
Causality for the Cloudlets:
Offering Causality on the Edge

With Small Metadata

Nuno Afonso, Manuel Bravo, Luís Rodrigues

Processing on the edge

2

There are many mobile applications that require the
execution of resource demanding tasks.

• Face recognition
• Video-indexing
• Augmented reality

Processing on the edge

3

There are many mobile applications that require the
execution of resource demanding tasks.

• Face recognition
• Video-indexing
• Augmented reality

These tasks need to be processed in the cloud.

Processing on the edge

4

There are many mobile applications that require the
execution of resource demanding tasks.

• Face recognition
• Video-indexing
• Augmented reality

Latency constraints: 5-30 ms !!

Processing on the edge

5

There are many mobile applications that require the
execution of resource demanding tasks.

• Face recognition
• Video-indexing
• Augmented reality

Small clouds near the edge.

Edge clouds

6

• Mobile edge computing
• Fog computing
• Cloudlets

Edge clouds

7

• Mobile edge computing
• Fog computing
• Cloudlets

Rough estimate

 To ensure latency requirements,
more than 100 cloudlets should be needed

in Europe alone!

Causality on the edge

8

• Datacenters + cloudlets: high number of nodes
• Partial replication

Causality on the edge

9

• Datacenters + cloudlets: high number of nodes
• Partial replication

Traditional techniques to enforce causality,
such as vector clocks, will not scale

Causality on the edge

10

• Datacenters + cloudlets: high number of nodes
• Partial replication

Naive techniques that use small metadata
may generate false dependencies

11

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

11

Alice

Bob

Dan

Our approach

12

• To leverage our previous work on Saturn
• Extend Saturn to operate on the edge

13

Saturn

God in ancient Roman religion,
that become the god of time

Distributed metadata service

pluggable to existing geo-distributed data services

handles the dissemination of metadata among data centers

Ensures that
clients always observe a causally consistent state

with a negligible performance overhead when compared to
an eventually consistency system

14

EUROSYS 2017

15

Metadata

more metadata less metadata

15

Metadata

more metadata less metadata

Matrix/vector clocks

15

Metadata

more metadata less metadata

Matrix/vector clocks

One vector per
item.

One entry in each
vector per DC.

15

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks

15

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks Lamport’s clocks

15

Metadata

more metadata less metadata

precise

expensive

Matrix/vector clocks Lamport’s clocks

One scalar.

15

Metadata

more metadata less metadata

precise

expensive

false positives

cheap

Matrix/vector clocks Lamport’s clocks

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

-20
-16
-12
-8
-4
 0

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
 p

e
n

a
lty

 (
%

)

GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

D
a

ta
 s

ta
le

n
e

ss
 o

ve
rh

e
a

d
 (

%
)

Number of datacenters

GentleRain [SoCC’ 14]: Optimizes throughput  
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness  
Relies on a vector clock with an entry per data center

16

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

-20
-16
-12
-8
-4
 0

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
 p

e
n

a
lty

 (
%

)

GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

D
a

ta
 s

ta
le

n
e

ss
 o

ve
rh

e
a

d
 (

%
)

Number of datacenters

GentleRain [SoCC’ 14]: Optimizes throughput  
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness  
Relies on a vector clock with an entry per data center

16

Metadata
size affects
throughput

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoff

-20
-16
-12
-8
-4
 0

 3 4 5 6 7

T
h

ro
u

g
h

p
u

t
 p

e
n

a
lty

 (
%

)

GentleRain Cure

 0
 20
 40
 60
 80

 100
 120

 3 4 5 6 7

D
a

ta
 s

ta
le

n
e

ss
 o

ve
rh

e
a

d
 (

%
)

Number of datacenters

GentleRain [SoCC’ 14]: Optimizes throughput  
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness  
Relies on a vector clock with an entry per data center

16

False
dependencies
damage data

freshness

Metadata
size affects
throughput

key features

17

key features

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

17

key features

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

17

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

17

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

to enhance 
data freshness

17

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Implements genuine partial replication 
data centers only manage data and metadata of the items
replicated locally

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

to enhance 
data freshness

17

key features

Mitigates the impact of false dependencies  
by relying on a tree-based dissemination

Implements genuine partial replication 
data centers only manage data and metadata of the items
replicated locally

