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Abstract

Since its introduction by Bellmann in the 1950’s Dynamic Programming (DP)
has gained quite a lot of traction. Its simplicity and versatility have made it a
tool of choice to solve all kinds of combinatorial problems. Over time, it has
become so popular and successful that it is at the very heart of many clas-
sic algorithms taught to every computer science student around the world.
For instance, dynamic programming is the base paradigm that underlies Di-
jkstra’s shortest path algorithm. However, in spite of its inherent advantages,
DP su�ers from one major pitfall when solving NP-hard problems: in addition
to requiring a potentially exponential amount of time in order to solve one
such problem, a solver based on DP might require an exponential amount
of memory as well. This in turn means that solving a hard combinatorial
problem with DP might be intractable even for small to medium size problem
instances.

In 2016 Bergman, Ciré, Van Hoeve and Hooker proposed a successful
method combiningDynamic Programming withDecisionDiagrams in a branch-
and-bound framework. The strength of their approach stems from the ease of
modeling which is leveraged from dynamic programming, and from the mem-
ory e�ciency of the decision diagram data structure. The latter is a graphical
model which provides an e�cient encoding for exponentially sized sets of so-
lutions to a given problem and allows the identi�cation of an optimal solution
in linear time.

This thesis proposes to deepen our knowledge of decision diagrams as a
tool for optimization. It investigates their implementation and the trade-o�s
to make in order to bene�t the most of their e�ciency. It also investigates
algorithmic ways to improve the performance of optimization solvers based
on these graphical models. To that end, it proposes reasoning techniques to
strengthen the bounds derived from each compiled decision diagram. Addi-
tionally, this thesis investigates ways to blend Decision Diagrams (DD) with
other resolution techniques (e.g. Large Neighborhood Search, a.k.a LNS), and
heuristics to swiftly �nd very good solutions to a given problem.
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Introduction 1
Whether we notice or not, operations research is ubiquitous in our everyday
lives. Its use pervades varied domains such as mobile network coverage and
redundancy insurance, production scheduling, organization of delivery tours
and nurse rostering to name a few. The desire to solve hard problems is not
novel and existed long before the advent of computers. For instance, in 1736
already, Euler investigated the famous Königsberg Bridges problem which is
still taught today [Der16]. Later on, in 1857, Hamilton described the Icosian
Game giving rise to the Travelling Salesman Problem which is still relevant
and actively investigated today [ISO21]. The more speci�c desire of �nding
the best solution to such di�cult problems is not new either. But the models,
methods and algorithms which are used to process them are novel and in
constant evolution.

Dynamic Programming, Constraint Programming, Mixed Integer Program-
ming, SAT, and SMT and heuristic methods all contributed to improving the
way we deal with these hard problems. Each of these methods brought its
own set of strengths and weaknesses: be it in the form of ease of modeling,
stronger reasoning, learning or by an increased �exibility in the way trade
o�s are arbitraged during the problem resolution.

Recently, Multivaluate Decision Diagrams (MDD) have drawn the atten-
tion of researchers in the constraint programming (CP) and operations re-
search (OR) communities. These graphical models are a generalization of the
Binary Decision Diagrams (BDD) which have long been used in the veri�ca-
tion community e.g. for model checking purposes [Bur+92]. The popularity
of these decision diagrams in the CP and OR communities stems from their
ability to provide a compact representation of large solution spaces (e.g. in
the case of the table constraint [PR15; VLS18]). One of the research streams
which emerged from this increased interest about MDDs is decision-diagrams
based optimization (DDO) [BC16b]. Its purpose is to e�ciently solve com-
binatorial optimization problems by exploiting the structure of the problem
being solved, which is achieved through the use of DDs.

A successful DDO paradigm was proposed by Bergman et al. who pro-
posed to combineDynamic Programming withDecision Diagrams in a branch-
and-bound framework [Ber+16b]. The strength of their approach stems from
the ease of modeling which is leveraged from dynamic programming, and

1



2 Chapter 1. Introduction

from the memory e�ciency of the decision diagram data structure. The lat-
ter provides an e�cient encoding for exponentially sized sets of solutions to
a given problem, the best of which can be identi�ed in linear time.

1.1 Research Goals

This thesis proposes to deepen our knowledge of decision diagrams as a tool
for optimization. Their implementation and the trade o�s to make in order
to make the most of their e�ciency. How to improve the quality of the solu-
tions that are derived. How to blend them with other resolution techniques,
deviating from the branch-and-bound framework which initially led to their
being considered as powerful optimization tools.

1.2 Contributions

The main contributions of this thesis comprise:

� a generic and e�cient framework for MDD-based optimization imple-
mented in Rust. This framework o�ers both generic modeling facilities
– staying close to the underlying mathematical model, heuristic de�ni-
tion and customization as well as parallel computation facilities.

� two bounding techniques to improve the �ltering of branch-and-bound
MDD solvers. One – the rough upper bound – which is used to speed
up the compilation time tighten the bound derived from the compila-
tion of a decision diagram; and one – the local bound – which exploits
the structure of a compiled decision diagram to �lter out nodes and
hence helps avoiding thrashing during resolution. The implementa-
tion of these techniques is integrated to our generic framework. This
implementation has been favorably compared to state-of-the-art dis-
crete optimization solvers on various problems.

� a large neighborhood search procedure (and implementation) which
adapts and leverages restricted decision diagrams to generate good qual-
ity neighborhoods around a feasible solution. This helps maintaining
the strengths of MDD-based optimization and applying it where mere
dynamic programming or branch-and-bound is not feasible.

� an alternate procedure, inspired by approximate dynamic programming
to compile restricted MDDs which allows one to derive tighter, near-
optimal bounds from a compiled decision diagram.

In addition to the above main contributions, this thesis also covers
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� a new dynamic programming model to solve PSP.

� rough lower bounds for MISP, MCP, MAX2SAT, TSPTW, PSP.

1.3 Publications

Most of the work has already been published in:

� In Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic and
e�cient framework for MDD-based optimization. IJCAI. 2020. we pre-
sented the generic framework which served as a vehicle to conduct the
experiments related to the other contributions of this thesis. This was
also the subject of a talk at the INFORMS 2021 annual meeting (Xavier
Gillard. "ddo" a Fast and E�cient Framework for Solving Combinatorial
Optimization Problems with Branch-and-BoundMDD. INFORMS Annual
Meeting, Annaheim, CA – USA. Wednesday October 27, 2021.).

� In Xavier Gillard et al. “Improving the �ltering of Branch-and-Bound
MDD solvers”. In: CPAIOR. 2021., we introduced the rough lower bound
and local bound pruning techniques which we use to strengthen the
capabilities of MDD-based solvers. This paper received the Best Paper
Award at CPAIOR in July 2021 in Vienna – AT. In an extended version
of the paper, we also introduced the rough upper bounds for the MISP,
MCP, MAX2SAT and TSPTW.

� In Xavier Gillard and Pierre Schaus. Large Neighborhood Search with
Decision Diagrams. IJCAI. 2022., we presented our contribution regard-
ing the large neighborhood search method which builds upon decision
diagrams. This is also the paper where we introduced a novel dynamic
programming model for the pigment sequencing problem (PSP) and a
rough lower bound procedure for that same problem.

In addition to the above, this doctoral research led to the following pub-
lications which are not directly related to Discrete Optimization with Decision
Diagrams. This is why – and for the sake of presenting a coherent body of
work, the presentation of these papers is omitted from current manuscript.

� In Xavier Gillard, Pierre Schaus, and Yves Deville. “Solvercheck: Declar-
ative testing of constraints”. In: International Conference on Princi-
ples and Practice of Constraint Programming. Springer. 2019, pp. 565–
582., we introduced SolverCheck: a property-based testing (PBT) li-
brary speci�cally designed to test CP solvers.

� In Xavier Gillard and Charles Pecheur. “On the community structure of
SAT-BMC problems”. In: PhD Symposium at iFM’17 on Formal Methods:
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Algorithms, Tools and Applications (PhD-iFM’17). 2017., we investigated
graph properties of SAT instances generated in the context of Bounded
Model Checking. In particular, we investigated the community struc-
ture of these graphs and tried to identify whether these correspond to
semantically meaningful information in the original higher level model.

1.4 Outline

The content of this dissertation is organized as follows: Chapter 2 gives a gen-
tle introduction to the �eld of decision diagrams based optimization. It intro-
duces dynamic programming, formalizes the decision diagrams and presents
the branch-and-bound with MDD framework that has been proposed by Berg-
man et al. in 2016. Then, Chapter 3 continues with a presentation of the op-
timization problems that are used in the various experimental studies which
have been used to validate the techniques proposed throughout this thesis.
Subsequently, Chapter 4 investigates engineering concerns related to the im-
plementation of a fast and generic library to build DD-based solvers. It presents
several possible DD representations and discusses the performance impact of
these choices. After that, Chapter 5 introduces reasoning techniques which
help improve the �ltering power of DD and hence the overall performance
of DD based solvers. More speci�cally, it introduces a technique called rough
upper bound pruning which uses a problem-speci�c bounding procedure. It
also introduces local bounds pruning which is a technique exploiting the struc-
ture of the decision diagram to enhance the �ltering power of the solver. The
following chapter – Chapter 6, leaves the realm of exact optimization and pro-
poses to hybridize DDO with meta heuristics in large neighborhood search
framework. The latter provides an easy and convenient way of �nding very
good feasible solutions to an optimization problem quickly, at the expense of
not always being able to prove the optimality of that solution. Eventually,
Chapter 7 presents prospective work aiming to improve the resolution of a
production planning problem through the use of a global minded approach to
compiling decision diagrams. Finally, the last chapter summarizes the main
message and results from this thesis and suggests some possible directions
for future works.



Background 2
The coming sections give an overview of discrete optimization with decision
diagrams as it was initially proposed by Bergman et al. in [Ber+16b]. These
sections adopt a maximization perspective as is customary in the literature
about optimization with decision diagrams. An orthogonal minimization per-
spective might equally have been adopted instead. The latter is achieved –
without loss of generality – by �ipping all signs.

2.1 Discrete optimization

A discrete optimization problem is a constraint satisfaction problem with an
associated objective function to be maximized. The discrete optimization
problem P is de�ned as max {𝑓 (𝑥) | 𝑥 ∈ 𝐷 ∧𝐶 (𝑥)} where 𝐶 is a set of con-
straints, 𝑥 = 〈𝑥0, . . . , 𝑥𝑛−1〉 is an assignment of values to variables, each of
which has an associated �nite domain 𝐷𝑖 s.t. 𝐷 = 𝐷0 × · · · ×𝐷𝑛−1 from where
the values are drawn. In that setup, the function 𝑓 : 𝐷 → R is the objective
to be maximized. Among the set of feasible solutions 𝑆𝑜𝑙 (P) ⊆ 𝐷 (i.e. sat-
isfying all constraints in 𝐶), we denote the optimal solution by 𝑥∗. That is,
𝑥∗ ∈ 𝑆𝑜𝑙 (P) and ∀𝑥 ∈ 𝑆𝑜𝑙 (P) : 𝑓 (𝑥∗) ≥ 𝑓 (𝑥).

A subset of all discrete optimization problems exhibits an optimal sub-
structure. That property states that the very nature of such problems imposes
that an optimal solution to the global problem necessarily contains within
it an optimal solution to subproblems[Cor+09, p. 327]. The problems having
optimal substructure naturally lend themselves to resolution via a divide-and-
conquer approach; and hence a dynamic programming formulation.

2.2 Dynamic programming

Dynamic Programming (DP) is a problem resolution strategy which has been
introduced by Bellman in the mid 50’s [Bel54]. It consists in a resolution of
problems by decomposing them in smaller, simpler problems. This strategy
is signi�cantly popular and is at the heart of many classical algorithms (e.g.,
Dijkstra’s algorithm [Cor+09, p.658] or Bellman-Ford’s [Cor+09, p.651]).

Because of its divide-and-conquer nature, dynamic programming is often
thought of in terms of recursion. However, it is also natural to consider it

5



6 Chapter 2. Background

as a labeled transition system. In that case, the DP model of a given discrete
optimization problem P consists of:

� a set of state-spaces 𝑆 = {𝑆0, . . . , 𝑆𝑛} among which one distinguishes
the initial state 𝑟 , the terminal state 𝑡 and the infeasible state ⊥.

� a set 𝜏 of transition functions s.t. 𝜏𝑖 : 𝑆𝑖 × 𝐷𝑖 → 𝑆𝑖+1 for 𝑖 = 0, . . . , 𝑛 − 1
taking the system from one state 𝑠𝑖 to the next state 𝑠𝑖+1 based on the
value 𝑑 assigned to variable 𝑥𝑖 (or to ⊥ if assigning 𝑥𝑖 = 𝑑 is infeasible).
These functions should never allow one to recover from infeasibility
(𝜏𝑖 (⊥, 𝑑) = ⊥ for any 𝑑 ∈ 𝐷𝑖 ).

� a set ℎ of transition cost functions s.t. ℎ𝑖 : 𝑆𝑖 ×𝐷𝑖 → R representing the
immediate reward of assigning some value 𝑑 ∈ 𝐷𝑖 to the variable 𝑥𝑖 for
𝑖 = 0, . . . , 𝑛 − 1.

� an initial value 𝑣𝑟 .

On that basis, the objective function 𝑓 (𝑥) of P is formulated as follows:

maximize 𝑓 (𝑥) = 𝑣𝑟 +
𝑛−1∑︁
𝑖=0

ℎ𝑖 (𝑠𝑖 , 𝑥𝑖)

subject to
𝑠𝑖+1 = 𝜏𝑖 (𝑠𝑖 , 𝑥𝑖) for 𝑖 = 0, . . . , 𝑛 − 1;𝑥𝑖 ∈ 𝐷𝑖 ∧𝐶 (𝑥𝑖)
𝑠𝑖 ∈ 𝑆𝑖 for 𝑖 = 0, . . . , 𝑛

where𝐶 (𝑥𝑖) is a predicate that evaluates to 𝑡𝑟𝑢𝑒 when the partial assignment
〈𝑥0, . . . , 𝑥𝑖〉 does not violate any constraint in 𝐶 .

The appeal of such a formulation stems from its simplicity and its expres-
siveness which allows it to e�ectively capture the problem structure. More-
over, this formulation naturally lends itself to a multivaluate decision diagram
(MDD) representation; in which case it represents an exact MDD encoding the
complete set 𝑆𝑜𝑙 (P).

2.3 Multivaluate Decision diagrams (MDD)

At the heart of decision-diagrams based optimization (DDO), is the idea that
DP transition systems lend themselves to materialization in the form of de-
cision diagrams. In all generality, an MDD is a kind of layered automaton
encoding sets of decision sequences. In that graph, a path between the source
and a terminal node traverses one node from each layer 1 of the graph. In this

1Some authors introduce the possibility of adding so called long arcs which skip over one
or several layers. For the sake of clarity, these will not be detailed here.
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structure, the labels on the arcs connecting two nodes are interpreted as the
assignment of a given value to a variable: the value being the label of the arc
and the variable, the one associated to the layer crossed by the arc.

Because DDO aims at solving constraint optimization problems and not
just constraint satisfaction problems, it uses a particular MDD �avor known
as reduced weighted MDD – MDD as of now. As initially posed by Hooker
[Hoo13], “MDDs can be perceived as a compact representation of the search
trees. This is achieved, in this context, by superimposing isomorphic sub-
trees”.

Example 2.3.1 A player wants to maximize the utility of his inventory in a
video game. The inventory has a maximum capacity of 15kg, and the player
has to select among the following items: a hammer, an axe, and a tent. The
weight of these items is as follows 3kg for the hammer and the axe, and 12kg for
the tent. Given the game is about survival, the player values the tent 120$, the
hammer 15$, and the axe 12$. This problem is an easy-to-comprehend instance
of a knapsack problem.

This problem can be solved by repeatedly deciding to take one of the three
items (decision variable) in the inventory or to leave it out. That is visually repre-
sented by the decision diagram from Figure 2.1. It is interesting to note that any
path between the root and terminal nodes of that structure represents a feasible
solution to the player’s problem. Moreover, the DD not only encodes some of the
solutions, it encodes all of them. And as it happens, this representation is more
compact than a search tree or a list encoding the same set of solutions. Indeed,
the DD representation avoids the repetition of equivalent subproblems as is for
instance the case of {𝑑,𝑔, ℎ, 𝑡} in Figure 2.1. In a table, these would correspond
to repeated su�xes and in a search tree, it would provoke multiple repetitions of
the same subtree without adding any new information.

To de�ne our MDD more formally, we will slightly adapt the notation
from [BC16b]. A MDD B is a layered directed acyclic graph B = 〈𝑛,𝑈 ,𝐴, 𝑙, 𝑣,
𝜎〉 where 𝑛 is the number of variables from the encoded problem, 𝑈 is a
set of nodes, each of which is associated to some state 𝜎 (𝑢). The mapping
𝑙 : 𝑈 → {0 . . . 𝑛} partitions the nodes from 𝑈 in disjoint layers 𝐿0 . . . 𝐿𝑛
s.t. 𝐿𝑖 = {𝑢 ∈ 𝑈 : 𝑙 (𝑢) = 𝑖} and the states of all the nodes belonging to the
same layer pertain to the same DP-state-space (∀𝑢 ∈ 𝐿𝑖 : 𝜎 (𝑢) ∈ 𝑆𝑖 for
𝑖 = 0, . . . , 𝑛). Also, it should be the case that a layer only ever contains one
node per class of equivalent states (∀𝑢1, 𝑢2 ∈ 𝐿𝑖 : 𝑢1 ≠ 𝑢2 =⇒ 𝜎 (𝑢1) � 𝜎 (𝑢2),
for 𝑖 = 0, . . . , 𝑛). The enforcement of this property, however, cannot be done
e�ciently. Indeed, equivalence checking is known to be NP-hard [CGP99]2.

2Two states 𝜎 (𝑢1) and 𝜎 (𝑢2) are equivalent if the MDD they de�ne encode the ex-
act same set of partial solutions. In other words, 𝜎 (𝑢1) ∼ 𝜎 (𝑢2) i� the set of 𝑢1-t
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Figure 2.1: Visual Example For a Knapsack Problemwith three decision vari-
ables: a hammer with weight 3 and value 15, an axe with weight 3 and value
12, and a tent with weight 12 and value 120 (Example 2.3.1).

That is, enforcing the single-node-per-equivalence-class property is as hard
a problem as the resolution of a constraint optimization problem. This is
why this thesis uses a slightly relaxed version of that property. The latter
only forbids the co-occurrence of two nodes with equal states inside of one
same layer rather than the co-occurrence of two nodes with equivalent states
(∀𝑢1, 𝑢2 ∈ 𝐿𝑖 : 𝑢1 ≠ 𝑢2 =⇒ 𝜎 (𝑢1) ≠ 𝜎 (𝑢2), for 𝑖 = 0, . . . , 𝑛).

The set 𝐴 ⊆ 𝑈 ×𝑈 ×𝐷 from our formal model is a set of labeled directed
arcs connecting the nodes from 𝑈 . Each such arc 𝑎 = (𝑢1, 𝑢2, 𝑑) connects
nodes from subsequent layers (𝑙 (𝑢1) = 𝑙 (𝑢2) − 1) and should be regarded as
the materialization of a branching decision 𝑑 about variable 𝑥𝑙 (𝑢1) . Thus, the
decision 𝑑 is a value drawn from the domain of the variable 𝑥𝑙 (𝑢1) . In addition
to the decision value 𝑑 , the arcs from this formal model are also annotated
with a weight information. The latter, however, does not participate in the
identity of the arc in question; it is fully determined by the mapping 𝑣 : 𝐴→
R. In order to ease the reading of this thesis, we will use the notation 𝑑 (𝑎) to
denote the decision component of an arc 𝑎 and its weight as 𝑣 (𝑎).

Example 2.3.2 In Figure 2.1, the set 𝑈 corresponds to the set {𝑟, 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 ,

paths is equal to the set of 𝑢2-t paths. That is, 𝜎 (𝑢1) ∼ 𝜎 (𝑢2) if for any sequence of
arcs ((𝑢1, 𝑎1, 𝑑1) , (𝑎1, 𝑎2, 𝑑2) , . . . , (𝑎𝑘 , 𝑡, 𝑑𝑘 )) with weights (𝑣1, 𝑣2, . . . , 𝑣𝑘 ), there exists a cor-
responding sequence of arcs

( (
𝑢2, 𝑎′1, 𝑑1

)
,
(
𝑎′1, 𝑎

′
2, 𝑑2

)
, . . . ,

(
𝑎′
𝑘
, 𝑡, 𝑑𝑘

))
with the same weights

(𝑣1, 𝑣2, . . . , 𝑣𝑘 ) and vice-versa.



2.3. Multivaluate Decision diagrams (MDD) 9

𝑔, ℎ, 𝑖, 𝑗, 𝑡}. The state 𝜎 (𝑐) associated with node 𝑐 is a sack capable of carrying
an additional 9 kilograms of weight, and that of node 𝑖 = 𝜎 (𝑖) is a sack capable
of bearing 3 kg extra.

The arc between nodes 𝑟 and 𝑎 is the arc (𝑟, 𝑎,𝑦𝑒𝑠) and is must be understood
as the decision Èℎ𝑎𝑚𝑚𝑒𝑟 = 𝑦𝑒𝑠É performed from a state 𝜎 (𝑟 ) where the sack is
empty (its capacity is still 15kg). It should also be understood that the weight of
that arc (= the bene�t of taking the hammer) is 15$.

2.3.1 Path

A path 𝑝 of some MDDB is a sequence 𝑎𝑖 . . . 𝑎𝑘 of arcs inB s.t the originating
node of one arc is the terminal node of the previous one. In order to express
this de�nition formally, we pose that for any arc 𝑎 = (𝑢1, 𝑢2, 𝑑), the expression
𝑜 (𝑎) = 𝑢1 denotes the originating end of the arc and 𝑒 (𝑎) = 𝑢2 denotes its
terminal end. On that basis, a path 𝑝 = 𝑎𝑖 . . . 𝑎𝑘 is a sequence of arc s.t.
𝑜 (𝑎 𝑗 ) = 𝑒 (𝑎 𝑗−1),∀𝑖 < 𝑗 ≤ 𝑘 .

Given that, in a MDD, an arc 𝑎 is interpreted as a decision made about
a problem variable; any path can be interpreted as a (partial) assignment on
these variables. It is thus the case that all paths 𝑝 = 𝑎𝑖 . . . 𝑎𝑘 have a cor-
responding assignment 𝑥𝑝 =

{
È𝑥 𝑗 = 𝑑 (𝑎 𝑗 )É | 𝑖 < 𝑗 ≤ 𝑘

}
. By analogy to the

𝑣 relationship which speci�es the weight of an arc, the weight of path 𝑝 is

denoted by 𝑣 (𝑝) =
𝑘∑
𝑗=𝑖

𝑣 (𝑎 𝑗 ).

Any path 𝑝 = 𝑎0 . . . 𝑎𝑛 is said to be an 𝑟 -𝑡 path i� 𝑜 (𝑎0) = 𝑟 and 𝑒 (𝑎𝑛) = 𝑡 .
That is, an 𝑟 -𝑡 path is a path traversing the complete MDD: starting at the root
of the diagram and �nishing at a terminal node. By extension of the relation-
ship 𝑣 (·) de�ned on arcs and paths, 𝑣∗(B) = max {𝑣 (𝑝) | 𝑝 ∈ B} is used to
denote the weight of a longest r-t path in B. Since each 𝑟 -𝑡 path 𝑝 describes
an assignment that satis�es P, we have 𝑥𝑝 ∈ 𝑆𝑜𝑙 (P). Because of this corre-
spondance, we will use 𝑆𝑜𝑙 (B) to denote the set of all the solutions encoded
in the r-t paths of MDD B. Also, because unsatis�ability is irrecoverable, r-⊥
paths are typically omitted from MDDs. It follows that a nice property from
using a MDD representation B for the DP formulation of a problem P, is that
�nding 𝑥∗ is as simple as �nding the longest r-t path 𝑝 in B according to its
weight 𝑣 (𝑝).

Example 2.3.3 The longest r-t path in Figure 2.1 is (𝑟, 𝑎, 𝑑, 𝑔, 𝑡) and its weight
is 135. That path encodes the optimal solution to the player’s problem from
Example 2.3.1. Namely, it corresponds to the solution Èℎ𝑎𝑚𝑚𝑒𝑟 = 𝑦𝑒𝑠, 𝑎𝑥𝑒 = 𝑛𝑜,
𝑡𝑒𝑛𝑡 = 𝑦𝑒𝑠É.
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2.3.2 Exact-MDD

For a given problem P, an exact MDD B is an MDD that exactly encodes the
solution set 𝑆𝑜𝑙 (B) = 𝑆𝑜𝑙 (P) of the problem P. In other words, not only do
all r-t paths encode valid solutions of P, but no feasible solution is present in
𝑆𝑜𝑙 (P) and not in B. Also, the weights of the arcs in B exactly correspond to
the value of the transition cost functions ofP. It follows that 𝑣 (𝑝) = 𝑓 (𝑥𝑝)−𝑣𝑟
for all paths 𝑝 in B. In particular, the weight of a longest r-t path 𝑝∗ immedi-
ately yields the optimal value of P (𝑣∗(B) = 𝑣 (𝑝∗) = 𝑓 (𝑥∗) − 𝑣𝑟 ).

An exact MDD for P can be compiled in a top-down fashion3. This natu-
rally follows from the above de�nition. To that end, one simply proceeds by a
repeated unrolling of the transition relations until all variables are assigned;
as shown in Algorithm 1.

Algorithm 1 Top Down Compilation of an Exact MDD
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: 𝐿0 ← {𝑟 }
3: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
4: for 𝑢 ∈ 𝐿𝑖 , 𝑑 ∈ 𝐷𝑖 do
5: 𝑢 ′← a node associated with state 𝜏𝑖 (𝜎 (𝑢), 𝑑)
6: if 𝜎 (𝑢 ′) ≠ ⊥ then
7: 𝑈 ← 𝑈 ∪ {𝑢 ′}
8: 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ {𝑢 ′}
9: 𝑎 ← (𝑢,𝑢 ′, 𝑑)

10: 𝑣 (𝑎) ← ℎ𝑖 (𝜎 (𝑢), 𝑑)
11: 𝐴← 𝐴 ∪ {𝑎}

2.3.3 Bounded-Size Approximations

In spite of the compactness of their encoding, the construction of MDD suf-
fers from a potentially exponential memory requirement in the worst case4.
Thus, using MDDs to exactly encode the solution space of a problem is often
intractable. Therefore, one must resort to the use of bounded-size approxima-
tion of the exact MDD. These are compiled generically by inserting a call to
a width-bounding procedure to ensure that the width (the number |𝐿𝑖 | of dis-
tinct nodes belonging to the layer 𝐿𝑖 ) of the current layer 𝐿𝑖 does not exceed a
given bound𝑊 . Depending on the behavior of that procedure, one can either

3An incremental re�nement a.k.a. construction by separation procedure is detailed in
[Cir14, pp. 51–52]

4Consequently, it also su�ers from a potentially exponential time requirement in the worst
case. Indeed, time is constant in the �nal number of nodes (unless the transition functions
themselves are exponential in the input).
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compile a restricted-MDD (= an under-approximation) or a relaxed-MDD (=
an over-approximation).

2.3.4 Restricted-MDD: Under-approximation

Restricted DD were �rst introduced by Bergman et al. in [Ber+14a]. Such
a decision diagram provides a bounded-width under-approximation of some
exact-MDD. As such, all paths of a restricted-MDD encode valid solutions, but
some solutions might be missing from the MDD. This is formally expressed
as follows: given the DP formulation of a problem P, B is a restricted-MDD
i� 𝑆𝑜𝑙 (B) ⊆ 𝑆𝑜𝑙 (P). It must thus be the case that 𝑣 (𝑝) = 𝑓 (𝑥𝑝) − 𝑣𝑟 for all
paths 𝑝 ∈ B, as if B were exact. However, because the paths of B might not
cover the complete solution set of P, it is possible that no longest path 𝑝∗ of
B correspond to the optimal assignment 𝑥∗. Hence, the value 𝑣∗(B) yields a
lower bound on the optimal value of P (𝑣∗(B) ≤ 𝑓 (𝑥∗) − 𝑣𝑟 ).

As shown in Algorithm 2, restricted-MDD are compiled in a top down
fashion similar to the compilation of exact-MDDs (faded). The only di�erence
with the compilation of an exact-MDD being the potential call to a restrict
procedure guarded by the check |𝐿𝑖+1 | > 𝑊 to ensure that no layer of the
resulting MDD be larger than the imposed limit𝑊 (highlighted).

The behavior of the restrict procedure is not imposed. It su�ces for its
correctness that it deletes nodes from the current layer until its width �ts
within the speci�ed bound𝑊 . In practice, the procedure simply selects and
deletes a subset of the nodes from𝐿𝑖+1 which are heuristically assumed to have
the smallest impact on the tightness of the bound derived from the MDD. Var-
ious heuristics have been studied in the literature [Ber+14b], and the heuristic
that decides to select (hence remove) the nodes having the shortest longest
path from the root (minLP) was shown to be the best performing heuristic in
practice.

2.3.4.1 Bibliographic Note

It is worth mentioning that the compilation of a restricted-MDD is equivalent
to an application of the restricted dynamic programming approach which
has been proposed by Baldacci et al. in [MD96] in the context of the time-
dependent traveling salesman problem (TD-TSP).

2.3.5 Relaxed-MDD: Over-approximation

Relaxed DDs were �rst introduced by [And+07] as an alternative represen-
tation of the domain store used in constraint programming. It was only a
few years later that [BHH11; Ber+14b] proposed to use these structures as a
means to derive bounds on optimization problems. In line with these recent
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Algorithm 2 Top Down Compilation of a Restricted DD
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a maximum layer width𝑊
3: 𝐿0 ← {𝑟 }
4: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
5: for 𝑢 ∈ 𝐿𝑖 , 𝑑 ∈ 𝐷𝑖 do
6: 𝑢 ′← a node associated with state 𝜏𝑖 (𝜎 (𝑢), 𝑑)
7: if 𝜎 (𝑢 ′) ≠ ⊥ then
8: 𝑈 ← 𝑈 ∪ {𝑢 ′}
9: 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ {𝑢 ′}

10: 𝑎 ← (𝑢,𝑢 ′, 𝑑)
11: 𝑣 (𝑎) ← ℎ𝑖 (𝜎 (𝑢), 𝑑)
12: 𝐴← 𝐴 ∪ {𝑎}
13: if |𝐿𝑖+1 | >𝑊 then
14: 𝐿𝑖+1 ← 𝑟𝑒𝑠𝑡𝑟𝑖𝑐𝑡 (𝐿𝑖+1)

pieces of work, we will consider that relaxed-MDD B provides a bounded-
width over-approximation of some exact-MDD. As such, it may hold paths
that are no solution to P, the problem being solved. We have thus formally
that 𝑆𝑜𝑙 (B) ⊇ 𝑆𝑜𝑙 (P). Also, it must be the case that 𝑣 (𝑝) ≥ 𝑓 (𝑥𝑝)−𝑣𝑟 for any
path 𝑝 ∈ B. It follows that the solution represented by a longest r-t path 𝑝∗
of B is not guaranteed to be 𝑥∗. The assignment 𝑥𝑝∗ is not even guaranteed
to be a feasible solution according to the constraints of the problem (𝐶 (𝑥𝑝∗)
might evaluate false). Nevertheless, the length of 𝑝∗ is guaranteed to yield an
upper bound on the optimal value (𝑣∗(B) ≥ 𝑓 (𝑥∗) − 𝑣𝑟 ).

Algorithm 3 details a top down procedure to compile relaxed-MDDs. This
procedure is fairly similar to the ones used to compile exact and restricted
MDDs (faded lines are common to all three algorithms). The major di�erence
stems from the call to the relax width-bounding routine. The purpose of relax
is to replace a subset of the nodes of a layer whose width exceeds the limit𝑊
by a new node standing for all of them. This is why compiling a relaxed-MDD
requires one to be able to merge several nodes into an inexact one. To that
end, two operators are used:

� ⊕ which yields a new node combining the states of a selection of nodes
so as to over-approximate the states reachable in the selection.

� Γ which is used to possibly relax the weight of arcs incident to the
selected nodes.

These operators are used as shown in Algorithm 4: the width-bounding
procedure starts by heuristically selecting the least promising nodes. Then the
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Algorithm 3 Top Down Compilation of a Relaxed DD
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a maximum layer width𝑊
3: Input: a node merging operator ⊕
4: Input: an arc relaxation operator Γ
5: 𝐿0 ← {𝑟 }
6: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
7: for 𝑢 ∈ 𝐿𝑖 , 𝑑 ∈ 𝐷𝑖 do
8: 𝑢 ′← a node associated with state 𝜏𝑖 (𝜎 (𝑢), 𝑑)
9: if 𝜎 (𝑢 ′) ≠ ⊥ then

10: 𝑈 ← 𝑈 ∪ {𝑢 ′}
11: 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ {𝑢 ′}
12: 𝑎 ← (𝑢,𝑢 ′, 𝑑)
13: 𝑣 (𝑎) ← ℎ𝑖 (𝜎 (𝑢), 𝑑)
14: 𝐴← 𝐴 ∪ {𝑎}
15: if |𝐿𝑖+1 | >𝑊 then
16: 𝐿𝑖+1 ← 𝑟𝑒𝑙𝑎𝑥 (𝐿𝑖+1,𝑈 ,𝐴, ⊕, Γ)

states of these selected nodes are combined with one another so as to create
a merged nodeM = ⊕(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛). After that, the inbound arcs incident to all
selected nodes are Γ-relaxed and redirected towardsM. Finally, the result of
the merger (M) is added to the layer 𝐿 in replacement of the initial selection
of nodes.

Algorithm 4 Relax Procedure
1: Input: 𝐿 the layer that needs to be relaxed
2: Input: the set𝑈 of nodes existing in the MDD being compiled
3: Input: the set 𝐴 of arcs existing in the MDD being compiled
4: Input: ⊕ a node merging operator
5: Input: Γ an arc relaxation operator
6: 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ← 𝐻𝑒𝑢𝑟𝑖𝑠𝑡𝑖𝑐𝑆𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛(𝐿)
7: M ← ⊕(𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛)
8: for all 𝑎 ∈ 𝐴; 𝑒 (𝑎) ∈ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 do
9: 𝑣 (𝑎) ← Γ(𝑎,M)

10: 𝑒 (𝑎) ← M
11: 𝑈 ← 𝑈 \ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∪ {M}
12: 𝐿 ← 𝐿 \ 𝑠𝑒𝑙𝑒𝑐𝑡𝑖𝑜𝑛 ∪ {M}
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2.3.5.1 Cutset and Exact Custsets

Considering that Restricted DD and Relaxed DD provide bounded-width ap-
proximations of what would be the Exact DD of the (sub-) problem at their
root, the devising of a complete algorithm capable of yielding the globally-
optimal-solution requires that one be capable of exploring the portions of the
state-spaces that have not been exactly covered by the approximations. A
naive approach to satisfying this requirement would simply consist in the re-
peated development of all direct-children of the approximate DD’s root node.
A better approach is possible however. In [Ber+16b], Bergman et al. proposed
to instead exploit the information from the approximate DD and enumerate
the residual subproblems de�ned by the nodes forming a border separating
the approximate DD and its exact counterpart. In mathematical parlance, this
set of nodes forming a frontier up to which an exact and approximate DD have
not diverged, is called an exact cutset.

