗 , 𝑐 𝑗

pub+)) of M𝑖, 𝑗 is ded-
icated to 𝑟 𝑖 eub while the rest, M𝑖, 𝑗 −max(0,min(M𝑖, 𝑗 , 𝑐 𝑗

pub+)), only increases
the left-hand side of Eqation (6.34). Similarly, if M𝑖, 𝑗 ≥ −min(0, 𝑟 𝑖psum),
value −min(0, 𝑟 𝑖psum) of M𝑖, 𝑗 compensates for 𝑟 𝑖psum while the rest, M𝑖, 𝑗 +
min(0, 𝑟 𝑖psum), only increases the left-hand side.

Definition 19. Value 𝑐 𝑗 𝑠

Let us de�ne, for any 𝑗 ∈ C?,
𝑐 𝑗
𝑠 = 𝑐 𝑗

psum

+
∑︁

𝑖∈R? |𝑟 𝑖 eub≥0
max

[
max

(
0,M𝑖, 𝑗

) −max
(
0,min

(
M𝑖, 𝑗 , 𝑐 𝑗

pub+
))
,

max
(
0,min

(
0, 𝑟 𝑖psum

) +M𝑖, 𝑗
) ] (6.40)

as the left-hand side of Equation (6.34) exceeds the right-hand side by at least

max(0,M𝑖, 𝑗 ) −max(0,min(M𝑖, 𝑗 , 𝑐 𝑗
pub+)) ,

and at least

max(0,min(0, 𝑟 𝑖psum) +M𝑖, 𝑗 ) ,
for any 𝑖 ∈ R?

and any 𝑗 ∈ (C? \ C∈∗) such that

𝑟 𝑖
eub ≥ 0 ∧ 𝑐 𝑗

pub+ ≥ 0 .

The inequality of Eqation (6.34) is not modi�ed by the addition of∑︁
𝑗 ∈(C?\C∈∗) |𝑐 𝑗 𝑠 ≥0

𝑐 𝑗
psum , (6.41)

to its left-hand side (see Definition 19). Moreover, 𝑐 𝑗 psum ≥ 0 =⇒ 𝑐 𝑗
𝑠 ≥

0 =⇒ ∑
𝑗 ∈(C?∩C∈∗) |𝑐 𝑗 𝑠 ≥0

𝑐 𝑗
psum ≥ ∑

𝑗 ∈(C?∩C∈∗)
𝑐 𝑗

psum. Consequently, adding∑︁
𝑖∈R∈

𝑟 𝑖
psum +

∑︁
𝑗 ∈C? |𝑐 𝑗 𝑠 ≥0

𝑐 𝑗
psum (6.42)
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to the left-hand side, which becomes equal to newUB, and adding∑︁
𝑖∈R∈

𝑟 𝑖
psum +

∑︁
𝑗 ∈(C?∩C∈∗)

𝑐 𝑗
psum (6.43)

to the right-hand side, which becomes equal to best, of Eqation (6.34), pre-
serves the inequality. Consequently, newUB is an upper bound to best as the
bound is larger or equal to the best value.

The de�nition of newUB allows stronger �ltering on the domain of𝑤 :[
𝑤min,𝑤max] ← [

𝑤min,min (𝑤max, newUB)] . (6.44)

The upper bound newUB to best is equal to 15 in Example 2. The upper
bound baseUB to best is equal to 25 is Example 2.

6.4.2 New dominance rules

Let us de�ne rules to �lter out solutions from the solution space or values
from the domain of the variables. Theorems 9, 10, and 11 de�ne rules to
detect rows (or columns) that never belong to the best extension to any partial
assignment.

Theorem 9.
Given a partial assignment, any row 𝑖 ∈ R?

with 𝑟 𝑖
pub+ < 0 never belongs to the

best extension:

∀𝑖 ∈ R? : 𝑟 𝑖pub+ < 0 =⇒ 𝑖 ∉ R∈∗ . (6.45)

Proof. Excluding row 𝑖 is a better decision in all extensions to any partial as-
signment when maximizing 𝑤 , similarly to proof given in Theorem 7. Con-
sequently, 𝑖 never belongs to the best extension: 𝑖 ∉

(R? ∩ R ∈∗) =⇒ 𝑖 ∉
R∈∗.

Lemma 1.
Given a partial assignment, any row 𝑖 ∈ R?

with 𝑟 𝑖
pub+ ≥ 0 never belongs to the

best extension if ∃ 𝑗 ∈ (C? \ C∈∗) such thatM𝑖, 𝑗 > 𝑟 𝑖
pub+

:

∀𝑖 ∈ R?, 𝑗 ∈ C? | M𝑖, 𝑗 > 𝑟 𝑖
pub+ ≥ 0 : 𝑗 ∉ C∈∗ =⇒ 𝑖 ∉ R∈∗ . (6.46)

Proof. For any 𝑖 ∈ R?, any 𝑗 ∈ C? such that M𝑖, 𝑗 > 𝑟 𝑖
pub+ ≥ 0, the value of

𝑟 𝑖
pub+ after exclusion of 𝑗 is

𝑟 𝑖
pub+C\𝑗 = 𝑟 𝑖pub+ −max

(
0,M𝑖, 𝑗

)
. (6.47)

Then, C \ 𝑗 =⇒ 𝑟 𝑖
pub+C\𝑗 < 0 =⇒ 𝑖 ∉ R∈∗.
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Example 2 illustrates Lemma 1: c3 (𝑐c3pub+ = 4) only decreases the objec-
tive if r3 is removed from the partial assignment (𝑐c3pub+R\r3 = −2 =⇒ c3 ∉

C∈∗). Also, excluding c3 implies the exclusion of r3: 𝑟r3pub+C\c3 = 1 − 6.

Theorem 10.
Given a partial assignment, row 𝑖 (∈ R? | 𝑟 𝑖 eub ≥ 0) and column 𝑗 (∈ C? |
𝑐 𝑗

eub ≥ 0) never belong to the best extension if 𝑟 𝑖pub++𝑐 𝑗 pub+−max
(
0,M𝑖, 𝑗

)
< 0:

∀𝑖 ∈ R?, 𝑗 ∈ C? | 𝑟 𝑖pub+ ≥ 0 ∧ 𝑐 𝑗
pub+ ≥ 0 :

𝑟 𝑖
pub+ + 𝑐 𝑗 pub+ −max

(
0,M𝑖, 𝑗

)
=⇒ 𝑖 ∉ R∈∗ ∧ 𝑗 ∉ C∈∗

(6.48)

Proof. Let us de�ne X, Y, 𝑖 and 𝑗 such that:

X ∈
{
X | R∈ ⊆ X ⊆

(
R∈ ∪ R? \ {𝑖}

)}
, (6.49)

𝑖 ∈ R? ∧ 𝑟 𝑖
pub+ ≥ 0 , (6.50)

Y ∈ {Y | C∈ ⊆ Y ⊆
(
C∈ ∪ C? \ { 𝑗}

)
} , (6.51)

𝑗 ∈ C? ∧ 𝑐 𝑗
pub+ ≥ 0 . (6.52)

For any partial assignment (X, {𝑖},Y, { 𝑗}):

