DIAL

4 Digital access to libraries

"Melodizer 2.0 : A Constraint Programming
Tool For Computer-aided Musical Composition"

Chardon, Clément ; Diels, Amaury ; Gobbi, Federico

ABSTRACT

This master’s thesis presents the design of a tool destined to assist musical composers in the creation of
their next masterpiece. The composers state the musical ideas that they want to include in their themes
which are translated into a Constraint Satisfaction Problem. This thesis develops two already ex- isting
master’s thesis. The first one, written by Baptiste Lapiére, was more rhythm-oriented [10]. While the second
one, written by Damien Sprockeels, was more focused on pitch-oriented scenarios [28]. Therefore, we
combined both works to create a tool that allows to play with pitches and rhythms simultaneously. On the
one hand, Gecode is a powerful C++ toolkit that is used in order to model and solve Constraint Optimization
Problems. While, on the other hand; OpenMusic, based on Lisp, serves as the visual programming and
composition environment where Melodizer 2.0 is employed. GiL works as the bridge between Gecode and
Lisp that allows us to solve Constraint Satisfaction Problems in Openmusic. Melodizer 2.0 provides an
intuitive interactive interface that works as a melody synthesizer with many knobs and buttons to tweak
in search of inspiring results. We do not pretend to replace musician’s creativity nor come up with a full
master- piece when launched. Nevertheless, it stimulates songwriters in their production process. If you
are an inspired compositor that is eager to use Melodizer 2.0 we recommend you to go directly to chapters
6 and 7 where we explain how to manipulate the interface, and, provide plenty of musical scenarios to
picture the different uses a...

CITE THIS VERSION

Chardon, Clément ; Diels, Amaury ; Gobbi, Federico. Melodizer 2.0 : A Constraint Programming Tool For
Computer-aided Musical Composition. Ecole polytechnique de Louvain, Université catholique de Louvain,
2022. Prom. : Van Roy, Peter. http://hdl.handle.net/2078.1/thesis:35691

Le répertoire DIAL.mem est destiné a l'archivage
et a la diffusion des mémoires rédigés par les
étudiants de I'UCLouvain. Toute utilisation de ce
document & des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage a
respecter les droits d'auteur liés a ce document,
notamment le droit a l'intégrité de l'oeuvre et le
droit a la paternité. La politique compléte de droit
d'auteur est disponible sur la page Copyright

policy

Available at: http://hdl.handle.net/2078.1/thesis:35691

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is

available at Copyright policy

[Downloaded 2022/06/08 at 10:48:22]

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

B UCLouvain

Ecole polytechnique de Louvain

Melodizer 2.0 : A Constraint
Programming Tool For
Computer-aided Musical

Composition

Authors: Clément CHARDON, Amaury DIELS , Federico GOBBI
Supervisor: Peter VAN Roy

Readers: Augustin DELECLUSE, Karim HADDAD

Academic year 2021-2022

Master [120] in Computer Science and Engineering

Abstract

This master’s thesis presents the design of a tool destined to assist musical
composers in the creation of their next masterpiece. The composers state the
musical ideas that they want to include in their themes which are translated
into a Constraint Satisfaction Problem. This thesis develops two already ex-
isting master’s thesis. The first one, written by Baptiste Lapiere, was more
rhythm-oriented |10]. While the second one, written by Damien Sprockeels,
was more focused on pitch-oriented scenarios [28]. Therefore, we combined both
works to create a tool that allows to play with pitches and rhythms simultaneously.

On the one hand, Gecode is a powerful C++ toolkit that is used in order to
model and solve Constraint Optimization Problems. While, on the other hand;
OpenMusic, based on Lisp, serves as the visual programming and composition
environment where Melodizer 2.0 is employed. Gil. works as the bridge between
Gecode and Lisp that allows us to solve Constraint Satisfaction Problems in
Openmusic.

Melodizer 2.0 provides an intuitive interactive interface that works as a melody
synthesizer with many knobs and buttons to tweak in search of inspiring results.
We do not pretend to replace musician’s creativity nor come up with a full master-
piece when launched. Nevertheless, it stimulates songwriters in their production
process.

If you are an inspired compositor that is eager to use Melodizer 2.0 we recommend
you to go directly to chapters [0] and [7] where we explain how to manipulate the
interface, and, provide plenty of musical scenarios to picture the different uses
and the musical relevance of our instrument.

