
Erlang as an Enabling Technology for Resilient
General-Purpose Applications on Edge IoT Networks

Igor Kopestenski
ICTEAM Institute

UCLouvain
Louvain-la-Neuve, Belgium

igor.kopestenski@uclouvain.be

Peter Van Roy
ICTEAM Institute

UCLouvain
Louvain-la-Neuve, Belgium
peter.vanroy@uclouvain.be

Abstract
Edge computing is one of the key success factors for future
Internet solutions that intend to support the ongoing IoT
evolution. By offloading central areas using resources that
are closer to clients, providers can offer reliable services with
higher quality. But even industry standards are still lacking
a valid solution for edge systems with actual sense-making
capabilities when no preexisting infrastructure whatsoever
is available. The current edge model involves a tight cou-
pling with gateway devices and Internet access, even when
autonomous ad hoc IoT networks could perform partial or
even complete tasks correctly.

In our previous research efforts, we have introducedAchlys,
an Erlang programming framework that takes advantage of
the GRiSP embedded system capabilities in order to bring
edge computing one step further. GRiSP is an embedded
board that can easily be programmed directly in Erlang with-
out requiring deep low level knowledge, which offers the
extensive toolset of the Erlang ecosystem directly on bare
metal hardware. We have been able to demonstrate that our
framework allows building reliable applications on unreli-
able networks of unreliable GRiSP nodes with a very simple
programming API. In this paper, we present how Erlang can
successfully be used to address edge computing challenges
directly on IoT sensor nodes, taking advantage of our exist-
ing framework. We display results of deployed distributed
programs at the edge and examples of the unique advan-
tage that is offered by Erlang higher-order and concurrent
programming in order to achieve reliable general-purpose
computing through Achlys.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
Erlang ’19, August 18, 2019, Berlin, Germany
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-6810-0/19/08. . . $15.00
https://doi.org/10.1145/3331542.3342567

CCS Concepts • Computer systems organization →
Embedded software; Sensor networks; Reliability; Fault-
tolerant network topologies; • Software and its engineer-
ing→ Distributed programming languages.

Keywords Edge Computing, Internet of Things, Distributed
Computing

ACM Reference Format:
Igor Kopestenski and Peter Van Roy. 2019. Erlang as an Enabling
Technology for Resilient General-Purpose Applications on Edge IoT
Networks. In Proceedings of the 18th ACM SIGPLAN International
Workshop on Erlang (Erlang ’19), August 18, 2019, Berlin, Germany.
ACM,NewYork, NY, USA, 12 pages. https://doi.org/10.1145/3331542.
3342567

1 Introduction
The term Edge Computing refers to a distributed comput-
ing paradigm that brings processing resources closer to end
users than they are in traditional cloud computing infrastruc-
tures. This emerging concept is a necessary response to the
exponential development of IoT, as the current centralized
design would collapse under the pressure of 75 billion IoT
devices expected by 2025 [33]. However, even standardized
state-of-the-art reference architectures for edge computing
still implicitly require that computing is done near the edge
at best, but not at the edge itself [17, 20]. And Cloud Service
Providers (CSPs) such as Microsoft, Google and Amazon tend
to make identical assumptions in their edge solutions [6].
Our work in Achlys is to focus on enabling edge com-

puting directly on IoT devices, at the furthermost part of
networks. We want to allow autonomous distributed applica-
tions to run at the edge even without Internet access or CSP
services. This brings multiple highly desirable characteris-
tics such as near zero-configuration deployment, decreased
management and maintenance complexity, lower cost and
fast local decision-making ability.

Moreover, we also want Achlys to be easily interoperable
with the regular edge and cloud services. Therefore our goal
is to extend the current model of edge computing without
sacrificing any of the existing features.
Our work is part of a much greater EU research project

called LightKone1. Achlys is only a single component of

1https://lightkone.eu

https://doi.org/10.1145/3331542.3342567
https://doi.org/10.1145/3331542.3342567
https://doi.org/10.1145/3331542.3342567
https://lightkone.eu

Erlang ’19, August 18, 2019, Berlin, Germany Igor Kopestenski and Peter Van Roy

the LightKone Reference Architecture for edge computing
(LiRA). The vision proposed by LightKone is currently being
defined in a whitepaper that will soon be released. Our tool
is built using other LightKone software innovations, and our
goal is to bring them to the extreme edge and reduce the com-
plexity of developing general purpose IoT edge computing
applications in Erlang.
To allow the computing to be done directly at the edge,

Achlys provides a task-based computation model for edge
applications, together with a resilient key/value store (based
on Lasp) and a resilient communication layer (based on Par-
tisan). The resilient storage and communication are needed
to overcome the unreliability of edge networks. The tasks
in the task model are stored in the key/value store. Achlys
is the initial research prototype that we have presented as
an enabler of non-trivial resilient edge computing directly
on clusters of IoT nodes. We have implemented this first
version on the GRiSP embedded system board. Each GRiSP
has a 300 MHz ARM processor and 64 MB of RAM with a
8 GB MicroSD card. It is a particularly suitable choice as it
is currently the only system that offers bare metal Erlang,
on top of its support for Digilent Pmod2 sensor and actuator
modules. This means that accessing sensor data can be done
immediately in Erlang on GRiSP, without any intermediary
layer. Achlys is designed to run on an ad hoc network of
GRiSP boards, and uses this network to provide distributed
resilient computation, storage, and communication.

In this document we will first overview the current state of
our framework to present its fundamental concepts, abilities
and limitations. We continue with case studies of actual
applications built on top of our platform and display the
results of our experiments. Finally we finish with concluding
remarks and an insight at the vast opportunities that remain
open for our further research.

1.1 Contributions
The motivation that drives the development of Achlys is
the current lack of edge computing solutions that do not
somehow still depend on cloud computing services. To the
best of our knowledge, none of the existing edge systems
is specifically designed to shift the programming paradigm
entirely so that no gateway is a mandatory part of the archi-
tecture. Using Achlys, it is possible to run Erlang programs
on sensing and actuating devices, without any existing in-
frastructure and with nearly zero configuration. Our task
model is built on top to provide a very simple way to develop
edge computing applications in Erlang, in synergy with our
hardware and software components.

In Achlys, tasks are abstractions that contain Erlang func-
tions andmetadata used for efficient propagation and reliable
execution across an entire cluster of GRiSP boards. There-
fore the Achlys task model not only allows computing at

2https://wikipedia.org/wiki/Pmod_Interface

the edge, but also performing tasks that do not need to be
known by any of the nodes before executing them. In fact,
by accessing the task model API from any GRiSP node in the
network, one can disseminate Erlang programs reliably and
use the cluster as a general-purpose computation platform.
In this document, we put an emphasis on the contribu-

tions below. Contrary to our previous research, we focus
on Erlang-specific aspects both in terms of implementation
improvements and usage :

• Demonstration of distributed IoT edge computing func-
tions delpoyed on GRiSP boards using the Achlys task
model

• In contrast to our previous work, we now provide
Erlang code that shows implementation and usage of
Achlys for IoT edge computing

• Emphasis on the simplicity of IoT sensor data collec-
tion at Erlang level

• Detailed description of major improvements to the
framework, mainly the task model

• Description of the revised task model with its back-
pressure mechanisms and simplified API.