Cutset More formally, a cutset for some MDD B is a subset C of the nodes
from B such that any 𝑟 − 𝑡 path of B goes through at least one node ∈ C. Put
another way, a cutset C of some MDD B is a subset of the nodes of B such
that the source node (𝑟 ) and terminal nodes (𝑡 ) of B are disconnected when
C is removed. Obviously there may exist many di�erent cutsets for the same
MDD.

Exact Node In a relaxed MDD, a node𝑢 is said to be exact i� all its incoming
paths lead to the same state 𝜎 (𝑢). That is, 𝑢 is exact i� neither itself nor any
of its ancestors is the result of a merge operation.

Exact Cutset From there, an exact cutset of some relaxed MDD is simply a
cutset whose nodes are all exact. Based on this de�nition, it is easy to convince
oneself that an exact cutset constitutes a frontier up to which a relaxed MDD
and its exact counterpart have not diverged.

Any relaxed-MDD admits at least one exact cutset – e.g. the trivial {𝑟 }
case. Often though, it is not unique and di�erent types of exact cutsets have
been studied in the literature. For instance:

� First Exact Layer (FEL) cutset. This is the naive approach mentioned in
the introduction. It mimics the traditional branching scheme by using
the shallowest possible exact cutset. Formally, given a relaxed MDD B,

𝐹𝐸𝐿(B) = 𝐿1

� Last Exact Layer (LEL) cutset which selects as exact cutset the deepest
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layer comprising only exact nodes. Formally, given a relaxed MDD B:

𝐿𝐸𝐿(B) = 𝐿𝑖 : ∀𝑢 ∈ 𝐿𝑖 : 𝑢 is exact∧�𝐿 𝑗 : 𝑗 > 𝑖 s.t. ∀𝑢 ′ ∈ 𝐿 𝑗 : 𝑢 ′ is exact

� Frontier Cutset (FC) which selects as exact cutset all the exact nodes
of the relaxed MDD which are the direct parent of an inexact node.
Formally, given a relaxed MDD B,

𝐹𝐶 (B) = {𝑢 | 𝑢 ∈ 𝑈 : 𝑢 is exact ∧ ∃(𝑢,𝑢 ′) ∈ 𝐴 : 𝑢 ′ is not exact} .

Bergman et al. have experimentally shown in [Ber+16b] that most of the time,
LEL is superior to all other exact cutsets in practice.

2.3.6 Summarizing Example

Figure 2.2 summarizes the information from section 2.3. It displays the three
MDDs corresponding to one same example problem having four variables.
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Figure 2.2: The exact (a), restricted (b) and relaxed (c) versions of an MDD
with four variables. The width of MDDs (b) and (c) have been bounded to a
maximum layer width of three. The decision labels of the arcs are shown
above the layers separation lines (dashed). The arc weights are shown below
the layer separation lines. The longest path of each MDD is boldfaced. In (c),
the nodeM is the result of merging nodes d, e and h with the ⊕ operator.
Arcs that have been relaxed with the Γ operator are pictured with a double
stroke. Note, because these arcs have been Γ-relaxed, their value might be
greater than that of corresponding arcs in (a), (b). Similarly, all “inexact”
nodes feature a double border.

2.3.6.1 Exact, Restricted and Relaxed MDD

The exact MDD (a) encodes the complete solution set and, equivalently, the
state space of the underlying DP encoding. One easily notices that the re-
stricted DD (b) is an under approximation of (a) since it achieves its width
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boundedness by removing nodes d and e and their children (i, j). Among
others, it follows that the solution [𝑥0 = 0, 𝑥1 = 0, 𝑥2 = 0, 𝑥3 = 0] is not repre-
sented in (b) even though it exists in (a). Conversely, the relaxed diagram (c)
achieves a maximum layer with of 3 by merging nodes d, e and h into a new
inexact nodeM and by relaxing all arcs entering one of the merged nodes.
Because of this, (c) introduces solutions that do not exist in (a) as is for in-
stance the case of the assignment [𝑥0 = 0, 𝑥1 = 0, 𝑥2 = 3, 𝑥3 = 1]. Moreover,
because the operators ⊕ and Γ are correct5, the length of the longest path in
(c) is an upper bound on the optimal value of the objective function. Indeed,
one can see that the length of the longest path in (a) (= the exact optimal
solution) has a value of 25 while it amounts to 26 in (c).

2.3.6.2 Exact Nodes and Cutsets

In Figure 2.2 (c), the �rst inexact nodeM occurs in layer 𝐿2. Hence, the LEL
cutset comprises all nodes (a, b, c) from the layer 𝐿1. An FC cutset for (c)
comprises the nodes (a, b, c, f, g) since each of these nodes is the immediate
parent of an inexact node. Indeed,M was created by merging nodes (d, e, h)
from the exact MDD which makes it an inexact node. And, becauseM is a
parent of nodes i, j and k, these three nodes are considered inexact too.

2.4 Branch-and-Bound with MDDs

As explained in sections 2.3.4 and 2.3.5, restricted and relaxed MDDs provide
a convenient way of deriving lower and upper bounds on the optimal value of
the optimization problem P they represent. While being able to derive good
lower and upper bounds for P is useful when the goal is to use these bounds
to strengthen algorithms [DH18; Tja18; TH19]; it is not the only way these
approximations can be used. A complete and e�cient branch-and-bound al-
gorithm relying on those approximations was proposed in [Ber+16b] which
is hereby reproduced (Algorithm 5).

This algorithm works as follows: at start, the node 𝑟 is created for the ini-
tial state of the problem and placed onto the fringe – a global priority queue
that tracks all nodes remaining to explore and orders them from the most
to least promising. Then, a loop consumes the nodes from that fringe (line
4), one at a time and explores it until the complete state space has been ex-
hausted. The exploration of a node 𝑢 inside that loop proceeds as follows:
�rst, one compiles a restricted DD B for the sub-problem rooted in 𝑢 (line
8). Because all paths in a restricted DD are feasible solutions, when the lower
bound 𝑣∗(B) derived from the restricted DDB improves over the current best

5The very de�nition of these operators is problem-speci�c. However, [Hoo17] formally
de�nes the conditions that are necessary to correctness.
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known solution 𝑣 ; then the longest path of B (best sol. found in B) and its
length 𝑣∗(B) are memorized (lines 10-12).

In the event where B is exact (no restriction occurred during the compi-
lation of B), it covers the complete state space of the sub-problem rooted in𝑢.
Which means the processing of 𝑢 is complete and we may safely move to the
next node. When this condition is not met, however, some additional e�ort
is required. In that case, a relaxed DD B is compiled from 𝑢 (line 14). That
relaxed DD serves two purposes: �rst, it is used to derive an upper bound
𝑣∗(B) which is compared to the current best known solution (line 15). This
gives us a chance to prune the unexplored state space under 𝑢 when 𝑣∗(B)
guarantees it does not contain any better solution than the current best. The
second use of B happens when 𝑣∗(B) cannot provide such a guarantee. In
that case, the exact cutset of B is used to enumerate residual sub-problems
which are enqueued onto the fringe (lines 16-17). And because – by de�ni-
tion, an exact cutset of B is a cutset of B as well, the nodes it contains cover
all paths from both B and B. This guarantees that portions of the state space
ofB which have not been explored inB can be retrieved from the exact cutset
nodes. This in turn guarantees the completeness of Algorithm 5 [Ber+16b].

Algorithm 5 Branch-And-Bound with DD
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a node merging operator ⊕
3: Input: an arc relaxation operator Γ
4: Create node 𝑟 and add it to 𝐹𝑟𝑖𝑛𝑔𝑒
5: 𝑥 ← ⊥
6: 𝑣 ← −∞
7: while 𝐹𝑟𝑖𝑛𝑔𝑒 is not empty do
8: 𝑢 ← 𝐹𝑟𝑖𝑛𝑔𝑒.𝑝𝑜𝑝 ()
9: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢)

10: if 𝑣∗(B) > 𝑣 then
11: 𝑣 ← 𝑣∗(B)
12: 𝑥 ← 𝑥∗(B)
13: if B is not exact then
14: B ← 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢, ⊕, Γ)
15: if 𝑣∗(B) > 𝑣 then
16: for all 𝑢 ′ ∈ B .𝑒𝑥𝑎𝑐𝑡_𝑐𝑢𝑡𝑠𝑒𝑡 () do
17: 𝐹𝑟𝑖𝑛𝑔𝑒.𝑎𝑑𝑑 (𝑢 ′)
18: return

(
𝑥, 𝑣

)





Applications 3
Contributions and Publication Information

The models presented in this chapter have not been the subject of
a dedicated publication. Indeed, the models for MISP, MCP and
MAX2SAT are the ones proposed by Bergman et al. in [Ber+16b] and
[Ber+16a]. These should thus be considered as background informa-
tion related to the problems used when validating the techniques pre-
sented in subsequent chapters. This also apply to the PSP model from
section 3.5 – to some extent. The DP formulation for that problem,
however, is novel and has been introduced in Xavier Gillard and Pierre
Schaus. Large Neighborhood Search with Decision Diagrams. IJCAI.
2022.

This chapter describes the problems that are used to evaluate the tech-
niques proposed throughout this manuscript. In practice, it covers the fol-
lowing �ve problems:

1. the Maximum Independent Set Problem (MISP),

2. the Maximum Cut Problem (MCP),

3. the Maximum 2 Satis�ability Problem (MAX2SAT),

4. the Travelling Salesman Problem with Time Windows (TSPTW)

5. the Pigment Sequencing Problem (PSP)

For each problem, it describes the problem, its DP formulation as well
as the merge (⊕) and relaxation (Γ) operators involved in the compilation of
relaxed DD as shown per Algorithm 3 in Chapter 2. After that, a description
of the benchmark instances that are used in the experimental validations of
all techniques proposed in this manuscript is given.

3.1 The Maximum Independent Set Problem (MISP)

In graph theory, the problem of �nding an Independent Set consists in �nding
a subset of vertices in a graph such that no edge exists in the graph that con-
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nects two of the selected nodes. By extension, the Maximum (Weighted) In-
dependent Set Problem, consists of �nding an Independent Set in a weighted
graph such that the sum of the weight of the selected nodes is maximal. This
problem is famous – among others – because it is equivalent to �nding a
clique of maximum weight in the complement of the instance graph.

In spite of its apparently purely theoretical nature, the MISP has been used
in many real world applications. For instance, in bioinformatics [Ebl+12], data
mining [ESB99] and the analysis of social networks[BBH11].

Formally, given a weighted graph𝐺 = (𝑉 , 𝐸,𝑤)where𝑉 = {0, 1, . . . , 𝑛 − 1}
is a set of vertices, 𝐸 ⊆ 𝑉 ×𝑉 the set of edges connecting those vertices and
𝑤 = {𝑤0,𝑤1, . . . ,𝑤𝑛−1} is a set of weights s.t. 𝑤𝑖 is the weight of node 𝑖; the
MISP can be expressed as follows:

max
𝑛−1∑︁
𝑖=0

𝑤𝑖𝑥𝑖 (3.1)

𝑥𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝑉 (3.2)
𝑥𝑖 + 𝑥 𝑗 ≤ 1∀(𝑖, 𝑗) ∈ 𝐸 (3.3)

In this formulation, a boolean variable 𝑥𝑖 is used to tell whether or not
the vertex 𝑖 is selected in the solution independent set (3.2). The summation
(3.1) denotes the objective function to maximize and (3.3) is a constraint that
enforces the absence of edge between any two selected vertices.

3.1.1 DP Model

In [Ber+16a, pp.33-34], Bergman et al. propose a MISP DP model in which
a state 𝑠𝑖 of the 𝑖-th layer is a set representing the vertices that might possi-
bly participate in the maximum independent set. Therefore, the initial state
comprises all vertices since any vertex can – a priori – belong to the solution.
Similarly, the terminal node 𝑡 is the empty set as no vertex can be added to
the solution after all decisions have been made.

The transition relation proceed from the same logic: when deciding about
the inclusion of vertex 𝑖 in the independent set, two cases are possible given
a state 𝑠𝑖 . If 𝑖 ∈ 𝑠𝑖 , one can decide to include 𝑖 in the solution or to leave
it out. Otherwise 𝑖 cannot be included in the independent set. Should the
decision be made to include 𝑖 in the solution, then vertex 𝑖 and all its neighbors
(𝑁 (𝑖) = { 𝑗 ∈ 𝑉 | (𝑖, 𝑗) ∈ 𝐴}) must be removed from the candidates list. The
successor state of 𝑠𝑖 is thus 𝑠𝑖+1 = 𝑠𝑖 \ ({𝑖} ∪ 𝑁 (𝑖)). If on the other hand,
the decision is made to not include 𝑖 in the solution; it simply means that 𝑖 is
the only vertex that needs to be removed from the candidates list. Hence, the
successor state of 𝑠𝑖 becomes 𝑠𝑖+1 = 𝑠𝑖 \ {𝑖}.
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The transition cost is straightforward in this model as it re�ects the in-
tuition: a decision to add the vertex 𝑖 to the independent set increases the
objective function by𝑤𝑖 whereas a decision to not include it leaves the objec-
tive unchanged.

This model is formally expressed as follows:

� State spaces: 𝑆𝑘 =
{
𝑠𝑘 ∈ 2𝑉 | 𝑗 ∉ 𝑠𝑘 , 0 ≤ 𝑗 < 𝑘

}
with the initial state

𝑟 = 𝑉 and a terminal state 𝑡 = ∅

� State transition: 𝜏𝑘 (𝑠𝑘 , 𝑑) =
{
𝑠𝑘 \ (𝑁 (𝑘) ∪ {𝑘}) when 𝑑 = 1
𝑠𝑘 \ {𝑘} when 𝑑 = 0

� Transition cost: ℎ𝑘 (𝑠𝑘 , 𝑑) =
{
𝑤𝑘 when 𝑑 = 1
0 when 𝑑 = 0

� Root value 𝑣𝑟 = 0

3.1.2 Relaxation

As explained in Chapter 2, the compilation of relaxed DDs, requires that two
relaxation operators be de�ned: a merge operator ⊕ and an arc relaxation
operator Γ. These must respectively guarantee that a) no feasible solution
is removed from the relaxed DD consecutively to a merge operation and b)
the length of an r-t path passing through a merged node of a relaxed DD
be at least as long as all the paths it stands for in the exact counterpart of
that DD. In practice, in the context of the MISP DP model presented above, it
means that when merging several nodes, all the vertices that are considered
as potential members of the maximum independent set by any of the nodes
being merged must belong to the resulting merged state (⊕(M) = ⋃

𝑢∈M
𝑢).

The arc relaxation operator leaves the weight of an arc unchanged. Formally,
we have thus:

� Merge Operator: ⊕(M) = ⋃
𝑢∈M

𝑢

� Arc Relaxation: Γ(𝑎,M) = 𝑣 (𝑎)

3.1.3 Correctness

The correctness of the above model and its relaxation has been proved by
Bergman et al. in [Ber+14b].
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3.2 Maximum Cut Problem (MCP)

The Maximum Cut Problem (MCP) is another classic problem of graph theory
which has – among other – been used in the context of very-large-scale inte-
gration design (VLSI) and statistical physics [Fes+02; CKC83; Pin84; CD87].
In essence, the problem consists in �nding a bi-partition (𝑆,𝑇 ) of the vertices
of some given graph that maximizes the total weight of edges whose end-
points are in di�erent partitions. According to the appropriate terminology,
the vertex partitioning is called a cut and the edges having their endpoints on
either side of that cut are said to be crossing the cut. Thus, the MCP consists
in �nding a cut of maximum weight. That is, �nding a cut maximizing the
total weight of the edges crossing it.

Given an undirected weighted graph 𝐺 = (𝑉 , 𝐸) in which the weight of
the edge (𝑖, 𝑗) ∈ 𝐸 is denoted 𝑤𝑖, 𝑗 , the MCP is expressed as the following
optimization problem:

max
∑︁
𝑖, 𝑗 ∈𝑉

𝑤𝑖, 𝑗 (𝑥𝑖 ≠ 𝑥 𝑗 ) (3.4)

𝑥𝑖 ∈ {𝑆,𝑇 } ∀𝑖 ∈ 𝑉 (3.5)

In this formulation, a variable 𝑥𝑖 is a binary variable indicating whether
the vertex 𝑖 is assigned to partition 𝑆 or 𝑇 (3.5). The objective function (3.4)
simply computes the sum of the weight of edges crossing the S-T cut (𝑥𝑖 ≠ 𝑥 𝑗 ).

3.2.1 DP Model

The simplest and most natural way of formulating a DP model for the MCP
considers a DP state as the set of vertices belonging to one of the two par-
titions. In that case the transition function simply consists in the insertion
(or not) of the given vertex 𝑣 to the previous state. And the transition cost
function adds the cost of the edges adjacents to 𝑣 which are fully determined
to cross the cut.

In [Ber+16b], Bergman et al. proposed a more elaborate model which
eases the reconciliation of nodes having similar objective value. This is the
model which is presented in the rest of this section. This model assumes that
the graph 𝐺 = (𝑉 , 𝐸) be a complete graph, which has no impact on the gen-
erality of the method given that non existing edges can simply be assigned a
0 weight.

In this model, a state 𝑠𝑘 from the 𝑘𝑡ℎ layer is an n-tuple of integer whose
component 𝑠𝑘𝑣 indicates the marginal bene�t of assigning vertex 𝑣 to the par-
tition𝑇 of the cut, based on the decisions made in the previous layers. There-
fore, the initial and terminal states of this model are both of the form 〈0, 0, . . . , 0〉



3.2. Maximum Cut Problem (MCP) 23

as the marginal bene�t of moving any node to partition T is 0 when no de-
cision has been made as well as when no decision can be made. In line with
this representation, when a decision is made to assign vertex 𝑣 to partition S,
the transition function updates the marginal bene�t of each remaining vertex
𝑢 by adding the cost 𝑤𝑢,𝑣 of the edge between these two vertices. Similarly,
when 𝑣 is added to partition T, the cost 𝑤𝑢,𝑣 is subtracted from the marginal
bene�t of each remaining vertex𝑢. Indeed, in that case𝑤𝑢,𝑣 is an opportunity
cost that would be lost if 𝑢 were added to T.

The subtlety of this model originates from its transition cost function. It
would be incorrect for the latter to simply add 𝑠𝑣𝑣 to the objective when a
decision is made about 𝑣 . As said previously, the 𝑠𝑣𝑣 quantity represents the
marginal gain of moving vertex 𝑣 to partition T. Which means it is not a cost
in its own right. It also means that this marginal bene�t is only ever "gained"
when the vertex is assigned in accordance with the sign of 𝑠𝑣𝑣 ; that is, when
either 𝑠𝑣𝑣 > 0 and 𝑣 is assigned to 𝑇 or 𝑠𝑣𝑣 < 0 and 𝑣 is assigned to partition S.
Finally, the transition cost function also accounts for the opportunity cost of
negative edges which explains the second term as well as the initial value of
the DP model.

Formally the DP model is de�ned as follows. In this de�nition, the nota-
tions (𝛼)+ is used as a shorthand for max {0, 𝛼} and (𝛼)− stands for min {0, 𝛼}.

� State spaces: 𝑆𝑘 =

{
𝑠𝑘 ∈ R𝑛 | 𝑠𝑘𝑗 = 0, 𝑗 = 0, . . . , 𝑘

}
with root and termi-

nal states of the form 𝑟 = 〈0, . . . , 0〉 and 𝑡 = 〈0, . . . , 0〉

� State transition: 𝜏𝑘 (𝑠𝑘 , 𝑥𝑘 ) = (0, . . . , 0, 𝑠𝑘+1𝑘+1, . . . , 𝑠
𝑘+1
𝑛−1) where

𝑠𝑘+1
𝑙

=

{
𝑠𝑘
𝑙
+𝑤𝑘,𝑙 if 𝑥𝑘 = 𝑆

𝑠𝑘
𝑙
−𝑤𝑘,𝑙 if 𝑥𝑘 = 𝑇

}
, 𝑙 = 1 + 𝑘, . . . , 𝑛 − 1

� Transition cost: ℎ0(𝑠0, 𝑥0) = 0 for 𝑥0 ∈ {𝑆,𝑇 }, and

ℎ𝑘 (𝑠𝑘 , 𝑥𝑘 ) =


(−𝑠𝑘

𝑘
)+ + ∑

𝑙>𝑘
𝑠𝑘
𝑙
𝑤𝑘,𝑙<0

min{|𝑠𝑘
𝑙
|, |𝑤𝑘,𝑙 |}, if 𝑥𝑘 = 𝑆

(𝑠𝑘
𝑘
)+ + ∑

𝑙>𝑘
𝑠𝑘
𝑙
𝑤𝑘,𝑙>0

min{|𝑠𝑘
𝑙
|, |𝑤𝑘,𝑙 |}, if 𝑥𝑘 = 𝑇


,

𝑘 = 1, . . . , 𝑛 − 1

� Root value: 𝑣𝑟 =
∑

0≤𝑖< 𝑗<𝑛
(𝑤𝑖, 𝑗 )−

3.2.2 Relaxation

In their paper [Ber+16b], Bergman et al. propose the following relaxation of
the above DP model. The merge operator is applied on a per-state component
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basis. While it might seem as though a simple max operation should su�ce to
merge the state-components, the authors point out that it is actually not the
case since it might cause a decrease in the length of a path passing through
the merged node. Hence given that a valid relaxation mandates that all paths
passing through a merged node must be at least as long as their exact coun-
terpart, they proposed to proceed in two steps. First the least extreme value
of each state-component is kept when all states agree on the direction of the
incentive for that component (a positive value of 𝑠𝑘𝑖 indicates an incentive to
move vertex 𝑖 to partition T, and a negative value an incentive to move it to
partition S). The second step of their relaxation is operated by o�setting the
potential losses on the arcs entering the merged node.

� Merge Operator: for any state-component 0 ≤ 𝑙 < 𝑛,

⊕(M)𝑙 =


min
𝑢∈M
{𝑢𝑙 } if 𝑢𝑙 > 0 for all 𝑢 ∈ M

− min
𝑢∈M
{|𝑢𝑙 |} if 𝑢𝑙 < 0 for all 𝑢 ∈ M

0 otherwise

� Arc Relaxation Γ(𝑎,M) = 𝑣 (𝑎) + ∑
0≤𝑙<𝑛

( |𝑒 (𝑎)𝑙 | − | ⊕ (M)𝑙 |)

3.2.3 Correctness

The DP model we use for the MCP and its relaxation are those from [Ber+16b].
Their correctness is proved in the same paper.

3.3 Maximum 2-Satis�ability Problem (MAX2SAT)

MAX2SAT is a classic optimization problem at the border between opera-
tions research and logic. Over the years, it has – among other – been used in
the context of planning, computer architecture design and Bayesian network
learning [Ign+14; Cus08].

In propositional logic, a literal is either an atomic proposition (a boolean
variable) or its negation. And while these literals can – in general – be com-
bined with arbitrary logic connectives to form formulas, automated reason-
ing tools usually work with equisatis�able formulas in conjunctive normal
form (CNF) where all formula are expressed as conjunction of clauses [Tse68;
BHM09]. That is, in CNF all formulas are expressed as conjunction of disjunc-
tion of literals. Given a logic formula in CNF whose clauses have each been
assigned a weight, the MAXSAT problem consists in �nding a variable assign-
ment that maximizes the total weight of the satis�ed clauses. MAX2SAT is a
restricted form of the MAXSAT problem in which each clause of the formula



3.3. Maximum 2-Satis�ability Problem (MAX2SAT) 25

comprises at most two literals. Even though it might seem that MAX2SAT is
easier to solve than the general MAXSAT case, it has been proved in [GJS74]
that both problems are NP-hard.

Given a CNF formula bearing on a set 𝑥 = {𝑥0, 𝑥1, . . . , 𝑥𝑛−1} of boolean
variables organized as𝑚 clauses, the MAX2SAT problem can be formally ex-
pressed as the following optimization problem.

max
𝑚∑︁
𝑖=0

𝑤𝑖𝑐𝑖 (𝑥) (3.6)

𝑥𝑖 ∈ {𝑇, 𝐹 } ∀0 ≤ 𝑖 < 𝑛 (3.7)

In this formulation (3.6) is the objective to maximize where 𝑤𝑖 is the
weight associated to the 𝑖𝑡ℎ clause and 𝑐𝑖 (𝑥) = 1 when clause 𝑖 is satis�ed
and 0 otherwise. The constraint (3.7) enforces the binary domain of the prob-
lem variables.

3.3.1 DP Model

The DP model of MAX2SAT is very similar to that of MCP presented in sec-
tion 3.2. In the same way the MCP model assumed – without loss of gener-
ality – the presence of all possible edges in the graph, the MAX2SAT model
hypothesizes that any possible clause is present in the formula. Which can
again be done without loss of generality since an absent clause can just as
well be assumed to have a null weight for MAX2SAT purposes. Similar to
the MCP case, the DP model for MAX2SAT also de�nes a state 𝑠𝑘 as a tuple〈
𝑠𝑘0 , 𝑠

𝑘
1 , . . . , 𝑠

𝑘
𝑛−1

〉
where each 𝑠𝑘𝑖 component represents the marginal bene�t of

assigning the truth value 𝑇 to variable 𝑥𝑖 .
To better explain the behavior of the state transition function, let us start

from an example. Considering the following problem comprising two clauses
(𝑎 ∨ 𝑏) and (¬𝑎 ∨ ¬𝑏), both of which have an equal weight of 5.

𝑎 ∨ 𝑏 5
¬𝑎 ∨ ¬𝑏 5

There is no a priori reason to prefer the assignment È𝑏 = 𝑇É over È𝑏 = 𝐹É.
Indeed, both solutions È𝑎 = 𝑇,𝑏 = 𝐹É and È𝑎 = 𝐹, 𝑏 = 𝑇É yield a total score
of 10. However, as soon as the truth value 𝑇 is assigned to 𝑎, 𝐹 becomes
the preferred value of 𝑏. Indeed, the assignment È𝑎 = 𝑇,𝑏 = 𝑇É only yields
a meager score of 5 as opposed to the possible total of 10. The assignment
È𝑎 = 𝑇É has thus decreased the marginal bene�t of assignment È𝑏 = 𝑇É by 5
units. That alteration of the marginal bene�t of È𝑏 = 𝑇É is due to the fact that
when È𝑎 = 𝑇É the clause (𝑎 ∨ 𝑏) is satis�ed regardless of the value of 𝑏. The
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possibility of satisfying (¬𝑎∨¬𝑏) however depend on the value of𝑏 only. The
transition function re�ects that change in the marginal bene�t of È𝑏 = 𝑇É by
adding the potential gain of clause (¬𝑎 ∨ 𝑏) and subtracting the opportunity
cost of not satisfying (¬𝑎 ∨ ¬𝑏) from the marginal bene�t of È𝑏 = 𝑇É. In our
example, the clause (¬𝑎∨𝑏) is absent from the problem de�nition and is thus
considered to be 0 weighted and (¬𝑎 ∨ ¬𝑏) has a weight of 5. Which is why
the marginal bene�t of È𝑏 = 𝑇É has become −5 after the assignment È𝑎 = 𝑇É.

The reasoning would have been similar if 𝑎 were to have been assigned
the truth value 𝐹 . But in that case, the clauses depending on 𝑏 only would
have been (𝑎 ∨ 𝑏) and (𝑎 ∨ ¬𝑏). Thus, the marginal bene�t would have been
adapted according to the weight of these clauses.

The logic underlying the transition cost function of the MAX2SAT DP
model is as follows. Upon branching on È𝑥𝑘 = 𝑇É from state 𝑠𝑘 , the marginal
bene�t associated to È𝑥𝑘 = 𝑇É is immediately acquired if that bene�t is posi-
tive (later denoted (𝑠𝑘

𝑘
)+). Otherwise that is an opportunity cost which has no

direct impact on the global objective. Also, given that the decision È𝑥𝑘 = 𝑇É
provokes the satisfaction of other clauses regardless the truth value assigned
to the other literals, the cost of these clauses can be added to the objective
(
∑
𝑙>𝑘

𝑤𝑇𝑇
𝑘,𝑙
+𝑤𝑇𝐹

𝑘,𝑙
in the formal de�nition below). Beyond that, the transition cost

function also incorporates a component to account for the minimum bene�t
which will arise from the assignment of the other literals for all the clauses
depending on that second literal only (

∑
𝑙>𝑘

min
{
(𝑠𝑘
𝑙
)+ +𝑤𝐹𝑇

𝑘,𝑙
, (−𝑠𝑘

𝑙
)+ +𝑤𝐹𝐹

𝑘,𝑙

}
).

A symmetric reasoning is held upon branching on È𝑥𝑘 = 𝐹É.
The initial value of this model simply consists of the sum of the weights

of all tautological clauses. Indeed, these clauses are always satis�ed – by
de�nition of a tautology, but are not otherwise accounted for in the transition
cost function.

3.3.1.1 Notations

The MAX2SAT DP model formalized hereafter uses the following notations:

� (𝛼)+ as a shorthand notation for max {0, 𝛼},

� 𝑤𝑇𝑇
𝑘,𝑙

to denote the weight of the clause (𝑘 ∨ 𝑙),

� 𝑤𝑇𝐹
𝑘,𝑙

to denote the weight of the clause (𝑘 ∨ ¬𝑙),

� 𝑤𝐹𝑇
𝑘,𝑙

to denote the weight of the clause (¬𝑘 ∨ 𝑙) and

� 𝑤𝐹𝐹
𝑘,𝑙

to denote the weight of the clause (¬𝑘 ∨ ¬𝑙).
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3.3.1.2 Model

� State spaces: 𝑆𝑘 =

{
𝑠𝑘 ∈ R𝑛 | 𝑠𝑘𝑗 = 0, 𝑗 = 0, . . . , 𝑘 − 1

}
with the root state

and terminal state of the form 𝑟 = 〈0, . . . , 0〉 and 𝑡 = 〈0, . . . , 0〉.

� State transition: 𝜏𝑘 (𝑠𝑘 , 𝑥𝑘 ) = (0, . . . , 0, 𝑠𝑘+1𝑘+1, . . . , 𝑠
𝑘+1
𝑛−1) where

𝑠𝑘+1
𝑙

=

{
𝑠𝑘
𝑙
+𝑤𝑇𝑇

𝑘,𝑙
−𝑤𝑇𝐹

𝑘,𝑙
if 𝑥𝑘 = 𝐹

𝑠𝑘
𝑙
+𝑤𝐹𝑇

𝑘,𝑙
−𝑤𝐹𝐹

𝑘,𝑙
if 𝑥𝑘 = 𝑇

}
, 𝑙 = 𝑘 + 1, . . . , 𝑛 − 1

� Transition cost1: ℎ0(𝑠0, 𝑥0) = 0 for 𝑥0 ∈ {𝑇, 𝐹 }, and

ℎ𝑘 (𝑠𝑘 , 𝑥𝑘 ) =



(−𝑠𝑘
𝑘
)+ +𝑤𝐹𝐹

𝑘,𝑘
+ ∑
𝑙>𝑘

(𝑤𝐹𝐹
𝑘,𝑙
+𝑤𝐹𝑇

𝑘,𝑙
+

min
{
(𝑠𝑘
𝑙
)+ +𝑤𝑇𝑇

𝑘,𝑙
, (−𝑠𝑘

𝑙
)+ +𝑤𝑇𝐹

𝑘,𝑙

}
) if 𝑥𝑘 = 𝐹

(𝑠𝑘
𝑘
)+ +𝑤𝑇𝑇

𝑘,𝑘
+ ∑
𝑙>𝑘

(𝑤𝑇𝐹
𝑘,𝑙
+𝑤𝑇𝑇

𝑘,𝑙
+

min
{
(𝑠𝑘
𝑙
)+ +𝑤𝐹𝑇

𝑘,𝑙
, (−𝑠𝑘

𝑙
)+ +𝑤𝐹𝐹

𝑘,𝑙

}
) if 𝑥𝑘 = 𝑇


,

𝑘 = 1, . . . , 𝑛 − 1

� Root value2: 𝑣𝑟 =
𝑛∑
𝑖=0
𝑤𝑇𝐹𝑖,𝑖

3.3.2 Relaxation

The MAX2SAT model uses the exact same relaxation operators as MCP. Their
interpretation is also similar. In both cases, the point is to reconcile (possibly
divergent) marginal bene�ts.

3.3.3 Correctness

The DP model and relaxation we use for MAX2SAT again originates from
[Ber+16b]. Their proof of correctness are to be found in the appendices of the
same paper.

1This is a correction brought to the original DP formulation. Our model introduces the
terms 𝑤𝑇𝑇

𝑘,𝑘
and 𝑤𝐹𝐹

𝑘,𝑘
in the transition cost function as a means to account for the cost of unit

clauses. These were not originally accounted for in the model proposed by Bergman et al. The
introduction of these terms does not fundamentally alters the reasoning behind the formal
proof of correctness presented in the appendices of [Ber+16b].

2This is another correction brought to the original DP formulation which used a root value
𝑣𝑟 = 0. This however, negatively impacted the value of the actual objective as the weight
of tautological clauses was omitted. Apart from this change, and the introduction of terms to
account for unit clauses in the transition cost function, no adaptation is required in the original
model or in its proof of correctness.
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3.4 Traveling Salesman Problem w. Time Windows (TSPTW)

TSPTW is a popular variant of the TSP where the salesman’s customers must
be visited within given time windows. The real world applications of this
problem are obvious. For instance, the TSPTW could be immediately appli-
cable to the scheduling of technicians appointment e.g. to activating DSL
line. Other, less obvious uses have also been proposed for this problem. For
instance [XQ02] proposes to apply it in the context of steel production.

In spite of being straightforward to express and comprehend, the TSPTW
is notoriously hard to solve. Indeed, it turns out that even �nding a feasible
solution was proved NP-complete [Sav85]. Formally, TSPTW is characterized
by𝑁 a number of customers to visit,D a square matrix s.t. D𝑖, 𝑗 is the distance
between customers 𝑖 and 𝑗 ; H the considered time horizon and TW is a
vector of time windows s.t. TW𝑖 = (𝑒𝑖 , 𝑙𝑖) where 𝑒𝑖 is the earliest time when
the salesman can visit 𝑖 and 𝑙𝑖 the latest.

3.4.1 CP Model

The most natural way to formalize TSPTW is probably to express it as a CP
model. Listing 3.1 presents a declarative Minizinc [Net+07] model for this
problem. In this model, the decision variable 𝑥𝑖 de�nes the visited customer
in 𝑖𝑡ℎ position of the tour. The auxiliary variables 𝑎𝑖 represent the time when
the salesman visits the 𝑖𝑡ℎ customer of the tour. The constraints ensure i)
that the salesman’s tour starts and ends at the depot ii) each city is visited
exactly once iii) the time window constraints and iv) the salesman cannot
travel faster than speci�ed in the distance matrix between two consecutive
visits but is allowed to wait until the beginning of the time window. Finally,
the travel time objective is minimized.