We would like to express gratitude to
Peter Van Roy,

Karim Haddad from IRCAM,

Augustin Delecluse,

Vanessa Maons and the INGI System Team,

Damien Sprockeels,

Baptiste Lapiere

The Organizers and participants of the IRCAM Forum

for the help they provided throughout the production of this master’s thesis

Contents

1__Introductionl 1
(.1 Context and motivationl 1
(1.2 Previous work and Melodizer’s main upgrades| 2
(1.3 Implementation procedurel 3
(1.4 Playing with Melodizer 2.0 as a composer|. 4
(Lo Contributions| 5

[1.5.1 System contributions| 5
(1.b.2 Musical contributionsf. 7
(1.6 Melodizer 2.0 example| 8
[I.7 Roadmap| 10

2 Theoretical frameworkl 12
21 What ismusicafterall 7 000000 12
2.2 Music Theory| o 13

[2.2.1 Music terminology| L. 14
2.2.2 Rhythm| 17
2.2.3 Melody] 17
[2.2.4 Harmony|. 18
[2.2.5 Musical Forms to structure your piece| 20
[2.3 Music Composition| 21
[2.3.1 Tip 1: Let the listener rest| 21
[2.3.2 lip 2 : Tension and releasel 21
[2.3.3 Tip 3 : Coming back home|. 22
[2.3.4 Tip 4 : Popular chord progressions| 22
[2.3.5 Tip 5 : Repetition with a twist| 22
2.3.6 Tip 6 : Arpeggiol 22
[2.4 Constraint Programming| 22
241 Definitionslo oL 23
[2.4.2 Example 1 : Solving a sudoku| 24
[2.4.3 Constraint Propagation|. 27
[2.4.4 Branching heuristics] 28
[2.4.5 Exploration and search engines| 30
[2.4.6 Branch-and-Bound (BAB)| 33

1

4_Gill
4.1 How does it work ... briefly]
[4.1.1 Lisp Wrapper|
[4.1.2 C Wrapper|

b.l What is Melodizer 21 o000

[>.4.1 Blocks™ general constraints|
[>.4.2 Rhythm constraints|.
(.43 Pitch constraintd oo

[>.6.1 Branching heuristics|
[>.7 Implementation structure|.
[>.7.1 block.lisp|
[5.7.2 melodizer-csp.lisp|
[5.7.3 melodizer-csts.lisp|. 0oL
[b.7.4 melodizer-utils.lisp|

6 User Manuall
[6.1 Block object|
[6.1.1 Block constraint panell
[6.1.2 Time constraint panel :|.
[6.1.3 Pitch constraint panel|

1il

[6.2 Search object| 95

[6.3 Connecting blocks to form a structured piecel. 95

7 Making music with Melodizer| 98
[7.1 Scenario 1 : Playing with a chord| 98
[7.1.1 Description] 98

[.1.2 Patchsetup|. 98

[7.1.3 Modus operandi|. L. 99

[7.2 Scenario 2 : Playing with two chords| 100
[7.2.1 Description| 100

[7.2.2 Patchsetup|. 100

[7.2.3 Modus operandi|. 101

[7.3 Scenario 3 : Melody on top of chords| 103
[7.3.1 Description| 103

[7.3.2 Patchsetup|. 103

[7.3.3 Modus operandi|. L. 103

[7.4 Scenario 4 : Bluesin C Major| 105
[7.4.1 Description| 105

[7.4.2 Patchsetup|., 106

[7.4.3 Modus operandi|. L. 107

[7.5 Scenario 5 : The strumming eftect| 107
[7.5.1 Description|, 107

[7.5.2 Patchsetup|. 108

[7.5.3 Modus operandi|. L. 108

[7.6 Scenario 6 : Unexpected results| 109
[7.6.1 Description| 109

[7.6.2 Patchsetup|. 109

[7.6.3 Modus operandi|. 109

8 _Conclusion| 111
[8.1 Melodizer 2.0 major achievements| 111
[8.1.1 Necessary steps to develop Melodizer 2.0/ 111

[8.2 Further improvements and using Melodizer 2.0 as a cornerstone| . 112
[8.2.1 Some general ideas| 112

[8.2.2 Extending the block structurel L. 113

B.2.3 A final word about musical constraints| 115
(Bibliography| 116
[A_How to install Melodizer 2.0l 118
[A.1 Download and installl oo 118
[A.2 Loading the libraries to OpenMusic| 118
IB_Gecode source codel 121
[B.1 Sudoku propagation examplef. 121

iv

[C_Gil source code 122

[C.1 C Wrapper|. 122
[C.1.1 space wrapper.hpp[. 122
[C.1.2 space wrapper.cpp|« . . v v o i 130
[C.1.3 gecode wrapper.hpp| 142
[C.1.4 gecode wrapper.cpp| 148

[C.2 Lisp Wrapper| 156
(C.2.1 gecode-wrapper.lisp[. 156
[C.2.2 gecode-wrapper-ui.lisp| 169

ID_Melodizer source codel 176

[D.1 block.lisp| 176

[D.2 melodizer-csp.lisp| oL 188

[D.3 melodizer-csts.lisp[. oo 195

[D.4 melodizer-utils.lisp| 000000 198

Chapter 1

Introduction

1.1 Context and motivation

Digital revolution began in the latter half of the 20th century. It is not a
secret that, computers, Internet and mobile phone devices became increasingly
common whether we like it or not. Computers not only became an imperative
tool in the work environment but also became widely used for entertainment
purposes. Music was not an exception [13].