• Proposal of a possible entirely BEAM-based end-to-
end architecture pattern

• Presentation of key elements for future research and
further improvements

2 Background
In our previous study we have shown how GRiSP’s archi-
tecture compares to a traditional system [21]. The major
difference is that no operating system is required for the
Erlang VM to run on it. This is a major benefit as it makes
the clusters of IoT nodes homogeneous, as they are all Er-
lang nodes that are able to cooperate directly thanks to their
Wi-Fi antennas. The heterogeneousness of sensor and IoT
networks is otherwise a prominent blocking factor for suc-
cessful deployments of these systems [15, 27]. We have now
made sufficient progress in our implementation to proceed
to the next phase of evaluation. We are no longer discussing
the feasibility of our approach. Instead, we can now focus
on evaluating our solution by applying it to solve real-world
problems.

This architectural advantage enables us to overcome one
of the major difficulties of edge IoT application development.
We can write distributed programs and deploy them on ad
hoc, infrastructure-agnostic networks of GRiSP nodes as
we would on regular computers. But in addition, we also
have immediate access to sensor and actuator modules in
Erlang through the GRiSP software stack. Thus, the rich set
of OTP tools and the accompanying properties such as fault
tolerance and scalability are available for building resilient
IoT edge systems. OTP provides an abstraction layer that
captures recurrent behavioral patterns through a set of OTP
behaviors [11].

https://wikipedia.org/wiki/Pmod_Interface

Erlang as an Enabling Technology for Resilient General-Purpose Applications on Edge IoT Networks Erlang ’19, August 18, 2019, Berlin, Germany

Since it is directly available on GRiSP boards, we can port
existing Erlang/OTP libraries on these embedded systems as
we would for applications in cloud environments without
any sort of complex low level modification. The primary goal
of Achlys is to enable reliability where it is currently not
thought of as possible, namely the inherent unreliable na-
ture of IoT devices. From the bottom up, we present how we
combine LightKone individual innovations to form a custom
compound for Achlys. Our first layer is the GRiSP board, that
strengthens our framework directly starting from the hard-
ware thanks to bare-metal Erlang features. Our approach
is to apply several layers of reinforcement to Achlys by su-
perposing multiple LightKone innovations on top of GRiSP
before writing our program as the upmost component.
For that purpose, we rely on a LightKone innovation :

the Lasp programming library [29]. We use it both as a dis-
tributed key/value store for IoT sensor data and a propaga-
tion tool for our generic task model. Lasp provides access to
a wide range of Conflict-free Replicated Data Types (CRDTs),
that ensure that conflicting operations on a same data en-
try are automatically handled using the underlying conflict
resolution algorithm [10, 18, 31]. Consequently, Achlys clus-
ters are able to preserve strong eventual consistency of data
across nodes. This property implies that convergence and
monotonicity always hold for the state of a replica. Thence,
our network of unreliable IoT devices becomes adequate for
distributed applications that require reliable decentralized
storage.

Achlys also inherits from Lasp’s distributionmodule, Parti-
san. Partisan is used to bypass the native Erlang distribution
protocol to achieve lower latency and increased scalability
[5, 28]. This is possible thanks to a combination of two hybrid
gossip algorithms called HyParView and Plumtree [25, 26].
Hence, Achlys clusters can organize in more efficient ways
than the default full-mesh topology when required. And de-
pending on the context, it is also possible to easily modify the
virtual topology cluster-wide at runtime without affecting
the logic of the application.

3 Achlys : Design and Usage
The current version of Achlys3 is a research prototype and
demonstrates a set of capabilities with our current hardware
and software stack. Nevertheless, there are various features
that are in Achlys that make it possible to port the prototype
version towards actual industrial deployments. These will
be detailed further. The goal of the initial version is to ex-
periment and validate the approach in a first phase, while
engineering is needed in order to materialize the LightKone
Reference Architecture (LiRA) vision of the thin edge with a
larger number of IoT sensor nodes [9].

3https://ikopest.me

3.1 The Erlang VM
The Erlang/OTP tools are designed in a way that provides
scalability and fault tolerance properties, and the technology
is being actively developed by a very dedicated community
and industrial actors such as WhatsApp. Hence there are
regular improvements and additions of new functionalities
that Achlys is able to take advantage of directly. The require-
ments for robust edge IoT systems are extremely similar to
those of systems supported by the BEAM and Erlang/OTP.
Fault tolerance, scalability and concurrency are crucial in our
system and Erlang’s history of successful implementations
with those properties was a compelling sign of a perfect
match. And GRiSP boards being able to run a 6 MB large Er-
lang VM with all those features and our application together,
and on a bare-metal embedded system.

3.2 Network Configuration
Achlys nodes form wireless ad hoc peer-to-peer networks
in order to communicate. Building reliable distributed sys-
tems on top of these networks requires automatic neighbor
discovery and seamless formation of fault-tolerant clusters.
Erlang/OTP’s inet_res and inet can be used as a basis for
zero-configuration networking. Algorithm 1 demonstrates
how a name can be resolved by retrieving the records via
the inet_dns internal module.

example_lookup(Name , Class , Type) ->
case inet_res:resolve(Name , Class , Type) of

{ok,Msg} -> [inet_dns:rr(RR, data)
|| RR <- inet_dns:msg(Msg , anlist),

inet_dns:rr(RR, type) =:= Type ,
inet_dns:rr(RR, class) =:= Class];

{error ,_} ->
[]

end.

Algorithm 1. DNS lookup documented in Erlang

3.3 Automated Dynamic Clustering
Based on the functionality described in Section 3.2, we can for
example implement zero-configuration networking by pro-
viding resolution information in erl_inetrc. If all Achlys
nodes can connect to neighboring peers, we can use Partisan
to ensure reliable cluster communication.
By relying on the Partisan distribution library instead of

the native Erlang distribution, we can not only decouple the
application from static configuration, but from the actual
physical topology of the network as well. By leveraging the
ability to build virtual overlays on top of ad hoc networks,
we are able to achieve zero-configuration networking but
also zero-configuration clustering that allows nodes to co-
operate despite network failures. This results in a three-way
decoupling as there is no need for infrastructure, static con-
figuration nor hard dependency on physical topologies [28].

https://ikopest.me

Erlang ’19, August 18, 2019, Berlin, Germany Igor Kopestenski and Peter Van Roy

Moreover, there is yet another feature that is provided by
the LightKone stack in Achlys making it possible to change
the virtual overlay behavior at runtime. It brings the unique
capability of seamlessly modifying how the distribution pro-
tocol behaves in order to achieve maximum efficiency w.r.t.
the observed physical topology. And it is planned for Achlys
to be refactored to enable even greater modularity by pro-
viding the ability to developers to plug their own distribu-
tion implementation instead of Partisan, pushing abstraction
even further. Partisan itself is already designed in a very
modular fashion, and implementing the identical API would
suffice for a developer to be able to substitute the default
communication library by his own.

The default behavior of Achlys nodes is designed to enable
and refresh the clustering procedure. Nodes will periodically
scan their surroundings to determine if any other is reachable.
Cluster formation will occur if possible, data is replicated
and will eventually be consistent on all nodes.

3.4 Task Model
In our recent work, we have introduced the general-purpose
task model API that we are developing in the Achlys frame-
work [21]. Using Lasp’s reliable distributed key/value stor-
age, we are able to disseminate Erlang higher-order func-
tions across clusters of GRiSP embedded boards [13, 29]. This
allows programmers to use Achlys as a tool in Erlang dis-
tributed applications to persist entire programs the same
way as in a database in a very simple way. Table 1 shows the
usage and description of the API functions. We can see that
there are four main components in our definition of a task.

1. The name : an arbitrary atom that describes the task
2. The targets : either a list of nodes, or all meaning

that the task should be executed on each node
3. The ExecType : stands for Execution Type, either

single or permanent. The latter makes a task loop
permanently inside a controlled process at a config-
urable frequency.