𝑤R←𝑖
C←𝑗

= 𝑤R\{𝑖 }
C\{ 𝑗 }

+ 𝑟 𝑖psum +
∑︁

𝑗 ′∈(C?∩Y)
𝑚𝑖, 𝑗 ′ + 𝑐 𝑗 ′psum +

∑︁
𝑖′∈(R?∩X)

𝑚𝑖′, 𝑗 +M𝑖, 𝑗 ,
(6.53)

and

𝑟 𝑖
pub+ + 𝑐 𝑗 pub+ −max

(
0,M𝑖, 𝑗

)
≥ 𝑟 𝑖psum +

∑︁
𝑗 ′∈(C?∩Y)

𝑚𝑖, 𝑗 ′ + 𝑐 𝑗 psum +
∑︁

𝑖′∈(R?∩X)
𝑚𝑖′, 𝑗 +M𝑖, 𝑗 . (6.54)

Then,

𝑟 𝑖
pub+ + 𝑐 𝑗 pub+ −max

(
0,M𝑖, 𝑗

)
< 0 =⇒ 𝑤R←𝑖

C←𝑗
< 𝑤R\{𝑖 }

C\{ 𝑗 }
, (6.55)

and (X, ∅,Y, ∅) is a better solution than (X∪{𝑖}, ∅,Y∪{ 𝑗}, ∅). Consequently,
𝑖 or 𝑗 never belongs to the best extension: 𝑖 ∉ R∈∗ ∨ 𝑗 ∉ C∈∗. However,
𝑖 ∉ R ∈∗ =⇒ 𝑗 ∉ C∈∗ and symmetrically from Lemma 1 and its symmetrical
counterpart. Consequently, neither 𝑖 nor 𝑗 belong to the best extension: 𝑖 ∉
R∈∗ ∧ 𝑗 ∉ C∈∗.
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Example 2 illustrates Theorem 10: r3 and c3 are mainly supported by
value 6 in (r3, c3) as 𝑟r3pub+ = −5+6 and 𝑐c3pub+ = −2+6. Yet, (r3, c3) cannot
support them simultaneously as the maximal bene�t of taking both r3 and c3
is −5 − 2 + 6 = 𝑟r3pub+ + 𝑐c3pub+ − 6 ≤ 0.

Lemma 2.
For any row 𝑖 ∈ R?

,

𝑟 𝑖
pub+ ≠ 𝑟 𝑖 eub ⇐⇒

{
𝑗 ∈ C? | M𝑖, 𝑗 > 𝑐 𝑗

pub+ ≥ 0
}
≠ ∅ . (6.56)

Theorem 11.
Given a partial assignment, any possible row 𝑖 ∈ R?

with 𝑟 𝑖
eub < 0 never belongs

to the best extension:

∀𝑖 ∈ R? : 𝑟 𝑖 eub < 0 =⇒ 𝑖 ∉ R∈∗ . (6.57)

Proof. Let us de�ne a set 𝐷𝑖 =
{
𝑗 ∈ C? | M𝑖, 𝑗 > 𝑐 𝑗

pub+ ≥ 0
}
.

∀𝑖 ∈ R? | 𝐷𝑖 = ∅ : 𝑟 𝑖
eub < 0 =⇒ 𝑟 𝑖

pub+ < 0 , Lemma 2 ,

𝑟 𝑖
pub+ < 0 =⇒ 𝑖 ∉ R∈∗ , Theorem 9 .

(6.58)

For any partial assignment (X, {𝑖},Y, 𝐷𝑖), if |𝐷𝑖 | > 0, Lemma 1 states that
excluding row 𝑖 implies the exclusion of all columns in𝐷𝑖 . Let (X, ∅,Y, ∅) and
(X∪{𝑖}, ∅,Y∪𝐷∗𝑖 , ∅) be the best extensionswhen excluding and selecting row
𝑖 , respectively, with 𝐷∗𝑖 = 𝐷𝑖 ∩ C∈∗. Let us compute the di�erence between
the weight of (X ∪ {𝑖}, ∅,Y ∪ 𝐷∗𝑖 , ∅) and (X, ∅,Y, ∅):

𝑟 𝑖
psum +

∑︁
𝑗 ∈(C?∩C∈∗)\𝐷∗𝑖

M𝑖, 𝑗 +
∑︁
𝑗 ∈𝐷∗

𝑖

M𝑖, 𝑗 +
∑︁
𝑗 ∈𝐷∗

𝑖

©­­«𝑐 𝑗 psum +
∑︁

𝑖′∈(R?∩R∈∗)\{𝑖 }
𝑚𝑖′, 𝑗

ª®®¬
≤ 𝑟 𝑖psum +

∑︁
𝑗 ∈(C?∩C∈∗)\𝐷∗𝑖

M𝑖, 𝑗 +
∑︁
𝑗 ∈𝐷∗

𝑖

𝑐 𝑗
pub+ (6.59)

≤ 𝑟 𝑖psum +
∑︁

𝑗 ∈(C?∩C∈∗)\𝐷∗𝑖
max

(
0,M𝑖, 𝑗

) + ∑︁
𝑗 ∈𝐷∗

𝑖

𝑐 𝑗
pub+ . (6.60)
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The latter (right-hand side of Eqation 6.60) is smaller than 𝑟 𝑖 eub:

𝑟 𝑖
psum +

∑︁
𝑗 ∈(C?∩C∈∗)\𝐷∗𝑖

max
(
0,M𝑖, 𝑗

) + ∑︁
𝑗 ∈𝐷∗

𝑖

𝑐 𝑗
pub+ (6.61)

= 𝑟 𝑖
psum +

∑︁
𝑗 ∈(C?∩C∈∗) |𝑐 𝑗 pub+≥M𝑖,𝑗

max
(
0,M𝑖, 𝑗

)
+

∑︁
𝑗 ∈(C?∩C∈∗) |M𝑖,𝑗>𝑐 𝑗 pub+≥0

𝑐 𝑗
pub+ (6.62)

= 𝑟 𝑖
psum +

∑︁
𝑗 ∈(C?∩C∈∗)

max
(
0,min

(
M𝑖, 𝑗 , 𝑐 𝑗

pub+
))

(6.63)

≤ 𝑟 𝑖psum +
∑︁
𝑗 ∈C?

max
(
0,min

(
M𝑖, 𝑗 , 𝑐 𝑗

pub+
))

= 𝑟 𝑖
eub . (6.64)

This illustrates that if 𝑟 𝑖 eub is negative, selecting 𝑖 and its dependent columns
𝐷∗𝑖 can only alter the objective function: 𝑖 must be excluded.

Consider Example 2: c3 depends on r3 and reciprocally. Selecting r3
comes with a cost of 10, to be balanced by (r3, c3): C((r3, c3) → r3) =
5 =⇒ C((r3, c3) → 𝑐c3)

eub = 1 and 𝑐c3 eub = −1. Similarly, c3 comes with a
cost of 2 to be balanced by (r3, c3): C((r3, c3) → c3) = 2 =⇒ C((r3, c3) →
𝑟r3)

eub = 4 and 𝑟r3 eub = −2. It is clear that (r3, c3) cannot support both r3
and c3.

Let us de�ne 𝑐 𝑗 lb = 𝑐 𝑗 psum +
∑

𝑖∈R? |𝑟 𝑖 eub≥0
min

(
0,M𝑖, 𝑗

)
. Theorem 12 de�ne

rules to detect columns (or rows) that always belong to the best extension to
any partial assignment.