Even the most classical composers have to use a computer at some given
point. Whether it is to provide various sounds to work with, print out parts
quickly and neatly, record and polish musical theme, or even for uploading the
final masterpiece [9]. These days, you can even create and "perform" a symphony
without touching a musical instrument. One of the applications of computers
in music is Computer-Assisted Composition (CAC). Our thesis focuses on this
particular field of music informatics that aims at generating scores from computer
programs.

Therefore, the main goal of this master thesis is to provide a tool destined
to assist composers by giving them the computational power of constraint pro-
gramming. The name of this tool as you could have guessed by the name of
the thesis’ title is Melodizer 2.0. This tool succeeds Melodizer implemented by
Damien Sprockeels [28].

Constraint programming is one of the closest paradigms to what would be
considered as the “holy grail of programming" where the only task for the pro-
grammer is to state the problem and the computer will find a solution. For
instance, the composer simply has to state the musical constraints they wants to
include, depending on his preferred genre and compositing style.

Gecodeﬂ a powerful C++ toolkit used to model and solve Constraint Opti-

Thttps://www.gecode.org/doc/6.2.0/reference/index.html

mization Problems, serves as the backbone of Melodizer 2.0 . OpenMusicE] (OM),
developed at IRCAMP] is the visual programming and composition environment
where Melodizer 2.0 is used. Finally, Gil[f| works as the bridge between Gecode
and Lisp that allows us to solve Constraint Optimization Problems in Openmusic.

1.2 Previous work and Melodizer’s main up-
grades

This thesis was built on top of two previously written masters’ thesis. The first
one, written by Baptiste Lapiere, conceived Gil. and provided the Rhythm-Box
tool that, as the name indicates, generates rhythms. The second one, written by
Damien Sprockeels, improved GiL and created Melodizer; a tool that generates
pitch variations with an interactive interface in Openmusic. Therefore, Melodizer
2.0 combines both works in an attempt to generate scores that take into account
both pitch and rhythm constraints. This was a major objective since a brilliant
pitch sequence without a good rhythm can sound dull. And inversely, a catchy
rhythm without pitch won’t make a melodious song. Composers don’t separate
rhythm and pitch. On the contrary, they try to marry them together so as
to express the musical piece they had in their head. It was thus essential for
Melodizer 2.0 to allow composers to specify rhythmic and melodic constraint
simultaneously.

The second major improvement that Melodizer experienced was its new capac-
ity to generate polyphonic themes. In fact, the older version could only originate
simple melodies and was hence exclusive for voice and monophonic instruments
representation. This restricts considerably the amount of different applicable
scenarios. Melodizer 2.0 is considerably more multi-functional. It can represent
polyphonic instruments such as piano and guitar, several monophonic instruments
playing simultaneously, or even a melody accompanied by a harmonic part.

Additionally, a common strategy used by composers is to introduce some
variation in their songs not to bore the listeners with a repetitive sound. This
is why composers like to alternate tempos, moving from a slow-paced melody
to a faster-paced one and inversely. As well as to change from one mode or
key to another. There are many practices producers use to introduce contrast
and surprise to the audience. It was thus crucial that Melodizer 2.0 allowed to
add different musical constraints to different fragments of the song. Thanks to
the Block structure we defined and implemented, the user can couple different
musically constrained segments into a whole masterpiece. To be more precise,
one Block represents a constrained musical segment where its length is decided
by the composer. The developed Blocks take advantage of the visual environment

2http://repmus.ircam.fr/openmusic/home
3https://www.ircam.fr
4https://github.com/sprockeelsd/GiLv2.0

provided by OpenMusic which allows to easily connect “boxes".

Furthermore, when composing for an orchestra, a band or a choir, we have to
combine different instruments and voices. Each of these has its own specificities
(such as its tessitura or whether it is a diatonic or chromatic instrument) that can
be represented by musical constraints. Moreover, a composer could, for example,
consider to integrate to his piece an harmonic part that follows a genre-specific
chord progression, a melody with a given direction and a counter-melody with a
different direction. For this reason, it was important that Melodizer 2.0 could
generate different musical ideas, each with its specific constraints, played simulta-
neously into a whole symphonic piece. Thereby, the introduced Blocks can also
represent musical constrained segments that are going to be played synchronously.