1 /∗ Make it a tour start/ending at city 0 ∗/
2 constraint (x[0] = 0 /\ x[N] = 0 /\ a[0] = 0);
3 constraint alldi�erent_except_0(x);
4 /∗ Enforce time windows ∗/
5 constraint forall(i in 0..N)(Earliest[x[i]] <= a[x[i]]);
6 constraint forall(i in 0..N)(a[x[i]] <= Latest[x[i]]);
7 constraint forall(i in 0..N−1)(
8 a[x[i+1]] >= a[x[i]] + Distance[x[i],x[i+1]]
9 );

10 /∗ Travel Objective ∗/
11 int: travel = sum(i in 0..N−1)(Distance[x[i],x[i+1]]);
12 solve minimize travel;

Listing 3.1: Minizinc CP model for the TSPTW
3.4.2 DP Model

The DP model we use is a variation of the classical DP formulation that min-
imizes the travel time. In essence, the model remains exactly the same, only
did we adapt the de�nition of a state to make it more amenable to merging.
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Note

Because TSPTW is a minimization problem, it does not respect the
usual DDO maximization assumption. Still, DDO remains perfectly
usable. Indeed, it su�ces to �ip the sign of all costs of the transition
cost function in order to turn a minimization problem into a maximiza-
tion one.

Theorem 3.4.1 The assignment minimizing function 𝑓 (𝑥) is found as
the assignment maximizing −𝑓 (𝑥). That is, by maximizing the objective
function whose sign has been �ipped. min 𝑓 (𝑥) = max−𝑓 (𝑥)

Proof 3.4.1 Let us start with the obvious:

𝑓 (𝑥) =𝑚 ⇐⇒ −𝑓 (𝑥) = −𝑚

Also, by de�nition of the maximum and minimum:

max 𝑓 (𝑥) =𝑚 ⇐⇒ ∃𝛼 : 𝑓 (𝛼) =𝑚 ∧ ∀𝛼 ′ ≠ 𝛼 : 𝑓 (𝛼 ′) ≤ 𝑚
min 𝑓 (𝑥) =𝑚 ⇐⇒ ∃𝛼 : 𝑓 (𝛼) =𝑚 ∧ ∀𝛼 ′ ≠ 𝛼 : 𝑓 (𝛼 ′) ≥ 𝑚

⇐⇒ ∃𝛼 : −𝑓 (𝛼) = −𝑚 ∧ ∀𝛼 ′ ≠ 𝛼 : −𝑓 (𝛼 ′) ≤ −𝑚
⇐⇒ max−𝑓 (𝑥) = −𝑚

�

In the context of DDO, �ipping all the costs imposes that the costs on
the transition cost function be negated and that the relaxation opera-
tion yields a lower bound on the objective value. That is, the negation
of the relaxation must yield an upper bound in the corresponding max-
imization problem. Indeed, if the relaxed bound 𝑓 (𝑥) is a lower bound
on the actual objective value 𝑓 (𝑥), we have 𝑓 (𝑥) ≤ 𝑓 (𝑥) and thus
−𝑓 (𝑥) ≥ −𝑓 (𝑥) which means −𝑓 (𝑥) is an upper bound when −𝑓 (𝑥)
is the objective to maximize.

Formally, a state 𝑠𝑘 from the 𝑘th layer of the MDD is structured as a tu-
ple 〈𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛, 𝑡𝑖𝑚𝑒,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡,𝑚𝑎𝑦_𝑣𝑖𝑠𝑖𝑡〉 where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 is the set of cities
where the traveling salesman might possibly be after he visited the 𝑘 �rst
cities of his tour. As we will show later, this set is – by de�nition of the tran-
sition function – always a singleton except when 𝑠𝑘 is the state of a merged
node. The 𝑡𝑖𝑚𝑒 component denotes the earliest time when the salesman could
have arrived to some city ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛. Finally,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡 is the set of cities that
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have not been visited on any of the 𝑟 − 𝑠𝑘 path, and 𝑚𝑎𝑦_𝑣𝑖𝑠𝑖𝑡 is the set of
cities that have been visited along some of the 𝑟 − 𝑠𝑘 paths but not all of them.

Given a state 𝑠𝑘 =
〈
𝑡𝑖𝑚𝑒𝑘 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 ,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 ,𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘

〉
and a next

destination 𝑑𝑘 , the state transition function simply re�ects the new position
and removes it from the set of places that must or might be visited in the rest
of the tour (𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 and𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 respectively). It also adapts the time
so as to account for the potential wait time before visiting customer 𝑑𝑘 .

The transition cost function is quite straightforward as it simply yields the
distance between the last known position (𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 ) and the new one (𝑑𝑘 ).
In the particular case where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 is not a singleton set (that is, when a
relaxed DD is being compiled and 𝑠𝑘 is the result of a merge operation); the
transition cost function must ensure to return an optimistic view on the travel
time. This is why it returns min

{
D𝑖,𝑑𝑘 | 𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘

}
.

The formal de�nition of the elements of our TSPTW DP model is the
following:

� State spaces: The states space 𝑆𝑘 of our DP model is the set of states〈
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 , 𝑡𝑖𝑚𝑒𝑘 ,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 ,𝑚𝑎𝑦_𝑣𝑖𝑠𝑖𝑡𝑘

〉
where 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 is a subset

of possible customers, 𝑡𝑖𝑚𝑒𝑘 indicates the earliest possible arrival at
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 . And where 𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 and 𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 are sets of cities.
The initial state 𝑟 = 〈{0} , 0, {0, . . . , 𝑛 − 1} , ∅〉. All terminal states are of
the form 〈{0} ,𝑤, ∅, ∅〉 with 0 < 𝑤 ≤ H .

� State transition:

𝜏𝑘 (
〈
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 , 𝑡𝑖𝑚𝑒𝑘 ,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 ,𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘

〉
, 𝑑𝑘 ) =〈

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘+1, 𝑡𝑖𝑚𝑒𝑘+1,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘+1,𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘+1
〉

where

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘+1 = {𝑑𝑘 }

𝑡𝑖𝑚𝑒𝑘+1 = max
{
𝑒𝑑𝑘 , 𝑡𝑖𝑚𝑒

𝑘 +min
{
D𝑖,𝑑𝑘 | 𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘

}}
𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘+1 =𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 \ {𝑑𝑘 }
𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘+1 =𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 \ {𝑑𝑘 }

for 𝑘 = 0, 1, . . . , 𝑛 − 1.

� Transition cost function:

ℎ𝑘 (
〈
𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 , 𝑡𝑖𝑚𝑒𝑘 ,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 ,𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘

〉
, 𝑑𝑘 ) =

min
{
D𝑖,𝑑𝑘 | 𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘

}
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� Root value: 𝑣𝑟 = 0

3.4.3 Relaxation

Our relaxation leverages the structure of the states to perform a merge op-
eration that loses as little information as possible. Our Γ operator is de�ned
as the identity function: the cost of edges entering the merged node does not
need to be altered. Our ⊕ operator, on the other hand, is slightly more com-
plex. The result of a merge operation yields a state in which the salesman
is considered to be in any of the places where he could potentially be. The
current time is optimistically chosen as the minimum among the times of all
nodes participating in the merge operation (3.9). Also, the set of cities that
must be visited is restricted to the set of cities for which all the merged states
agree (3.10). The set of cities that might be visited, on the other hand, ac-
counts for all other possibilities (3.11 and 3.12). That is, the set of cities that
might be visited comprises all cities that might have been visited from any
of the states participating in the merge operation (3.11). In addition to these,
the set of cities that are considered as potentially visitable also comprises all
the cities for which a disagreement existed between at least two states partic-
ipating in the merge (3.12). This is why in (3.12), the intersection of all cities
that must be visited in all state is subtracted from the union of these sets of
cities; leaving only those cities for which a disagreement exists. Formally, the
merge operator is expressed as:

� Merge operator:

⊕(M)𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛 =
⋃
𝑎∈M

𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑎 (3.8)

⊕(M)𝑡𝑖𝑚𝑒 = min {𝑡𝑖𝑚𝑒𝑎 | 𝑎 ∈ M} (3.9)

⊕(M)𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡 =
⋂
𝑎∈M

𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑎 (3.10)

⊕(M)𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡 =
⋃
𝑎∈M

𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑎 (3.11)

∪
( ⋃
𝑏∈M

𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑏 \
⋂
𝑐∈M

𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑐
)

(3.12)

� Arc relaxation: Γ(𝑎,M) = 𝑣 (𝑎)

3.4.4 Bibliographic Note

There is a long history of models and techniques to solve and approximate
the TSPTW. In [CMT81], Christo�des et al. proposed both a dynamic pro-
gramming formulation of the problem and several state-space relaxations of
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the problem. These di�er from the one presented above since their goal is not
to merge states with the intent of imposing limits on the memory consump-
tion of a solver, but instead aim at mapping the complete state space onto
a smaller one. In [CVH13], Ciré and Van Hoeve presented a structured ap-
proach to deriving bounds for common sequencing objective functions using
relaxed MDDs. That approach is used to compute bounds on the travel time
in the model presented above (Section 3.4.2). In the same paper, the authors
proposed a re�nement heuristic based on priorities assigned to the customers3

to compile relaxed MDDs with tight bounds. Their intuition is that the bound
derived from a relaxed DD would be tighter if the decision to visit the cus-
tomers that are the farthest apart from all others led to an exact node in the
DD. Even though that heuristic is intended for the case where relaxed DDs
are compiled by separation, a selection heuristic for the top-down compila-
tion case can easily be devised using the same intuition. This, however, has
not been programmed in the code used to run the experiments of Chapters
4,5, and 6; all of which are based on the MinLP heuristic.

In [Sav85], Savelsbergh et al. proposed e�cient feasibility checks which
allowed to lift the Lin-Kernighan k-Opt move [LK73] from a local search reso-
lution of the TSP to a local search resolution of the TSPTW. In [Dum+95], Du-
mas et al. introduced new rules to �lter out infeasible solutions and thereby
greatly improved the e�ciency of DP-based solvers for the TSPTW. In essence,
the check they propose is based on the existence of a partial order between
the time windows in problem instances. From that partial order, it follows
that some positions must be visited before others in all feasible solutions.
While the details of that check have not been reproduced in these pages
for the sake of brevity, it remains that the check proposed by Dumas et al.
is not only compatible with the model we propose (and the further bounds
presented in later chapters), but that check has been implemented in the
for_each_in_domain() method of the model programmed to carry the
experiments of Chapters 4,5 and 6. In 1996, Malandraki et al. proposed in
[MD96] proposed a technique called restricted dynamic programming as a
means to compute an upper bound on the optimal value of the Time De-
pendent Traveling Salesman Problem (TD-TSP): a problem which is close to
the TSPTW. That very technique is essentially the same which has been de-
scribed in section 2.3.4 of this manuscript for the compilation of restricted-
MDD. More recently, Lopez-Ibañez et al. devised an heuristic method to solve
TSPTW through a combination of beam search and ant-colony optimization
[LIB10]. Along somewhat di�erent lines, Baldacci et al. have investigated the
use of ILP techniques to derive bounds on the optimal value of the TSPTW
rather than DP [BMR12].

3jobs in the original paper
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3.5 Pigment Sequencing Problem (PSP)

Intuitively, the Pigment Sequencing Problem (PSP) is a constrained planning
problem where one wants to minimize the cost incurred by the production
and stocking of goods while matching the imposed delivery date for these
goods. The production is performed on a single machine that can be con�g-
ured to produce any of the required items and produces one unit of it over the
course of one atomic period of time. If an item is produced before its due date,
then it must be stored. The stocking of an item incurs a cost which depends
on the type of the stored item. Also, given that all items are produced on a
single machine, the con�guration of that machine must be adapted whenever
the production needs to change. That con�guration change has a cost which
depends both on the current con�guration and the next one. That is, it de-
pends both on the type of the item which is currently produced and on the
type of the next item to produce. This kind of situation would for instance
arise if the production machine were a 3D printer whose nozzle, �lament, bed
and enclosure settings were to be adjusted depending on the prints.

More technically, the PSP is categorized as a multi-item capacited lot siz-
ing problem. It is detailed in CSPLib [GW99, Problem 58] and studied in depth
in [PW06]. It is formally characterized by a 5-tuple 〈I,H ,S, C,Q〉 where:

� I = {0, . . . , 𝑛 − 1} is the set of item types to produce,

� H is the problem time horizon,

� S is a stocking cost vector where S𝑖 is the cost of stocking one unit of
type 𝑖 during one period,

� C is a changeover cost matrix where C𝑖, 𝑗 is the cost of changing the
machine con�guration from producing item 𝑖 to producing item 𝑗 , and

� Q is a vector of demands per item. Given a time period 0 ≤ 𝑡 < H and
an item 𝑖 ∈ I, Q𝑖𝑡 is used to denote the number of items of type 𝑖 to
deliver at time 𝑡 . Without loss of generality, the rest of this manuscript
assumes normalized demands. That is, Q𝑖𝑡 ∈ {0, 1} ∀𝑡, 𝑖 .

On that base, the PSP can be expressed as shown per equations (3.13) –
(3.18). In line with the nomenclature from [PW06], this model will be referred
to as PIG-A-1 in the rest of this thesis.

minimize
∑︁
𝑖, 𝑗,𝑡

C𝑖, 𝑗c𝑡𝑖, 𝑗 +
∑︁
𝑖,𝑡

S𝑖s𝑡𝑖 (3.13)
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subject to

s0𝑖 = 0 ∀𝑖 ∈ I (3.14)
x𝑡𝑖 + s𝑡−1𝑖 = Q𝑖𝑡 + s𝑡𝑖 ∀𝑖 ∈ I; 0 ≤ 𝑡 < H (3.15)

x𝑡𝑖 ≤ y𝑡𝑖 ∀𝑖 ∈ I, 0 ≤ 𝑡 < H (3.16)∑︁
𝑖,𝑡

y𝑡𝑖 = 1 ∀𝑖 ∈ I, 0 ≤ 𝑡 < H (3.17)

c𝑡𝑖, 𝑗 ≥ y𝑡−1𝑖 + y𝑡𝑗 − 1 ∀𝑖, 𝑗 ∈ I; 0 ≤ 𝑡 < H (3.18)

In the above model, x𝑡𝑖 is a binary production variable (1 when item 𝑖 is pro-
duced at time 𝑡 , otherwise 0). y𝑡𝑖 is a binary setup variable (1 i� machine is
ready to produce 𝑖 at time 𝑡 ). c𝑡𝑖, 𝑗 is a binary changeover variable (1 i� con-
�guration changed from 𝑖 to 𝑗 at time 𝑡 ). s𝑡𝑖 is an integer socking variable
counting the number of items of type 𝑖 stored at time 𝑡 .

The equation (3.13) expresses the objective function to minimize. Also,
the constraint (3.14) imposes that the stock of every item is empty at startup.
Equation (3.15) is a conservation constraint stating that when an item is pro-
duced, it is either delivered or stocked for later delivery. Constraint (3.16)
forces the consistency between the production and machine con�guration
variables. (3.17) is a capacity constraint stating that only 1 unit of one item
is produced at each time. Finally, (3.18) is a constraint that enforces the
consistency between the machine con�guration variables (y𝑡−1𝑖 , y𝑡𝑗 ) and the
changeover variables (c𝑡𝑖, 𝑗 ).

3.5.1 DP Model

Note

To the best of our knowledge, this problem has not been solved with
DP before. The model we proposed in [GS22] and which we hereby
reproduce should therefore be considered a contribution of this thesis.

The DP model we propose for the PSP works as follows: the decisions
that are made should be interpreted as answering the question "what item is
produced at time t ?". For example, a decision È𝑥4 = 3Éwould mean that item
3 is to be scheduled for production on the machine at time 4. Also, our model
starts by making decision about the items that must be produced last (at time
H ) progressing towards the start of the plan. This approach has been chosen
to avoid branching on infeasible paths during the compilation of the DDs.

In this model, a state is a tuple 〈𝑘,𝑢〉 where 𝑘 can either be an item from
the item set I or −1. Intuitively, the 𝑘 component of a state 𝑠𝑡 = 〈𝑘,𝑢〉 is
meant to stand for the item that will be scheduled for production at time 𝑡 +1.
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The 𝑢 component is a vector indicating for each item, the time at which the
previous demand had to be satis�ed.

Obviously, given that the problem does not consider any production after
the time horizon H , the component 𝑘 can also hold a ’dummy’ value. We
used value −1 to materialize this dummy value. In the de�nitions below, a
state where 𝑘 = −1 should be interpreted as a means to signify that any item
could have been scheduled for production at time 𝑡 + 1. The dummy value −1
can also occur in the context of the transition and transition cost functions.
In that case however, a decision to branch on item −1 should be understood
as a decision to leave the machine idle for one time step.

The transition function proceeds as follows: when the machine is left
idle, the state is left untouched (obviously). Otherwise, when an actual item
is scheduled for production, the identi�er of this item is stored in the 𝑘 state
component and its previous demand time is updated. Similarly, the transition
cost function yields a cost of zero when the machine is left idle. When an
actual item is scheduled for production, it returns a cost that accounts for
both the machine recon�guration (which can amount to zero when 𝑘 = −1)
and the stocking cost of the item that is being scheduled.

Formalization In order to formally de�ne a DP model for the PSP, it helps
to �rst de�ne T 𝑖𝑡 from the input data, which yields the previous demand time
for a given item 𝑖 and time 0 ≤ 𝑡 ≤ H .

T 𝑖0 = −1 T 𝑖𝑡 =

{
𝑡 − 1 if Q𝑡−1𝑖 > 0
T 𝑖𝑡−1 otherwise

The elements of a PSP DP model are the following:

� a state 𝑠𝑡 ∈ SH−𝑡 is a tuple 〈𝑘,𝑢〉 where 𝑘 denotes the type produced at
time 𝑡 + 1, and 𝑢 is a vector comprising the previous delivery date for
each item. In particular, we have 𝑟 =

〈
−1,

(
T 0
H,T

1
H, . . . ,T

𝑛−1
H

)〉

� 𝜏𝑡 (〈𝑘,𝑢〉 , 𝑑) =


〈𝑘,𝑢〉 when 𝑑 = −1〈
𝑑,

(
𝑢0, ...𝑢𝑑−1,T𝑑𝑢𝑑 , 𝑢𝑑+1, ...𝑢𝑛−1

)〉
when 𝑢𝑑 ≥ 𝑡

⊥ otherwise

� ℎ𝑡 (〈𝑘,𝑢〉 , 𝑑) =
{
S𝑑 · (𝑢𝑑 − 𝑡) when 𝑘 = −1
C𝑘,𝑑 + S𝑑 · (𝑢𝑑 − 𝑡) otherwise

� 𝑣𝑟 = 0.
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3.5.2 Relaxation

Note

Similar to TSPTW, the PSP is a minimization problem. Its correctness
therefore depends on its ability to derive lower bounds from relaxed
nodes.

Based on the above DP model, a simple and correct way of merging sev-
eral nodes consists in considering that the item that has been scheduled for
production at time 𝑡 + 1 could be any item at all. Moreover, our merge oper-
ator keeps the smallest previous demand time for all items. From this choice,
it results that some items might "disappear" from the merge state, thereby
forcing the machine to remain idle for one or more time periods.

� Merge operator: ⊕𝑡 (M) =
〈
−1,

(
min
𝑎∈M

𝑢𝑎0 , min
𝑎∈M

𝑢𝑎1 , . . . , min
𝑎∈M

𝑢𝑎𝑛−1

)〉
� Arc relaxation: Γ(𝑎,M) = 𝑣 (𝑎)

3.6 Description of the benchmark instances

This section describes for each problem the benchmark instances that will be
used in the experimental studies of following chapters.

MISP. In order to evaluate the impact on MISP of the various techniques
proposed throughout this thesis, we generated random graphs based on the
Erdos-Renyi model G(n, p) [ER59] with the number of vertices n = 250, 500,
750, 1000, 1250, 1500, 1750 and the probability of having an edge connecting
any two vertices p = 0.1, 0.2, ... , 0.9. The weight of the edges in the generated
graphs were drawn uniformly from the set {−5,−4,−3,−2,−1, 1, 2, 3, 4, 5}. We
generated 10 instances for each combination of size and density (n, p).

MCP. In line with the strategy used for MISP, we generated random MCP
instances as random graphs based on the Erdos-Renyi model G(n, p). These
graphs were generated with the number of vertices n = 30, 40, 50 and the
probability p of connecting any two vertices = 0.1, 0.2, 0.3, .., 0.9. The weights
of the edges in the generated graphs were drawn uniformly among {−1, 1}.
Again, we generated 10 instances per combination n, p.

MAX2SAT. Similar to the above, we used random graphs based the Erdos-
Renyi model G(n, p) to derive MAX2SAT instances. To this end, we produced
graphs with n = 60, 80, 100, 200, 400, 1000 (hence instances with 30, 40, 50,
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100, 200 and 500 variables) and p = 0.1, 0.2, 0.3, .. , 0.9. For each combina-
tion of size (n) and density (p), we generated 10 instances. The weights of
the clauses in the generated instances were drawn uniformly from the set
{1, 2, 3, 5, 6, 7, 8, 9, 10}.

TSPTW. To evaluate the e�ectiveness of our rules on TSPTW, we used
the 467 instances from the following suites of benchmarks, which are usu-
ally used to assess the e�ciency of new TSPTW solvers. AFG [Asc96], Du-
mas [Dum+95], Gendreau-Dumas [Gen+98], Langevin [Lan+93], Ohlmann-
Thomas [OT07], Solomon-Pesant [Pes+98] and Solomon-Potvin-Bengio [PB96].
All these benchmark instances as well as their best known solutions are avail-
able online at [LIB20].

PSP. In order to evaluate the e�ectiveness of the techniques that are pro-
posed in this manuscript, we generated two sets of random PSP instances
with varying number of items and time horizon. Table 3.1 shows the details
of the con�gurations for the �rst set of benchmarks instances. It comprises
500 generated instances with 5 items (|I | = 5) and a time horizon varying
between 20 and 100. The details of the second set of benchmark instances is
shown in table 3.2. This data set comprises 500 generated instances having
10 items and a time horizon varying between 50 and 100.

The strategy which has been used to generate the stocking and changeover
costs of the random instances was the same for both data sets. In bot cases,
the stocking and changeover costs have been generated so as to re�ect a va-
riety of possible situations: stocking cost dominated, changeover dominated,
balanced between the costs.

features number of instances
|I | = 5,H = 20 100
|I | = 5,H = 50 100
|I | = 5,H = 100 300

Table 3.1: Details of the 1st set of benchmark instances

features number of instances
|I | = 10,H = 50 300
|I | = 10,H = 100 200

Table 3.2: Details of the 2nd set of benchmark instances
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Contributions and Publication Information

This chapter substantially extends the content that has been published
in Xavier Gillard, Pierre Schaus, and Vianney Coppé. Ddo, a generic
and e�cient framework for MDD-based optimization. IJCAI. 2020. Its
main contribution comes in the form of ddo: the �rst generic open
source library to implement fast and e�cient solvers based on the
branch and bound with DD paradigm. This chapter complements the
original publication with a discussion on the engineering and perfor-
mance aspects of implementing ddo.

This chapter presents ddo, a generic and e�cient library to solve con-
straint optimization problems with decision diagrams. This framework im-
plements the branch-and-bound approach presented in Chapter 2 and pro-
vides a common ground to easily program e�cient solvers based on the DDO
paradigm. In particular, this single generic library allowed us to write solvers
for the MISP, MCP, MAX2SAT, TSPTW and PSP, which reduced the e�ort of
implementing all �ve problems to a mere translation of the models presented
in Chapter 3. Besides that, this chapter discusses engineering aspects that are
key to the performance of solvers developed with such a library. More specif-
ically, it discusses four alternative implementations of the MDD abstraction
and compares their respective performance with a computational study.

4.1 The ddo library

One of the key “selling point” of DDO as a combinatorial optimization tech-
nique is its simplicity. Indeed, all what is required in order to solve a problem
using the branch-and-bound with DD algorithm is a DP model for the prob-
lem and a relaxation. Our goal while implementing our library was to keep
this simplicity and to make it center and front. This is why the only two in-
gredients required from anyone willing to solve a new of problem using our
library are a DP formulation and a suitable relaxation for the problem. In an
ideal world these would be the only two inputs. Still, extensibility and con-
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�gurability have been thought from the start. This way, new data structures
and heuristics can be provided by the user if deemed useful.

Given the relative youth of DDO as a sub-�eld in Operations Research, it
has not gained a very wide adoption (yet), as opposed to the well established
MIP for instance. By releasing an easy-to-use, free and e�cient DDO library,
we hoped to increase the public awareness of this �eld and lower its barrier to
entry. This is why ddo was released as an open source1 Rust library (crate in
Rust parlance) alongside with its companion example programs to solve the
aforementioned problems. To the best of our knowledge, this is the �rst pub-
lic implementation of a generic library to solve combinatorial optimization
problems with branch-and-bound MDD.

4.1.1 Why Rust ?

Considering that this project was started from scratch and did not have to
deal with any kind of legacy code, we were faced with a complete technolog-
ical choice freedom. After experimenting a bit with implementations in Java,
Scala and C++, the choice �nally settled on using Rust to write this library.

Rust[Fou22] is a recent programming language when compared to Java,
Python or C++. It �rst appeared in 2010 at Mozilla Research in the context of
the Servo project (Mozilla’s experimental browser engine). Its purpose was to
enable the development of key components of the browser while increasing
the code readability, reducing the risk of memory related issues and keeping
the resulting binary portable and extremely fast. Since then, the language
has left the Mozilla-only scope and is now managed by the Rust Foundation.
Over time, it started to gain corporate support2 and it has been elected "the
most loved programming language" in the Stack Over�ow Developer Survey
every year since 2016[Ove22].

Because of its absence of runtime (no virtual machine, no garbage collec-
tor) Rust is often described as a low level system programming language. While
this is certainly true and embedded projects are being developed in Rust, the
Foundation advertises it as “A language empowering everyone to build reli-
able and e�cient software”[Fou22]. This description better encompasses our
experience with the language and the reasons that motivated the technologi-
cal choice behind ddo. Indeed, Rust seems to have brought about the bene�ts
from all major languages without their inherent drawbacks. For instance,
it features a strong type system structured with traits and implementation
types similar to Java. Its tooling is also very comfortable to work with. For
instance, unit tests documentation and doctests are integral to the language.
Its build manager cargo will run them upon compilation for early problem

1https://github.com/xgillard/ddo
2https://www.rust-lang.org/sponsors
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detection. Moreover, cargo comes with dependency management and build
con�guration capabilities similar to those of maven in the Java world. Be-
sides that, Rust gives the developer a �ne control over how the memory is
used (stack allocated vs heap allocated, references and raw pointers) as is the
case in C and C++. Combining that with the sheer performance of the gener-
ated binary code proved extremely valuable to developing ddo since solvers
based on branch-and-bound with MDD paradigm are both CPU and memory
intensive processes.

Finally, the built-in borrow checker3 helped us a great deal in developing
the parallel computing capabilities of this library. The strict rules it enforces4

helped to prevent many of the issues typically related to this kind of devel-
opment.

4.1.2 Parallel Computing

In [Ber+14c], Bergman et al. have shown that one of the strengths of the whole
branch-and-bound with MDD approach was its ability to exploit the parallel
computing capabilities of modern hardware. Our ddo library was therefore
developed with parallelism in mind, building on the excellent tooling o�ered
by the Rust ecosystem. In �ne, ddo is able to exploit all the available hard-
ware (or just a fraction of it) without imposing any constraint5 on the person
writing a solver for a speci�c problem.

Algorithms 6, 7, and 8 detail the pseudocode of how such a parallel solver
can be programmed – which closely matches the parallel solver implementa-
tion in ddo. Per se, Algorithm 6 does very little. On the face of it, it exposes
the same interface as the sequential Branch-and-Bound with MDD algorithm
(Algorithm 5 from Chapter 2, p. 18). It requires the same DP model and re-
laxation operators inputs and yields the same output: a 2-tuple whose �rst
term is an optimal solution to the problem and the second term is the ob-
jective value of that optimal solution. The major di�erence between the two
algorithms stems from the fact that Algorithm 6 o�oads all of the intensive
computation to worker threads which collaborate to �nd the optimal solu-
tion (lines 13–20). Apart from that, the second key piece of information to
take away from Algorithm 6 is that even though all threads share a common
zone of memory, that zone is split into two distinct portions. The �rst one is

3The borrow checker is a utility integrated to the Rust compiler. It veri�es during the com-
pilation that at any time during the execution of the compiled code, no two distinct mutable
references exist to the same memory location; and no variable is used after it has been freed
(no dangling references). That property is used to guarantee the absence of race conditions in
the code at compile time. A peculiarity of the Rust compiler is that any failure to comply with
the rules enforced by the borrow checker results in a compilation failure.

4These can be locally overruled with unsafe Rust.
5Apart from memory safety.
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the shared portion: it consists of all the (immutable) problem inputs and can
safely be accessed by all threads concurrently. The second portion is called the
critical portion and contains the mutable fraction of the solver state. Because
of that mutable nature, and to avoid the occurrence of data races, all access to
the critical portion must happen inside of the solver critical sections. In other
words, all accesses to the critical data must be guarded by the acquisition of
a mutex lock guaranteeing the synchronization at these speci�c points. In
Algorithms 7 and 8, the critical sections have been visually highlighted with
a darker background.

Algorithm 6 Parallel version of the Branch-and-Bound with MDD
1: Input: a DP-Model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a node merging operator ⊕
3: Input: an arc relaxation operator Γ
4: // Create the critical portion of the solver state (Crit) that can only be accessed

5: // from the critical sections

6: 𝑀𝑢𝑡𝑒𝑥 ← new Mutex // Controls the access to the critical sections

7: 𝐶𝑟𝑖𝑡 .𝐹𝑟𝑖𝑛𝑔𝑒 ← new Fringe // The global solver fringe

8: 𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔← 0 // Number of nodes currently being processed

9: 𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝐿𝐵 ← −∞ // The best lower bound known so far

10: 𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝑆𝑜𝑙 ← ⊥ // The best solution known so far

11:
12: 𝐶𝑟𝑖𝑡 .𝐹𝑟𝑖𝑛𝑔𝑒.𝑎𝑑𝑑 (𝑟 ) // Enqueue the root node of the problem

13:
14: // Start all worker threads

15: for 0 ≤ 𝑖 < 𝑁𝑏𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
16: Spawn Thread(P, ⊕, Γ, 𝑀𝑢𝑡𝑒𝑥,𝐶𝑟𝑖𝑡 ) with id 𝑖
17:
18: // Wait until all threads have finished

19: for 0 ≤ 𝑖 < 𝑁𝑏𝑇ℎ𝑟𝑒𝑎𝑑𝑠 do
20: Wait for completion of Thread with id 𝑖
21:
22: // As in the sequential case, return the best solution and its value

23: return (𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝑆𝑜𝑙,𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝐿𝐵)

The reader familiar with the sequential version of the branch-and-bound
with MDD algorithm (Algorithm 5, p. 18 in Chapter 2) will easily recognize
that, for the most part, Algorithm 7 reproduces the content of the sequential
algorithm (lines 13–28). The most noticeable di�erence is to be observed at
lines 8 to 12. Indeed, rather than just popping a node o� the solver Fringe
as was the case in Algorithm 5, the parallel version calls the GetWorkItem
procedure (detailed in Algorithm 8, p. 45). That procedure returns a 2-tuple
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whose �rst term is a status ∈ {𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒, 𝑆𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛,𝑊𝑜𝑟𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑}, and
whose second term is an optional node popped o� the solver Fringe. The lat-
ter is only populated when the returned status is𝑊𝑜𝑟𝑘𝐴𝑠𝑠𝑖𝑔𝑛𝑒𝑑 . The other
two possible statuses serve the purpose of detecting special conditions like
the termination (𝑠𝑡𝑎𝑡𝑢𝑠 = 𝐶𝑜𝑚𝑝𝑙𝑒𝑡𝑒) which is slightly harder to detect when
parallelism is involved than in the sequential case, and a starvation condition
(𝑠𝑡𝑎𝑡𝑢𝑠 = 𝑆𝑡𝑎𝑟𝑣𝑎𝑡𝑖𝑜𝑛) which occurs when the solver is temporarily unable to
provide a thread with some work as the Fringe is momentarily empty. An-
other important – albeit somewhat less noticeable – di�erence between the
body of the sequential and parallel algorithm is visible at line 29. That seem-
ingly innocuous line decrements a counter of active threads. That operation
serves two purposes: �rst, it noti�es the solver that the current thread is done
with the processing of the subproblem it was assigned and the subproblems
that had to be enqueued have been pushed onto the Frontier. The second pur-
pose of decrementing the value of that counter is to help to detect termination
when optimality of the best known solution has been proved.

As explained above, the GetWorkItem procedure detailed in Algorithm
8 serves two purposes: �rst it is used to detect the current status of the overall
resolution. That status can either be:

� Completewhen the search is complete and the solution stored in𝐶𝑟𝑖𝑡 .
𝐵𝑒𝑠𝑡𝑆𝑜𝑙 is provably optimal. This condition happens when the Fringe
is empty and there are no active worker theads left (𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔 = 0).

� Starvationwhen the search is not complete but the solver is momen-
tarily incapable of assigning work to the idle threads. That condition
occurs when the Frontier is empty but some other workers are actively
processing subproblems (𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔 > 0).

� WorkAssigned when the Fringe contains subproblems that must be
processed.

In the event where the status is WorkAssigned, the GetWorkItem pro-
cedure eagerly removes one node from the solver Fringe and assigns it to
the current worker thread. In that case, it also increments the counter 𝐶𝑟𝑖𝑡 .
𝑂𝑛𝑔𝑜𝑖𝑛𝑔 of active workers to signify that the current thread has o�cially been
charged of exploring that particular subproblem.