Theorem 12.
Given a partial assignment, any column 𝑗 ∈ C? with 𝑐 𝑗 lb > 0 always belongs to
the best extension:

∀𝑖 ∈ R? : 𝑐 𝑗 lb > 0 =⇒ 𝑗 ∈ C∈∗ . (6.65)

Proof. Inserting column 𝑗 is a better decision in all extensions to any par-
tial assignment when maximizing 𝑤 , similarly to proof given in Theorem 7.
Therefore, 𝑗 always belongs to the best extension: 𝑗 ∈ (R? ∩ R ∈∗) =⇒ 𝑗 ∈
C∈∗.

Observe that if 𝑟 𝑖 eub +M𝑖, 𝑗 < 0, one would likely exclude the row rather
than addingM𝑖, 𝑗 , with costs 𝑟 𝑖 eub and −M𝑖, 𝑗 , respectively. Let us de�ne 𝑐 𝑗 elb =
𝑐 𝑗

psum + ∑𝑖∈R? |𝑟 𝑖 eub≥0max
(
min

(
0,M𝑖, 𝑗

)
,−𝑟 𝑖 eub

)
as the smallest contribution

of 𝑗 if it was selected. It accounts for the in�uence of 𝑗 on the set of possible
rows upon (hypothetical) selection of 𝑗 . Then, 𝑐 𝑗 elb > 0 =⇒ 𝑗 ∈ C∈∗ as 𝑗
always belongs to the best extensions.
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6.5 Experiments

This section describes experiments conducted to assess the performance of
two implementations using:

1. the baseUB upper bound and associated �ltering and dominance rules,
and

2. the newUB upper bound and the corresponding new �ltering and new
dominance rules.

The two implementations, respectively called after the name of the upper
bound they rely on, are compared using data matrices generated in a con-
trolled setting. By comparing these two implementations, we can evaluate
the increased �ltering provided with the new upper bound, �ltering rules,
and dominance rules.

We consider small instances matrices to allow the search to solve to op-
timality. This allows comparing implementations on the time or number of
nodes to �nd the optimal solution and the time or number of nodes required
to prove optimality. Additional experiments on large instance matrices using
large neighborhood search is left as future work.

Algorithms have been implemented in Scala (2.13.1). Each run is exe-
cuted with a single thread on a MacBook Pro (OS version 10.10.5, Intel
i7-2720 CPU @ 2.20-3.30GHz, 4GB RAMper run). CP implementations
are based on OscaR [Osc12] (version 4.1.0). The code and datasets are avail-
able at [Bra21]. Only instances solved within 2 minutes by both methods are
considered to compare the time to �nd and prove the optimal solution.

6.5.1 Synthetic dataset

We generated 224 instances using a similar approach to [BSD17] while con-
sidering harder to solve instances for which positive entries do not belong to
the optimal solution. Each instance is actually generated as a matrix of size
(𝑥,𝑦) ∈ {(40, 40), (50, 32), (64, 25), (80, 20)} with values drawn from a normal
distribution N(−3, 1), a number 𝐾 ∈ {2, 5} of submatrices is de�ned with
values drawn from N(1, 1). Each submatrix is de�ned as uniformly selected
subsets of rows and columns of sizes (√𝑝 × 𝑥,√𝑝 × 𝑦) with 𝑝 ∈ {0.2, 0.5}. A
value is added or subtracted to all matrix entries such that a fraction 𝑑 ∈ {0.2,
0.3, 0.4, 0.5, 0.6, 0.7, 0.8} of the matrix entries are positive.

6.5.2 Results

Figure 6.1a presents the number of instances that each algorithm solves more
e�ciently. An instance is considered more e�ciently solved by an algorithm
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(b) Performance pro�les

Figure 6.1: Results of the performance of newUB and baseUB, and the associ-
ated �ltering and dominance rules, computed on 224 generated instances. (a):
each bar represents the fraction of instances solved more e�ciently by each
approach. The green bars correspond to the sum of the orange and blue bars.
(b): each point (x,y) on a curve with label 𝑐 indicates that the performance
of 𝑐 is within a factor 𝑥 from the performance of the other algorithm in a
fraction 𝑦 of the instances. Results are reported only for instances solved by
both approaches within 2 minutes.
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if the time required to prove the optimality of its solution is smaller than that
of other algorithms. Counts are reported as a function of the rate of positive
entries in the instances matrices. It is clear from the graph that the perfor-
mance are in�uenced by the fraction of positive entries in the instance matrix.
The new upper bound appears less sensitive to the in�uence of positive en-
tries.

While it is interesting to quantify the performance of each algorithm, per-
formance pro�les [DM02] may provide more general insights and conclu-
sions. A performance pro�le is a cumulative distribution function 𝐹 (𝜏) of a
given performance metric 𝜏 . In this paper, the 𝜏 value is the ratio between the
solving metric (typically, time or number of nodes) of a target approach and
that of the best approach for the particular instance. Let us consider the third
graph in Figure 6.1b as an example. We can read that 𝐹baseUB(𝜏 = 15) = 0.50.
This means that the performance, computed as the number of nodes explored
to prove optimality, of baseUB is within a factor 15 of the performance of
newUB in 50% of the problems. Alternatively, reading that 𝐹newUB(𝜏 = 1) = .98
means that newUB requires less nodes to prove optimality in 98% of the prob-
lems. This illustrates the bene�t of newUB in terms of nodes explored, even
in instances containing only a small fraction of positive entries. Nevertheless,
one might be more interested in computational time.

The �rst graph in Figure 6.1b presents the performance pro�les using as
the performance metric the time required to get the optimal solution, but not
considering the time required to prove that it is optimal. Note that the x-axis
is linear while it is semi-log in other graphs. The performance of newUB is
within a factor of 2.7 from the performance of baseUB in all instances. The
performance of baseUB is within a factor of 2.7 from newUB in half of the
instances. Performance of baseUB is within a factor 48.2 of the performance
of newUB in all instances when considering the time required to �nd the best
solution.

The second graph in Figure 6.1b presents the performance pro�les using
the time required to prove optimality as the performance metric. We observe
that baseUB is e�cient on many instances but fails miserably in some in-
stances. If given 10 times the time required by newUB to solve an instance,
baseUB solves roughly 75% of the instances. This clearly illustrates that the
new upper bound, while being more computationally intensive, is a better
option if there is no knowledge on which approach would be best.

6.6 Conclusions

A new model for the maximal sum submatrix problem was proposed, which
achieves the same �ltering as the constraint programming approach de�ned
in Chapter 2. That new CP model and the approach de�ned in an earlier
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chapter prove to be quite competitive due to reduced computational-time
complexity. We illustrated limit cases for which the upper bound is not tight
and is consequently ine�cient to �lter out suboptimal parts of the search
tree. Those cases have been addressed by de�ning a new bound and new
dominance rules. Experiments on synthetic data expose the limits of the
baseUB, which may largely fail on unfavorable instances. The new upper
bound newUB appears as a relevant alternative to baseUB as it does not re-
quire many additional resources to solve all instances. It actually requires
fewer resources in some instances.

Most extensions to the maximal sum submatrix problem rely on the iden-
ti�cation of a submatrix of maximal sum. Those extensions might bene�t
from newUB and the dominance rules introduced in this paper just as the
bound and rules bene�t to implementations solving the maximal sum subma-
trix problem. The bene�ts of newUB and dominance rules to those extensions
should be evaluated in future works.





