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Abstract

This thesis presents the application of several Constraint Programming (CP)
techniques to combinatorial problems. In particular, hybrid scheduling and
routing problems such as Dial-A-Ride Problem (DARP) are explored. A vari-
ant of this problem, the Patient Transportation Problem (PTP) is formalized
and resolved. Various approaches to model the PTP and DARP are studied,
including a scheduling model and a classical successor model. The usage of
sequence variables to model the routes of vehicles is investigated. Two differ-
ent implementations of a sequence variable are presented as well as several
global constraints used in conjunction with these variables to provide efficient
propagation algorithms. Additionally, the use of an adaptive variant of the
Large Neighborhood Search (LNS) is considered in a black-box context, with-
out prior knowledge about the problem being solved. The approach studied
uses a portfolio of different heuristics combined with a selection mechanism
to adapt the heuristics used to the current problem during the search. Ex-
perimental results show the efficiency of the techniques proposed and hint at
promising research directions in the domain of PTP-like problems, sequence
variables and Adaptive Large Neighborhood Search (ALNS).
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Introduction

1.1 Context

Nowadays, optimization is a large research field at the intersection of Math-
ematics and Computer Science. It deals with the resolution of large and dif-
ficult problems that arise in a variety of situations. Solving such problems
by hand is resource consuming and sub-optimal if not sometimes impossible,
thus driving the demand for efficient algorithmic approaches.

This thesis was financed by the Walloon Region as part of the PRESup-
ply project [Log]. The aim of this research project was to provide small and
medium businesses with affordable solutions to solve various optimization
problems linked to supply lines and operations.

Among such problems, are routing and scheduling problems. Routing
problems consist in constructing a path or tour in a given graph. This kind of
problem often occurs in logistics or networking fields. A common example of
such a problem is the Vehicle Routing Problem which consists in optimizing
the transport of goods or people by a fleet of vehicles under various con-
straints. Some of these constraints can introduce scheduling aspects to the
problem. Scheduling problems deal with the assignment of resources to tasks
over time.

One problem that combines routing and scheduling characteristics is the
Dial-A-Ride Problem (DARP). It consists in transporting users from one point
to another. Pick-ups and drop-offs of users are constrained by time windows.
This problem must be solved by numerous entities proposing on-demand
transportation services. It is widely studied in the literature and various ap-
proaches have been proposed to tackle it. The Patient Transportation Problem
(PTP) is a variant of the DARP that focuses on the transportation of people to
medical appointments. This context adds several constraints to the original
problem. This problem was provided by one of the partners of the PRESupply
consortium. As part of this thesis, the PTP is studied and several techniques
to solve it using the constraint programming paradigm are proposed.

Constraint Programming (CP) is an approach to solve combinatorial prob-
lems that consists in describing the problem to solve as a declarative model
in terms of variables and constraints. Variables are elements of decision of
the problem to which a value must be assigned. Constraints are relations be-
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tween variables that limit the values that the variables can take in regards to
each other. These relations can be used to propagate changes between vari-
ables when an assignation occurs using dedicated algorithms. A solution to
the problem is found if all variables have a single value assigned such that the
constraints are respected. A solver is used to perform a search on the space of
possible solutions, using the constraints to reduce the search space to explore.

As the efficiency of the search depends on the quality of the model, it is
important to be able to express a given problem with appropriate variables
and constraints. Problems such as the PTP include decisions on how to se-
quence a series of elements or events. A dedicated sequence variable allows
to directly represent such decisions in a model rather than using several in-
teger variables linked together by constraints. Constraints designed to be
used with sequence variables can leverage the structure and information of
the variables to obtain gains in terms of propagation and performance. In
this thesis, several implementations for sequence variables are proposed as
well as a series of dedicated constraints useful to model problems such as the
DARP and the PTP.

Besides the model, another important part of the CP paradigm is the
search. Typically a backtracking search is used to explore the possible assig-
nations of the variables in search of solutions. It consists in iteratively de-
ciding values to assign to variables and using the constraint propagation to
filter inconsistent assignations out of the remaining search space. If the cur-
rent partial assignation leads to a violation of the constraints, a backtracking
mechanism is used to revert to the previous decisions and explore alternative
assignations. The order in which variables are assigned as well as their values
can impact the propagation and thus the efficiency of the search. Heuristics
are used to choose the order in which variables and values are assigned. In
case of optimization problems, an objective function associated with a branch
and bound algorithm guide the search towards better solutions. Advanced
search strategies can be used to explore large search spaces efficiently.

One such search method is the Large Neighborhood Search (LNS). It uses
a relax and rebuild approach that consists in iteratively relaxing parts of a
solution to the problem and performing a search on the resulting search space
in order to improve the current solution. The adaptive variant of this search
method (ALNS) uses a portfolio of several relaxation and search heuristics
called operators. At each iteration, a pair of operators is chosen and applied.
The selection probabilities of the different heuristics are biased during the
search based on their performances. The usage of this technique in a black-
box context (without knowledge of the model) is studied in this thesis as well
as the evaluation mechanism used to bias the selection of the heuristics.

This thesis is organized as follows: Chapter 2 presents the state of the art
and introduces the notions needed to discuss the topics approached in the
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rest of the thesis. Chapter 3 is focused on the ALNS search technique and
its application in a black-box context. Chapter 4 discusses the Patient Trans-
portation Problem and the methods used to model and solve the problem. In
Chapter 5 the sequence variables is detailed as well as its implementations,
constraints and application to the DARP and PTP problems. Finally, Chapter
6 concludes this thesis and discusses some of the future work possible on the
topics presented.

1.2 Contributions

The contributions of this thesis are the following:

Adaptive Large Neighbourhood Search The Adaptive Large Neighborhood
Search (ALNS) is an adaptive variant of the LNS search technique. It
uses a portfolio of relaxation and search heuristics to adapt the search
dynamically to the problem at hand. The application of this technique
in a black-box context with a set of heuristics targeted at specific prob-
lems is examined (Chapter 3). A new evaluation mechanism that better
deals with a set of heuristics presenting variable running times is also
proposed (Section 3.2.3).

Patient Transportation Problem The Patient Transportation Problem con-
sists in transporting patients to and back from medical appointments.
This problem was proposed by the Centrale de Services a Domicile
(CSD) [CSD], a non-profit organization based in Liége (Belgium) as part
of the PRESupply Project. A formalization of the problem is proposed
(Section 4.1) and two models are studied (Sections 4.4 and 4.3) as well
as a dedicated search technique (Section 4.5).

Sequence Variables A sequence variable represents a set of elements to or-
der. Two different implementations for a sequence variable are pro-
posed and discussed. Both are based on an extension of the set variable
that represents the set of elements to sequence along with an internal
growing sequence that contains the elements already sequenced. The
prefix sequence variable (Section 5.3) allows only to add elements at
the end of the internal growing sequence. The insertion sequence vari-
able (Section 5.4) allows new elements to be inserted at different points
between sequenced elements and keeps track of possible insertion po-
sitions for unsequenced elements.

Furthermore, a series of constraints on sequence variables as well as
their propagation algorithms for both implementations are proposed
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(Section 5.5). The sequence variable and its constraints is used in mod-
els for the Patient Transportation Problem and the Dial a Ride Problem
(Section 5.6).

1.2.1 Publications

These contributions were presented in several papers published at various
conferences:

1. C. Thomas and P. Schaus. “Revisiting the Self-adaptive Large Neigh-
borhood Search”. In: International Conference on the Integration of Con-
straint Programming, Artificial Intelligence, and Operations Research. 2018,
pp. 557-566.

This paper presented at the CPAIOR 2018 conference presents the ap-
plication of the ALNS technique in a black-box context, including the
new evaluation mechanism.

2. Q. Cappart, C. Thomas, P. Schaus, and L.-M. Rousseau. “A Constraint
Programming Approach for Solving Patient Transportation Problems”.
In: Lecture Notes in Computer Science (Including Subseries Lecture Notes
in Artificial Intelligence and Lecture Notes in Bioinformatics). Vol. 11008
LNCS. 2018. 1sBN: 978-3-319-98333-2. por: 10.1007/978-3-319-
98334-9_32.

This paper presented at the CP 2018 conference presents the formaliza-
tion of the PTP and the scheduling model proposed to solve the prob-
lem. A summary of the paper was also presented at JFPC19:

C. Thomas, Q. Cappart, P. Schaus, and L.-M. Rousseau. “Une Approche
de Programmation Par Contraintes Pour Résoudre Le Probléme de Trans-
port de Patients”. In: Actes Des 15es Journées Francophones de Program-
mation Par Contraintes JFPC 2019. 2019, p. 31.

3. C. Thomas, R. Kameugne, and P. Schaus. “Insertion Sequence Vari-
ables for Hybrid Routing and Scheduling Problems”. In: Lecture Notes
in Computer Science (Including Subseries Lecture Notes in Artificial In-
telligence and Lecture Notes in Bioinformatics). Vol. 12296 LNCS. 2020.
ISBN: 978-3-030-58941-7. por: 10.1007/978-3-030-58942-4_30.

This paper presented at the CP 2020 conference presents the insertion
sequence variable, its implementation, two of its constraints and their
usage on the DARP and PTP problems.

Additionally, the implementation of the algorithms described in this thesis
is available in open-source as part of the OscaR CP library [Osc12].


https://doi.org/10.1007/978-3-319-98334-9_32
https://doi.org/10.1007/978-3-319-98334-9_32
https://doi.org/10.1007/978-3-030-58942-4_30

Background

This chapter introduces the concepts and notions behind the topics discussed
in the following chapters.

2.1 Combinatorial Problems

Combinatorial Problems can be described as finding an object among a fi-
nite, discrete collection of objects in order to satisfy given conditions. This
object can take the form of an assignment, grouping or ordering of a sub-
set of elements among a set of elements. Additionally, the goal may be to
find an optimal object defined by an objective function. In this last case, it
is called combinatorial optimization. Typically, the collection of objects is
too large to enumerate and only described by either a concise representation
or its properties. This makes it impossible to simply examine the objects one
by one and selecting the best one. Hence, more efficient methods have to be
used.

Combinatorial problems can be expressed as search problems, decision
problems or optimization problems. A search problem is a problem for
which any solution can be certified correct in a time bounded by a polyno-
mial of the size of the input. In other words, while it may be complicated to
find a solution to the problem, proving that such a solution is a correct one
is easy. A decision problem can be formulated as answering the question
“does a solution exist?” and an optimization problem to "what is the best
solution?”. While not technically the same these problems can usually be re-
duced to one another. Reducing a problem A to another problem B means
that it is possible to solve A by transforming it to an instance of B, solving
this instance and transforming the solution back to a solution of A.

Combinatorial problems can also be distinguished between static and dy-
namic problems. Static problems are fixed. Their input is known and stable.
On the other hand, dynamic problems must deal with changes during their
execution. The input of the problem, its objectives or conditions might change
and have to be taken into account. For such problems, sometimes probabilities
of changes are known in advance and can be used to mitigate them. Another
possibility is to know in advance some possible change scenarios that can
happen and can be used to plan contingencies. These problems are qualified
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as stochastic problems.

Combinatorial Problems occur in many domains such as logistics, supply
chain optimization, scheduling, planning, routing or propositional satisfiabil-
ity. This class of problem is widely studied and many resolution methods have
been proposed over the years. Often, real world problem exhibit characteris-
tics and instance size which make it important to develop methods that are
both efficient and easily adaptable.

2.1.1 Complexity

An important characteristic of combinatorial problems is whether or not the
problem is “hard to solve” in a technical sense. In other terms, is it possible to
devise efficient algorithms to solve the problem? The theory of intractability
aims at answering this question.

The computational complexity (often referred simply as complexity) of
an algorithm is a measure of the resources (time and memory space) needed
to execute this algorithm. As the resources needed to run an algorithm or
solve a problem are generally dependant on the input size N, the complexity
is most often expressed as a function of the input size: N — f(N). Note that
there might be several inputs of size n that exhibit different behaviors. Usu-
ally, we consider the worst possible case but alternatives are possible, such as
using the average case. In most cases, finding a function f(N) that exactly
describes the resources used by an algorithm is not evident. Thus, the com-
plexity is often given in terms of asymptotic bounds using a simpler function
g(N). Several notations are commonly used to express the complexity of an
algorithm:

= The "big-Oh” notation O(g(N)) is used to express an asymptotic upper
bound on the performance of an algorithm. The computational com-
plexity of f(n) is said O(g(N)) if there exists constants ¢ and Ny such
that

[f(N)| < clg(N)IVN > No (2.1)

= The “big-Omega” notation Q(g(N)) is used to express an asymptotic
lower bound on the performance of an algorithm. The computational
complexity of f(n) is said Q(g(N)) if there exists constants ¢ and Ny
such that

[f(N)| = ¢lg(N)[YN > No (2.2)

= The "big-Theta” notation ®(g(N)) is used in the case where both the
upper bound and the lower bound are the same. The computational

complexity of f(n) is said ©(g(N)) if f(N) is O(g(N)) and Q(g(N)).
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Note that, as these notations are generally used to express bounds on the
worst case performance of an algorithm, the performances could be better in
practice than those indicated. Algorithms are often classified according to the
type of function appearing in the O notation:

= Constant algorithms have a complexity of O(c), where c is a constant.
In other words, this is the class of algorithms which complexity does
not depend on the input size N.

» Logarithmic algorithms have a complexity of O(clog;,(dN), where b,
c and d are constants.

= Linear algorithms have a complexity of O(cN), where c is a constant.

» Linearithmic algorithms have a complexity of O(cN log,(dN), where
b, ¢ and d are constants.

= Polynomial algorithms have a complexity of O(N?), where « is a con-
stant > 1. This class can be further divided based on the polynomial
into quadratic, cubic, ect. algorithms. Note that this last class is often
used to refer to all the algorithms that have a running time less than
exponential.

= Exponential algorithms have a complexity of O(a), where a is a
constant > 1.

This last class is of particular interest as it means that the time required to
solve the problem grows exponentially in relation with the input size. This
implies that there will be an input size for which the algorithm will not return
an answer in a reasonable amount of resources regardless of the speed of the
computer that executes the algorithm.

Based on the computational complexity of algorithms, the complexity of a
combinatorial problem is defined as the complexity of the best algorithm able
to solve the problem. Note that we say that an algorithm solves a problem if it
either finds a solution (or the best solution in case of optimization problems)
or proves that such solution does not exists.

Combinatorial problems can be classified into complexity classes based ei-
ther on the existence of an algorithm that solves the problem or being proven
equivalent to another problem for which the complexity is known. The class
of all the problems that can be solved in polynomial time is called P. These
problems are considered as “easy” problems as in order to be qualified as poly-
nomial, there must exists an algorithm that is proven to solve the problem in
a feasible amount of time either directly or through reduction.

The name NP is commonly used to describe the class of all the problems
for which a solution can be verified in polynomial time. These are problems
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for which finding a solution is not guaranteed polynomial but proving that
such solution is correct is polynomial in regards to the input of the problem.
NP stands for Non-deterministic Polynomial. As explained in [Sip12], the
non-determinism is the theoretical notion that an algorithm may provide
several possible actions for any given situation. When encountering multiple
possibilities of execution, a non-deterministic algorithm would lead to several
parallel states. If any of these parallel executions path leads to a solution, we
consider that the non-deterministic algorithm solves the problem. Conceptu-
ally, it is as if at each choice, the algorithm is able to "guess” the option that
leads to a solution. Another way to conceptualize non-determinism is to con-
sider that whereas a deterministic algorithm follows a single "computation
path”, a non-deterministic algorithm would yield a computation tree” which
has at least one branch that leads to a solution. If a problem can be veri-
fied in polynomial time, with the help of non-determinism we could solve
this problem in polynomial time by “guessing” the solution and then verify-
ing it. Thus, the class NP can be defined more precisely as the class of all
the problems which can be solved in polynomial time by an algorithm using
non-determinism.

Note that while P € NP, whether these two classes of problems are
equivalent or different has never been proven despite the strong intuition
that NP # P. In other words, so far, no single problem has been proven to
be part of NP but not P. This is a fundamental question in the field of com-
puter science as it means that such problems would be proven not solvable
in polynomial time and thus, the search for polynomial algorithms for these
problems could be abandoned. On the other hand, if P = NP is proven, that
would mean that potentially, every problem in NP can be solved in polyno-
mial time.

Definition 1. A problem A is said to reduce to another problem B if we can
use an algorithm that solves B to develop an algorithm that solves A.

Note that reducing a problem to another may bring some extra cost which
can be quantified by its complexity.

Definition 2. A problem is said to be NP-complete if
1. this problem is in NP;
2. all problems in NP can be polynomially reduced to this problem.

This means that if we can efficiently solve this problem, we could effi-
ciently solve any problem in NP. Since most researchers in the field believe
that P # NP, it is expected that a polynomial algorithm cannot be found for
any NP-complete problem.
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Finally, we say that a problem is N P-hard if the second condition of NP-
complete is satisfied. Thus, for NP-hard problems, we do not know if the
problem is part of NP but we know that all problems in NP can be polynomi-
ally reduced to this problem. A lot of combinatorial problems that appear in
practice have either been classified as in P or as NP-hard while for some the
question remains open. This knowledge is important as it directs the resolu-
tion methods that can be used to tackle a given problem. More details on the
complexity of combinatorial problems can be found in [Kar72; Kar75; Tar78;
AB09; SW11; DK11]

2.1.2 Resolution Methods

There exists diverse techniques to tackle combinatorial problems. These tech-
niques can roughly be divided into two categories: exact methods consist
in enumerating solutions by exploring the whole search space (parts the are
proven to not contain a (better) solution can be discarded). The advantage of
this approach is that there is a certainty that the problem will eventually! be
solved. In case of optimization problems, exact methods can prove that the
solution found is optimal. Exact methods include:

= Constraint Programming (CP) which is the approach that is used in
this thesis. This approach consists in expressing the problem to solve
as a declarative model. The specificity of this paradigm compared to
other declarative methods is that the components used in the model
do not specify algorithmic steps but rather describe properties that a
solution must have. Another advantage of CP over other approaches is
that it uses generic modeling components that can easily be combined
to tackle different problems. The CP Paradigm is described in details in
Section 2.2

= Linear Programming (LP) [DT03; MGO07] consists in representing
the problem in terms of linear relationships. Then, an optimization
technique is used to find optimum in the search space. Techniques to
solve linear programming problems include Lagrangian Relaxation
(LR), Integer Programming (IP) [Wol20] and column generation
[DDS06; DPRO6].

= Dynamic Programming (DP) [AMO07] is a technique based on the
decomposition of problems in smaller, simpler problems. These sub-
problems are then solved and their solutions used to solve larger prob-
lems.

”Eventually” might be a (very) long time!
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= Satisfiability (SAT) [BHv09] refers to the field of satisfiability prob-
lems. Combinatorial problems can be reformulated as SAT problems
and solved with dedicated techniques.

= Multi-valued Decision Diagrams (MDD) are a specific form of Deci-
sion Diagram (DD). They consist in a layered graph that encodes sets of
decision sequences as paths that join a source node to a terminal node.
They can be used to combine dynamic programming with a compact
encoding [BHH11; Ber+14; GSC21], allowing to solve large problems
that would take too much space in a classical dynamic program.

Sometimes problems to solve have a search space too large to explore in
a reasonable amount of time. This is where the second category of meth-
ods are privileged. These techniques are called approximate algorithms or
sometimes (meta)heuristic techniques [GP10]. They consist in foregoing
the complete exploration of the search space in order to find faster solutions
that are close to optimal. Approximate techniques include Local Search (LS)
[AALO03] techniques that iteratively improve a solution by incremental mod-
ifications and machine learning [Rob14; Bon17]. This approach consists in
training a model based on historic data to solve the problem. It is used in
many fields of computer science and has been successfully applied on combi-
natorial problems [BLP21; Maz+21].

Note that many of these methods can be combined or even hybridized.
There exists many more approaches to solve combinatorial problems. For
more information on this subject, see [KS99; Vaz03; MR22].

2.1.3 Traveling Salesman Problem

A typical combinatorial optimization problem is the Traveling Salesman Prob-
lem (TSP) [HPR13]. Given a set of N cities and the distance between each pair
of cities, the problem consist in finding the shortest path that visit each city
exactly once and ends in the depart city. More formally, the problem can be
generalized as finding the shortest Hamiltonian cycle on a graph G defined
as G = (V, E) where V is a set of vertices and E a set of edges, each associated
with a cost expressed either as a function or in a distance matrix. Figure 2.1
shows an example of TSP problem along with a possible solution.

In many real-world applications of this problem, the graph represents a
transportation network. Each vertex v € V corresponds to a location to visit
and each edge e € E represents the trip between two locations and is asso-
ciated with a cost. Some arcs may be directed in case of differences of costs
between both directions. Note that even if the initial network provided may
be incomplete, it is possible to build a complete graph by taking into account
the shortest path between the concerned nodes on the original network.
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Figure 2.1: An example of TSP instance (left) and a possible solution (right)

The TSP has been proven NP-complete by Karp in 1972 [Kar72]. This
property is especially important as many problems in routing can be reduced
to a TSP. Another interesting property is the triangle inequality [JK89]
which states whether or not the cost of an arc cost,; between two nodes
a and b must be shorter or equal to the cost of any path going through a third
node c:

costyp < costgc + costep;Va, bc eV (2.3)

This property may impact the algorithm used to solve such problems and thus
is important to take into account.

The traveling salesman problem arises in many cases [LK75] and is also
the basis for many more advanced graph-based problems. It is thus widely
studied in the literature. Many variants have been defined over the years
[Dum+95; AFG01; Lop+13;1J14; SS15; Tod+17; Boc+21] and various approaches
have been proposed to tackle this problem [LSD90; CP80; ZL10; ONZ21; Cap+21;
Red+22]. More details on this problem and its applications can be found in
[App+11; Dav10; Gre08; Ndh11].

2.1.4 Vehicle Routing Problem

The Vehicle Routing Problem (VRP) [TV02a] expands the TSP by considering
a fleet of vehicles that must visit a set of locations in order to deliver goods
or provide services. Similarly to the TSP, the problem considers a transporta-
tion network expressed as a graph G = (V, E). One of the vertices represents
the depot where each vehicle must start its route and end it. Figure 2.2 shows
an example of VRP problem with three vehicles. The depot is the central ver-
tex.

Many variants of the problem exist [EVR09; ITV14; BRV16], each with
their own constraints and objectives. Common variants of the problem in-
clude:
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Figure 2.2: An example of VRP instance with three vehicles (left) and a pos-
sible solution (right)

= The Capacitated VRP (CVRP) [TV02b; Ral+03] which adds capacity
constraints to the vehicles;

m The Vehicle Routing Problem with Simultaneous Pick-up and
Delivery (VRPSPD) [KLT20] where goods need to be picked or dropped
at various locations;

= The Vehicle Routing Problem with Time Windows (VRPTW) [BG05b;
BGO05a] which adds scheduling constraints that associate the visits with
time windows in which they must be made;

= The Multi-Depot Vehicle Routing Problem (MDVRP) [Mon+15]
where more than one depot exists;

= The Dynamic Vehicle Routing Problem (DVRP) [Pil+13] where dy-
namic changes to the problem have to be handled during the search.
This variant may incorporate stochastic information on possible future
changes [RPH16].

Note that these variants are not exclusive and can be combined together.
Typically, the objective is to minimize the cost of operations which can
be based on the length of the routes or the number of vehicles required.
Other objectives may consist in minimizing delivery times or maximizing
some profit or score based on the deliveries performed. There also exist vari-
ants with multiple objectives combined [JST08]. More details on this problem
and its resolution methods can be found in [Lap92; Cor+05; GRW08; TV14].

2.1.5 Dial-A-Ride Problem

The Dial a Ride Problem (DARP) is a variant of the VRP that consists in routing
a fleet of vehicles in order to transport clients from one place to another. As
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the problem deals with transportation of people, a minimum service quality
must be assured. Indeed, unlike goods, passenger do mind if they have to
wait too long for their ride or in transit. Hence, additional constraints such
as maximum ride duration and service time windows must be enforced.

It is a problem widely studied in the literature and several variants exist:
the fleet can be composed of several vehicles [CL03a] that can be hetero-
geneous [Par11], users can have different characteristics [Par+12], availabil-
ity of vehicles can be constrained [Psa83], patients can require a return trip
[MIMO07], several depots can be present [CGL97], alternative routes between
locations of the road network may be considered [Gar+10], etc. A large scope
of objective functions can also be considered such as minimizing the waiting
time of users or maximizing the number of accepted requests. Multi-objective
approaches have also been introduced [Par+09]. Besides, the problem can ei-
ther be solved offline [Ber+07] or online [Att+04]. In the former case, all the
requests are known in advance whereas they appear gradually in real-time
in the latter. Aforementioned references are only few examples of the broad
literature dedicated to DARPs. A good summary of the different variants and
methods was nevertheless proposed by Cordeau and Laporte [CL07]. More
recent developments can be found in [MBC17].

The variant discussed in this thesis was proposed by Cordeau and Laporte
[CLO3b]. Note that the set of all passenger requests is assumed to be known
in advance and fixed.

Formally, the DARP is defined on a complete graph G = (X, E) where
X ={Xo,...Xon} is a set of vertices, each corresponding to a specific location
or stop and E a set of edges, each corresponding to a possible travel from one
location to another. The first vertex Xy € X corresponds to the depot. To
each stop i € X, is associated a time window [ea;, la;], a service duration sro;
and a load Id;. These parameters are fixed for the depot stop Xy or i = 0 at
[eap = 0,lag = Thaxl, strvg = 0, Idy = 0 where T4y is the planning time
horizon. A transition matrix trans;; indicates for each edge (i, j) € E the
non-negative travel time (trans; ;) from location i to j, assumed to satisfy
triangle inequality:

trans;; < trans;y + transy;; Vi, j,k € X (2.4)

Let R be the set of requests of size n. Eachrequestr e R| 1 < r < nis as-
sociated to a pair of stops X, and X, that correspond to the pickup and drop
of the request. The load for the pickup stop is always strictly positive Id, > 0.
For the drop stop, it is the opposite of the pickup stop load Id,., = —Id, and
thus negative. A stop is critical if its time window is restricted and non criti-
cal if it is initialized to [0, Tnax]. A request is either inbound or outbound. For
inbound requests, the pickup stop is critical whereas the drop stop is non crit-
ical. For outbound requests the pickup is non critical and the drop is critical.
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A global parameter R,y indicates the maximum ride time (the difference be-
tween the arrival at the drop and the departure at the pickup) of any request.

Let V be the set of vehicles. There are m vehicles available. Each vehicle
v € V has the same profile, defined by a capacity K and a maximum route
duration D,q.

The objective is to minimize the total routing cost of the vehicles (defined
as the total distance traveled by the vehicles) (0) under the following con-
straints:

(1) Each route begins at the depot Xjp;
(2) Each route ends at the depot Xp;
(3) The load of any vehicle never exceeds its capacity K;

(4) For each pair of stops serviced by a same vehicle (i, j), the difference
between the arrival time at the second stop (j) and the departure at the
first stop (i) is higher or equal to the travel distance between the two
stops frans; j;

(5) For each stop i, the service of the stop starts inside its time window
leai, la;];

(6) A pickup stop X, is always visited before the associated drop stop Xy4n;

(7) A pickup stop X, and its associated drop stop X, are both serviced by
the same vehicle;

(8) For each stop i, the service time to embark or disembark the vehicle
sro; is respected;

(9) The ride time between a pickup stop X, and its associated drop stop
X, 4 never exceeds the maximum ride time Ry, 4y;

(10) The total duration of any route never exceeds the maximum route du-
ration D,y 3

(11) Each request is serviced.

2.2 Constraint Programming

Constraint Programming (CP) [RVW06] is a programming paradigm used to
solve combinatorial problems. In CP, the problem is expressed as a declara-
tive model in terms of variables and constraints. Then, a backtracking search
is used to explore the possible solutions of the problem. The paradigm stems
from research in the 1960’s by Sutherland [Sut63] and was developed during
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the following decades until being formally defined in 1980 by Steele [Ste80].
Since then, CP has been successfully used in many domains such as vehi-
cle routing [Sha98; BB19], planning and scheduling [VC99; Tim02; Sim+15],
networks [BPAO01; Bar+07; Har+15a], bioinformatics [GBY01; BK08; All+14],
datamining [DGN10; Bes+16] and recently machine learning [VH15; Ver+20].
Besides its proven efficiency over other methods [Lab18a; Mal+18] on a range
of frequent problems, another advantage of CP is versatility and adaptability.
Due to its nature, a CP model can easily be modified to tackle variations of a
problem. Finally, CP can also be used in conjunction with other approaches
such as local search [Bac+00] MIP [HB12; SW12; Tan+19] or SAT [OSC09;
Stu10; Art+14].

2.2.1 Model

The model is a representation of the problem using variables to which a value
must be found tied together by constraints.