4. The function : the Erlang function containing the task’s
job

Then, the convergence guarantees provided by the under-
lying Lasp and Partisan libraries ensure that each node in the
cluster will eventually be able to execute these new programs,
making them generic and consistently reprogrammable at
runtime. Thus, by combining the abilities of the GRiSP em-
bedded system and Lasp and offering a simple API that lever-
ages their features, we facilitate edge IoT application devel-
opment in Erlang.

3.4.1 Task Model Worker
Instead of relying on CRDTs with remove operations, we can
declare either single execution or permanent tasks. We have
implemented the Achlys task worker module specifically for
the purpose of handling local task processing. By developing

a dedicated component in our framework, we can benefit
from a much more fine-grained control on our execution
flow. When a task needs to be executed, the worker module
spawns a new process and assigns the task’s function to
it. With this approach, we are now able to define a custom
process spawning wrapper for our tasks that extracts the
Erlang function from the task data structure.

We have implemented our spawn_task/1 wrapper by us-
ing the erlang:spawn_opt/2 function to specify a set of
parameters that apply a standard memory control environ-
ment on all tasks. This has noticeably increased the system
fault tolerance by allowing immediate shutdown of processes
with uncontrolled memory growth without going through
garbage collection [24]. This method brings two other con-
siderable benefits for our framework’s task model :

Heap Size Sincewe have alreadymade an extensive amount
of deployments on GRiSP boards in order to determine what
parameters were optimal for the current hardware, we have
made a prototype that holds a good basis for future fine-
tuning features as well. Our plan is to extend the features
of Achlys to integrate configurable parameters for the task
process spawning wrapper. In our previous experiments, our
main concern was memory since it is the most constrained
variable in our current stack.

To adress this issue our task model worker enforces that
the maximum heap size of the processes spawned for tasks
to be no greater than 64 KB on GRiSP. We do already take
the host’s word size into consideration using a call to Algo-
rithm 6 as a coefficient in our function such that on 64-bit
architectures the max_heap_size is automatically doubled
to 128 KB. This also enables our plans for even more con-
figurable behavior, since we will extend the achlys API to
expose a range of values for the upper bound of memory
allocation.

HeapPlacement Having a control over themaximumheap
size of task execution processes increases fault tolerance as
an unexpectedly memory-intensive operation kills the task
process. But it does not affect the rest of the application. We
can take advantage of this resilience improvement by com-
bining it with the off_heap message queue option when
spawning our worker processes.

Task processes that send messages will always create heap
fragments instead of allocating space on the process heap. In
distributed applications on ad hoc IoT edge sensor networks,
it is more likely to observe small bursts of messaging activity
separated by larger time intervals. Thence it is important
for Achlys to guarantee that nodes are able to run for long
periods with a near-constant memory footprint if no tasks
are performed. Providing high throughput is not the goal of
our framework, while supporting low power edge computing
is an essential objective for Achlys. Off heap allocation for
messages is a bit more expensive than on heap, but done
at lower frequencies it provides the most efficient solution

Erlang as an Enabling Technology for Resilient General-Purpose Applications on Edge IoT Networks Erlang ’19, August 18, 2019, Berlin, Germany

for our framework. We have added an Achlys module for
system-wide cleaning, including garbage collection, so that
task processes can avoid phases of unnecessarily large heap
footprint after activity bursts. This also reduces contention
risk on the main locks of the receiving process [24].

Intuitively, one could think that a grow-only CRDT would
be a bad choice for tasks that could be removed from the
working set once they have been executed. However, our
experiments have lead us to a different conclusion. As doc-
umented above the specification of Algorithm 4, we can
declare a task that spawns other concurrent processes any-
way. This means that there would be no point in removing a
task from the working set CRDT, which would require it to al-
low remove operations at a high computational price. These
CRDTs have not been specifically designed to be optimal for
a context like our task model, and introduce a significant
overhead as their conflict resolution algorithms are more
complex.

The ExecType argument can currently not provide a tran-
sient mode, a task is executed either once or permanently.
Removing the task from the CRDT does not prevent nodes
to keep executing it. But similar behavior can be created
with a single execution task that specifies a function with
several loops. However, this does not allow the worker to
have full control over the load, since backpressure can be
applied by spawning a process that executes a permanent
task at a controlled frequency that can be based on any stress
parameter. Meanwhile a single execution task could possi-
bly overload the worker, as iterations are embedded inside
a single process. Using Grow-only Counters and Sets, the
transient behavior will be achieved in future releases using
Lasp’s monotonic read function. It will act as a distributed
threshold after which the task will stop being executed.

3.4.2 Data Structure
A task is stored in a map structure following the type speci-
fication shown in Algorithm 2.

-type task_targets () :: [node()] | bitstring ().
-type task_execution_type () :: bitstring ().
-type task() :: #{name => atom(),

targets => task_targets (),
execution_type =>

task_execution_type (),
function => function ()}.

Algorithm 2. Task data structure

3.4.3 Higher-Order Functions
Higher-order functions offer almost unlimited possibilities
for our task execution model. A crucial point for these func-
tions is to be fully replicated such that every node is able
to execute them. To address this challenge, we have imple-
mented a squadron leadermodule in Achlys, that performs
automatic clustering as described in Section 3.3 Functions

executed on the boards can be added at a randomly chosen
node and will propagate automatically to all others. Hence
none of the nodes in the cluster knows the program that
it will be instructed yet all are guaranteed to eventually at-
tempt to execute it. Algorithm 3 demonstrates a possible
function for temperature minima reaction among 5 nodes.

mintemp () ->
fun() -> Id = {<<"temp">>, state_gset},

{ok, {_Id , _Meta , _Type , _State}} =
lasp:declare(Id, state_gset),

%% Taking 5 samples of temperature
%% at 5 second intervals
L = lists:foldl(fun

(Elem , AccIn) ->
timer:sleep (5000) ,
Temp = pmod_nav:read(acc , [

out_temp]),
Temp ++ AccIn

end , [], lists:seq(1,5)),
Min = lists:min(L),
Name = node(), Pid = self(),
lasp:update(Id, {add , {Min , Name}}, Pid),
%% Auxiliary process for blocking call
spawn(fun() ->

lasp:read(Id, {cardinality , 5}),
{ok, S} = lasp:query(Id),
Fetched = sets:to_list(S),

%% Find global minimum
{Minimum , Node} =

lists:min(Fetched),
Self = node(),
%% Only if the current node is the one
%% associated with the lowest temperature

,
%% change the color of both LEDs to blue.
case Node =:= Self of

true -> [grisp_led:color(X, blue)
|| X <- [1,2]];

_ -> [grisp_led:color(X, red)
|| X <- [1,2]]

end
end), end.

Algorithm 3. Temperature minima function

Calling mintemp/0 returns a function that declares a grow-
only set CRDT variable that will contain temperatureminima
from all nodes of the cluster. In this example, nodes take
five temperature measurements using the Pmod_NAV sensor
module, and store the lowest value in the CRDT. With the
lasp:read/2 function we block a process until the treshold
of five elements in the CRDT set is reached. Once the process
resumes, we know that the current node sees at least five
elements corresponding to minima of all samples of all nodes.
Based on this data, we actuate the LEDs of all nodes in our
cluster such that the coldest GRiSP board lights up in blue.
By accessing the Erlang shell on any of the GRiSP boards

Erlang ’19, August 18, 2019, Berlin, Germany Igor Kopestenski and Peter Van Roy

in the network, we can write a function like mintemp/0 at
runtime and propagate it on the entire cluster.