Conclusions and
perspectives 7
7.1 Few problems and many solutions

This thesis presents the maximal sum submatrix problem. It consists in �nd-
ing subsets of rows and of columns of a matrix. The submatrix has to be
of maximal weight: the sum of entries in the submatrix must be as high as
possible. Two extensions are also presented. They concern the identi�ca-
tion of multiple submatrices. The multiple submatrices cannot overlap in the
maximum weighted set of disjoint submatrices problem, presented in Chap-
ter 3 Mining K disjoint submatrices of maximal sum. Submatrices may
overlap in the maximum weighted submatrix coverage problem, presented in
Chapter 4 Mining k overlapping submatrices of maximal sum.

The three optimization problems considered in this thesis are NP-hard.
It is hopeless to �nd optimal solutions on large instance matrices such as
gene expression matrices with hundreds of thousands of entries. An optimal
solution is easy to �nd in some circumstances, however. This is related to the
implicit threshold and the maximization term that rewards positive entries
and penalizes negative entries. Changing the threshold can drastically change
the solution space and the search space. The optimal solution is easier to �nd
but less relevant from a biological point of view for extreme threshold values.

The thesis focuses on themore di�cult instanceswith intermediate thresh-
old values. This is motivated by the biological applications where small but
non-empty submatrices are to be expected. It is quite common for NP-hard
problems to �x a trade-o� between the time spend to �nd a solution and the
expected quality of that solution. The trade-o� is set here by �xing a maxi-
mal amount of time to �nd the best solution possible. There is an underlying
assumption that one is interested in high solution quality in short amounts of
time. In all experiments, the maximal time allocated ranges from fewminutes
to few hours.

Many algorithmic contributions of this document are related to the re-
duction of the computational time to explore the search space. It usually
comes from the design of e�cient bounds and e�cient �ltering procedures
or dominance rules. Still, incomplete searches, such as greedy search or large
neighborhood search, are usually required to provide the best performances.
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This can be explained by our assumption that one is interested in high solu-
tion quality in short amounts of time. One could argue that time might be less
critical than the solution quality in a biological context. The results presented
throughout the thesis could be vastly impacted in such context. It would be
worth testing how solution quality advances may improve the biological re-
sults obtained.

This document presents many algorithms and implementations. They dif-
fer on the solver they rely on, the search strategy considered, and the prob-
lems they are designed to address. Other di�erences are explained by the
fact that they have been designed to produce the highest performance pro�le
possible in a particular (set of) experiments. Still, there are many similitudes
between the problems to solve and the experiments performed. Table 7.1
presents all implementations used during the thesis and illustrates some of
the similarities and di�erences between them.

7.2 Guidance and perspectives for the biologist

Results in Chapter 5 are supporting the relevance of the maximal sum sub-
matrix problem as compared to standard biclustering approaches. This sug-
gests that searching for relevant bicluster should be done through the max-
imization of the sum of the covered entries. Still, it may not be advisable to
use one of the implementations provided in this work without some prior
considerations. Some important elements are presented hereafter:

1. What is the actual problem?

(a) Are there multiple or just one submatrix to �nd?
(b) Should overlaps be allowed?
(c) Are there additional constraints that are not considered in the pro-

vided implementation(s)?

2. What is the actual data?

(a) Does it require preprocessing?
(b) Does it require normalization?

3. Should quality or e�ciency be favored?

Experiments performed in Chapter 5 are restricted to the search of over-
lapping submatrices with a focus on e�ciency. It is important to compare
these resultswith the performances of the implementations provided in Chap-
ter 4 and the approaches for �nding disjoint submatrices proposed in Chap-
ter 3. Comparisons should take into account both the quality and e�ciency
of each implementation.
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Table 7.1: Implementations presented throughout the thesis

Problem Subm.
model Solver Optim.

Sol. Features

CP-LNS0 MSS Booleans OscarCP 7

CP-LNS MSS Booleans OscarCP 7 · Reduced search space

CPGC MSS Sparse-Sets OscarCP 7

· Reduced search space
· Upper bound
· Dominance rules
· Variable value heuristic

MILP MSS Booleans Gurobi 3 · 𝜃 (𝑚 × 𝑛) variables
MILP Big M MSS Booleans Gurobi 3 · 𝜃 (𝑚 + 𝑛) variables
baseUB MSS Sparse-Sets OscarCP 3

· Dominance rules
· Light upper bound

newUB MSS Sparse-Sets OscarCP 3
· Tight but costly
rules and bounds

Greedy
baseline
/Hot start

MWSDS Sparse-Sets OscarCP 7

· Subroutine: CPGC
Best solution in

a budget of time
· Overlaps penalized

with −∞

Column
Generation MWSDS Sparse-Sets Gurobi +

OscarCP 3

· Suboptimal solving
of the pricing problem
with the Greedy
baseline

MILP MWSDSP Booleans Gurobi 3 · 𝜃 (𝑚 + 𝑛) variables

CP greedy MWSC Sparse-Sets OscarCP 7

· Subroutine: CPGC
for a given
amount of time
· Overlaps neutralized

CP exhaust. MWSC Sparse-Sets OscarCP 3

· Finite state machines
· Bounds and
dominance rules
· Variable value heuristic

CP LNS MWSC Sparse-Sets OscarCP 7

· Finite state machines
· Bounds and
dominance rules
· Variable value heuristic
· Three LNS restarts

MIP model MWSC Booleans Gurobi 3 · 𝜃 (𝑘𝑚𝑛) variables
MIQCP MWSC Booleans Gurobi 3 · 𝜃 (𝑘 (𝑚 + 𝑛)) variables

K-CPGC MWSC Sparse-Sets OscarCP 7

· Subroutine: CPGC
until convergence
· Overlaps neutralized
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One of the current challenges in cancer research is the integration of
various molecular data to de�ne clinically or biologically meaningful sub-
types. Combining the increasingly available genomes, transcriptomes and
epigenomes provides a broader view of the underlying biology.

A motivation for the application of the maximal sum submatrix prob-
lem to biological data is the ability to deal with heterogeneity, as obtained
by combining data types. Mutation matrices are sparse binary matrices with
ones corresponding to a particular mutation for a particular sample; zeros
corresponds to no occurrence. There are biological connexions between mu-
tations and gene expression, and integrativemethods are promising [Sub+20].
It is not clear yet how gene expression matrices and mutation matrices could
be combined in the context of the MSS problem. Moreover, actual experi-
ments on the maximal amount of heterogeneity that the proposed optimiza-
tion problems can be dealt with should be carried out.

The maximal sum submatrix mining problem could be extended to a su-
pervised classi�cation setting. For example, in gene expression analysis, one
typically wants to �nd genes that discriminate between two conditions. In
other words, the columns could be a priori labeled according to two condi-
tions. The objective can then be to identify a subset of maximally relevant
rows to discriminate between subsets of samples from di�erent conditions.
This could be encoded in a larger matrix for which columns represent pairs
of columns in either conditions from the original matrix and the value stored
is interpreted as a distance value for a particular gene across both conditions.

