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There are many mobile applications that require the  
execution of resource demanding tasks. 

• Face recognition 
• Video-indexing  
• Augmented reality 

Small clouds near the edge.
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• Mobile edge computing 
• Fog computing 
• Cloudlets 

Rough estimate

 To ensure latency requirements,
more than 100 cloudlets should be needed

in Europe alone!
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• Datacenters + cloudlets: high number of nodes  
• Partial replication 

Traditional techniques to enforce causality, 
such as vector clocks, will not scale
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• Datacenters + cloudlets: high number of nodes  
• Partial replication 

Naive techniques that use small metadata
may generate false dependencies 
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Our approach
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• To leverage our previous work on Saturn 
• Extend Saturn to operate on the edge 
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Saturn

God in ancient Roman religion, 
that become the god of time



Distributed metadata service

pluggable to existing geo-distributed data services

handles the dissemination of metadata among data centers

Ensures that
clients always observe a causally consistent state

with a negligible performance overhead when compared to 
an eventually consistency system
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Metadata

more metadata less metadata

Matrix/vector clocks

One vector per 
item.

One entry in each 
vector per DC.



15

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks



15

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks Lamport’s clocks



15

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks Lamport’s clocks

One scalar.



15

Metadata

more metadata less metadata

precise

expensive

false positives

cheap

Matrix/vector clocks Lamport’s clocks



Problems of the previous state-of-the-art 
Throughput vs. data staleness tradeoff
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key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination 

Implements genuine partial replication 
data centers only manage data and metadata of the items 
replicated locally

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing 
throughput

to enhance 
data freshness

to take full advantage of 
partial replication
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Data centers 

only make remote 
updates visible when 

they have received both 
the metadata and its 
corresponding data
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Optimal dissemination graph

Weighted Minimal Mismatch 

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:
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and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths
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use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
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stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
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• The latencies of the bulk data transfer service among
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• The set W of potential locations for placing serializers
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place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
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The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.
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more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
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scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
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the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
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DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:
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5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-pathsabsolute 

difference between 
label-paths and data 

paths
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Optimal dissemination graph

Weighted Minimal Mismatch 

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

minimize mismatch of 
busiest paths
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Metadata propagation: building the tree

Finding the optimal tree is modelled as a constraint 
optimization problem

Input 
 

 Data-paths average latencies 
 

 Candidate locations for serializers (an latencies among them)  
 Access-patterns: to minimize the impact of mismatches
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Reading

Reading/writing  from the “local” datacenter is  
non-blocking: dependencies do not need to be checked at 

every operation



Reading

Due to partial replication not all data is replicated locally: 
client needs to “migrate” to perform remote reads

Reading/writing  from the “local” datacenter is  
non-blocking: dependencies do not need to be checked at 

every operation



Reading

Partial replication: not all data is replicated locally: 
client needs to “migrate” to perform remote reads

When migrating the client may need to block: 
waiting for remote datacenter to be “in sync”  

with its causal past

Reading/writing  from the “local” datacenter is  
non-blocking: dependencies do not need to be checked at 

every operation
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Saturn on the edge

Challenges 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• Many nodes:  
• Optimal tree may be expensive to build

• Cloudlets are smaller than datacenters:  
• Migration will be more frequent



The Saturn Rings
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Let’s assume that each cloudlet stores a subset of the 
data maintained by  
a single datacenter
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Let’s assume that each cloudlet stores a subset of the 
data maintained by  
a single datacenter

That datacenter is named the  
cloudlet’s ancestor
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The Saturn metadata tree is extended with a star 
of cloudlets connected to each datacenter 
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This topology allows us to implement  
fast migration strategies 
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Clients connect to the nearest cloudlet and obtain labels 
from the cloudlet when reading/writing data: 

If a request cannot be served from the cloudlet they 
perform a fast migration to the datacenter  
(ascending fast migration). 

Clients can later do a fast migration back to their local  
cloudlet to continue to be served locally  
(descending fast migration)

Fast Migration
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Ascending fast migration:

Descending fast migration:

Fast Migration
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Ascending fast migration:

Descending fast migration:

Client simply presents its label (obtained from 
the cloudlet) to the datacenter and blocks until 
the datacenter is synced with the cloudlet.

Fast Migration
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Ascending fast migration:

Descending fast migration:

Fast Migration

Need a little help from the Saturn brokers…
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Fast Migration
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The operation of a Saturn broker is extended as 
follows: 

When a broker ships a label to a datacenter  
it immediately schedules that label for transmission  

to the relevant cloudlet. 

The broker keeps a vector with the  
Last Dispatched Label (LDL)

schedule to be sent to each cloudlet c
LDL[c]
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Ascending fast migration:

Descending fast migration:

Client obtains the last dispatched label (LDL) 
from the datacenter to its own cloudlet, 
presents the LDL to the cloudlet and waits for 
the cloudlet to be synced with the datacenter.

Fast Migration
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Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudlets:

Fast Migration
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Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudlets:

Requires a read operation on the ancestor 
datacenter. 

Fast Migration
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Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudlets:

Uses the default Saturn mechanism

Fast Migration
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Provides efficient metadata management to support 
causality on the edged (cloudlets). 

In worst case, only two labels need to be maintained 
by clients: a data label (used for reads/writes) and a 
LDL label used fro fast descending migrations.  