3.4.4 Task Model API
The achlys_task_server process is one of the two core
elements that power the Achlys task model. It is started
right after the boot procedure on each GRiSP board that
runs an Achlys release. Once it is initialized we declare a
CRDT variable that is identified using the same value on
all nodes. In Section 3.4.3, we have introduced an example
higher-order Erlang function for distributed temperature
minima computation. Achlys exposes an API where users
can pass such functions as arguments and let the task server
handle their propagation.

%% @doc Shortcut function exposing the utility
%% function that can be used to pass
%% more readable arguments to create
%% a task model variable instead of binary
%% strings.
-spec declare(Name::atom()

, Targets::[node()] | all
, ExecType::single | permanent
, Func::function ()) -> task() | erlang:
exception ().

declare(Name , Targets , ExecType , Func) ->
achlys_util:declare(Name , Targets , ExecType
, Func).

Algorithm 4. Task declaration helper

Once the task is propagated by calling the achlys:bite/1
function , the worker component of the task model will
handle the function execution accordingly. In order to inspect
the current view of the working set seen by a node, the
function presented in Algorithm 5 can be used on each node
at all times.

-spec get_all_tasks () -> [achlys:task()] | [].
get_all_tasks () -> {ok , Set} = lasp:query(?

TASKS),
sets:to_list(Set).

Algorithm 5. Current working set view

%% 65536 bytes of heap on 32-bit systems like
GRiSP

%% with 4-byte words. A total of 16384 words
%% on 64-bit and 32-bit architectures
-define(MAX_HEAP_SIZE , (
erlang:system_info(wordsize) * 1024 * 16)).

Algorithm 6. Erlang VM host word size

The task execution mode determines wether a function is
to be run once in a process that is monitored by the worker,
or permanently in steps encapsulated in processes that are
periodically restarted each time the function is finished. A
key feature of the task model worker is its periodical mech-
anism. It enables lookup and execution of functions with a

task history control and workload monitoring. Algorithm 7
shows the main responsible handler.

handle_info(periodical_lookup , State) ->
Tasks = achlys_util:query(?TASKS),
%% Spawning a process for each
%% task not previously finished
%% or already running
L = [{H, spawn_task(T)} || {T, H} <- Tasks

, permanent_execution(T, H) =:= true
, dict:is_key(H, State#state.tasks) =:= false

],
%% Adding new task processes to
%% monitoring structure
NewDict = lists:foldl(fun

(Elem , AccIn) ->
{H, Proc} = Elem ,
dict:store(H, Proc , AccIn)

end , State#state.tasks , L),
%% Scheduling the next cycle
%% and hibernate the worker process
schedule_periodical_lookup(

State#state.task_lookup_interval),
{noreply

, State#state{tasks = NewDict}
, hibernate};

Algorithm 7. OTP gen_server handler for periodical
task lookup and execution

4 Case Study : True Range Multilateration
Using Pmod_MAXSONAR proximity sensor modules, it is possi-
ble to implement a program that enables collaborative sens-
ing in Erlang using 3 GRiSP boards and perform resilient
trilateration of an object. More accurately, the notion of True
Range Multilateration (TRM) can be employed to deter-
mine the exact location of an object on a two-dimensional
plane [8]. This method is based on the geometric principle
that a point that sits simultaneously on two overlapping
circles can be located if the radius and center coordinates
of both of them are known. This method is used in many
domains, such as in military radio systems. A notable real-
world application of TRM in is US armed forces’ Joint Tactical
Information Distribution System (JTIDS) [19, 35], and our
first use case study is inspired by an attempt to implement
something similar but on a smaller scale and directly at the
edge.
We envision it as a possible way to incorporate efficient

tactical information distribution directly between combat
elements that would be implemented using our Erlang frame-
work. Such an application could be useful in situations where
ground forces are at risk due to hostile smoke screens reduc-
ing their visibility. The U.S. Army Research Lab is currently
conducting research that points out the opportunity that
Internet of Battlefield Things (IoBT) represents [2, 3, 22, 23].
But in contrast to the commercial solutions that are being
developed by industry, IoBT applications must be able to

Erlang as an Enabling Technology for Resilient General-Purpose Applications on Edge IoT Networks Erlang ’19, August 18, 2019, Berlin, Germany

Table 1. Achlys API summary

Function Description Example call

achlys:declare(Name, Targets, ExecType, Func) ->
achlys:task() | erlang:exception().

Declares a task called Name,
for a list of destination nodes or
all the cluster and that will run
Func a single time or permanently

T = achlys:declare(my_task
, all, permanent, fun() ->ok end).

achlys:bite(Task :: achlys:task()) ->ok. Propagates task Task across a cluster ok = achlys:bite(T).

achlys:get_all_tasks() ->[achlys:task()].
Returns a local view of all tasks in
the working set CRDT

[#{execution_type =><<0>>,
function =>#Fun<erl_eval.20.128620087>,
name =>my_task,
targets =><<0>>}] = achlys:get_all_tasks().

remain highly resilient even in complete absence of infras-
tructure and be able to form self-sustaining edge clusters
without any kind of gateway or permanent connection.

Therefore we study the feasibility of designing a resilient
IoT application with Achlys on GRiSP boards, using a 3-node
cluster in order to locate an object reliably even if visibility
is insufficient. Also, since our framework also strives for
maximum geniricity in order to follow LightKone’s project
principles we increase the scope of our use by adding the
requirement that none of the three participating nodes con-
tains the code necessary for performing TRM. By doing so,
we analyse the capabilities of our prototype both in terms of
genericness and fault tolerance properties. These properties
are highly desirable for distributed IoT systems at the edge
in the case of IoBT.

The Digilent Pmod_MAXSONAR module is a 2 × 2.5cm sized
sensing device that provides ultrasonic proximity measure-
ments with 1-inch (2.54cm) precision up to 254-inches in
front of it (6.45m) [7]. It can be directly plugged into a GRiSP
board and called from Erlang in order to fetch the current
valuemeasured by the sensor at a 20 Hz frequency. Therefore,
if two nodes equipped with this module cover overlapping
areas detect an object they can be viewed as centers of two
circles whose radius equals the measured distance as shown
in Figure 1. Consequently, if the separation S between them
is known, the Erlang program running on GRiSP has suf-
ficient information in order to calculate the location and
detect movements of an object at point a P(x ,y) where x ,y
are given by :

x =
r 21 − r 22 + S

2

2S
, y = ±

√
r 21 − x2 (1)

In case a third node is also covers the area that comprises
P(x ,y), the uncertainty about y introduced by ambiguous
points a1,a2,a3 can easily be eliminated since only one value
is common in all three results.

4.1 Experiment Results
We assess the adequacy of our framework for the computa-
tion of the position of an object by True Range Multilatera-
tion using two GRiSP boards that are each equipped with a
Pmod_MAXSONAR sensormodule. In order to obtain our results,

Separation S
GRiSP1

GRiSP2

GRiSP3

P(x, y)

Separation S’

Se
pa

ra
tio

n
S”

r1
r2

r3

a1

a2

a3

y

x

Figure 1. True Range Multirateration using
Pmod_MAXSONARs on Achlys nodes

we provide the separation and target remote node parame-
ters to a function that is fed to our task model. Algorithm 8
shows the function that we have implemented in order to
translate Equation 1 on page 7 and that we disseminate using
the achlys:bite/1 API call.
Our first attempt allows us to assess the fit of our frame-

work as a basis for more sophisticated TRM computing. In
our experiments, we have been able to use the Achlys task
model to calculate the coordinates of an object placed in
front of the two GRiSP boards. The measurements were not
precise enough and required manual adjustments in order
to be reproduced. Nevertheless, in completely empty spaces
and when MAXSONAR modules perceived no disturbances,
Achlys’ task model API was successful in permitting a TRM
calculation.