The maximal sum submatrix problem could also be applied to outlier de-
tection and biclustering. For example, using an appropriate data transforma-
tion, entries that are close to the mean or to the median could be mapped to
relatively large positive entries. Similarly, entries far away from the mean
would be mapped to low values. Consequently, a submatrix of maximal sum
after such transformationwould correspond to subsets of rows and of columns
exhibiting similar entries. Explicit comparisons to existing biclustering algo-
rithms could be considered in such a setting.

7.3 Guidance and perspectives for the computer scientist

Throughout the thesis, it has been shown that CP can be used to e�ciently
address the maximal sum submatrix problem and its extensions.

Two major advantages of constraint programming and mixed integer lin-
ear programming approaches over the design of ad-hoc softwares are:

1. that the researcher can rely on the solvers with all the tools and search
strategies that are provided with them,

2. and existing solutions, as proposed in this document, can be combined
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with additional constraints of objective function changes, given some
additional work, to �t the particular problems that onemight encounter.

However, additional work might be required to e�ciently bene�t from the
solvers.

Some examples of constraints addition or objective functionmodi�cations
include:

1. constraining the number of samples, such that submatrices are associ-
ated with more than a few samples,

2. constraining the number of genes, such that very generic pathways
including too many genes are excluded,

3. modifying the objective function to maximize the median value, to re-
duce the sensitivity to extreme values.

Such changes could have a large in�uence on the search space, the perfor-
mances, and the e�ectiveness of the bounds and dominance rules designed
for the maximal sum submatrix problem. The actual in�uence may vary a
lot and should be evaluated for the particular modi�cations considered. The
speci�c performances of the implementations provided for the MSS should
also be evaluated.

From a computational point of view, it would be interesting to see howCP
performs on some of the standard biclustering problems. Indeed, many of the
biclustering variants can be expressed as optimization problems to be solved.
It would be ideal to start with the biclustering problem de�ned in [CC00].
The objective is to minimize the variance within a bicluster by minimizing its
minimum-square residue (see Cheng and Church’s algorithm in Chapter 5).
Simple upper bounds and variable value heuristics could be easily de�ned.
E�cient bounds updates and look-aheads could be designed as the minimum-
square residue is computed as a sum of averages, similarly to the weight of
submatrices for the MSS problem. Moreover, this Cheng and Church’s algo-
rithm provided the best performances with our algorithm in the biological
evaluations in Chapter 5 Mining submatrices of maximal sum in gene
expression data. Finally, it is the �rst de�nition of a biclustering problem
and is still among the most cited techniques in biclustering.

Future work should re�ne the maximum weighted submatrix coverage
problem presented in Chapter 4 as it presents a bias: the objective function
favors overlaps of submatrices on negative entries. Indeed, once a negative
entry is covered, adding it to another submatrix is cost-free. On the other
hand, once a positive entry is covered, the objective value does not bene�t
from the matrix entry coverage by additional submatrices. Intuitively, one
would like to prevent the selection of negative entries in one submatrix, or
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worst, in multiple submatrices. One would like to favor the selection of posi-
tive entries. In particular, one would like to favor the overlaps on the positive
entries rather than on the negative entries. A possible modi�cation of the
maximum weighted submatrix coverage problem could consist in applying a
penalty for selecting matrix entries covered by multiple submatrices. In any
case, modi�cations of the objective function would require dedicated modi�-
cations of the algorithms provided in this work.

The search space limits the performance of all methods proposed to solve
the maximal sum submatrix problem or one of its extensions. The 𝑚 by 𝑛
entries of the input matrix determine the search space. Unsurprisingly, the
decision to include or not a row 𝑟 1 in any node of the search space should be
completely identical to the decision for the row 𝑟 2 if both rows are identical,
or if:

M𝑟 1, 𝑗 = M𝑟 2, 𝑗 , ∀𝑗 ∈ C .

Merging all sets of identical rows would help to reduce the size of the search
space. Similarly, merging all sets of identical columns would improve per-
formance. Solvers for the maximal sum submatrix problem or one of its ex-
tensions should work on a modi�ed matrixM ′ with all sets of identical rows
and all sets of identical columns being merged. One might not expect to �nd
many identical rows or columns in large and real instances matrices. It is then
to determine the rules to merge rows or columns close enough to share their
domain in all possible extensions to a partial assignment.
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Additional tables

Table 2: 01_alpha_factor.

term description p-adjust.
1 GO:0042254 ribosome biogenesis 1.191613e-17
2 GO:0022613 ribonucleoprotein complex biogenesis 2.715624e-16
3 GO:0006364 rRNA processing 3.099617e-13
4 GO:0016072 rRNA metabolic process 3.099617e-13
5 GO:0034470 ncRNA processing 2.532992e-12
6 GO:0042274 ribosomal small subunit biogenesis 6.232817e-12
7 GO:0034660 ncRNA metabolic process 9.263555e-11
8 GO:0006396 RNA processing 4.683446e-10
9 GO:0000462 maturation of SSU-rRNA from tricistronic rRNA

transcript
5.519431e-10

10 GO:0030490 maturation of SSU-rRNA 1.055367e-09
11 GO:0044085 cellular component biogenesis 6.271420e-08
12 GO:0000460 maturation of 5.8S rRNA 9.602590e-08
13 GO:0000466 maturation of 5.8S rRNA from tricistronic rRNA

transcript
9.602590e-08

14 GO:0000478 endonucleolytic cleavage involved in rRNA pro-
cessing

3.796748e-07

15 GO:0000479 endonucleolytic cleavage of tricistronic rRNA tran-
script

3.796748e-07

16 GO:0050801 ion homeostasis 4.712789e-07
17 GO:0055080 cation homeostasis 4.712789e-07
18 GO:0000469 cleavage involved in rRNA processing 8.120976e-07
19 GO:0044764 multi-organism cellular process 1.170023e-06
20 GO:0000746 conjugation 1.170023e-06
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Table 3: 02_cdc_15.

term description p-adjust.
1 GO:0042254 ribosome biogenesis 1.171585e-25
2 GO:0022613 ribonucleoprotein complex biogenesis 8.445391e-23
3 GO:0034660 ncRNA metabolic process 8.445391e-23
4 GO:0034470 ncRNA processing 1.209137e-22
5 GO:0006364 rRNA processing 2.809275e-22
6 GO:0016072 rRNA metabolic process 2.809275e-22
7 GO:0006396 RNA processing 4.656052e-19
8 GO:0016070 RNA metabolic process 4.518930e-17
9 GO:0090304 nucleic acid metabolic process 1.573745e-15
10 GO:0044085 cellular component biogenesis 8.007472e-15
11 GO:0010467 gene expression 6.087563e-12
12 GO:0042274 ribosomal small subunit biogenesis 1.510783e-11
13 GO:0006139 nucleobase-containing compound metabolic pro-

cess
1.371075e-09

14 GO:0042273 ribosomal large subunit biogenesis 2.956637e-09
15 GO:0046483 heterocycle metabolic process 9.716562e-09
16 GO:0006725 cellular aromatic compound metabolic process 1.529971e-08
17 GO:0000460 maturation of 5.8S rRNA 1.955398e-08
18 GO:0000466 maturation of 5.8S rRNA from tricistronic rRNA

transcript
1.955398e-08

19 GO:0030490 maturation of SSU-rRNA 1.955398e-08
20 GO:0000462 maturation of SSU-rRNA from tricistronic rRNA

transcript
3.623493e-08
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Table 4: 03_cdc_28.