Finally, it was important that the solutions provided were diverse enough.
Depending on pleasant the solution generated by the tool, the composer can
decide what percentage they would like to change from one solution to another.
This is why we chose the Branch-and-Bound exploration strategy. The Branch-
and-Bound allows to add constraints whenever a feasible solution is found. As a
consequence, this exploration strategy not only can be used to generate diverse
solutions but can also recreate more musical scenarios. This exploration strategy
along with some applicable musical scenarios is explained in details in section
2.4.06]

1.3 Implementation procedure

The implementation of Melodizer 2.0 follows the logical cycle path presented
hereinafter:

« First of all, as we explain in detail in chapter [5, we conceived an entire
new model in Gecode that allowed us to state a Constraint Satisfaction
Problem to generate musical polyphonic solutions with the composer’s pitch
and rhythm constraints. Within this framework, we translated the musical
general ruled’] and ideas into mathematical constraints. Furthermore, we
implemented the base structure that allowed block connection to combine
musical phrases to be played sequentially or simultaneously. Also, we
introduced Branch and Bound to generate diverse solutions efficiently.

e Second of all, we introduced our model, all the constraints and Branch and
Bound to GiL, the interface between Gecode and Lisp.

o Third of all, we created an interactive user-friendly interface in OpenMusic
that allows composers to easily choose amongst the implemented musical
constraints, the ones that they would like to incorporate into his theme.
We also developed the Block objects that can eventually be connected to

5Even though rules in music are actually meant to be broken

recreate a structured piece with different constrained parts played together
or successively.

It may seem like a sequential implementation procedure to follow, but it is
crucial to notice that we used the term “cycle", as shown in figure [I.I} Despite
the fact that there is a sequence we must follow, the origin of our ideas did not
necessarily follow these specific steps. If we eventually came up with the idea to
add a button to Melodizer 2.0 that represents a given musical constraint (only
increasing pitch melody, for example); then, in order to implement this, we had
to translate this musical constraint into a mathematical constraint using Gecode.
Next, we had to introduce it to GiLi so as to create the bridge between Gecode
and Lisp, for the button to be finally functional.

Musical
Constraints

Figure 1.1: Implementation cycle

1.4 Playing with Melodizer 2.0 as a composer

Once we had a base model with some musical constraints, it was finally time
for the most expected part: testing Melodizer 2.0 by creating our own music as
shown in chapter |7l This was the most creative part which allowed us to discover
more musical constraints to add and improve the overall interface to provide a
more comfortable user experience. This phase can be pictured with figure [1.2]

|'Gec0 de."'

Musical Composition umN
Constramts

Llsp *&‘__/ GiL
.\-.._ _o";. \'_ _..’"

Figure 1.2: From music creation to Melodizer 2.0 development

1.5 Contributions

1.5.1 System contributions

The system contributions that allowed us to develop Melodizer 2.0 can be
grouped into three categories :

Create a Constraint Optimization Problem with Gecode as a founda-
tion:

¢ A new model that allowed us to generate pitch and rhythmic constrained
polyphonic themes was developed. This model makes it easy to incorporate
different constrained parts throughout the piece in order to surprise the
listener. For these reasons, since arrays can easily be concatenated, and
you can combine two sets with the union operator, we chose integer set
variables arrays to represent the musical partitions. Then, it is also possible
to decide the degree of polyphony by constraining the cardinality of the
sets. This is explained in detail in chapter [5

o The Block structure was defined and implemented (explained in section [5.3]).
Blocks represent constrained parts of the theme. Blocks can be juxtaposed
to create variation throughout the piece. For example, we can use two
different Blocks to pass from a C Major tonality to an E minor. Blocks
can also be superposed to play several instrumental parts, each with its
own constraints, simultaneously. Furthermore, Blocks can be repeated
throughout the piece. For instance, in the classical ragtime song form AA
BB A C, the part A can be represented by a Block which is repeated three
times.

o General, rthythmic and pitch constraints were translated into mathematical
set constraints as explained in section [5.4]

5

By comparing the different search engines provided by Gecode, we concluded
that the branch-and-bound is more performant and multi-functional. It is
thus the exploration strategy used by the Search. As a result, it helped
us to provide more diverse solutions to the users and to represent more
musical scenarios. Refer to section 2.4.6 and 5.6 for more information.

Extend GiL, the interface that allows to use Gecode in Lisp (the
list presented hereunder is explained in details in chapter (4] entirely
dedicated to GiL) :

Previously, Gil. was only used for integer variable problems. Because of
that, we not only added integer set variables and integer set variables arrays
to the library, but we also included the constraint and branching strategies
that are exclusive to set variables.

Alongside, we have also incorporated to GiL the useful constraints for set
variables and set variables arrays enumerated in section [4.2]

We have also broadened the constraint’s catalogue by adding reified con-
straints. This was useful, to constrain only sets that weren’t empty for
example. Reified constraints allows to perform if-clauses on variables in
constraint programming.

We introduced the variable and value selection strategies for set variable
arrays enumerated in section |3.1.5]

As only depth-first-search was accepted by GiL, we had to integrate branch-
and-bound to allow constraint addition whenever a solution is found. This
not only enlarges the achievable musical scenarios but also allows to have
more diversity from one solution to another.

Previously, GiLL would only work on MacOS. To introduce Gil. and thus
Melodizer 2.0 to the Open Source world we also made GiLi Linux compatible.