Erlang ’19, August 18, 2019, Berlin, Germany Igor Kopestenski and Peter Van Roy

-spec(multilateration(
Separation :: pos_integer ()
, RemoteNode :: atom()) ->
Fun :: erlang:function ()).

multilateration(Separation , RemoteNode) ->
fun() -> Node = node(),

%% Local measurements CRDT
Identifier =

achlys_util:declare_node_crdt(sonar
, state_gset),

%% Updating every 10 seconds
Poller = fun F() ->

lasp:update(Identifier
, {add , {erlang:monotonic_time ()

, pmod_maxsonar:get()}}
, self()),
timer:sleep (10000) , F() end ,

spawn(fun() -> Poller () end),
spawn(fun() ->

%% Calculating result based on most
%% recent measurements visible
%% starting when at least one value
%% is present on local and remote
lasp:read(RemoteNode , {cardinality , 1}),
{ok, RemoteSet} = lasp:query(RemoteNode),
{ok, NodeSet} = lasp:query(Identifier),
RemoteList = sets:to_list(RemoteSet),
NodeList = sets:to_list(NodeSet),
R1 = lists:max(NodeList),
R2 = lists:max(RemoteList),
R1Sq = math:pow(R1, 2),
R2Sq = math:pow(R2, 2),
S2 = 2 * Separation ,
SSq = math:pow(Separation , 2),
X = (R1Sq - R2Sq + SSq) / S2,
Y = math:sqrt(R1Sq - math:pow(X, 2)),
ResultId = achlys_util:declare_node_crdt(

results
, state_gset),

lasp:update(ResultId
, {add

, {erlang:monotonic_time ()
, Node
, {X, Y, (-Y)}}}

, self())
end)

end.

Algorithm 8. True Range Multilateration task function

This assessment is particularly encouraging when consid-
ering the results of our second case study. The TRM compu-
tation is a minimal prototype of a distributed application that
can already somehow relate to a much more complex state
of the art military infrastructure such as the JTIDS/TADIL-J
tactical communication system. IoBT distributed systems
are especially hard to conceive due to the extremely hostile
environments that they must be able to cope with [2]. This
makes them non-trivial by nature and thus our case study

hardware
failure

network
partition

n1

n2

M = M ∪ {m1} M = M ∪ {m2}

convergence
state

Queryn1 (M) = Queryn2 (M) = {m1,m2}

Figure 2. Deliberate failures by hardware reset and network
partition

cannot cover such tasks alone, but our approach is a first
correct step in that direction.

5 Case Study : Magnetic Field Surveillance
Our second use case is built using 2 GRiSP nodes and a
laptop station. We will use the task model API to instruct
one of the boards to sense the surrounding magnetic field
periodically at fixed intervals. The GRiSP board is equipped
with a Pmod_NAV sensor module and reads values from its
3-axis magnetometer.
For the purpose of this experiment, we state that these

measurements must be stored in a set CRDT and replicated
to ensure reliability. Then, we use the hardware reset button
on the GRiSP board to simulate the most abrupt system
failure that can occur. It will result in immediate ungraceful
interruption of the running program and start rebooting the
system. Figure 2 shows the timelines of the two nodes, where
the red area indicates the interval during which the second
board is restarting. No measurements have been persisted
locally on the board, hence after successfully rebooting the
node has lost all the previous measurements. But the replica
on the first board will be repropagated ensuring thatm1 is
now visible again on both nodes.
The second phase after recovery is a network partition.

This time the board is isolated far from the other peer and is
not within radio transmission range anymore. The CRDT is
updated with new measurements, as the task that we have
added to the working set is declared as permanent meaning
that it is executed indefinitely. We want our application to
behave identically regardless of the temporary partition that
prevents the propagation. Once the boards are brought back
at communication distance, the cluster state should converge
to the set of all measurements being visible on both nodes.
The computer station is a spectating node that is used to
display health status and data on nodes inside the cluster.

Fault tolerance is a cornerstone for designing reliable and
distributed IoT programs at the edge. Therefore we have
made it essential for Achlys nodes to work in presence of
failures. This case study is a practical way to evaluate our

Erlang as an Enabling Technology for Resilient General-Purpose Applications on Edge IoT Networks Erlang ’19, August 18, 2019, Berlin, Germany

Figure 3. Cluster health and data live dashboard

task model in order to verify that it does not impede the fault
tolerance properties of the rest of the components, and that
it is reliable.

5.1 Experiment Results
Figure 3 shows a web client that displays the live dashboard
that we were able to deploy successfully as a part of our
previous work [13]. We deploy a two-node cluster and use
it to show how redundancy allows us to store data reliably.
Our Elixir web server can easily include Lasp as a depen-
dency, making it fully interoperable with an Achlys cluster.
By reading the data stored in the CRDT variable that con-
tains the measurements provided by my_grisp_board_2, we
see that no information has been lost despite a hard reset
made on the GRiSP board at runtime. The replica stored
on my_grisp_board_1 is propagated again and can be dis-
played seamlessly.

The web client running on the laptop has been written as
a separate NodeJS application. It calls the Elixir web server at
10 second intervals and plots magnetometer measures from
our GRiSP board. This initial version leads to an interesting
result. From an architectural standpoint, we now have a
NodeJS component and JavaScript dependencies such as
ReactJS in addition to our Achlys code base and Elixir server.
But the recent release of Phoenix LiveView4 allows us to
discern a new design pattern thanks to our experiment.

Since LiveView enables rendering HTML on Elixir servers,
we can substitute our JavaScript client by a LiveView im-
plementation. And since GRiSP is bare metal Erlang, there
is not a single remaining dependency that does not run on
the BEAM anymore. We can easily extract a pattern for a
full edge-to-cloud deployment architecture that shows the
simplicity of integrating Achlys edge computing applica-
tions. Figure 4 shows how we can design infrastructures
that combine Achlys clusters with the AntidoteDB5 Erlang
distributed database.

4https://github.com/phoenixframework/phoenix_live_view
5https://antidotedb.eu

GRiSP

Lasp node

Achlys

Lasp
node

Phoenix
ServerPhoenix LiveView UI

GRiSP / Local server / Cloud

Antidote Erlang ClientAntidoteDB

BEAM

Figure 4. BEAM-enabled end-to-end architecture pattern.

6 Related Work
In this section, we provide an overview of some industry
solutions in the edge computing landscape.

6.1 Non-Trivial Algorithms on IoT Devices
Learning algorithms have already been successfully ported
to resource constrained devices without the need for an
Internet connection. For instance, Long Short Term Memory
(LSTM) deep learning models have been used to develop
breathing acoustic based authentication with an accuracy
level around 90% with a memory footprint below 200 KB [14].
The TenSense [32] node is an Industrial IoT sensor node with
critical reliability requirements that allows monitoring the
structural health of large compound infrastructures such as
bridges with the help of smart tension sensing nodes. Both of
these studies display valid results of complex computations
done directly on sensor nodes.

6.2 Multi-access Edge Computing
Formerly known as Mobile Edge Computing, Multi-access
Edge Computing (MEC) is the ETSI standard architecture for
provisioning latency-sensitive applications [17]. The MEC
approach is strongly catalyzed by network virtualization
[30, 34] and accelerated hardware such as high performance
FGPA-based SmartNICs [1]. But these innovations are used
by network providers in order to allow the IoT sensor data-
flow to reach the cloud computing providers faster, and do
not consider sensor nodes in their designs.