A variable is an element of decision of the problem. Each variable is asso-
ciated to a domain which is a set of values that the variable can take. Tying
a variable to a single value of its domain is called an assignment. Solving a
constraint problem consists in finding a valid assignment for each variable.
A solution is thus a state where each variable is assigned to a single value
such that the constraints are respected. Note that several solutions are often
possible.

A constraint is a mathematical condition that must be satisfied in order
for a solution of the problem to be valid. Expressed in the CP paradigm, a
constraint is relation between several variables that limits the values assigned
simultaneously to the variables.

Expressing a Combinatorial Problem with the CP paradigm In con-
straint programming, a combinatorial problem is expressed as a Constraint
Satisfaction Problem (CSP) or a Constraint Optimization Problem (COP).

The goal of a CSP is to find a solution that satisfies all the constraints.
Alternatively, one might want to retrieve all or several possible solutions to
the problem or simply find if the problem is feasible. Note that proving that
a CSP is feasible is done as soon as a solution is found but proving that a
problem is infeasible requires to explore completely the search space without
finding any solution.

Definition 3. A Constraint Satisfaction Problem (CSP) is a triplet (V, D, C)
consisting of: a set of variables V, each associated to a domain in D and a set
of constraints C restricting the domains of the variables.

Definition 4. A solution is a state of the CSP such that each variable x € V
is assigned to a single value v € D, : D, = v) and each constraint ¢ € C holds.
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Example 2.2.1. Let us consider a very simple CSP: x,y,z € {1,2,3},x+y =z
m The variables are x, y, z;
= the domains are: D, = Dy, = D, = {1,2,3};
m there is a single constraint x + y = z.

The possible solutions for this CSP are: {(x = 1,y = 1,z = 2),(x = 2,y =
1,z=3),(x=1Ly=22z=3)}.

Example 2.2.2. Another example of CSP is the N-Queens problem. It con-
sists in placing N queens on a chessboard of size N X N so that they are unable
to attack each other. The problem can be formulated as such: For each queen
i € N, we have a variable Q; that indicates the column in which the queen
at row i will be placed (only one queen can be on any row). We have the
following constraints:

= Any pair of two queens cannot be in the same column:
Vi,jeN|i#j: Qi#Q; (2.5)
= Any pair of two queens cannot be in the same diagonal:
ViijeN|i#j: [i—jl#1Qi-Qjl (2.6)
where |x| denotes the absolute value of x.

A possible solution for this problem with N = 8 is illustrated in Figure 2.3.
Notice that a same problem can be formulated as different CSPs. For this
problem, we could have a boolean variable for each square of the chessboard
that indicates the presence of a queen in this square. We could also replace the
set of binary constraints on each pair of queens by two Alldifferent constraints
(this constraints ensures that a set of variables have each a distinct value, see
Section 2.2.1.2).

Example 2.2.3. Finally, a well known example of CSP is the sudoku problem
illustrated in Figure 2.4. It consists in placing numbers in a 9 by 9 grid such
that all the numbers in a same row, column or 3 by 3 sub-grid are different. The
problem can be formulated as such: For each square c; ; of the grid, we have
a variable v; ; of domain D; ; = [1;9] that indicates the number contained in
the square. The constraints are:

= For eachrow i € [1;9] : Alldifferent(c;;,Vj € [1;9])

= For each column j € [1;9] : Alldifferent(c; ;, Vi € [1;9])
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Figure 2.3: Example of 8-Queens Figure 2.4: Example of sudoku
problem (source: [Enc19]) (source: [Tim17])

» For each sub-grid s | k,1 € [1;3] : Alldifferent(ck.m1.n, Vm,n € [1;3])

A constraint optimization problem (COP) is an extension of a constraint
satisfaction problem to which an objective is added that indicates the quality
of a solution to the problem. The objective function associates one or several
variables of the problem to a value that must be maximized or minimized.

Definition 5. A Constraint Optimization Problem is a quadruplet (V, D, C, O)
where (V, D, C) defines a CSP and O is an objective function.

Example 2.2.4. If we add the objective function O = max. x+z to the CSP of
Example 2.2.1, we obtain a COP. The optimal solution is (x = 2,y = 1,z = 3)
with an objective value of 5.

An optimal solution maximizes or minimizes the objective function. Solv-
ing a COP to optimality consists in proving that the best solution obtained is
optimal. Generally, that implies completely exploring the search space which
may not be feasible in a lot of cases.

2.2.1.1 CP Variables

A CP variable is characterized by its domain which is used to model some de-
cision in the problem. Conceptually, the domain is a set of possible states that
the variable can take. An important characteristic of CP variables is that in
addition to represent their domain, they must also do so in a reversible way.
Indeed, during the CP search, the domain of the variables will be reduced
(possible values will be removed). However, when encountering a violation
of a constraint or to explore other parts of the search space, these changes
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must be reverted and the domains restored to a previous state. Thus, the vari-
ables must implement mechanisms to revert their domain. Several possible
strategies are possible and are discussed in Section 2.2.2.3.

There exists several types of variables in CP, each having specific domains.
While Integer variables are the most frequently used, other variable represen-
tation can allow a better modeling of the problem and may even be necessary
to model more complex problems.

Boolean Variable Boolean variables represent binary decisions They can
only take on of two values: true or false. They are often used in conjunction
with logical constraints.

Integer Variable An integer variable represents an unknown number to
which a value must be chosen among a set of possible values. Its domain is
thus a set of integers.

Interval Variable An interval variable [[BM21] (also sometimes referred
as an activity variable) represents an interval of time during which an event
occurs (a task is performed, a resource is used,...). It is characterized by a start
s, an end e and a duration d, each of them having a range of possible integer
values. The duration corresponds to the difference between the start and the
end values: d = e —s. Additionally, a boolean x might indicate whether
the activity takes place or not. In this case it is called a conditional interval
variable. The variable is fixed once each of its attributes is assigned to a single
value. Such variables are often used in scheduling problems.

Example 2.2.5. For example, let us consider an interval variable representing
an activity with the following domain: start = [0; 2], end = [6; 9], duration =
[4;9]. As illustrated in Figure 2.5, the activity could begin at any time be-
tween 0 and 2, its length would be of minimum 4 and maximum 9 and it
would end between 6 and 9.

Note that this kind of variable can be modeled with three separate inte-
ger variables (corresponding to the start, end and duration) and a boolean
variable linked together by constraints. Using an interval variable over inte-
ger variables provides a better modeling and might allow to use the problem
structure for gains in terms of propagation. However, it can also lead to un-
necessary complexity and requires support in the solver as well as dedicated
constraints.

Set Variable A set variable represents a set of elements. It is used to model
situations where one must decide which elements will be part of a set. It do-
main consists in a set of elements (often represented by integer values) that
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Figure 2.5: Illustration of an interval variable

have two possible states: part of the set (denoted required) or excluded from
the set (denoted excluded). Initially each element state is undecided (denoted
possible). When each element has its state fixed, the variable is bound. Find-
ing an assignment for a set variable thus corresponds to choosing a subset of
the original set of elements in the domain.

In formal terms, the variable can be defined as so: Let X = {0,...,n} be
a finite set and P (X) the set of subsets (power set) of X. The inclusion C
relation defines a partial order over £ (X) and the structure (P(X),C) is a
lattice generally used to represent the domain of a finite set variable. To avoid
explicit exhaustive enumeration of set domain, three disjoint subsets of X
are used to represent the current state of the set domain (see [Ger97]). The
domain is defined as

(P,RE)y={S'|S CXARCS CRUP} (2.7)

where P, R, and E denote respectively the set of Possible, Required and Ex-
cluded elements of X. At any time we have that P, R and E form a partition
of X. The domain represents a powerset lattice. The variable S with domain
(P,R,E) is bound if P is empty. Table 2.1 contains the supported operations
on a set variable S of domain (P, R, E) with their complexity. Other work on
this kind of variable includes [Ger94; GV06; YH11; YH09; YV10].

Table 2.1: Operations supported by set variables

Operation Description Complexity
requires(S,e) move e to R, failsife € E (1)
excludes(S,e) move e to E, failsif e € R 0(1)
isBound(S) return true iff S is bound (1)
is{Possible/Required/Excluded} (S,e) | returntrueiffe € {P/R/E} | ©(1)
all{Possible/Required/Excluded} (S) enumerate {P/R/E} O(|{P/R/E}|)
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Sequence variables A sequence variable represents a sequence of elements
or events. It can be seen as associating a set of elements with an ordering be-
tween these elements. The domain of a sequence variable Seq over a set of
elements X is the set of all possible sequences that can be made from the
elements of X. Sequence variables are discussed in details in Chapter 5.

Other type of variables In addition to the variables presented above, there
exists other types of variables. For example, graph variables [HM98; DDDO05]
are used to represent graphs and model graph-based problems. Continuous
variables [Wal02; JB04] represent a continuous interval of values and are used
to model continuous problems [YH06]. However, as these variables are not
discussed in this thesis, they are not detailed.

2.2.1.2 CP Constraints

With variables, constraints are the building blocks of CP models. Their role
is ensuring that the domains of the variables are consistent in regards to the
model. This is done through the propagation.

Propagation Constraint propagation occurs at the beginning of the search
and is triggered again when the domain of a variable is modified. The con-
straints that include the affected variables are notified of the modifications
and can use this information to propagate changes to the domains of other
variables that are related through the constraint. This can in turn lead to more
domain modifications which are propagated and so on. This process contin-
ues until no more change is possible or an inconsistency is detected. In the
first case, we say that a fixed point has been reached. The propagation phase
stops and the search continues. In the latter case, a backtrack is triggered: the
latest decision is reverted and the domains are restored to their previous state.

Example 2.2.6. Let us consider three variables: x = {1,2,3}, x = {2,3} and
z = {3,4,5} under the constraints x < y < z. If the value 1 is removed
from the domain of x , thus reducing its domain to {2, 3}, the propagation is
triggered. Since the minimal value for x is 2, any value < 2 can be removed
from the domain of y resulting in y = {3}. As the domain of y is reduced the
propagation is triggered again resulting in the removal of 3 from the domains
of x and z. The propagation is triggered again for each domain reduction but
no change can be deduced thus ending the process. The resulting domains
are: x = {2}, y = {3} and z = {4, 5}.

An algorithm responsible for the propagation is called a filtering algo-
rithm. It is responsible for reducing the domains of the variables and detect-
ing inconsistent partial assignments by ensuring that the domains are con-
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sistent. Generally constraints implement one or several filtering algorithms
that are called depending on the type of changes that occurred.

Local Consistency Ideally, the propagation would achieve a fully consis-
tent state for all the domains with all the constraints (called global consis-
tency). However, in practice, such result is often unreachable. Filtering al-
gorithms often have a limited knowledge of the whole model as their scope
doesn’t include variables that are not directly affected or other constraints.
Usually, reaching global consistency is itself expensive in terms of complex-
ity or even a NP-complete problem, making some filtering algorithms too
costly. Thus, through propagation, we aim at reaching some form of local
consistency. The notion of local consistency can be informally defined as
having some parts of the domains in a “desired form”, meaning that though
global consistency is not necessarily achieved, some parts of the CSP are con-
sistent at some level. Note that local consistency does not necessarily implies
global consistency.

Therefore, different local consistencies have been defined. Here are some
of the most commonly used notions:

= Node Consistency is the most basic form of consistency.

Definition 6. A CSP is said to be node consistent if for every variable
x € V, every unary constraint (see next paragraph) on V is satisfied.

m Arc Consistency is reached for a binary constraint (see next para-
graph) if every value in both domains is part of a solution.

Definition 7. A binary constraint ¢ on two variables x,y € V of do-
mains Dy and D is called arc consistent if

VkeDy: Al eDy| (kl)ecAVleDy: FkeDy|(kl)ec (28)

where the notation (k,I) € c indicates that the constraint ¢ holds for
the values k and [. A CSP is arc consistent if all of its binary constraint
are arc consistent.

We say that a value v € Dy has a support s € D, for a constraint c if
the pair (v, s) is valid under c.

= Generalized Arc Consistency (GAC) generalizes the notion of arc
consistency to global constraints (with more than two variables, see
Section 2.2.1.2). It is also called hyper-arc consistency.
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Definition 8. A constraint ¢ on a series of variables x1, ..., xx is said
to be hyper-arc consistent if

Vx; |ie[l;k],YoeD;: 3d ec|ov=d,, (2.9)

where the notation d € c indicates that the constraint ¢ holds for the
assignment d and the notation v = d,, indicates that the variable x;
takes the value v in the assignment d. A CSP is hyper-arc consistent or
GAC if all its constraints are hyper-arc consistent.

In other words, a constraint is hyper-arc consistent if each value in the
domain of each variable is part of an assignment that is valid under the
constraint.

There exists other definitions of consistency such as path consistency, k-
consistency or bound consistency. For more details, see [Apt03].

Stronger local consistency can lead to a larger reduction of the search
space but this often comes at a cost in term of resources used by the filter-
ing algorithms. On the other hand, despite leading to a larger search space
and being less effective at detecting inconsistent assignments, weaker local
consistency can often be reached with fast algorithms. Thus, there is a trade-
off between the resources required by the filtering algorithms and the local
consistency achieved. Often, these two aspects must be balanced in order to
achieve a speed up of the resolution process.

Types of Constraints Constraints can be categorized in several categories:

= Unary Constraints are constraints that affect a single variable. For
example, the constraint x > o where x is a variable and v a value.

= Binary Constraints affect only two variables. For example, the equal-
ity constraint x = y where x and y are variables.

» Extensional Constraints, also called table constraints, are defined
by enumerating the set of all combinations of values that are allowed
(called supports) or forbidden (called conflicts), see [Ver21].

m Arithmetic Constraints are defined by expressions such as =, #, <,
> <>,

= Logical Constraints are defined by logical expressions (not, and, or,
implication, ...).
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= Global Constraints are defined over a non-fixed number of variables
with an explicit semantic. These are often redundant as they encapsu-
late a set of simpler constraints. However they are useful as they ease
the modeling of a problem and can leverage this global view of the prob-
lem for a more efficient propagation. Global constraints can be defined
in more formal terms as a constraint that models a set of constraints of
the same type. For example, the constraint Alldifferent(x1, x2, x3) rep-
resents the set of binary constraints {x1 # x2,x1 # x3,x2 # x3}. Note
that in the case where D(x1) = D(x2) = D(x3) = {1, 2} while the bi-
nary inequality constraints individually hold, the global Alldif ferent
constraint can detect an inconsistency.

Notice that these categories are not necessarily exclusive. For example, the
constraint x < y (where x and y are variables) is both binary and arithmetic.
The following paragraphs details several constraints that are used or referred
to further in this thesis.

Alldifferent The Alldifferent constraint [Lau78; Bell4a] is a global con-
straint which states that a set of variables must take distinct values. The con-
straint can be decomposed into set of binary difference constraints. However,
a global propagation is more efficient and can achieve stronger consistencies.
Several propagation algorithms are detailed in [R197; Lec96; Pug98; MTO00;
Lé6p+03]. Note that the complexity of ensuring that this constraint is GAC is
polynomial.

Sum The Sum constraint [Bel14f] links a variable s to a set of variables X
such that the value of s is the sum of the values of the variablesin X: s = >’ X.

Element Given two variables x and y and an array of integers Z, the Ele-
ment constraint [VC88; Bel14d] enforces the relation Zy = x. In other words,
the constraint makes sure that the variable x takes the value at index y in Z.

Circuit The Circuit constraint [Lau78; Bel14b], also sometimes referred as
Predecessor/Successor constraint is used to model situations where a set of
variables represent a graph G, each variable corresponding to a node in G
and its domain to a set of successor nodes to which the variable points. The
constraint enforces a Hamiltonian circuit on this graph. Its domain is a set of
integer variable with values corresponding to the index of the next variable
in a tour visiting all of them. Figure 2.6 shows the assignation corresponding
to the tour [3,2,5,4,6,1,0].

The constraint is often used in routing problems to model routes of ve-
hicles. It is related to the Alldifferent constraint as it must hold in order to
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Figure 2.6: Valid assignation of an array of variables under the circuit con-
straint

satisty circuit. Thus, the circuit constraint often uses Alldifferent propagation
algorithms in conjunction with sub-tour elimination. Several of its propaga-
tion algorithms are detailed in [Hoo12; FS14]. Notice that in contrast to other
global constraints such as the Alldifferent constraint, ensuring that the Cir-
cuit constraint is GAC is NP-hard as it is the same as solving the Hamiltonian
cycle problem [G]79].

Precedence The Precedence constraint [Bell4e] is used in scheduling prob-
lems to enforce the precedence of one or several event(s) over another. Given
a set of n tasks T, each pair of consecutive tasks should be ordered: T; <
Ti+1,Vi € [1;n — 1] As such, it is mainly used in conjunction with interval
variables.

Cumulative The Cumulative constraint [AB93; Bell4c] is also mainly used
in scheduling and routing. Given a set of tasks A;_,(that can be represented
by interval variables) and associated loads Id representing consumption of a
resource during the lapse of the interval, it ensures that the cumulative use of
the resource never exceeds a given total capacity. This behavior is illustrated
in the arbitrary example of Figure 2.7. We consider 4 tasks (A, A2, A3 and
Ay) and a capacity K of 3. The task Az has a load of 2 while the other have
a load of 1. The bottom part shows the execution of the tasks. The top part
corresponds to the load profile, which is a representation of the total load
used at any time. As we can see, in this case, the load profile never exceeds
the capacity K, thus the constraint holds.

Many filtering algorithms have been proposed for this constraint over
the years [Abd82; CL96; Vil07, MV08; SW10; Bel+11; Kam+14]. Note that
this constraint can also be referred as NoOverlap when the capacity and loads
are set to 1, ensuring that any task cannot take place simultaneously with any
other task.
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Figure 2.7: Resource consumption profile with four tasks for a capacity K of
3

2.2.2 Search

The search consists in assigning values to variables of the problem until a so-
lution is found i.e. each variable is assigned to a single value. The constraints
are used during the search to propagate changes in the domain of a variable
to other variables thus restricting the search space. Conceptually, the search
process can be described using a tree structure called a search tree. The root
of the tree corresponds to the state at the start of the search. Each node is
a partial assignment which differs from its parent by a single extension step.
Leaves of the tree correspond to solutions where each variable is assigned.
This tree is generated and explored in a depth first fashion. At each node,
the current state is expanded by branching. It consists in choosing a vari-
able and applying a change to its domain. This triggers a propagation which
leads to a new state where the process is repeated. As the domain of some
variables is reduced trough propagation, it removes some possible branches
of the search tree, thus reducing the sub-tree to explore. This process is called
pruning. If an inconsistency is detected during the propagation or when a
solution has been reached, the state is reverted to its parent node by back-
tracking and another branching decision is explored. The algorithm con-
tinues until the tree has been fully explored or if a resource limit has been
reached. The pseudo-code for the search procedure is given in Algorithm 1.

Example 2.2.7. Let us consider a simple CSP with three variables: x =
{1,2},y = {1,2,3},z = {2, 3,4} and the constraints: x # y # zand x + y = z.
The search tree is given in Figure 2.8. The domains are indicated for each
node. The crossed values correspond to values removed by propagation. The
decisions are indicated on the edges. The blue arrows indicate in which order
the tree is explored. Solution nodes are marked in green, inconsistencies in
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Algorithm 1: Recursive CP search

// recursive branching procedure:

1 def branch(decision)
apply decision ;
propagate ;
if inconsistency then

return ;
if all variables assigned then

solution found ;

return ;

O 0 N NG R wWN

alts «— get branching alternatives ;
foreach decision € alts do

‘ branch(decision) ;
return ;

-
= o

-
[

// first call at the root of the search tree:
13 alts «— get branching alternatives ;
14 foreach decision € alts do
15 branch(decision)

red. For the sake of the demonstration we will assume that the constraint
X +y = z propagates only when x or y is fixed. Notice that in this case, the
branch y # 1 leads to an inconsistency. Otherwise, the value 4 would have
been removed from the domain of z after the removal of 2 from y. This would
have immediately led to the removal of 3 from the domain of y and the solu-
tion x = 2,y = 1, z = 3 would have been found without needing to branch on

y=1

2.2.2.1 Branching

Branching is the step of expanding the search tree. It is done by applying
a change to the domain of one or more variables. Several possible changes
are considered, each corresponding to a new branch in the search tree. For
example, one could consider whether assigning a variable to a specific value
or removing the value from the domain of the variables leading to a binary
decision. This kind of branching is called binary branching. It is used in Ex-
ample 2.2.7. However, branching may involve more than two branches such
as considering all possible values for a variable or even combinations of vari-
ables to change. The search heuristic is responsible for selecting the changes
to consider and the order in which the resulting branches are explored.
Once the branching decision is done, the change is applied and affected



2.2. Constraint Programming 27

z={1,2}
y={1,2,3}
z=1{2,3,4}

z={1} z = {2}
y:{X,2,3} y:{laxa?’}
2={X,3,4} z={X.3,4}

y=2 4 y#1
A//g\

z = {1} z = {1} z ={2} z = {2}

y={2} y={3} y={1} y={3}

Z:{?”x} Z:{X74} z:{?’aX} Z:{X7>(}

Figure 2.8: Example of CP search

constraints are notified which triggers propagation. The propagation contin-
ues until a fixed point is reached or an inconsitency is detected. In case of
inconsistency or if all variables are assigned and a solution has been found,
the domains are backtracked to their state before the branching decision and
another branch is explored. Otherwise, a new branching step occurs.

2.2.2.2 Heuristic

A search heuristic guides the branching decisions during the search. At each
branching step, it selects the possible changes to apply to the domain and
the resulting branch to explore next. As we use a DFS search to explore the
search tree, the decision to explore first a branch over another can heavily
impact the search. Indeed, a branching decision leads to a domain reduc-
tion followed by a propagation, thus affecting the size of the resulting search
space. Alternative branches may lead to sub-trees that can vary widely in
side. Hence, selecting good branching decisions may greatly reduce the size
of the search tree and thus its exploration speed. Heuristics can also guide the
search towards better solutions which also speeds up the search for an opti-
mal solution. Branching heuristics are thus a crucial component to consider
in order to improve the search speed.

The general intuition of a search heuristic is that we want to select domain
changes that are more likely to yield a large amount of propagation or a better
solution. Search heuristics are usually separated in two categories: variable
heuristics select the next variable to branch on while value heuristics select
the next value to assign or remove from the domain of the selected variable.
Common variable heuristics include:

m the FirstFail heuristics consists in selecting first variables that have a
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higher chance to lead to failures. This usually leads to a better propa-
gation during the search and might avoid some backtracks. Typically,
variables with a smaller domain are selected first as they are more likely
to be impacted by constraints.

= the Conflict Ordering heuristic [Gay+15] expands the idea of the first
fail by ordering dynamically the variables such that the ones having led
to the most recent conflicts have priority.

= another variant of the first fail approach is the Weighted Degree heuris-
tic [Bou+04]. Each variable is associated a weight that reflects the
amount of time that a constraint involving the variable has failed. This
weight is updated during the search.

Many more variable heuristics are possible besides the generic ones de-
scribed above. Generally, the heuristic is designed specifically for the problem
and might exploit additional information over the variables and what they
represent in the model. Value heuristics follow the same principle. For exam-
ple, for a maximization problem, it would make sense to try first the largest
values in the domain as they are more likely to lead to a good solution.

2.2.2.3 Backtracking

Backtracking occurs when an inconsistency has been detected, if a solution
has been found or if all branching alternatives at a node of the search tree
have been explored. It consists in reverting the domain of all the variables to
its previous state in the parent node. Two alternative strategies can be used
for restoring the state. The first one, called copying, consists in placing in
memory the current state of the domain at each node of the search tree in
order to be able to restore it later. The alternative, called trailing, is to use
reversible data structures that allow to easily reverse their state to a previous
one. Copying is used in the Gecode solver [Rei+09; Sch+] while trailing is
used in OscaR [Osc12] and MiniCP [MSV21]. More details on the differences
between copying and trailing can be found in [Sch99; CHNO01; Kot10].

As the Oscar solver was used to develop the work in this thesis, the struc-
tures and CP components presented are based on trailing.

Sparse Set A sparse set [de +13] is a data structure that is often used to im-
plement domains in a trailing environment. It consists in two arrays: dense
which stores the actual elements in the sparse set and sparse which indi-
cates the index at which an element is in dense. Elements are identified by
indices. An integer n indicates the index of dense after which elements are
considered removed.
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m To access an element e, we look the value at the index of sparse cor-
responding to the element: sparse[e]. Then, we access the index of
dense corresponding to this value to retrieve the element: dense|
sparse[e]].

= To remove an element e from the sparse set, we swap the element with
the one before n in dense while updating their indices in sparse to
keep track of the elements. Then, we decrement n by 1.

m When used in a trailing context, the successive values of n are saved.
To restore the sparse set to a previous state, we simply revert n to its
value at the desired state. All the elements that had been removed since
this state are situated between the two indices in dense and thus con-
sidered again as part of the sparse set.

These operations are illustrated in Figure 2.9. Note that using a sparse
set in this way allows only successive removal operations (or insertions if
we consider the set initially empty and all the elements after n inserted) but
not to mix both. Thus, if a domain that both grows and decreases is needed,
another data structure will be used.

n n €«<—
dense| 4 | 2 | 3 | 1 5 | 0 | dense| 4 | 2 | 1 3 | 5 | 0 |
/\U
sparse| 5 | 3 | 1 | 2 | 0 | 4 | sparse| 5 | 2 | 1 | 3 | 0 | 4 |
0 1 2 3 4 5 0 1 2 [3] 4 5
Initial state (0 and 5 are removed) Removal of element 3
n —>
dense| 4 | 2 | 3 | 1 5 | 0 | dense| 4 | 2 | 1 | 3 | 5 0 |
sparse| 5 | 3 | 1 | 2 | 0 | 4 | sparse| 5 | 2 | 1 | 3 | 0 | 4 |
o [1] =2 3 4 5 0 1 2 3 4 5
Access to element 1 Restoration of elements 3 and 5

Figure 2.9: An illustration of the basic operations on a sparse set

2.2.2.4 Branch and Bound

For optimization problems, in addition to the branching strategy described
in the previous sections, it is possible to use upper and lower bounds to im-
prove the search speed. This paradigm is called branch and bound. The
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principle is to maintain an upper bound UB during the search (in the case
of a minimization problem). It is initialized to either co or an overestimation
of the optimal solution and tightened during the search, when new solutions
are found. Before exploring a new branch b of the search tree, a lower bound
for this branch LB(b) is computed. If LB(p) > UB, meaning that no better
solution can be found in this branch, the branch is pruned and not explored.

Another way to express this in the CP framework, is to add a constraint
O < O(s") each time a new improving solution s* is found (in the case of a
minimization problem, otherwise the constraint is O > O(s*)).

2.2.2.5 Large Neighborhood Search

The Large Neighborhood Search (LNS) is a metaheuristic proposed by Shaw
in [Sha98]. It aims at diversifying the solutions found by exploring differ-
ent parts of the search tree. This is done by iteratively applying a partial
relaxation of the current solution followed by a reconstruction in order to
gradually improve the solution to the problem. The relaxation (also referred
as a destroy method) consists in keeping a part of the current solution while
leaving the remaining variables to their initial domain. This allows to restrict
the search tree to the neighborhood of the current solution which is then ex-
plored in the hope of finding a better solution. A relaxation heuristic decides
which parts of the current solution will be kept. It typically involves some
part of randomness in order to relax different parts of the solution at each
iteration and avoid cycling.

In CP, the relaxation imposes constraints that restrict some variables to
their values in the current best solution. Then, the reconstruction (or search)
heuristic guides the search in the resulting search space by assigning values
to the remaining variables in order to find one or more new solution(s). Con-
ceptually, LNS can be seen as jumping from one part of the search tree to
another rather than exploring it in a complete fashion. The drawback of this
approach is that the search is no longer complete. Thus, it is mainly used in
contexts where the search tree is to large to be explored in its entirety.

Example 2.2.8. For example, a random relaxation heuristic selects randomly
a percentage of the variables to relax and fix the other ones to their assign-
ment in the current best solution. This heuristic can be parametrized by
choosing the percentage to relax in a set of values such as {10%, 20%, 50%}.
A first fail heuristic with a fixed limit on the number of backtracks can be
used as a reconstruction heuristic which can also be parametrized by choos-
ing a limit on the number of backtracks in a set of values such as {50bkts,

500bkts, 5000bkts}.

The relaxation and reconstruction process continues until some limit in
terms of iterations or time is reached. From a local search point of view,
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CP is thus used as a slave technology for exploring a (large) neighborhood
around the current best solution. LNS has been successfully used on various
types of problems: bin-packing [Mal+13; Sch+11a], vehicle-routing [JV11;
BHO06; GD19], scheduling [GLN05; CB09; PH11; GSD14], traffic engineer-
ing [Har+15b], etc. Designing good relaxation and reconstruction heuris-
tics with the right parameters is crucial for the efficiency of LNS. Unfortu-
nately, this task requires some experience and intuition on the problem to
solve. Nevertheless, there exists some advances in improving the generic-
ity of LNS through some form of automatic subproblem selection [MSD10;
PLJ14; Hen22]. Among them, the Adaptive LNS (ALNS) is an approach based
on a portfolio of relaxation and search heuristics. It is discussed in details in
Chapter 3.