Requires a constant and small amount of metadata  
regardless of the system’s scale (servers, partitions, and locations)

to avoid impairing
throughput

to enhance 
data freshness

to take full advantage of
partial replication

17

Decoupling data and metadata

3 421

18

Decoupling data and metadata

3 421

data transfer
18

Decoupling data and metadata

3 421

data transfer

metadata transfer

18

Decoupling data and metadata

3 421

data transfer

metadata transfer
Data centers

only make remote
updates visible when

they have received both
the metadata and its
corresponding data

18

Example: write request

Example: write request

…

data

labels

3 N21

data centers

Example: write request

…

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centersa1

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Example: write request

…put(a1)

data

labels

3 N21Client 1

data centers

Metadata dissemination graph

3 421

Saturn

Metadata dissemination graph

3 421

Saturn

S1 S2 S3 S4

S5 S6

Optimal dissemination graph

Weighted Minimal Mismatch

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

21

Optimal dissemination graph

Weighted Minimal Mismatch

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-pathsabsolute

difference between
label-paths and data

paths

21

Optimal dissemination graph

Weighted Minimal Mismatch

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

5.4 Configuring SATURN’s Metadata Service
The quality of the serialization served by SATURN to each
datacenter depends on how the service is configured. A SAT-
URN’s configuration defines: (i) the number of serializers to
use and where to place them; (ii) how these serializers are
connected (among each other and with datacenters); and (iii)
what delays (if any) should a serializer artificially add when
propagating labels (in order to match the optimal visibility
time). Let �ij denote the artificial delay added by serializer
i when propagating metadata to serializer j.

In practice, when deploying SATURN, one has not com-
plete freedom to select the geo-location of serializers. In-
stead, the list of potential locations for serializers is limited
by the availability of suitable points-of-presence that results
from business constraints. Therefore, the task of setting-up a
serializer network is based on:
• The set V of datacenters that need to be connected (we

denote N = |V | the total number of datacenters).
• The latencies of the bulk data transfer service among

these datacenters; latij denotes the latency between dat-
acenters i and j.

• The set W of potential locations for placing serializers
(M = |W |). Since each datacenter is a natural potential
serializer location, M � N . Let dij denote the latency
between two serializer locations i and j.
However, given a limited set of potential locations to

place serializers, it is unlikely (impossible in most cases) to
match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up
SATURN is to minimize the mismatch among the achievable
label propagation latency and the optimal label propagation
latency. More precisely, consider that the path for a given
topology between two datacenters, i and j, denoted PM

i,j is
composed by a set of serializers PM

i,j = {Sk, ..., So}, where
Sk connects to datacenter i and So connects to datacenter j.
The latency of this path �M (i, j) is defined by the latencies
(d) between adjacent nodes in the path, plus any artificial
delays that may be added at each step, i.e.:

�M (i, j) =
P

Sk2PM
i,j\{So}

(dk,k+1 + �k,k+1)

and the mismatch between the resulting latency and the
optimal label propagation latency is given by:

mismatchi,j = |�M (i, j)��(i, j)|

Finally, one can observe that in general, the distribution
of client requests, among items and datacenters may not
be uniform, i.e., some items and some datacenters may be
more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may
have a more negative effect on the user experience than
a mismatch on a seldom accessed item. Therefore, in the
scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to
assign a weight ci,j to each metadata path PM

i,j , that reflects

the relative importance of that path for the business goals
of the application. Using these weights, we can now define
precisely an optimization criteria that should be followed
when setting up the serializers topology:

DEFINITION 2 (Weighted Minimal Mismatch). The config-
uration that better approximates the optimal visibility time
for data updates, considering the relative relevance of each
type of update, is the one that minimizes the weighted global
mismatch, defined as:

min
P

8i,j2V ci,j · mismatchi,j

5.5 Configuration Generator
The problem of finding a configuration that minimizes the
Weighted Minimal Mismatch criteria, among all possible
configurations that satisfy the constraints of the problem,
is NP-hard.2 Therefore, we have designed a heuristic that
approximates the optimal solution using a constraint solver
as a building block. We have modeled the minimization
problem captures by Definition 2 as a constraint problem
such that for a given tree, finds the optimal location of
serializers (for a given set of possible location candidates)
and the optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3, works as fol-
lows. Iteratively, starting with a full binary tree with only
two leaves (Alg. 3, line 3), generates all possible isomor-
phism classes of full binary trees with N labeled leaves (i.e.,
datacenters). The algorithm adds one labeled leaf (datacen-
ter) at each iteration until the number of leaves is equal to
the total number of datacenters. For a given full binary tree
T of f leaves, there exist 2⇤ f �1 isomorphic classes of full
binary trees with f+1 leaves. One can obtain a new isomor-
phic class by either inserting a new internal node within an
edge of T from which the new leaf hangs (Alg. 3, line 14),
or by creating a new root from which the new leaf and T
hang (Alg. 3, line 10). We could iterate until generating all
possible trees of N leaves. Nevertheless, in order to avoid
a combinatorial explosion (for nine datacenters there would
already be 2,027,025 possible trees), the algorithm selects
at each iteration the most promising trees and discards the
rest. In order to rank the trees at each iteration, we use the
constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two
consecutive trees T1 and T2 is greater than a given thresh-
old, T2 and all following trees are discarded (Alg. 3, line 18).
At the last iteration, among all trees with N leaves, we pick
the one that produces the smallest global mismatch from the
optimal visibility times by relying on the constraint solver.