OpenMusic interface, musical environment for Melodizer 2.0 :

We have created an intuitive interface where the compose can easily state
the characteristics of the desired piece. The different musical constraints
can be selected by using buttons, check-boxes, sliders and list boxes. This
is described in detail in chapter [6]

We have also allowed to connect different Block object boxes throughout
their inlets and outlets to generate a structured piece with different sections,
each with its specificities and own constraints. Many examples are shown
in chapter [7]

We have proposed different exploration options through the search box
object as explained in section [6.2]

1.5.2 Musical contributions

The main musical contributions of Melodizer 2.0 compared to its previous
version are :

e The new faculty of generating polyphonic pieces as shown in section
Contrarily to the previous version that would only generate monophonic
melodies.

o [ts ability to combine both rhythm and pitch constraints. The previous tool
would only present pitch related constraints. This is explained in section

B4 and 671

o The definition and implementation of Block and Search objects that allows
you to structure your piece. The composer can now combine Blocks, each
one with its specific constraints, to be played simultaneously or consecutively.
This opens the door to many new musical scenarios compared to the previous
version where the same constraints were applied to the whole piece. Blocks,
similarly to musical phrases, can be repeated. For instance, in the basic
ternary form ABA, parts A and B can be represented by two different
Blocks and we juxtapose Block A, Block B and then repeat Block A. You
can find more information about blocks in section 5.3

o Melodizer 2.0 guarantees that the solver provides diverse solutions. In fact,
the users can now decide what is the percentage that they would like to
change from one solution to another. This is a big improvement compared
to the previous version of Melodizer that provided solutions where only one
note would change. In order to achieve this, the Branch-and-Bound search
engine was introduced to Melodizer 2.0. This is developed in section [5.6]

We have also produced some musical pieces in order to test Melodizer 2.0.
This also serve as an example for producers that are eager to test our tool. Please
refer to chapter [7] for more information. The introduced scenarios are :

e The first scenario in section is mainly used as a basic example where
it shows what can be done with a single Block representing a chord and a
Search object.

o The second scenario in section [7.2] serves as an example of how two Blocks
can be concatenated to form a chord progression.

o The third scenario in section [7.3] shows how to generate a melody accompa-
nied by a chord progression. This is the first example that combines both
Blocks juxtaposed, to form a chord progression, and Blocks superposed to
simultaneously the melody and chord progression.

e The fourth scenario in section [7.4] illustrates how the 12-bar-blues can be
recreated using the same Block for several parts of the piece.

« The fifth scenario in section recreates a guitar strumming chords.

 The sixth scenario in section [7.6) presents how to generate original solutions
with the help of the Search Block that utilizes Branch-and-Bound.

1.6 Melodizer 2.0 example

In this section we consider the example illustrated in figure [I.3] to give a taste
of how to use Melodizer 2.0 and what it can do. You can find more examples in
chapter [7} In this scenario the composer wants to generate a melody on top of a
chord progression. Figure shows how the Blocks and the Search object should
be connected in the OpenMusic’s patch environment. The Blocks, illustrated
by the boxes that have four inlets and four outlets, represent constrained parts
of the theme. The Blocks can be parts that will be played sequentially such as
the 4 chords Blocks that are passed to the chord progression Block. Or rather,
they can also represent parts that will be played simultaneously as for the chord
progression and the melody Blocks. The Search object (illustrated by the box
that has three inlets and outlets) is in charge of searching the solution of the
Constraint Optimization Problem. Figure presents the solution provided
and figure displays the editor interface of a Block with the available musical
constraints. This example is explained in detail in section [7.3]

Figure 1.3: Patch setup with the Block and Search objects connected

.%.Wr.ﬁ%&ﬁjﬁf. Fﬁi—pﬁﬁﬁtﬁeﬁgp

Duration: 8000 ms

midic 1] Zoom 100 | Staff | G
chord Fontsize 24 @) Approx 1/2

Figure 1.4: Solution provided by the Search object

o
o ® o B

e
|

Figure 1.5: Available musical constraints in the Block’s editor interface

1.7 Roadmap

This thesis covers the following topics :

» Chapter [2[captures the two theoretical frameworks that are used throughout
the entire thesis. The first part of the chapter gives an insight about the three
main pillars of music theory, which are rhythm, melody, and harmony. It
also provides some useful tips that could be used by composers. The second
part of the chapter focuses on Constraint Satisfaction Problem and describes
some useful notions such as constraint propagation, branching heuristics and
exploration algorithms such as Depth-First Search and Branch-and-Bound.

o Chapter |3| describes the two main programming tools that allowed us to
build Melodizer 2.0, namely Gecode and OpenMusic. On the one hand
Gecode, as we already explained, is a powerful C++ toolkit that solves
Constraint Satisfaction Problems. We explain the different types of variables,
constraints, propagators, branching strategies, and search engines supported
by Gecode. On the other hand, OpenMusic is a visual programming
environment for Computer Assisted Composition. We demonstrate which
are the different objects available to represent score sheets and how to
generate them by using midicent lists and rhythm trees. Furthermore, we
explain how to utilize inlets and outlets and describe how the evaluation of
an object is performed, or, in other words, how the class is calling its inner
function and parameters.