term description p-adjust.
1 GO:0002181 cytoplasmic translation 2.553447e-29
2 GO:0006412 translation 3.901098e-27
3 GO:0043043 peptide biosynthetic process 3.901098e-27
4 GO:0043604 amide biosynthetic process 3.901098e-27
5 GO:0006518 peptide metabolic process 8.745269e-25
6 GO:0043603 cellular amide metabolic process 2.993049e-23
7 GO:1901566 organonitrogen compound biosynthetic process 4.118333e-20
8 GO:0042254 ribosome biogenesis 1.682898e-16
9 GO:1901564 organonitrogen compound metabolic process 1.951916e-16
10 GO:0019538 protein metabolic process 1.482145e-13
11 GO:0022613 ribonucleoprotein complex biogenesis 2.570928e-12
12 GO:0044267 cellular protein metabolic process 2.730851e-12
13 GO:0042274 ribosomal small subunit biogenesis 5.359186e-10
14 GO:0006364 rRNA processing 2.515863e-09
15 GO:0042273 ribosomal large subunit biogenesis 5.502242e-08
16 GO:0016072 rRNA metabolic process 5.567943e-08
17 GO:0044271 cellular nitrogen compound biosynthetic process 3.490743e-07
18 GO:0034645 cellular macromolecule biosynthetic process 4.093896e-07
19 GO:0009059 macromolecule biosynthetic process 5.144026e-07
20 GO:0000462 maturation of SSU-rRNA from tricistronic rRNA

transcript
9.260947e-07
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Table 5: 04_elutriation.

term description p-adjust.
1 GO:0042254 ribosome biogenesis 5.720403e-34
2 GO:0022613 ribonucleoprotein complex biogenesis 2.835895e-31
3 GO:0034660 ncRNA metabolic process 6.707776e-28
4 GO:0034470 ncRNA processing 1.025721e-25
5 GO:0006364 rRNA processing 1.627219e-24
6 GO:0016072 rRNA metabolic process 2.300636e-24
7 GO:0010467 gene expression 4.712617e-23
8 GO:0006807 nitrogen compound metabolic process 1.210243e-21
9 GO:0034641 cellular nitrogen compound metabolic process 3.630761e-20
10 GO:0006396 RNA processing 7.580284e-20
11 GO:0042274 ribosomal small subunit biogenesis 5.847937e-17
12 GO:0044085 cellular component biogenesis 9.716219e-17
13 GO:0016070 RNA metabolic process 1.620486e-16
14 GO:0006139 nucleobase-containing compound metabolic pro-

cess
3.841940e-16

15 GO:0046483 heterocycle metabolic process 1.615821e-15
16 GO:0006725 cellular aromatic compound metabolic process 2.396934e-15
17 GO:0090304 nucleic acid metabolic process 2.418670e-15
18 GO:1901360 organic cyclic compound metabolic process 2.720483e-15
19 GO:0030490 maturation of SSU-rRNA 4.493421e-15
20 GO:0000462 maturation of SSU-rRNA from tricistronic rRNA

transcript
1.435419e-14

Table 6: 05_1mM_menadione.

term description p-adjust.
1 GO:0032196 transposition 4.575689e-13
2 GO:0032197 transposition, RNA-mediated 4.575689e-13
3 GO:0006979 response to oxidative stress 5.485371e-09
4 GO:0034599 cellular response to oxidative stress 2.435800e-08
5 GO:0055114 oxidation-reduction process 4.793730e-08
6 GO:0044710 single-organism metabolic process 3.606023e-07
7 GO:0042221 response to chemical 1.670056e-04
8 GO:0002181 cytoplasmic translation 0.001291574
9 GO:0019725 cellular homeostasis 1.889669e-03
10 GO:0070887 cellular response to chemical stimulus 2.766072e-03
11 GO:0006623 protein targeting to vacuole 2.766072e-03
12 GO:0072665 protein localization to vacuole 2.766072e-03
13 GO:0072666 establishment of protein localization to vacuole 2.766072e-03
14 GO:0006575 cellular modi�ed amino acid metabolic process 3.421278e-03
15 GO:0008652 cellular amino acid biosynthetic process 3.421278e-03
16 GO:0045454 cell redox homeostasis 1.143711e-02
17 GO:0046394 carboxylic acid biosynthetic process 1.296318e-02
18 GO:0006520 cellular amino acid metabolic process 1.296318e-02
19 GO:0016053 organic acid biosynthetic process 1.296318e-02
20 GO:0006820 anion transport 1.296318e-02
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Table 7: 06_1M_sorbitol.

term description p-adjust.
1 GO:0009056 catabolic process 7.574141e-08
2 GO:0006508 proteolysis 7.574141e-08
3 GO:0044710 single-organism metabolic process 7.676728e-08
4 GO:1901575 organic substance catabolic process 9.198719e-08
5 GO:0044723 single-organism carbohydrate metabolic process 8.168864e-07
6 GO:0044763 single-organism cellular process 6.135262e-06
7 GO:0006091 generation of precursor metabolites and energy 6.135262e-06
8 GO:0030163 protein catabolic process 6.135262e-06
9 GO:0050896 response to stimulus 6.135262e-06
10 GO:0044257 cellular protein catabolic process 7.282433e-06
11 GO:0055114 oxidation-reduction process 9.709549e-06
12 GO:0044248 cellular catabolic process 1.761001e-05
13 GO:0006796 phosphate-containing compound metabolic pro-

cess
2.396838e-05

14 GO:0006793 phosphorus metabolic process 2.636866e-05
15 GO:0005975 carbohydrate metabolic process 3.061083e-05
16 GO:0051603 proteolysis involved in cellular protein catabolic

process
3.065663e-05

17 GO:0006950 response to stress 3.753313e-05
18 GO:0051716 cellular response to stimulus 3.755634e-05
19 GO:0044262 cellular carbohydrate metabolic process 4.816775e-05
20 GO:0015980 energy derivation by oxidation of organic com-

pounds
6.838967e-05
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Table 8: 07_15mM_diamide.

term description p-adjust.
1 GO:0006457 protein folding 1.846434e-07
2 GO:0006081 cellular aldehyde metabolic process 2.444289e-07
3 GO:0055114 oxidation-reduction process 1.143481e-06
4 GO:0033554 cellular response to stress 1.746171e-06
5 GO:0044710 single-organism metabolic process 1.746171e-06
6 GO:0044712 single-organism catabolic process 1.746171e-06
7 GO:0070887 cellular response to chemical stimulus 2.990616e-06
8 GO:0006950 response to stress 2.990616e-06
9 GO:0050896 response to stimulus 5.417786e-06
10 GO:0042221 response to chemical 7.577489e-06
11 GO:0006979 response to oxidative stress 7.577489e-06
12 GO:0010035 response to inorganic substance 7.577489e-06
13 GO:0051716 cellular response to stimulus 7.938822e-06
14 GO:1901575 organic substance catabolic process 1.074632e-05
15 GO:0009056 catabolic process 1.074632e-05
16 GO:0005975 carbohydrate metabolic process 1.144059e-05
17 GO:0044723 single-organism carbohydrate metabolic process 4.072123e-05
18 GO:0034599 cellular response to oxidative stress 4.072123e-05
19 GO:0044282 small molecule catabolic process 9.929611e-05
20 GO:1901700 response to oxygen-containing compound 1.384823e-04