2.2.3 CP Solvers

A constraint programming solver is a framework or software that implements
a CP search engine and modeling layer. The user models its problem using
the provided variables and constraints then uses the solver to search for solu-
tions. Various CP solvers exist in diverse programming languages. Some are
dedicated only to CP while others may also be bundled with support to use
other search paradigms such as SAT or MIP. While most solver implement ba-
sic CP components, some more specific variables and constraints may be only
implemented in a few of them. The solvers that were used or are discussed in
this thesis are described in this section.

OscaR OscaR [Osc12] is a Scala based solver developed to solve a diverse
array of Operations Research problems. It implements different techniques,
among which a CP framework. OscaR is developed and maintained by a con-
sortium of institutions and companies that includes part of the UCLouvain’s
AIA research group under the direction of Pierre Schaus. It is used for both
academic research and commercial purposes. Most of the work done in this
thesis was implemented and tested using OscaR.

MiniCP MiniCP [MSV21] is a recently developed lightweight solver that
aims at teaching CP for newcomers in the field. It is implemented in Java and
provides an extensive tutorial for the user to familiarize themselves with the
solver and the underlying CP concepts.

CP Optimizer IBMILOG CP Optimizer [Lab+18] is a commercial CP solver
developed by IBM and mainly oriented towards scheduling problems. It pro-
vides advanced features such as dedicated variables and a powerful adaptive
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search. Many of the concepts explored in this thesis have been implemented
in some form in CP Optimizer, making it a useful point of comparison.

Google OR-Tools Google OR-Tools [PF19a] is an open source optimization
suite maintained by Google that includes a CP solver. Like CP Optimizer, it
provides a range of dedicated modeling and search features oriented towards
routing and scheduling problems.

Modeling Languages Finally, in addition to CP solvers there exists con-
straint modeling languages. These languages are used to model CSPs and
COPs at a high level, independently of a solver. The model can then be turned
into a solver specific model to be run on a given solver. The advantage of such
languages is that, as they are supported by a large range of solvers, they pro-
vide a generic way to model a problem. Two well known modeling languages
are MiniZinc [Mina] (documentation is available at [Minb]) and XCSP [XCSa].



Adaptive Large
Neighborhood Search

The first part of the work done in this thesis was spent on investigating
generic resolution methods for CSPs and COPs. As the aim of the PRESupply
project was to provide small and medium businesses with affordable solu-
tions to tackle common optimization problems, one of the research directions
explored was to devise generic and adaptive tools. Indeed, designing a dedi-
cated solution for a specific problem is often costly and time consuming and
thus often unaffordable for smaller businesses. Instead, once a generic solver
has been developed to solve a range of common optimization problems, it can
be quickly and easily used by businesses that encounter these problems.

In this context, the aim is to make the CP solver as automated as possible,
allowing the user to quickly specify a model without spending time worrying
about propagation or search. In order to make this goal possible, the idea
explored in this chapter is to use an adaptive search method in a black-box
fashion. The goal is thus to make search able to tune itself to the specificities
of the problem without input from the user.

Back in 2004, Puget [Pug04] said that CP technology was too complex
to use and more research efforts should be devoted to make it accessible to
a broader audience. A lot of research effort has been invested to make this
vision become true. Efficient black-box complete search methods have been
designed [Ref04; HS17; Gay+15; CS15; MV12; PQZ12; VLS15] and techniques
such as the embarrassingly parallel search are able to select the best search
strategy with almost no overhead [PRS16]. For CP, Puget argued that the
model-and-run approach should become the target to reach. The improve-
ments went even beyond that vision since for some applications, the model
can be automatically derived from the data [Pic+17; BS12].

This work aims at automating the CP technology in the context of Large
Neighborhood Search (LNS) described in Section 2.2.2.5. In order to design an
automated LNS, two approaches can be envisioned. A first one would be to
recognize the structure of the model in order to select the most suited heuris-
tic from a taxonomy of heuristics described in the literature. This approach,
which is used in [MDV09] for scheduling problems, has two disadvantages:

1. some problems are hybrids and thus difficult to classify or recognize,

33
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2. it requires a lot of effort and engineering to develop the problem in-
spector and to maintain the taxonomy of operators.

Therefore, we follow a different approach called Adaptive Large Neigh-
borhood Search (ALNS) introduced in [RP06] which uses a portfolio of heuris-
tics and dynamically learns on the instance which ones are the most suitable.
At each iteration, a pair of relaxation and reconstruction heuristics is selected
and applied on the current best solution. The challenge is to select the pair
having the greatest gradient of the objective function over time (evaluated on
the current best solution) based solely on the past executions.

We expand the usage of the Self Adaptive LNS (SA-LNS) framework pro-
posed in [LGO07] on different optimization problems by considering the model
as a black-box. Our solver uses a set of generic preconfigured methods (op-
erators) that hypothesize specificities in the problem and leverage them in
order to efficiently perform LNS iterations. Given that the operators avail-
able in the portfolio are well diversified, we hope to provide a simple to use
yet efficient framework able to solve a broad range of discrete optimization
problems.

Our contributions to the ALNS framework are:

1. An adaptation of the weight update mechanism able to better cope with
unequal running times of the operators.

2. A portfolio of operators easy to integrate and implement in any solver
for solving a broad range of problems.

3.1 Related Work

While the ALNS framework has been used a lot on specific problems [PAM04;
RP06; DBL12; Kov+12; RL12; MLP13; ACJ14; AGP14; Wen+16; SPR19], par-
ticularly in the field of vehicle routing, at our knowledge it has not yet been
considered for a black box approach on multiple problems in constraint pro-
gramming. Recent developments include the use of ALNS with Mixed Integer
Programming (MIP) [Hen22]. Other portfolio based black box optimization
approaches exist [BP14; He+19] but are mostly formulated as multi-armed
bandit problems.

The Multi-Armed Bandit (MAB) problem [MTO08; Sli19] consists in se-
quentially allocating resources between competing alternatives. Typically,
this problem deals with the conflict between maximizing current profits ver-
sus investing in the hope of obtaining better future rewards. A portfolio based
approach can be formulated as a MAB in the following way: at each iteration,
a heuristic must be selected from the portfolio; the decision problem consists
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in deciding between selecting the current best heuristic or trying another al-
ternative in order to know if it is efficient on the problem at hand. Several
algorithms have been proposed to tackle this problem [KP14] and it has al-
ready been considered in the context of constraint programming [Lot+13].
Another closely related field is the reinforcement learning [SB18]. It con-
sists in using Machine Learning (ML) techniques in order to train agents at
taking decisions by trial and error. The technique is based on a scoring func-
tion that rewards positive actions and punishes negative ones. This tech-
nique has recently been of interest in the domains of search heuristic selection
[Nar03] and CP [MDV11; BEW11; Ant+20; Cha+21; Cap+21; LCP22].

3.2 Adaptive Large Neighborhood Search

Each ALNS operator as well as its possible parameters is associated to a weight.
These weights allow to dynamically reward or penalize the operators and
their parameters along the iterations to bias the operator selection strategy.
Algorithm 2 describes the pseudo-code for an ALNS search. Ac > 0 is the
objective improvement and At is the time taken by the operator.

Algorithm 2: Adaptive Large Neighbourhood Search for a mini-
mization problem

1 s* « feasible solution ;

2 do

3 relax < select relaxation operator ;

4 search « select search operator ;

5 (s’, At) « search(relax(s*)) ;

6 Ac « cost(s*) — cost(s") ;

7 weightye1ax < updateWeight(relax) ;

8 weightgearen < updateWeight(search) ;
9 if Ac > 0 then

10 R

11 while stop criterion met;
12 return s*;

3.2.1 Roulette Wheel selection

We use the Roulette Wheel selection mechanism as in [LG07; PR07]. It con-
sists in selecting the operators with probabilities proportional to their weight.
The probability P(i) of selecting the i-th operator o; with a weight w; among
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the set of all operators O is

P(i) = %W (3.1)
k=1 "k

3.2.2 Weight evaluation

In [LGO7], the authors evaluate the operators ran at each iteration using an
efficiency ratio r defined as:
Ac
r=—
At
This ratio is then balanced with the previous weight of the operator w, , using
a reaction factor a € [0, 1]:

(3.2)

wWo=(1-a) wop+ta-r (3.3)

While the reaction factor is important to accommodate the evolving ef-
ficiency of the operators during the search, this method does not cope well
with operators having different running times. Indeed, operators with a small
execution time will evolve faster as they will be evaluated more often. This
can lead less efficient operators to be temporally considered better as their
weight will decrease slower.

Example 3.2.1. Let us consider two operators A and B with running times
of respectively 2 and 4 seconds. Both operators start with an efficiency ratio
of 10 but after some time in the search, A has an efficiency of % and B of
(%) If each operator is separately run for 4 seconds, under a reaction factor
of @ = 0.9; as A will be evaluated twice, its weight will decrease to 0.595
(0.1-(0.1-10+0.9- %) +0.9- %) Over the same duration B would be evaluated
once and its weight would become 1.225 (0.1 - 10 + 0.9 - %). While both
operators will eventually converge towards their respective efficiency, for a
short amount of time, B will have a higher score than A and thus a higher
probability to be selected.

This induces a lack of reactivity in the operator selection. In the follow-
ing, we propose a variation of the weight update rule, more aligned with the
expected behavior in case of different runtimes among the operators.

3.2.3 Evaluation window

The new mechanism proposed evaluates an operator based on its perfor-
mances obtained in a sliding evaluation window:

[t" —w, now] (3.4)
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where t* is the time at which the last best solution was found and w is the
window size meta-parameter. The window thus adapts itself in case of stag-
nation to always include a fixed part of the search before the last solution
was found. This ensures that the operator(s) responsible for finding the last
solution(s) will not have their score evaluated to O after a while in case of
stagnation.

For each LNS iteration i, we record the operator used o;, the time ¢; at
which it was executed, the difference Ac; of the objective and the duration
of execution At;. We define the local/total efficiency ratio L(0)/T (o) of an
operator and the local/total efficiency L/T of all the operators as:

Ziloizo/\tiE[t*—w,now] Ac;

L(o) = (3.5)
Ziloizo/\tie[t*—w,now] At;
> iloimonts Ac;
T(O) _ iloj=oAt;€[0,now] i (3.6)
Zi|oi:o/\ti€[0,now] Atl'
I = Zilt,-é[t*—w,now] Ac; (3'7)
Zilt,—E[t*—w,now] At;
- 2iltie[0now] Aci (35)

 Yijte[onow] Ati

Intuitively, the local efficiency corresponds to estimating the gradient of
the objective function with respect to the operator inside the evaluation win-
dow. If the operator was not selected during the window, its local efficiency
is 0 which might be a pessimistic estimate. Therefore we propose to smooth
the estimate by taking into account T(0) normalized by the current context
ratio L/T. The evaluation of an operator o is computed as:

weight(o) = (1 —A) - L(o) + A - % -T(0) (3.9)

with A € [0, 1] a balance factor between the two terms. As we desire to
evaluate the operator mainly based on its local efficiency, we recommend that
A <0.5.

Note that initially, the weight of the operators is initialized to the same
value and thus the first selection will be random. With some prior knowl-
edge of the problem or about the operators genericity and average efficiency,
it would be possible to bias this initial selection to favor operators that are
expected to perform better. Finally, it is also possible to consider several vari-
ants of a same operator with different parameter values such as an allocated
resource budget or a relaxation size. One could even implement some kind of
nested selection by having a specific roulette wheel tied to each operator to
select its parameter values.
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3.3 Operator portfolio

In this section, we present the relaxation and search operators that we pro-
pose to be part of the portfolio. All of them operate on a vector of integer de-
cision variables. This list is based on our experience and the features available
in the solver used for our experiments. Therefore it should not be considered
as exhaustive.

3.3.1 Relaxation Heuristics

= Random Relaxes randomly k variables by fixing the other ones to their
value in the current best solution. This heuristic brings a good diversi-
fication and was demonstrated to be good despite its simplicity [LS14].

= Sequential Relaxes randomly n sequences of k consecutive variables
in the vector of decision variables. This heuristic should be efficient on
problems where successive decision variables are related to each other,
for instance in Lot Sizing Problems [Fle90; Hou+14].

= Propagation Guided and Reversed Propagation Guided Those heuris-

tics are described in [PSF04]. They consist of exploiting the amount of
propagation induced when fixing a variable to consider together sets
of variables whose values are strongly dependent on each other. To do
so, the domain size of the variables is examined before and after the
assignment of a variable. The difference of domain size allows to detect
which variables are liked to the assigned variable. The basic propaga-
tion guided heuristic freezes together variables that are closely linked
while the reverse variant ensures that such groups of variables are re-
laxed together.

m Value Guided This heuristic uses the values assigned to the variables.
We have five different variants:

— Random Groups Relaxes together groups of variables having the
same value. This variant should be efficient on problems where
values represent resources shared between variable such as bin-
packing problems [SD+08].

— Max Groups This variant relaxes the largest groups of variables
having the same values. It can be useful for problems such as the
Base Station Association and Power Control problem (BAPC) or
Assembly line balancing [Mon+07].

— Min Groups This method relaxes the smallest groups of variables
having the same value (which can be single variables).
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— Max Values It consists in relaxing the k variables having the max-
imum values. We expect this heuristic to be efficient with prob-
lems involving a makespan minimization such as the job-shop
problem.

— Min Values This heuristic relaxes the k variables having the min-
imum values. It should be efficient in case of maximization prob-
lems.

Note that another possible value selection heuristic that was not inves-
tigated would be to relax together variables with close values or which
values are present in some interval. Such heuristic could be useful for
scheduling problems.

m K-Opt This heuristic makes the hypothesis that the decision variables
form a predecessor/successor model (where variable values indicate
the next or previous element in a circuit). It is inspired by the k-opt
moves used in local search methods for routing and clique problems
[Uld+90; KHNO04; KSN07]. The principle is to relax k edges in the cir-
cuit by selecting k variables randomly. The remaining variables have
their domain restricted to only their successor and their predecessor
in the current best solution in order to allow inversions of the circuit
fragments. Figure 3.1 illustrates this process. The left graph shows the
current solution as well as the edges that are cut by the relaxation. The
right graph shows the resulting possible edges. Circuit fragments are
colored in green while the other edges are colored in red. The arrays
show the domains before (top) and after (bottom) the relaxation.

= Precedence Based This relaxation is useful for scheduling problems
and hypothesizes that the decision variables corresponds to starting
times of activities. It imposes a partial random order schedule as intro-
duced in [GLNO5]. To apply this technique in a black box context, the
heuristic assumes that variables represent time values. k variables are
selected to be relaxed. For those their domain is set free. The other vari-
ables have a partial order imposed based on their value in the current
solution. To do so, variables are grouped and sorted by value. Prece-
dence constraints are then added between variables in adjacent groups.

m Cost Impact This operator was described in [LS14]. It expands the
principle of the propagation guided heuristic by considering the im-
pact of the variable assignation on the objective function. To do so, the
effect of the variables on the objective function is estimated through a
cost metric that is measured through several dives. These dives consist
in assigning the values of the current solution successively in a random
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Figure 3.1: Illustration of the K-Opt relaxation

order. The difference of the objective domain size before and after the
assignment of a variable is measured and added to the impact metric.
This metric is then used as weight for a randomized selection, thus bi-
asing the selection towards variables that impact the objective function
the most.

Note that this list of operators is not exhaustive. Many other approaches
could be considered such as using the constraint network to detect linked
variables.

3.3.2 Search Heuristics

A search heuristic explores the search space of the remaining unbounded vari-
ables by iteratively selecting a variable and one of its values to branch on.
They can be separated into two components: a variable heuristic and a value
heuristic. Here are the variable heuristics used:

» FirstFail tries first variables that have the most chances to lead to fail-
ures in order to maximize propagation during the search.

m Conflict Ordering proposed in [Gay+15] reorders dynamically the
variables to select first the ones having led to the most recent conflicts.

= Weighted Degree introduced in [Bou+04] associates a weight to each
variable. This weight is increased each time a constraint involving that
variable fails.
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In combination with these variable heuristics, we used different value
heuristics which select the minimum/maximum/median/random value in the
domain in addition to the value sticking [FD94] heuristic which remembers
the last successful assigned values. We also permit a binary split of the do-
main into <, > branching decisions.

3.4 Experimental Results

As in [PRS16] we use an oracle baseline to compare with ALNS. Our baseline
consists of a standard LNS with for each instance the best combination of
operators (the one that reached the best objective value in the allocated time),
chosen a posteriori. Notice that this baseline oracle is not the best theoretical
strategy since it sticks with the same operator for all the iterations.

We implemented our framework in the OscaR constraint programming
solver [Osc12] where it is available in open-source. We used the portfolio of
operators presented in Section 3.3. We tested our framework on 10 different
constraint optimization problems with two arbitrarily chosen medium-sized
instances per problem. The problems are:

m The Job-Shop scheduling problem [Law84].
= The Quadratic Assignment Problem (QAP) [CB89].

= The Resource-Constrained Project Scheduling Problem (RCPSP)
[SKD95].

= The Steel Mill Slab problem [Mig].

m The Travelling Salesman Problem (TSP) [KFM71].

= The Vehicle Routing Problem with Time Windows (VRPTW) [Sol87].
= The Cutting Stock (Cutstock) problem [GW95], instances from [XCSb].
= The Graph Colouring problem [Lew16], instances from [XCSb].

= The Pigment Sequencing Problem (PSP) [Hou+14].

= The Incapacitated Warehouse Location Problem (UWLP) [MV04],
instances from [XCSb].

We compare:

1. Animplementation of the approach from [LG07] (denoted Laborie here
after) with a reaction factor « of 0.9.
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2. The variant of [LG07] proposed in this thesis (denoted Eval window)
with a sliding window w = 10 seconds and a balance factor A of 0.05.

3. The oracle baseline.

Each approach was tested from the same initial solution (found for each
instance using a first-fail, min-dom heuristic) with the same set of opera-
tors. We used relaxation sizes of {10%, 30%, 70%} and backtracks limits of
{50 bkts, 500 bkts, 5000 bkts}. We generated a different operator for each
parameter(s) value(s) combination but kept the relaxation and reconstruction
operators separated. We have 30 relaxation and 36 reconstruction operators,
which yields a total of 1080 possible combinations to test for the baseline.
Each ALNS variant was run 20 times with different random seeds on each
instance for 240 seconds. We report our results in terms of cost values of the
objective function for each instance. In order to compare the anytime be-
haviour of the approaches, we define the relative distance of an approach at
a time t as the current distance from the best known objective (BKO) divided
by the distance of the initial solution:

objective(t) — BKO)
(objective(0) — BKO)

(3.10)

A relative distance of 0 thus indicates that the best known solution has been
reached.

We report the final results in Table 3.1. For each instance, we indicate
the best known objective (BKO) and the results obtained after 240 seconds of
LNS. For each approach, we report the average objective value (obj), the stan-
dard deviation (std) if applicable and the relative distance to the best known
solution (rdist). The best results between the two evaluated approaches are
highlighted in green. Figure 3.2 plots the average relative distance to the best
known solution in function of the search time.

The results seem to indicate (at least on the tested instances) that the
weight estimation based on an evaluation window tends to improve the per-
formances of the original ALNS as described in [LG07]. The average relative
distance to the best known solution is of 0.12 at the end of the search using
the evaluation window, while it is of 0.18 using our implementation of [LG07].
None of the ALNS approaches is able to compete with the baseline (except on
a few instances), but they obtain reasonably good solutions in a short amount
of time. Furthermore, their any-time behavior is good when compared to the
baseline and tends to get closer towards the end of the search.

Figure 3.3 shows a heat map of the relative selection frequency of the
relaxation operators for each problem in the Eval window approach. The
darker an entry, the more frequently this operator was selected for the prob-
lem instance. Two interesting observations can be made. First, a subset of
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Figure 3.2: Average relative distance to BKO during the search

operators emerges more frequently for most of the problems. Second, this
set varies between problems of different types, but is correlated between in-
stances of the same problem. For some problems this set of operators is more
uniform than others. For example, on the warehouse location and the cutting
stock problems the operators are selected rather uniformly. The job shop has
a strong preference for the max-val and precedency operators. On the con-
trary, cost-impact is almost useless for the makespan objective of the job shop.
Not surprisingly the RCPSP, also a scheduling problem, selects the same two
operators as the job shop. The random operator is generally good except for
scheduling problems. These results confirm our intuition and a priori experi-
ence of which operator would be the most successful on each problem.
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3.5 Conclusion

This chapter studied the use of an Adaptive Large Neighborhood Search (ALNS)
to solve problems in a black-box context. The weight update mechanism of

the ALNS framework was studied and a portfolio of relaxation and search

operators was proposed. The contributions of this chapter are:

= A new weight update mechanism that is based on an evaluation win-
dow and is able to better deal with operators presenting variations in
running time (Section 3.2.3).

= A portfolio of relaxation and search operators designed to solve various
optimization problems in a black-box context (Section 3.3). This port-
folio includes original operators such as the K-Opt relaxation heuristic.

= An experimental evaluation of the ALNS framework on a set of 10 dif-
ferent optimization problems (Section 3.4).

The experimental results show that the evaluation window approach pro-
posed improves the performances of the ALNS compared to the efficiency ra-
tio from [LG07]. Additionally, the results highlighted by Figure 3.3 show that
the ALNS is able to select efficient operators for the problem at hand among
those present in the portfolio. This comforts us that self-adaptive LNS could
reach the performances of an expert that would select the operators manually
for each problem.



Patient Transportation
Problem

After the development of the black-box search strategy presented in Chap-
ter 3, the focus of this thesis was turned to the resolution of an optimisation
problem provided by the Centrale de Services a Domicile (CSD) [CSD], one of
the partners in the PRESupply project. The CSD is a non-profit organization
operating at Liege (Belgium) which provides a range of home help services.
One of them is transportation of people to medical appointments. The prob-
lem to solve, which is called the Patient Transportation Problem (PTP), is to
route a fleet of vehicles in order to transport patients between their homes
and medical appointments.

Over the years, there is an increasing demand for transports by disabled
and invalid people requiring health care but that do not have the ability to
go to hospitals by themselves. In this context, organizations managing the
transportation of patients from their home to health centers are present in
many cities. Their goal is to provide a door-to-door transportation service to a
set of patients on a daily basis. Most of them are non-profit organizations that
often have limited resources. Besides, they often do not have an expertise on
decision support tools in order to assist them in their operations. This leads
to sub-optimal decisions in most cases which has a direct negative impact
on the patients and also leads to financial losses. Therefore, minimizing the
operational costs while maintaining a sufficient quality of service is highly
desirable and both aspects must be properly balanced.

The Patient Transportation Problem, is a specific case of the well-known
Dial-a-Ride Problem (DARP) [CL07]. The goal of this last problem consists
in designing routes and schedules for a set of users who specify pickup and
delivery requests between origins and destinations. It is especially present for
the transportation services in the medical domain [MM11; Liu+13; DPd17].

As a first observation, we can see that most of the approaches are based
either on Mixed Integer Programming, Local Search or Dynamic Program-
ming. Conversely, solutions based on Constraint Programming (CP) seem to
have been less studied even if some recent works exist [BPR11; BCL12; PS13;
JV11; LAB18]. However, thanks to its flexibility, we believe that CP can play
an important role for solving practical DARPs.

47
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4.1 Problem Description

The Patient Transportation Problem (PTP) is a static optimization problem
aiming to bring patients to health centres and to take them back home once
the care has been delivered. To do so, a fleet of vehicles is available. The
fleet is heterogeneous and is mainly composed of ambulances and private
drivers operating as volunteers. Each patient has a set of characteristics and
is represented by a request. The objective is to satisfy as many requests as
possible within a fixed horizon, which is typically bounded by the working
hours. Three aspects of decision are considered in the PTP:

1. selecting which requests to service;
2. assigning vehicles to requests;
3. routing and scheduling appropriately the vehicles.

An illustration of the PTP on a toy example with two patients (A and
B) and a single vehicle is shown in Figures 4.1 and 4.2. A possible solution
consists in the following sequence: taking A (S;), bringing A to the hospital
(S2), taking B (S3), taking back A (S4), dropping A to its home (S5), bringing B
to the hospital (Sg), waiting for B (S7) and dropping B to its home (Sg).

¢ H
2

Figure 4.1: Illustration of the initial situation of a PTP with one vehicle and
two patients

Some specific characteristics must also be considered in the PTP. Here are
some of them:

= Patients can have several constraints such as a maximum travel time
or a maximum waiting time at the hospital. The time to embark and
disembark a patient must sometimes be considered and might differ
between patients.
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Figure 4.2: a possible solution for the PTP with one vehicle and two patients

= The set of requests is heterogeneous. Some patients only require to
go from their home to a health center, while some of them also need
a return trip once the care has been delivered. In the latter case, they
must be taken back home, or to another place if requested. It is also
possible to have patients requiring only a return trip. Besides, requests
can involve more than one passenger at once. For instance, a child can
be accompanied by his parents.

= The vehicle fleet is heterogeneous. Vehicles can differ by their capac-
ity, their initial/final location (typically a depot) and their availability.
Some patients can only be taken by particular vehicles. For instance,
patients in wheelchairs can only be transported by specific vehicles.

= Availability of vehicles can be non continuous. For instance, they can
be available from 9am to 1pm and from 3pm to 6pm.

Note that this version of PTP is static: the whole set of requests is known
beforehand and no new request is added in real time. It is used by the organi-
zation for designing the first daily schedule given the pool of requests received
the previous days. Let us finally notice that as a variant of the DARP, the PTP
is a NP-complete problem [BKS98].

4.1.1 Formal definition

The version of the problem solved in this chapter is defined in formal terms
as such: Similarly to the DARP, the PTP is described on a complete graph
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G = (X,E) and a transition matrix trans;; contains the distance for each
edge (i, j) € E.

With each PTP request r € R is associated the service time required to
embark or disembark the vehicle sro,, the load or number of places required
in the vehicle ld,, the category of patient cat,, the time of the appointment
rdov,, the duration of the care drdov,, and a parameter maxw, that indicates
the maximum waiting time for the request defined as the difference between
the start (or end for backward travels) of the patient appointment and the
departure from the origin stop (or arrival at the return stop for backward
travels). Each request consists in one or two travels (in case of two-way trip).

The set of all travels is noted T. Each travel t € T is composed of a couple
of stops (p,d) where p € X corresponds to the pickup of the patient and
d € X to their drop. The notations ¢t € r and i € r indicates that the travel ¢ or
stop i is part of the request r. A travel t € r is either forward: from a starting
place org, € X to a destination place dst, € X or backward: from dst, to a
return place ret, € X. Note that a request can either include a single forward
travel, a single backward travel or both a forward and a backward travels. In
the two first cases, the drop that is not used (ret, or org,) has a value of —1.

PTP vehicles are heterogeneous. Each vehicle v € V has a capacity k,, a
set C, of request categories it can serve, a start depot sd, € X, an end depot
ed, € X and a time window [savail,, eavail,] in which the route must be
done.

Each PTP stop i € X is associated to a time window [ea;, [a;]: For forward
travels, the time window of each stop i € r is [rdv, — maxwy, rdv, — srv,]; For
backward travels the initial window is [rdv, + drdv,, rdv, + drdv, + maxw, —
sru,|; For depot stops of a vehicle v the window is [savail,, eavail,].

The essential parameters of the problem are summarized in Table 4.1. The
rest of the parameters can be computed based on these essential parameters.

Note a few differences with the DARP problem defined in section 2.1.5:
Rather than being defined by global parameters (X, [0; Tmax]| and K), the
depots (sd and ed), availability windows (savail and eavail) and capacities k
can be different for each vehicle. There is no maximum route duration param-
eter Dy, 4. The requests have a parameter maxw that indicates the maximum
wait time of the patient. The requests also include a parameter cat which is
the category of the patient transported. Conversely, each vehicle is character-
ized by a set of patient categories C that it can take. Finally, the requests can
include one or two travels. This last difference is important as it introduces
dependencies between some travels.

The objective of the PTP is to maximize the number of requests serviced
(0) under the following constraints:

(1) Each vehicle v begins at its depot sd,;
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Table 4.1: Essential parameters of the problem

Entity | Parameter | Meaning
org, Starting place of the patient of request r.
dst, Place where the care is delivered for the patient of request r.
ret, Return place of the patient of request r.
sroy Service time for request r.

Request | I, Number of places taken in a vehicle for request r.
rdv, Time at which the health care service begins for request r.
drdv, Time needed to deliver the care for the patient of request r.
maxwy Maximum waiting time for request r.
cr Category of patient of request r (wheelchair, without, etc.).
ko Capacity of vehicle v (i.e. the number of places available).
Cy Set of patient categories that vehicle v can take.

Vehicle sdy Starting depot for Vebicle v.
ed, Return depot for vehicle v.
savail, Time at which vehicle v can start its route at its starting depot.
eavail, Time before which vehicle v must end its route at its return depot.