4.1.3 Discussion

As shown per Algorithms 6, 7, and 8; ddo adopts a coarse grained parallelism
model where each thread respectively handles the complete lifecycle of a node
that was popped out of the solver Frontier. Another option would have been
to opt for a �ne grained parallelism where the expansion of several nodes is
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Algorithm 7 Body of one worker thread
1: Input: a DP-Model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a node merging operator ⊕
3: Input: an arc relaxation operator Γ
4: Input: 𝑀𝑢𝑡𝑒𝑥 a mutex controlling the access to the shared memory
5: Input: 𝐶𝑟𝑖𝑡 a shared memory only be accessible in critical sections
6: // Repeatedly try to get a subproblem to process until there is no more work to do

7: for ever do
8: 〈𝑆𝑡𝑎𝑡𝑢𝑠,𝑢〉 ← 𝐺𝑒𝑡𝑊𝑜𝑟𝑘𝐼𝑡𝑒𝑚(𝑀𝑢𝑡𝑒𝑥,𝐶𝑟𝑖𝑡)
9: if 𝑆𝑡𝑎𝑡𝑢𝑠 is Complete then

10: return // No more work to do

11: else if 𝑆𝑡𝑎𝑡𝑢𝑠 is Starvation then
12: Wait until starvation is over (typically using monitor)
13: else
14: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢)
15: // First Critical Section

16: 𝑀𝑢𝑡𝑒𝑥 .𝑙𝑜𝑐𝑘 ()
17: if 𝑣∗(B) > 𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝐿𝐵 then
18: 𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝐿𝐵 ← 𝑣∗(B)
19: 𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝑆𝑜𝑙 ← 𝑥∗(B)
20: 𝑀𝑢𝑡𝑒𝑥 .𝑢𝑛𝑙𝑜𝑐𝑘 ()

21:
22: if B is not exact then
23: B ← 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢, ⊕, Γ)
24: // Second Critical Section

25: 𝑀𝑢𝑡𝑒𝑥 .𝑙𝑜𝑐𝑘 ()
26: if 𝑣∗(B) > 𝐶𝑟𝑖𝑡 .𝐵𝑒𝑠𝑡𝐿𝐵 then
27: for all 𝑢 ′ ∈ B .𝑒𝑥𝑎𝑐𝑡_𝑐𝑢𝑡𝑠𝑒𝑡 () do
28: 𝐶𝑟𝑖𝑡 .𝐹𝑟𝑖𝑛𝑔𝑒.𝑎𝑑𝑑 (𝑢 ′)
29: 𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔← 𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔 − 1
30: 𝑀𝑢𝑡𝑒𝑥 .𝑢𝑛𝑙𝑜𝑐𝑘 ()
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Algorithm 8 GetWorkItem procedure
Input: 𝑀𝑢𝑡𝑒𝑥 a mutex controlling the access to the shared memory
Input: 𝐶𝑟𝑖𝑡 a shared memory only be accessible in critical sections
𝑆𝑡𝑎𝑡𝑢𝑠 ← Complete
𝑢 ← 𝑁𝑜𝑛𝑒

𝑀𝑢𝑡𝑒𝑥 .𝑙𝑜𝑐𝑘 ()
if 𝐶𝑟𝑖𝑡 .𝐹𝑟𝑖𝑛𝑔𝑒 is empty and 𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔 = 0 then
𝑆𝑡𝑎𝑡𝑢𝑠 ← Complete

else if 𝐶𝑟𝑖𝑡 .𝐹𝑟𝑖𝑛𝑔𝑒 is empty then
𝑆𝑡𝑎𝑡𝑢𝑠 ← Starvation

else
𝑆𝑡𝑎𝑡𝑢𝑠 ←WorkAssigned
𝑢 ← 𝐶𝑟𝑖𝑡 .𝐹𝑟𝑖𝑛𝑔𝑒.𝑝𝑜𝑝 ()
𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔← 𝐶𝑟𝑖𝑡 .𝑂𝑛𝑔𝑜𝑖𝑛𝑔 + 1

𝑀𝑢𝑡𝑒𝑥 .𝑢𝑛𝑙𝑜𝑐𝑘 ()

return 〈𝑆𝑡𝑎𝑡𝑢𝑠,𝑢〉

done in parallel during the compilation of DDs. This second approach was
discarded because of the high amount of synchronization overhead it would
involve compared to the coarse grained approach. As a matter of fact, the ddo
implementation is almost lock free. The only three mandatory synchroniza-
tion points being the moment where a node is popped out of the Fringe (Algo-
rithm 8), the moment when an improved solution must be remembered (Al-
gorithm 7 line 19), and when the nodes from the exact cutset are pushed on it
(line 28). In addition to these, ddo implements a fourth synchronization point
between the compilation of restricted and relaxed DD (in the pseudocode,
that synchronization point would occur right before line 23 of Algorithm 7).
That fourth synchronization point allows a running thread to make use of
potentially better bounds that could have been derived in other threads6.

It is worth mentioning that the parallel branch-and-bound with MDD al-
gorithm depicted above does not require that one resort to using some ad-
vanced load balancing or work stealing heuristics. Indeed, the heaviest com-
putation made by each thread is the compilation of the restricted and relaxed
decision diagrams (Algorithm 7 lines 14 and 23). Assuming that the complex-
ity of both the transition and transition cost functions are𝑂 (1), the complexity
of these compilations is𝑂 (𝑛𝑊𝑑) where 𝑛 is the number of decision variables
and𝑊 is the maximum layer width, and 𝑑 the size of the largest variable do-
main in the problem. While these computations are expensive, the time they

6e.g. Using the techniques presented in the next chapters
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take is well bounded and not subject to divergence. This means each thread
will regularly “be freed” and post new nodes from a fresh exact cutset onto
the Fringe (Algorithm 7 line 28). The time spent in the critical sections of
Algorithms 7, and 8 is bounded by the complexity of adding a node to the
Fringe and of popping a node o� of it. Assuming that the Fringe was imple-
mented using a binary heap, the complexity of the insertion of one node to
the Fringe is 𝑂 (𝑙𝑜𝑔2𝑛) where 𝑛 is the size of that Fringe. Likewise, the com-
plexity of popping a node o� the Fringe is 𝑂 (𝑙𝑜𝑔2𝑛) as well. Given that the
second critical section of Algorithm 7 does not add a single node, but a com-
plete cutset; the time spent in the critical sections of Algorithms 7 and 8 is
bounded by 𝑂 (𝑊𝑙𝑜𝑔2𝑛) since the size of an exact cutset cannot exceed the
limit𝑊 . Hence the time spent in the critical sections grows slowly compared
to the compilation of the decisions diagrams, even when the Fringe contains a
reasonably large number of nodes. This explains why the compilation of the
decision diagrams dominates the time spent in the critical sections in practice.

Also, because𝑊 is typically much larger than the number of CPU cores,
chances are that whenever a worker thread pushes nodes onto the Frontier,
it inserts more nodes than the number of workers. Therefore, when a thread
requests a new subproblem to process, it is thus likely that the Frontier will
be far from empty.

In practice, we observed very little contention during our experiments.
The starvation condition occurred mostly near the complete resolution of a
problem. Which is why the number of DDs compiled by second increased
roughly linearly when using this parallelization scheme. This has been ob-
served in experiments using as many as 40 threads running on a server equip-
ped with two Intel Xeon E5-2687W v3 processors.

4.2 Design of the ddo library

Figure 4.1 depicts a high-level UML class diagram of the overall structure of
the library. The coming Sections 4.2.1 and 4.3 describe in more detail the role
and organization of the structures and interfaces (traits) depicted in that �g-
ure. As a �rst overview, let us �rst observe that the architecture of ddo was
designed with modularity and loose coupling in mind. This is why there are
very few structures that are �xed and can’t be swapped for other implementa-
tions. In Figure 4.1, these are pictured with a yellow-shade background. The
role of these objects is to establish a common protocol to exchange data be-
tween the di�erent parts of the library. It should also immediately be apparent
that the Problem and Relaxation traits (orange) are both very close to the
mathematical de�nition given to these concepts in Chapter 2 and central to
the design of the library.

In Figure 4.1 one can also see that the interface of a Solver is fairly simple
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Figure 4.1: High-level UML class diagram of the overall ddo architecture
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(light gray background). But the responsibilities of the actual solver imple-
mentations are very important: they are in charge of maintaining the frontier
of open subproblems (pink background) while compiling some approximate
decision diagrams (cyan) using the set of provided heuristics (green) to derive
as tight bounds as possible.

4.2.1 A Few Key Abstractions

In line with the mathematical foundations of DDO – which we presented in
Chapter 2, the implementatin of our ddo library relies on a few key abstrac-
tions. The simplest among these are probably those de�ning the representa-
tions of a Variable and a Decision. As shown per listing 4.1, a Variable
is implemented as a mere type-safe unsigned integer. Such Variables are
intended to be used as opaque identi�ers where Variable(i) essentially
denotes the variable 𝑥𝑖 from the abstract mathematical models. Similarly, a
Decision simply represents an assignment decision that was made by the
solver. Put another way, it represents a choice that was taken to set a speci�c
value to some given variable. For example, the assignment decision È𝑥3 = 4É
is represented by Decision{var: Variable(3), value: 4}.

1 /// In essence, a Varible is nothing but a type−safe unsigned integer. It is used
2 /// as an unique identi�er for some variable 𝑥𝑖 in the problem to solve.
3 #[derive(Debug, Clone, Copy)]
4 pub struct Variable(pub usize);
5
6 /// A Decision basically represents a choice which is made to assign some
7 /// value (in this case a signed integer) to a given variable
8 #[derive(Debug, Clone, Copy)]
9 pub struct Decision {

10 pub var: Variable,
11 pub value: isize,
12 }

Listing 4.1: Variable and Decision, the simplest abstractions

As explained earlier, the two ingredients which are central to solving a
combinatorial optimization problem with DD-based branch-and-bound are
respectively: a DP model of the problem at hand, and a relaxation for that
speci�c problem. Naturally, these elements are of utmost importance in our
library as well. As shown per listing 4.2, the concepts for the DP model
and its relaxation are de�ned as traits in ddo, and the operations they de-
�ne as well as their semantic closely match their equivalent in the mathe-
matical model presented in Chapter 2. For instance, in the de�nition of a
problem, the transition and transition cost functions 𝜏 and ℎ correspond to
the method tansition() and transition_cost(). Similarly, the oper-
ators ⊕ and Γ which have been discussed in section 2.3.5 correspond to the
methods merge() and relax() from the Relaxation trait.
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1 /// This trait de�nes the "contract" of what de�nes an optimization problem
2 /// solvable with the branch−and−bound with DD paradigm. An implementation of
3 /// this trait e�ectively de�nes a DP formulation of the problem being solved.
4 /// That DP model is envisioned as a labeled transition system −− which makes
5 /// it more amenable to DD compilation.
6 pub trait Problem {
7 /// The DP model of the problem manipulates a state which is user−de�ned.
8 /// Any type implementing Problem must thus specify the type of its state.
9 type State;

10 /// Any problem bears on a number of variable 𝑥0, 𝑥1, 𝑥2, ..., 𝑥𝑛−1
11 /// This method returns the value of the number 𝑛
12 fn nb_variables(&self) −> usize;
13 /// This method returns the initial state of the problem (the state of 𝑟 ).
14 fn initial_state(&self) −> Self::State;
15 /// This method returns the intial value 𝑣𝑟 of the problem
16 fn initial_value(&self) −> isize;
17 /// This method is an implementation of the transition function mentioned
18 /// in the mathematical model of a DP formulation for some problem.
19 fn transition(&self, state: &Self::State, decision: Decision) −> Self::State;
20 /// This method is an implementation of the transition cost function mentioned
21 /// in the mathematical model of a DP formulation for some problem.
22 fn transition_cost(&self, state: &Self::State, decision: Decision) −> isize;
23 /// Any problem needs to be able to specify an ordering on the variables
24 /// in order to decide which variable should be assigned next. This choice
25 /// is an ∗∗heuristic∗∗ choice. The variable ordering does not need to be
26 /// �xed either. It may depend on the nodes constitutive of the next layer.
27 /// These nodes are made accessible to this method as an iterator.
28 fn next_variable(&self, next_layer: &mut dyn Iterator<Item = &Self::State>)
29 −> Option<Variable>;
30 /// This method calls the function ‘f‘ for any value in the domain of
31 /// variable ‘var‘ when in state ‘state‘. The function ‘f‘ is a function
32 /// (callback, closure, ..) that accepts one decision.
33 fn for_each_in_domain<F>(&self, var: Variable, state: &Self::State, f: F)
34 where F: FnMut(Decision);
35 }
36
37 /// A relaxation encapsulates the relaxation Γ and ⊕ which are
38 /// necessary when compiling relaxed DDs. These operators respectively relax
39 /// the weight of an arc towards a merged node, and merges the state of two or
40 /// more nodes so as to create a new inexact node.
41 pub trait Relaxation {
42 /// Similar to the DP model of the problem it relaxes, a relaxation operates
43 /// on a set of states (the same as the problem).
44 type State;
45
46 /// This method implements the merge operation: it combines several ‘states‘
47 /// and yields a new state which is supposed to stand for all the other
48 /// merged states. In the mathematical model, this operation was denoted
49 /// with the ⊕ operator.
50 fn merge(&self, states: &mut dyn Iterator<Item = &Self::State>) −> Self::State;
51 /// This method relaxes the cost associated to a particular decision. It
52 /// is called for any arc labeled ‘decision‘ whose weight needs to be
53 /// adjusted because it is redirected from connecting ‘src‘ with ‘dst‘ to
54 /// connecting ‘src‘ with ‘new‘. In the mathematical model, this operation
55 /// is denoted by the operator Γ.
56 fn relax(
57 &self,
58 source: &Self::State,
59 dest: &Self::State,
60 new: &Self::State,
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61 decision: Decision,
62 cost: isize,
63 ) −> isize;
64 }

Listing 4.2: The central ingredients of a ‘ddo‘ solver

In addition to the above, our ddo library also de�nes the following traits:
StateRanking which encapsulates the heuristic selection from line 6 in al-
gorithm 4. That heuristic imposes a (partial) order on the states of a layer
according to their "promisingness". As featured per the documentation in
listing 4.3, being "greater" according to this heuristic order is interpreted as
being more promising; more likely to lead to the optimal solution.

Besides the state ranking heuristics, listing 4.3 also gives the de�nition of
the WidthHeuristic. As suggested by the trait name, a WidthHeuristic
encapsulates the heuristic which is used to determine the maximum width
(𝑊 ) which will be used to compile a decision diagram rooted in some state.
Contrary to Problem, Relaxation and StateRanking, a user willing to
solve a problem with ddo might – but is not required to – implement a custom
width heuristic that works well for the problem at hand. However, chances
are that in most cases, the ddo provided implementations (Fixed, NbUnassi-
gned, ...) will su�ce.

1 /// A state ranking is a heuristic that imposes a partial order on states.
2 /// This order is used by the framework as a means to discriminate the most
3 /// promising nodes from the least promising ones when restricting or relaxing
4 /// a layer from some given DD.
5 pub trait StateRanking {
6 /// As is the case for ‘Problem‘ and ‘Relaxation‘, a ‘StateRanking‘ must
7 /// tell the kind of states it is able to operate on.
8 type State;
9

10 /// This method compares two states and determines which is the most
11 /// desirable to keep. In this ordering, greater means better and hence
12 /// more likely to be kept
13 fn compare(&self, a: &Self::State, b: &Self::State) −> Ordering;
14 }
15
16 /// This trait encapsulates the behavior of the heuristic that determines
17 /// the maximum permitted width of a decision diagram.
18 ///
19 /// # Technical Note:
20 /// Just like ‘Problem‘, ‘Relaxation‘ and ‘StateRanking‘, the ‘WidthHeuristic‘
21 /// trait is generic over ‘State‘s. However, rather than using the same
22 /// ’assciated−type’ mechanism that was used for the former three types,
23 /// ‘WidthHeuristic‘ uses a parameter type for this purpose (the type parameter
24 /// approach might feel more familiar to Java or C++ programmers than the
25 /// associated−type).
26 ///
27 /// This choice was motivated by two factors:
28 /// 1. The ‘Problem‘, ‘Relaxation‘ and ‘StateRanking‘ are intrinsically tied
29 /// to ∗one type∗ of state. And thus, the ‘State‘ is really a part of the
30 /// problem/relaxation itself. Therefore, it would not make sense to de�ne
31 /// a generic problem implementation which would be applicable to all kind
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32 /// of states. Instead, an implementation of the ‘Problem‘ trait is the
33 /// concrete implementation of a DP model (same argument holds for the other
34 /// traits).
35 ///
36 /// 2. On the other hand, it does make sense to de�ne a ‘WidthHeuristic‘
37 /// implementation which is applicable regardless of the state of the problem
38 /// which is currently being solved. For instance, the ddo framework o�ers
39 /// the ‘Fixed‘ and ‘NbUnassigned‘ width heuristics which are independent of
40 /// the problem. The ‘Fixed‘ width heuristic imposes that the maximum layer
41 /// width be constant across all compiled DDs whereas ‘NbUnassigned‘ lets
42 /// the maximum width vary depending on the number of problem variables
43 /// which have already been decided upon.
44 pub trait WidthHeuristic<State> {
45 /// Estimates a good maximum width for an MDD rooted in the given state
46 fn max_width(&self, state: &State) −> usize;
47 }

Listing 4.3: Additional traits that might be user-implemented

Finally, the ddo library de�nes traits for the Solver and Frontier. It
readily provides multiple implementations of these traits and it is unlikely
that a user would need or want to create a new one – which is possible
however. The Solver trait abstracts away the details of an objects imple-
menting algorithm 5. The library provides two implementations of this trait:
SequentialSolver which implements the branch-and-bound with MDD
paradigm on a single thread of execution. The second implementation which
is provided by the framework is called ParallelSolver. It implements the
same algorithm as SequentialSolver, but it is able to spread its work on
multiple threads so as to use all of the available hardware.

There are also two available implementations of the Frontier trait. The
SimpleFrontierwhich is essentially a thin wrapper around a priority queue
implemented with a binary heap. The second implementation is calledNoDup-
Frontier. It in addition to implementing a priority queue, that second im-
plementation provides a mechanism that prevents the occurrence of duplicate
nodes in the frontier. This check has no impact on the time or space complex-
ity of the priority queue: the implementation uses a hash table and the dupli-
cate test is completed in amortized 𝑂 (1). It might however yield signi�cant
solver speedups since it has the potential to reduce thrashing7 exponentially.

1 /// This is the solver abstraction. It is implemented by a structure that
2 /// implements the branch−and−bound with MDD paradigm (or possibly another
3 /// optimization algorithm −− currently only branch−and−bound with DD) to
4 /// �nd the best possible solution to a given problem.
5 pub trait Solver {
6 /// This method orders the solver to search for the optimal solution among
7 /// all possibilities.
8 fn maximize(&mut self);
9 /// This method returns the value of the objective function for the best

10 /// solution that has been found. It returns ‘None‘ when no solution exists

7Fundamentally thrashing is the undesired behavior by which an exact solver repeatedly
explores the same portion(s) of a problem state space.
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11 /// to the problem.
12 fn best_value(&self) −> Option<isize>;
13 /// This method returns the best solution to the optimization problem.
14 /// That is, it returns the vector of decision which maximizes the value
15 /// of the objective function (sum of transition costs + initial value).
16 /// It returns ‘None‘ when the problem admits no feasible solution.
17 fn best_solution(&self) −> Option<Vec<Decision>>;
18 }
19
20 /// This trait abstracts away the implementation details of the solver frontier
21 /// (a.k.a. solver fringe). That is, a Frontier represents the global priority
22 /// queue which stores all the nodes remaining to explore.
23 pub trait Frontier {
24 type State;
25
26 /// This is how you push a node onto the frontier.
27 fn push(&mut self, node: SubProblem<Self::State>);
28 /// This method yields the most promising node from the frontier.
29 /// # Note:
30 /// The solvers rely on the assumption that a frontier will pop nodes in
31 /// descending upper bound order. Hence, it is a requirement for any fringe
32 /// implementation to enforce that requirement.
33 fn pop(&mut self) −> Option<SubProblem<Self::State>>;
34 /// This method clears the frontier: it removes all nodes from the queue.
35 fn clear(&mut self);
36 /// Yields the length of the queue.
37 fn len(&self) −> usize;
38 /// Returns true i� the �nge is empty (len == 0)
39 fn is_empty(&self) −> bool {
40 self.len() == 0
41 }
42 }

Listing 4.4: Library provided API

4.2.2 A Complete Usage Example: Knapsack

This section illustrates the use of ddo through a minimalistic yet extensive
example showing how to model and solve the binary knapsack problem with
our library. From Listing 4.5, one can observe how the traits presented in
section 4.2.1 are implemented and how closely the ddo model matches with
the mathematical abstractions from Chapter 2. In particular, it shows that the
implementation of the Problem trait by Knapsack describes the DP formu-
lation of a binary knapsack problem where a state is a plain structure with two
�elds: one that keeps track of the residual capacity of the sack and the other
that keeps track of the number of items which have already been decided
upon. This, along with the nb_variables() method (lines 16–18) charac-
terizes the solution space of the problem. Similarly, the other four elements
constitutive of a DP model (initial state, initial value, transition function and
transition cost function) are all implemented by their eponymous methods
(lines 19–33).

The remaining two methods implemented by Knapsack are also closely
related to the mathematical de�nition of a DP model. Thenext_variable()
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method (lines 35–39) implements the variable heuristic which is used while
developing a DD. When making its decision, this heuristic is provided with an
iterator over the nodes from the next (undeveloped) layer. As a consequence
of this choice, our framework does not impose that a variable ordering must
be �xed a priori. Using our implementation opens the door to de�ning dy-
namic heuristic where the variable ordering might di�er across two succes-
sive relaxed DD. Finally, the for_each_in_domain() method is of utmost
importance. It is the place where the problem explicits the possible decisions
that can be made given a state and a variable8.

1 #[derive(Debug, Clone, Copy, PartialEq, Eq, Hash)]
2 struct KnapsackState {
3 depth: usize,
4 capacity: usize
5 }
6
7 struct Knapsack {
8 capacity: usize,
9 pro�t: Vec<usize>,

10 weight: Vec<usize>,
11 }
12
13 impl Problem for Knapsack {
14 type State = KnapsackState;
15
16 fn nb_variables(&self) −> usize {
17 self.pro�t.len()
18 }
19 fn initial_state(&self) −> Self::State {
20 KnapsackState{ depth: 0, capacity: self.capacity }
21 }
22 fn initial_value(&self) −> isize {
23 0
24 }
25 fn transition(&self, state: &Self::State, dec: Decision) −> Self::State {
26 let mut ret = state.clone();
27 ret.depth += 1;
28 if dec.value == 1 { ret.capacity −= self.weight[dec.var.id()] }
29 ret
30 }
31 fn transition_cost(&self, state: &Self::State, dec: Decision) −> isize {
32 self.pro�t[dec.var.id()] as isize ∗ dec.value
33 }
34
35 fn next_variable(&self, next_layer: &mut dyn Iterator<Item = &Self::State>)
36 −> Option<Variable> {
37 let n = self.nb_variables();
38 next_layer.�lter(|s| s.depth < n).next().map(|s| Variable(s.depth))
39 }
40 fn for_each_in_domain<F>(&self, var: Variable, state: &Self::State, mut f: F)
41 where
42 F: FnMut(Decision),

8This API was designed as an inversion of control in ddo in order to maximize the perfor-
mance of the resulting solver while imposing no implementation constraint on the user.
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43 {
44 if state.capacity >= self.weight[var.id()] {
45 f(Decision { var, value: 1 });
46 f(Decision { var, value: 0 });
47 } else {
48 f(Decision { var, value: 0 });
49 }
50 }
51 }
52
53 struct KPRelax;
54 impl Relaxation for KPRelax {
55 type State = KnapsackState;
56
57 fn merge(&self, states: &mut dyn Iterator<Item = &Self::State>) −> Self::State {
58 states.max_by_key(|node| node.capacity).copied().unwrap()
59 }
60
61 fn relax(&self, source: &Self::State, dest: &Self::State, merged: &Self::State, decision: Decision,

cost: isize) −> isize {
62 cost
63 }
64 }
65
66 struct KPranking;
67 impl StateRanking for KPranking {
68 type State = KnapsackState;
69
70 fn compare(&self, a: &Self::State, b: &Self::State) −> std::cmp::Ordering {
71 a.capacity.cmp(&b.capacity)
72 }
73 }
74
75 fn main() {
76 let problem = Knapsack {
77 capacity: 50,
78 pro�t: vec![60, 100, 120],
79 weight: vec![10, 20, 30],
80 };
81 let relaxation = KPRelax;
82 let heuristic = KPranking;
83 let width = Fixed(100);
84 let mut frontier = SimpleFrontier::new(&heuristic);
85
86 let mut solver = ParallelSolver::new(&problem, &relaxation, &heuristic, &width, &mut frontier);
87 solver.maximize();
88 println!("best␣value␣{}", solver.best_value().unwrap())
89 }

Listing 4.5: Detailed example

The lines 53–64 of Listing 4.5 de�ne the KPRelax structure and its im-
plementation of the Relaxation trait. Again, the API closely matches the
mathematical de�nitions of the ⊕ and Γ operators. The merge() method
shows what it takes to provide an actual implementation of ⊕ and merge sev-
eral nodes to derive a new relaxed node standing for them all (lines 57–59).
In our example, the relaxed state is simply chosen to be the one having the
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maximum residual capacity. The arc relaxation (Γ operator) is implemented
by relax(). In the context of the Knapsack implementation, this method
leaves the weight of the arcs entering the merged node unchanged.

After the relaxation operators, our example code de�nes the KPranking
structure which implements the node selection heuristic from Algorithm 4.
In ddo, this heuristic takes the form of a ranking on the nodes where a node
that is greater comparatively to others is more likely to be kept untouched.
The lesser nodes, on the other hand, are more likely to participate in a merge
operation. Finally, the last fragment (lines 75–89) of Listing 4.5 show what it
takes to instantiate the solver and use it to solve a knapsack problem instance
with ddo using all the hardware threads available on the machine.

4.3 Engineering the MDD data structure

The astute reader will have noticed that no mention is ever made in sections
4.2.1 and 4.2.2 of an abstraction or implementation for decision diagrams. This
is somewhat unexpected as DD are bound to be a key element in the im-
plementation of a generic solver framework implementing the branch-and-
bound with DD approach. And indeed, decision diagrams are central to the
implementation of our ddo library. Their presentation has been delayed up
until this point because these abstractions are not user facing abstractions,
meaning that DDs are used under the hood by the various Solver imple-
mentations. And, in spite of the possibility to con�gure the actual DD im-
plementation in use when solving a problem instance, it is not expected that
a user would want to con�gure the solver and plug its own DD representa-
tion. The second reason why the presentation of the DD abstraction has beed
deferred until now is that this section intends to discuss the implementation
choices which can be made when implementing a structure to represent a
decision diagram. Indeed, in order to implement a fast and generic solver
framework, one needs to use a highly e�cient DD representation. However,
even well de�ned mathematical objects such as DDs can be implemented in
many di�erent ways. And each of the possible representation comes with its
own set of strengths and weaknesses. This section uses a bit of systems pro-
gramming knowledge and discusses how subtle implementation choices can
a�ect the overall performance of a solver. In particular, it discusses four ap-
proaches that have been implemented in our library: two of which are "deep"
MDD representations – namely a Naive implementation and a Vector Based
one. The other two implement a "shallow" representation of the MDD. These
are respectively referred to as Pooled MDD and Flat MDD.
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4.3.1 The DecisionDiagram abstraction

The de�nition of the trait used to abstract away the implementation details
of decision diagrams is given in listing 4.6. While the exact code speci�ca-
tion of this trait might seem a little cumbersome to someone not used to Rust
generics, the speci�cation of this trait is actually quite simple. All it really
does is to expose a method to compile an (approximate) decision diagram for
some subproblem, a method to test if the compilation resulted in an exact DD
and two methods to extract the value of the longest r-t path and the deci-
sions labeling it. In addition to these, the trait also imposes the de�nition of
a drain_cutset() method to iterate over the subproblems constitutive of
the exact cutset of a relaxed DD – which must then be enqueued on the solver
fringe.

1 /// This trait describes the operations that can be expected from an abstract
2 /// decision diagram regardless of the way it is implemented.
3 pub trait DecisionDiagram {
4 /// This associated type corresponds to the ‘State‘ type of the problems
5 /// that can be solved when using this DD.
6 type State;
7
8 /// This method provokes the compilation of the DD based on the given
9 /// compilation input (compilation type, and root subproblem)

10 fn compile<P, R, O>(&mut self, input: &CompilationInput<P, R, O>)
11 where
12 P: Problem<State = Self::State>,
13 R: Relaxation<State = P::State>,
14 O: StateRanking<State = P::State>;
15 /// Returns true i� the DD which has been compiled is an exact DD.
16 fn is_exact(&self) −> bool;
17 /// Returns the optimal value of the objective function or None when no
18 /// feasible solution has been identi�ed (no r−t path) either because
19 /// the subproblem at the root of this DD is infeasible or because restriction
20 /// has removed all feasible paths that could potentially have been found.
21 fn best_value(&self) −> Option<isize>;
22 /// Returns the best solution of this subproblem as a sequence of decision
23 /// maximizing the objective value. When no feasible solution exists in the
24 /// approximate DD, it returns the value None instead.
25 fn best_solution(&self) −> Option<Vec<Decision>>;
26 /// Iteratively applies the given function ‘func‘ to each element of the
27 /// exact cutset that was computed during DD compilation.
28 ///
29 /// # Important:
30 /// This can only be called if the DD was compiled in relaxed mode.
31 /// All implementations of the DecisionDiagram trait are allowed to assume
32 /// this method will be called at most once per relaxed DD compilation.
33 fn drain_cutset<F>(&mut self, func: F)
34 where
35 F: FnMut(SubProblem<Self::State>);
36 }

Listing 4.6: The DecisionDiagram trait

In the same way the pseudo code for the compilation of a decision diagram
required some inputs in algorithms 2 and 3 of Chapter 2, the compile()
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method accepts a reference to a CompilationInput structure which covers
the same required information. The exact de�nition of the Compilation-
Input structure is given in listing 4.7. As can be seen from that listing, a
CompilationInput comprises a CompilationType to express that the
DD must be either compiled as an exact, restricted or relaxed decision dia-
gram. The other �elds of that structure are the maximum layer width of the
DD (𝑊 in the pseudo code), a reference to the DP model which is used to
compile the DD (problem standing for input P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉 in the
pseudocode), a reference to the relaxation (relaxation which encapsulates
the formal operators ⊕ and Γ) and a state ranking heuristic which is used to
select the nodes that are suppressed during a restriction or merged during
a relaxation. Finally, the CompilationInput also comprises a residual
subproblem which must be solved through the compilation of the DD.
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1 /// This structure encapsulates the various parameters that are required when
2 /// compiling a MDD.
3 pub struct CompilationInput<’a, P, R, O>
4 where
5 P: Problem,
6 R: Relaxation<State = P::State>,
7 O: StateRanking<State = P::State>,
8 {
9 /// Tells whether the compiled DD must be an exact, restricted or relaxed DD

10 pub comp_type: CompilationType,
11 /// The maximum width allowed for one layer of the compiled DD
12 pub max_width: usize,
13 /// A reference to the DP model of the problem being solved
14 pub problem: &’a P,
15 /// The relaxation operators that are used when compiling a relaxed DD
16 pub relaxation: &’a R,
17 /// The state ranking heuristic used to select the nodes that are deleted/merged
18 /// during a restrict/relax operation
19 pub ranking: &’a O,
20 /// The residual supproblem that must be compiled into a MDD
21 pub residual: SubProblem<P::State>,
22 /// The value of the best solution found so far. Used when implementing
23 /// Rough Upper Bound pruning discussed later in this chapter.
24 pub best_lb: isize,
25 }
26
27 /// An enumeration type to determine the kind of MDD that must be compiled:
28 /// either an exact DD, relaxed DD or restricted DD.
29 #[derive(Debug, Clone, Copy, PartialEq, Eq)]
30 pub enum CompilationType {
31 Exact,
32 Relaxed,
33 Restricted,
34 }
35
36 /// This structure represents a subproblem that must still be solved. In essence
37 /// it is nothing but a node (represented in an MDD−implementation−agnostic way)
38 /// along with the best path leading to that node.
39 #[derive(Debug, Clone)]
40 pub struct SubProblem<T> {
41 /// The root−state of this subproblem (Arc<T> != Edge, it is a smart pointer to a value of type T)
42 pub state: Arc<T>,
43 /// The value of the objective function when arriving to this current state
44 /// along the best path towards this state.
45 pub value: isize,
46 /// The best path known to lead to this state.
47 pub path: Vec<Decision>,
48 /// An upper bound on the optimal value of this subproblem.
49 /// (Used when implementing Rough Upper Bound Pruning and Local Bound Pruning
50 /// discussed later in this chapter).
51 pub ub: isize,
52 }

Listing 4.7: Inputs to the compilation of a DecisionDiagram
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4.3.2 Discussion on the Implementation Details of a DD

Now that the DecisionDiagram abstraction of the ddo library has been pre-
sented, this section can discuss ways in which that trait can be implemented
in practice. Concretely, the coming paragraphs will cover four di�erent ap-
proaches to implementing a DecisionDiagram. The excerpts of code which
are provided for each of these candidate implementations are – obviously –
not extensive. They should however be su�cient to give the reader a clear
idea of what is kept in memory, how the various parts interact to implement
the DecisionDiagram trait and discuss the respective strengths and weak-
nesses of each implementation.

4.3.2.1 Deep MDD

A naive DD implementation consists of a network of dynamically allocated
nodes each maintaining an explicit list of adjacent labeled edges forming a
large chained data structure maintaining the complete graph of the MDD in
memory. With this approach, each node, edge and state is an object dynami-
cally allocated on the heap. Listing 4.8 shows an excerpt of how such an im-
plementation (in Rust) is organized in practice. With that approach, a node
is a structure holding a shared pointer to its corresponding problem state,
along with the list of its inbound edges. In addition to that, a node also con-
tains a ‘value’ �eld standing for the length of the longest path between the
problem root and the node. It also remembers the edge which led to this node
along the longest path. Likewise, an edge from the MDD is materialized by
an Edge structure which holds a reference to its source node along with the
decision labels of the edge and its associated transition cost. The structure
representing the MDD as a graph is fairly straightforward: it stores a list of
layers where each layer is implemented as a hash table so as to enforce the
uniqueness constraint of nodes belonging to a same layer. Next to the lay-
ers, the decision diagram also keeps track of its last exact layer, and a best
terminal node (if one such node exists).

1 /// Each node is a linked structure holding a shared (immutable) reference to
2 /// both its state and adjacent edges.
3 #[derive(Debug, Clone)]
4 struct Node<T> {
5 /// A shared referenced−counted pointer to the node’s sate
6 state: Rc<T>,
7 /// The value of the longest path between the root and this node.
8 /// In the case of the root node, this will correspond to the problem’s
9 /// initial value

10 value: isize,
11 /// An immutable shared reference−counted pointer to the best inbound edge
12 /// of this node.
13 best: Option<Rc<Edge<T>>>,
14 /// The list of inbound edges of this node
15 inbound : Vec<Rc<Edge<T>>>,
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16 }
17 /// An edge is the materialization of an edge in the decision diagram. It acts
18 /// as a proxy to the parent node (from) to which it holds a
19 /// (shared reference−counted) pointer.
20 #[derive(Debug, Clone)]
21 struct Edge<T> {
22 /// A shared pointer to the source node of this edge. The destination node
23 /// is the one holding a reference to this particular edge in its ’inbound’
24 /// �eld
25 from: Rc<Node<T>>,
26 /// A decision is the materialization of an assignment of a value to a given
27 /// variable.
28 decision: Decision,
29 /// The cost of taking this edge on the global objective value.
30 /// It corresponds to the transition cost of the math model.
31 cost: isize,
32 }
33 /// Each layer is materialized as a hash table mapping (shared) reference to
34 /// problem states to (references to) the nodes corresponding to that state.
35 /// This is done to ensure the unicity of a state per layer.
36 type Layer<T> = FxHashMap<Rc<T>, Rc<Node<T>>>;
37 /// The decision diagram in iself is quite simple: it keeps track of all its
38 /// layers and remembers the best terminal node and a last exact layer cutset
39 #[derive(Debug, Clone)]
40 pub struct Naive<T> where T: Eq + PartialEq + Hash + Clone {
41 /// The list of layers composing this decision diagram
42 layers: Vec<Layer<T>>,
43 /// The last exact layer of the decision diagram
44 lel: Option<FxHashMap<Rc<T>, Node<T>>>,
45 /// A reference to the best terminal node of the diagram (None when the
46 /// problem compiled into this dd is infeasible)
47 best_n: Option<Rc<Node<T>>>,
48 /// Keeps track of the decisions that have been taken to reach the root
49 /// of this DD, starting from the problem root.
50 root_pa: Vec<Decision>,
51 }

Listing 4.8: Naive MDD implementation

Strenghts and Weaknesses While this architecture is intuitive, easy to
implement and can serve as a basis to implement techniques like iterative re-
�nement (construction by separation) and longest path trimming (LPT) [BC16b],
it is far from e�cient. The many dynamic allocations of small memory chunks
are likely to cause memory fragmentation, impose numerous round trips to
the operating system and o�er poor cache locality. All of which tend to de-
grade the overall performance and make the accessing and freeing of any of
the entities more expensive.