Table 9: 08_25mM_DTT.

term description p-adjust.
1 GO:0002181 cytoplasmic translation 2.571265e-26
2 GO:0006412 translation 1.262146e-20
3 GO:0043043 peptide biosynthetic process 1.814313e-20
4 GO:0043604 amide biosynthetic process 1.270097e-19
5 GO:0006518 peptide metabolic process 4.110698e-19
6 GO:0043603 cellular amide metabolic process 3.413801e-18
7 GO:1901566 organonitrogen compound biosynthetic process 7.571918e-16
8 GO:0010467 gene expression 1.406438e-15
9 GO:0044260 cellular macromolecule metabolic process 5.610111e-14
10 GO:0022613 ribonucleoprotein complex biogenesis 2.348392e-13
11 GO:0044267 cellular protein metabolic process 2.376363e-13
12 GO:0034641 cellular nitrogen compound metabolic process 1.072584e-12
13 GO:0042254 ribosome biogenesis 1.369765e-12
14 GO:0043170 macromolecule metabolic process 1.769892e-12
15 GO:0019538 protein metabolic process 2.764025e-12
16 GO:0006807 nitrogen compound metabolic process 6.721745e-12
17 GO:1901564 organonitrogen compound metabolic process 1.907148e-11
18 GO:0009059 macromolecule biosynthetic process 1.565513e-10
19 GO:0006364 rRNA processing 1.763186e-10
20 GO:0016072 rRNA metabolic process 1.763186e-10
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Table 10: 09_constant_32nM_H2O2.

term description p-adjust.
1 GO:0055114 oxidation-reduction process 6.602138e-14
2 GO:0044710 single-organism metabolic process 2.692915e-09
3 GO:0006979 response to oxidative stress 8.271084e-08
4 GO:0034599 cellular response to oxidative stress 1.049329e-06
5 GO:0042221 response to chemical 1.246732e-05
6 GO:0019725 cellular homeostasis 1.246732e-05
7 GO:0044699 single-organism process 1.246732e-05
8 GO:0048878 chemical homeostasis 1.918285e-05
9 GO:0055072 iron ion homeostasis 2.170300e-05
10 GO:0070887 cellular response to chemical stimulus 2.460483e-05
11 GO:0042592 homeostatic process 2.804128e-05
12 GO:0098771 inorganic ion homeostasis 5.681460e-05
13 GO:0050801 ion homeostasis 7.432589e-05
14 GO:0055080 cation homeostasis 1.652456e-04
15 GO:0044723 single-organism carbohydrate metabolic process 1.716979e-04
16 GO:0044262 cellular carbohydrate metabolic process 2.412582e-04
17 GO:0055065 metal ion homeostasis 2.412582e-04
18 GO:0005975 carbohydrate metabolic process 2.862163e-04
19 GO:0010035 response to inorganic substance 2.862163e-04
20 GO:0055076 transition metal ion homeostasis 3.468919e-04

Table 11: 10_diauxic_shift.

term description p-adjust.
1 GO:0015980 energy derivation by oxidation of organic com-

pounds
7.076662e-17

2 GO:0006091 generation of precursor metabolites and energy 7.076662e-17
3 GO:0055114 oxidation-reduction process 3.610217e-16
4 GO:0045333 cellular respiration 1.631480e-13
5 GO:0044710 single-organism metabolic process 4.596238e-12
6 GO:0009060 aerobic respiration 1.173179e-11
7 GO:0044723 single-organism carbohydrate metabolic process 8.367914e-11
8 GO:0044262 cellular carbohydrate metabolic process 5.735060e-10
9 GO:0005975 carbohydrate metabolic process 2.338722e-09
10 GO:0044763 single-organism cellular process 1.133426e-08
11 GO:1901566 organonitrogen compound biosynthetic process 1.229324e-07
12 GO:0006099 tricarboxylic acid cycle 2.278109e-07
13 GO:0006412 translation 2.830024e-07
14 GO:0043043 peptide biosynthetic process 2.830024e-07
15 GO:0006518 peptide metabolic process 3.950002e-07
16 GO:0043604 amide biosynthetic process 3.950002e-07
17 GO:0006119 oxidative phosphorylation 5.075348e-07
18 GO:0043603 cellular amide metabolic process 1.018864e-06
19 GO:1901564 organonitrogen compound metabolic process 1.018864e-06
20 GO:0022900 electron transport chain 1.136910e-06
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Table 12: 11_complete_DTT.

term description p-adjust.
1 GO:0002181 cytoplasmic translation 6.924363e-59
2 GO:0006412 translation 2.772677e-55
3 GO:0043043 peptide biosynthetic process 5.084914e-54
4 GO:0010467 gene expression 1.800433e-52
5 GO:0043604 amide biosynthetic process 1.567400e-51
6 GO:0006518 peptide metabolic process 1.045339e-49
7 GO:0043603 cellular amide metabolic process 3.758523e-45
8 GO:1901566 organonitrogen compound biosynthetic process 2.466839e-40
9 GO:0022613 ribonucleoprotein complex biogenesis 9.607187e-40
10 GO:0042254 ribosome biogenesis 1.661256e-39
11 GO:0044271 cellular nitrogen compound biosynthetic process 6.496315e-38
12 GO:0034645 cellular macromolecule biosynthetic process 8.025738e-37
13 GO:0009059 macromolecule biosynthetic process 3.615328e-36
14 GO:0034641 cellular nitrogen compound metabolic process 6.877468e-34
15 GO:0006807 nitrogen compound metabolic process 1.482335e-31
16 GO:0044260 cellular macromolecule metabolic process 2.894952e-31
17 GO:0043170 macromolecule metabolic process 2.081095e-30
18 GO:0044267 cellular protein metabolic process 5.374936e-30
19 GO:0044085 cellular component biogenesis 2.198896e-28
20 GO:0044249 cellular biosynthetic process 2.496072e-28

Table 13: 12_heat_shock_1.

term description p-adjust.
1 GO:0044699 single-organism process 1.561494e-10
2 GO:0005975 carbohydrate metabolic process 1.905360e-10
3 GO:0044723 single-organism carbohydrate metabolic process 3.756275e-10
4 GO:0044262 cellular carbohydrate metabolic process 9.092422e-10
5 GO:0006091 generation of precursor metabolites and energy 1.459404e-09
6 GO:0044710 single-organism metabolic process 6.348805e-09
7 GO:0044712 single-organism catabolic process 1.075406e-07
8 GO:0015980 energy derivation by oxidation of organic com-

pounds
1.075406e-07

9 GO:0055114 oxidation-reduction process 3.361147e-07
10 GO:0044763 single-organism cellular process 3.455244e-07
11 GO:0006950 response to stress 5.776457e-07
12 GO:0006508 proteolysis 5.776457e-07
13 GO:0009056 catabolic process 6.113607e-07
14 GO:0016052 carbohydrate catabolic process 6.113607e-07
15 GO:0044724 single-organism carbohydrate catabolic process 6.113607e-07
16 GO:0050896 response to stimulus 1.274111e-06
17 GO:1901575 organic substance catabolic process 2.070463e-06
18 GO:0051716 cellular response to stimulus 5.109371e-06
19 GO:0005996 monosaccharide metabolic process 5.109371e-06
20 GO:0072524 pyridine-containing compound metabolic process 5.109371e-06
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Table 14: 13_heat_shock_2.