o Chapter [4| covers how to bring the constraint solver from Gecode to Lisp
by using the interface GiL.. We reveal how to use GiL. and which features
had to be added to the previous GiL versions done by Baptiste Lapiere and
Damien Sprockeels |10] [28].

o Chapter [5] covers the implementation architecture of Melodizer 2.0 . There
are several points to be explained: the modeling choices, how the musical
constraints were translated to mathematical constraints, how the solver is
exploited; and how the connection of the Blocks and the Search works.

« Chapter [0 serves as a user manual. This is definitely the first chapter that a
composer with little interest in programming should read. It explains what
each button, sliders and other features of the interface do. Moreover, we
provide a detailed explanation on how to interconnect the different modules
and what arguments (such as lists and objects) can be passed as inlets.

o Chapter [7] shows musical composition scenarios with Melodizer 2.0 . We
explain what was the intention of the composer and how did they use
our tool to make his musical idea come true. Again, we recommend for
composers that aren’t computer savvy to read directly chapter [6] as well as
this one.

10

o Chapter [§ summarizes the master’s thesis work and provides some further
improvement ideas that could eventually be added to Melodizer 3.0 .

11

Chapter 2

Theoretical framework

2.1 What is music after all ?

In a video released in 2019 by the media The Daily Wire, the very controversial
American personality Ben Shapiro declared that Rap/Hip-Hop music could in
fact not be considered as music. Whereas, in 2017, two years earlier; according to
a study done by Nielsen Music on trends in the music industry, Hip-Hop/R&B
was the dominant musical genre in the US. This raises a very interesting question:
how can people have such different opinions on whether a certain three-ish minute
sound should be considered as music?

To answer that question, it might be useful to come up with a definition of
music that everyone agrees on. Music is an art that uses sound as a channel
for inducing an emotion to the listener. This definition is correct but also too
broad. Poetry, sound effects in movies or even ASMR both fall within this
definition [[] and they are still not quite like music. Narrowing down the scope of
the definition is actually quite difficult as it will quickly exclude some ancient,
actual or even future musical genres. Still, there seems to be a consensus on three
major components of music, three essential pillars without which a sounding
creation will not stand as "music' : rhythm, melody and harmony.

Rhythm is the involvement of time in music. If we think of time as a one-
dimension line, then rhythm is the set of positions of musical events, that is, notes
and silences, in that timeline. More precisely, rhythm is the relative position in
time of all components of a piece of music.

What melody is to pitch or frequency is quite similar to what rhythm is to
time. Melody is the set of frequencies of notes and interval of frequencies between
those. We can think of the combination of rhythm and melody as a 2-D graph
where the X-axis represents time and the Y-axis the frequency domain. Figure
[2.1] shows what a simple melody could look like in a 2-D space.

! Although saying ASMR is an art is quite a bold statement

12

pitch
[]
[]

time

Figure 2.1: A simple melody in pitch-time space.

Finally, harmony is the relation between frequencies or notes playing together.
Most instruments playing one note will actually play more than one frequency
simultaneously. Those multiple played frequencies harmonize together and shape
the sound that we hear from them. Similarly, when an instrument plays multiple
notes at the same time, those notes will harmonize together.

Now that we understand the three essential pillars of music, it is easy to notice
that every piece of music has different levels of complexity of rhythm, melody and
harmony. Rock music usually has lower rhythmic and harmonic complexity, and
mainly focuses on melody. An EDM E] song will probably have lower rhythmic,
melodic and harmonic complexity than a jazz song. This brings us back to the
initial question of this section : how can people disagree on whether something is
or is not music 7 Well, they will have different tolerance regarding the complexity
needed for something to be considered as music. With all that said, the most
important thing to remember is that music doesn’t need at all to be complex to
move people.

2.2 Music Theory

The concept of music theory can be a bit misleading. Associating the artistic
nature of music with such a scientific, even mathematical idea of a theory may
seem odd. Is music theory considered a set of rules or principles to tell musicians
what to do and not to do when playing music ? Definitely not. Music theory
is a tool, a language that musicians can use to communicate about music. In
this section, we are going to be looking at the basic principles of music theory
through the three pillars of music.

2Electro Dance Music

13

In order to write the Music Theory and Music Composition sections, we were
particularly inspired by :

e The book Théorie de la musique written by Adolphe Danhauser [4] .

o The book Vingt lecons d’harmonie pour comprendre et composer la musique
written by Jean-Louis Foucart [6].

e The book Music theory for dummies written by Michael Pilhofer and Holly
Day [16].

e The book Music composition for dummies written by Scott Jarrett and
Holly Day [9)].

o The solfeggio classes we have had to follow as a complement to our instru-
mental formation.

e Our musical experiences and previously learned lessons by composing on
computer or playing around with our instruments.