(2) Each vehicle v ends at its depot ed,;

©)
4)

)

(6)

(8)

©)

(10)

(11)

The load of any vehicle v never exceeds its capacity k,;

For each pair of stops serviced by a same vehicle (i, j), the difference
between the arrival time at the second stop (j) and the departure at the
first stop (i) is higher or equal to the travel distance between the two
stops trans; j;

For each stop i, the service of the stop starts inside its time window
leai, la;];

A pickup stop p; is always visited before the associated drop stop d;

A pickup stop p; and its associated drop stop d; are both serviced by
the same vehicle;

For each stop i associated to a request r, the service time to embark or
disembark the vehicle sro, is respected;

For each stop i € r, the servicing vehicle v is compatible with the stop
(cat, € Cy);

The route of each vehicle v is contained in its availability window [savail,,
eavail,];

A patient wait time never exceeds its maximum wait time maxw,.

Note that constraints (1) to (8) are essentially the same as in the DARP. Con-
straints (9), (10) and (11) from the DARP are replaced by different constraints.
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4.2 Related Work

To the best of our knowledge, the approach of Liu et al. [LAB18] is the closest
and most recent work related to our problem. The authors model and solve
the Senior Transportation Problem (STP) using different approaches: CP, MIP
and Logic Based Benders Decomposition. The objective is also to maximize
the sum of the (weighted) served requests. Their results show that the CP
model has the best performances. The STP shares many similarities with our
problem but has nevertheless some differences:

= Requests are one-way only and there is no return trip.

m The problem is a transportation problem where the selection of each
request is constrained only by the vehicles availability and a maximum
travel time, there are no constraints related to the appointment for care.

= There are no constraints linking patients to specific vehicles.

While some constraints are straightforward to add in the STP model, the
integration of others requires more modifications. For instance, by properly
defining the time windows to make sure the patients arrive on time for their
care, appointment constraints for the care can be handled by the STP. How-
ever, additional constraints are necessary to link forward with backward trips
and preserve the consistency of the tour. Ensuring that vehicles are the same
or can be different for both trips also requires some modifications.

Besides, the modeling and solving parts are also different. In the ap-
proach of Liu et al. [LAB18], each decision variable is linked to a location
and auxiliary variables are introduced to express that a location is visited by
a particular vehicle. In our model, the decision variables are linked to trips
instead of visited locations. We use simple integer variables coupled with
constraints to represent activities and time windows. In addition, we express
capacity constraints with the standard cumulative constraint [BCR12] and
can take advantage of efficient propagators [GHS15a; Vil11; GHS15b; OQ13;
Sch+11b]. Conversely, Liu et al. use the dedicated variables of CP Optimizer
to represent activities, time windows and vehicle routes as well as enforce
the capacity constraints of vehicles through renewable resources and cumul
functions using the StepAtStart functions from CP Optimizer. Those ab-
stractions are less standard in CP solvers and modeling languages such as
Minizinc [Net+07] or XCSP3 [Aud+20] (renewable resources can be modeled
with cumulative constraints [SC95]). Finally, we use a custom search strategy
combined with a Large Neighborhood Search while Liu et al. rather uses the
CP Optimizer default search.

After the publication of the initial paper on the PTP that contains the
other models presented in this chapter, the model for the STP proposed by
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Liu et al. was adapted to the PTP. The implementation is done on the java
API of the academic version of IBM ILOG CPLEX CP Optimizer V12.8. It is
based on the CP model for the STP proposed in [LAB18] with the following
modifications to accommodate the additional constraints of the PTP:

m The compatibility of vehicles with patients is dealt with by restricting
the initial domain of the sequence variables representing the route of
each vehicle to filter out auxiliary activities that represent stops of in-
compatible patients.

= The appointment time constraints are enforced using the dedicated sup-
port of CP Optimizer for time windows for activity variables.

m The forward and backward travels of the requests are bound together
by using additional variables. Each travel activity is linked by a service
boolean variable that indicates whether the activity is performed or
not. The service variables corresponding to travels for a same request
are linked together using an equality constraint. This ensures that both
travels are either serviced if the request is taken or not serviced if the
request is refused. Additionally, these variables are also linked to a
dedicated service variable for each request which is in turn used in the
objective function.

= The objective is changed to maximizing the number of serviced re-
quests. This is done by binding the objective variable with the afore-
mentioned request service variables using a sum constraint.

The search used is CP Optimizer default adaptive LNS search. The comparison
between this approach and the others presented in this chapter is discussed
in section 4.6.5.

4.3 Scheduling Model

The first approach considered is based on a modeling of the problem as a con-
strained based scheduling problem. The intuition is to represent the trans-
portation of a patient as an activity performed by the vehicle. Doing so al-
lows to use powerful constraints designed for scheduling problems such as
the cumulative resource constraint [BCR12].

4.3.1 Decision Variables

The problem is modeled as a scheduling problem with conditional activities
using the formalism proposed by Laborie et al [LR08; Lab+09; Lab+18]. Thus,
each travel t € T will be modeled as a conditional activity A;. In the standard
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form, each conditional activity A; is modeled with four variables, a start date
s(A;), aduration d(A;), an end date e(A;) and a binary execution status x (A4;).
If the activity is executed, it behaves as a classical activity that is executed on
its time interval, otherwise it is not considered by any constraint. In our case,
we also define v(A;) as the vehicle that has been assigned to an activity A;.
Note that since the vehicle variable is linked to the activity, Constraint (7)
is implicitly enforced. Each request r is attached to a forward activity (AF)
defining the time slot when the patient is brought from its home to the health
center (from org, to dst,) and to a backward activity (A) for the time interval
of the return trip (from dst, to ret,). Furthermore, A; denotes any activity,
either forward or backward, AT the set of forward activities and AB the set
of backward activities. Equation 4.1 defines A2 and A? as the origin and the
destination locations of the activities linked to a request r.

A? =

r

org, ifA, € AF
{ dst, if A, € AP
Ad — { dst, if A, € AF
"7 ret, ifA, e AB

VreR: (4.1)

Temporal relations between activities are illustrated in Figure 4.3 for an
arbitrary example. The focus is on activity AF. There are four specific transi-
tion times (trans; j) with any other activity (Af on this example), they corre-

spond to the time to go from Af to A?, from A7 to A?, from A? to Af and from

A? to A;l. Activity AT must also be completed before the appointment of the
request (rdv,), and the related backward activity cannot begin before the end
of the appointment (rdv, + drdv,). Note that the service time srov, is included
in the corresponding activities (at the beginning and at the end) for each re-
quest r € R Finally, each activity is executed on a resource v, representing the
vehicle assigned to the activity.

Decision variables related to the selection of requests are depicted in Equa-
tion (4.2). They are boolean variables defining whether the request is selected
or not.

VreR: S(r) e {0,1} (4.2)

Variables related to the conditional activities are shown in Equation (4.6)
and illustrated in Figure 4.4. Patients cannot arrive at the health center af-
ter the time at which the appointment begins (forward activity) and cannot
leave it before the end of the care (backward activity). The domain of the ve-
hicle selection variables (v(r)) contains only the vehicles that are compatible
with the patient category cat, of the request (Constraint (9)). Domains for
forward activities implicitly handle the deadline satisfaction for the care for
each request. It ensures that the patients arrive to the health center ahead of
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Figure 4.3: Temporal dependencies between activities

schedule for their care (Constraint (5)):
Vr e R: e(Af) < rdo, (4.3)

Similarly, domains for backward activities ensure that patients cannot leave
the center before the time at which the care has been delivered (Constraint
©)):

Vr € R: s(AD) > rdv, + drdo, (4.4)

The maximum waiting time (Constraint (11)) is also enforced through the
initial domain of the time windows:

Vr € R: s(AL) > rdo, — maxw, A e(A®) < rdo, + drdo, + maxw,  (4.5)

s(AF) € [rdv, — maxw,, rdo,]

e(Al) € [rdv, — maxw,, rdv,]

d(AT) = e(AT) - 5(AT)

x(AF) € {0,1}

v(AD) e {jljeV Ace €C)}

s(Af) € [rdv, + drdv,, rdv, + drdv, + maxw,]
e(AB) € [rdv, + drdv,, rdv, + drdo, + maxw,]
d(AP) = e(AP) - s(AP)

x(AB) € {0,1}

0(AB) € {v |v eV Acat, € CU}

VreR: (4.6)
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e(A7) s(47)

Figure 4.4: Illustration of the variables linked to a request r

4.3.2 Constraints

Binding Requests to Activities A request is selected if and only if the
forward and backward activities are both completed:

VreR: (S(r)=1) = (x(A) =1 Ax(AP) = 1) (4.7)

Forward and Backward Selection A forward and backward activity linked
to the same request must have the same execution status (Equation (4.8)). This
constraint is redundant with Equation 4.7 but can nevertheless be used for a
better pruning.

Vr e R: x(AF) = x(AB) (4.8)

Inter-Activity Time Travel Consistency The start/end of an activity can-
not overlap with the start/end of other activities when they are processed by
the same vehicle. The time interval between any two locations visited by a
same vehicle is at least the time required to travel between these two locations
(Constraint (4)). It is also referred as setup time. It is illustrated in Figure 4.3.
Additionally, the service time to pickup or drop a patient must be taken into
account (Constraint (8)). These constraints are enforced through transition
constraints posted for each pair of activities (Equation (4.9)). The V relation



4.3. Scheduling Model 57

is used to consider situations where activity A; occurs before or after A;.

s(Aj) —s(4;) = transag,ac + sTo;)V
s(4;) —s(4)) = transA;-_,A;_a + srvj)
s(A)) —e(A) = transA?,Aj_z)v )
s(A;) —e(4;) = transA?’A;z)

e(A;) — s(A;) 2 transa 4o + srv; + srvj)V
i

(0(A) =0(4y)) -

(
(
(Z)(Ai) = U(AJ)) e E
Vi,jeR|i#j: (
(0(4) =0(4)) - (e(A;) —s(4;) = transya 4o +sr0; + sTo;)
(e(A)) —e(A) 2 trans4a qa +510;)V
(

e(A;) — e(A)) > transa 4o + srv;)
i

(0(A) =0v(4)) —

(4.9)
An alternative way to enforce the travel times is to use a NoOverlap (see
Section 2.2.1.2) with transition time constraint imposed on activities created
at each location [LAB18]. In particular, the propagator proposed by Deje-
meppe et al. [DVS15; Van+16; VDS20] could possibly be extended to handle
optional activities. But the decomposition approach relying on reification and
binary constraints is arguably the most portable formulation for other solvers
and modeling languages.

Intra-Activity Time Travel Consistency The duration of each activity
cannot be lesser than the time required to go from the origin to the destination
(Constraint (4)) (Equation (4.10)). Additionally, the service time to pickup and
drop a patient must be taken into account (Constraint (8)). This constraint also
enforces the precedence between the pickup p; and the drop d; for each travel
t (Constraint (6)).

VreR: d(A,) = trans o sd + 2 % sroy (4.10)

Cumulative Resource At any moment, the number of places occupied by
patients in a same vehicle v cannot exceed its capacity k, (Constraint (3)):

YoeV: cumulativeResource({(Ai, ld)|ieTAov(A)) = v},kv) (4.11)

This constraint corresponds to the cumulative global constraint described in
Section 2.2.1.2. In our case, each activity A, consumes /d, resources. We use
the filtering algorithm of Gay et al. [GHS15a]. The vehicle of a non-executed
activity is not considered by the constraint.

Vehicles Availability Vehicles also have constraints on their availability
(Constraint (10)). They are available during a period and cannot leave their
initial position (i.e. a depot) before the period (Constraint (1)). Similarly, they
have to go back to their end depot before the end of the period (Constraint
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(2)). These are characterized by the parameters sd, the starting location of a
vehicle v, ed, its return depot and [savail,, eavail,] its availability window.
We define Dy = sdy(4,) and Df = edy(4,) as the origin/destination location of
the vehicle linked to activity A, as defined in Equation (4.6). Constraints on
vehicle availability are expressed in Equation (4.12). It states that an activity
cannot begin before the availability of its vehicle plus the time required to
go from the initial depot to the patient place. Similarly, the vehicles must
have enough time to return to their depot in order to stay in the availability
window.

s(Ar) = savaily(a,) + transpe ae

e(Ay) < eavailya,) — transd pa (4.12)

VrER:{

Empty Locations Some patients only require to go from their home to a
health center without return trip. It is also possible to have patients needing
only a trip from the health center to their home. A location can thus be empty
which is indicated by a value of —1 in either an origin location org, or a return
location ret,. When the start location is empty the request has no forward
activity. Similarly, there is no backward activity when the return location is
empty. In such cases, some constraints are simplified or not posted in order
to consider only situations involving a single forward or a backward activity.
More specifically, Equation (4.7) is adapted as shown in Equation (4.13) (V
instead of A) and the constraint in Equation (4.8 does not hold anymore).

VreR: (S(r)=1) = (x(A)) =1 v x(AP) = 1) (4.13)

4.3.3 Objective Function

The criterion considered for the objective function is the satisfaction of re-
quests (0). We want to maximize the number of served requests (Equation
(4.14)).

maX(ZS(r)) (4.14)

reRr

4.3.4 Extensions of the Model

One of the main asset of this model is its flexibility to easily accommodate new
constraints depending on the situation. This section presents some variants
of the problem and how they can be integrated in the core model.

Mandatory Requests It is possible to enforce the selection of some re-
quests (Equation (4.15)). Parameter m, is a boolean value indicating if a re-
quest r is mandatory.
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Vie{r|reRAm,=1}: S(r)=1 (4.15)

Maximum Ride Time It is also possible to constraint the maximal ride
time of patients. It prevents situations where a patient stays too long in a
vehicle. To do so, the duration of each activity would be constrained based
on a parameter maxr, (Equation (4.16)).

Vr € R: d(A;) < maxr, (4.16)

Non Continuous Vehicle Availability Some vehicles can have non con-
tinuous availability. For instance, they could be available from 9am to 1pm
and from 3pm to 6pm. We would handle this specificity by duplicating the
vehicles for each continuous interval. The availability of each vehicle is then
composed by a unique interval. In most practical cases, vehicles would be
duplicated only once (morning and afternoon shift).

Note that as different start and end depot can be specified for a same
vehicle, this approach would not necessarily imply a return to the depot for
a pause. Instead, a dummy depot with a transition time of zero to each other
location could be used to model such case.

Same Vehicle Forward/Backward The forward and the backward trips
can be constrained in order to be handled by the same vehicle (Equation
(4.17)). Parameter g, is a boolean value indicating if the forward and the
backward trip of request r must be handled by the same vehicle.

VreR| g =1: v(AF) =o(AB) (4.17)

Alternative Objectives Other objective functions can be considered. For
instance, we could be interested in minimizing the accumulated travel time
for all the patients (Equation (4.18)). The travel time of a request corresponds
to the duration of its activities.

min ( > d(A,)) (4.18)
reR

It is also possible to minimize the maximum travel time (Equation (4.19)). To
do so, the maximal duration of the whole set of activities has to be minimized.

min ( max d(Ar)) (4.19)

Other objective functions are also proposed in [CL03b]. They can be used
together inside the same model using either a lexicographic ordering or a
Pareto multi objective criterion [NZE05].
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4.4 Successor Model

As an alternative to our approach, a successor model was considered. Such
models are often employed for VRP problems and similar models were used
for solving DARPs using CP [BCL12; JV11]. It uses the circuit constraint men-
tioned in Section 2.2.1.2 to model the routes of the vehicles as a circuit.

Each trip is represented by two stops which correspond to the place where
the patient is loaded and the place where they are unloaded. Each request has
then two or four stops depending on whether it is a single trip or a double trip.
The successor and the predecessor of each stop are both modeled by a vari-
able indicating the next and the previous stop in the route. Additional stops
represent the starting and ending depots of the vehicles. All the routes form a
single circuit by assigning the successor of the end depots to the starting de-
pot of the next route. As in [JV11], maximum wait time and vehicle capacity
constraints are modeled via auxiliary variables representing the load, serving
vehicle, and serving time for each requests. A circuit constraint [Lau78]
ensures that the successor and predecessor variables form a circuit without
sub-tours for each vehicle. The requests that are not serviced are assigned to
a same dummy vehicle L with infinite capacity and an availability window
of [0; +c0].

4.4.1 Decision Variables

Selection variables (S(r)) and activity variables (s(A;), d(A;), e(A;) and v(A;))
from the scheduling model are kept with the following changes: Activity ex-
ecution variables (x(A;)) are not needed for this model. The dummy vehicle
1 is added to the domain of each vehicle variable.

Additional variables are used for each stop (location to visit). Note that
destination stops (dst,) for requests that have both a forward and a backward
trip are duplicated (noted dst;) as they correspond to two different steps in
the routes of the vehicles. Additionally, two depot stops (sd, and ed,) are
created for the dummy vehicle L. The set of all the stops used in the model
is noted X* and the set of the vehicles is noted V* = V' U L. The variables for
each stop x € X™ are:

Successor variables succ(x) indicate the next stop in the route. For end
depots they are assigned to the start depot of the next route:

sdyy1 ifo < |V

sdy  ifo=|VH (4.20)

Yo € V' : succ(ed,) = {

Otherwise, their domain is the set of all stops minus the starting depots.
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Predecessor variables pred(x) indicate the previous stop in the route. For
start depots they are assigned to the end depot of the previous route:

edv_l ifo>0

edyys ifo=0 (4:21)

Yo € V' pred(sd,) = {

Otherwise, their domain is the set of all stops minus the end depots.

Arrival variables arr(x) indicate the arrival time at the stop. For depot
stops, their domain corresponds to the availability window of the vehi-

cle:
arr(sdy) = [savail,; eavail,]

arr(ed,) = [savail,; eavail,| (4.22)

YoeV*: {
For other stops, they are views of the corresponding activities starts
and ends:
arr(org,) = s(AT)
arr(dst,) = e(Al) — sro,
arr(dst!) = s(AB)
arr(ret,) = e(AB) - sro,

VreR: (4.23)

Departure variables dep(x) are views of the arrival variables that indicate
the departure time at the stop.

+ | dep(sdy) = arr(sdy)
Voevr: { dep(ed,) = arr(ed,) (424)
Vr e RVx er: dep(x) = arr(x) + sro, (4.25)

Vehicle variables vcl(x) indicate the vehicle that serves the stop. For de-
pots, they are assigned to a single vehicle:

vcl(sdy) = v

vel(edy) =0 (4.26)

VU€V+:{

For other stops, they are views of the corresponding activities vehicles:

vel(orgy) = v(Af)
ocl(dst,) = v(AL)
ocl(dst!) = v(AB)
ocl(ret,) = v(AB)

VreR: (4.27)

4.4.2 Constraints and Objective

The Cumulative Resource constraint (Equation (4.11)) is kept as in the schedul-
ing model. The Binding Requests to Activities constraint (Equation (4.7)) is
changed in:

VreR: (S(r)=1) = (v(Al) # L Au(AP) # 1) (4.28)
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The Forward and Backward Selection constraint (Equation (4.8)) is changed in:
VreR: v(Af) # L =0(AB) # 1 (4.29)

The other constraints from the scheduling model are not used. The objective
is kept the same as in the scheduling model (Equation (4.14)). The following
constraints are added:

Circuit Two constraints are used to model the routes as a circuit (Equa-
tions (4.30) and (4.31)). The Inverse constraint (see Section 2.2.1.2) links to-
gether the successor and predecessor variables so that they reflect the same
links between predecessor and successor in both ways. The Circuit constraint
enforces that the predecessor and successors form a hamitonian tour (see Sec-
tion 2.2.1.2).

Inverse(pred, succ) (4.30)
Circuit(succ) (4.31)

Time Travel Consistency In order to enforce time travel consistency be-
tween predecessors and successors, the following constraints are added:

arr(x) > dep(pred(x)) + transyred(x)x
arr(succ(x)) > dep(x) + transy syce(x)
(4.32)

Vx € X*: ocl(x) # L = {

Vehicle Consistency The vehicle consistency between successive stops is
enforced by the following constraints:

vel(pred(x)) = vel(x)if x is not a starting depot

Ucl(succ(x)) = z)cl(x)ifx is not an end depOt (433)

Vx e X' {
Additionally, the vehicle consistency for a same travel is enforced by the con-
straint:

Y(p,d) € T : vcl(p) = vcl(d) (4.34)

4.5 Optional Decision Search

The search tree for both models is explored using a standard branch and bound
depth first search. The decision variables are divided into two categories: the
request variables (Equation (4.7)) and the activity variables (Equation (4.6)).
For the successor model, stop variables (Equations (4.20) to (4.27)) are also
considered as activity variables. Given the main objective of the problem
(maximizing the number of served patients), our primal heuristic is to select
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patients on the left branches (S, = 1) and discard them on the right branches
(S; = 0). Whenever a patient has been selected in a search node, all its related
activity variables are subsequently assigned (start time, duration and end time
and vehicle) before considering again the next patient selection variable. On
the contrary, whenever a patient is not selected (S, = 0 on the right branch),
there is no need to consider the other decision variables related to this patient.
The idea is to branch on the activity variables only if the related request vari-
able has been selected (S, = 1). Otherwise, no search is performed on the
activity variables.

We denote this search strategy as the Optional Decision Search. The main
asset of this search is that activity variables are branched on only when they
are relevant to a solution. It drastically reduces the size of the search tree. An
example of search tree is illustrated in Figure 4.5. Algorithm 3 presents the
pseudo-code for the method responsible to select the next branching decision.

Algorithm 3: OptionalDecisionBranching()

Data: decisionVars: Boolean decision variables;

optionalVars: Optional variables;

varsToBranchOn: Optional variables to branch on, initially empty
1 if varsToBranchOn.isEmpty () then

2 currentDecision < decisionHeuristic (decisionVars) ; // Selects
the next decision var to branch on
3 varsToBranchOn « getLinkedVars (optionalVars, currentDecision) ;

// Gets the optional vars linked to the selected decision
4 branch on currentDecision;

5 else

6 currentDecision < optionalHeuristic(varsToBranchOn) ; // Selects
the next optional var to branch on

7 varsToBranchOn.remove (currentDecision);

8 branch on currentDecision;

This meta-search strategy for optional activities can be combined with
any existing variable-value heuristic. It could also be used for similar appli-
cations such as packing problems [DD92].

Example 4.5.1. For example the Rectangle Packing Problem consists in pack-
ing as much small rectangles as possible in a large polygon without overlap.
This problem can be modeled as such: each small rectangle r is associated to a
boolean decision variable S(r) that indicates if it is part of the solution and a
series of optional variables that indicate how it arranged in the solution. The
optional variables are x(r) and y(r) that indicate the coordinates of one of the
corners of the rectangle and rot(r) which indicates its rotation. The optional
decision search can be used as such: the main search tree branches on the
decision variables; when a decision variable is set to true, a sub-search occurs
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Figure 4.5: Canonical shape of the search tree for two request selection vari-
ables (Sp and S7)

on its optional variables in order to find a suitable position for the rectangle.
An illustration of this problem is given in Figure 4.6.

As a variable heuristic on the request variables we use a Conflict Order-
ing Search heuristic (COS) [Gay+15]. A conflict is recorded on a request only
when it is impossible to assign in the sub-tree all its other activity variables.
The fallback heuristic combined with COS is to select the next requests with
the highest minimum slack, defined as the sum of the minimum duration mul-
tiplied by the patient load for its forward and backward activities. The sub-
search on the other activity variables follows a min-domain first fail strategy
for the variable selection and a custom greedy value heuristic based on the
type of the corresponding variable which can be a time-related decision or a
vehicle choice. In the former case, the heuristic selects the closest time to the
corresponding appointment. In the latter case, the vehicle that has the most
remaining places is selected.

Large Neighborhood Search In order to boost the performances on large
instances, a Large Neighborhood Search (LNS) [Sha98] is also used. At each
iteration, a set of request variables is chosen randomly and then relaxed. The
other variables are fixed to their value in the last solution. For the request
variables that are selected (S, = 1), the corresponding activity variables are
also fixed based on the current solution. The remaining unbound variables
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Figure 4.6: Illustration of a rectangle packing problem

form a smaller search space which is explored using the search defined earlier.
A new iteration is started when the reduced search space is completely ex-
plored or once a fixed number of backtracks is reached. The usage of an ALNS
approach was considered but discarded as preliminary experiments showed
no improvement compared to the basic LNS with a conflict ordering search
and the optional decision search.

4.6 Experimental Results

This section evaluates the performance of the models on synthetic and real
instances. The models tested are referred as the Scheduling with Optional De-
cision Search (SCHED+0DS) and the Successor (SUCC) approaches. They corre-
spond to the models described in Sections 4.3 and 4.4 The objective considered
is to maximize the number of requests satisfied (Equation (4.14)).

4.6.1 Approaches Considered

Our two models are compared with three other approaches: a greedy search,
the same CP scheduling model without the Optional Decision search and a
similar scheduling model implemented in CP Optimizer. Note that the Suc-
cessor approach was only considered with the optional decision search as the
version with a classic search did not perform well enough during preliminary
experiments.
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Greedy Search (GREEDY) It mimics the manual decision process used by
the non-profit organization. It consists in selecting first the requests having
the earliest starting time and choosing for them the closest compatible vehicle.
The idea is to minimize the time between the trips of each vehicle across the
requests. Each trip is inserted at the earliest possible time such that later trips
can be inserted with more flexibility. If a trip cannot be inserted, the request
is discarded.

This approach is sub-optimal as it considers only one trip at a time and
thus the vehicles will only take one patient in charge at the same time. How-
ever, it is fast and close to the process that would be used by a human operator
in order to find a solution manually. Note that this greedy search does not
take into account the waiting time of the patients or other objectives. It is thus
only comparable with models that maximize the number of requests taken.

CP Optimizer implementation (CPO) The scheduling model has been im-
plemented in IBM CP Optimizer in order to compare our search with the de-
fault search proposed by this solver. This search combines an adaptive LNS
with a failure directed search (FDS) strategy [VLS15]. In order to accommo-
date the solver, the capacity constraints of vehicles are modeled using cumul
functions from CP optimizer.

Scheduling Model with Simple Search (SCHED) It corresponds to the
model presented in Section 4.3 without the Optional Decision search heuristic.
Additional reified constraints assign the activity variables to a default value
when a request is not served in order to avoid wasting time searching on
activity variables when the corresponding request is not selected.

4.6.2 Datasets Used

The experiments are based on two datasets, a synthetic and a real one. The
synthetic dataset has been randomly generated based on the characteristics
of the problem. Synthetic instances are classified according to their size, ex-
pressed by the number of requests (|R|), available vehicles (|V|) and health
centres (|H|) as well as their difficulty which is related to the number of con-
straints and the availability of vehicles. Note that the while increasing R and
H has a direct impact on the size and thus difficulty of the instance to solve,
increasing V actually makes the instance easier as more vehicles are available
to transport the patients.

The real dataset has been provided by the non-profit organization. It cor-
responds to one month of exploitation with one instance per day. Each of
them contains the requests received for the day, the vehicles available and
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the distance matrix that was computed using the direct distance between ge-
ographical coordinates. In terms of difficulty and number of constraints, this
dataset is situated between the easy and medium synthetic datasets.

The instances are named following this convention: PTP—[dataset type]_-
[number of hospitals]_[number of vehicles]_[number of requests]

4.6.3 Experimental Protocol

Experiments have been carried out on an AMD Opteron 6176 processor (2300
MHz). Execution time for a run is limited to 1800 seconds and memory con-
sumption to 6 GB. The greedy search has been implemented in Scala and the
OscaR solver [Osc12] is used for the other models except for the CPO model
that has been modeled and solved with the java API of the academic version of
IBM ILOG CPLEX CP Optimizer V12.8. For the reproducibility of results, the
models, the synthetic dataset and the random generator are available online
on CSPLib [Tho+].

The backtrack limit and relaxation size of the LNS are adaptive parame-
ters, initially fixed to respectively 1000 failures and 10 requests. The backtrack
limit is increased by 20% when 100 consecutive iterations have failed to find
an new solution and to completely explore the search. The relaxation size is
increased by 20% when the relaxed search space is completely explored for
50 consecutive iterations. Search parameters are set to their defaults for CPO.
The greedy solution is considered as the first solution of the LNS for each
method.

Given the random nature of approaches based on LNS (SUCC, CPO, SCHED
and SCHED+ODS), 5 runs for each instance with a different seed have been
performed and the best solution obtained is recorded. The greedy search
(GREEDY) is ran only once due to its deterministic nature. The models are
also compared using the improvement ratio (p,,) of a method (m) defined as
the relative improvement of the solution obtained with the method (x,,) com-
pared to the solution found using the greedy search (xgrgepy)-

P = Xm — XGREEDY (4.35)

XGREEDY

4.6.4 Initial Results

Results for synthetic instances are reported in Table 4.2. Results on real world
data instances are reported in Table 4.3. Instances are ordered by their dif-
ficulty and the number of patients (|R|). The best solution obtained for each
instance is also reported. The number of patients serviced is considered as
the objective value. As the relaxation size is adaptive, it can eventually grow
to 100%. In this case, if the search space is completely explored, the solution
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is proven optimal. Besides, if all the patients are serviced, the upper bound
is reached and the solution is also proven optimal. The dominating model(s)
is(are) highlighted in green for each instance. If a model has not been able to
improve the initial solution found by the greedy approach, it is highlighted
in red.