term description p-adjust.
1 GO:0022613 ribonucleoprotein complex biogenesis 6.398150e-58
2 GO:0042254 ribosome biogenesis 1.965485e-54
3 GO:0010467 gene expression 1.192324e-52
4 GO:0034660 ncRNA metabolic process 1.155424e-41
5 GO:0034470 ncRNA processing 3.906884e-40
6 GO:0006396 RNA processing 1.528704e-39
7 GO:0006364 rRNA processing 1.848234e-38
8 GO:0044085 cellular component biogenesis 3.906063e-38
9 GO:0016072 rRNA metabolic process 9.596845e-38
10 GO:0034641 cellular nitrogen compound metabolic process 7.892055e-37
11 GO:0006807 nitrogen compound metabolic process 5.818113e-35
12 GO:0044260 cellular macromolecule metabolic process 2.021910e-28
13 GO:0006412 translation 3.239351e-28
14 GO:0043043 peptide biosynthetic process 1.131198e-27
15 GO:0043170 macromolecule metabolic process 1.257546e-27
16 GO:0016070 RNA metabolic process 1.834100e-26
17 GO:0002181 cytoplasmic translation 7.073856e-26
18 GO:0006518 peptide metabolic process 1.291624e-25
19 GO:0043604 amide biosynthetic process 3.967591e-25
20 GO:0090304 nucleic acid metabolic process 3.270826e-22

Table 15: 14_nitrogen_depletion.

term description p-adjust.
1 GO:1901605 alpha-amino acid metabolic process 1.029080e-19
2 GO:0016053 organic acid biosynthetic process 3.325122e-19
3 GO:0046394 carboxylic acid biosynthetic process 3.325122e-19
4 GO:0008652 cellular amino acid biosynthetic process 8.232890e-19
5 GO:1901607 alpha-amino acid biosynthetic process 1.747650e-18
6 GO:0019752 carboxylic acid metabolic process 5.286085e-18
7 GO:0043436 oxoacid metabolic process 7.086621e-18
8 GO:0006082 organic acid metabolic process 7.887305e-18
9 GO:0044283 small molecule biosynthetic process 7.887305e-18
10 GO:0006520 cellular amino acid metabolic process 8.789373e-18
11 GO:0044281 small molecule metabolic process 7.013921e-17
12 GO:0044711 single-organism biosynthetic process 6.173953e-13
13 GO:0032197 transposition, RNA-mediated 1.140563e-12
14 GO:0032196 transposition 1.140563e-12
15 GO:0044763 single-organism cellular process 2.378619e-12
16 GO:0009066 aspartate family amino acid metabolic process 6.690499e-12
17 GO:0044710 single-organism metabolic process 8.359101e-12
18 GO:0009067 aspartate family amino acid biosynthetic process 4.292215e-10
19 GO:0009084 glutamine family amino acid biosynthetic process 1.397522e-07
20 GO:0009064 glutamine family amino acid metabolic process 2.663769e-07
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Table 16: 15_YPD_1.

term description p-adjust.
1 GO:0055114 oxidation-reduction process 4.824315e-08
2 GO:0015980 energy derivation by oxidation of organic com-

pounds
6.532605e-08

3 GO:0045333 cellular respiration 1.978998e-07
4 GO:0006091 generation of precursor metabolites and energy 7.468324e-07
5 GO:0044710 single-organism metabolic process 1.152118e-06
6 GO:0044763 single-organism cellular process 1.929617e-06
7 GO:0009060 aerobic respiration 2.720481e-06
8 GO:0006119 oxidative phosphorylation 2.220305e-05
9 GO:0022904 respiratory electron transport chain 4.184641e-05
10 GO:0042773 ATP synthesis coupled electron transport 4.184641e-05
11 GO:0042775 mitochondrial ATP synthesis coupled electron

transport
4.184641e-05

12 GO:0022900 electron transport chain 8.983699e-05
13 GO:0044723 single-organism carbohydrate metabolic process 1.763532e-04
14 GO:0019236 response to pheromone 0.0004331063
15 GO:0019953 sexual reproduction 0.0004331063
16 GO:0044703 multi-organism reproductive process 0.0004331063
17 GO:0051704 multi-organism process 0.0004737045
18 GO:0033554 cellular response to stress 4.773348e-04
19 GO:0000746 conjugation 0.0005125271
20 GO:0000747 conjugation with cellular fusion 0.0005125271
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Table 17: 16_YPD_2.

term description p-adjust.
1 GO:0015980 energy derivation by oxidation of organic com-

pounds
2.818721e-12

2 GO:0006091 generation of precursor metabolites and energy 1.958345e-11
3 GO:0055114 oxidation-reduction process 3.189884e-11
4 GO:0045333 cellular respiration 9.617200e-11
5 GO:0009060 aerobic respiration 2.215004e-09
6 GO:0044723 single-organism carbohydrate metabolic process 2.096364e-07
7 GO:0044262 cellular carbohydrate metabolic process 3.787796e-07
8 GO:0044710 single-organism metabolic process 1.647733e-06
9 GO:0006119 oxidative phosphorylation 5.683543e-06
10 GO:0022900 electron transport chain 1.406935e-05
11 GO:0005975 carbohydrate metabolic process 1.446949e-05
12 GO:0006099 tricarboxylic acid cycle 3.202010e-05
13 GO:0022904 respiratory electron transport chain 6.942742e-05
14 GO:0042773 ATP synthesis coupled electron transport 6.942742e-05
15 GO:0042775 mitochondrial ATP synthesis coupled electron

transport
6.942742e-05

16 GO:0016310 phosphorylation 9.188584e-05
17 GO:0072329 monocarboxylic acid catabolic process 6.187705e-04
18 GO:0032787 monocarboxylic acid metabolic process 8.357263e-04
19 GO:0070887 cellular response to chemical stimulus 1.097774e-03
20 GO:0007005 mitochondrion organization 1.384831e-03
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Table 18: 17_yeast_sporulation.

term description p-adjust.
1 GO:0051321 meiotic cell cycle 2.791587e-30
2 GO:0022402 cell cycle process 8.461740e-30
3 GO:0007049 cell cycle 1.126408e-29
4 GO:1903046 meiotic cell cycle process 1.089221e-28
5 GO:0044702 single organism reproductive process 1.089221e-28
6 GO:0000003 reproduction 8.439478e-26
7 GO:0022414 reproductive process 1.521625e-25
8 GO:0048646 anatomical structure formation involved in mor-

phogenesis
5.579015e-23

9 GO:0030435 sporulation resulting in formation of a cellular
spore

1.380838e-22

10 GO:0043934 sporulation 2.989946e-22
11 GO:0030154 cell di�erentiation 2.040089e-20
12 GO:0009653 anatomical structure morphogenesis 4.514985e-20
13 GO:0048856 anatomical structure development 4.514985e-20
14 GO:0000280 nuclear division 2.341920e-19
15 GO:0048285 organelle �ssion 2.341920e-19
16 GO:0032502 developmental process 8.174620e-17
17 GO:0044767 single-organism developmental process 8.174620e-17
18 GO:0048869 cellular developmental process 1.516129e-16
19 GO:0034293 sexual sporulation 1.053153e-14
20 GO:0043935 sexual sporulation resulting in formation of a cellu-

lar spore
1.053153e-14
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