6.3 EdgeX Foundry
The EdgeX Foundry [4] is a software platform for program-
ming IoT applications at the edge. Its main characteristics are
being vendor-neutral, OS-agnostic and hardware-agnostic
with the main objective of increasing interoperability among
the highly heterogenous landscape of the IoT edge. But a
deeper look into the reference architecture, implementation

https://github.com/phoenixframework/phoenix_live_view
https://antidotedb.eu

Erlang ’19, August 18, 2019, Berlin, Germany Igor Kopestenski and Peter Van Roy

and requirements show that EdgeX does not actually ful-
fill these conditions. Similarly to the techniques detailed in
Section 6.2, complex sense-making tasks are still done by
sending IoT sensor data through a gateway towards what is
labelled as "additional services". These actually refer to tradi-
tional third-party cloud features that perform the necessary
computations.

6.4 IoT Azure RA
The IoT Azure Reference Architecture describes the guide-
lines for Azure IoT solution implementation. When com-
pared to the LightKone Reference Architecture (LiRA), the
Azure RA fails to address the D2D horizontal collaboration
at the edge [6]. In fact, the IoT layer is only able to commu-
nicate vertically with a gateway towards the Azure cloud
infrastructure. This makes it entirely dependent on this ac-
cess point and shows that it is a single point of failure IoT
Hub.

6.5 Amazon Greengrass RA
AWSGreengrass is Amazon’s equivalent ofMicrosoft’s Azure
RA described in Section 6.4. This IoT solution still requires a
cloud access for management, analytics and durable storage
[6]. But it does overcome some of the shortcomings of the
fully connection-dependent Azure IoT product. D2D commu-
nication and machine learning inference are two examples
of features enabled by AWS IoT Greengrass.

6.6 Observations
We can easily highlight the lack of actual computing at the
edge in these architectures. A pattern emerges in the ap-
proaches described above and Achlys is fundamentally dif-
ferent : our work complements and extends the current edge
programming paradigm. We focus on showing that edge
computing without gateways is possible as well. To the best
of our knowledge, there are currently no systems that offer
real fault tolerant generic edge computing on autonomous
IoT networks without a permanent infrastructure access. The
current programming paradigm for the edge is dogmatic : the
belief that IoT edge networks can not perform sense-making
i.e. complex decision tasks is so strong that such distributed
system designs are nonexistent.

7 Future Research
We are currently implementing, testing and documenting
components in Achlys in order to improve the overall quality
of our framework. The RTEMS6 library that is bundled with
the cross-compiled Erlang VM into a single release loaded by
the GRiSP bootloader currently induces a memory allocation
mismatch at runtime. The resulting consequence is that the
Erlang VM cannot use all of the available 64MB of memory
on a GRiSP board. Peer Stritzinger, designer of GRiSP, has

6https://rtems.org

brought to our attention that this can be better understood
if the RTEMS shell is accessed during execution in order to
inspect memory allocation and potential issues. Therefore
this will be part of our work in order to overcome Achlys’
current limitations.
We have been able to significantly optimize the memory

usage thanks to a monotonic approach in the entire program.
With these improvements, Achlys is now much more stable
using state based CRDTs stored in memory and the default
Partisan peer service. The Lasp storage module that we were
using to write on the MicroSD cards is not always able to
recover from failures such as hard resets on GRiSP, even if
it works on computers. Once the boards attempt to reboot,
if the persistence operations were not properly terminated,
the file is corrupt and the system crashes. Instead, we will
now use Erlang’s built-in memory-to-disk and vice- versa
functions in Achlys to minimize the risk and potential loss
of data in case of failure.

We have observed that there are far more benefits in adopt-
ing the grow-only monotonicity approach wherever it is ap-
plicable, as the conflict resolution is trivial, while the perfor-
mance has greatly improved and the scope of functionalities
has remained the same.

In the future, we will continue our work in this direction
by trying to limit the presence of "happened-before" relations
between distributed operations. Reducing the need for causal
ordering during the design of a system by abstracting time
itself makes it much easier to reason about the actual logic.
This will be the preferred approach in our future work, as
the system model assumptions that are made for operation-
based CRDTs or δ -CRDTs are not always applicable on the
IoT edge. For example, a reliable causal communication or a
reliable local persistence mean on each node is not possible
nor desired in our case [12].

Instead, our future improvements will be oriented towards
a solution where the worst conditions are always assumed.
This way we target the issues that are specific to edge sensor
nodes and address them properly. The Erlang/OTP version
22.0 was released on May 14th 2019 and introduces numer-
ous changes that will possibly greatly improve the overall
performance, reliability and scalability of Achlys. Examples
include the support fragmentation of large payloads in the
native Erlang distribution protocol.
The GRiSP software stack now supports Erlang Native

Implemented Functions. These are functions that can be
implemented in C for example, and called at application
level directly in Erlang. It is also not limited to C, there
are emerging combinations such as Rust NIFs combined
with Erlang programs to achieve high performance for pure
computations before going back to regular Erlang execution
level.
And not only is it possible to incorporate different lan-

guages in Erlang programs, but it is also possible to run

https://rtems.org

Erlang as an Enabling Technology for Resilient General-Purpose Applications on Edge IoT Networks Erlang ’19, August 18, 2019, Berlin, Germany

Erlang, and therefore Achlys, on any platform. The corner-
stone of a sustainable edge computing and cloud computing
architecture is its ability to handle heterogeneous devices in
extremely high numbers. From Erlang directly on bare-metal
to CSP datacenters, LightKone would offer the first solution
that is entirely decoupled from any dependencies as a single
technology could be used to bring harmony across vertical
and horizontal layers of the Cloud.
Memory-wise, some significant enhancements in alloca-

tor behaviors could allow a substantial decrease of memory
waste. A particularly interesting case for Achlys would be
to take advantage of the madvise(2) + MADV_FREE system
call that is now made by the emulator to advise the OS to
free and reclaim an unused memory area [16]. Also, the ETS
storage module has seen its scalability improved, and could
represent a direct gain for the Lasp ETS storage backend.
These are only few among the highly desirable improve-
ments that we intend to leverage in future releases of the
Achlys framework. Future Proof-of-Concept deployments at
larger scales include :

• LightKone Smart Agriculture system using hygrome-
try sensor modules and actuators and the Achlys task
model to control a subsurface irrigation pipeline in
order to increase production efficiency autonomously
and reliably.

• A second version of the GRiSP hardware is already be-
ing developed, and our partnershipwith Peer Stritzinger
GmbH will allow us to integrate next-generation em-
bedded Erlang systems into our deployments. Both
Ethernet and Wi-Fi connectivity will be available on
the second model, and will come with a nearly roughly
times more efficient system. This will enable 4G and
5G connectivity through Android phones easily. An-
droid smartphones can easily tether Internet connec-
tivity through USB towards an Ethernet port. Since the
GRiSP2 boards will have a slot for a Lithium battery the
boards will remain powered on without a permanent
source of power, and be charged at runtime.

8 Conclusion
In this paper we introduce a novel approach for reliable edge
computing on IoT sensor networks. Our prototype aims at
extending the current model of edge computing to the actual
edge using Erlang. We have implemented Achlys, our pro-
totype framework written in Erlang that is designed to run
on ad hoc networks of GRiSP embedded systems. We have
successfully ported the Lasp and Partisan libraries directly
on the IoT edge. Using CRDTs, we are able to provide reli-
able distributed storage. In addition, we propose a generic
platform that offers a task model exposing a straightforward
API that allows clusters to execute programs in a resilient
way even if they had no information about these tasks at
compilation time.

We have evaluated our prototype on its fault tolerance,
genericness and interoperability by showing how two real
world non-trivial edge IoT use cases can be solved using
Achlys. The positive results of our case studies lead to two
conclusions. First, the current edge computing model can in
fact be extended in order to reach the furthermost border of
the network edge, at the sensor and actuator layer. Secondly,
we demonstrate that Erlang can efficiently support this new
model.