Table 4.2: Experimental results for the synthetic instances (p is the improve-
ment ratio in percent, * indicates that the solution has been proven optimal)

Instances GREEDY succ CPO SCHED SCHED+O0DS

Difficulty Name |H| |V| |R| BestSol Sol Sol p | Sol p Sol p Sol P
RAND-E-1 4 2 16 *15 14 15 7.1 | *15 7.1 *15 7.1 15 7.1
RAND-E-2 8 4 32 *32 32 32 0.0 | *32 0.0 *32 0.0 *32 0.0
RAND-E-3 12 5 48 *28 26 26 0.0 | *28 7.7 28 7.7 *28 7.7
RAND-E-4 16 6 64 62 58 61 5.2 59 1.7 62 6.9 62 6.9

Easy RAND-E-5 20 8 80 74 72 73 1.4 72 0.0 73 1.4 74 2.8
RAND-E-6 24 9 96 95 91 93 2.2 92 1.1 92 1.1 95 4.4
RAND-E-7 28 10 112 106 100 101 1.0 | 100 0.0 103 3.0 106 6.0
RAND-E-8 32 12 128 *128 127 | *128 0.8 | 127 0.0 | *128 0.8 | *128 0.8
RAND-E-9 36 14 144 142 141 142 0.7 | 141 0.0 142 0.7 142 0.7
RAND-E-10 40 16 160 157 154 154 0.0 | 157 1.9 157 1.9 157 1.9
RAND-M-1 8 2 16 *12 8 9 12.5 11 37.5 *12 50.0 11 37.5
RAND-M-2 16 3 32 19 16 18 12.5 17 6.3 19 18.8 19 18.8
RAND-M-3 24 4 48 32 25 25 0.0 26 4.0 30 20.0 32 28.0
RAND-M-4 32 4 64 37 25 25 0.0 33 32.0 35 40.0 37  48.0

Medium RAND-M-5 40 5 80 55 45 45 0.0 48 6.7 51 13.3 55 22.2
RAND-M-6 48 5 96 52 36 40 11.1 40 11.1 50 38.9 52 44.4
RAND-M-7 56 6 112 63 46 47 2.2 48 4.3 63 37.0 63 37.0
RAND-M-8 64 8 128 83 65 70 7.7 65 0.0 81 24.6 83 277
RAND-M-9 72 8 144 81 62 62 0.0 64 3.2 72 16.1 81 30.6
RAND-M-10 80 9 160 929 73 75 2.7 75 2.7 88 20.5 99 35.6
RAND-H-1 16 2 16 8 7 7 0.0 8 14.3 8 14.3 8 14.3
RAND-H-2 32 3 32 19 15 15 0.0 18 20.0 19 26.7 17 13.3
RAND-H-3 48 4 48 32 18 19 5.6 23 27.8 32 77.8 29 61.1
RAND-H-4 64 4 64 23 10 12 20.0 22 120.0 20 100.0 23 130.0

Hard RAND-H-5 80 5 80 42 29 31 6.9 29 0.0 38 31.0 42 44.8
RAND-H-6 96 5 96 38 22 22 0.0 27 22.7 38 72.7 38 72.7
RAND-H-7 112 6 112 39 25 27 8.0 32 28.0 37 48.0 39 56.0
RAND-H-8 128 8 128 75 57 63 10.5 61 7.0 71 24.6 75 31.6
RAND-H-9 144 8 144 72 50 54 8.0 53 6.0 67 34.0 72 44.0
RAND-H-10 160 8 160 72 46 48 4.3 50 8.7 63 37.0 72 56.5

Let us first focus on synthetic instances. As we can see, the scheduling
model with the Optional Decision search (SCHED+0DS) obtains the best so-
lution for almost all the tests, even when the optimum is not reached. The
improvement ratio is up to 130% compared to the greedy solution. Interest-
ingly, the performance of the scheduling model is correlated with the diffi-
culty of instances: the improvement gap increases when the instances are
getting harder. The greedy search (GREEDY) gives poor solutions when the
problem is strongly constrained. Results regarding the scheduling model with
the simple search (SCHED) shows the interest of the custom search.

The successor model (SUCC) is outperformed by the scheduling models.
This is expected as the successor model has a larger search space due to the ad-
ditional decisions variables compared to the scheduling model. Furthermore,
the successor approach makes the insertion of new stops in routes more dif-
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Table 4.3: Experimental results for the real instances (p is the improvement
ratio in percent, * indicates that the solution has been proven optimal)

Instances GREEDY SuUCC CPO SCHED SCHED+0DS
Name |H| V| |R| BestSol Sol | Sol p | Sol p Sol p Sol p
REAL-1 1 9 2 *2 2 *2 0.0 *2 0.0 *2 0.0 *2 0.0
REAL-2 1 9 2 *2 2 *2 0.0 *2 0.0 *2 0.0 *2 0.0
REAL-3 3 9 3 *1 1 *1 0.0 *1 0.0 *1 0.0 *1 0.0
REAL-4 2 9 4 *4 4 *4 0.0 *q 0.0 *4 0.0 *4 0.0
REAL-5 5 9 21 *21 21 | *21 0.0 | *21 0.0 *21 0.0 *21 0.0
REAL-6 5 9 22 *22 22 | *22 0.0 | *22 0.0 *22 0.0 *22 0.0
REAL-7 5 9 23 *23 23 | *23 0.0 | *23 0.0 *23 0.0 *23 0.0
REAL-8 7 9 24 *24 24 | *24 0.0 | *24 0.0 *24 0.0 *24 0.0
REAL-9 15 9 45 *44 44 44 0.0 | *44 0.0 *44 0.0 *44 0.0
REAL-10 26 9 99 *98 98 98 0.0 | *98 0.0 *98 0.0 *98 0.0
REAL-11 22 9 100 91 87 89 2.3 87 0.0 90 3.4 91 4.6
REAL-12 32 9 101 *100 97 98 1.0 97 0.0 | *100 3.1 99 2.1
REAL-13 37 9 110 103 97 98 1.0 97 0.0 100 3.1 103 6.2
REAL-14 28 9 111 *102 99 99 0.0 ‘ 100 1.0 100 1.0 | *102 3.0
REAL-15 35 9 122 110 94 97 3.2 94 0.0 102 8.5 110 17.0
REAL-16 36 9 123 108 107 | 107 0.0 108 0.9 108 0.9 108 0.9
REAL-17 42 9 128 114 103 | 103 0.0 | 105 1.9 105 1.9 114 10.7
REAL-18 31 9 130 121 112 | 115 2.7 | 113 0.9 115 2.7 121 8.0
REAL-19 34 9 131 114 103 | 107 3.9 103 0.0 108 49 114  10.7
REAL-20 34 9 134 118 106 | 107 0.9 106 0.0 108 1.9 118 11.3
REAL-21 39 9 136 119 108 | 112 3.7 108 0.0 114 5.6 119 10.2
REAL-22 31 9 138 121 113 | 117 35 113 0.0 117 3.5 121 7.1
REAL-23 31 9 139 121 113 | 113 0.0 113 0.0 115 1.8 121 7.1
REAL-24 37 9 139 110 103 | 103 0.0 | 104 1.0 106 2.9 110 6.8
REAL-25 39 9 139 125 118 | 118 0.0 | 121 2.5 121 2.5 125 5.9
REAL-26 38 9 140 119 107 | 107 0.0 | 109 1.9 115 7.5 119 11.2
REAL-27 35 9 147 129 120 | 121 0.8 120 0.0 126 5.0 129 7.5
REAL-28 34 9 151 131 115 | 116 0.9 115 0.0 121 5.2 131 13.9
REAL-29 39 9 155 127 117 | 119 1.7 117 0.0 123 5.1 127 8.5
REAL-30 41 9 159 131 115 | 115 0.0 ‘ 119 3.5 121 5.2 131 13.9

ficult as it requires to change the value of the successor variables forming the
routes in addition to the vehicle variable. This limits the effectiveness of the
LNS.

Concerning the CP Optimizer model (CPO), it is also outperformed by the
two other scheduling approaches. Such results could be explained by the de-
fault search used in CPO model: it is generic and not designed for this specific
problem. Another point to take into account is that this model uses generic
variables and structures while CP Optimizer provides dedicated variables for
scheduling problems such as interval variables and sequence variables. Thus,
the performances could certainly be improved by using these dedicated rep-
resentations at the cost of making the model harder to adapt in other solvers
or frameworks. It is also important to point out that on harder instances, it
tends to perform better than the successor model. This could indicate that
the model used contributes more to the effectiveness of the approach than
the search method. Note that as the CPO approach is based on another solver,
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other factors could also influence the performances.

Similar results are observed for the real instances. The scheduling model
with the Optional Decision search is dominating again. However, the im-
provement ratio is now up to 17% only. It happens because such real instances
are easier to solve compared to the medium and difficult synthetic instances.
It shows both the pertinence of the scheduling model and the search frame-
work we introduced.

We also considered the waiting time minimization (Eq. 4.18) as a sec-
ondary objective using a lexicographical search. However, it yielded only
minor improvements regarding the solution obtained using the main objec-
tive. It mainly occurs because the value heuristic used already ensures that
solutions minimizing the waiting time are tried first.

4.6.5 Comparison with Liu et al.

This section presents the comparison of the approaches previously discussed
with the adaptation of the model proposed in [LAB18] to the PTP. The new
model, which is described in section 4.2 was run on both datasets of instances
using the same conditions as those detailed in Section 4.6.3. It is referred as
CPOLTIU. The results are displayed in Tables 4.4 and 4.5.

Asit can be seen, the CPOLIU model greatly outperforms the other models
as it is able to find a better solution on all the instances for which the optimum
has not been reached by the other models. The comparison between the CPO
and CPOLIU approaches is especially interesting as both use the same default
adaptive LNS search of CP Optmizer. This is mainly due to the fact that Liu
et al. model combines a scheduling approach with the powerful dedicated
variables of CP Optimizer.

4.7 Conclusion

In this chapter, the Patient Transportation Problem (PTP) was presented and
formalized. Several CP models designed to tackle this problem were detailed
and compared. The contributions in this chapter are:

» The definition and formalization of the PTP which is a real industrial
problem (Section 4.1).

= The scheduling based model proposed in Section 4.3.
= The successor model proposed in Section 4.4.

= The adaptation of the STP CP model from [LAB18] to the PTP (Section
4.2).
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Table 4.4: Comparison of performances on the synthetic instances (p is the
improvement ratio in percent, * indicates that the solution has been proven
optimal)

Instances GREEDY | CPO SCHED+ODS CPOLIU
Difficulty Name |H| |V| |R] BestSol Sol | Sol p Sol p Sol p
RAND-E-1 4 2 16 15 14 *15 71 15 7.1 15 71
RAND-E-2 8 4 32 *3: 32| *32 00 *32 00 3200
RAND-E3 12 5 48  *28 26 | 28 77 *28 77 8 77
RAND-E4 16 6 64 64 58| 59 17 62 69 64 67
RANDE-5S 20 8 80 79 7272 00 74 28 79 82
Y RAND-E-6 24 9 9% 9% 91| 92 11 95 44 9% 55
RAND-E-7 28 10 112 112 100 100 0.0 106 6.0 1z 98
RAND-E8 32 12 128  *128 127 127 00 128 08 128 08
RAND-E9 36 14 144 144 141 141 00 142 07 144 14
RAND-E-10 40 16 160 160 154 | 157 1.9 157 19 160 1.9
RAND-M-1 8 2z 16  *12 8] 11 375 11 375 12 500
RAND-M-2 16 3 32 25 6| 17 63 19 188 25 389
RAND-M-3 24 4 48 43 25| 26 40 32 280 43 654
RAND-M-4 32 4 64 50 25| 33 320 37 480 50 100.0
. RAND-M-5 40 5 80 68 45| 48 67 55 222 68 511

medium

RAND-M-6 48 5 9 60 36| 40 111 52 444 60 50.0
RAND-M-7 56 6 112 77 46| 48 43 63 370 77 674
RAND-M-8 64 8 128 109 65 65 00 83 277 109 514
RAND-M-9 72 8 144 109 62| 64 32 81 306 109 67.7
RAND-M-10 80 9 160 129 73| 75 27 99 356 129 72,0
RANDH1 16 2z 16 13 7] 8 143 8 143 3 87
RAND-H2 32 3 32 23 15| 18 200 17 133 23 533
RAND-H3 48 4 48 43 18| 23 278 29 6Ll 43 1263
RAND-H-4 64 4 64 36 10| 22 1200 23 1300 36 2273
hard RANDHS 80 5 80 64 29 29 00 42 448 64 1133
RAND-H6 9% 5 9 58 22| 27 227 38 727 58 163.6
RAND-H7 112 6 112 59 25| 32 280 39 560 59 136.0
RAND-H-8 128 8 128 108 57| 61 7.0 75 316 108 86.2
RAND-H-9 144 § 144 101 50| 53 60 72 440 101 87.0
RAND-H-10 160 & 160 99 46| 50 87 72 565 99 1063

= The Optional Decision Search (ODS) heuristic that is designed to pro-
vide an efficient search for problems presenting optional decisions such
as the PTP or the rectangle packing problem (Section 4.5).

= An experimental comparison of the different approaches studied on
both synthetic and real instances of the PTP (Section 4.6).

The experimental results highlight the importance of the modeling for
the resolution of such problems. The good results of the Liu et al. approach
that uses the components of CP optimizer dedicated to scheduling problems
demonstrate that the usage of dedicated variables and constraints can greatly
improve the resolution of complicated problems such as the PTP. However,
such specific variables can be hard to implement compared to generic ones
which makes them less frequent in most CP solvers. Nevertheless, sequence
variables can be used to model a large range of problems and may provide
benefits in terms of modeling and performances. This led us to study their
usage and propose new implementations for them in the next chapter.
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Table 4.5: Comparison of performances on the real instances (p is the im-
provement ratio in percent, * indicates that the solution has been proven
optimal)

Instances GREEDY | CPO SCHED+ODS CPOLIU
Name |H| |V] |R| BestSol Sol Sol p Sol p Sol p
REAL-1 1 9 2 *2 2 *2 0.0 *2 0.0 2 0.0
REAL-2 1 9 2 *2 2 *2 0.0 *2 0.0 2 0.0
REAL-3 3 9 3 *1 1 *1 0.0 *1 0.0 1 0.0
REAL-4 2 9 4 *4 4 *4 0.0 *4 0.0 4 0.0
REAL-5 5 9 21 *21 21 *21 0.0 *21 0.0 21 0.0
REAL-6 5 9 22 *22 22 *22 0.0 *22 0.0 22 0.0
REAL-7 5 9 23 *23 23 *23 0.0 *23 0.0 23 0.0
REAL-8 7 9 24 *24 24 *24 0.0 *24 0.0 24 0.0
REAL-9 15 9 45 *44 44 *44 0.0 *44 0.0 44 0.0
REAL-10 26 9 99 *98 98 *98 0.0 *98 0.0 98 0.0
REAL-11 22 9 100 91 87 87 0.0 91 4.6 92 3.4
REAL-12 32 9 101 *100 97 97 0.0 99 2.1 100 2.0
REAL-13 37 9 110 103 97 97 0.0 103 6.2 107 9.2
REAL-14 28 9 111 *102 99 | 100 1.0 *102 3.0 *102 3.0
REAL-15 35 9 122 110 94 94 0.0 110 17.0 118 21.6
REAL-16 36 9 123 108 107 108 0.9 108 0.9 117 9.3
REAL-17 42 9 128 114 103 105 1.9 114 10.7 122 184
REAL-18 31 9 130 121 112 113 0.9 121 8.0 126 125
REAL-19 34 9 131 114 103 103 0.0 114 10.7 121 13.1
REAL-20 34 9 134 118 106 106 0.0 118 113 127 18.7
REAL-21 39 9 136 119 108 108 0.0 119 10.2 126 12.5
REAL-22 31 9 138 121 113 113 0.0 121 7.1 131 139
REAL-23 31 9 139 121 113 113 0.0 121 7.1 133 17.7
REAL-24 37 9 139 110 103 104 1.0 110 6.8 120 16.5
REAL-25 39 9 139 125 118 121 25 125 5.9 134 12.6
REAL-26 38 9 140 119 107 109 1.9 119 11.2 132 20.0
REAL-27 35 9 147 129 120 120 0.0 129 7.5 137 13.2
REAL-28 34 9 151 131 115 115 0.0 131 13.9 145 23.9
REAL-29 39 9 155 127 117 117 0.0 127 8.5 146 21.7
REAL-30 41 9 159 131 115 119 3.5 131 139 146 259




Sequence Variables

Following the results of the different approaches considered to solve the Pa-
tient Transportation Problem, we realized the need for a better modeling of
the problem. In particular, the inter-activity time travel consistency con-
straints defined in Equation 4.9 have an important impact on performances.
This led us to consider the usage of sequence variables to model the tour of
the vehicles in the PTP and in other DARP variants. This research direction
was also considered promising in the context of the PRESupply project as se-
quence variables are a useful modeling component that can be used for a large
range of optimisation problems.

This chapter describes two possible implementations of a sequence vari-
able for modeling and solving the PTP: the Prefix Sequence Variable (PSV) and
the Insertion Sequence Variable (ISV). Both domain representation include the
subset bound domain [Ger97] for set variables. This allows to represent op-
tional elements in the domain and prevents a repetition of the same element
at different positions in the sequence. The set domain is extended with an
internal sequence that can be grown during the search. In addition, the in-
sertion sequence variable considers a set of possible insertions that can be
used to grow the internal sequence. By letting the constraints remove impos-
sible elements or insertions, the search space is pruned by restricting the set
of possible sequences. We describe several important global constraints on
the sequence variables for modeling the DARP and PTP:

1. The First and Last constraints ensure that an element is first or last
in a sequence.

2. The Dependency constraint enforces a dependency between several
elements of a sequence: they must either be all part of the sequence or
all excluded.

3. The Precedence constraint ensures that elements of a sequence fol-
low a given order.

4. The Sequence Allocation constraint links elements that are possi-
ble in several sequence variables with integer variables indicating the
sequence in which the element is part of.

73
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5. The Transition Times constraint links a sequence variable with
time interval variables to take into account a transition time matrix
between consecutive elements in the sequence.

6. The Cumulative constraint ensures that the load profile does not ex-
ceed a fixed capacity when pairs of elements in the sequence represent
the load and discharge on a vehicle.

7. the Max Distance constraint links an integer variable with the total
distance between elements a sequence for which a transition matrix is
given.

5.1 Related Work

In [JV11], the authors propose a constraint-based approach called LNS-FFPA
to solve DARPs with a cost objective and show that it outperforms other state-
of-the-art approaches. While highly efficient, the LNS-FFPA algorithm is dif-
ficult to adapt to other variants of the DARP such as the PTP. Indeed, the ap-
proach is not declarative since some constraints are enforced with the search.
Furthermore, the model is not able to deal with optional visits that occur in
the PTP and similar problems.

As demonstrated in Section 4.6.5, the approach of [LAB18], which uses
IBM ILOG CP Optimizer solver [Lab+18] is the most promising to solve the
PTP. It makes use of the sequence variables from CP Optimizer to decide the
order of visits in each vehicle.

The high level functionalities and constraints related to sequence vari-
ables of CP Optimizer have been briefly described in [LR08; Lab+09]. Unfor-
tunately, no details are given on the implementation of such variables and the
filtering algorithms of the constraints in the literature. According to the API
and documentation available at [IBM19a; IBM19b], the sequence variable of
CP Optimizer is based on a Head-Tail Sequence Graph structure. It consists
of maintaining separate growing head and tail sub-sequences. Interval vari-
ables not yet sequenced can be added either at the end of the head or at the
beginning of the tail. When no more interval variable can be added, both
sub-sequences are joined to form the final sequence. Note that as interval
variables are optional in CP Optimizer, it is possible to add undecided inter-
val variables to the head or the tail. If these variables are later become absent,
they are removed from the head or the tail. The Head-Tail Sequence Graph
structure is illustrated in Figure 5.1. Google OR-Tools [PF19a] also propose
sequence variables [PF19b] with the same approach as CP Optimizer.

The sequence variables proposed in this thesis differ from the one of CP
Optimizer in the following ways:
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Figure 5.1: Structure of the Head-Tail Sequence Graph

1. both implementations are generic and usable in a large variety of prob-
lems. In particular, the variables are independent of the notion of time
intervals;

2. for the insertion variable, insertions are allowed at any point in the
sequence which allows flexible modeling and search;

3. Both implementations make use of a set domain to keep track of the
elements that are either required, excluded or optional in the sequence;
in addition, the insertion sequence variable keeps track of the possible
insertions for each element inside its domain which allows advanced
propagation techniques.

In [Har+15a], the authors discuss the usage of a path variable in the con-
text of Segment Routing Problems. Their implementation is based on a grow-
ing prefix to which candidates elements can be appended.

5.2 Preamble

The most basic definition of a sequence is a collection of elements in which
order matters. Sequences are used in many fields in mathematics and com-
puter science and their precise definition may vary following the domains.
What is referred as a sequence in this thesis is more restrained than the gen-
eral definition in two ways: First, the sequence is finite. Second, each element
is unique and no repetition of the same element is allowed in the sequence.
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Thus, the notion of sequence considered in this thesis can be seen as an or-
dered set. Additionally let us note the difference between a sequence (noted
’S) which refers to a fixed mathematical object (Definition 9) and a sequence
variable (noted Sq) which is a CP variable which domain is a set of sequences
(Definition 10).

Definition 9. In formal terms, we denote by_S) a sequence without duplicates
over X (S C X). The sequence_S> defines an order over the elements of S. Each
element of X is unique and can appear only once in S.

Note that not necessarily all elements of X must appear in S. The set of
all sequences of X is denoted by 73()(). Let a and b be two elements of S.

The relation a precedes b ins is noted a < b or a < b when it is clear from
the context that the relation applies in regards to S. The relation a directly

. S .
precedes b in’S is noted a — b or a — b when clear from the context. In this
case, b is called the successor of a and a is called the predecessor of b in 5.

Example 5.2.1. Let us consider the sequence S =(1,2,3). The following
relations between couples of elements hold: 1 < 2,1 < 3,2 < 3,1 —» 2and
2—-3.

Definition 10. A sequence variable Sq on a set of elements X is a variable
which domain D(Sq) is composed of sequences Se ?’)(X ).

Definition 11. The relation "A is the prefix of_B) ” between two sequences A,
>

B € ?(X ) is denoted by the operator C and defined as
ACE & ACBAB=A+B\4 (5.1)

where the operator "+” denotes the concatenation of two sequences.

For example, A = (1,3,7) is the prefix of B = (1,3,7,9,4): A C B. The
prefix relation is a partial order over ?(X ) and the structure (?’) (X),E) isnot
a lattice.

Definition 12. A sequence $isa super-sequence of S if

SCS AVabeSa<h — axb (5.2)

This relationship is noted s 5" Conversely, Sisa sub-sequence of K
In other words, a sequence is a super-sequence of another if it contains all
the elements of the sub-sequence and they appear in the same order. Note
that other elements may appear in the super-sequence, including between
elements of the sub-sequence.
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Figure 5.2: Insertion of an element e after p

Definition 13. The insertion operation insert(S, e, p) consists in inserting
the element e in the sequence K directly after the element p wheree € X \ S
and p € S. Performing this operation results in a super-sequence S of S

such that S’ =S U {e} and p e

The operation is also noted S = §”. It is illustrated in Figure 5.2.
(e.p)
Example 5.2.2. The operation insert(’s, 4,2) applied on the sequence S =
(1,2, 3) results in a sequence S = (1,2,4,3).

The insertion of an element e at the beginning of a sequence or in an
empty sequence is defined as insert(S, e, a). The symbol ¢ indicates the be-
ginning of the sequence. An insertion in a sequence S is thus characterized
by a tuple (e,p) where e ¢ Sand p € SV p = a. Note that the insertion of
an element e after a predecessor p € S is equivalent to posting the following
constraints:

— g F K
VS’ € D(Sq),a<e<s, whereseS|a—s (5.3)
Given I, a set of tuples, each corresponding to a potential insertion in s,

Definition 14. The one-step derivation’ S => S’ betweena sequence? and
I
a super-sequence S’ is defined as
=

T = S = Ji=(ep)el|S = 3 (5.4)
I i=(e,p)

In other words, the sequence S is transformed into S” by applying one
possible insertion from I.

Definition 15. More generally, zero or more steps derivation is defined as

# %
T = $'=35=35'v|3iel|S = $'AS = 3’ (5.5)
I ; I\{i}
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Note that I may contain tuples that do not correspond to a possible in-
sertion in S but instead to a possible insertion in a super-sequence S’ of S.
Also note that several successions of insertions in I may lead to a same super-
sequence.

Example 5.2.3. Let us consider the sequence_S> = (1,2,3) and the set of in-
sertionsI = {(4,1), (4,2), (5,2), (5,4)}. Wehave that S => 5’ = (1,2,4,5,3)
I

since it can be obtained with consecutive derivations over I : (1,2,3) —
(42)

(1,2,4,3) ﬁ (1,2,4,5,3). Note that S’ can also be obtained by inserting
54

first (5,2) and (4, 2) after. If (5,2) was not part of I, the relation would still
hold as there would still be a possibility to obtain S’ with only (4,2) and
(5,4). Finally, it is possible to have other insertions in I that are not part of
any derivation to S’ such as (4,1).

Two different implementations of a sequence variable are considered in
this thesis. The prefix sequence variable associates a set domain with a grow-
ing list of ordered elements. The set tracks which elements are possible, re-
quired or excluded in the sequence. The list tracks the elements that are al-
ready sequenced. Elements that are added to the sequence can only added at
the end of the growing list. The insertion sequence variable extends the idea
of the growing sequence variable by allowing insertions of new elements at
any point among the already sequenced elements. To do so, in addition of
the set domain and the growing list, possible insertions are tracked for each
non-sequenced element. The prefix sequence variable is defined in Section
5.3 and the insertion sequence variable is detailed in Section 5.4.

5.3 Prefix Sequence Variable

Definition 16. A prefix sequence variable Sq on a set X is a variable whose
domain is represented by a tuple (_S), P, R, E) where (P, R, E) is the domain of
a set variable on X (see Section 2.2.1.1) and S € P(R). Sq is bound if P is
empty and |S| = |R|. The domain of Sq, also noted D(Sq), is defined as

(3,P,RE) = {?/ eB(PUR) |[RCS AS ;?’}

s corresponds to the growing internal sequence, P to the set of Possible
elements (that have not been decided yet), R to the set of Required elements
(that must be part of Sq) and E to the set of Excluded elements (That cannot
be part of Sq). Note that P, R and E form a partition of X. The variable is
bound if all elements in P have been moved to either R or E and all elements
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0,1,2) (0,2,1) (1,0,2) (1,2,0) (2,0,1) (2,1,0)

Figure 5.3: Initial domain ((), {0, 1,2}, 0, 0) of Sq over X = {0, 1,2} and inter-
mediate domain ((1), {0, 2}, {1}, 0) (in bold).

of R are part of the internal sequence 3. Initially, all elements of the domain
are optional (¢ P). During the search, elements can be set as mandatory or
excluded (moved to R or E) and appended to 3.

Example 5.3.1. For example, let us consider X = {0, 1,2}, the variable Sq
with initial domain ((), {0, 1, 2}, 0, 0) is represented by the tree in Figure 5.3.
The intermediate domain ((1), {0}, {1, 2}, @) corresponds to the subtree rooted
in (1) (in bold). The valid sequences {(1, 2), (1,0,2), (1,2,0)} are underlined.
The sequences (1) and (1, 0) are not valid as they do not contain the required
element 2.

The notation e € Sq where Sq is a sequence variable of domain <_S), P,R,E),
indicates that the element e is required in the sequence (e € R). The prefix
sequence variable inherits all the operations defined on the set variable and
supports the additional operations summarized in Table 5.1.

Table 5.1: Operations supported by prefix sequence variables

Notation Operation Complexity
isBound(Sq) return true iff P is empty and |S| = |R| | ©(1)
appends (Sq, €) append e to the end of S, moves e to R o(1)

if needed, fails if e is in E
lastAppended(Sq) return the last element of o(1)
isMember (Sq, e) return true iff e is present in’s e(l)
allMember(Sq) enumerate S o(|S|)
isAppendable(Sq,e) | returntrueiffe € (R\S)UP o(1)
allAppendable(Sq) | enumerate (R\S)UP O(|R\ S|+ |P])

5.3.1 Implementation

The implementation proposed for the Prefix Sequence Variable uses array-
based sparse sets as in [de +13] to ensure efficient update and reversibility
during a backtracking depth-first-search. It consists of an array of length
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|X| called elems and two reversible integers: r and p. The position of the
elements of X in elems indicates in which subset the element is. Elements
before the position r are part of R while elements starting from position p are
part of E. Elements in between are part of P.