4.3.2.2 Variant: Vector-based architecture

To remedy this problem, one can adopt a vector-based architecture. As shown
per listing 4.9, this design proceeds as follows: the MDD contains a vector of
nodes which are all uniquely identi�ed by their position in the vector. (The
identi�er is nothing but a strongly typed unsigned integer). Similarly, the
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MDD holds a vector of edges, each of which are likewise identi�ed by their
position in the vector.

1 /// The identi�er of a node: it indicates the position of the referenced node
2 /// in the ’nodes’ vector of the ’VectorBased’ structure.
3 #[derive(Debug, Clone, Copy, Eq, PartialEq, Hash)]
4 struct NodeId(usize);
5 /// The identi�er of an edge: it indicates the position of the referenced edge
6 /// in the ’edges’ vector of the ’VectorBased’ structure.
7 #[derive(Debug, Clone, Copy)]
8 struct EdgeId(usize);
9 /// Represents an e�ective node from the decision diagram

10 #[derive(Debug, Clone, Copy)]
11 struct Node {
12 /// The length of the longest path between the problem root and this
13 /// speci�c node
14 value: isize,
15 /// The identi�er of the last edge on the longest path between the problem
16 /// root and this node if it exists.
17 best: Option<EdgeId>,
18 /// The identi�er of the latest edge having been added to the adjacency
19 /// list of this node. (Edges, by themselves form a kind of linked structure)
20 inbound: Option<EdgeId>,
21 }
22 /// Materializes one edge a.k.a arc from the decision diagram. It logically
23 /// connects two nodes and annotates the link with a decision and a cost.
24 #[derive(Debug, Clone, Copy)]
25 struct Edge {
26 /// The identi�er of the node at the ∗∗source∗∗ of this edge.
27 /// The destination end of this arc is not mentioned explicitly since it
28 /// is simply the node having this edge in its inbound edges list.
29 from: NodeId,
30 /// This is the decision label associated to this edge. It gives the
31 /// information "what variable" is assigned to "what value".
32 decision: Decision,
33 /// This is the transition cost of making this decision from the state
34 /// associated with the source node of this edge.
35 cost: isize,
36 /// This is a peculiarity of this design: a node does not maintain a
37 /// explicit adjacency list (only an optional edge id). The rest of the
38 /// list is then encoded as a kind of ’linked’ list: each edge knows
39 /// the identi�er of the next edge in the adjacency list (if there is
40 /// one such edge).
41 next: Option<EdgeId>,
42 }
43
44 /// The decision diagram in itself. This structure essentially keeps track
45 /// of the nodes composing the diagam as well as the edges connecting these
46 /// nodes in two vectors (enabling preallocation and good cache locality).
47 /// In addition to that, it also keeps track of the path (root_pa) from the
48 /// problem root to the root of this decision diagram (explores a sub problem).
49 /// The prev_l comprises information about the nodes that are currently being
50 /// expanded, next_l stores the information about the nodes from the next layer
51 /// and lel simply stores a last exact layer cutset.
52 #[derive(Debug, Clone)]
53 pub struct VectorBased<T> where T: Eq + PartialEq + Hash + Clone {
54 /// All the nodes composing this decision diagram. The vector comprises
55 /// nodes from all layers in the DD. A nice property is that all nodes
56 /// belonging to one same layer form a sequence in the ‘nodes‘ vector.
57 nodes : Vec<Node>,
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58 /// This vector stores the information about all edges connecting the nodes
59 /// of the decision diagram.
60 edges : Vec<Edge>,
61 /// Keeps track of the decisions that have been taken to reach the root
62 /// of this DD, starting from the problem root.
63 root_pa: Vec<Decision>,
64 /// Maintains the association nodeid−>state for the nodes of the layer which
65 /// is currently being expanded. This association is only used during the
66 /// unrolling of transition relation, and when merging nodes of a relaxed DD.
67 prev_l: FxHashMap<NodeId, T>,
68 /// The nodes from the next layer; those are the result of an application
69 /// of the transition function to a node in ‘prev_l‘.
70 /// Note: next_l in itself is indexed on the state associated with nodes.
71 /// The rationale being that two transitions to the same state in the same
72 /// layer should lead to the same node. This indexation helps ensuring
73 /// the uniqueness constraint in amortized O(1).
74 next_l: FxHashMap<T, NodeId>,
75 /// The last exact layer of the decision diagram
76 lel: Option<Vec<(T, NodeId)>>,
77 /// The identi�er of the best terminal node of the diagram (None when the
78 /// problem compiled into this dd is infeasible)
79 best_n: Option<NodeId>,
80 }

Listing 4.9: Vector-Based MDD implementation

In this design, nodes do not hold shared references to their edges, but use
their identi�er instead. And similarly, the edges do not store an actual refer-
ence towards the nodes they refer to; but instead store their unique identi�ers
only9. Moreover, instead of letting the nodes actively maintain an adjacent
edges list, the edges behave as nodes of a singly linked list. Each edge knows
of a potential next edge in the adjacency list of its destination node. (same
could be done at parent level). Hence, a node only keeps the identi�ers of
two (potentially the same) edges: one identi�er corresponds to the head of
the adjacency list, and the other is used to remember the edge which must
be taken to reconstruct the best path between the node and the root of the
MDD. The rationale behind this apparently odd construct is to let the nodes
and edges be small, �xed size structures which are easily copied by value and
can easily be moved while maintaining their semantic integrity (no dangling
pointer after move10). All that while maintaining the capability for a node to
list all its inbound edges.

In addition to the list of nodes and edges, this architecture also uses an
hash table during the top down compilation of the DD to ensure its reduc-
tion. When nodes from layer 𝐿𝑖 are expanded, the nodes from layer 𝐿𝑖+1 are
all added to the hash table indexed on the states. This way, whenever the
MDD produces a state which is reachable trough more than one path, it is

9Getting rid of the shared references ‘shared_ptr‘ or ‘Rc‘ is helpful since it avoids the indi-
vidual heap allocation for each of the referenced elements and easily maintain their semantics
even after a move of the DD

10Between two threads for instance
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guaranteed that all paths end up in the exact same node of the diagram.
It is also interesting to note that a Node does not store any reference to

the state associated with the node. This is actually not necessary with this
design. Indeed, the states only ever exist in the prev_l, next_l and lel
�elds of the VectorBased DD which covers all the use cases when states
are needed. Indeed, the node associated with a state is only accessed when:

1. computing a transition/transition cost based on the problem de�nition.

2. ensuring the uniqueness of a given state among the nodes of a layer.

3. selecting and merging nodes of a relaxed MDD.

4. selecting nodes to delete from the next layer in a restricted MDD.

This approach o�ers several advantages: as soon as the state has become
useless and will not be used anymore, the associated memory can be freed.
This helps mitigating the preallocation impact in practice since user-de�ned
state typically accounts for a large fraction of the total allocated memory.
Moreover, given that the association 𝑠𝑡𝑎𝑡𝑒 → 𝑛𝑜𝑑𝑒 only exists within one
layer at the time; the information can simply be moved from one place to the
other. It is therefore not necessary to store/access them through reference
counted smart pointers. Which again reduces the number of dynamic alloca-
tions and improve the cache locality of the MDD compilation.

Strengths The vector based architecture is particularly e�ective as it avoids
the weaknesses discussed about the Naive implementation. Vectors are very
simple data structures and they typically o�er good cache locality. Moreover,
any reasonable vector implementation preallocates memory to avoid round
trips to the operating system while accomodating further insertion in the vec-
tor. Given that DD compilation requires lots of such insertions, the bene�ts
are not negligible. Furthermore, even though the vector-based architecture
uses a hash table to reconcile equivalent states; that table only ever contains
one layer at a time. Which means the hash table is going to remain fairly
small (depending on the maximum layer width𝑊 ). Hence, the likelihood of
the hash table requiring to be resized (and consequently rehashed) is largely
decreased. This again contributes to giving an e�ciency gain to the vector
based architecture.

4.3.2.3 Pooled-MDD

As explained in [Ber+14b], any node 𝑢𝑖 of a DD having one single outgoing
arc 𝑎 =

(
𝑢𝑖 , 𝑢 𝑗

)
can be removed from the graph and replaced by a longer arc

provided that 𝜎 (𝑢𝑖) = 𝜎 (𝑢 𝑗 ) and 𝑣 (𝑎) = 0. In other words, a node can be
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removed from a DD and replaced by a long arc spanning over several layers
if it has one single transition which does not alter the node state and involves
no cost (as understood by the objective function).

Based on this observation, one can devise a pooled MDD implementation.
A pooled MDD is one that does not necessarily expand all the nodes of a
given layer. Instead, the expansion of the nodes for which a long arc can be
inserted is deferred for as long as possible. The rationale behind that choice
being to avoid "bloating" layers with nodes that add no information. Indeed
bloated layers would quickly exceed the maximum width limit, and would
consequently need to be either restricted or relaxed; causing an information
loss. By avoiding to bloat the layers in the �rst place, one delays the time
when restriction/relaxation is needed.

As shown in Algorithm 9, the compilation of a pooled MDD closely re-
sembles the procedure detailed in Chapter 2. There are however di�erences
to be noted. First, the implementation maintains two sets of nodes: the �rst
set represents the current layer, the set of nodes that cannot be removed and
replaced by a longer arc. The second set of nodes serves as a pool of nodes
that belong to some subsequent layer. The select_nodes_from() function
returns the subset of nodes from the pool that will be impacted by a decision
on variable 𝑥𝑖 (either in terms of the state or the objective value) and must
be moved to the current layer. Also, because the number of such nodes is not
known beforehand, and because it might exceed the maximum layer width,
a call to the width bounding procedure – either restrict() or relax(),
which is here generically referred to as squash_layer() in Algorithm 9 –
must be inserted before proceeding to the development of the nodes.

To understand how long arcs are created in Pooled-MDD, one needs to
grasp the dynamics of Algorithm 9 and observe that when nodes are created
(line 13), they are not inserted in the next layer but moved to the pool instead.
Also, before making any decision about a variable 𝑥𝑖 , the nodes that might be
impacted by a decision on 𝑥𝑖 are drawn from the pool to form layer 𝐿𝑖 (line
6). The subtlety to understanding how long arcs are introduced resides in
realizing that the nodes drawn from the pool to form layer 𝐿𝑖 were not nec-
essarily inserted in the pool during the expansion of layer 𝐿𝑖−1. For instance,
if the node 𝑢 is inserted in the pool because it was created after a decision
on variable 𝑥5, it may very well be the case that 𝑢 remains in the pool until
a decision is to be made about 𝑥19. In that case, there would exist a long arc
between the parents of 𝑢 at layer 𝐿5 spanning until layer 𝐿19.

Strengths As explained above, the selection of nodes from the pool might
defer the development of some nodes that would otherwise have belonged to
the current layer. Doing so, a pooled MDD implementation is able to avoid
bloating layers and hence to maintain a higher degree of diversity among the
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solutions encoded in a restricted or relaxed MDD11. Moreover, this implemen-
tation is generally quite memory e�cient in the sense that it only needs to
maintain one layer in addition to the pool of future nodes.

Weaknesses Although the width of the layers is bounded by a value 𝑊 ,
the size of the pool is not bounded by anything. This might be problematic
as the size of that pool might grow too fast to be tractable. Third, because the
only materialized layer of a pooled-MDD is not always complete (by design,
because of the long arcs), it is much more expensive to produce a LEL cutset
using a pooled-MDD than any other kind of implementation (this does not ap-
ply to FC which can be computed on-the-�y). Finally, because the e�ciency
of the select_nodes_from() procedure relies on its ability to swiftly dis-
criminate the nodes that must remain in the pool from others, it is necessary
that the user of a solver backed by pooled-MDDs provides an implementation
of that check. This is a requirement which is not enforced by alternate-MDD
implementations.

Algorithm 9 Construction of a Pooled-MDD
1: Input: a DP model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣, 𝜏, ℎ〉
2: Input: a maximum layer width𝑊
3: Input: relaxation operators (⊕, Γ) when compiling a relaxed MDD
4: 𝑃𝑜𝑜𝑙 ← {𝑟 }
5: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
6: 𝐿𝑖 ← 𝑠𝑒𝑙𝑒𝑐𝑡_𝑛𝑜𝑑𝑒𝑠_𝑓 𝑟𝑜𝑚(𝑃𝑜𝑜𝑙, 𝑖)
7: 𝑃𝑜𝑜𝑙 ← 𝑃𝑜𝑜𝑙 \ 𝐿𝑖
8: 𝐿𝑖 ← 𝑠𝑞𝑢𝑎𝑠ℎ_𝑙𝑎𝑦𝑒𝑟 (𝐿𝑖 , ⊕, Γ)
9: for 𝑢 ∈ 𝐿𝑖 , 𝑑 ∈ 𝐷𝑖 do

10: 𝑢 ′← a node associated with state 𝜏𝑖 (𝜎 (𝑢), 𝑑)
11: if 𝜎 (𝑢 ′) ≠ ⊥ then
12: 𝑈 ← 𝑈 ∪ {𝑢 ′}
13: 𝑃𝑜𝑜𝑙 ← 𝑃𝑜𝑜𝑙 ∪ {𝑢 ′}
14: 𝑎 ← (𝑢,′𝑢,𝑑)
15: 𝑣 (𝑎) ← ℎ(𝜎 (𝑢), 𝑑)
16: 𝐴← 𝐴 ∪ {𝑎}

4.3.2.4 Flat-MDD

Similar to the pooled approach described in 4.3.2.3, the data structure we call
�at-MDD only maintains a fraction of the actual graph (the current and next

11This is to be related to the quality-measure proposed in [BC16b]
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layers). However, this implementation closely respects the compilation pro-
cedure described in Chapter 2. Thus, one should really think of the construc-
tion of a �at-MDD as maintaining a slice of an equivalent naive-MDD. The
correctness of this implementation relies on the observation that the Branch-
and-Bound with MDD algorithm (Algorithm 5, p. 18 in Chapter 2) really only
focuses on �nding the optimal solution 𝑥∗ of the MDDs it builds. Given all
that information is gradually built in each of the layers, it is perfectly �ne for
an implementation to forget about layer 𝐿𝑖−1 when deriving the next layer 𝐿𝑖+1
based on the nodes of the current one 𝐿𝑖 . This is the main idea that underlies
the �at-MDD implementation.

In practice, the nodes of a �at-MDD implement a singly linked data struc-
ture where each node remembers the single last arc constitutive of the best
path between the root and itself. This memorized piece of information is sub-
ject to potential change for the node𝑢 ′ whenever an arc (𝑢,𝑢 ′) is added toA.
Thanks to that information, one only needs to traverse the chain of remem-
bered arcs in order to recover the best path (hence best partial assignment)
between a node and the root of the MDD.

Despite maintaining only a fraction of the information held in an equiv-
alent naive representation, a �at MDD is perfectly able to e�ciently produce
an exact LEL cutset. To that end, it su�ces to remember the value of the
current layer instead of wiping it o� when 𝑠𝑞𝑢𝑎𝑠ℎ_𝑙𝑎𝑦𝑒𝑟 () modi�es the next
layer to be. In practice, this does not even require to fully copy the nodes
from the current layer and can be achieved by a simple swap of two integers.

Strengths The strengths of the �at-MDD data structure are multiple. First,
and as is the case with the naive implementation, a �at-MDD provides a
strong guarantee on the memory required to compile a bounded width ap-
proximate MDD. Still, because it only needs to maintain a �xed size slice of
the MDD, it is able to forget all the irrelevant nodes from previous layers.
And because each of these nodes implements a singly chained data struc-
ture, they are able to share common partial assignment (pre�xes), thereby
further reducing the memory requirements associated to the MDD represen-
tation. Notwithstanding that, a �at MDD is capable of returning LEL and FC
cutsets very e�ciently. Finally, because of its sliced nature, a �at-MDD imple-
mentation o�ers many opportunities for recycling allocated objects; typically
boosting the overall performance of a solver using those.

Weaknesses Similar to pooled MDD, a �at MDD has the ability to forget
some portions of the DD which are guaranteed not to yield the best solution
of the subproblem materialized by the MDD. Because of that ability, not all
paths are present in the �nal structure and some information is irremediably
lost. This might be problematic when implementing further pruning tech-
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niques (e.g. local bounds, see the next chapter). The other main weakness of
a �at-MDD is relative to pooled-MDD. Indeed, because �at and naive-MDDs
do not encode any long arc, their merge (for relaxed-MDDs) and deletion
strategies (for restricted-MDDs) are more aggressive than that of a pooled-
MDD implementation. This might result in the bounds obtained from �at,
naive, or vector-based MDD to be somewhat less tight than those obtained
from a pooled implementation.

4.3.2.5 Summarizing Example

The �gure 4.2 summarizes the peculiarities of each DD implementation that
has been discussed in sections 4.3.2.1 through 4.3.2.4. These four graphs repre-
sent the same example relaxed DD when compiled with each implementation.
The decision labels (red) of the arcs are shown above the layer separation lines
(dashed). The arc weights (green) are shown below the separation lines. If an
arc is double stroked, it means that arc enters a node which is the result of a
merge operation (⊕) as a consequence of which it has been Γ relaxed. Exact
nodes are depicted with a single line whereas inexact nodes are represented
with a double stroke. The background of the nodes belonging to the exact cut-
set of the DD is colored red. The letter inside of a given node denotes the fact
that the state associated with that particular node is known. On the contrary,
when a node is shown without a letter in the middle, it means that the DD im-
plementation remembers the structural information about this node but not
its associated state. Finally, the arcs along the longest path of the MDD are
boldfaced.

A comparison of the example depicted in �gure 4.2 highlights the key dif-
ferences between the four implementations. The �rst element that stands out
when comparing 4.2a and 4.2b is that both implementations encode the ex-
act same graph. Both of these implementations maintain the complete graph
in memory. There are, however, two di�erences between these implementa-
tions: The �rst one is purely technical – and thus not visible on these graphs:
the naive implementation (section 4.3.2.1) allocates all nodes and edges using
dynamic (heap) memory allocation whereas the VectorBased implementation
stores them in contiguous vectors of pre-allocated memory (hence the name).
The second di�erence between these two implementations stems from the
fact that the VectorBased approach forgets the state associated with nodes it
does not need anymore. As shown in �gure 4.2b, the states from the nodes
belonging to the exact cutset, as well as the states of the last and before last
layers are maintained. All other states however (nodes from the middle layer)
are irremediably lost.

The second element, which should be noted when observing these graphs,
is that the shallow MDD representations (that is, Flat and Poooled) are not as



68 Chapter 4. How to Implement a Fast and Generic DDO solver ?

r

a b c

a d e f g

iha

t

𝑥1

𝑥2

𝑥3

𝑥0 0 1 2

0 0 2 0 1 2

0 1 0 2 3

0 0 1

0 2 6

0 2 5 9 7 4

0 3 4 3 1

1 6 6

(a) Naive

r

a b c

iha

t

𝑥1

𝑥2

𝑥3

𝑥0 0 1 2

0 0 2 0 1 2

0 1 0 2 3

0 0 1

0 2 6

0 2 5 9 7 4

0 3 4 3 1

1 6 6

(b) VectorBased
r

a b c

a d e

iha

t

𝑥1

𝑥2

𝑥3

𝑥0 0 1 2

0 0 0

0 1 0

0 0 1

0 2 6

0 2 9

0 3 4

1 6 6

(c) Flat

r

b c

d e

iha

t

𝑥1

𝑥2

𝑥3

𝑥0 1 2

0 00

1 0

0 0 1

2 6

2 90

3 4

1 6 6

(d) Pooled

Figure 4.2: Summary of the Four Proposed Implementations
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shallow as one might imagine. While it is true that the DD only gives di-
rect access to the nodes in the last two layers (+ the exact cutset), all nodes
maintain a pointer to their best parent. This is necessary in order to be able
to retrieve the decision along the optimal path from 𝑡 . It should, however,
be noted that only the best paths to the "bottom" nodes are represented with
these approaches. All paths have been explored, but many of them are for-
gotten as soon as they are shown to not be “the best”. The same goes about
nodes that are not part of “the” best path towards one of the bottom nodes.
For instance, this is why nodes 𝑓 and 𝑔 are nowhere to be seen in sub�gures
4.2c and 4.2d.

There are two more key di�erences which di�erentiate the pooled ap-
proach from all others. The �rst one is that the pooled implementation can
introduce long arcs spanning over multiple layers, while all other considered
implementations do not. This is visible when comparing sub�gure 4.2d with
any of the others. Indeed, all implementations explicitly represent the partial
assignment È𝑥0 = 0, 𝑥1 = 0, 𝑥2 = 0É and thus, introduce multiple copies of
state 𝑎. On the other hand, the pooled approach chooses to introduce a long
arc between 𝑟 and 𝑎 and only ever expand that node when taking a decision
about variable 𝑥3. Doing so is de�nitely valid, as it appears that decisions
about 𝑥1 and 𝑥2 have no impact on the resulting state (any decision on these
variables from state 𝑎 yields the state 𝑎) nor on the objective value (the cost
associated with these decisions is 0). The second consequence of the intro-
duction of such long arcs, is that implementing a LEL cutset is much harder
with a pooled implementation than in the other cases. This is because when
compiling the DD with a pooled implementation, there is no guarantee that a
“layer of expanded nodes” comprises all nodes that should actually have per-
tained to that layer. Indeed, some nodes might remain in the pool rather than
participate in the development of the layer – as would e.g. occur for node 𝑎.
This is why the exact cutset which is stored by a pooled implementation is a
Frontier Cutset rather than a Last Exact Layer Cutset.

4.4 Alternatives to ddo

Ddo is the �rst fully generic open source framework to develop solvers based
on the branch-and-bound with MDD paradigm, but it certainly is not the
�rst implementation of the DDO paradigm. Indeed, Bergman, Cire, and Van
Hoeve developed their own C++ solution to evaluate the relevance of their
novel algorithm [Ber+16b]. While that solution shares some commonalities
with ddo, there are di�erences as well. From a technical point of view, the
MDD implementation of that solution closely resembles the Naive imple-
mentation sketched in Listing 4.8 (p. 59). However, that solution was not
meant as a complete framework for the development of DD-based solvers.
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For instance, the code to deal with the di�erent problems they investigated
shares the abstract de�nition of a Binary Decision Diagram (BDD) as well
as some useful utility functions. Still, that common behavior is not self-
su�cient and the solver of each problem must provide its own complete
implementation of the generate_exact(), generate_relaxed(), and
generate_restricted() methods. This is why most of the solvers they
wrote use a BDD data structure similar to our Naive implementation, but
their solver for the Maximum Independent Set Problem (MISP) uses a Pooled
approach.

This state of a�airs stems from the fact that the C++ solution of the orig-
inal authors of the method does not provide a clear abstract speci�cation of
the problem and its relaxation. Neither does it provide a clear speci�cation of
the heuristics that can be used to tune the behavior of their solvers. It results
that their solution is quite e�cient but probably not as convenient to use as
ddo since their approach requires more input than just a Problem de�nition
and its Relaxation. A fortiori given that this solution o�ers no abstraction
for the Solver (it is just the main function) or the Fringe.

Along similar lines, Horn et al. have used their own C++ implementation
of restricted and relaxed decision diagrams to validate the e�ectiveness of
their 𝐴∗-based compilation scheme. The latter is to be related to the rough
upper bound pruning technique presented in Chapter 5. The source code of
their implementation was, however, not publicly available, which is why a
detailed comparison of their solution with ddo cannot be done at the time
being.

In [CGS22], Coppé et al. also used a custom C++ implementation to solve
the Constrained Single Row Facility Layout Problem (CSRFLP) with Deci-
sion Diagrams. The search method which they use di�ers from the pure
branch-and-bound approach implemented in ddo. Their approach is closer
to an 𝐴∗ search where restricted DDs are used to �nd good primal solutions.
From a technical perspective, the MDD implementation of their solution is
a VectorBased DD implementation whose implementation was based on
that of ddo12.

In [OH19], O’Neil and Ho�mann have applied the branch-and-bound with
MDD paradigm from [Ber+16b] using narrow-width DDs to solve the Trav-
elling Salesman Problem with Pickup and Deliver in real-time (TSPPD-rt).
Their implementation is written in Go, and although it also leverages parallel
computing, their approach slightly di�ers from that of ddo (Algorithms 6, 7,
and 8 presented earlier in this chapter on pages 42, 44, and 45). Rather than
having long-running threads periodically polling the content of the Fringe,
the implementation of O’Neil et al. performs a form of sharding13 to try

12The paper explicitly mentions to have drawn its inspiration from ddo.
13Decomposition of the workload into several batches that are dispatched to di�erent work-
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to balance the workload. Each shard is given to a goroutine (a.k.a. �bers,
lightweight threads) which processes the complete shard and then stops. When-
ever a goroutine identi�es new bounds to explore (using the nodes from an
exact cutset), this data is asynchronously passed on to the main thread using
a channel. The consequence of that choice is that the solver must perform an
additional loop where it periodically spawns bursts of worker goroutines. The
bene�t of that approach resides in its programming simplicity and the low
synchronization overhead from using asynchronous channels. The drawback
of that approach, however, is that it can cause suboptimal use of the available
CPU since some shard might concentrate the vast majority of the e�ort to be
done; thereby leaving the other cores idle.

The HADDOCK system proposed in [GMH20] shares many common as-
pects with ddo. Indeed, both libraries facilitate the task of a developer work-
ing on a solver that uses MDDs and more speci�cally Relaxed MDDs. More-
over, both libraries aim at providing a declarative – yet very di�erent – ap-
proach to reasoning about decision diagrams. Despite their commonalities,
HADDOCK and ddo �ll di�erent niches: while the goal of ddo is to facili-
tate the development of solvers based on the branch-and-bound with MDD
paradigm, HADDOCK targets the development of MDD propagators in the
context of constraint programming solvers. Because of that di�erence in per-
spective, the MDDs compiled by HADDOCK do not necessarily correspond
to dynamic programs (DP) whereas all DD compiled by ddo are thought of as
DP. From a technical point of view, HADDOCKS is written in C++ and inte-
grated with minicpp [MSVH21]. It represents decision diagrams using large
chained a data structure that resembles the Naive MDD described earlier in
this chapter. But the resemblance ends there as the DD compilation procedure
of HADDOCK is not dictated by an abstract DP. Instead, it is driven by cus-
tom MDD propagator algorithms such as those of Hoda, Hoeve, and Hooker
for the Among constraint [HHH10] which the authors use as an example in
their original paper presenting the HADDOCK system.

4.5 Experimental Evaluation

In order to evaluate the e�ciency of the various MDD implementations that
have been proposed in this chapter, we conducted an experimental study
bearing on instances of the MISP, MCP, MAX2SAT, TSPTW and PSP as they
have been detailed in Chapter 3 of this thesis.

The experimental protocol we used was the following: for each instance,
we compiled one relaxed MDD with each implementation, using various max-
imum layer widths (𝑊 ∈ {100; 1000; 10, 000; 100, 000}) for each pair of in-

ers.
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stance and implementation. For each of these compilations, we measured

� the time required to compile the MDD,

� the maximum amount of allocated RAM14,

� the length of the longest r-t path in the MDD,

� the size of the exact cutset which could be extracted from the DD,

� and whether the compiled DD was an exact DD or not.

Each of these compilations have been carried out using one single thread
of the same physical machine running Linux. The latter is equipped with an
Intel Xeon E5540 CPU and 24G of RAM. The duration of each compilation was
capped by a 180 seconds timeout. All implementations have been written
in Rust using our common generic framework. This allowed to isolate the
impact of the DD implementation, leaving all other factors untouched (exact
same model, exact same set of heuristics, etc...).

4.5.1 Length of the r-t paths

Figure 4.3 compares the length of the longest r-t path in the decision diagrams
compiled with the Naive implementation (used as a baseline) and the alterna-
tive implementations. On this whisker plot, the values on the y axis represent
the ratio Length X

Length Naive . Thus, higher y values indicate cases where a longer r-
t path was found with an alternative implementation versus the Naive one;
which must be interpreted as the ability for that speci�c implementation to
derive tighter bounds from a relaxation.

From this graph, it clearly appears that no implementation has an edge
over the others in terms of tightness of the derived bound. Indeed, the �rst,
second, and third quartiles are all centered exactly on the 1 ratio indicating
that the length of the longest r-t path in the compiled DD (hence the derived
bound) is the same for all implementations. The only few unaligned marks
on this graph stem from a slight di�erence occurring at the time of select-
ing the subset of nodes that must be merged during relaxation. Indeed, the
node-selection heuristic for the MISP de�nes a partial order and not a total
order. Hence some implementations may have broken ties in di�erent ways
and thus compiled slightly di�erent DDs which is why the longest r-t path
is not always the same. However, these cases are exceptional and in the vast
majority of times, the compiled DDs are the exact same.

14This was measured thanks to a custom allocator which wraps the system allocator and
keeps track of the current and maximum amount of required RAM.
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Figure 4.3: Compared length of the longest r-t paths ( Length X
Length Naive )

4.5.2 Size of the Exact Cutset

Figure 4.4 compares the size of the exact cutsets extracted from the compiled
DDs. Similar to the above graph, the distance on the y axis represents the
ratio Cutset Size X

Cutset Size Naive . For instance, on this graph, a y value of 2 indicates that
the exact cutset extracted from the alternate implementation comprises twice
as many nodes as that of the Naive MDD.

The �rst observation to make about this graph is that in every case, the
Naive, Flat, and VectorBased implementation create exact cutsets of the same
size. This is expected since the exact portion of the MDDs compiled by these
three methods corresponds to the exact same mathematical object in all three
cases. The second observation to make about Figure 4.4 is that the Pooled im-
plementation exhibits behavior strongly di�ering from all other implemen-
tations. On average, the size of an exact cutset extracted from the Pooled
implementation is about 8 times as large as that of any other implementa-
tion. But in certain cases, the ratio amounts to 500 times the baseline. This
di�erence in behavior was to be expected given that Pooled produces a Fron-
tier Cutset (FC) whereas all other implementations create a Last Exact Layer
Cutset (LEL). It is, however, striking to see how much larger the FC can be ver-
sus the LEL. We hypothesize that the large number of nodes that are added
to the solver frontier because they pertained to a FC might be a reason why
LEL were observed to fare better than FC in practice [Ber+16b].
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Figure 4.4: Compared size of the exact cutset ( Cutset Size X
Cutset Size Naive )

4.5.3 Memory Usage

Because the compilation of an MDD is both a CPU and memory-intensive
process, and in order to measure the impact of the implementation choice
on the memory consumption; Figure 4.5 compares the maximum amount of
memory required to compile a given MDD. Similarly to the previous graphs,
the y axis represents the ratio Max RAM X in megabytes

Max RAM Naive in megabytes .
The �rst observation to make about Figure 4.5 is that both the Pooled and

Flat implementations achieve their goal of reducing memory consumption.
And in particular, the Flat implementation does it the best requiring on av-
erage no more than 22% of the memory required to compile a Naive MDD.
Likewise, the Pooled implementation requires on average 46% of the baseline
memory. The VectorBased case is interesting as well: even though it some-
times requires �ve times as much memory as the Naive implementation, the
central tendency (median) indicates that most of the time, it only uses 66% of
the baseline memory requirement.

To better understand the memory-allocation dynamics of the VectorBased
implementation, it is interesting the plot the same information as in Figure
4.5, but in a slightly di�erent way. On Figure 4.6, the distance along the x
axis represents the amount of RAM required to compile the MDD with a
Naive implementation whereas the y axis quantity represents that require-
ment with another implementation. A mark below the diagonal indicates
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Figure 4.5: Compared maximummemory usage ( Max RAM X in megabytes
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a lower (better) memory consumption and a mark above that line a higher
memory requirement. From that �gure, we can observe that the VectorBased
memory usage exhibits a "staircase" pattern. This is caused by the memory
preallocation happening in the vectors of the VectorBased implementation.
Interestingly enough, the steps of the staircase are somehow centered on the
diagonal, con�rming the central tendency observed above. From Figure 4.6,
one can also observe that the extreme cases where the VectorBased imple-
mentation requires �ve times as much memory as the baseline only occur for
small values. Which is why these extreme events can hardly be seen in Figure
4.6.

4.5.4 MDD Compilation Time

Figure 4.7 compares the time to compile a given MDD with the baseline (Naive)
implementation versus the other proposals. As for the previous graphs, the
quantity on the y axis represents the ratio between the duration when the DD
is compiled with the target implementation and the duration with the Naive
implementation ( Duration X

Duration Naive ).
There are a few observations to make about this graph, the �rst one being

that the VectorBased implementation is almost always faster than the base-
line even though both implementation compute the same information. That
performance improvement is signi�cant: the central tendency shows that in
most cases the VectorBased implementation takes 85% of the base line dura-
tion of less. This value drops to about 75% when the analysis is restricted
to the MDD compilation that lasted for 5 seconds or more (Figure 4.8). Such
performance gains are obviously desirable. Again, these are the consequence
of the preallocation scheme used in the vectors used by the VectorBased im-
plementation. A comparison between Figure 4.7 and Figure 4.8 also shows
that the extreme cases where the VectorBased implementation is much slower
than the Naive one only ever happen when durations are very short which
makes these outliers much less interesting.

It is also worth noting that the Flat and Pooled implementation are often
faster than the baseline but are usually a fraction slower than the VectorBased
implementation. In the event that the compilation of a Flat MDD is slower
than in the case of a Naive implementation, the overhead is usually small.
That overhead can however grow quite large in the case of a Pooled imple-
mentation. We attribute this worse-than-expected behavior to the absence
of checks on the size of the pool in the Pooled implementation. Because of
that, the compilation might end up spending quite a bit of time iterating over
the nodes of the pool in order to identify the ones which must be expanded
in the next layer. This step is not required with any other implementation,
and given the width-boundedness of the layers, the layer expansion is guar-
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anteed to not take an excessive amount of time with these representations.
This guarantee is not enforced on the pool of the Pooled DD which might be
the reason for lots of wasted time.

Table 4.1 completes the above information by showing for each method a
summary of the number of compilations that have succeeded and timed out.
While the �gures in this table essentially portray the same information as
Figures 4.7 and Figure 4.8, they also show that the performance gains from
the Flat and VectorBased implementations can have a signi�cant impact. And
indeed, the VectorBased implementation was able to compile about 300 MDDs
more than the baseline without exceeding the time out.