Contrary to current "edge computing" industry products,
our prototype does not require gateways or other infras-
tructure in order to perform sensor data processing. The
GRiSP platform offers Erlang’s out-of-the-box concurrency
and fault tolerance properties directly on bare metal. These
properties have been used in order to support telecommuni-
cation systems and complex network orchestration services
with very high resilience despite high failure and attrition
rates. With Achlys, we intend to also take advantage of the
highly interoperable nature of Erlang. In our future work,
we will further develop Achlys in order to combine both data
center infrastructures and autonomous edge networks in a
BEAM-only unified architecture.

Acknowledgments
This work is partially funded by the LightKone European
H2020 Project under Grant Agreement No. 732505. The au-
thors would like to thank Giorgos Kostopoulos of Gluk Ad-
vice BV for information on precision agriculture, Peer Strit-
zinger from Peer Stritzinger GmbH for support and advice
for GRiSP programming, the anonymous reviewers whose
detailed comments helped to greatly improve the article and
finally Joe Armstrong, the father of Erlang, for all of his
work.

References
[1] 2018. FPGA SmartNICs with Acceleration for NFV. http://www.

ethernitynet.com/products/smartnics/.
[2] 2018. Internet of Battlefield Things (IOBT) | U.S. Army Research

Laboratory. https://www.arl.army.mil/www/default.cfm?page=3050.
[3] 2018. What Is the Internet of Military or Battlefield Things, or IoMT

and IoBT? https://publications.computer.org/cloud-computing/2018/
03/22/internet-of-military-battlefield-things-iomt-iobt/.

[4] 2019. 2. Introduction — EdgeX Documentation. https://docs.
edgexfoundry.org/Ch-Intro.html#edgex-foundry-service-layers.

[5] 2019. Agner: Rethinking the Distributed Actor Runtime For Greater
Scalability. In 2019 USENIX Annual Technical Conference (USENIX
ATC 19). USENIX Association, Renton, WA. https://www.usenix.org/
conference/atc19/presentation/meiklejohn

[6] 2019. LightKone Initial Runtime Edge Computing System.
https://wordix.inesctec.pt/wp-lightkone/wp-content/uploads/2019/
04/D3.1_InitialRuntimeEdgeComputingSystem.pdf.

[7] 2019. Pmod MAXSONAR: Maxbotix Ultrasonic Range Finder.
https://store.digilentinc.com/pmodmaxsonar-maxbotix-ultrasonic-
range-finder/.

[8] 2019. True Range Multilateration. Wikipedia (April
2019). https://en.wikipedia.org/w/index.php?title=True_range_
multilateration&oldid=892448265.

http://www.ethernitynet.com/products/smartnics/
http://www.ethernitynet.com/products/smartnics/
https://www.arl.army.mil/www/default.cfm?page=3050
https://publications.computer.org/cloud-computing/2018/03/22/internet-of-military-battlefield-things-iomt-iobt/
https://publications.computer.org/cloud-computing/2018/03/22/internet-of-military-battlefield-things-iomt-iobt/
https://docs.edgexfoundry.org/Ch-Intro.html#edgex-foundry-service-layers
https://docs.edgexfoundry.org/Ch-Intro.html#edgex-foundry-service-layers
https://www.usenix.org/conference/atc19/presentation/meiklejohn
https://www.usenix.org/conference/atc19/presentation/meiklejohn
https://wordix.inesctec.pt/wp-lightkone/wp-content/uploads/2019/04/D3.1_InitialRuntimeEdgeComputingSystem.pdf
https://wordix.inesctec.pt/wp-lightkone/wp-content/uploads/2019/04/D3.1_InitialRuntimeEdgeComputingSystem.pdf
https://store.digilentinc.com/pmodmaxsonar-maxbotix-ultrasonic-range-finder/
https://store.digilentinc.com/pmodmaxsonar-maxbotix-ultrasonic-range-finder/
https://en.wikipedia.org/w/index.php?title=True_range_multilateration&oldid=892448265
https://en.wikipedia.org/w/index.php?title=True_range_multilateration&oldid=892448265

Erlang ’19, August 18, 2019, Berlin, Germany Igor Kopestenski and Peter Van Roy

[9] Ali Shoker, Peer Stritzinger, and Giorgos Kostopoulos. 2019. LiRA :
LightKone Reference Architecture Presentation. https://github.com/
achlysproject/achlys/blob/master/resources/LiRA.pdf.

[10] Paulo Sérgio Almeida, Ali Shoker, and Carlos Baquero. 2014. Efficient
State-Based CRDTs by Delta-Mutation. arXiv:1410.2803 [cs] (Oct. 2014).
arXiv:cs/1410.2803 http://arxiv.org/abs/1410.2803.

[11] Joe Armstrong. 2007. Programming Erlang: Software for a Concurrent
World. Pragmatic Bookshelf, Raleigh, N.C. OCLC: 141384617.

[12] Angelos Bilas, Jesus Carretero, Toni Cortes, Javier Garcia-Blas, Pi-
lar González-Férez, Anastasios Papagiannis, Anna Queralt, Fabrizio
Marozzo, Giorgos Saloustros, Ali Shoker, Domenico Talia, and Paolo
Trunfio. 2019. Data Management Techniques. Ultrascale Computing
Systems (Jan. 2019), 85–126. https://doi.org/10.1049/PBPC024E_ch4

[13] Alexandre Carlier, Igor Kopestenski, and Dan Martens. 2018. Lasp
on Grisp : Implementation and Evaluation of a General Purpose Edge
Computing System for Internet of Things.

[14] Jagmohan Chauhan, Jathushan Rajasegaran, Suranga Seneviratne,
Archan Misra, Aruna Seneviratne, and Youngki Lee. 2018. Perfor-
mance Characterization of Deep Learning Models for Breathing-Based
Authentication on Resource-Constrained Devices. Proceedings of the
ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies 2, 4
(Dec. 2018), 1–24. https://doi.org/10.1145/3287036

[15] M. Du, K. Wang, Y. Chen, X. Wang, and Y. Sun. 2018. Big Data Privacy
Preserving in Multi-Access Edge Computing for Heterogeneous In-
ternet of Things. IEEE Communications Magazine 56, 8 (Aug. 2018),
62–67. https://doi.org/10.1109/MCOM.2018.1701148

[16] Erlang. 2019. Erlang Runtime System Release Notes for Versions of
OTP 22.0 and ERTS 10.4. http://erlang.org/doc/apps/erts/notes.html#
erts-10.4.

[17] ISG ETSI MEC. 2019. Multi-Access Edge Computing (MEC): Frame-
work and Reference Architecture.

[18] Viktória Fördős and Francesco Cesarini. 2016. CRDTs for the Con-
figuration of Distributed Erlang Systems. In Proceedings of the 15th
International Workshop on Erlang (Erlang 2016). ACM, New York, NY,
USA, 42–53. https://doi.org/10.1145/2975969.2975974

[19] W.R. Fried. 1978. Principles and Simulation of JTIDS Relative Navi-
gation. IEEE Trans. Aerospace Electron. Systems AES-14, 1 (Jan. 1978),
76–84. https://doi.org/10.1109/TAES.1978.308581

[20] Wazir Zada Khan, Ejaz Ahmed, Saqib Hakak, Ibrar Yaqoob, and Arif
Ahmed. 2019. Edge Computing: A Survey. Future Generation Computer
Systems 97 (Aug. 2019), 219–235. https://doi.org/10.1016/j.future.2019.
02.050

[21] Igor Kopestenski and Peter Van Roy. 2019. Achlys: Towards a Frame-
work for Distributed Storage and Generic Computing Applications for
Wireless IoT Edge Networks with Lasp on GRiSP. In SmartEdge’19 - The
Third InternationalWorkshop on Smart Edge Computing and Networking
(SmartEdge’19). Kyoto, Japan.