Similarly, S is represented by an array of length |X| called members and
a reversible integer m. The m first elements in members correspond to the
sequence S. Two additional arrays called elemPos and memberPos map
each element of X with its positions in elems and members, allowing access
in ©(1). An illustration of the sparse set representation for the variable Sq

with a domain of ((f,b), {c}, {b,e, f},{a,d}) is given in Figure 5.4.

T P (f, b)
R p|l E 7/ \
)

(oo (be)
| |

elems f b e c d a

(f._b, c,e) (f._b, e, c)

members f b [¢ d e a

< > a
s © -
m b —"‘V(?
elemPos | 5 | 1 [ 3 |4 | 2|0 i O,
memberPos 5 1 2 3 4 0 S ;
i o)
a b ¢ d e f e

Figure 5.4: The prefix sequence variable domain ((f,b),{c},{b,e, f},{a, d})
represented using sparse sets (left) and the corresponding tree and paths
(right). Valid sequences are underlined in the tree.

Access and identity operations are implemented by comparing the posi-
tion of an element with the values of r, p and m. Modification operations
(append, requires and excludes) are implemented by swapping the el-
ement whose status is modified with the element after m or r or before p
and incrementing the corresponding reversible integer. Backtracks are done
by resetting the reversible integers to their previous value. Enumeration op-
erations are done by iterating over the subpart of the array corresponding
to the desired set or sequence. Additional methods allow specifying under
which case a propagator should be notified of changes in the domain. Possible
events triggering such notifications are: appending, requiring or excluding an
element and when the sequence variable is bound.



5.4. Insertion Sequence Variable 81

5.4 Insertion Sequence Variable

Compared to the prefix sequence variable, the insertion sequence variable
extends the domain from Definition 16. by adding a set of tuples that contains
all possible insertions in 3.

Definition 17. An insertion sequence variable Sq on a set X is a variable
whose domain is represented by a tuple (_S: I,P,R E) where (P,R,E) is the
domain of a set variable on X, S is a sequence € B(R) and I is a set of tuples
(e, p), each corresponding to a possible insertion. The domain of Sq, also
noted D(Sq), is defined as

(S, LP,RE) = {_S)’e??)(PUR) IRCS' AT = ?} (5.6)

I

As for the prefix sequence variable, Sq is bound if P is empty and |S| = |R|.
Initially, all elements of the domain are optional (¢ P). During the search,
elements can be set as mandatory or excluded (moved to R or E), inserted in
S and possible insertions can be removed from I.

Lemma 1. Checking the consistency of the domain (_S), I, P, R, E) is NP-comp-
lete.

Proof. It requires verifying the following properties:
35’ |5 = S'ARCS (5.7)
I
VeeP,35|S = S'ARU{e}CS (5.8)
I

The Hamiltonian path problem for a directed graph G = (V, &) can be re-
duced to checking the consistency of the domain D(Sq) = S = 01 =
Ereverse U {(v,a) | Yo € V}LP = O,R = V,E = 0) where E,eperse is the
result of applying the reverse operation on each edge (i, j) € & defined as
(i, ) reverse = (J, 1) O

Consequently, instead of checking the full domain consistency at each
change in the domain, the following invariant is maintained internally by the
sequence variable:

PURUE=XAPNR=RNE=PNE=¢ (5.9)
SCR (5.10)
V(e,p) eL,e¢ SAe¢ EApEE (5.11)

VpeS ,Alep) el = e€cE (5.12)
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At any moment: P U R U E form a partition of X (5.9); any member of s
is required (5.10); any member of S cannot be inserted in S ; any excluded
element cannot be inserted in S and is not a valid predecessor (5.11); any
element that cannot be inserted at any position in’S is excluded (5.12). Ad-
ditionally, elements can only be transferred from P to R or P to E. Note that
it is possible for an element to be required (present in R) but not yet part of
the internal sequence s,

Example 5.4.1. Let us consider X = {a, b, ¢, d, e, f}, the variable Sq of domain
3 = (f,b)1 = {(c.a), (c,0), (¢, ), (e,), (e, I} P = {ch,R = {b,e, f},E =
{a,d}) corresponds to the sequences {(f, e, b), (c, f, e, b), (f,c,e,b), (f,e,c,b)}.
The sequences {(f, b), (¢, f,b), (f,c,b)} are not valid as they do not contain e
which is required.

The insertion sequence variable inherits all the operations defined on the
set variable (see Table 2.1) and supports the additional operations summarized
in Table 5.2.

Table 5.2: Operations supported by insertion sequence variables

Operation Description Complexity
isBound(Sq) return true iff Sq is bound o(1)
isMember(Sq, e) return true iff e is present in S o(1)
allMembers(Sq) enumerate S o(|S])
allCurrentInserts(Sq) | enumerate {(e,p) €I |p € S} O(min(|1,1S]))
nextMember (Sq, e) return the successor of e in (1)
insert(Sq.e p) insert e in s after p,update P, Rand I, | ©(1)
failifee EVp ¢S
canInsert(Sq e, p) return true iff (e, p) € I o(1)
allInserts(Sq) enumerate [ o(|I))
remInsert(Sq,e, p) remove (e, p) from I (1)

5.4.1 Implementation

As for the Prefix Sequence implementation, the internal set variable (P, R, E)
is implemented using an array-based sparse set called elems and two re-
versible integers: r and p. The elemPos array maps each element of X with
its position in elems, allowing access in ©(1).

The internal partial sequence? is implemented using a reversible chained
structure. An array of reversible integers called succ indicates for each ele-
ment its successor in the partial sequence. An element which is not part of
the partial sequence points towards itself. An additional dummy element «
marks the start and end of the partial sequence. It can be specified as pre-
decessor in the insertion operation to insert an element at the beginning of
the sequence or in an empty sequence. Inserting an element e in the par-
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tial sequence after p consists in modifying the successor of e to point to the
previous successor of p and modifying the successor of p to point to e.

The set of possible insertions I is implemented using an array of sparse
sets called posPreds. For each element, the corresponding sparse set con-
tains all the possible predecessors after which the element can be inserted.
If the element is a member of the sequence S or excluded, its set is empty.
The sparse sets are initialized with the following domain: RU P U {«a}. Con-
straints may remove possible insertions during their propagation. If doing so
results in an empty set, the corresponding element is excluded according to
the invariant (5.12).

An illustration of the domain representation for the variable Sq with a
domain of <—S> = (f,b),I = {(c,a),(c,e),(c,f), (ec),(e,f)},P = {c},R =
{b,e, f},E ={a,d}) is given in Figure 5.5.

(f, b)
r P posPreds
R P E / | \
, G, it
elems f | b | e c d a
elemPos 5 | 1 | 3 | 4 | 2 | 0 |
a b C d e i

succ

Figure 5.5: The insertion sequence variable domain ((S = (f,0),I={(c,a), (¢, f), (ce),
(e;c), (e, /)},P = {c},R = {b,e, f},E = {a,d}) (left and middle) and the corresponding
lattice (with valid sequences underlined) and graphical representation (right)

5.5 Constraints on Sequence Variables
This section presents several constraints that are defined for both implemen-

tations of the sequence variable. For most constraints, the propagation algo-
rithm differs depending on the implementation of the variable.

5.5.1 First and Last constraints

The constraint First(Sq, f), holds if the element f is the first in the sequence.

First(Sq, f) = {_S)' € D(Sq) | (3_‘]6 €S |e if)} (5.13)
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The constraint Last(Sq, I) holds if the element [ is the last in the sequence.
Last(Sq,l) = {_S)' € D(Sq) | (.}ﬂe €S |1 < e)} (5.14)

Prefix Propagation In the case of the prefix sequence variable, The propa-
gation for First is called only once when the constraint is posted. It appends
f as the first element if S is empty. Otherwise, it checks the first element of
S and fails if it is different from f. When Last is posted, [ is made required.
The propagation is called each time an element is appended or required. It
ensures that / cannot be appended while at least one other element is present
in R. When [ is appended, all the remaining elements in P are excluded.

Insertion Propagation For the insertion sequence implementation, the
propagation algorithm for both constraints is called only once when the con-
straint is posted. If not already member of the sequence, the element f or [,
is inserted as first or last in S (after or before «). Then, I is filtered to remove
all insertions before f (insertions with « as predecessor), respectively after
I (insertions whit [ as predecessor). The constraint fails if f or [ is already
member of the sequence but not as first or last element (not counting ).

5.5.2 Dependency constraint

The constraint Dependency(Sq, U) ensures that all the elements of U are in
the sequence or none of them:

Dependency(Sq,U) = {_S>’ eED(Sq |UCSVUNS = (Z)} (5.15)

Propagation The propagation algorithm is the same for both implementa-
tions. It is called when an element from U is inserted, required or excluded.
If the element of U is inserted or required, all the others are required. Con-
versely, if the element is excluded, all the others are excluded from the se-
quence.

Example 5.5.1. Consider the prefix sequence variable Sq with domain ((0),
{1,2,4},{0, 3}, 0). The constraint Dependency(Sq, {1, 3,4}) reduces the do-
main to ((0), {2}, {0, 1, 3,4}, @) since 3 is already required.

5.5.3 Precedence constraint

This constraint enforces precedence between the elements of a sequence O in
the sequence variable:
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Precedence(Sq,0) = {_S)' € D(Sq) | Ya,be S’ NO,a $h— a% b}

(5.16)

Prefix Propagation The propagation is triggered whenever an element e
from O is appended in the variable Sq. All the elements before e in 0 are
excluded in the variable Sgq.

Example 5.5.2. Let us consider the sequence variable Sq with domain (0, 2),
{1, 3,4}, {0, 2}, 0). The constraint Precedence(Sq,B) where 0 = (0,1,2,3,4)
reduces this domain to {(0, 2), {3, 4}, {0, 2}, {1}).

Insertion Propagation The propagation for the insertion sequence uses
two different algorithms. The first one is called whenever § is modified. It
consists in iterating conjointly over S and O to ensure that elements of SN O
appear in the same order in S as in O. The constraint fails otherwise. Its
complexity is linear.

The second propagation algorithm is called when a change is detected in
S or I. It filters out from I all insertions that do not respect the order of 0
based on the current state of S and I. To do so, Algorithm 4 is called twice:
a first time with O and a second time with O reversed. First, each member of
S is associated to its index in S in a map called positions (line 1). Then,
the elements of O are iterated over in the specified order. The position of
the previous element of ° present in the sequence is kept in memory by the
variable precPos (line 5). Elements of 0 which are not members of S have
their insertions that would violate the constraint filtered out based on the
value of precPos by the loop at line 7. The complexity of the algorithm is
o(lo] - |SD.

Algorithm 4: PrecFiltering(Sq, O, positions)

Input: D(Sq) = (_S>, I,P,R, E): Sequence variable domain, 0: sequence of elements
(reversed in second call)
1 positions <— maps each e € S with index ins ;
2 precPos < —1;// initialized to |S| when reversed
s foreach e € 0 do
4 if isMember(Sq, e) then
5 ‘ precPos « positions(e) ;
6 else
7 foreach p € S | (e,p) € I A positions(p) < precPos do
// < changed to > when reversed
remInsert(Sq, e p);
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5.5.4 Sequence Allocation constraint

.....

a set of elements X. Each element i of X is associated with an integer domain
variable x; € D; that indicates the sequence where it appears. Note that
D; may contain a dummy value L not corresponding to any sequence. The
constraint SequenceAllocation((Sqy), (x;), X) ensures that each element
i of X is a member of the sequence indicated by its associated variable x;.

SequenceAllocation((Sqy), (x;),X) = (5.17)
(VieX,Yoe{0.m-1},ie Ry, < x;=0)A
(Vo,w € {0.m—1jo # wh, R, NR,, = 0)

Propagation The propagation which is the same for both implementations
is called when an element is appended, required or excluded in one of the
sequence variables Sq, or when the domain of a variable x; changes. If an
element i is required or appended in one of the sequences Sq,, its x; variable
is fixed to the value v of the sequence and the element is excluded from the
other sequences. If an element i is excluded from a sequence Sq,, the corre-
sponding value v is removed from its x; variable. If a value v corresponding
to a sequence variable Sq, is removed from the domain of a x; variable, the
element i is excluded from Sq,. If a variable x; is fixed to a singleton corre-
sponding to the value v of a sequence variable Sq,, the element i is required
in Sqy.

5.5.5 Transition Times constraint

In a scheduling context, the elements to sequence correspond to activities
performed over time, each associated with a time window and requiring a
minimum transition time to move to the next that depends on the pair of con-
secutive activities. The Transition Times constraint links the sequenced
elements with their time window to make sure that transition time constraints
are satisfied between any two consecutive elements of the sequence. More
formally, each element i € X is associated with an activity defined by a start
start; and a duration variable dur;. A matrix trans; j, satisfying the triangle
inequality, specifies transition times associated to each couple of activities
(i, j). The TransitionTimes constraint is then defined as

TransitionTimes(Sq, [start], [dur], [[trans]]) =

s
{?' € D(Sq) | Ya,b e S',a<b = starty > start, +dur, + transa,b}

(5.18)
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5.5.5.1 Prefix Propagation

The propagation is called whenever an element is appended or required or if
one of the bounds of a time window changes. The filtering algorithm is split
into three parts: time windows update, feasible path checking and filtering and
append deduction.

Time window update This filtering algorithm is used to fix the start and
duration of the activities already appended in the sequence based on their
orderin’s. It is also used to update the time windows of appendable activities
(i.e. in the set (R\ S) U P) based on the last appended activity of the sequence.
This update is done in linear time.

Feasible Path checking and filtering This algorithm is used to check
that there exists at least one feasible extension of the current sequence com-
posed of the required activities not yet appended (i.e. in the set R \ S) that
satisfies the transition time constraints. The function feasiblePath(f =
lastAppended(Sq), Q = R\ S,t = start, + dur,d) checks that there exists
at least one feasible sequencing of the activities in Q satisfying the transition
time constraints after having completed the activity ¢ at a time ¢. This problem
is NP-Complete [GJ79]. An exact algorithm consists in performing a recur-
sive depth first backtracking search (DFS) enumerating all possible sequences
until a feasible one is eventually found.

Algorithm 5 is based on this approach. A pruning is done in the loop at
line 6 if one realizes that no activity can be appended. This loop checks that
all the activities can possibly be appended as the one following the activity ¢.
By the triangle inequality assumption of the transition times, if at least one
activity of Q cannot be appended directly after ¢, then it can surely not be
appended later in time if some activities were inserted in between. Therefore
falseisreturned in such case which corresponds to the infeasibility pruning.
Otherwise every possible extension is considered recursively at line 13 and if
one possible extension leads to a positive outcome, true is returned. Since
this algorithm is exponential in |Q|, the depth of the tree is limited to d. If
this limit is reached, the path is assumed to be feasible by returning true at
line 11.

The time complexity of Algorithm 5 is O(]Q|?) in worse case as it corre-
sponds to a depth-first search of depth d with a branching factor |Q|. In or-
der to reduce the time complexity of the successive calls to feasiblePath,
memoization is used to avoid exploring several times a partial extension that
can be proven infeasible or feasible based on previous executions. This op-
timization is implemented with gray lines. A global map called cache is
assumed to contain keys composed of the arguments of the function, that is
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Algorithm 5: feasiblePath(¢, Q,t,d)

Input: ¢: last activity visited, Q: set of activities to reach, ¢: departure time from ¢,
d: depth and cache: memoization map

if Q = 0 then

2 ‘ return true;

-

3 (tf,t;) < cache.getOrElse((f, Q), (—co,+00)) ;
4 ift < tr then return true;
5 if t > t; then return false;
6 forae Qdo
7 if max(starty) < max(t + transy q, min(start,)) then
8 cache.update((¢, Q), (l/~, min(tj, t))) ;
return false ; // pruning since infeasible sequence
10 if d < 0 then

11 ‘ return true ; // pruning since maximum depth reached

12 else

13 for a € Q sorted in increasing (min(startg) + min(dury)) do

14 if feasiblePath(a, Q \ {a}, max(t + transeq, min(starty)),d — 1) then

cache.update((¢,Q), (nmx(t,-, t),t));
return true;

17 return false;

a pair with (Q, £). At each key, the map associates a couple of integer values
(tr, t;) where ty is the latest known time at which it is possible to depart from
¢ and find a feasible path among the activities of Q and ¢ is the earliest known
time at which the departure from ¢ is too late and there exists no feasible path.
Line 3 is called to find if a corresponding entry exists in the map. If it is the
case, the departure time ¢ is compared to the couple (f,t;) of the map. If
t < tr, the value true is immediately returned. If t > t;, false is returned. If
tr <t < t;, the algorithm continues its exploration. The cache is updated at
lines 8 and 15 depending on the result found.

This checking algorithm can be used in a shaving-like fashion into Algo-
rithm 6. A value is filtered out from the possible set if its requirement made
the sequencing infeasible according to the transition times.

Algorithm 6: TransitionTimesFiltering(Sq : (S,P,RE),d)
¢ « lastAppended(Sq) ;
cache «< map(); // initializing the memoization map
if !feasiblePath(t,R\ S,start; + dury,d) then
‘ return failure ;
foralla € P do
if | feasiblepPath({, (R \ S) U {a}, min(starty) + min(dur,), d) then
‘ excludes(Sq, a);

N Y R W N e

This TransitionTimesFiltering algorithm executes in O(|P| - |R\
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S|%). Notice that the cache is shared and reused along the calls in order to
avoid many subtree explorations.

Append deduction The third propagation algorithm detects if a required
activity must be appended next and adds it to the sequence. For each required
activity i, the algorithm checks that there exists at least one appendable ac-
tivity e (ie. e € (R\ S) U P) that can be visited before while keeping the
required activity feasible afterwards. If it is not the case then the required
activity is added to the sequence. The pseudocode is given in Algorithm 7. Its
time complexity is O(|R\ S| - |(R\ S) U P|).

Algorithm 7: AppendDeduction(Sq : (S,P,R E))

1 £ « lastAppended(Sq) ;

2 t « min(starty) + min(dury) ;

3 foralli € R\ S do

4 feasible « false ;

5 forall e € allAppendable(Sq) \ {i} do

6 dep, «— max(t + transy., min(start,)) + min(dur,) ;
7 feasible < max(start,) > dep, + transe; ;
8 if feasible then break;

9 f !feasible then

10 append(Sq, i) ;

11 break ;

e

Example 5.5.3. Consider the following example where X = {a, b, ¢, d} is the
set of activities. The transition times between activities (a) and the initial time
windows (b, columns start and duration) are given in Table 5.3. We consider
the sequence variable Sq of domain ((a), {c}, {a, b, d}, 0). The duration of each
activity is fixed at 2. Let us apply the propagation of TransitionTimes on
this example.

1. Time window update is applied. The new time bounds are reported in
columns start’ and dur’ of Table 5.3 (b).

2. Transition Time Filtering (Algorithm 6) is applied. The search trees for
the checker is displayed in Figure 5.6. The search tree for the filter is
displayed in Figure 5.7. Failures are denoted with X and successes with
. The initial value of the parameter d is 3. The usage of memoiza-
tion between both searches is highlighted. The domain is updated to
((a),0,{a,b,d},{c}) as the filter detects that ¢ must be excluded.
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3. Append deduction is applied. The domain after propagationis ((a, d), 0, {a,
b,d},{c}) as sequencing b before d is not feasible.

Table 5.3: Propagation for the sequence Sq = ((a), {c}, {a, b,d}, 0).

a b ¢ d i start | dur | start’ | dur’
al0 5 6 5 a | [08] | 2 0 2
b5 0o 5 7 b | [016] | 2 | [7.16] | 2
c|l6 5 0 5 c| 0151 | 2 | [815] | 2
d|ls5 7 5 o0 d|[015] | 2 | [715] | 2

(a) (b)

(a,{b,d},2,3)

/
(b,{d},9,2)
ti(b,{d}) < 9 (d,{b}.9.2)
" |
(b,0,18,1)
\/

Figure 5.6: Checker search tree for the sequence Sq = ((a), {c},{a, b, d}, 0).

(a,{b,c,d},2,3)

/\

(b {c, i}, 9,2) (d, {b,c},9,2) (¢, {b,d},10,2)
/N (b, {d} 171/> \
(b {ch181) (e {bh16,1) o) t~£b {’d}) (d, {b},17,1)
X X _=l> ’X %

Figure 5.7: Filter search tree for the sequence Sq = ((a), {c}, {a, b, d}, 0).

5.5.5.2 Insertion Propagation

The filtering algorithm is triggered whenever an element is either inserted
in S or required or if one of the bounds of a time window changes. The
algorithm is split into three parts: time windows update, insertion update and

feasible path checking and filtering.
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Time window update This filtering algorithm is very similar to the one
used for the prefix sequence variable. It is used to adjust the start and duration
of the activities already present in S. This update is done in linear time by
iterating over the elements of the sequence and updating their time windows
depending on the time needed to transition from the previous element and
to the next element. If the time window of an element is shrunk outside its
domain, this leads to a failure.

Insertion update This filtering algorithm is used to filter out the invalid
insertions in I based on the current state of S and the transition times of the
activities. The algorithm is linear and consists in iterating over I. For each
possible insertion, if the transition times between the inserted activity and its
predecessor and successor lead to a violation of a time window, the insertion
is removed.

Feasible Path checking and filtering We use the same approach as for
the prefix sequence variable but adapt it to the insertion sequence variable.
The problem of verifying that there exists at least one transition time feasible
extension of the current sequence composed of the required activities not yet
inserted is NP-Complete [G]79] by a reduction from the TSP. Algorithm 8 is a
recursive depth first search used to check that there exists at least one feasible
extension of the current sequence composed of the required activities not yet
inserted (i.e. in the set R \ S). Given the current sequence S, the recursive
call feasiblePath(?, p, Q,t,d) checks that it is possible to build a sequence
starting from ¢ at time ¢ that contains at least d elements of Q and is a super-
sequence of the sub-sequence of s starting in p. The parameter ¢ indicates
the last element visited at time t whereas the parameter p indicates the last
element of S that has been visited (possibly several steps before £). The initial
call feasiblePath(f =a,p =, Q =R\ S,t = 0,d) thus checks that there
exists a super-sequence of K containing d elements of R \ S.

At each node, the algorithm either explores the insertion of a new element
after £ which corresponds to branching over an element of Q (line 16) or fol-
lows the current sequence 'S which consists in branching over the successor
of pin S (line 20). A pruning is done at lines 2 and 9 if one realizes that at
least one activity cannot be reached. By the triangle inequality assumption
of the transition times, if either the successor of p or at least one activity of
Q cannot be reached directly after ¢, then it can surely not be reached later in
time if some activities were visited in between. Therefore false is returned
in such case which corresponds to the infeasibility pruning. The possible ex-
tensions considered recursively at line 16 are based on the current state of I
and the value of p. The maximum depth is controlled by the parameter d to
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Algorithm 8: feasiblePath(¢, p, Q,t,d)

Input: ¢: last element reached, p: previous element reached in S, Q: set of
elements to reach, ¢: departure time from ¢, d: depth, Sq = (_S), LP,R E):
Sequence variable, cache: memoization map

1 n < nextMember(Sq,p);
2 if n # @ and t + transy , > max(start,) then

3 ‘ return false;
4 if Q = 0 then
5 ‘ return true;

6 (tf, tj) < cache.getOrElse((£, p, Q), (—00,+00)) ;

7 ift < tr then return true;

s if t > t; then return false;

9 forae Qdo

10 if t + transe ; > max(start,) then

cache.update((¢, p, Q), (tr, min(t;,t))) ;

12 return false ; // pruning (infeasible sequence)
13 if d < 0 then

14 ‘ return true ; // pruning (maximum depth reached)

15 else

16 fora e Q| (a,¢) € I, sorted in increasing (min(startg) + min(dury)) do

17 if feasiblePath(a, p, Q \ {a}, max(t + trans;q, min(start,) +

min(durg)),d — 1) then

18 cache.update((¢, p, Q), (lnz'lx(tf, t),ti));

19 return true;

20 if n # a and feasiblePath(n,n, Q, max(t + transe,, min(starty,) +
min(durg)), d) then

21 cache.update((¢, p, Q), (max( tp,b), ti)) ;

22 return true;

23 return false;

avoid prohibitive computation. The algorithm can thus return a false positive
result by returning true at line 14 if this limit is reached.

The time complexity of Algorithm 8 is O(|S| - |Q|?¢) in worse case as it
corresponds to an iteration over S with a depth-first search of depth d and
branching factor |Q| at each step. In practice, as the branching is based on I,
the search tree will often be smaller. In order to reduce the time complexity
of the successive calls to feasiblePath, a cache is used to avoid exploring
several times a partial extension that can be proven infeasible or feasible based
on previous executions. A global map called cache is assumed to contain
keys composed of the arguments of the function, that is a tuple with (Q, ¢, p).
At each key, the map associates a couple of integer values (tr, ;) where t¢
is the latest known time at which it is possible to depart from ¢ and find a
feasible path among the sub-sequence starting after p and the activities of Q
and t; is the earliest known time at which the departure from ¢ is too late and
there exists no feasible path. Line 6 is called to find if a corresponding entry
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exists in the map. If it is the case, the departure time ¢ is compared to the
couple (tf, t;) of the map. If t < tf, the value true is immediately returned. If
t > t;, falseis returned. If tf < t < t;, the algorithm continues its exploration.
The cache is updated at lines 11, 18 and 21 depending on the result found.
Usage of the cache is highlighted in gray in Algorithm 8.

This checking algorithm can be used in a shaving-like fashion into Algo-
rithm 9. A value is filtered out from the possible set if its requirement made
the sequencing infeasible according to the transition times. This Transition-
TimesFiltering algorithm executes in O(|P|- (|S] - |R\ S|)d). Notice that
the cache is shared and reused along the calls in order to avoid many subtree
explorations. Due to the extensive nature of the algorithm, a parameter p de-
fines a threshold for the size of P above which the feasiblePath algorithm
is not executed for each element of P (line 4).

Algorithm 9: TransitionTimesFiltering(Sq,d, p)

Input: d: maximum depth, p: filtering threshold, Sq = (_S) IP,R, E): seq. variable
cache < map();// initializing memoization map
if !feasiblePath(a, a, R\ S,0,d) then
‘ return failure ;
if |P| < p then
forall a € P do
if ! feasiblePath(a, a, (R\ S) U{a},0,d) then
‘ excludes(Sq, a);

RO T B R O

Example 5.5.4. Let us consider the following example where X = {a, b, c, d}
is the set of activities. The transition times between activities (a) and the
initial time windows (b, column start) are given in Table 5.4. We consider the
sequence variable Sq of domain (—S> = (a,d),I = {(b,a), (b,d), (c,a),(c,d)},
P = {c},R = {a,b,d},E = 0). The duration of each activity is fixed at 2. Let
us apply the propagation of TransitionTimes on this example:

1. Time window update is applied. The time windows of a and d are re-
duced. The updated time windows are displayed in Table 5.4 (b, column
start’).

2. Insertion update is applied. The insertion (b, a) is removed from I as b
cannot be inserted after a without violation (b would end at the earliest
at 9 which implies that d would start at the earliest at 16, outside its
time window).

3. Transition Time Filtering (Algorithm 9) is applied. The search trees for
the checker is displayed in Figure 5.8. The search tree for the filter is
displayed in Figure 5.9. Failures are denoted with X and successes with
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/. The initial value of the parameter d is 3. The domain of Sq after
propagation is ((a,d), {(b,d)}, 0, {a, b,d}, {c}) as the filter excludes c.

Table 5.4: Propagation on Sq = {(a, d), {(b, a), (b,d), (¢, a), (c,d)},{c}, {a b,d}, D)

a b ¢ d start start’
al0 5 6 5 a | [0,10] | [0,8]
b|5 o 5 7 b | [0,16] | [0,16]
cl6 5 0 5 ¢ | [0,15] | [0,15]
dls 7 5 o d | [0,15] | [7,15]

(a) (b)

(t=a,p=a,Q={b}t=0d=3)
(a,a,{b}.2.3)
(d.d, {b},9,3)
(b.d, @‘, 18,2)
v

Figure 5.8: Checker search tree for Sq = ((a,d),{(b,a), (b,d), (c,a), (c,d)},{c},
{a,b,d}, D)

=ap=aQ={bcht=0,d=3)

/ \
(c,a,{b},2,2) (a,a,{b,c},2,3)
|
(a,a,{b},10,2) (d,d,{b,c},9,3)
| VAN
(d,d, {b},17,2) (b,d,{c},18,2) (c,d,{b}, 16,2)
X X X

Figure 5.9: Filter search tree for Sq = ((a,d),{(b,a),(b,d), (c,a),(c,d)},{c},
{a,b,d},0)

5.5.6 Cumulative constraint

In both the DARP and PTP, one has to satisfy requests that correspond to em-
barking and disembarking a person in a vehicle. The activities of transport
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are modeled as pairs of elements in an insertion sequence variable that must
occur in this specific order: embarking before disembarking. Also this pair
of elements must both be present or absent from the sequence. During the
trip, the person occupies some load in the vehicle. By analogy to scheduling
problems, a request is called an activity A; and is composed of the two ele-
ments (start;,end;) corresponding to the embarking and disembarking. This
activity will consume a load load; while it is on the board of the vehicle. The
set of activities is denoted A. Also by analogy to scheduling [AB93], we call
Cumulative the constraint that ensures that the capacity K of the resource
is respected at any point in the ordering defined by the sequence Sq over X
where Vi € A, start;, end; € X. More formally

Cumulative(Sq, [start], [end], [load],K) =

S eD(Sq) |VeeS, Z load; <K %. (5.19)

i€Al|start;<e<end;

5.5.6.1 Propagation

The propagation is triggered when new elements are inserted in S. It con-
sists in filtering insertions in the current sequence s by checking if they are
supported. An insertion for the element corresponding to one extremity of
an activity is supported if there exists at least one possible insertion for the
other extremity of the activity such that the activity load does not overloads
the capacity between both insertion positions.

