Causality for the Cloudlets:

Offering Causality on the Edge
With Small Metadata

Nuno Afonso, Manuel Bravo, Luis Rodrigues

TECNICO
L ISBOA

Processing on the edge

There are many mobile applications that require the
execution of resource demanding tasks.

® Face recognition
¢ \/ideo-Indexing
e Augmented reality

Processing on the edge

There are many mobile applications that require the
execution of resource demanding tasks.

® Face recognition

¢ \/ideo-Indexing
e Augmented reality

These tasks need to be processed in the cloud.

Processing on the edge

There are many mobile applications that require the
execution of resource demanding tasks.

® Face recognition

¢ \/ideo-Indexing
e Augmented reality

Latency constraints: 5-30 ms !!

Processing on the edge

There are many mobile applications that require the
execution of resource demanding tasks.

® Face recognition

¢ \/ideo-Indexing
e Augmented reality

Small clouds near the edge.

-dge clouds

e Mobile edge computing
e F0g computing
e Cloudlets

-dge clouds

e Mobile edge computing
e F0g computing
e Cloudlets

Rough estimate

To ensure latency requirements,
more than 100 cloudlets should be needed
in Europe alone!

Causality on the edge

e Datacenters + cloudlets: high number of nodes
e Partial replication

Causality on the edge

e Datacenters + cloudlets: high number of nodes
e Partial replication

Traditional techniques to enforce causality,
such as vector clocks, will not scale

Causality on the edge

e Datacenters + cloudlets: high number of nodes
e Partial replication

Naive techniques that use small metadata
may generate false dependencies

10

11

11

11

11

11

11

11

Our approach

e 0 leverage our previous work on Saturn
e Extend Saturn to operate on the edge

12

Saturn

God in ancient Roman religion,
that become the god of time

13

EUROSYS 2017

Distributed metadata service

pluggable to existing geo-distributed data services

handles the dissemination of metadata among data centers

Ensures that

clients always observe a causally consistent state

with a negligible performance overnead when compared to
an eventually consistency system

14

Metadata

more metadata less metadata

—

15

Metadata

Matrix/vector clocks

more metadata less metadata

A ————)

15

Metadata

Matrix/vector clocks

more metadata

One vector per
item.

One entry in each
vector per DC.

less metadata

15

Metadata

Matrix/vector clocks

more metadata less metadata
precise
expensive

15

Metadata

Matrix/vector clocks Lamport’s clocks
more metadata less metadata
precise
expensive

15

Metadata

Matrix/vector clocks

more metadata

precise

expensive

One scalar.

Lamport’s clocks

ess metadata

15

Metadata

Matrix/vector clocks Lamport’s clocks
more metadata less metadata
precise false positives
expenSive cheap

15

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoft

GentleRain [SoCC’ 14]: Optimizes throughput
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness
Relies on a vector clock with an entry per data center

2" -4 of
o> 8 T 1 ®
5 G e | = D
o 8-12 » <
o6 T SO
I_ _20 I I | CDUO

7 3
Number of datacenters

10

Problems of the previous state-of-the-art
Throughput vs. data staleness tradeoft

GentleRain [SoCC’ 14]: Optimizes throughput
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness
Relies on a vector clock with an entry per data center

GentleRain —o— Cure —=—
0 w;\3120
b D © 2900
2T 80
S o 60
fff DL 40

Metadata VNN 53 28
- /

size affects Number of datacgnters
throughput

False
Problems of the previous state-Of-the-JREERrN e [Tl

Throughput vs. data staleness tradeoff damage data

freshness
GentleRain [SoCC’ 14]: Optimizes throughput
Compresses metadata into a scalar

Cure [ICDCS’ 16]: Optimizes data freshness
Relies on a vector clock with an entry per data center

Metadata
size affects
throughput

7 3
Number of datacenters

)
O
| -
D)
-
M®
O
——
>
D
X

17

key features

Requires a constant and small amount of metadata
regardless of the system’s scale (servers, partitions, and locations)

17

Requires a constant and small a
regardless of the system’s scale (serverg

key features

‘ . to avoid impairing
throughput

17

key features

Requires a constant and small a
regardless of the system’s scale (serverg

Mitigates the impact of false dependencies
by relying on a tree-based dissemination

‘ . to avoid impairing
throughput

17

key features

A to avoid impairing
throughput
Mitigates the impact of false depg to enhance
. . . . data freshness
by relying on a tree-based disseminatio

Requires a constant and small a
regardless of the system’s scale (serverg

17

key features

A to avoid impairing
throughput
Mitigates the impact of false dep
. . . . data freshness
by relying on a tree-based disseminatio

Implements genuine partial replication
data centers only manage data and metadata of the items
replicated locally

Requires a constant and small a
regardless of the system’s scale (serverg

17

2=l key features

A to avoid impairing

throughput
Mitigates the impact of false depe to enhance

. . . . data freshness
by relying on a tree-based disseminatio
Implements genuine partial replito take full advantage of
data centers only manage data and me partial replication
1

Requires a constant and small a
regardless of the system’s scale (serverg

replicated locally

v

Decoupling data and metadata

O

O

&)

O

18

Decoupling data and metadata

SRS IS o)

data transfer

18

Decoupling data and metadata

metadata transfer

O O O ©

data transfer

18

Decoupling data and metadata

Data centers
only make remote
updates visible when
they have received both
the metadata and its

corresponding data

data transfer

18

Example: write request

Example: write request

)

data centers

Example: write request

O 0 O - O

data centers

Example: write request

Client 1 —pu’[(a1)—>@ @ < 3 > < N >

data centers

Example: write request

)

data centers

Example: write request

data centers

—put(aﬁ—»@ @ (3 > (N >
f*.?“ :

Example: write request

Client 1 —pu’[(a1)—>@ @ < 3 > < N >
o

data centers

Example: write request

''''
L]
............