[22] Alexander Kott. 2018. Challenges and Characteristics of Intelligent
Autonomy for Internet of Battle Things in Highly Adversarial Envi-
ronments. arXiv:1803.11256 [cs] (March 2018). arXiv:cs/1803.11256
http://arxiv.org/abs/1803.11256.

[23] Alexander Kott, Ananthram Swami, and Bruce J. West. 2016. The
Internet of Battle Things. Computer 49, 12 (Dec. 2016), 70–75. https:

//doi.org/10.1109/MC.2016.355
[24] Lukas Larsson. Wed Apr 27 15:12:39 CEST 2016. [Erlang-Questions]

Max Heap Size. http://erlang.org/pipermail/erlang-questions/2016-
April/088965.html.

[25] Joao Leitao, Jose Pereira, and Luis Rodrigues. 2007. Epidemic Broad-
cast Trees. In Proceedings of the 26th IEEE International Symposium
on Reliable Distributed Systems (SRDS ’07). IEEE Computer Society,
Washington, DC, USA, 301–310. http://dl.acm.org/citation.cfm?id=
1308172.1308243.

[26] Joao Leitao, Jose Pereira, and Luis Rodrigues. 2007. HyParView: A
Membership Protocol for Reliable Gossip-Based Broadcast. In Proceed-
ings of the 37th Annual IEEE/IFIP International Conference onDependable
Systems and Networks (DSN ’07). IEEE Computer Society, Washington,
DC, USA, 419–429. https://doi.org/10.1109/DSN.2007.56

[27] J. Lin, W. Yu, N. Zhang, X. Yang, H. Zhang, and W. Zhao. 2017. A
Survey on Internet of Things: Architecture, Enabling Technologies,
Security and Privacy, and Applications. IEEE Internet of Things Journal
4, 5 (Oct. 2017), 1125–1142. https://doi.org/10.1109/JIOT.2017.2683200

[28] Christopher Meiklejohn and Heather Miller. 2018. Partisan: Enabling
Cloud-Scale Erlang Applications. arXiv:1802.02652 [cs] (Feb. 2018).
arXiv:cs/1802.02652 http://arxiv.org/abs/1802.02652.

[29] Christopher Meiklejohn and Peter Van Roy. 2015. Lasp: A Language
for Distributed, Coordination-Free Programming. In Proceedings of the
17th International Symposium on Principles and Practice of Declarative
Programming (PPDP ’15). ACM, New York, NY, USA, 184–195. https:
//doi.org/10.1145/2790449.2790525

[30] R. Muñoz, R. Vilalta, N. Yoshikane, R. Casellas, R. Martínez, T. Tsuritani,
and I. Morita. 2018. Integration of IoT, Transport SDN, and Edge/Cloud
Computing for Dynamic Distribution of IoT Analytics and Efficient
Use of Network Resources. Journal of Lightwave Technology 36, 7
(April 2018), 1420–1428. https://doi.org/10.1109/JLT.2018.2800660

[31] Marc Shapiro, Nuno Preguiça, Carlos Baquero, and Marek Zawirski.
2011. Conflict-Free Replicated Data Types. In Stabilization, Safety,
and Security of Distributed Systems, Xavier Défago, Franck Petit, and
Vincent Villain (Eds.). Vol. 6976. Springer Berlin Heidelberg, Berlin,
Heidelberg, 386–400. https://doi.org/10.1007/978-3-642-24550-3_29
http://link.springer.com/10.1007/978-3-642-24550-3_29.

[32] Michail Sidorov, Nhut Phan Viet, Atsushi Okubo, Yukihiro Matsumoto,
and Ren Ohmura. 2019. TenSense: IIoT Enabled Sensor Node for
Remote Measurement of a Bolted Joint Tension. (2019), 10.

[33] Statista. 2018. IoT: Number of Connected Devices Worldwide
2012-2025. https://www.statista.com/statistics/471264/iot-number-of-
connected-devices-worldwide/.

[34] Mostafa Uddin, Tamer Nadeem, and Santosh Kumar Nukavarapu. 2019.
Extreme SDN Framework for IoT and Mobile Applications Flexible Pri-
vacy at the Edge. IEEE International Conference on Pervasive Computing
and Communications (2019), 11.

[35] William S. Widnall, Giuseppe F. Gobbini, and John F. Kelley. 1982.
Decentralized Relative Navigation and JTIDS/GPS/INS Integrated Nav-
igation Systems:. Technical Report. Defense Technical Information
Center, Fort Belvoir, VA. https://doi.org/10.21236/ADA116417 http:
//www.dtic.mil/docs/citations/ADA116417.

https://github.com/achlysproject/achlys/blob/master/resources/LiRA.pdf
https://github.com/achlysproject/achlys/blob/master/resources/LiRA.pdf
http://arxiv.org/abs/cs/1410.2803
http://arxiv.org/abs/1410.2803
https://doi.org/10.1049/PBPC024E_ch4
https://doi.org/10.1145/3287036
https://doi.org/10.1109/MCOM.2018.1701148
http://erlang.org/doc/apps/erts/notes.html#erts-10.4
http://erlang.org/doc/apps/erts/notes.html#erts-10.4
https://doi.org/10.1145/2975969.2975974
https://doi.org/10.1109/TAES.1978.308581
https://doi.org/10.1016/j.future.2019.02.050
https://doi.org/10.1016/j.future.2019.02.050
http://arxiv.org/abs/cs/1803.11256
http://arxiv.org/abs/1803.11256
https://doi.org/10.1109/MC.2016.355
https://doi.org/10.1109/MC.2016.355
http://erlang.org/pipermail/erlang-questions/2016-April/088965.html
http://erlang.org/pipermail/erlang-questions/2016-April/088965.html
http://dl.acm.org/citation.cfm?id=1308172.1308243
http://dl.acm.org/citation.cfm?id=1308172.1308243
https://doi.org/10.1109/DSN.2007.56
https://doi.org/10.1109/JIOT.2017.2683200
http://arxiv.org/abs/cs/1802.02652
http://arxiv.org/abs/1802.02652
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1145/2790449.2790525
https://doi.org/10.1109/JLT.2018.2800660
https://doi.org/10.1007/978-3-642-24550-3_29
http://link.springer.com/10.1007/978-3-642-24550-3_29
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://www.statista.com/statistics/471264/iot-number-of-connected-devices-worldwide/
https://doi.org/10.21236/ADA116417
http://www.dtic.mil/docs/citations/ADA116417
http://www.dtic.mil/docs/citations/ADA116417

	Abstract
	1 Introduction
	1.1 Contributions

	2 Background
	3 Achlys : Design and Usage
	3.1 The Erlang VM
	3.2 Network Configuration
	3.3 Automated Dynamic Clustering
	3.4 Task Model

	4 Case Study : True Range Multilateration
	4.1 Experiment Results

	5 Case Study : Magnetic Field Surveillance
	5.1 Experiment Results

	6 Related Work
	6.1 Non-Trivial Algorithms on IoT Devices
	6.2 Multi-access Edge Computing
	6.3 EdgeX Foundry
	6.4 IoT Azure RA
	6.5 Amazon Greengrass RA
	6.6 Observations

	7 Future Research
	8 Conclusion
	Acknowledgments
	References