The first step of the propagation algorithm is to build a minimum load
profile that maps each element e of the sequence to the minimal load at this
point in the sequence based on the activities that are part of S. These can be
either fully inserted (both the start and end of the activity € S) or partially
inserted (only the start or end € S). For partially inserted activities, the posi-
tion for the element not yet inserted is chosen among the possible insertions
in I as the closest one to the inserted element. Note that a violation of the
capacity at this point would trigger a failure.

Once the cumulative profile is built, possible insertions for activities that
are partially inserted are filtered. The algorithm used consists in iterating
over s starting from the inserted element. Possible insertions for the missing
element are considered and allowed as long as the load of the activity can
be added to the minimal load profile without overloading the capacity. If
the capacity is overloaded at some point, the current insertion as well as the
insertions not yet reached are removed.

Finally, Algorithm 18 is used to check activities for which neither element
is inserted. The loop at line 5 iterates over K starting from the dummy ele-
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ment @. When a potential start predecessor is encountered, it is added to the
activeStarts set which maintains potential valid predecessors for the start
element that have been encountered so far (line 7). The boolean canClose
indicates if there exists at least one possible insertion position for the start of
the activity that would be valid if the end is inserted at this point. It is set
to true whenever a start predecessor is added to activeStarts. If adding
the activity to the load profile for the current element violates the capacity,
canClose is set to false and activeStarts is emptied as the potential start
predecessors will not be matched to a valid insertion for the end element.
When a valid predecessor for the end element is encountered, the end prede-
cessor and all the start predecessors in activeStarts are validated (lines
13 and 14). The possible predecessors that have not been validated at the end
of the loop are removed at line 18.

Algorithm 10: CumulFiltering(Sgq,start,end, load, K, profile)

Input: start, end, load: starts, ends and loads of activities, C: capacity,
Sq = (_5) I,P,R, E): Sequence variable, profile: minimum load profile

1 forall i | start; ¢ S A end; ¢ S do

2 activeStarts «— 0 ;

3 current «— «a ;

4 canClose « false ;

5 do

6 if canInsert(Sq,start;, current) then

7 activeStarts < activeStarts U {current} ;

8 canClose < true ;

9 if profile(current) + load; > K then

10 activeStarts «— 0 ;

11 canClose « false ;

12 if canInsert(Sq,end;, current) A canClose then

13 current is valid predecessor for end; ;

14 Vp € activeStarts, p is valid predecessor for start; ;
15 activeStarts «— @ ;

16 current «<—nextMember(Sq, current)
17 while current # a;
18 remove predecessors for start; and end; that have not been validated ;

The complexity to build the minimum load profile is linear. The complex-
ity to check all the activities € A is O(]A] - |S]).

Example 5.5.5. Let us consider four activities: Ag = [a,e], A1 = [b, f], A2 =
[c,g] and A3 = [d, h]. Each activity A; has a load of 1. The capacity is K = 3.
The current partial sequence isS = (ab,ce, f). Before propagation, the cur-
rent possible insertions in I are: {(d, a), (d, a), (d, b), (d, 9), (9,d), (g, €), (g, f),
(g, h), (h,a), (h,c), (h,e), (h,d), (h g)}. Note that the possible insertions that
are not in the current sequence ((d, g), (¢,d), (g, h), (h,d), (h,g)) will be ig-
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nored by the filtering algorithm. Let us propagate the Cumulative con-

straint:

1. The minimal load profile is built based on Ay = [a,e] and A; = [b, f]

which are both fully inserted and Ay = [, g] which is partially inserted
(only ¢ is member in S). The possible insertion for the end of As (g)
that is the closest to its start (c) is (g, ). Thus, As is considered ending
after e to compute the minimum load profile whichis {a : 0,a: 1,0 : 2,
c:3,e:2,f:0}.

. The possible insertions for the partially inserted activity A are filtered.
The sequence is iterated over starting from c. As (g, e) is part of the
minimal load profile, it is validated. The remaining possible insertion
(g, f) is reached without overloading the capacity and thus validated.

. The possible insertions for non-inserted activity A3 = [d, h] are filtered.
To do so, Algorithm 18 iterates over the elements in —S) starting from
a. Both « and a are added to activeStart and canClose is set to
true. When considering a as possible predecessor for h, as canClose
is true, the insertions (h, a), (d, @) and (d, a) are validated. Afterwards
b is added to activeStart. When considering c, adding the activity
As at this point would overload the capacity K. Thus, canClose is
set to false and activeStart is emptied. ¢ and d are not validated as
possible predecessors, as canClose is false when they are considered.

The load profile and possible insertion positions for d and h are illustrated in

figure 5.10.

wl

Figure 5.10: Minimum load profile (in gray) and possible insertions for d (up

arrows) and / (bottom arrows). Invalid insertions are displayed in red.
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At the end of the propagation, the validated insertions are (g, €), (g, f),
(d,a), (d,a) and (h, a). The possible insertions (d, b), (h,c) and (h, e) are re-

moved from I.

5.5.7 Max Distance constraint

In routing contexts the sequence variable may be used to represent the route
of a vehicle. In this case, elements of the sequence corresponds to steps on
the route, which are separated by transitions in order for the vehicle to move
from one to another. The MaxDistance constraint ensures that the total
length of the route is equal to an integer variable.

Given a matrix trans; ; that specifies a transition distance associated to
each couple of elements (i, j) and an integer variable D, the MaxDistance
constraint is defined as

MaxDistance(Sgq, D, trans; ;) = S e D(Sq) | Z transgp < D

(ab)|a—b

(5.20)

Propagation The propagation is nearly the same for both implementations.
It uses three algorithms. The first one, which is called when D or’S is modi-
fied, computes the length of the current internal sequence S and updates the
lower bound of D. The second algorithm is used only for the insertion se-
quence variable. It is called when D or I is modified. It filters out insertions
in I that would result in a sequence longer than the upper bound of D. The
last propagation algorithm is called whenever a new element is added to R or
inserted in'S .

It consists computing a minimum spanning tree over the graph formed by
the path of S and all the edges connecting the non-inserted required elements
to the elements of S. The Kruskal [Kru56] algorithm is used to compute the
MST. The length of the MST is then used as lower bound for D. The complexity
of the two first algorithms is linear. The last algorithm has a complexity of
O(E -1og(E)) where E = |[R\ S|> +|R\ S| - |S| +|S].

5.6 Applications of the Sequence Variable

This section presents the application of the prefix and insertion sequence vari-
ables on the PTP. Additional experiments were performed with the insertion
sequence variable on the DARP.
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5.6.1 Patient Transportation Problem (PTP)

The first problem considered is the Patient Transportation Problem (PTP). Its
formal definition is given in Section 4.1.1.

5.6.1.1 Model with Prefix Sequence Variables

The model proposed for the PTP associates each stop of a vehicle at a specific
location to an activity. Each request r € R consists in one or two travels. The
set of all travels is noted T. Each travel t € T is composed of a couple of stops
(p, d) where p corresponds to the pickup of the patient and d to its drop off.
The notation i € r indicates that the stop i is part of the request . The set
of all stops is noted X. The transition time between the locations of two stop
a and b is noted trans,p. For each vehicle v € V, two additional stops sd,
and ed, are used to model the visit at the start (start,) and end (end,) of the
depots.
The variables of the model are the following:

m For each vehicle v € V, a prefix sequence variable Sq, represents the
vehicle route. Its initial domain is {(), X, 0, 0).

= Each request r € R is associated with a boolean variable Rs, corre-
sponding to 1 if the request r is selected (realized in the solution) and 0
otherwise.

= Each stop i € X is associated with an activity defined by a triplet of
variables (s;,d;, e;) where s; is the starting time of the activity, d; is
the duration of the activity e; is the ending time of the activity. The
relation e; = s; + d; must hold. The initial domain of these variables
is defined by the corresponding request r € R and whether the stop is
part of a forward or a backward trip: for a forward trip, s; € [rdv, —
maxwy, rdv, —srv,| and e; € [rdv, — maxw, +suvr,, rdov,]; for a backward
trip, s; € [rdv, + drdov,, rdv, + drdv, + maxw, — srv,] and e; € [rdo, +
drdv, + srv,, rdv, + maxw,]. in both cases, d; = srv,. A variable x;
indicates which vehicle visits the stop. Its initial domain contains all the
compatible vehicle indices (cat, € C,) along with an additional value L
which indicates that the stop is not visited by any vehicle. Variables for
the depot stops of a vehicle v are initialized with a vehicle variable x; =
v and time windows corresponding to the availability of the vehicle:
s; € [savaily, eavail,], e; € [savail,, eavail,], d; = e; — s;.

m Alternative stop activities are duplicated for each vehicle and defined
by the variables (salt; », dalt; 4, ealt; y)iex vev. They are linked with the
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original stop activities by an element constraint [VC88]. These auxil-
iary variables are used for the TransitionTimes constraint over the
sequence variable corresponding to their vehicle.

m For each travel t = (p,d) € T, an activity is defined by the variables
(st;, dt;, et;) with st; = sp, et; = eg and dt; = et; — st;. The vehicle
variable x; of the travel ¢ is the vehicle variable of its pickup stop x; =
xp. The variable It; = ld, indicates the load of the associated request r.
These variables are used for the cumulative global constraint.

The full model consists in:

max(Z Rs;) (0)
rer

s.t.

First(5qo, sdy) YoeV (1)
Last(Sqq, edy) YoeV (2)
Cumulative((sty), (dty), (etr), ltz, (xt), ko, 0) YoeV (3)
TransitionTimes(Sqq, (saltiy), (dalt;y), trans) YoeV (4)
Precedence(Sqy, (p,d)) YoeV,t=(pd)eT (6)
Dependency(Sqy, (p,d)) YoeV,t=(p,d)eT (7)
Rsp = (x; # 1) VreRieX|ier (12)

element (x;, (salt;y), si)

element(x;, (daltiy), d;)

element (x;, (ealtiy), €;) VieX (13)
Sq4 = ep +transy g Vi=(p,d)eT (14)
SequenceAllocation((Sqy), (xi), X) (15)

Numbering refers to the formal definition in Section 4.1.1 when appli-
cable. The objective function (0) maximizes the number of served requests.
Constraint (1) ensures that each vehicle leaves from its starting depot while
Constraint (2) ensures that each vehicle will end at its end depot. Constraint
(3) ensures that the number of places occupied by patients in a same vehicle
v cannot exceed its capacity k,. This constraint is referred in the literature as
the cumulative resource global constraint [AB93] (see Section 2.2.1.2). We use
the filtering algorithm of Gay et al. [GHS15a]. Constraint (4) ensures the con-
sistency of the time windows regarding the transition times between stops.
Constraints (5) and (8) to (11) from the formal definition are enforced through
the initial domain of the corresponding variables. Constraint (6) ensures that
each pickup stop is visited before its corresponding drop stop. Constraint
(7) ensures that each couple of pickup and drop stops is present in a same
vehicle. Constraint (12) links the request selection variables with the vehi-
cle variables of the request travel(s). The group of element constraints (13)
links each stop activity with the alternative activity corresponding to the ve-
hicle performing the activity. Constraint (14) is an additional constraint that
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improves the propagation by ensuring that the transition time is taken into
account in the time window of the stops of a same travel. Constraint (15)
enforces that the vehicle variable of each stop corresponds to the sequence
containing the stop or the value L if the stop is not visited.

5.6.1.2 Model with Insertion Sequence Variable

The model with the insertion sequence variable is similar to the one for the
prefix sequence variable with the exception of the following changes:

m For each vehicle v € V, an insertion sequence variable is used instead
of a prefix sequence variable to model the vehicle route Sq,,.

= Constraint (3) is enforced by the cumulative constraint defined for the
insertion sequence variable in section 5.5.6:

Cumulative(Sqy, (pr), (dr), (Iry), ky)Vo € V (3)

5.6.1.3 Search

A Large Neighborhood Search (LNS) [Sha98] is used. The relaxation is in-
spired by the partial order schedule relaxation of [GLNO05]. It consists in ran-
domly selecting a subset of requests. Those can be reinserted anywhere in any
sequence while the others are forced to be reassigned in the same sequence in
the same linear order. For the prefix sequence variable, the requests that are
not selected have their stops assigned (but not appended) to the vehicle that
they were part of in the current solution. Precedence constraints ensure that
these stops keep the same order as in the current solution. For the insertion
sequence variable, the relaxation is easier to perform. It simply consists in
inserting the stops in their current sequence in the same order. If the search
tree is completely explored during a given number of consecutive iterations
given by a stagnation threshold s, the relaxation size is increased.

The search used for the prefix sequence variable is called sequence selection
search. This heuristic, shown in Algorithm 8, selects the sequence that finishes
the earliest (according to the earliest end time of its last appended activity)
and consider all its possible extensions. Branches are explored from left to
right according to the latest end time of appendable stops. The travel distance
between the last appended stop and the new stop is used as a tie breaker.

For the insertion sequence variable, two different search heuristics are
considered:

1. A generic First Fail search. Similarly as in [JV11], at each step of the
search, it selects the element (the stop) not yet decided with the mini-
mal number of possible insertions in all compatible sequences. Then, it
branches in a random order over the possible insertions for the element.
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Algorithm 11: SequenceSelection

1 extendableSeqs «— {v | v € VAlisBound(Sqy)} ;
2 if extendableSeqs = 0 then

3 ‘ Solution found ;

1 else

5 Umin <~ argnlinv|z:eextendableSeqs min(elastAppended(qu));

6 { «— lastAppended(Sqy,,;,) ;

7 forall i € allAppendable(Sqy,,,) by order of (max(e;), transy ;) do
8 ‘ branch(append(Sqy,,;,,i)) ;

2. A problem specific heuristic called Slack Driven Search (SDS). It uses
a similar approach to the first fail heuristic to select a stop with a min-
imal number of possible insertions. The heuristic is guided by a slack
difference metric which is defined as the total size difference of the time
windows of the predecessor and successor of the stop to insert before
and after insertion. The intuition is to minimize this difference in order
to keep the sequences as flexible as possible and maximizing potential
future insertions. Additionally, the branching decisions, each corre-
sponding to a possible insertion for the stop selected, are explored by
increasing order of slack difference.

5.6.2 Dial-a-Ride Problem

After the experiments performed on the PTP, additional experiments were
done on the DARP. The variant of the DARP considered is the one proposed
in [CLO3b]. It is described in Section 2.1.5. The prefix sequence variable was
not considered for these experiments as it is consistently outperformed by the
insertion sequence variable in the PTP experiments and showed poor results
when not provided a initial solution.

5.6.2.1 Model with Insertion Sequence Variables

The model is similar to the one used for the PTP (see Sections 5.6.1.2 and
5.6.1.1). For each vehicle v € V, an insertion sequence variable Sq, represents
the vehicle route. Its initial domain is (S = (),P = X,R = 0,E = 0). An
associated variable Dist, indicates the total distance of the route.

Each request stop i € X is associated with an activity defined by a triplet
of variables (s;,d;, e;) where s; is the starting time of the activity, d; is the
duration of the activity e; is the ending time of the activity. The relation
e; = s; + d; must hold. The initial domain of these variables is defined by the
time window and service duration of the stop. A variable x; indicates which
vehicle visits the stop. Its initial domain contains all vehicles. Two additional
stop activities sd, and ed, are added for each vehicle v to model the departure
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and end stops of the vehicle at the depot. They are associated with a vehicle
variable x; = .

Alternative stop activities are duplicated for each vehicle and defined by
the variables (salt; ,, dalt; », ealt; ,)icx vcv. They are linked with the original
stop activities by an element constraint [VC88]. These auxiliary variables
are used for the Transition Times and Max Distance constraints over
the sequence variable corresponding to their vehicle.

Each request r € R is also associated to a start sr,, an end er,, a duration
dr, and a vehicle xr,. Note that these variables are views on the corresponding
stop variables: the start of the request corresponds to the start of its pickup
stop sr, = sp,; the end of the request corresponds to the end of its drop stop
er, = eq,; the duration is the difference between the two previous variables
dr, = er, —sr, and the vehicle is the one that serves the pickup stop xr, = x,, .
Additionally, a load variable Ir, is created for each request. It has a single
value which corresponds to the load of the pickup stop and is used for the

cumulative constraint.
The full model is given here:

—
[
—_

SequenceAllocation((Sqy), (xi),X)

min( Z Disty) (0)
veV
s.t.
First(Sqy, sdy) YoeV (1)
Last(Sqo, edy) YoeV (2)
Ccumulative(Sqq, (pr), (dr), (Iry), ko) YoeV (3)
TransitionTimes(Sqq, (saltiy), (dalt;y), trans) Yo eV (4)
Precedence(Sqy, (p,d)) YoeV,r=(p,d) eR (6)
Dependency(Sqy, (p, d)) YoeV,r=(p,d) eR (7)
Sd — €p < Rmax Vr=(p,d) €R 9)
Sed, — €sd, < Dmax YoeV (10)
)
)

MaxDistance(Sqy, Disty, trans) YoeV (12
element(x;, (salt;y), si)
element(x;, (daltiy), d;)
element(x;, (ealt;y), e;) VieX (13)
Sq = ep +iransy g Vt=(p,d)eT (14)

Numbering refers to the formal definition in Section 2.1.5 when applica-
ble. Constraint (3) is enforced by a MaxCumulativeResource constraint
(see Section 2.2.1.2) with the propagator of [GHS15a]. Constraints (5) and (8)
from the formal definition are enforced through the initial domain of the cor-
responding variables. Constraint (12) links the route distance variables and
sequence variables between them. The group of element constraints (13)
links each stop activity with the alternative activity corresponding to the ve-
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hicle performing the activity. Constraint (14) is an additional constraint that
improves the propagation by ensuring that the transition time is taken into
account in the time window of the stops of a same travel.

5.6.2.2 Search

Such as for the PTP, a LNS is used and two search heuristics are considered:
1. The same generic First Fail heuristic as the one described in 5.6.1.3;

2. A problem specific heuristic called Cost Driven Search (CDS).
It is similar to the slack driven search presented in Section 5.6.1.3. The
cost metric used in [JV11] for their LNS-FFPA algorithm is used to im-
prove the heuristic. The minimum cost between all possible insertions
for a stop is used as a tie breaker for the selection of the next stop to
insert. Additionally, the branching decisions, each corresponding to a
possible insertion for the stop selected, are explored by increasing order
of cost.

5.7 Experimental Results

This section reports the comparison of the models presented in section 5.6
with state-of-the-art CP approaches for the PTP and DARP. The models based
on prefix sequences variables are referred as the Insertion Sequence (PSEQ)
approaches and those based on insertion sequences variables are referred as
the Insertion Sequence (ISEQ) approaches. The generic First Fail heuristic is
referred as FF. The Slack Driven and Cost Driven heuristics are referred as SDS
and CDS respectively.

Experiments were done on the PTP with a Large Neighborhood Search
(LNS) and a Depth First Search (DFS). Both sequence based models are com-
pared with:

1. the model proposed in Section 4.3, referred as Scheduling with Optional
Decision Search (SCHED+0DS);

2. the model proposed in [LAB18], referred as Liu CP Optimizer model
(LTU_CPO).

For the experiments in the LNS setting, the same experimental approach
as in Section 4.6 is used. A greedy method referred as (GREEDY) is used to
compute the initial PTP solutions given to the compared models in the LNS
setting. Tests are performed on the benchmark of instances used in Section
4.6. It contains both real exploitation instances and randomly generated in-
stances which are available at [Tho+]. The LNS uses an initial relaxation of
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20% of the requests, a failure limit of 500, a stagnation threshold of 50 and
an increase factor of 20%. The DFS uses the same heuristics as in the LNS
setting. No initial solution is given in this setting. The parameters of the
TransitionTimes constraint used for both settings are: a maximum depth
(if applicable) of 3 and a filtering threshold of 10.

Each approach was run 10 times on each instance, with a time limit of 600
sec. The system used for the experiments is a PowerEdge R630 server (128GB,
2 proc. Intel E5264 6¢/12t) running on Linux. The approaches using CP Op-
timizer were implemented using the Java API of CPLEX Optimization Studio
V12.8 [Lab+18]. The other models were implemented on OscaR [Osc12] run-
ning on Scala 2.12.4.

In order to compare the anytime behavior of the approaches, we define
the relative distance of an approach at a time ¢ as the current distance from
the best known objective (BKO) divided by the distance to the worse initial
objective (WSO):

objective(t) — BKO
WSO - BKO

. If an approach has not found an initial solution, the worse initial objective
(WSO) is used as objective value. A relative distance of 1 thus indicates that
the approach has not found an initial solution or is stuck at the initial solution
while a relative distance of 0 indicates that the best known solution has been
reached.

(5.21)

5.7.1 PTP with LNS

The results of the experiments on the PTP instances in a LNS context are
shown in Tables 5.5 and 5.6. Instances are classified according to their size,
expressed by the number of requests (|R|), available vehicles (|V|) and health
centers (|H|). In addition, synthetic instances are sub-categorized by difficulty
which is related to the number of constraints and the availability of vehicles.
The column BKO indicates the best known optimum for each instance. For
each approach, the best result of all the runs is reported in the column Sol. The
”*” symbol indicates that the solution has been proven optimal in at least one
run. The column rdist indicates the average relative distance between each
run at the end of the search. Figure 5.11 shows the evolution of the average
relative distance for all instances, for each run during the search.

The results show that both implementations of the sequence variable are
able to successfully outperform the dedicated SCHED+ODS approach on the
PTP. The prefix sequence variable approach (PSV) manages to obtain good
results on the easier instances but is outperformed by both the CP Optimizer
approach (LIU_CPO) and the insertion sequence approaches (ISEQ) on larger
or harder instances. In terms of general performances, it is on par with the
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Table 5.5: Comparison of performances on the synthetic instances of the
PTP with LNS (”Sol” indicates the best solution, "rdist” corresponds to the
average relative distance at the end of the search)

Instance LIU_CPO | SCHED+ODS PSEQ ISEQ+FF ISEQ+SDS
Difficulty Name |H| |v| |P] BKO Sol  rdist Sol rdist Sol  rdist Sol  rdist Sol  rdist
easy RAND-E-1 4 2 16 *15| *I5 0| *15 o *15 o *15 0| *15 0
easy RAND-E-2 8 32 *32| *32 0| *32 0| *32 0| *32 0| *32 0
easy RAND-E-3 12 48 *28 *28 0 *28 0 *28 0 *28 0 *28 0
easy RAND-E-4 16 64  *64 *64 0 62 0.042 *64 0 *64 0 *64 0
easy RAND-E-5 20 80 *80 | 79 0.013| 75 0.075| *80 0.011 | *80 0.001 | *80 0
easy RAND-E-6 24 96 *96 | *96 0| 94 0028| *9% 0| *9% 0| *9% 0
easy RAND-E-7 28 112 *112 | *112 0 106 0.064 | *112  0.009 | *112 0.001 | *112 0
easy RAND-E-8 32 128 *128 | *128 0| *128 0| *128 0| *128 0| *128 0
easy RAND-E-9 36 144 *144 | *144 0 142 0.014 | *144 0| *144 0 | *144 0
easy RAND-E-10 40 160  *160 159  0.006 157 0.019 | *160 0 | *160 0 | *160 0
medium RAND-M-1 8 16 *12 *12 0 11 0.083 *12 0 *12 0 *12 0
medium RAND-M-2 16 32 *20 *20 0 *20 0.05 *20 0.015 *20 0 *20 0
medium RAND-M-3 24 48 *35 *35 0 33 0.091 *35  0.017 *35  0.009 *35  0.014
medium RAND-M-4 32 64 *42 41  0.024 39 0.152 40 0.069 *42  0.021 *42 0.01
medium RAND-M-5 40 80 *69 *69 0 59 0.181 66 0.071 67 0.049 67 0.051

9%  *61 60 ' 0.016 51  0.184 40 0344 | *61 0.038 | *61 0.028
12 *77 75 0.029 62 0.213 46 0403 | *77 0.036 75 0.042
128 *96 | *96 0 84  0.147 72 0.25 95 0.032 95 0.025
144 *99 94 0.054 82  0.199 65 0.343 98 0.027 | *99 0.023
160 *117 112 0.044 100 0.162 75 0359 | *117 0.016 | *117 0.019

medium  RAND-M-6 48
medium  RAND-M-7 56
medium  RAND-M-8 64
medium  RAND-M-9 72
medium  RAND-M-10 80
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hard RAND-H-1 16 16 *8 *8 0 *8 0 *8 0 *8 0 7 0.125
hard RAND-H-2 32 32 *19 | *19 0| *19 0042 | *19 0| *19 0| *19 0
hard RAND-H-3 48 48 *35 34 0.029 32 0117 | *35 0.026 34 0.031 34 0.04
hard RAND-H-4 64 64 *25| *25 0 24 0128 | *25 0 24 0.056 24 0.06
hard RAND-H-5 80 80  *48 | *48 0 45 0.121 *48  0.194 47 0.04 | *48 0.023
hard RAND-H-6 96 96 *47 | *47 0 41 0.194 | *47 0.147 45 0.06 45 0.066
hard RAND-H-7 112 112 *44 41 0.068 40 0.148 43 0318 | *44 0.034 | *44 0.009
hard RAND-H-8 128 128 *89 86 | 0.034 78  0.151 58 0.348 87 0.038 | *89 0.034
hard RAND-H-9 144 144  *85 83 | 0.024 75  0.141 54 0.365 84  0.04 84 0.029
hard RAND-H-10 160 160  *83 79 0.048 73 0.143 81 0.073 82 0.024 | *83 0.022

scheduling model.

As can be observed, the approach using the insertion sequence variable
obtain slightly better result than the approach using the state-of-the-art CP
Optimizer. Note that the comparison with CP Optimizer is not straightfor-
ward as it is mostly black box and its interface does not offer much control
over its behavior. However, despite the adaptive LNS search [LG07] and the
advanced techniques (failure directed search [VLS15], objective landscapes
[Lab18b]) used by CP Optimizer, the sequence variable approach is competi-
tive in an LNS setting.

The difference of searches used by the insertion sequence variable (First
Fail (FF) or Slack Driven (SDS)) have a low impact on the performances. The
SDS seems a bit better. An interesting result is that both searches are espe-
cially good on the real world instances and SDS even manages to prove the
optimum on all real instances.