Method Successful Timeout
Naive 6187 1361
Flat 6264 1284
Pooled 5460 2088
Vector-Based 6470 1078

Table 4.1: Number of successful MDD compilation and timeouts

4.6 Conclusion

This chapter started with a presentation of the ddo library. Then, it pre-
sented and evaluated four di�erent implementations of the same mathemat-
ical decision diagram object. In particular, it presented two deep implemen-
tations (Naive and VectorBased) and two shallow representations (Flat
and Pooled). This chapter also showed that the resolution of a dynamic
programme through DD compilation is both a CPU and memory intensive
process. Therefore, an e�cient implementation must pay attention to both
algorithmic and non-algorithmic costs (system calls, page faults, cache miss).
Indeed, the costs incurred by the latter category might grow large and are
easily overlooked.

The experimental study we conducted revealed that the VectorBased
implementation is extremely e�ective. Indeed, it signi�cantly outperforms
all other implementations. This high e�ciency is essentially achieved though
the memory pre-allocation happening in the vectors composing the DD struc-
ture. This allows to reduce the number of round trips to the Operating System
i.e. by decreasing the number of required system calls and page faults since
allocations are made in large blocks. This also improves the data locality since
nodes that are created close to one another are located next to one another
in the vectors (continuous chunks of RAM). This proves bene�cial since the
aforementioned nodes are also likely to be used at close times and hence to
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bene�t from burst read15.
Even though their time performance was beaten by that of the Vector-

Based implementation, the shallow approaches really shined in terms of mem-
ory consumption. Their much lower memory usage might thus be exploited
to compile larger DDs than would be done with a deep representation using
the same amount of RAM. Nevertheless, one needs to be careful when select-
ing a Pooled implementation rather than a Flat or VectorBased one as
the pool management and the exact cutset that are generated might dramat-
ically impact the performance of the overall resolution process.

15This latter point might seem anecdotal but additional experiments where solvers are run
in parallel and can be executed on di�erent cores over the course of their execution have
highlighted the impact of cache locality.
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5

Contributions and Publication Information

This chapter is largely based on Xavier Gillard et al. “Improving the
�ltering of Branch-and-Bound MDD solvers”. In: CPAIOR. 2021. Its
contribution consist of two bounding techniques: rough upper bounds
and local bounds which can be used to improve the �ltering of branch-
and-bound MDD solvers.

This chapter presents two algorithmic methods to improve the e�ciency
of optimization solvers based on the branch-and-bound with MDD paradigm.
These methods aim to improve the �ltering capabilities of these solvers, in-
creasing the fraction of the problem state space covered by each MDD com-
pilation. In particular, this chapter presents and evaluates the e�ectiveness of
the Local Bounds (LocB) and the Rough Upper Bounds (RUB).

5.1 Local bounds (LocB)

LocB is a new and e�ective rule that leverages the structure of bounded width
MDDs to avoid the exploration of non interesting nodes. Conceptually, the
technique works as follows: a relaxed MDD B provides us with one up-
per bound 𝑣∗(B) on the optimal value of the objective function for some
given sub-problem. However, in the event where 𝑣∗(B) is greater than the
best known lower bound 𝑣 (best current solution) nothing guarantees that all
nodes from the exact cutset of B admit a longest path to 𝑡 with a length of
𝑣∗(B). Actually, this is quite unlikely. This is why we propose to attach a “lo-
cal” upper bound to each node of the cutset. This local upper bound – denoted
𝑣 |∗𝑢 for some cutset node 𝑢 – simply records the length of the longest r-t path
passing through 𝑢 in the relaxed MDD B.

In other words, LocB allows us to re�ne the information provided by a
relaxed DD B. On one hand, B provides us with 𝑣∗(B) which is the length of
the longest r-t path in B. As such, it provides an upper bound on the optimal

81
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value that can be reached from the root node of B. With the addition of LocB,
the relaxed DD provides us with an additional piece of information. For each
individual node 𝑢 in the exact cutset of B, it de�nes the value 𝑣 |∗𝑢 which is an
upper bound on the value attainable from that node.

As shown in Algorithm 10, the value 𝑣 |∗𝑢 can prove useful at two di�erent
moments. First, in the event where 𝑣 |∗𝑢 ≤ 𝑣 , this value can serve as a justi-
�cation to not enqueue the subproblem 𝑢 (lines 18–20) since exhausting this
subproblem will yield no better solution than 𝑣 .

Algorithm 10 Branch-And-Bound with MDD with Local Bounds pruning
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a node merging operator ⊕
3: Input: an arc relaxation operator Γ
4: Create node 𝑟 and add it to 𝐹𝑟𝑖𝑛𝑔𝑒
5: 𝑥 ← ⊥
6: 𝑣 ← −∞
7: while 𝐹𝑟𝑖𝑛𝑔𝑒 is not empty do
8: 𝑢 ← 𝐹𝑟𝑖𝑛𝑔𝑒.𝑝𝑜𝑝 ()
9: if 𝑣 |∗𝑢 ≤ 𝑣 then

10: continue
11: B ← 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢)
12: if 𝑣∗(B) > 𝑣 then
13: 𝑣 ← 𝑣∗(B)
14: 𝑥 ← 𝑥∗(B)
15: if B is not exact then
16: B ← 𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢, ⊕, Γ)
17: if 𝑣∗(B) > 𝑣 then
18: for all 𝑢 ′ ∈ B .𝑒𝑥𝑎𝑐𝑡_𝑐𝑢𝑡𝑠𝑒𝑡 () do
19: if 𝑣 |∗

𝑢′ > 𝑣 then
20: 𝐹𝑟𝑖𝑛𝑔𝑒.𝑎𝑑𝑑 (𝑢 ′)
21: return

(
𝑥, 𝑣

)
More formally, by de�nition of a cutset and of LocB, it must be the case

that the longest r-t path of B traverses one of the cutset nodes 𝑢 and thus
that 𝑣∗(B) = 𝑣 |∗𝑢 (where 𝑣 |∗𝑢 is the local bound of 𝑢). Hence we have: ∃𝑢 ∈
cutset of B : 𝑣∗(B) = 𝑣 |∗𝑢 . However, because 𝑣∗(B) is the length of the longest
r-t path ofB, there may exist cutset nodes that only belong to r-t paths shorter
than 𝑣∗(B). That is: ∀𝑢 ′ ∈ cutset of B : 𝑣∗(B) ≥ 𝑣 |∗

𝑢′ . Which is why 𝑣 |∗
𝑢′ can

be stricter than 𝑣∗(B) and hence let LocB be stronger at pruning nodes from
the frontier.

The second time when 𝑣 |∗𝑢 might come in handy occurs when the node 𝑢
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is popped out of the fringe (lines 9–10). Indeed, because the fringe is a global
priority queue, any node that has been pushed on the fringe can remain there
for a long period of time. Thus, chances are that the value 𝑣 has increased
between the moment when the node was pushed onto the fringe (line 20) and
the moment when it is popped out of it. Hence, this gives us an additional
chance to completely skip the exploration of the sub-problem rooted in 𝑢.

Let us illustrate that with the relaxed MDD shown on Figure 5.1, for which
the exact cutset comprises the highlighted nodes 𝑎 and 𝑏. Please note that
because this scenario may occur at any time during the problem resolution,
we will assume that the fringe is not empty when it starts. Assuming that
the current best solution 𝑣 is 20 when one explores the pictured subproblem,
we are certain that exploring the subproblem rooted in 𝑎 is a waste of time,
because the local bound 𝑣 |∗𝑎 is only 16. Also, because the fringe was not empty,
it might be the case that 𝑏 was left on the fringe for a long period of time.
And because of this, it might be the case that the best known value 𝑣 was
improved between the moment when 𝑏 was pushed on the fringe and the
moment when it was popped out of it. Assuming that 𝑣 has improved to
110 when 𝑏 is popped out of the fringe, it may safely be skipped because 𝑣 |∗

𝑏

guarantees that an exploration of 𝑏 will not yield a better solution than 102.
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Figure 5.1: An example relaxed-MDD having an exact cutset {𝑎, 𝑏} with local
bounds 𝑣 |∗𝑎 and 𝑣 |∗

𝑏
. The nodes with a simple border represent exact nodes

and those with a double border represent “inexact” nodes. The edges along
the longest path are displayed in bold.

Algorithm 11 describes the procedure to compute the local bound 𝑣 |∗𝑢 of
each node 𝑢 belonging to the exact cutset of a relaxed MDD B. Intuitively,
this is achieved by doing a bottom-up traversal of B, starting at 𝑡 and stop-
ping when the traversal crosses the last exact layer (line 10). During that
bottom-up traversal, the algorithm marks the nodes that are reachable from
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𝑡 . This way, it can avoid the traversal of dead-end nodes. Also, Algorithm 11
maintains a value 𝑣∗↑𝑡 (𝑢) for each node 𝑢 it encounters. This value represents
the length of the longest u-t path. Afterwards (line 18), it is summed with the
length of the longest r-u path 𝑣∗𝑟−𝑢 to derive the exact value of the local bound
𝑣 |∗𝑢 .

Algorithm 11 Computing the local bounds
1: Input: B a relaxed decision diagram
2: 𝑙𝑒𝑙 ← Index of the last exact layer of B
3: // initialize longest u-t path of all nodes
4: for each node 𝑢 ∈ B do
5: 𝑣∗↑𝑡 (𝑢) ← −∞
6: // initialize bottom-up traversal
7: 𝑚𝑎𝑟𝑘 (𝑡) ←true
8: 𝑣∗↑𝑡 (𝑡) ← 0
9: // Actually traverse B bottom-up

10: for all 𝑖 = 𝑛 to 𝑙𝑒𝑙 do
11: for all node 𝑢 ∈ 𝐿𝑖 do
12: if 𝑚𝑎𝑟𝑘 (𝑢) then
13: for all arc 𝑎 = (𝑢 ′, 𝑢, 𝑑) incident to 𝑢 do
14: 𝑚𝑎𝑟𝑘 (𝑢 ′) ← true
15: 𝑣∗↑𝑡 (𝑢

′) ← max(𝑣∗↑𝑡 (𝑢
′), 𝑣∗↑𝑡 (𝑢) + 𝑣 (𝑎))

16: for all node 𝑢 ∈ B .𝑒𝑥𝑎𝑐𝑡_𝑐𝑢𝑡𝑠𝑒𝑡 () do
17: if 𝑚𝑎𝑟𝑘 (𝑢) then
18: 𝑣 |∗𝑢 ← 𝑣∗𝑟−𝑢 + 𝑣∗↑𝑡 (𝑢)
19: else
20: 𝑣 |∗𝑢 ← −∞

5.1.1 Local Bound will not work with a shallow representation

As explained in Chapter 4, a shallow MDD representation is one that only
maintains a "slice" of the actual DD it stands for1. All the previous layers are
forgotten and the nodes belonging to the "slice" only need to keep track of
their single best parent in order to be able to recover the solution maximizing
the objective function. This is a perfectly sound and memory e�cient way
of representing MDDs when implementing a branch-and-bound DDO solver.
However, this memory e�ciency comes at a price: precious information is
lost when the older layers are forgotten. And this information loss is precisely
what prevents a shallow MDD representation to exploit local bounds.

1Flat MDD and Pooled MDD
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Figure 5.2: Example why local bounds cannot be implemented with a shal-
lowMDD. (a) Displays the complete graph of the exact MDD B. (b) Shows the
B which is a valid relaxation of B. (c) Visually represents the information
available after a shallow MDD representing B �nished unrolling. The ty-
pographic conventions are the same as for the previous �gures: the longest
path is boldfaced. Inexact nodes and relaxed arcs are double-stroked. The
background of the nodes from the exact cutset is red.

The example from Figure 5.2 illustrates why such an implementation would
not be correct. On the left (a), Figure 5.2 pictures the exact MDD B which
comprises �ve layers. The maximum width of B is 4 because its third layer
comprises the nodes d, e, f and g. The optimum value 𝑣∗(B) of this DD is
17, and it is reached by following the path (𝑟, 𝑏, 𝑓 , 𝑖, 𝑡). The center of Figure
5.2 (b) depicts the relaxed MMD B corresponding to a relaxation of B with a
maximum width of 3. Because of the maximum width constraint enforced on
B, the nodes 𝑓 and 𝑔 have been merged intoM and their inbound arcs have
been relaxed with the Γ operator. The best value 𝑣∗(B) of this DD amounts
to 20 because it is the length of its longest path (𝑟, 𝑐,M, 𝑖, 𝑡). Its LEL cutset is
made of the nodes a, b and c. Finally, the right (c) of the Figure 5.2 shows the
information available after a shallow MDD �nished unrolling B. Because it
is a shallow representation, the nodes only know of their “best” parent. That
is, their direct ancestor on to the longest path between them and 𝑡 . In that
con�guration, it is impossible for the node 𝑏 to ever be marked or acquire a
local bound 𝑣 |∗

𝑏
other than −∞ after an execution of Algorithm 11. This oc-

curs because all b-t paths have been forgotten by the shallow representation.
Hence, if one were to use local bounds computed as stated above, the node
𝑏 would be pruned o� the exact cutset and never make its way to the solver
fringe. Because of that, the solver would fail to identify the optimal solution
of B because its single longest path necessarily goes through 𝑏.
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5.1.2 Complexity matters...

As shown in Algorithm 11, the computation of the local bound 𝑣 |∗𝑢 of some
node 𝑢 from the exact cutset of a relaxed MDD B only requires the ability
to remember if 𝑢 is reachable from 𝑡 (𝑚𝑎𝑟𝑘 (𝑢)) and to sum the lengths of
the longest r-u path 𝑣∗𝑟−𝑢 and the longest u-t path 𝑣∗↑𝑡 (𝑢). To that end, it is
su�cient to only store one �ag and two integers in each node. Thus, the
spatial complexity of implementing local bounds is Θ(1) per node.

Similarly, the backward traversal of B as performed in Algorithm 11 only
visits a subset of the nodes and arcs that have been created during the compi-
lation of B. The time complexity of Algorithm 11 is thus bounded by𝑂 ( |𝑈 | ×
|𝐴|). Actually, we even know that this bound is lesser or equal to that of
the top-down compilation because the width-bounding procedure reduces the
number of nodes in B. Hence it reduces the number of nodes potentially vis-
ited by Algorithm 11. It follows that the use of local bounds has no impact on
the time complexity of the derivation of a relaxed MDD.

5.2 Rough upper bound (RUB)

Rough Upper Bound pruning is a new rule to reduce the search space that
needs to be developed during the compilation of a bounded width MDD. It
departs from the following observation: assuming the knowledge of a lower
bound 𝑣 on the global optimum 𝑣∗, and assuming that one is able to swiftly
compute a rough upper bound 𝑣𝑠 on the optimal value 𝑣∗𝑠 of the subprob-
lem rooted in state 𝑠; any node 𝑢 of a MDD having a rough upper bound
𝑣𝜎 (𝑢) ≤ 𝑣 may be discarded as it is guaranteed not to improve the best known
solution. Fundamentally, this is the exact same reasoning that underlies the
whole branch-and-bound idea. But here, it is used to prune portions of the
search space explored while compiling approximate MDDs.

As shown per Algorithm 12, in order to implement RUB, it su�ces to
adapt the MDD compilation procedure and introduce a check that avoids cre-
ating a node 𝑢 ′ with state 𝑛𝑒𝑥𝑡 when 𝑣𝑛𝑒𝑥𝑡 ≤ 𝑣 (Algorithm 12 line 10).

The key to RUB e�ectiveness is that RUB is used while compiling the
restricted and relaxed DDs. As such, its computation does not directly ap-
pear in the branch-and-bound with MDD algorithm (Algorithm 5, Chapter 2
p. 18). Instead, it is accounted within the compilations of 𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑 (𝑢) and
𝑅𝑒𝑙𝑎𝑥𝑒𝑑 (𝑢) from that same algorithm. Thus, it really is not used as yet an-
other bound competing with those of the bounded width DDs, but instead
as a means to speed up the compilation of these very DDs. More precisely,
this speedup occurs because the compilation of the DDs discards some nodes
that would otherwise be added to the next layer of the DD and then further
expanded, which are ruled out by RUB. A second bene�t of using RUBs is that
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Algorithm 12 Top Down Compilation of a Bounded-Width DD with RUB
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: a maximum layer width𝑊
3: Input: a node merging operator ⊕
4: Input: an arc relaxation operator Γ
5: Input: a lower bound 𝑣 on the global optimum 𝑣∗

6: 𝐿0 ← {𝑟 }
7: for 𝑖 ∈ {0 . . . 𝑛 − 1} do
8: for 𝑢 ∈ 𝐿𝑖 , 𝑑 ∈ 𝐷𝑖 do
9: 𝑢 ′← a node associated with state 𝜏𝑖 (𝜎 (𝑢), 𝑑)

10: if 𝜎 (𝑢 ′) ≠ ⊥ ∧ 𝑟𝑢𝑏 (𝑢 ′) > 𝑣 then
11: 𝑈 ← 𝑈 ∪ {𝑢 ′}
12: 𝐿𝑖+1 ← 𝐿𝑖+1 ∪ {𝑢 ′}
13: 𝑎 ← (𝑢,𝑢 ′, 𝑑)
14: 𝑣 (𝑎) ← ℎ𝑖 (𝜎 (𝑢), 𝑑)
15: 𝐴← 𝐴 ∪ {𝑎}
16: if |𝐿𝑖+1 | >𝑊 then
17: 𝐿𝑖+1 ← 𝑠𝑞𝑢𝑎𝑠ℎ_𝑙𝑎𝑦𝑒𝑟 (𝐿𝑖+1,𝑈 ,𝐴, ⊕, Γ)

it helps tightening the bound derived from a relaxed DD. Because the layers
that are generated in a relaxed DD are narrower when applying RUB, there
are fewer nodes exceeding the maximum layer width. The operator ⊕ hence
needs to merge a smaller set of nodes in order to produce the relaxation. It
is therefore less likely to include a node belonging to the longest r-t path in
the relaxation – which could have a negative e�ect on the tightness of the
bound. Doing so, it maximizes the chances of deriving as tight a bound when
compiling a relaxed DD.

The dynamics of RUB is graphically illustrated by Figure 5.3 where the
set of highlighted nodes can be safely elided since the (rough) upper bound
computed in node 𝑠 is lesser than the best lower bound.

ImportantNote It is important to understand that because the RUB is com-
puted at each node of each restricted and relaxed MDD compiled during the
instance resolution, it must be extremely inexpensive to compute. This is why
RUB is best obtained from a fast and simple problem speci�c procedure.

5.2.1 Rough Upper Bounds for the Applications problems

In Chapter 3 of the present thesis, detailed DP models have been presented
for the Maximum Independent Set Problem (MISP), the Maximum Cut Prob-
lem (MCP), the Maximum 2-Satis�ability Problem (MAX2SAT), the Travel-
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𝑣 = 100

𝑣𝑠 = 42

Figure 5.3: Assuming a lower bound 𝑣 of 100 and a rough upper bound 𝑣𝑠 of
42 for the node 𝑠, all the highlighted nodes (in red, with a dashed border)may
be pruned from the MDD.

ing Salesman Problem with Time Windows (TSPTW) and the Pigment Se-
quencing Problem (PSP). The following sections establish a bridge between
Chapters 3 and 5. It introduces a rough upper bound (rough lower bound for
minimization problems) for each of the 5 considered problems.

5.2.1.1 RUB for the MISP

Assuming the MISP DP formulation presented in Chapter 3, where each state
𝑠 from the DP model is a set of vertices that might possibly take part in a
maximum independent set given the decisions labeling the path between the
root state 𝑟 and 𝑠 . A simple over approximation of the objective value for
the subproblem rooted in 𝑠 considers that all vertices 𝑣 ∈ 𝑠 having a positive
weight will eventually take part in the maximum independent set.

Obviously, this is a very optimistic approach and it is highly unlikely to
yield the actual optimum. Still, this approach produces a correct over approx-
imation and a fast procedure is easily designed to compute that value.

Formally, the RUB 𝑣𝑠 of the subproblem rooted in 𝑠 is expressed by:

𝑣𝑠 = 𝑣∗(𝑠) +
∑︁
𝑖∈𝑠
(𝑤𝑖)+ (5.1)

where 𝑣∗(𝑠) is the length of the longest 𝑟 − 𝑠 path, and
∑
𝑖∈𝑠
(𝑤𝑖)+ is the sum

of the positive weights2 of vertices in state 𝑠 .

Theorem 5.2.1 Equation (5.1) is an upper bound (admissible heuristic) for the
MISP. In other words, the length 𝑣 |∗𝑠 of the longest r-t path passing through 𝑠 is
shorter or equal to the proposed RUB 𝑣𝑠 .

2In line with in Chapter 3, the notation (𝛼)+ is used as a shorthand form for max {𝛼, 0}.
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𝑣 |∗𝑠 ≤ 𝑣𝑠

Proof 5.2.1 The correctness of this RUB is trivially proved by contradiction. To
that end, let us call 𝛼 the optimal solution for the MISP subproblem rooted in
𝑠 . On that basis, the length 𝑣 |∗𝑠 of the longest r-t path passing through 𝑠 can be
rewritten as:

𝑣 |∗𝑠 = 𝑣∗(𝑠) + 𝑓 (𝛼) (5.2)

= 𝑣∗(𝑠) +
∑︁
𝑖∈𝛼

𝑤𝑖 (5.3)

= 𝑣∗(𝑠) +
∑︁
𝑖∈𝛼
(𝑤𝑖)+ (5.4)

where 5.3 follows from the transition function and 5.4 is guaranteed because
MISP only consider positive weights (failing to do so would decrease the objective
value). In order to establish Theorem 5.2.1, it su�ce to prove the impossibility
of:

𝑣∗(𝑠) +
∑︁
𝑖∈𝛼
(𝑤𝑖)+ > 𝑣∗(𝑠) +

∑︁
𝑖∈𝑠
(𝑤𝑖)+

That is, it su�ces to prove the impossibility of∑︁
𝑖∈𝛼
(𝑤𝑖)+ >

∑︁
𝑖∈𝑠
(𝑤𝑖)+

By de�nition of the MISP, we have 𝛼 ⊆ 𝑠 which makes the above impossible
to satisfy since

∑
𝑖∈𝛼 (𝑤𝑖)+ and

∑
𝑖∈𝑠 (𝑤𝑖)+ add positive terms only. Satisfying∑

𝑖∈𝛼 (𝑤𝑖)+ >
∑
𝑖∈𝑠 (𝑤𝑖)+ would thus require that 𝛼 contain at least one vertex

with a positive weight more than 𝑠 . This requirement contradicts the de�nition
of 𝛼 as the optimal solution to the subproblem rooted in 𝑠 .

�

5.2.1.2 RUB for the MCP

The MCP model detailed in Chapter 3 is not trivial and de�nes its states as n-
tuples where each component of 𝑠𝑘𝑖 of a given state 𝑠𝑘 represents the marginal
bene�t of assigning vertex 𝑖 to partition𝑇 based on the �rst 𝑘 decisions. Still,
a rough upper bound for that model can be formulated as follows. Formally,
the RUB 𝑣𝑠𝑘 of the subproblem rooted in state 𝑠𝑘 is expressed by:

𝑣𝑠
𝑘
= 𝑣∗(𝑠𝑘 ) +

∑︁
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 | + V𝑘 + N𝑘 − 𝑣𝑟 (5.5)
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where 𝑠𝑘 is a state from the 𝑘 th layer, 𝑣∗(𝑠𝑘 ) is the length of the longest 𝑟 − 𝑠𝑘
path and 𝑣𝑟 is the root value of the DP model. V𝑘 =

∑
𝑘≤𝑖< 𝑗<𝑛

(𝑤𝑖 𝑗 )+ is an over

estimation of the maximum cut value on the remaining induced graph (sum of
the weight of all the positive arcs in the induced graph). N𝑘 =

∑
0≤𝑖< 𝑗<𝑘

(𝑤𝑖 𝑗 )−

is the partial sum of the weights of all negative arcs interconnecting vertices
which have already been assigned to a partition.

This upper bound is very fast to compute – amortized𝑂 (𝑛) – since 𝑣∗(𝑠𝑘 )
is known when node 𝑠𝑘 must be expanded and the quantities 𝑣𝑟 , V𝑘 and N𝑘
can be pre-computed once for all (assuming a �xed variable ordering).

The correctness of this RUB is proved by showing that, for any given state
𝑠𝑘 , the bound which is computed is either larger or equal to the longest 𝑟 − 𝑡
path passing through state 𝑠𝑘 .

Theorem 5.2.2 The length 𝑣 |∗
𝑠𝑘

of the longest r-t path passing through 𝑠𝑘 is

shorter or equal to the RUB presented above (𝑣𝑠𝑘 )

𝑣 |∗
𝑠𝑘
≤ 𝑣𝑠𝑘

Proof 5.2.2 In order to compute the length 𝑣 |∗
𝑠𝑘

of the longest 𝑟 −𝑡 path passing
through 𝑠𝑘 , one essentially needs to compute the sum of:

1. the longest 𝑟 − 𝑠𝑘 path in the subproblem P0,𝑘 bearing only on variables
for which a decision has been made [0 . . . 𝑘 − 1]. The length of this path
is denoted 𝑣∗P0,𝑘 (𝑠

𝑘 ). Put another way, this quantity represents the sum of
weights of edges which are fully determined to cross the cut. (Both ends
have been assigned to a partition).

2. the value of the best solution to the subproblem P𝑘,𝑛 bearing only on vari-
ables for which no decision has been made [𝑘 . . . 𝑛 − 1]. We use 𝑣∗(P𝑘,𝑛)
to denote that value. In other words, 𝑣∗(P𝑘,𝑛) is the weight of the maxi-
mum cut in the residual graph comprising only nodes that have not been
assigned to either partition 𝑆 or 𝑇 .

3. the value C𝑘 of the maximum cut considering only edges for which exactly
one end is a vertex that has been assigned to a partition during the �rst 𝑘
decisions.

This lets us rewrite 𝑣 |∗
𝑠𝑘

as shown below:

𝑣 |∗
𝑠𝑘

= 𝑣∗P0,𝑘 (𝑠
𝑘 ) + 𝑣∗(P𝑘,𝑛) + C𝑘 ,∀0 ≤ 𝑘 < 𝑛 (5.6)
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According to our decomposition methodology, we would like to start by showing
that

𝑣∗P0,𝑘 (𝑠
𝑘 ) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘

𝑣𝑟 (P0,𝑘 ) +
∑

0≤𝑖<𝑘
ℎ(𝑠𝑖 , 𝑥𝑖) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘∑

0≤𝑖< 𝑗<𝑘
(𝑤𝑖 𝑗 )− +

∑
0≤𝑖<𝑘

ℎ(𝑠𝑖 , 𝑥𝑖) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘

N𝑘 +
∑

0≤𝑖<𝑘
ℎ(𝑠𝑖 , 𝑥𝑖) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘

N𝑘 +
∑

0≤𝑖<𝑘
ℎ(𝑠𝑖 , 𝑥𝑖) = 𝑣𝑟 +

∑
0≤𝑖<𝑘

ℎ(𝑠𝑖 , 𝑥𝑖) − 𝑣𝑟 + N𝑘
N𝑘 +

∑
0≤𝑖<𝑘

ℎ(𝑠𝑖 , 𝑥𝑖) =
∑

0≤𝑖<𝑘
ℎ(𝑠𝑖 , 𝑥𝑖) + N𝑘

(5.7)

Then, we show that

𝑣∗(P𝑘,𝑛) ≤ V𝑘 (5.8)

By de�nition of 𝑣∗(P𝑘,𝑛) as the value of the maximum cut in the residual graph
comprising only vertices not assigned to any partition, we have: 𝑣∗(P𝑘,𝑛) =

max
∑

𝑘≤𝑖< 𝑗<𝑛
𝑤𝑖 𝑗 (𝑥𝑖 ≠ 𝑥 𝑗 ). From there, it follows that:

𝑣∗(P𝑘,𝑛) ≤ V𝑘
max

∑
𝑘≤𝑖< 𝑗<𝑛

𝑤𝑖 𝑗 (𝑥𝑖 ≠ 𝑥 𝑗 ) ≤ V𝑘

max
∑

𝑘≤𝑖< 𝑗<𝑛
𝑤𝑖 𝑗 (𝑥𝑖 ≠ 𝑥 𝑗 ) ≤

∑
𝑘≤𝑖< 𝑗<𝑛

(𝑤𝑖 𝑗 )+

Finally, we show that

C𝑘 ≤
∑︁
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 | (5.9)

which is proved by contradiction. Indeed, falsifying that property would require
that C𝑘 >

∑
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 |. That is, it would require that the value of the maximum cut

comprising only edges having exactly one end assigned to some partition (either
𝑆 or 𝑇 ) be strictly greater than the sum of the marginal bene�t for the "perfect"
assignment for these edges. This either contradicts the de�nition of a maximum
cut (hence the de�nition of C𝑘 ) or that of the state transition function.

Combining (5.7), (5.8) and (5.9); we have:(
𝑣∗P0,𝑘 (𝑠

𝑘 ) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘
)
∧

(
𝑣∗(P𝑘,𝑛) ≤ V𝑘

)
∧

(
C𝑘 ≤

∑
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 |
)

=⇒
𝑣∗P0,𝑘 (𝑠

𝑘 ) + 𝑣∗(P𝑘,𝑛) + C𝑘 ≤ 𝑣∗(𝑠𝑘 ) +
∑

𝑘≤𝑖<𝑛
|𝑠𝑘𝑖 | + V𝑘 + N𝑘 − 𝑣𝑟
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Which can be reformulated as follows using (5.6) and (5.5):(
𝑣∗P0,𝑘 (𝑠

𝑘 ) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘
)
∧

(
𝑣∗(P𝑘,𝑛) ≤ V𝑘

)
∧

(
C𝑘 ≤

∑
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 |
)

=⇒
𝑣 |∗
𝑠𝑘
≤ 𝑣𝑠𝑘

Also, because all terms on the left hand side of the implication have been proved
true in equation (5.7), (5.8) and (5.9); we have:

𝑣 |∗
𝑠𝑘
≤ 𝑣𝑠𝑘

�

5.2.1.3 RUB for MAX2SAT

The DP model and relaxation that have been presented in Chapter 3 for MAX2-
SAT resemble those of MCP. In both cases, the states are tuples of marginal
costs associated with one of two opposite decisions. Moreover, the de�ni-
tion and interpretation of the relaxation operators are identical in both cases.
The di�erence between these models essentially stems from the peculiari-
ties of each model, and more speci�cally what it means to "acquire" a cost
(edge crossing a cut for MCP versus satisfying at least one literal in a clause
for MAX2SAT). Given these similarities, it is only natural that the RUBs that
have been designed for both problems exhibits some similarities as well since
the general approach is kept across both problem. Still, the details of both
RUBs vary. Given a MAX2SAT state 𝑠𝑘 , a RUB can be computed as shown
below:

𝑣𝑠
𝑘
= 𝑣∗(𝑠𝑘 ) +

∑︁
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 | + V𝑘 (5.10)

where 𝑣∗(𝑠𝑘 ) is the length of a longest 𝑟 − 𝑠𝑘 path,
∑

𝑘≤𝑖<𝑛
|𝑠𝑘𝑖 | is the total

marginal gain that can possibly be earned based on previous decisions; and
V𝑘 is an over approximation on the value of the residual subproblem3 bearing

3As it is expressed here, this over approximation does not account for the tautologies in
that residual subproblem. These could have been included at the expense of making equation
(5.10) slightly more complex. In which case, the formulation of the RUB for MAX2SAT would
have had the exact same form as the MCP RUB (albeit with di�erent de�nitions of sub terms).
However, including the cost of tautologies is not required in when de�ning this RUB because
their cost is already accounted for by the initial value 𝑣𝑟 of the DP model. Which means, the
cost of tautologies is readily covered in 𝑣∗ (𝑠𝑘 ) and does not need to be explicitly mentioned
in (5.10).
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on undecided variables only. Speci�cally, we have

V𝑘 =
∑︁
𝑘≤𝑖<𝑛

max
{
𝑤𝑇𝑇𝑖,𝑖 ,𝑤

𝐹𝐹
𝑖,𝑖

}
(5.11)

+
∑︁

𝑘≤𝑖< 𝑗<𝑛
max

{
𝑔𝑇𝑇𝑖,𝑗 , 𝑔

𝑇𝐹
𝑖,𝑗 , 𝑔

𝐹𝑇
𝑖,𝑗 , 𝑔

𝐹𝐹
𝑖,𝑗

}
(5.12)

where (5.11) is the sum of the weight of all unit clauses that might possibly be
satis�ed by the residual sub problem, and (5.12) over approximates the pos-
sible total gain earned of deciding all remaining pairs of undecided variables.
In this de�nition, the expressions 𝑔𝑇𝑇𝑖,𝑗 , 𝑔

𝑇𝐹
𝑖,𝑗 , 𝑔

𝐹𝑇
𝑖,𝑗 and 𝑔𝐹𝐹𝑖,𝑗 are de�ned as:

𝑔𝑇𝑇𝑖,𝑗 = 𝑤𝑇𝑇𝑖,𝑗 +𝑤𝑇𝐹𝑖,𝑗 +𝑤𝐹𝑇
𝑖,𝑗 (5.13)

𝑔𝑇𝐹𝑖,𝑗 = 𝑤𝑇𝑇𝑖,𝑗 +𝑤𝑇𝐹𝑖,𝑗 +𝑤𝐹𝐹
𝑖,𝑗 (5.14)

𝑔𝐹𝑇𝑖,𝑗 = 𝑤𝑇𝑇𝑖,𝑗 +𝑤𝐹𝑇
𝑖,𝑗 +𝑤𝐹𝐹

𝑖,𝑗 (5.15)

𝑔𝐹𝐹𝑖,𝑗 = 𝑤𝑇𝐹𝑖,𝑗 +𝑤𝐹𝑇
𝑖,𝑗 +𝑤𝐹𝐹

𝑖,𝑗 (5.16)

Intuitively, 𝑔𝑇𝑇𝑖,𝑗 is the gain accrued by a joint assignment of variables 𝑥𝑖
and 𝑥 𝑗 where both variables are set to true È𝑥𝑖 = 𝑇, 𝑥 𝑗 = 𝑇É. It sums the
weight of clauses (𝑥𝑖 ∨ 𝑥 𝑗 ), (𝑥𝑖 ∨ ¬𝑥 𝑗 ), and (¬𝑥𝑖 ∨ 𝑥 𝑗 ) but it purposely omits
the weight of clause (¬𝑥𝑖 ∨¬𝑥 𝑗 ) as that one clause is known to be falsi�ed by
the joint assignment (5.13). Similarly, (5.14) de�nes 𝑔𝑇𝐹𝑖,𝑗 as the accrued gain
of the joint assignment È𝑥𝑖 = 𝑇, 𝑥 𝑗 = 𝐹É, (5.15) de�nes 𝑔𝐹𝑇𝑖,𝑗 as the gain of the
joint assignment È𝑥𝑖 = 𝐹, 𝑥 𝑗 = 𝑇É, and (5.16) de�nes 𝑔𝐹𝐹𝑖,𝑗 as the gain of the
joint assignment È𝑥𝑖 = 𝐹, 𝑥 𝑗 = 𝐹É.

The proof of the correctness of this RUB is analogous to the one detailed
for MCP. In order to e�ectively prove the correctness of this bound, it su�ces
to prove that for any state 𝑠𝑘 , the RUB 𝑣𝑠𝑘 is larger or equal to the longest 𝑟 −𝑡
path passing through state 𝑠𝑘 .