Note that Algorithm 3 always returns a binary tree. Nev-
ertheless, SATURN does not require the tree to be binary.
One can easily fuse two serializers into one if both are di-
rectly connected, placed in the same location, and the artif-
ical propagation delays among them are zero. Any of these

2 A reduction from the Steiner tree problem [35] can be used to prove this.

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

minimize mismatch of
busiest paths

21

Metadata propagation: building the tree

Finding the optimal tree is modelled as a constraint
optimization problem

Input
 

 Data-paths average latencies
 

 Candidate locations for serializers (an latencies among them)  
 Access-patterns: to minimize the impact of mismatches

22

Reading

Reading/writing from the “local” datacenter is
non-blocking: dependencies do not need to be checked at

every operation

Reading

Due to partial replication not all data is replicated locally:
client needs to “migrate” to perform remote reads

Reading/writing from the “local” datacenter is
non-blocking: dependencies do not need to be checked at

every operation

Reading

Partial replication: not all data is replicated locally:
client needs to “migrate” to perform remote reads

When migrating the client may need to block:
waiting for remote datacenter to be “in sync”

with its causal past

Reading/writing from the “local” datacenter is
non-blocking: dependencies do not need to be checked at

every operation

Example: migration

Example: migration

…

data

labels

3 N21

data centers

Example: migration

…

data

labels

3 N21Client 1

data centers

Example: migration

…migrate(3)

data

labels

3 N21Client 1

data centers

Example: migration

…migrate(3)

data

labels

3 N21Client 1

data centers

Example: migration

…migrate(3)

data

labels

3 N21Client 1

data centers

Example: migration

…migrate(3)

data

labels

3 N21Client 1

data centers

Example: migration

…

data

labels

3 N21Client 1

data centers

Example: migration

…

data

labels

3 N21Client 1

data centers

Example: migration

…

data

labels

3 N21Client 1

data centers

Example: migration

…

data

labels

3 N21Client 1

data centers

Example: migration

…

data

labels

3 N21Client 1

data centers

Saturn on the edge

Challenges 

27

• Many nodes:
• Optimal tree may be expensive to build

• Cloudlets are smaller than datacenters:
• Migration will be more frequent

The Saturn Rings

28

29

Let’s assume that each cloudlet stores a subset of the
data maintained by
a single datacenter

30

Let’s assume that each cloudlet stores a subset of the
data maintained by
a single datacenter

That datacenter is named the
cloudlet’s ancestor

31

The Saturn metadata tree is extended with a star
of cloudlets connected to each datacenter

32

3 421

S1 S2 S3 S4

S5 S6

33

3 42

1 S1 S2 S3 S4

S5 S6

34

3

4

2

1 S1 S2 S3 S4

S5 S6

35

This topology allows us to implement
fast migration strategies

36

Clients connect to the nearest cloudlet and obtain labels
from the cloudlet when reading/writing data:

If a request cannot be served from the cloudlet they
perform a fast migration to the datacenter
(ascending fast migration).

Clients can later do a fast migration back to their local
cloudlet to continue to be served locally
(descending fast migration)

Fast Migration

37

Ascending fast migration:

Descending fast migration:

Fast Migration

38

Ascending fast migration:

Descending fast migration:

Client simply presents its label (obtained from
the cloudlet) to the datacenter and blocks until
the datacenter is synced with the cloudlet.

Fast Migration

39

Ascending fast migration:

Descending fast migration:

Fast Migration

Need a little help from the Saturn brokers…

40

3

4

2

1 S1 S2 S3 S4

S5 S6

Fast Migration

41

The operation of a Saturn broker is extended as
follows:

When a broker ships a label to a datacenter
it immediately schedules that label for transmission

to the relevant cloudlet.

The broker keeps a vector with the
Last Dispatched Label (LDL)

schedule to be sent to each cloudlet c
LDL[c]

42

Ascending fast migration:

Descending fast migration:

Client obtains the last dispatched label (LDL)
from the datacenter to its own cloudlet,
presents the LDL to the cloudlet and waits for
the cloudlet to be synced with the datacenter.

Fast Migration

43

Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudlets:

Fast Migration

44

Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudlets:

Requires a read operation on the ancestor
datacenter.

Fast Migration

45

Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudlets:

Uses the default Saturn mechanism

Fast Migration

46

Provides efficient metadata management to support
causality on the edged (cloudlets).

In worst case, only two labels need to be maintained
by clients: a data label (used for reads/writes) and a
LDL label used fro fast descending migrations.