The general behavior of the different methods during the search can be
observed on Figure 5.11. We can see that both the scheduling model and the
prefix sequence variable model start to stagnate at around 20% of the relative
distance and are unable to go much further. The CP optimizer approach dom-
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Table 5.6: Comparison of performances on the synthetic instances of the
PTP with LNS (”Sol” indicates the best solution, "rdist” corresponds to the
average relative distance at the end of the search)

Instance
Name |Hl V| |P| BKO
REAL-1 1 9 2 *2
REAL-2 1 9 2 *2
REAL-3 3 9 3 *1
REAL-4 2 9 4 *q
REAL-5 5 9 21 *21
REAL-6 5 9 22 *22
REAL-7 5 9 23 *23
REAL-8 7 9 24 *24
REAL-9 15 9 45 *44
REAL-10 26 9 99 *98
REAL-11 22 9 100 *92
REAL-12 32 9 101 *100
REAL-13 37 9 110 *107
REAL-14 28 9 111 *102
REAL-15 35 9 122 *119
REAL-16 36 9 123 *117
REAL-17 42 9 128 *122
REAL-18 31 9 130 *126
REAL-19 34 9 131 *122
REAL-20 34 9 134 *129
REAL-21 39 9 136 *127
REAL-22 31 9 138 *131
REAL-23 31 9 139 *136
REAL-24 37 9 139 *124
REAL-25 39 9 139 *135
REAL-26 38 9 140 *131
REAL-27 35 9 147 *139
REAL-28 34 9 151 *145
REAL-29 39 9 155 *147
REAL-30 41 9 159 *149

LIU_CPO
best  rdist
*2 0
*2 0
*1 0
*q 0
*21 0
*22 0
*23 0
*24 0
*44 0
*98 0
*92 0
*100 0
*107 0
*102 0
118 0.008
*117 0
*122 0
*126 0
121 0.008
128 0.014
126 0.008
*131 0
134 0.015
120 0.035
131 0.03
*131 0
138 0.007
144 0.007
144 0.02
138 0.079

SCHED+ODS
best rdist
*2 0
*2 0
*1 0
*q 0
*21 0
*22 0
*23 0
*24 0
*44 0
*98 0
91  0.016
98 0.02
104  0.038
*102  0.011
109  0.097
111 0.068
114 0.078
121 0.053
116 0.084
117 0.117
120 0.075
123 0.087
123 0.121
112 0.115
128 0.076
120 0.102
129 0.084
129 0.119
129 0.139
134 0.127

PSEQ

best
*2
*2
*1
*4
*21
*22
*23
*24
*44
*98
*92
*100
*107
*102
115
107
120
125

125
125
128
131
120
119
110
121
117
120
116

rdist

=Rl I =R 2 = - )

0.001
0.008
0.006

0.04
0.085
0.026
0.015
0.017
0.047
0.023
0.031
0.048
0.043
0.119

0.16
0.129
0.193
0.184
0.221

ISEQ+FF
best  rdist
*2 0
*2 0
*1 0
*q 0
*21 0
*22 0
*23 0
*24 0
*44 0
*98 0
*92 0
*100 0
*107 0
*102 0
118  0.008
*117 0
*122 0
*126 0
*122 0.005
*129  0.01
*127  0.001
*131  0.002
*136  0.012
123 0.017
*135  0.003
*131  0.002
138 0.009
*145  0.007
146 0.012
148 0.014

ISEQ+SDS
best  rdist

*2 0

*2 0

*1 0

*q 0
*21 0
*22 0
*23 0
*24 0
*44 0
*98 0
*92 0
*100 0
*107 0
*102 0
118 0.01
*117 0
*122 0
*126 0
*122  0.001
*129  0.005
*127 0
*131 0
*136  0.007
*124  0.006
*135  0.002
*131  0.001
*139  0.006
*145  0.006
*147  0.009
*149  0.008

inates during the first 10 seconds of the search but is quickly outperformed
by both the insertion sequence based methods as its slope decreases. An in-
teresting observation is that after some time LIU_CPO descends again faster
to reach the same relative distance than the insertion based models. Our hy-
pothesis is that it is thanks to the failure directed search [VLS15] that is used
by CP optimizer when the LNS starts to stagnate. It shows a possible direction
to improve the search for the insertion sequence variables.
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Figure 5.11: Average relative distance in function of time on the PTP with
LNS
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5.7.2 PTP with DFS

The next experiment compares the approaches in a DFS setting. It allows us
to compare the models with a similar search and have a fairer comparison
with CP Optimizer which uses a standard first fail heuristic in this context.
The results are shown in Tables 5.7 and 5.8. Figure 5.12 shows the anytime
behavior.

Table 5.7: Comparison of performances on the synthetic instances of the
PTP with DFS (”Sol” indicates the best solution, “rdist” corresponds to the
average relative distance at the end of the search)

Instance LIU_CPO | SCHED+ODS PSEQ ISEQ+FF ISEQ+SDS
Difficulty Name |[H| V] [P| BKO | Sol rdist | Sol rdist | Sol rdist | Sol rdist | Sol rdist
easy RAND-E-1 4 16 *15 | *15 0 14 0.067 *15 0| *15 0 *15 0
easy RAND-E-2 8 32 *32 18 0.438 30 0.063 *32 0 *32 0 *32  0.003
easy RAND-E-3 12 48 *28 22 0214 26 0.071 0 1 *28 0 *28 0.004
easy RAND-E-4 16 64 *64 25 0.609 53 0.172 *64 0 *64  0.023 61 0.092
easy RAND-E-5 20 80  *80 18 0.775 66 0.175 77 0.038 *80 0.048 73 0.114
easy RAND-E-6 24 96 *96 23 0.76 87 0.094 | *96 0| *96 0 94 0.047
easy RAND-E-7 28 112 *112 22 0.804 90 0.196 0 1 111 0.051 103 0.1
easy RAND-E-8 32 128 *128 26 0.797 | 120 0.063 0 1| *128 0  *128 0.012
easy RAND-E-9 36 144 *144 21 0.854 | 129 0.104 | *144 0 | *144 0.029 139  0.066
easy RAND-E-10 40 160 *160 21 0.869 | 135 0.156 0 1] *160 0.011 149 0.079

16 *12 | *12 0 9 0.25 | *12 0| *12 0 *12 0
32 *20 | *20 0 15 0.25 19 0.05 | *20 0 *20 0
48 *35 22 0371 29 0.171 33 0.057 33 0.223 34 0.094
*42 23 0452 | 31 0.262 37 0.119 34 0.259 38 0.157

medium  RAND-M-1 8
medium  RAND-M-2 16
medium  RAND-M-3 24
medium  RAND-M-4 32
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medium  RAND-M-5 40 80  *69 19 0.725 | 46 0.333 64 0.072 59 0.196 57 0.197
medium  RAND-M-6 48 96  *61 11 082 | 45 0.262 0 1 55 0.152 54 0.192
medium  RAND-M-7 56 12 *77 19 0753 | 49 0.364 68  0.117 65 0.219 64 0.196
medium  RAND-M-8 64 128 *96 16 0.833 | 68 0.292 0 1 80 0.207 83  0.18
medium  RAND-M-9 72 144 *99 25 0.747 | 63 0.364 0 1 76 0.276 86 0.216
medium  RAND-M-10 80 160 *117 14 088 | 83 0.291 0 1 94 0.226 100  0.17
hard RAND-H-1 16 16 *8 | *8 0 6 0.25 *8 0 5 0375 7 0275
hard RAND-H-2 32 32 *19 | *19 0 16 0.158 | *19 0 17 0.105 18 0.068
hard RAND-H-3 48 48 *35 21 04| 25 0.286 33 0.057 26 0.297 30 0.174
hard RAND-H-4 64 64  *25 22 012 21 0.16 | *25 0 23 0.136 24 0.1
hard RAND-H-5 80 80  *48 21 0563 | 34 0.292 0 1 35 0.323 41 0.179
hard RAND-H-6 96 96  *47 21 0553 | 32 0.319 0 1 38 0.274 37 0.26
hard RAND-H-7 112 112 *44 18 0.591 | 34 0.227 0 1 31 0.318 40 0.198
hard RAND-H-8 128 128 *89 29 0.674 | 65 0.27 0 1 56 0.393 74 0.242
hard RAND-H-9 144 144  *85 17 08 | 60 0.294 0 1 62 0312 71 0.226
hard RAND-H-10 160 160 *83 17 0.795 | 62 0.253 0 1 58 0.373 66 0.223

The experiment in the DFS setting, where the advanced search of CP Op-
timizer is not used, suggests that the difference is mainly due to the modeling
and propagation. Indeed, even our generic search outperforms CP Optimizer
in this setting.

Another striking result is that the prefix sequence model is particularly
bad in this setting, having difficulties even finding an initial solution on most
instances. This is somewhat expected as the sequence selection search has
mainly been designed to be used in a LNS. Its heuristic considers the stops in-
dependently, without taking into account the requests. This leads to decisions
early in the search tree which impact other stops that become required but
are considered far further in the search tree. This results show the shortcom-
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Table 5.8: Comparison of performances on the real instances of the PTP with
DFS (”Sol” indicates the best solution, "rdist” corresponds to the average rel-
ative distance at the end of the search)

Instance LIU_CPO | SCHED+ODS PSEQ ISEQ+FF ISEQ+SDS
Name [H| |V] |P| BKO | Sol rdist | Sol rdist | Sol rdist | Sol rdist | Sol rdist
REAL-1 1 9 2 *2 | *2 0| *2 0] *2 0 *2 0 *2
REAL-2 1 9 2 *2 1 *2 0| *2 0| *2 0 *2 0 *2 0
REAL-3 3 9 3 *1| *1 0| *1 0| *1 0 *1 0 *1 0
REAL-4 2 9 4 *4 | *4 0| *4 0| *4 0 *4 0 *4 0
REAL-5 5 9 21 *21 | *21 0| *21 0| *21 0 *21 0 *21 0
REAL-6 5 9 22 *22| 12 0455 | *22 0| *22 0 *22 0 *22 0
REAL-7 5 9 23 *23| 16 0.304 | *23 0| *23 0 *23 0 *23 0
REAL-8 7 9 24 *24| 13 0458 | *24 0| *24 0 *24 0 *24 0
REAL-9 15 9 45 *44 | 14 0.682 | *44 0 | *44 0 *44 0 *44
REAL-10 26 9 99 *98| 16 0.837 | 97 0.01 0 1 *98 0 *98 0.003
REAL-11 22 9 100 *92| 26 0717 | 83 0.098 | 90 0.022  *92 0.021 | 90 0.036
REAL-12 32 9 101 *100 | 23 077 | 94 0.06 | 96 0.04 *100 0| 99 0.029
REAL-13 37 9 110 *107 | 15 0.86 | 95 0.112 0 1 106 0.057 | 103 0.059
REAL-14 28 9 111 *102 | 26 0.745 | 95 0.069 0 1 *102 0 | 101 0.047
REAL-15 35 9 122 *119 | 14 0882 | 95 0.202 0 1 \ 109 0.126 110 0.105
REAL-16 36 9 123 *117 | 14 088 | 97 0.171 0 1 *117 0.083 | 111  0.079
REAL-17 42 9 128 *122| 14 0.885 | 97 0.205 0 1 \ 111 0.146 112 0.098
REAL-18 31 9 130 *126 | 13 0.897 | 104 0.175 0 1 123 0.069 | 119 0.075
REAL-19 34 9 131 *122| 10 0.918 | 103 0.156 0 1 117 0.089 | 116 0.095
REAL-20 34 9 134 *129| 16 0.876 | 103 0.202 0 1 117 0.125 | 115  0.122
REAL-21 39 9 136 *127 | 10 0.921 | 106 0.165 0 1 120 0.121 | 116  0.107
REAL-22 31 9 138 *131 | 33 0.748 | 101 0.229 0 1| 120 0.117 123 0.095
REAL-23 31 9 139 *136 | 12 0.915 | 100 0.265 0 1| 119 0.152 121 0.139
REAL-24 37 9 139 *124 | 11 0911 | 90 0.274 0 1 112 0.144 112 0.136
REAL-25 39 9 139 *135| 13 0.904 | 111 0.178 0 1 128 0.114 \ 126 |~ 0.101
REAL-26 38 9 140 *131| 16 0.878 | 101 0.229 0 1| 119 0.136 121 0.116
REAL-27 35 9 147 *139 | 24 0.827 | 106 0.237 0 1| 120 0.177 125 0.13
REAL-28 34 9 151 *145| 13  0.91 | 108 0.255 0 1 137 0.143 \ 127 0.148
REAL-29 39 9 155 *147 | 10 0.932 | 109 0.259 0 1| 124 0.186 131 0.148
REAL-30 41 9 159 *149 | 11 0.926 | 106 0.289 0 1| 126 0179 130 0.15

ings of the prefix based approach and the advantages of the insertion based
variable that allows much more flexibility in the search. An interesting ob-
servation is that despite its shortcomings, the prefix based approach is able
to obtain good results and even outperform other methods on a few specific
instances. This might be due to the greedy nature of its heuristic that works
well in some specific configurations, for example if the stops of a same request
are close to each other in time.

The anytime behavior of the methods (Figure 5.12 shows that the insertion
sequence model clearly outperforms the other models given enough search
time. The scheduling model is faster at the beginning of the search but starts
to stagnate quickly. The difference between the first fail and slack driven
heuristics is more important in this DFS context, the later one being able to
get closer to the optimum.
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Figure 5.12: Average relative distance in function of time on the PTP with
DFS

5.7.3 DARP

For the DARP, the insertion sequence approach was compared with:

1. the LNS with First Feasible Probabilistic Acceptance(LNS-FFPA) model
and heuristic proposed in [JV11];

2. an implementation of our model with the sequence variables and inter-
val variables of CP Optimizer which is referred as DARP_CPO.

Note that due to the difficulties of the prefix sequence variable to find an initial
solution, it was not considered on this problem.

The approaches were run on 68 DARP instances from [CL03a; Cor06] that
are available at [Bra22]. The results are available in Tables 5.9 and 5.10. As
for the two precedent experiments, the average relative distance during the
search is used to show the general behavior of the different approaches in
Figure 5.13.

These results show that the three approaches using sequence variables
are not able to compete with the LNS-FFPA approach. This method uses a
search technique heavily tailored to this specific version of the DARP and
even enforces some constraints outside of the model, during the search. This
allows the LNS-FFPA to be highly efficient but makes it hard to easily adapt
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Figure 5.13: Average relative distance in function of time on the DARP

to other problems. On the other hand, the other approaches are more generic
and their components can easily be reused for other problems.

The comparison of the two insertion sequence approaches with the CP
optimizer approach shows that the cost driven heuristic (CDS) gives an edge
over CP Optimizer (DARP_CPO) at the end of the search while the general first
fail heuristic (FF) is the least efficient.
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Table 5.9: Comparison of performances on the DARP (1/2, ”Sol” indicates the
best solution, “rdist” corresponds to the average relative distance at the end
of the search)

Instance | BKO DARP_CPO ISEQ+FF ISEQ+CDS LNS-FFPA
Sol  rdist Sol  rdist Sol  rdist Sol  rdist
a2-16 294 294 0 294 0 294  0.005 294 0
a2-20 344 345 0.008 345 0.015 348 0.032 344 0
a2-24 431 431 0 431 0.013 431 0.016 431 0
a3-18 300 301 0.009 300 0.006 300 0.006 300 0
a3-24 190 200 0.068 190 0.017 193 0.039 195 0.039
a3-30 494 504 0.066 495 0.025 496 0.013 494 0.004
a3-36 583 %) 1 583 0.025 583 0.028 583 0
a4-16 282 283 0.01 283 0.01 283 0.01 282 0
a4-24 375 375 0 375 0.005 375 0.009 375 0
a4-32 485 487 0.009 485 0.026 485 0.023 485 0
a4-36 291 %) 1 293  0.053 293  0.045 291 0.005
a4-40 557 566 0.038 571 0.063 564 0.057 557 0.002
a4-48 670 691 0.064 691 0.098 678 0.046 670 0.01
a5-40 499 537 0.11 509 0.056 504 0.031 499 0.003
a5-48 307 @ 1 311 0.038 307 0.022 308 0.014
a5-50 689 690 0.003 705 0.079 691 0.046 690 0.008
a5-60 809 844 0.081 871 0.202 830 0.071 809 0.012
a6-48 604 636 0.082 616 0.1 613 0.056 604 0.003
a6-60 830 910 0.163 920 0.272 842 0.046 830 0.009
a6-72 522 @ 1 695 0.4 523 0.026 522 0.016
a7-56 827 858 0.074 857 0.117 853 0.085 827 0.009
a7-70 923 978 0.109 | 1006 0.241 945 0.078 923 0.01
a7-72 550 @ 1 762  0.407 579 0.08 550 0.011
a7-84 1218 | 1309 0.152 | 1453 0.447 | 1278 0.157 | 1218 0.023
a8-108 712 @ 1 @ 1 @ 1 712 0.081
a8-64 758 810 0.096 866 0.248 769 0.046 758 0.006
a8-80 959 | 1018 0.099 | 1221 0.486 | 1004 0.099 959 0.015
a8-96 1255 | 1346 0.114 | 1667 0.541 | 1321 0.103 | 1255 0.012
a9-96 613 @ 1 995 0.587 677 0.123 613 0.014
al0-144 929 %) 1 %) 1| 1075 0.213 929 0.021
all-120 690 @ 1| 1153 0.629 792  0.227 690 0.011
al3-144 868 %) 1| 1582 0.691 | 1091 0.255 868 0.01
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Table 5.10: Comparison of performances on the DARP (2/2, ”Sol” indicates
the best solution, "rdist” corresponds to the average relative distance at the
end of the search)

Instance | BKO DARP_CPO ISEQ+FF ISEQ+CDS LNS-FFPA
Sol  rdist Sol  rdist Sol  rdist Sol  rdist
b2-16 309 310 0.021 @ 1 (%) 1 309 0
b2-20 332 333 0.031 @ 1 @ 1 332 0
b2-24 444 445 0.014 @ 1 %) 1 444  0.003
b3-18 301 302 0.02 @ 1 @ 1 301 0.004
b3-24 164 200 0.202 164 0.042 167 0.035 169 0.034
b3-30 531 537 0.071 (%) 1 %) 1 531 0.01
b3-36 603 609 0.029 609 0.057 605 0.029 603 0
b4-16 296 298 0.02 297 0.01 297 0.01 296 0
b4-24 371 371 0 (%) 1 (%) 1 371 0
b4-32 494 509 0.072 495 0.031 501 0.062 494 0
b4-36 248 311 0.22 259 0.07 254  0.055 253  0.032
b4-40 656 662 0.032 (%) 1 @ 1 656 0.01
b4-48 675 710 0.118 690 0.2 678 0.035 675 0.002
b5-40 614 657 0.135 616 0.035 618 0.032 614 0.003
b5-48 299 349 0.163 325 0.164 299 0.052 313  0.059
b5-50 765 781 0.048 @ 1 775 0.059 765 0.008
b5-60 909 975 0.14 933 0.126 929 0.073 909 0.008
b6-48 716 762 0.185 @ 1 722 0.059 716 0.012
b6-60 861 923 0.145 920 0.179 895 0.134 861 0.019
b6-72 497 @ 1 716 0.418 514 0.07 497 0.016
b7-56 829 858 0.07 865 0.135 850 0.076 829 0.006
b7-70 926 978 0.107 | 1028 0.255 951 0.076 926 0.006
b7-72 520 @ 1 763 0.413 531 0.055 520 0.011
b7-84 1220 | 1309 0.132 | 1446 0.385 | 1281 0.153 | 1220 0.019
b8-108 654 @ 1| 1106 0.556 705 0.106 654 0.014
b8-64 853 904 0.107 931 0.207 885 0.104 853 0.01
b8-80 1052 | 1175 0.208 | 1255 0.372 | 1106 0.127 | 1052 0.009
b8-96 1211 | 1318 0.132 | 1517 0.422 | 1319 0.15 | 1211 0.018
b9-96 598 757 0.222 968 0.543 651 0.107 598 0.015
b10-144 908 %) 1 %) 1| 1129 0.587 908 0.065
b11-120 674 @ 1| 1165 0.639 813 0.205 674 0.01
b13-144 848 %) 1| 1590 0.7 | 1100 0.36 848 0.015
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5.7.4 Constraint parameters

Several values were tested for the parameters of the TransitionTimes con-
straint by using the methodology proposed in [VLS18]. It consists in storing
the search tree obtained with the weakest filtering and replaying it with the
constraints and parameters to test. The impact of the Cumulative constraint
was also tested by comparing it to a simple checker.

Table 5.11 presents the results of this experiment on 3 medium sized PTP
instances in a DFS setting. The instances are expressed in terms of the number
of hospitals (h), number of available vehicles (v) and number of patients (p).
The values are displayed in terms of percentage compared to the base case
(the parameter value for the first column). The first row corresponds to the
percentage of size (in terms of the number of nodes) of the new search tree
compared to the base case. The second row consists in the percentage of time
taken to explore the new search tree. For example, on the Hard instance, for a
depth d of 2, the search tree is 76.26% smaller which results in an exploration
63.67% faster. Each parameter was tested independently with the others set
to their default values.

Table 5.11: Number of nodes explored (top) and time taken (bottom) with various
parameter values

Instance P d cache Cumul.
Set h v »p 0 10 20 N 1 2 3 6 0 X v X v
1 1 1 1 1 1 1 1 1 1 1 1 1
Easy % 9 96 00 00 00 00 00 00 00 00 00 00 00 00 00

100 96.27  92.27 101 100 102.53  96.68 93.87 91.73 | 100 9539 | 100 126.61
100 100 100 100 100 0.01 0.01 0.01 0.01 100 100 100 0.01
100  80.79  55.67 53.07 | 100 0.05 0.06 0.05 0.06 100  77.24 | 100 0.01
100 100 100 5535 | 100  76.26  70.31 64.48 59.86 | 100 100 100 0.01
100 85.06 56.47 22.74 | 100  63.67 53.8 38.8 51.93 | 100 91.44 | 100 0.03

Medium 48 5 96

Hard 9% 5 96

As can be observed, the constraints have an important impact on both
the size of the search tree and the search time for the medium and difficult
instances. The easy instance search tree was not affected by the constraints.
Note that an increase in depth may result in a faster search despite having
the same search tree size (such as for the Easy instance). This is most likely
due to the cache that is filled faster in the first calls to Algorithm 1 and thus
allows smaller searches in the subsequent calls which results in a gain of time
over the whole propagation.

5.8 conclusion

In this chapter, the usage of sequence variables on routing and scheduling
problems was discussed. Two possible implementations for a sequence a vari-
able were proposed. The first one uses a growing prefix to represent the in-
ternal sequence. The second one is based on a linked representation that
allows insertion of new elements at any place in the growing sequence. In
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addition, several constraints that use these variables were proposed and their
filtering algorithms detailed. Finally, these variables and constraints were
used to model and solve the patient transportation and dial-a-ride problems.
Their performances were analyzed and compared with other approaches on
datasets of PTP and DARP instances.

The contributions in this chapter are the following:

m The definition and implementation of the Prefix Sequence Variable (PSV)
(Section 5.3).

m The definition and implementation of the Insertion Sequence Variable
(ISV) (Section 5.4).

m A set of dedicated constraints for the sequence variables as well as fil-
tering algorithms that leverage the information maintained by the vari-
ables (Section 5.5)

= Models for the PTP and DARP that use the sequence variables and their
constraints (5.6)

= An experimental evaluation of these models as well as a comparison
with other approaches for the PTP and DARP.

The experimental results show that the insertion sequence variable is
competitive with other state-of-the-art approaches and outperforms them on
the PTP. The insertion-based approach is even able to outperform the adapted
model for the PTP from [LAB18] that was the most successful of the tested
approaches in chapter 4. The experiments on several instances with various
parameters for the TransitionTimes constraint shows that the filtering algo-
rithm proposed is able to improve the size of the search tree and the search
time. These results highlight the efficiency of the sequence variables on hy-
brid routing and scheduling problems such as the PTP and DARP and point to
many opportunities to successfully use and improve the sequence variables
and constraints on combinatorial problems.



Conclusion

The work done in this thesis was focused on the efficient resolution of rout-
ing and scheduling problems through Constraint Programming. Two main
research directions were explored. First, a generic adaptive search, destined
to be used in a black-box context. Second, the use of dedicated modeling and
search techniques to solve specific problems.

Adaptive Large Neighborhood Search

The first research direction explored was the use of generic search techniques
to solve CP problems in a black-box context. In particular, an adaptive variant
of the Large Neighborhood Search [LG07] was used with a portfolio of destroy
and repair heuristics. This approach consists in iteratively applying a partial
relaxation followed by a search to the current best solution of the problem in
order to explore different parts of the search space. A relaxation and a search
heuristic is selected from the portfolio at each iteration. These operators have
their selection biased during the search based on their performances.

The implementation proposed uses an adapted selection mechanism de-
signed to better deal with the different running times of the operators. It
was tested on a set of instances from 10 different problems with operators
tailored for specific cases. The results show an improvement of the perfor-
mances compared with the original implementation of the ALNS. Further-
more, our implementation is able to select appropriate relaxation and search
heuristics tailored for the problems encountered. This validates the use of
such a technique in a black box context.

Patient Transportation Problem

The Patient Transportation Problem was formalized based on a case study
studied as part of the PRESupply project. This problem, which is a variant of
the DARP, consists in planning the operations of a fleet of vehicles in order
to transport patients to and from medical appointments. Several resolution
methods were explored to solve this problem. A scheduling model was pro-
posed and evaluated against the classical successor approach generally used
to solve routing problems. It was demonstrated more efficient on the PTP
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which combines both routing and scheduling aspects. Furthermore, a dedi-
cated search technique called Optional Decision Search (ODS) was developed
and seems to have contributed to the success of the scheduling model. How-
ever, comparisons with another model published independently and imple-
mented in the CP optimizer solver which was proposed to solve a variant of
the PTP [LAB18] showed that our approach is outperformed. This led us to
the hypothesis that the powerful scheduling oriented modeling features of
CP Optimizer allows a better modeling of hybrid problems such as the PTP
which leads to a gain in term of performances.

Sequence Variables

Following the results of the PTP models, we investigated the use of dedicated
modeling features for such problems. The result was the development of a
generic sequence variable that represents a set of elements to order. While
similar variables are already part of several commercial solvers including CP
Optmizer, their implementation has not been published. Furthermore, the se-
quence variable of CP Optimizer requires activity variables, making it difficult
to use on other problems than scheduling.

We proposed two different implementations for our sequence variable.
Both are generic and easy to implement. They are based on an extension
of the set variable with an internal growing sequence. The prefix sequence
variable works by appending elements to an ordered prefix. The insertion
sequence variable uses a linked structure that allows the insertion of elements
in any part of the internal sequence. Additionally, possibles insertions are
maintained during the search which allows propagation algorithms to use
this information. We also developed dedicated constraints that allow to model
problems such as the PTP.

We tested our implementations on the DARP and PTP problems against
state-of-the-art dedicated approaches and the model of Liu et al. [LAB18].
The results show the competitiveness of our approach. While not able to
obtain results as good as the state of the art LNS-FFPA approach on the DARP
[JV11], our sequence variable model is able to compete with other generic
approaches. On the PTP, it is currently the most efficient approach, being
able to outperform Liu et al. CP Optimizer model. The insertion sequence
model is now in use at the CSD to plan their transportation services.

6.1 Further Work

Many research perspectives are open on the topics explored in this thesis.
Some of them have already been or are currently being investigated.
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Adaptive Large Neighborhood Search

A meta-analysis of several publications on the topic of ALNS has been per-
formed in [TSH21]. This works highlights the results provided by our ap-
proach and confirms the efficiency of ALNS method in a black-box context.
There are many research opportunities open in this domain.

In particular, the portfolio of operators used could be expanded with new
relaxation and search techniques. The inclusion of problem focused heuristics
among the portfolio is promising. Furthermore, additional research could be
done on the adaptive mechanism that selects the operators during the search.
The ALNS approach has so far been used to solve COPs but recent work in
[Li+22] shows that a portfolio based approach can be successfully applied
to CSPs in a black-box context. Finally, the ALNS approach could also be
hybridized with other learning methods to pre-select a subset of operators or
parameters before the search based on the problem features or even help the
selection during the search [KGM12; DAA21].

Patient Transportation Problem

While the model based on insertion sequence variables solves efficiently the
PTP, improvements are certainly possible. A dedicated approach such as the
LNS-FFPA [JV11] could be adapted to this particular problem. Several vari-
ants of the problem are possible and could also be studied. In particular, mul-
tiple objectives could be considered at the same time. In order to solve such
cases, the approaches proposed would have to be adapted to support multi-
objective optimization.

In addition, while the problem studied assumes fixed requests known
beforehand, real-life application often impose dynamic aspects. Indeed, re-
quests may be issued during the day of operations rather than beforehand.
Some requests could also be modified or deleted during the operations. In
[PCP20], the authors explore recovery strategies for dealing with such mod-
ifications during the operations given an initial planning. Another way to
deal with this dynamic aspect is to directly integrate it in the CP model by
using some kind of destroy and repair procedure when confronted to changes
to the initial requests. Additionally, other constraints or objectives could be
introduced to make the solution more robust or flexible to changes.

Finally, the optional decision search strategy could certainly be used for
other applications such as packing problems [SO08; SO11; HK13].

Sequence Variables

On the topic of sequence variables, work has already been done in [DSV22] to
improve the performances of the insertion sequence variable. The implemen-
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tation proposed used a simplified representation of the set domain as well
as new filtering algorithms. It was able to find new optimums for several
instances of the TSPTW from well known sets.

Currently, several research directions are explored on the sequence vari-
ables. One of them is the addition of potential successors to the domain of the
variable. This would allow to build a precedence graph and use it in filtering
algorithms for precedence and time-related constraints.

The filtering algorithms for some of the constraints proposed could also
be improved. For example, a lighter filtering based on some form of path re-
laxation could be considered for the TransitionTimes constraint. Besides
that, other search heuristics could be elaborated in order to better deal with
symmetries in the search.

Additionally, the use of sequence variables is investigated for solving pure
scheduling problems such as the Job Shop Problem [YN97]. In particular,
several propagation algorithms from the scheduling domain could be adapted
to the sequence variable [MDDO07; MV08; SW10; Vil11].

As the sequence variable is generic by design, it could be used for other
problems. Many combinatorial problems consist in ordering elements in an
optimal arrangement [Fle90; GRWO08; Rig20] or could benefit from a sequen-
tial representation [PHWO07; NZ14; Fou+17]. With dedicated constraints, se-
quence variables would allow powerful modeling in CP to solve such prob-
lems.
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