Theorem 5.2.3 The length 𝑣 |∗
𝑠𝑘

of the longest r-t path passing through 𝑠𝑘 is

shorter or equal to the RUB presented above (𝑣𝑠𝑘 )

𝑣 |∗
𝑠𝑘
≤ 𝑣𝑠𝑘

Proof 5.2.3 Computing the length of the longest r-t path passing through 𝑠𝑘

amounts to computing the sum of:

� The cost the longest path in the subproblem P0,𝑘 bearing only on variables
for which a decision has already been made. The length of this path is
denoted 𝑣∗P0,𝑘 (𝑠

𝑘 ). Put another way, this quantity represents the sum of
weights of all clauses that are irremediably satis�ed based on the current
partial assignment.
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� The value of the best solution to the residual subproblem P𝑘,𝑛 bearing on
unassigned variables only. This value will be referred to as 𝑣∗(P𝑘,𝑛) and

� The weight C𝑘 of all the clauses that have not been satis�ed by the �rst 𝑘
assignments but are satis�ed thanks to a decision made along the longest
path.

This decomposition lets us rewrite 𝑣 |∗
𝑠𝑘

as shown below:

𝑣 |∗
𝑠𝑘

= 𝑣∗P𝑘,𝑛 (𝑠
𝑘 ) + 𝑣∗(P𝑘,𝑛) + C𝑘 ,∀0 ≤ 𝑘 < 𝑛 (5.17)

In addition to the above, let us de�ne the termN𝑘 as the sum of the weights
of tautologies bearing on assigned variables only:

N𝑘 =
∑︁

0≤𝑖<𝑘
𝑤𝑇𝐹𝑖,𝑖 (5.18)

From that de�nition, it follows that:

𝑣∗P0,𝑘 (𝑠
𝑘 ) = 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘 (5.19)

We then establish that

𝑣∗(P𝑘,𝑛) −
∑︁
𝑘≤𝑖<𝑛

𝑤𝑇𝐹𝑖,𝑖 ≤ V𝑘 (5.20)

which is obvious since V𝑘 is the maximum weight of the clauses of P𝑘,𝑛 that
can be satis�ed by a (possibly inconsistent) set of pairwise assignment. And
because the subtracted term

∑
𝑘≤𝑖<𝑛

𝑤𝑇𝐹𝑖,𝑖 removes the cost of tautologies which are

not covered byV𝑘 .
Finally, we show that

C𝑘 ≤
∑︁
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 | (5.21)

which is proved by contradiction. Falsifying that condition would required that
C𝑘 >

∑
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 |. In other words, falsifying this condition would require that the

total weight of the clauses whose truth value depend on one single unassigned lit-
eral be greater than the total marginal bene�t for a "perfect" assignment of these
literals. This requirement contradicts the de�nition of C𝑘 and hence establishes
the truth of (5.21).
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Combining (5.17) with (5.18), (5.19), (5.20) and (5.21); we have:

𝑣 |∗
𝑠𝑘

= 𝑠∗P0,𝑘 (𝑠
𝑘 ) + 𝑣∗(P𝑘,𝑛) + C𝑘

= 𝑣∗(𝑠𝑘 ) − 𝑣𝑟 + N𝑘 + 𝑣∗(P𝑘,𝑛) + C𝑘
= 𝑣∗(𝑠𝑘 ) −

∑︁
0≤𝑖<𝑛

𝑤𝑇𝐹𝑖,𝑖 +
∑︁

0≤𝑖<𝑘
𝑤𝑇𝐹𝑖,𝑖 + 𝑣∗(P𝑘,𝑛) + C𝑘

≤ 𝑣∗(𝑠𝑘 ) −
∑︁

0≤𝑖<𝑛
𝑤𝑇𝐹𝑖,𝑖 +

∑︁
0≤𝑖<𝑘

𝑤𝑇𝐹𝑖,𝑖 + V𝑘 +
∑︁
𝑘≤𝑖<𝑛

𝑤𝑇𝐹𝑖,𝑖 + C𝑘

≤ 𝑣∗(𝑠𝑘 ) + V𝑘 + C𝑘
≤ 𝑣∗(𝑠𝑘 ) + V𝑘 +

∑︁
𝑘≤𝑖<𝑛

|𝑠𝑘𝑖 |

≤ 𝑣𝑠𝑘

�

5.2.1.4 RLB for the TSPTW

Note

Reminder TSPTW is a minimization problem. It must thus de�ne a
rough lower bound rather than a rough upper bound.

In Chapter 3, a DP model for TSPTW was presented where a state 𝑠𝑘 from
the 𝑘𝑡ℎ layer it a tuple

〈
𝑡𝑖𝑚𝑒𝑘 , 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 ,𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 ,𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘

〉
. In that

context, a simple lower bound would consist of the total weight of a minimum
spanning tree covering all the cities thatmust still be visited. While this bound
is correct – it is the usual lower bound for TSP-style problems, we observed
experimentally that the complexity 𝑂 (𝑛2 𝑙𝑜𝑔 𝑛) with 𝑛 being the number of
cities, was too expensive in practice for it to be an e�ective RLB.

We therefore devised a new bound which is slightly more involved but
turns out to be a more e�ective RLB. This new RLB is easily computed in
𝑂 (𝑛 𝑙𝑜𝑔 𝑛). Essentially, our bounding accounts for �ve di�erent costs that are
required to complete a valid TSPTW tour. As illustrated per Figure 5.4, these
�ve costs can be summed together and respectively correspond to:

1. The total distance that has already been traveled (𝑣∗(𝑠𝑘 )).

2. The distance between 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘 and any remaining node.

3. An estimate of the distance between the nodes that must be visited.
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Figure 5.4: Illustration of the 5 costs required to complete a valid TSPTW
tour from a given state 𝑠𝑘 .

4. An estimate of the distance required to visit 𝑛 −𝑘 − |𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 | cities
among those which might be visited (without violating time windows).

5. An estimate of the distance required to head back to depot.

As it has been presented until now, it appears as though (2) and possibly
(3) might involve computationally expensive operations similar to computing
a minimum spanning tree (MST). However, this turns out to not be the case.
Indeed, a important ingredient of our RLB is the use of an additional vector
𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡 which stores for each city 𝑖 the cost of its cheapest adjacent edge.
This vector is precomputed before to starting actually solving an instance.

In practice,
∑

0≤𝑖<𝑛
𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑖 is the cost of an MST at root state. However,

the bound it provides at later levels is much less tight since the cheapest edge
adjacent to some city 𝑖 might not be a considerable option.

Distance from current position Nevertheless, using the 𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡 vector
allows the computation of an inexpensive estimate of the distance between
the current position and any other city.

𝑒𝑠𝑡1 = min
{
𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑖 | 𝑖 ∈ 𝑝𝑜𝑠𝑖𝑡𝑖𝑜𝑛𝑘

}
Distance between the cities that must be visited Similarly, an estimate
of the distance between all the cities that must be visited consists of the sum
of their cheapest edges

∑
𝑖 ∈𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑖 .
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However, this bound can easily be strengthened by including a feasibility
check. In case an infeasibility is detected, then our RLB returns +∞. The cost
associated to each city when computing this estimate is thus given by:

𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑖 =

{
𝑐ℎ𝑒𝑎𝑝𝑒𝑠𝑡𝑖 if 𝑡𝑖𝑚𝑒𝑘 + 𝑒𝑠𝑡1 ≤ 𝑙𝑖
+∞ otherwise

On that basis, the second term intervening in our RLB is computed as:

𝑒𝑠𝑡2 =
∑︁

𝑖∈𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘
𝑓 𝑒𝑎𝑠𝑖𝑏𝑙𝑒_𝑑𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑘𝑖

Estimate of the time it takes to visit n cities in the tour A very crude
estimate of the time it takes to visit the required number of cities in a tour
consists of taking the cost of the 𝑛−𝑘 − |𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 | cheapest edges adjacent
to nodes that might be visited. In other words, it completes 𝑒𝑠𝑡2 to form an
under approximation of an MST covering the required number of cities among
which the cities in the set𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 are imposed.

In this case again, a feasibility check can be applied. Indeed, if the size of
the set

{
𝑖 ∈𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 | 𝑡𝑖𝑚𝑒𝑘 + 𝑒𝑠𝑡1 ≤ 𝑙1

}
is less than 𝑛−𝑘− |𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 |,

then it is impossible to complete a valid tour. Therefore, our RLB returns +∞
in this case as well.

Returning to depot The estimate of the cost it takes to return to the depot
after all due cities have been visited is quite straightforward. It simply consists
of the smallest distance between any of the visitable cities and the depot.
Formally, it is given by

min
{
D𝑖,0 | 𝑖 ∈

(
𝑚𝑢𝑠𝑡_𝑣𝑖𝑠𝑖𝑡𝑘 ∪𝑚𝑖𝑔ℎ𝑡_𝑣𝑖𝑠𝑖𝑡𝑘

)}
5.2.1.5 RLB for the PSP

Because PSP is a simple case of Wagner-Whitin (WW) [PW06] in the absence
of changeover costs, the WW cost of some state 𝑠𝑡 = 〈𝑘,𝑢〉 ∈ SH−𝑡 is an
admissible lower bound on the sub-problem rooted in 𝑠𝑡 . Also, the PSP is
essentially a TSP when the stocking cost and delivery constraints are lifted.
Hence, the cost of an MST covering the changeover cost of all the item types
that are still to be produced is also an admissible lower bound to this problem.
Moreover, because the number of items |I | of PSP instances is usually small
(less than 10), the cost of all these MST can be easily precomputed before to
actually start solving the problem. The repeated use of these precomputed
costs allows the amortization of these computations.
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Finally, because there is no overlap in the costs that are covered by the
WW estimate and the MST estimate, we know that the sum of these estimates
yields an admissible lower bound. This sum is thus constitutive of a valid RLB
for the PSP.

5.3 Experimental Study

In order to evaluate the impact of the pruning techniques proposed above, we
conducted a series of experiments on four problems. In particular, we con-
ducted experiments on the Maximum Independent Set Problem (MISP), the
Maximum Cut Problem (MCP), the Maximum Weighted 2-Satis�ablility Prob-
lem (MAX2SAT), and the Traveling Salesman Problem with Time Windows
(TSPTW). The DP models and benchmark instances we used for all problems
are the ones that have been described in Chapter 3 of the present thesis. The
Rough Upper/Lower Bounds that have been used are those presented in the
previous section.

We attempted to solve each of problem instance with di�erent con�gu-
rations of ddo, our own open source solver written in Rust. Thanks to the
generic nature of that framework, the model and all heuristics used to solve
the instances were the same for all experiments. This allowed us to isolate
the impact of LocB and RUB on the solving performance while neutralizing
unrelated factors such as variable ordering. Indeed, the only variations be-
tween the di�erent solver �avors relate to the presence (or absence) of the
aforementioned pruning techniques. All experiments were run on the same
physical machine equipped with an AMD6176 processor and 48GB of RAM.
A maximum time limit of 30 minutes was allotted to each con�guration to
solve each instance.

Figures 5.5, 5.6, 5.7 and 5.8 give an overview of the results from our exper-
imental study. They respectively depict the evolution over time of the number
of instances solved by each technique for MISP (Figure 5.5), MCP (Figure 5.6),
MAX2SAT (Figure 5.7) and TSPTW (Figure 5.8).

As a �rst step, our observation of the graphs will focus on the di�er-
ences that arise between the single threaded con�gurations of our ddo solvers.
Then, in a second phase, we will incorporate an existing state-of-the-art ILP
solver (Gurobi 9.0.3) in the comparison. Also, because both Gurobi and our
ddo library come with built-in parallel computation capabilities, we will con-
sider both the single threaded and parallel (24 threads) cases. This second
phase, however, only bears on MISP, MCP and MAX2SAT by lack of a Gurobi
TSPTW model.

DDOcon�gurations The �rst observation to be made about the four graphs
is that for all considered problems, both RUB and LocB outperformed the ’do-
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nothing’ strategy; thereby showing the relevance of the rules we propose. It
is not clear, however, which of the two rules brings the most improvement
to the problem resolution. Indeed, RUB seems to be the driving improve-
ment factor for MISP (a) and TSPTW (d) and the impact of LocB appears to be
moderate or weak on these problems. However, it has a much higher impact
for MCP (b) and MAX2SAT (c). In particular, LocB appears to be the driving
improvement factor for MCP (b). This is quite remarkable given that LocB
operates in a purely black box fashion, without any problem-speci�c knowl-
edge. Finally, it should also be noted that the use of RUB and LocB are not
mutually exclusive. Moreover, it turns out that for all considered problems,
the combination RUB+LocB improved the situation over the use of any single
rule.

Furthermore, Fig.5.9 con�rms the bene�t of using both RUB and LocB to-
gether rather than using any single technique. For each problem, it measures
the “performance” of using RUB+LocB vs the best single technique through
the end gap. The end gap is de�ned as

(
100 ∗ |𝑈𝐵 |− |𝐿𝐵 ||𝑈𝐵 |

)
. This metric allows

us to account for all instances, including the ones that could not be solved to
optimality. Basically, a small end gap means that the solver was able to con-
�rm a tight con�dence interval of the optimum. Hence, a smaller gap is better.
On each subgraphs of Fig.5.9, the distance along the x-axis represents the end
gap for reach instance when using both RUB and LocB whereas the distance
along y-axis represents the end gap when using the best single technique for
the problem at hand. Any mark above the diagonal shows an instance for
which, using both RUB and LocB helped reduce the end gap and any mark
below that line indicates an instance where it was detrimental.

From graphs 5.9-a, 5.9-c and 5.9-d it appears that the combination RUB +
LocB supersedes the use of RUB only. Indeed the vast majority of the marks
sit above the diagonal and the rest on it. This indicates a bene�cial impact of
using both techniques even for the hardest (unsolved) instances. The case of
MCP (graph 5.9-b) is less clear as most of the marks sit on the diagonal. Still,
we can only observe three marks below the diagonal and a bit more above it.
Which means that even though the use of RUB in addition to LocB is of little
help in the case of MCP, its use does not degrade the performance for that
considered problem.

Comparison with Gurobi 9.0.3 The �rst observation to be made when
comparing the performance of Gurobi vs the DDO con�gurations, is that
when running on a single thread, ILP outperforms the basic DDO approach
(without RUB and LocB). Furthermore, Gurobi turns out to be the best sin-
gle threaded solver for MCP by a fair margin. However, in the MISP and
MAX2SAT cases, Figure 5.5 shows that the DDO solvers bene�tting from
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Figure 5.9: End gap: The bene�t of using both techniques vs the best single
one

RUB and LocB were able to solve more instances and to solve them faster
than Gurobi. Which underlines the importance of RUB and LocB.

When lifting the one thread limit, one can see that the DD-based approach
outperform ILP on each of the considered problems. In particular, in the case
of MCP for which Gurobi is the best single threaded option; our DDO solver
was able to �nd and prove the optimality of all tested instances in a little less
than 800 seconds. The ILP solver, on the other end, was not able to prove the
optimality of the 9 hardest instances within 30 minutes. Additionally, we also
observe that in spite of the performance gains of MIP when running in paral-
lel, Gurobi fails to solve as many MISP and MAX2SAT instances and to solve
them as fast as the single threaded DDO solvers with RUB and LocB. This
emphasizes once more the relevance of our techniques. It also shows that the
observation from [Ber+14c] still hold today: despite the many advances of
MIP the DDO approach still scales better than MIP on the considered prob-
lems when invoked in parallel.

5.4 Previous work

DDO emerged in the mid’ 2000’s when [Hoo06] proposed to use decision dia-
grams as a way to solve discrete optimization problems to optimality. More or
less concomitantly, [And+07] devised relaxed-MDD even though the authors
envisioned its use as a CP constraint store rather than a means to derive tight
upper bounds for optimization problems. Then, the relationship between de-
cision diagrams and dynamic programming was clari�ed by [Hoo13].

Recently, Bergman, Ciré and van Hoeve investigated the various ways to
compile decision diagrams for optimization (top-down, construction by sep-
aration) [Cir14]. They also investigated the heuristics used to parameterize
these DD compilations. In particular, they analyzed the impact of variable
ordering in [Cir14; Ber+14b] and node selection heuristics (for merge and
deletion) in [Ber+14b]. Doing so, they empirically demonstrated the crucial
impact of variable ordering on the tightness of the derived bounds and high-
lighted the e�ciency of minLP as a node selection heuristic. Later on, the
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same authors proposed a complete branch-and-bound algorithm based on
DDs [Ber+16b]. This is the algorithm which this chapter proposed to adapt
with extra reasoning mechanisms and for which a generic open-source im-
plementation in Rust [GSC20a]. The impressive performance of DDO trig-
gered some theoretical research to analyze the quality of approximate MDDs
[BC16b] and the correctness of the relaxation operators [Hoo17].

This gave rise to new lines of work. The �rst one focuses on the resolu-
tion of a larger class of optimization problems; chief of which multi-objective
problems [BC16a] and problems with a non-linear objective function. These
are either solved by decomposition [BC16a] or by using DDO to strengthen
other IP techniques [DH18]. A second trend aims at hybridizing DDO with
other IP techniques. For instance, by using Lagrangian relaxation [Hoo19]
or by solving a MIP [BC17] to derive with very tight bounds. But the other
direction is also under active investigation: for example, [Tja18; TH19] use
DD to derive tight bounds which are used to replace LP relaxation in a cut-
ting planes solver. Very recently, a third hybridization approach has been
proposed by Gonzàlez et al.[Gon+20]. It adopts the branch-and-bound MDD
perspective, but whenever an upper bound is to be derived, it uses a trained
classi�er to decide whether the upper bound is to be computed with ILP or
by developing a �xed-width relaxed MDD.

The techniques (ILP-cuto� pruning and ILP-cuto� heuristic) proposed by
Gonzalez et al.[Gon+20] are related to RUB and LocB in the sense that all
techniques aim at reducing the search space of the problem. However, they
fundamentally di�er as ILP-cuto� pruning acts as a replacement for the com-
pilation of a relaxed MDD whereas the goal of RUB is to speed up the de-
velopment of that relaxed MDD by removing nodes while the MDD is being
generated. The di�erence is even bigger in the case of ILP-cuto� heuristic vs
LocB: the former is used as a primal heuristic while LocB is used to �lter out
sub-problems that can bear no better solution. In that sense, LocB belongs
more to the line of work started by [And+07; HHT08; HVHH10]: it enforces
the constraint 𝑙𝑏 ≤ 𝑓 (𝑥) ≤ 𝑢𝑏 and therefore provokes the deletion of nodes
and arcs that cannot lead to the optimal solution.

More recently, Horn et al. explored an idea in [Hor+21] which closely re-
lates to RUB. They use “fast-to-compute dual bounds” as an admissible heuris-
tic to guide the compilation of MDDs in an A* fashion for the prize-collecting
TSP. It prunes portions of the state space during the MDD construction, sim-
ilarly to when RUB is applied. Our approach di�ers from that of [Hor+21]
in that we attempt to incorporate problem speci�c knowledge in a frame-
work that is otherwise fully generic. More precisely, it is perceived here as a
problem-speci�c pruning that exploits the combinatorial structure implied by
the state variables. It is independent of other MDD compilation techniques,
e.g. our techniques are compatible with node merge (⊕) operators and other
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methodologies de�ned in the DDO literature. We also emphasize that, as op-
posed to more complex LP-based heuristics that are now typical in A* search,
we investigate quick methodologies that are also easy to incorporate in a
MDD branch and bound.

5.5 Conclusion

This chapter presented and evaluated the impact of two reasoning rules (LocB
and RUB) to strengthen the pruning of the branch-and-bound MDD algo-
rithm. Our experimental study on MISP, MCP, MAX2SAT and TSPTW con-
�rmed the relevance of these techniques. In particular, our experiments have
shown that devising a fast and simple rough upper bound is worth the e�ort as
it can signi�cantly boost the e�ciency of a solver. Similarly, our experiments
showed that the use of local bound can signi�cantly improve the e�ciency
of DDO solver despite its problem agnosticism. Furthermore, it revealed that
a combination of both RUB and LocB supersedes the bene�t of any single
reasoning technique. These results are very promising and we believe that
the public availability of an open source DDO framework implementing all
these techniques might serve as a basis for novel DP formulation for classic
problems.
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Contributions and Publication Information

The content of this paper is largely based on Xavier Gillard and Pierre
Schaus. Large Neighborhood Search with Decision Diagrams. IJCAI.
2022. The contribution of this chapter is a large neighborhood pro-
cedure which leverages restricted DD to swiftly explore good quality
neighborhoods around a best known solution.

As opposed to previous chapters of this thesis, this chapter exits from the
realm of exact solvers and proposes to blend DDO with heuristic methods and
more speci�cally with a Large Neighborhood approach. This chapter shows
how to design an e�cient DD based neighborhood exploration reusing the
idea of restricted DD introduced in [Ber+16b].

6.1 Motivation

Local search is a widely used approach to quickly obtain good solutions to
combinatorial optimization problems [HM09; HS04]. Unfortunately, a simple
gradient descent based on simple perturbations such as 2-exchange moves can
quickly get trapped into a local minima. Metaheuritics such as Tabu Search
or Simulated Annealing can help escape from local minima. Another alterna-
tive is to explore larger neighborhoods to improve the current best solution.
By exploring larger neighborhoods, the need for metaheuristics becomes less
important, as the search is less myopic. Building larger neighborhoods, how-
ever, often requires a great deal of expertise. A well-known and successful
one for vehicle routing problems is the Lin-Kernighan neighborhood [LK73]
that generalizes the 2-OPT move to K-Opt.

For some problems, exponentially sized neighborhoods can be explored
in polynomial time using algorithms such as max-�ow or path algorithms in
graphs. We then speak of a very large-scale neighborhood search [Ahu+02].
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These complex neighborhoods are often problem speci�c and di�cult to adapt
even for slight variations of the problem.

A more generic approach based on this idea of enlarging the neighbor-
hood uses an optimization solver to explore the neighborhood [Sha98]. The
main advantage is that the user expertise can be limited to the modeling of
the problem rather than the design of complex move algorithms. This ap-
proach alternates between two phases: the random relaxation of a fraction of
the decision variables, and the assignment of those variables using the solver
as a black-box tool. This large neighborhood approach has been used with
great success using constraint programming (CP) solvers to solve scheduling
[Lab+18] or vehicle routing problems [JVH11]. Similar ideas have also been
used with Mixed Integer Programming (MIP) solvers under the name of local
branching [FL10].

Recently, some combinatorial optimization problems have been solved ef-
�ciently using DD approach [Ber+16b]. Generic solvers for these approaches
have also been developed [GSC20a] using the techniques explained in Chap-
ters 4 and 5. It is thus a natural idea to attempt exploring large neighborhoods
using DD solvers.

6.2 Large Neighborhood Search

As explained above, LNS is an incomplete optimization method that aims at
being able to escape local minima while freeing the practitioner from the need
to devise complex, highly specialized metaheuristics. To this end, LNS at-
tempts to �nd a balance between intensi�cation (apply advanced inference
algorithms to explore promising neighborhoods) and diversi�cation (explore
di�erent neighborhoods). This is why starting from an initial solution 𝑠∗, LNS
alternates between a relaxation phase and a reoptimization phase. During the
relaxation phase, decisions made in 𝑠∗ are challenged for a small fraction of
the variables. Then, during the reoptimization, a solver operates a "black box"
resolution of the remaining (sub-)problem. Whenever a solution 𝑠 ′∗ improv-
ing the best known objective is discovered (𝑓 (𝑠 ′∗) < 𝑓 (𝑠∗)); the incumbent
best solution is updated.

Our Approach This thesis proposes to use restricted DDs as a means to
explore sets of solutions in a large neighborhood of 𝑠∗. Algorithm 13 shows
how this is done in practice. Similar to vanilla LNS, our method must strike a
balance between intensi�cation and diversi�cation. In our case, the intensi-
�cation target is achieved through the compilation of a restricted DD (Algo-
rithm 13 lines 12-13).

In our method, three mechanisms are relevant to intensi�cation. The �rst
one is the (optional) use of an RLB procedure to discard nodes that cannot
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Algorithm 13 LNS with Decision Diagrams
1: Input: a DP-model P = 〈𝑆, 𝑟, 𝑡,⊥, 𝑣𝑟 , 𝜏, ℎ〉
2: Input: 𝑠∗ ← the best known solution or none.
3: 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ ← |𝑆 | − 2
4: 𝑑 ← 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ

5: while end criterion not met do
6: 𝑟 ′← 𝑟

7: if 𝑠∗ ≠ 𝑛𝑜𝑛𝑒 then
8: // The next restricted DD that will be compiled will be rooted in

9: // the 𝑑𝑡ℎ node along the best known solution path

10: 𝑟 ′← 𝑠∗
𝑑

11: P ′← 〈𝑆, 𝑟 ′, 𝑡,⊥, 𝑣 (𝑟 ′), 𝜏, ℎ〉
12: 𝑛𝑒𝑖𝑔𝑏𝑜𝑟ℎ𝑜𝑜𝑑 ← 𝐶𝑜𝑚𝑝𝑖𝑙𝑒𝑅𝑒𝑠𝑡𝑟𝑖𝑐𝑡𝑒𝑑𝐷𝐷 (P ′, 𝑠∗)
13: 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ← 𝑆ℎ𝑜𝑟𝑡𝑒𝑠𝑡𝑃𝑎𝑡ℎ(𝑛𝑒𝑖𝑔𝑏𝑜𝑟ℎ𝑜𝑜𝑑)
14: if 𝑓 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ) < 𝑓 (𝑠∗) then
15: // If the best solution that was found in the newly compiled neighborhood

16: // improves the objective over the best known solution, then keep that new

17: // solution and reset the depth 𝑑

18: 𝑠∗ ← 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟

19: 𝑑 ← 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ

20: else if 𝑑 = 0 then
21: 𝑑 ← 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ

22: else
23: 𝑑 ← 𝑑 − 1
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lead to an objective improvement. The second and third mechanisms follow
from the behavior of the restriction procedure. As shown in Algorithm 14, one
initially partitions the nodes of a given layer 𝐿𝑖 between those nodes thatmust
be kept in the layer, and the others (Algorithm 14 lines 5-11). This decision is
based on the𝑚𝑢𝑠𝑡𝐾𝑒𝑒𝑝 predicate (De�nition 6.2.1) which states that a node 𝑛
from the 𝑖𝑡ℎ layer must be kept if the value associated to variable 𝑥𝑖 on the best
𝑟 −𝑛 path (denoted 𝑝∗𝑟−𝑛 (𝑖)) is the same as the value of 𝑥𝑖 in 𝑠∗ (denoted 𝑠∗(𝑖)).
This guarantees that 𝑠∗ ∈ 𝑆𝑜𝑙 (𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑) and hence that 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟ℎ𝑜𝑜𝑑 is
an actual neighborhood of 𝑠∗ (Algorithm 13 line 12).

De�nition 6.2.1

𝑚𝑢𝑠𝑡𝐾𝑒𝑒𝑝 (𝑛, 𝑠∗, 𝑖) ⇐⇒ 𝑝∗𝑟−𝑛 (𝑖) = 𝑠∗(𝑖)

The last of our intensi�cation mechanisms consists of the node-selection
heuristic which is used to choose the nodes remaining in a layer after restric-
tion. Algorithm 14 shows at lines 12-13 that the candidate nodes are �ltered
to keep only the best nodes according to their RLB.

There are two mechanisms at play in our method to ensure a fair amount
of diversi�cation. The �rst one consists of selecting a di�erent root for the
compilation of the restricted DDs. This is done in a systematic manner, opti-
mistically starting with a node at the bottom of the DD which yielded the best
solution; progressing towards the actual root of the problem (Algorithm 13
lines 6-11, 19-23). Doing so, our algorithm gets a chance to compile di�erent
DDs at each iteration, each of which generating exact or near-exact layers at
di�erent heights1. Which means that the di�erent DDs that are compiled will
likely o�er a good view of the impact of perturbing sequences of decisions.
This might be bene�cial for scheduling problems – and might be challenged
when solving a di�erent kind of problem.

The second mechanism in use consists in the introduction of some ran-
domness during a layer restriction. As shown in Algorithm 14, any node
not satisfying the𝑚𝑢𝑠𝑡𝐾𝑒𝑒𝑝 predicate might still be forced into the restricted
layer with a small probability (line 7).

Bene�ts Our approach o�ers several bene�ts. DDs leverage their underly-
ing DP model as a means to explore the neighborhood of a given best solution.
Moreover, as opposed to vanilla LNS, our approach is sometimes able to prove

1Because the considered DDs are compiled top-down, chances are that even though the
compiled DD is restricted – that is, an under approximation of the true exact DD, the �rst few
layers of that diagram will be complete or nearly complete. This means the compiled DD is
less “myopic” near its top than its bottom, and consequently o�ers a view of the impact of
perturbing a given portion of the solution (the information is more accurate concerning the
decisions made at the top of the restricted DD).
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Algorithm 14 Restrict Procedure
1: Input: 𝐿𝑖 : the layer that needs to be restricted
2: Input: 𝑠∗ : the best known solution, or none
3: Input:𝑊 : maximum layer width
4: Input: 𝑝 : a small probability (e.g. 10%)
5: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 0
6: for 𝑘 ∈ {0..|𝐿𝑖 |} do
7: if 𝑚𝑢𝑠𝑡𝐾𝑒𝑒𝑝 (𝐿𝑖 [𝑘], 𝑠∗, 𝑖) ∨ 𝑟𝑎𝑛𝑑𝑜𝑚() ≤ 𝑝 then
8: 𝑠𝑤𝑎𝑝 (𝐿𝑖 , 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟, 𝑘)
9: 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ← 1 + 𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟

10: 𝑘𝑒𝑒𝑝 ← 𝑛𝑜𝑑𝑒𝑠 [0..𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 [
11: 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 ← 𝑛𝑜𝑑𝑒𝑠 [𝑓 𝑟𝑜𝑛𝑡𝑖𝑒𝑟 ..|𝑛𝑜𝑑𝑒𝑠 | [
12: 𝑠𝑜𝑟𝑡 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠 based on their RLB)
13: 𝑡𝑟𝑢𝑛𝑐𝑎𝑡𝑒 (𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠,max(0,𝑊 − |𝑘𝑒𝑒𝑝 |)
14: 𝐿𝑖 ← 𝑐𝑜𝑛𝑐𝑎𝑡 (𝑘𝑒𝑒𝑝, 𝑐𝑎𝑛𝑑𝑖𝑑𝑎𝑡𝑒𝑠)

the optimality of the instances it solves. This is usually only possible when
using an exact method such as MIP or Branch-and-Bound [Ber+16b]. Indeed,
our method proceeds by generating sets of complete solutions at each iter-
ation. Still, because the value of the best incumbent solution is improving
over time, so is the pruning power of the RLB used when compiling the DD.
From there, it follows that sometimes the pruning power of RLB is su�cient
to let the DD compile without requiring any restriction (𝑑 = 𝑀𝑎𝑥𝐷𝑒𝑝𝑡ℎ and
no layer ever exceeds the maximum width). In that event, the resulting DD
is an exact DD which proves the optimality of the best solution it contains.
Naturally, this capability stems from a tradeo� between the pruning power
of RLB and the maximum layer width of the DD that are used. Therefore, the
algorithm will not be able to always achieve a formal proof of optimality. Pre-
dicting whether it will succeed in delivering such a proof is undecidable. Still,
we believe that the possibility for a metaheuristic approach to sometimes give
a proof of optimality is an appreciable feature.

Another bene�t of using our method comes from the con�gurable aspect
of the DD compilation. Which means one can choose how wide the DD is al-
lowed to be. And therefore how long it will take to compile the DD2. Thereby
arbitraging a balance between diversi�cation and intensi�cation.

2Incidentally, the likelihood that DD be exact
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6.3 Experimental Study

In order to evaluate the e�ectiveness of DD-LNS, we considered two sequenc-
ing problems: the pigment sequencing problem (PSP) and the traveling sales-
man problem with time windows (TSPTW), both of which have been pre-
sented in Chapter 3. The source code of all models and benchmark instances
are publicly available online athttps://github.com/xgillard/ijcai_
22_DDLNS.

All our experiments were performed on the same physical machine equip-
ped with two Intel(R) Xeon(R) CPU E5-2687W v3 and 128Gb of RAM. On that
machine, each considered solver was given a 10 minutes timespan using a
single thread and a maximum memory quota of 2Gb in order to solve each
instance.

PSP We used our own generic DD-LNS implementation in which we plug-
ged the DP model given above and compared its performance against the
state-of-the-art MIP model (PIG-A-3) from [PW06]. Because of the simplic-
ity of our DP model, and because PIG-A-3 was tuned by MIP experts over
a decade; we also included the simpler MIP models PIG-A-1 and PIG-A-2 in
our comparison. These should give an idea of what a practitioner might rea-
sonably expect when creating a model for the PSP. All MIP models originate
from [PW06] and are written using FICO Xpress Mosel v8.11. Our experi-
ments bear on the 500 instances from the second set of benchmarks that have
been presented in Chapter 3 (the instances with |I | = 10). This set of bench-
mark has been speci�cally chosen because none of these instances could be
solved by the models from previous chapters, either with pure dynamic pro-
gramming or with branch-and-bound mdd [Ber+16b; Gil+21].

TSPTW The experiments involve the same generic DD-LNS framework
used for PSP; using the DP model presented above. We compared its per-
formance vs a CP model implemented in Choco 4.10.6 3 using a LNS that
re-optimize a small sequence4 of 5 decision variables 𝑥𝑖 . . . 𝑥𝑖+4 randomly se-
lected at each restart. The restart strategy that has been used triggers a restart
after the 30th failed attempt to improve the current best solution.

Our experiments bear on the 467 instances of the benchmark suites which
are usually used to assess the e�ciency of new TSPTW solvers.

Results Table 6.1 shows the number of PSP instances for which the best
solution found by each solver matches the best known solution. It also shows

3https://choco-solver.org/
4Several alternative relaxation schemes and parameters were experimented and this one

gave the best results.

https://github.com/xgillard/ijcai_22_DDLNS
https://github.com/xgillard/ijcai_22_DDLNS
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Method 𝑊 Best Known 1% Gap
PIG-A-1 N.A. 25 232
PIG-A-2 N.A. 86 226
PIG-A-3 N.A. 473 499
DD-LNS 10 167 449
DD-LNS 100 276 489
DD-LNS 1000 368 490

Table 6.1: Number of PSP instances forwhich the optimum solution has been
found and for which the best solution found is within 1% of the best known
solution.

the number of instances where the best solution found was within 1% of the
globally best known solution ( 𝑓 𝑜𝑢𝑛𝑑−𝑏𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛

𝑏𝑒𝑠𝑡_𝑘𝑛𝑜𝑤𝑛 ≤ 1%). From this table, it
clearly appears that the combination of LNS with Decision Diagrams is very
e�cient at �nding good solutions. Indeed, this method outperforms the PIG-
A-1 and PIG-A-2 models in all situations; even with a maximum layer width as
small as 10 nodes. Furthermore, in spite of the simplicity of its underlying DP
model, our DD-LNS approach fares comparably to the much more advanced
PIG-A-3 models.