2.2.1 Music terminology

Let’s begin by providing some essential music terminology that is used through-
out the rest of this thesis.

Beat : Basic unit of time. One of a series of repeating consistent pulsations.
Following the beat allow to interpret appropriately the intended pace of the song.

Tempo : Rate or speed of the beat of a musical piece generally expressed as
beats per minute (bpm). This unit of measurement is rather self-explanatory,
where 60bpm would mean that a beat lasts one second.

Rhythm : Music’s regular or irregular pattern in time. Indispensable element of
music since rhythm can exist without melody while the inverse is false.

Pitch : Frequency of vibration of a sound. There exist two predominant notations.
The French notation that represents pitches by Do-Re-Mi-Fa-Sol-La-Si. And the
English notation that uses the first alphabetical letters as A-B-C-D-E-F-G. The
relation between both notations is presented in figure [2.2]

Interval : Difference between two musical pitches.
Semitone : Also known as half-step. In Western Music, it is the smallest
interval between two pitches. On a guitar, you can play two pitches one semitone

apart by playing one string and pressing from one fret to the next one . On a
piano, if you play a key and then play the key at the right (or left), either a black

14

French notation Do Re Mi Fa Sol La Si Do

English notation C D E F G A B C

Figure 2.2: English and French notation correspondence

or white key, then you're playing a semitone higher (or lower).
Tone : Also known as whole-step. It corresponds to an interval of two semitones.

MIDI : Is the acronym for Musical Instrument Digital Interface. It is a commu-
nication protocol between virtual instruments, controllers and software. In MIDI,
the middle C or C4 is represented by the value 60, C4# by 61, D4 by 62 and so

on. To increase a note by a semitone, you simply add 1 to its value.

Midicent : Pitch unit measure allowing micro-tonal representation where the
MIDI pitch value is multiplied by one hundred.

Note : Musical notation used to represent the duration and the pitch of a sound.

Note value : Relative duration of a note defined by the note-head and whether
it has a stem or flags/beams. Figure shows an eight note characterized to
have a full note-head, a stem and one flag.

Flag

Stem
Note-head

Figure 2.3: Eighth note

Staff : Five separated parallel lines with four spaces in between upon which
notes drawn.

Score : Musical notation containing staves that can represent a single part for a
solo work or all the parts for an ensemble.

Clef : Symbol found at the beginning of the staff that indicates the pitches of

the notes situated in or in between the staft’s lines. There are two predominant
clefs, the treble clef for pitches higher than the middle C and the bass clef for

15

pitches lower than the middle C.

Rest : Symbol used to represent a time interval of silence, where no note is being
played.

Melody : Also called tune, voice, or line, correspond to a succession of musical
notes and rests.

Octave : Correspond to an interval of twelve semitones. From a C to the next
C there is a separation of 12 semitones or an octave.

Chord : Two or more notes played simultaneously.

Harmony : Notes played simultaneously forming chords and chord progression
that usually accompanies a melody.

Scale : Series of notes in ascending or descending order that presents the pitches
of a key, beginning and ending at the tonic’s key [16].

Measure : Also called bar. In a score, it corresponds to the segment of music
delimited by two bars.

Time signature : Fraction placed at the beginning of the staff determining the
duration of each measure. The numerator indicates the quantity, and the denomi-
nator indicates the note value of the beats of the measure. For example, the most
used time signature 4/4 means that in a measure there are 4 quarter notes as beats.

Key note : Principal and lowest note of the scale in which a piece of music is
set.

Mode : Series of notes into which the octave is divided. The difference between
a scale and a mode is that in the scale the notes are ordered, while the mode can

be seen as the set of possible notes.

Tonality : Organization of a musical piece based on a tonic note (or keynote)
and a mode.

Ties : It connects equally pitched notes so to create one sustained note instead
of two notes separated.

Dotted note : A dotted note is increased by one half of its original duration.
Alterations : Symbols that change the pitch by one semitone. The flat ()

decreases the pitch by one semitone. The sharp (f) increases the pitch by one
semitone. And, the natural () cancels previous alterations.