N

. data centers

Example: write request

''''
L]
............

N

. data centers

Example: write request

[“‘
............

N

. data centers

Example: write request

[“‘
............

N

. data centers

Example: write request

[“‘
............

N

. data centers

Example: write request

''''
L]
............

N

. data centers

Metadata dissemination graph

Optimal dissemination graph

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

Weighted Minimal Mismatch

mismatch; ; = |AM (i, 7) — A(4, 7))

AN Y ;i icy Ciyj - mismatch;

21

Optimal dissemination graph

The goal is to build the tree such that metadata-
paths latencies (through ta eSS ata-paths

difference between
label-paths and data

Weighted Minimal Misma il

AN Y vy icy Ciyj - mismaich;

mismatch; ; =

21

Optimal dissemination graph

The goal is to build the tree such that metadata-
paths latencies (through the tree) match data-paths

Weighted Minimal Mismatch

minimize mismatch of

: Lo busiest paths
mismatch; ; = |AM (i, j) ’

c; j - mismatch;

min Zw,je

21

Metadata propagation: building the tree

Finding the optimal tree is modelled as a constraint
optimization problem

Input

Data-paths average latencies
Candidate locations for serializers (an latencies among them)
Access-patterns: to minimize the impact of mismatches

22

Reading

Reading/writing from the “local”™ datacenter is
non-blocking: dependencies do not need to be checked at
every operation

Reading

Reading/writing from the “local”™ datacenter is
non-blocking: dependencies do not need to be checked at
every operation

Due to partial replication not all data is replicated locally:
client needs to "migrate” to perform remote reads

Reading

Reading/writing from the “local”™ datacenter is
non-blocking: dependencies do not need to be checked at
every operation

Partial replication: not all data is replicated locally:
client needs to "migrate” to perform remote reads

When migrating the client may need to block:
waiting for remote datacenter to be “in sync”
with its causal past

Example: migration

Example: migration

data centers

Example: migration

OBIOBNORENO

data centers

Example: migration

—migrate(S)»@ @ @ . @

data centers

Example: migration

—migrate(3) @ @
v, :

data centers

Example: migration

—migrate(S)»@ @ @ . @

data centers

Example: migration

—migrate(S)@ @ @ . @

data centers

Example: migration

O ©® 6o - O

data centers

Example: migration

OBIOBNORENO

data centers

Example: migration

OBIOBNORENO

data centers

Example: migration

OBIOBNORENO

data centers

Example: migration

data centers

Saturn on the edge

Challenges

 Many nodes:
Optimal tree may be expensive to build

e Cloudlets are smaller than datacenters:
Migration will be more frequent

2/

28

| et’s assume that each cloudlet stores a subset of the
data maintained by
a single datacenter

29

| et’s assume that each cloudlet stores a subset of the
data maintained by
a single datacenter

That datacenter 1Is named the
cloudlet’s ancestor

30

The Saturn metadata tree is extended with a star
of cloudlets connected to each datacenter

31

32

33

34

This topology allows us to iImplement
fast migration strategies

35

Fast Migration

Clients connect to the nearest cloudlet and obtain labels
from the cloudlet when reading/writing data:

It a request cannot be served from the cloudlet they
perform a fast migration to the datacenter
(ascending fast migration).

Clients can later do a fast migration back to their local
cloudlet to continue to be served locally
(descending fast migration)

36

e

- Fast Migration

Ascending fast migration:

Descending fast migration:

37

Fast Migration

Ascending fast migration:

Client simply presents its label (obtained from
the cloudlet) to the datacenter and blocks until
the datacenter is synced with the cloudlet.

Descending fast migration:

38

Fast Migration

Ascending fast migration:

Descending fast migration:

Need a little help from the Saturn brokers...

39

40

Fast Migration

The operation of a Saturn broker is extended as
follows:

When a broker ships a label to a datacenter
it immediately schedules that label for transmission
to the relevant cloudlet.

The broker keeps a vector with the
Last Dispatched Label (LDL)
schedule to be sent to each cloudlet
LDL[c]

41

Fast Migration

Ascending fast migration:

Descending fast migration:

Client obtains the last dispatched label (LDL)
from the datacenter to its own cloudlet,
oresents the LDL to the cloudlet and waits for
the cloudlet to be synced with the datacenter.

42

@ Fast Migration

Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudiets:

43

Fast Migration

Migrations among siblings cloudlets:

Requires a read operation on the ancestor
datacenter.

Migration to remote datacenters/ cloudiets:

44

'j“

4

- Fast Migration

Migrations among siblings cloudlets:

Migration to remote datacenters/ cloudiets:

Uses the default Saturn mechanism

45

Provides efficient metadata management to support
causality on the edged (cloudlets).

In worst case, only two labels need to be maintained

by clients: a data label (used for reads/writes) and a
LDL label used fro tast descending migrations.

46