Because the TSPTW satis�ability is NP-complete, and in order to estab-
lish a fair comparison between CP-LNS and DD-LNS, we bootstrapped the
problem resolution of all solvers with an initial feasible solution computed
o�-line (the same for both CP and DD-LNS). These initial solutions have been
computed by a variant of [DSU10]. Table 6.2 shows the number of TSPTW
instances for which the best solution found by each solver matches the pub-
lished best known solution. It also shows the number of instances where the
best solution found was within 1 % of the overall best known solution. This
table shows that both methods are highly e�cient at �nding good solutions
to the TSPTW; DD-LNS having a slight edge over CP-LNS. During this phase
of the experiments, we identi�ed 75 new solutions with an objective value
matching that of the published best known solution.

As a mean to assess the e�ectiveness of these methods at optimizing
TSPTW independently of the initial solution, we repeated the experiment;
this time initializing the resolution with the published best known solution
of each instance. This again proved the high e�ciency of both methods. Both
methods identi�ed new solutions improving the objective value of standard
benchmark instances. In practice, DD-LNS was able to identify 8 improving
solutions in two benchmarks suites (AFG and OhlmannThomas) and CP-LNS
was able to �nd 10 new solutions in the OhlmannThomas benchmarks suite.

An interesting general observation to make about our experiments stems
from the fact that the maximum width𝑊 of the compiled DDs provides an
easy means to tune the diversi�cation level. Indeed, both Table 6.1 and Ta-
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Method 𝑊 Best Known 1% Gap
CP-LNS N.A. 144 184
DD-LNS 10 197 246
DD-LNS 100 217 261
DD-LNS 1000 217 249

Table 6.2: Number of TSPTW instances for which the optimum solution has
been found and for which the best solution found is within 1% of the overall
best known value

ble 6.2 show that increasing the maximum layer width𝑊 improves the solver
performance before it starts hampering it.

6.4 Related Work

A recent line of work [RCR18], might seem similar to ours at �rst glance. In-
deed, both method blend Decision Diagrams with local search metaheuristics.
However, their approach is fundamentally di�erent from ours: the point of
their method is to use local search as a means to compile relaxed DDs in order
to compute bounds on the optimal problem value. The bounds that are de-
rived this way are very tight, but feasible solutions cannot be extracted from
the DD. Our method, on the other hand, uses restricted DDs as a means to
automatically generate good quality neighborhoods comprising only feasible
solutions.

Our approach can be considered as a hybridization of DD for optimization
(DDO), beam search, LNS, and the phase saving heuristic which is customarily
used in SAT solvers [PD07]. Combinations of some of these ingredients have
recently been proposed, but, to the best of our knowledge, no approach ever
combined all of them. For instance, [LIB10] hybridized beam search with Ant-
Colony Optimization (ACO) in order to solve the TSPTW. As opposed to our
method, it is driven by an ACO component rather than DP.

The very recent [DCS18] and [Bjö+20] pursue a goal similar to ours. They
try to blend constraint programming, phase saving and LNS to solve hard
combinatorial problems but focusing on propagators while this work relies
on a dynamic programming formulation of the problem only.

6.5 Conclusions

We introduced and evaluated a method combining large neighborhood search
with decision diagrams to solve hard combinatorial optimization problems
having a dynamic programming formulation. Its simplicity and good perfor-
mances (experimented on two problems) might be appreciable for practition-
ers. In particular, when one has to repeatedly take good decisions quickly; as
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would for instance be the case when adapting a production schedule based
on an ever-evolving order book.





A Global Minded
Restricted DD
Compilation Method

7

Contributions and Publication Information

At the time of writing, the ideas presented in this chapter have not
been published yet. The contribution of this chapter consists of a two-
step algorithm inspired by approximate dynamic programming that
uses DD to both derive good bounds on the objective value, and to
�nd an actual feasible solution to the optimization problem.
While the technique presented in this chapter is generic and applica-
ble to a broad range of problems, no experiment has been conducted
(yet) to assess its e�ectiveness on other problems than the Pigment Se-
quencing Problem (PSP). Which is why the coming pages are heavily
PSP-oriented. The application of our method to di�erent problems is
– at the time being – still future work.

In Chapter 5 we proposed a rough lower bound as a way to improve the
quality of the lower bound derived from the relaxed MDDs. This, however, is
not the only bound that can be tightened using MDDs. This chapter presents
a novel approach to compiling restricted MDDs which helps to tighten the
upper bounds derived from these DDs. As opposed to the classical restricted
MDD compilation scheme, our strategy uses a two-phased approach which
is ’global minded’ contrary to the usual𝑀𝑖𝑛𝐿𝑃[Ber+14b] heuristic consisting
in a blind layer-by-layer node suppression. Which is why, our alternate strat-
egy is able to swiftly produce restricted MDDs encoding very good feasible
solutions.

7.1 Motivation

As shown in the previous chapters, optimizations techniques based on dy-
namic programming and decision diagrams can prove highly e�ective. In
some cases, however, the state spaces of the DP models are simply too large
and the bounds derived from restricted and relaxed MDD are of little to no
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use. This happens, for instance, when the local-minded "MinLP" heuristic
provokes the deletion of all nodes that might possibly lead to a feasible so-
lution. In such a case, the compilation of a restricted DD is a pure waste of
time: no feasible solution is found at the end of the compilation, and not even
a bound on the objective value can be exploited to shrink the optimality gap.
In the absence of a perfect heuristic1, this situation is unavoidable and bound
to occur at least in some circumstances. Still, it motivated our search for a
better – global minded – approach that could increase the usefulness of the
compiled restricted DDs.

7.2 Intuition

The technique we propose builds on the observation that for most combina-
torial problems, the small instances are often easier to solve than large ones.
Obviously this statement is not true of all instances and all problems2. Still,
it is true that whenever a combinatorial problem is small enough, it can eas-
ily be solved to optimality with a bruteforce approach. This was the ground
intuition behind research on approximate dynamic programming which took
place throughout the 1980’s and 1990’s [Zip80; BBS87; Rog+91] and it is at
the heart of our technique as well.

Based on the above observation, we propose to proceed in 1+3 steps as
shown per �gure 7.1. Before solving the problem instance P, we propose to
preprocess it to createP ′, a new (derived) instance whose size is much smaller
than the original one and can be seen as an over approximation of P. Then,
whenever a restricted DD needs to be compiled to explore the portion of the
state space behind a node 𝑢, a reduction is performed to bring 𝑢 from P to P ′
and the subproblem P ′𝑢 (the fragment of P ′ which is rooted in 𝑢) is solved to
optimality. If the preprocessing of P has created a small enough P ′, chances
are high that solving P ′𝑢 will be an easy task. Then, the best solution to P ′𝑢 is
used as an heuristic to guide the compilation of a restricted DD for P𝑢 .

There are numerous ways in which this general framework can be adapted
to �t to a given problem. For instance, it does not prescribe how an instance
must be preprocessed to yield a much smaller instance, which leaves plenty
of room for further investigation. A few investigation leads could be:

� considering aggregates as "virtual items" that must be instantiated when
compiling the restricted DD;

1A perfect heuristic is an oracle that is never wrong and always capable of suggesting the
best choice.

2For instance, the boolean satis�ability problem (SAT) exhibits a "phase transition" behav-
ior [GW94]. This means that instances on either side of the phase transition are relatively easy
to solve, even the large ones. However, even the small instances on that phase transition can
be very hard to solve.
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Figure 7.1: Intuition behind the technique. During a phase of preprocessing,
a much simpler problem P ′ is derived from the original instance P. The
instance P ′ is as an approximation of P. Whenever a restricted DD needs to
be compiled for some node 𝑢 during the branch-and-bound; an equivalent is
computed for 𝑢 in P ′. This reduction enables the computation of the exact
optimum to P ′𝑢 (hence an approximation of P𝑢 ). That exact solution is then
used as an heuristic to guide the compilation of the restricted DD.
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� considering only the possible decisions within an aggregate until it is
exhausted before to start considering other decisions;

� assigning the same value to all variables within an aggregate,

� ...

All these options are obviously problem dependent and problem speci�c. They
seem to be interesting nonetheless as they could be used to guide a branch-
and-bound with DD solver towards the optimal solution using problem spe-
ci�c knowledge.

7.2.1 Visual Example

Before we delve into the speci�cs of a detailed complete example, let us con-
sider the simple example from �gure 7.2 which visually conveys the intuition
given above. It shows how a TSP instance could be solved using our method.
The original problem P comprises a large number of cities which makes the
compilation of a good restricted DD harder than it should (7.2-a). During a
preprocessing phase, the problem instance has been compressed so as to cre-
ate an easier problem P ′. Whenever a restricted DD must be compiled to
explore the solution space under a node 𝑢, that node is converted into an
equivalent node of P ′ which is then solved to optimality very easily (7.2-b).
The optimal solution is then used as a means to guide the compilation of a
good restricted DD (7.2-c). In the case of the considered example, the heuris-
tic would then consist in considering the subtours in the aggregate and then
concatenating them according to the order of the optimal solution to the com-
pressed problem P ′. Doing so, the restricted DD develops complete tours that
are feasible solutions of P.

7.3 Detailed Example

In order to further clarify the various steps or our approach and to explain
the details of the experimental study we have conducted, we will use a PSP
instance P formulated as explained in Chapter 3. The details of the instance
P are given below, and will serve as a running example throughout the rest
of this chapter. This instance describes a planning problem with an horizon
H of �ve time steps. Over the course of that period, three kinds of items
have to be produced I = {0, 1, 2}. The stocking cost of each item is given
with the S vector. Thus, stocking one unit of item 0 for one period of time
(S0) costs 20. Similarly, the stocking of one unit of item 1 costs S1 = 10 and
one unit of 2 costs S2 = 5. The changeover matrix C indicates the cost of
changing the machine con�guration from producing one item to any other.
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(c) Decompression: aggregates are 
 easily solved to optimality  
to then be concatenated 

(Heuristic to develop restricted DD)

(a) Original problem :  
any unvisited city is considered  

as a potential successor 
(Too hard !)

! (b) Compressed problem : 
solved with “brute force” 

(Easy !)

!′ 

Figure 7.2: Visual example to convey the intuition of themethod: a hard TSP
problem (a) is reduced to a much simpler one (b) whose optimal solution
serves as an heuristic to guide the compilation of restricted DD (c).

For instance, changing the con�guration from the production of item 0 to 1
costs C0,1 = 1. Similarly, changing the con�guration from 2 to 0 incurs a cost
C2,0 = 4. Finally, the vector Q0 of demands for item 0 tells us that an item of
that type must be delivered to some customer at time 3 and 4. Q1 tells us that
two units of item 1 must be produced, and these must be delivered at time 2
and three. Finally, Q2 shows that only one unit of 2 must be produced, and it
must be delivered at time 1.

H = 5
I = {0, 1, 2}
S = (20, 10, 5)

C =
©­«
0 1 2
3 0 2
4 1 0

ª®¬
Q0 = (0, 0, 0, 1, 1)
Q1 = (0, 0, 1, 1, 0)
Q2 = (0, 1, 0, 0, 0)

Based on that data, the previous demands T are derived as shown below:

Item 0 T 0
0 = −1 T 0

1 = −1 T 0
2 = −1 T 0

3 = −1 T 0
4 = 3 T 0

5 = 4
Item 1 T 1

0 = −1 T 1
1 = −1 T 1

2 = −1 T 1
3 = 2 T 1

4 = 3 T 1
5 = 3

Item 2 T 2
0 = −1 T 2

1 = −1 T 2
2 = 1 T 2

3 = 1 T 2
4 = 1 T 2

5 = 1

In line with the DP model given in Chapter 3, Figure 7.3 illustrates what
an exact MDD compiled for the problem P would look like. In this picture,
the decision label are shown above the layer separation line (red), and the
weights (transition cost) of the arcs are written below it (green). The shortest
path in this DD is boldfaced. From this picture, it is thus easy to see that the
optimal solution to this example is È𝑥0 = 2, 𝑥1 = 1, 𝑥2 = 1, 𝑥4 = 0, 𝑥4 = 0É and
its value is 29.
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7.4 Preprocessing: Compressing the instance

As explained above, our method requires a phase of preprocessing at its start.
During that phase our method compresses the PSP instance P into an easier
instance P ′ whose number of items is arbitrarily chosen. In P ′, each item
stands for a class of items that are similar to one another in P.

7.4.1 Partitioning the original I in classes of similar items

In order to partition the original item set I in 𝑤 distinct classes of similar
items, we use a k-means algorithm which is initialized with the k-means++
method [CKV13; AV06]. To that end, we consider each item 𝑖 ∈ 𝐼 as a coor-
dinate (𝑖0, 𝑖1, . . . , 𝑖𝑛) from an n+1 dimensional system. The �rst n members
𝑖 𝑗 (0 ≤ 𝑗 < 𝑛) of the coordinate simply correspond to the changeover costs
C𝑖, 𝑗 between the items 𝑖 and 𝑗 in P. The last member 𝑖𝑛 of the coordinate
corresponds to the stocking cost S𝑖 of item 𝑖 in P. This representation lets
us compute the distance between any two items as the generalized Euclidean
distance between their coordinates[Tab14].

𝑑 (𝑥,𝑦) =
√︄ ∑︁

0≤𝑖<𝑛
(𝑥𝑖 − 𝑦𝑖)2

Example Assuming that we would like to rewrite our running example
from section 7.3 so as to create a simpler instance P ′ having only two items
instead of three, we would have the following coordinates for items 0, 1 and
2:

𝐼𝑡𝑒𝑚 0 = (0, 1, 2, 20)
𝐼𝑡𝑒𝑚 1 = (3, 0, 3, 10)
𝐼𝑡𝑒𝑚 2 = (4, 1, 0, 5)

The "distances" between these items are thus respectively:

𝑑𝑖𝑠𝑡 (𝐼𝑡𝑒𝑚 0, 𝐼𝑡𝑒𝑚 1) =
√︁
(0 − 3)2 + (1 − 0)2 + (2 − 3)2 + (20 − 10)2 =

√
111

𝑑𝑖𝑠𝑡 (𝐼𝑡𝑒𝑚 0, 𝐼𝑡𝑒𝑚 2) =
√︁
(0 − 4)2 + (1 − 1)2 + (2 − 0)2 + (20 − 5)2 =

√
245

𝑑𝑖𝑠𝑡 (𝐼𝑡𝑒𝑚 1, 𝐼𝑡𝑒𝑚 2) =
√︁
(3 − 4)2 + (0 − 1)2 + (3 − 0)2 + (10 − 5)2 =

√
36

Therefore, the best possible partitioning returned by the k-means algo-
rithm would be: 𝐶𝑙𝑢𝑠0 = {0} ,𝐶𝑙𝑢𝑠1 = {1, 2}.

7.4.2 Rewriting a compressed instance

Knowing the original PSP instance P, and based on the partitioning 𝐶𝑙𝑢𝑠0,
𝐶𝑙𝑢𝑠1, . . . ,𝐶𝑙𝑢𝑠𝑤−1 obtained from the k-means clustering, we can compile the
compressed instance P ′ as follows. The set of items I ′ simply comprises
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the arbitrary 𝑤 classes from above. Also, the time horizon of the instance
remains unchanged. That is, we have 𝐻 ′ = 𝐻 . The stocking cost of each of
the𝑤 items from the compressed instance actually correspond to the stocking
cost dimension of the centroid from each cluster. In other word, the stocking
cost of the ith item of the compressed instance is given by

S′𝑖 = avg
{
S𝑗 | 𝑗 ∈ 𝐶𝑙𝑢𝑠𝑖

}
for 0 ≤ 𝑖 < 𝑤

Similarly, the changeover cost between two items 𝑖, 𝑗 ∈ I ′ of the com-
pressed instance is computed as the average changeover cost between any
two items from the sets 𝐶𝑙𝑢𝑠𝑖 and 𝐶𝑙𝑢𝑠 𝑗 . This means that the compressed
changeover cost matrix C′ is a square𝑤 ×𝑤 matrix where

C′𝑖, 𝑗 = avg
{
𝐶𝑎,𝑏 | 𝑎 ∈ 𝐶𝑙𝑢𝑠𝑖 , 𝑏 ∈ 𝐶𝑙𝑢𝑠 𝑗

}
with 𝑖, 𝑗 ∈ I ′

Obviously, the demands for each of the 𝑤 compressed items amounts to
the sum of the demands for the items which they stand for. Because of the
normalization assumption, the vector Q ′ of demands must be rebuilt using a
very simple algorithm. First, a denormalized version of Q ′ is computed s.t.
Q′𝑡𝑖 =

∑
𝑎∈𝐶𝑙𝑢𝑠𝑖

Q𝑡𝑎 for each time step 𝑡 and item 𝑖 of the compressed instance.

Then, these quantities are normalized. A backwards traversal starting at the
time horizon spreads the demands Q′𝑡𝑖 > 1 onto earlier times; thereby ensur-
ing that Q′𝑡𝑖 ∈ {0, 1} for all times 𝑡 and items 𝑖 .

Example Building on the clustering obtained in example 7.4.1, the instance
P ′ would be rewritten:

H ′ = 5
I ′ = {0, 2}
S′ = (20, 7.5)

C′ =

(
0 1.5
3.5 0

)
Q ′0 = (0, 0, 0, 1, 1)
Q ′1 = (0, 1, 1, 1, 0)

And from that rewriting, the previous demands for each clustered item of
the adapted problem are derived as follows:

Item 0′ T ′00 = −1 T ′01 = −1 T ′02 = −1 T ′03 = −1 T ′04 = 3 T ′05 = 4
Item 1′ T ′10 = −1 T ′11 = −1 T ′12 = 1 T ′13 = 2 T ′14 = 3 T ′15 = 3

7.5 During Resolution: Better Upper Bounds

As outlined in the introduction to this chapter, whenever an upper bound
needs to be derived from a state 𝜎𝑡 , we apply a two phase process. First, 𝜎𝑡
is transformed into a corresponding state 𝜎 ′𝑡 from the compressed instance
and the subproblem described by 𝜎 ′𝑡 is solved to optimality. In a second time,
the optimal solution to the compressed subproblem 𝜎 ′𝑡 is used to compile an
actual restricted MDD which heuristically yields stronger upper bounds.
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7.5.1 Phase 1: Compressing 𝜎𝑡 as 𝜎 ′𝑡 and solving it

Intuitively, the compression of a state resembles the fusion operated during
relaxation with the ⊕ operator. The di�erence being that instead of combining
items from di�erent nodes disagreeing on the remaining quantities, items are
combined according to the preprocessed clustering.

In order to show how the "state compression" is done in practice, it helps
to start de�ning the 𝑟𝑒𝑚𝑎𝑖𝑛𝑠 function. This function tells for each item 𝑖 ∈ I
and state 𝜎 = 〈𝑘,𝑢〉 the quantity of item 𝑖 that still needs to be scheduled in
the subproblem rooted in 𝜎 . Formally, it is de�ned as follows:

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(〈𝑘,𝑢〉 , 𝑖) =
��{T 𝑖𝑗 | 0 ≤ 𝑗 ≤ H , 0 ≤ T 𝑖𝑗 ≤ 𝑢𝑖}��

Example Based on our running example, we can use the 𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 func-
tion to determine that state 𝜎 = 〈0, (3, 3, 1)〉 corresponds to a situation where
one unit of item 0, two units of item 1 and one unit of item 2 are still to be
scheduled. Indeed we have:

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝜎, 0) =
��{T 0

4
}��

= |{3}|
= 1

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝜎, 1) =
��{T 0

3 ,T 0
4 ,T 0

5
}��

= |{3, 3, 2}|
= |{3, 2}|
= 2

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔(𝜎, 2) =
��{T 2

2 ,T 2
3 ,T 2

4 ,T 2
5

}��
= |{1, 1, 1, 1}|
= |{1}|
= 1

On that basis, the state 𝜎 ′ = 〈𝑘 ′, 𝑢 ′〉 is computed from 𝜎 = 〈𝑘,𝑢〉 as

𝑘 ′ = 𝑗 s.t. 𝑘 ∈ 𝐶𝑙𝑢𝑠 𝑗
𝑢 ′𝑖 = T ′𝑖∑

𝑗∈𝐶𝑙𝑢𝑠𝑖

𝑟𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔 (𝜎,𝑗) for all 0 ≤ 𝑖 < H

Intuitively, this state compression means that the previous item 𝑘 of the
original state is simply mapped onto the equivalence class (the cluster) which
stands for it in the simpler problem. Likewise, the previous demands of each
clustered item consider the total number of goods that must be still scheduled
in the original problem for any of the items belonging to that cluster.
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Example Continuing our running example, the state𝜎 = 〈0, (3, 3, 1)〉would
be compressed as 𝜎 ′ = 〈0, (3, 3)〉.

7.5.2 Phase 2: In�ating the optimal compressed solution

In order to �nd a good upper bound (that is a good feasible solution) for the
subproblem 𝜎𝑡 based on the optimal solution of 𝜎 ′𝑡 , one “in�ates” it into a re-
stricted MDD. In practice, this is achieved by repeatedly expanding the tran-
sition relation (as in the usual case). However, this expansion is not done for
every possible transition. Instead, only the paths that might correspond to
the optimal solution of 𝜎 ′ are explored.

Example Applying the node compression from previous section to the root
node 𝑟 , would yield a compressed root node 𝑟 ′ = 〈−1, (4, 3)〉. The optimal
solution to P ′ rooted in 𝑟 ′ (that is, the optimal to P ′ as a whole) is È𝑥 ′0 =

1, 𝑥 ′1 = 1, 𝑥 ′2 = 1, 𝑥 ′3 = 0, 𝑥 ′4 = 0É. And the objective value of that solution is 26.
Based on that solution, one can compile the restricted MDD shown in Figure
7.4. This MDD is computed “in�ating” the compressed solution into actual
feasible solutions. The length of the shortest path in that MDD (and hence,
the lower bound obtained from this DD) is 29; which is also the optimal value
of P.

As can be seen from Figure 7.4, not all paths are expanded while in�ating
a compressed solution. For instance, items 1 and 2 were not even considered
when deciding on the value attributed to variable 𝑥3 and 𝑥4. This is because
the corresponding decisions made in the compressed solutions were È𝑥 ′3 =

0, 𝑥 ′4 = 0É but 1, 2 ∉ 𝐶𝑙𝑢𝑠0. The rest of the MDD is developed as per Chapter
2.

7.6 Evaluation

In order to evaluate the e�ectiveness of the technique presented in this chap-
ter, we performed a computational experiment using the same PSP bench-
mark instances that have been presented in Chapter 3. We attempted to solve
each of these instances using a variation of the framework presented in Chap-
ter 4, adapting it to cope with the two phase "compression"-"in�ation" process
we just introduced. In our experiments, the approximate DDs were allowed
to grow up to a maximum width of 10 nodes per layer. The implementation of
our "compression" algorithm used 𝑤 =

⌈
|I |
2

⌉
. All our experiments were per-

formed on the same physical machine equipped with an Intel(R) Xeon(R) CPU
E5-2687W v3 and 128Gb of RAM. On that machine, each solver was allotted
a 10 minutes timespan using one thread and a maximum memory footprint
of 3Gb to solve each instance.
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Choice 1 is the only possiblility.
Item 2 can’t be scheduled at time 2
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They do not belong to the optimal compressed solution
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Figure 7.4: Restricted MDD derived from “in�ating” the optimal compressed
solution È𝑥 ′0 = 1, 𝑥 ′1 = 1, 𝑥 ′2 = 1, 𝑥 ′3 = 0, 𝑥 ′4 = 0É. The decision labels of the arcs
are depicted above the layer separation lines. The weights (transition cost)
of the arcs are written below it and the shortest path is boldfaced.

The main result from this experimental study is shown in Figure 7.5 which
compares the quality of the best solution found by a DDO+RUB solver (Figure
7.5 (a)) and that of a solver using our alternative restricted DD compilation
scheme (Figure 7.5 (b)) with the globally best known solution. On these plots,
a mark on the diagonal indicates that the best known solution has been found,
and a mark above that line indicates a lower quality solution. The farther
away from the diagonal, the larger the deviation from the best solution and
hence the lower the quality of the best solution found by a given method.

Comparing these two plots, it clearly appears that marks on the right hand
graph form a tighter group and are in general closer to the diagonal. This
suggests solutions found using the compress-in�ate compilation scheme for
restricted DD tend to be of better quality than those found using the “vanilla”
MDD approach that has been presented in previous chapters. This obser-
vation is con�rmed by a numeric analysis of these results. Table 7.1 indeed
shows that the gap to best known solution – that is the normalized distance
between the best solution found with a given method and the best known
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Figure 7.5: Comparison of the quality of best solution found

solution (BKS) 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛−𝐵𝐾𝑆
𝐵𝐾𝑆

– is in general much narrower when using our
two phased algorithm. The contrast is particularly stark when considering
the hardest set of benchmark instances (instances having 10 items).

7.7 Limitations

It must, however, be noted that the quality of the solutions found with this
new algorithm is not as good as the quality of the solutions obtained using
the local search approach from Chapter 6. Indeed, the average gap with that
method would be 0.06% with that method and the standard deviation 0.2%.

It is also worth mentioning that in absolute terms, the plain DDO+RUB
method found solutions that are closer to the BKS more often than the compress-
decompress approach (500 instances). This concern should, however, be nu-
anced as most of these occurrences happened in the simpler set of bench-
mark intances (instances having 5 items). Given that our experiments used
𝑤 =

⌈
|I |
2

⌉
, the compressed version of these instances only comprised three

items which might have been too coarse of a relaxation. This is why we con-
sider these results as promising regardless of the above limitations.
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Average Gap to Best Known Solution
All Instances Hardest Instances

Compress 3.0% 4.9%
DDO+RUB 4.5% 9.2%
Std Dev. in Gap to Best Known Solution

All Instances Hardest Instances
Compress 4.5% 5.0%
DDO+RUB 9.6% 12.9%

Table 7.1: Gap to Best Known Solution (BKS)

7.8 Conclusions and further extensions

This chapter presented an alternate, global minded restricted-DD compila-
tion scheme in two phases where a PSP (sub-)problem is explored by �rst
solving an approximation of the original problem and then developing the
solution to that approximation into a set of actual solutions. Then, an exper-
imental study showed that the quality of the solutions found for the hardest
PSP instances was improved by using this novel compilation scheme. While
the results of this experimental study might not be as impressive as the ones
from the LNS approach from the previous chapter, these results are deemed
promising nonetheless. Still, this work could be extended in many directions:
�rst, it might be interesting to devise nice abstractions over the compression-
decompression mechanisms so as to turn this approach into a general-purpose
technique. It might also be interesting to hybridize this line of work with the
LNS method that was presented in the previous chapter. In that case, this
alternate compilation scheme might for instance serve to �nd a good quality
initial solution. In that context, it might for instance be used to increase the
diversi�cation during LNS reoptimization, e.g. by using the solution to the
compressed problem when de�ning the𝑚𝑢𝑠𝑡𝐾𝑒𝑒𝑝 predicate.

Another possible extension of this preliminary work would consist in
searching for a similar global minded compilation scheme for relaxed DD.
This could have the potential to deliver much tighter lower bounds on the
optimal solutions and hence to speed up the problem resolution as a whole.
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The goal of this thesis was to deepen our knowledge of decision diagrams
as tools to solve discrete combinatorial optimization problems. To start our
uncovering of the topic, Chapter 4 investigated the engineering challenges
imposed by the implementation of a generic library to build fast and e�cient
DD based optimization solvers. As a motivation, this chapter started with a
brief presentation of the ddo library and an extensive example of how this
library might be used to implement a solver for the knapsack problem. Then,
it pursued with more implementation-related concerns which arise because
of the CPU-and-memory intensiveness of DD-based solvers. Speci�cally, it
addressed the problem of �nding an e�cient implementation for the DD ab-
straction. Four possible representations of the same mathematical objects
have been proposed, and – as we have seen – the VectorBased architec-
ture came out on top as it was able to leverage pre-allocation to achieve good
cache locality and hence faster compilation times.

Our quest to improve the performance of DD based solver continued in
Chapter 5 where we presented and evaluated the impact of two reasoning
rules to strengthen the �ltering of these solvers (LocB and RUB). Both tech-
niques attach node-speci�c bounds to the nodes composing a DD but they
di�er in how these bounds are computed and when they are used. The LocB
technique exploits the structure of the compiled DDs to derive these bounds
whereas RUB relies on a fast-to-compute problem-speci�c bounding proce-
dure for its purpose. Both of these techniques have been evaluated in an
experiment bearing on the MISP, MCP, MAX2SAT and TSPTW. In particular,
this experimental study showed the worthiness of devising simple problem
speci�c bounding procedures. It also showed that exploiting the structure of
the DD to strengthen the bounds that are derived from these DDs might help
a great deal improving the solver performance. Furthermore, that same com-
putational study revealed that our new rules complete one another. Which
is why, a combination of both RUB and LocB supersedes the bene�t of any
single reasoning technique.

The next chapter investigated the hybridization of the DD-based solver
technology with a Large Neighborhood Search paradigm. Doing so, it aban-
doned the guarantee of always being able to prove the optimality of a solution
in exchange for being able to �nd good feasible solutions to hard problems
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very quickly. The experimental study we conducted on the PSP and TSPTW
showed the interest of that approach. In the PSP case, it showed that a simple
DD-LNS solver was competitive with a much more complex, state-of-the-art
MIP model that had been tuned by experts in over a decade. The results on
TSPTW were just as convincing since our simple DD-LNS solver was able
to �nd new solutions improving the best known solutions of benchmark in-
stances that have been publicly available for many years.

Finally Chapter 7 discussed some prospective material. In particular, it
presented a global minded scheme for the compilation of restricted DD when
solving hard problem instances. It also showed that this technique might have
the potential to improve the quality of the solutions derived from restricted
DDs.

8.1 Perspectives for Further Research

At the end of this thesis, it is good to take a step back and re�ect on the
accomplished work and the perspectives it opens. The coming paragraphs
discuss opportunities for future research in the continuation of this thesis,
some of which have already been outlined in the previous chapters.

8.1.1 Generalization of the Global Minded Restriction DD

As it has already been mentioned at the beginning of Chapter 7, it would
be useful to investigate the e�ectiveness of the proposed technique on more
problems than the PSP. For instance, the TSP is also an example that naturally
comes to mind and was used as an illustrative example in the introdution to
that same chapter. Variants of those problems such as the TSPTW, or the
time dependent TSP (TD-TSP) would seem more interesting through. Indeed,
these problems are notorious for being both very hard to solve and relevant to
solve real life problems [RCS20; ÇUA21; Vu+20]. Moreover, the formulation
of these problems naturally lends itself to di�erent state-space reductions. For
instance, one could try to cluster the cities on a geographic basis, on a time
window and time-dependent cost increment... or a combination of all of the
above.

Another aspect which might be worth investigating would be the impact
of various compression/decompression schemes on the e�ectiveness of the
overall method. For instance, when a solution was "in�ated" in Chapter 7, it
only considered the possible next items that corresponded to the members of
the successor cluster in the compressed optimal solution. Another approach
that could have been attempted reduces the state space by aggregating the
time slots rather than the items, and then in�ating the optimal compressed
solution by scheduling contiguous batches of the same items.
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8.1.2 Investigate Alternate Merge Schemes

In Chapter 2, algorithm 4 presented a procedure to relax an overly large layer.
To do so, that procedure heuristically selects the least promising nodes of the
layer and merges them into one fresh nodeM standing for all of them. With
that setup, one can hypothesize that:

� a lot of information is lost in the merger and

� the bounds derived from a relaxed DD compiled with this procedure
might be tighter if the relaxation were to merge fewer nodes at once;
thereby creating several relaxed nodesM1,M2, . . . ,M𝑛 instead of only
one.

Figure ?? illustrates how it could be done. It uses the same example of DD
that was used in �gure 2.2 from Chapter 2. However, rather than depicting an
exact, restricted and relaxed version of the same DD, it shows an exact (a) and
two relaxed versions of the same DD. Among these two relaxed versions, (b)
is compiled as is usually the case with top-down compilation, by merging all
the supernumerary nodes of the third layer into one single relaxed nodeM.
The rightmost version (c) uses an alternate scheme to enforce the maximum
width of the DD. Instead of combining nodes𝑑, 𝑒, andℎ to createM, it merges
𝑑 with 𝑒 and 𝑔 with ℎ.

The potential bene�ts of that approach all stem from the possible lesser
loss of information during the merge process. This could mean that the re-
laxed DD is closer to its exact counterpart and hence yields a better upper
bound. This is exempli�ed in Figure ??: the longest paths in both (a) and (c)
have a length of 25 whereas the longest path of (b) is 26. In that example, the
25 happens to be both the value of the optimal solution and the upper bound
derived from (c). The lesser loss of information caused by the alternate node
merging scheme could also prove useful when it has no impact on the global
upper bound derived from a relaxed DD. Indeed, even when the longest path
of the DD might not have bene�tted from it, other parts of the DD might have.
It follows that the local bounds attached to the nodes in the exact cutset of
the DD might be much tighter and hence lead to their pruning because of the
current best solution.

It is interesting to note that the spirit of the method proposed by Bergman
et al. in [Ber+16b] does not prevent the adoption of such a merge scheme. It is
worth mentioning that the split-based approach which is used for the compi-
lation of relaxed DD by separation does create relaxed layers having multiple
nodes standing for undeveloped exact nodes. This, however, has never been
tried when compiling DD with a top-down approach. The simplicity of the
top-down compilation combined with a fast vector-based implementation of
the procedure could make the derivation of these tight bounds fairly fast to
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compute; and hence, yield a signi�cant performance boost to solvers based
on that technique.

8.1.3 Distributed parallelism

In Chapter 5 we corroborated the observations of [Ber+14c] stressing the im-
portance of parallel computing when it comes to solving hard combinatorial
problems with branch-and-bound DD. In Chapter 4 we explained that our li-
brary ddo uses a coarse-grained model with shared-memory threads which
turned out to be highly e�cient. Nevertheless, this model has been shown to
fail to scale to the point where it really becomes massively parallel. To lift the
systems + hardware limitation on the number of nodes that are currently pro-
cessed, one could seek to create a distributed solver where multiple machines
share their loads and concur to solving the problem. This is easier said than
done, however. Indeed, the implementers of such a distributed solver would
have to answer numerous di�cult questions. For instance: When should the
new bounds be communicated to the other workers? How is the load shar-
ing operated? Does each worker maintain its own frontier? If yes, is there a
way to limit thrashing by avoiding the repeated expansion of multiple copies
of one same node? If not, how and when are the nodes from an exact cut-
set communicated to the others to avoid saturating the other nodes and/or
infrastructure?

8.1.4 Integration with Other Kinds of Solvers

Given that DDO, Constraint Programming (CP), and Mixed Integer Program-
ming (MIP) share strong ties and are often used to solve the same problems, it
would make sense to investigate opportunities to hybridize DDO with these
other types of solvers. For instance, to integrate the strength of DDO and CP,
one would have to strike a delicate tradeo� between con�icting approaches.
Among these, let us point out that most CP solvers rely on a trailing mech-
anism that cannot be safely used in the context of parallel computing. To
make the most of their e�cient trail implementation, these solvers often also
rely on the assumption that the search is performed in a depth-�rst search
manner; which con�icts with the breadth-�rst approach which is used in the
top-down compilation of MDD. Still, the potential bene�ts are huge in terms
of the expressiveness of the model (DP with additional constraints) and per-
formance. Among others because the strong �ltering power of domain con-
sistent propagators could signi�cantly reduce the size of the compiled DD
and hence strengthen the bounds derived from these DD.
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