16

2.2.2 Rhythm

Rhythm can be described by using notes and rests inside measures that have a
time signature and a tempo. It is hence important to understand how to represent
the relative duration of the notes. Figure [2.4] shows the relationship between note
values. As we can observe, one whole note lasts the same as two half notes. One
half note lasts the same as two quarter notes and so on. Figure demonstrates
how the relative duration of rests can be represented. The composers can play
with note values depending on the feeling they want to convey. Many consecutive
notes with a short duration will probably be associated to an animated or frenetic
sensation. While, few long duration notes will likely correspond to a more peaceful
feeling.

o whole note
e ¢ half note
. . . » quarte note

; o . . r . . # eighth note

; ; ; r <+ 4 s 4 s s+ » 4 = + » sixteenthnote

;.E;;%””'%""' ;"'lll‘.éi’;E.'thirty-secondnote

Figure 2.4: Relationship between note values ||

(-
I
@
»
w

G@I,
Pt
&
R
N
N
N
N
N

(-
I
@

1111111111111111

E@I,
Wrpaed
1
1
by
by
by
by
+4
4
+4
+4
4
+4
+4
4

Figure 2.5: Rest values’ respective note value duration

2.2.3 Melody

If you are lacking inspiration when composing, a good way to start would
be to write your melody out of a given scale that can be shaped by suppressing
notes, adding passing notes or repeating notes. It is thus important to know the
main scales used in music. These can be expressed as a list of semitones. For
example, the C major scale in figure can be represented by the list (2 2 1 2
2 2 1). The nth element of the list represents the pitch interval, expressed in

17

semitones, between the nth note and the next note of the scale.

Apart from the major scales, the minor scales are also very important in music.
Figure shows a B natural minor scale (2122 1 2 2). Figure shows a B
harmonic minor scale (2 12 2 1 3 1) where the seventh note of the natural minor
is sharpened. As a rule of thumbs, minor scales express a sad feeling while major
scales express happiness.

0

L=

iR
| 1
108
| NN
-
TN

Figure 2.6: C Major scale

e
ol
il
L 18
§
N
a8
Ll
T

Figure 2.7: B natural minor scale

T

bl
25
| 18
Jun
44
A
-+

s
1l

Figure 2.8: B harmonic minor scale

In the major and minor scales the first note is often referred as the tonic
note, the fifth note as dominant and the fourth as sub-dominant. These are
considered to be the most important notes, it is thus likely that they appear more
frequently in the melody.

2.2.4 Harmony

Chord progressions can be seen as the basis of harmonies. This is why we will
introduce the different chords and then analyze how to combine them in order to
form chord progressions.

Chords

A chord is defined by a root note and a quality that determines the intervals
between the notes. The principal chords are :

18

« Major chords are composed by the root note, the major third (4 semitones
above the root) and the perfect fifth (7 semitones above the root) (figure
2.9al).

e Minor chords are composed by the root note, the minor third (3 semitones
above the root) and the perfect fifth (7 semitones above the root) (figure
2.9b)).

« Augmented chords are composed by the root note, the minor third (4
semitones above the root) and the augmented fourth (8 semitones above

the root) (figure [2.9¢]).

« Diminished chords are composed by the root note, the major third (3
semitones above the root) and the augmented fifth (6 semitones above the

root) (figure [2.9d)).

) o} [7@
A\SV 13 A\\SV H 12 i\\ys: i ” Sar: '\(_V“ Ilb 73
Py o4 e Y S13 PY) f 14 PY) 13
(a) C major chord (b) C minor chord (¢) C augmented (d) C diminished chord
chord

Figure 2.9: Different types of chords with C as a root note [29]

Inversion : Chords can be found in root position, first inversion or second
inversion. Consider the C major example: the root position is the one presented
in figure In the first inversion, the major third will be the lowest note of
the chord as presented in figure While, in the second inversion, the perfect
fifth will be the lowest note of the chord as presented in figure [2.10d

= d—& ==

(a) Root position (b) First inversion (c) Second inver-
sion

Figure 2.10: C major chord inversions

Diatonic chords : The diatonic term means that the notes of the chords
belong to a given key. For instance, the diatonic chords in C Major are only
composed by notes belonging to the C Major scale. Figure 2.11] presents the
diatonic chords in C Major. As we can see, there are as many diatonic chords as
different notes. Each note of the scale is the root note of a diatonic chord and the

19

other two notes correspond to the second and fourth note of the scale that comes
after the root note. For example, the first diatonic chord is composed by the first,
third and fifth notes of the scales. The chords are represented by a roman number
that indicates which note of the scale is the root note. If the number is in capital
letters, it means that it is a major chord. If it is in lower case, it represents a
minor chord. And, if it has a © as superscript, it represents a diminished chord.

= ————

I il il v A% vi vil

Figure 2.11: Diatonic chords in C Major

Chord progression

In order to create pleasant chord progressions, there exists some widely used
tools. For instance, you can create a melodious chord progression with the
diagram showed in figure You can perhaps start from the I chord and try
to find your way back by using any available route. For example, the I-iii-IV-ii-I
can be an acceptable chord progression. This diagram is by no means a rule that
must be followed always. However, it assures you that your chord progression
will sound melodious and natural to the listener [9].

The one chord can be followed by any diatonic chord
1
1
1

v

Figure 2.12: Chord motion in a Major key

2.2.5 Musical Forms to structure your piece

Composers often arrange their pieces by using different musical parts usually
represented by capital letters such as A, B, C, D and so on. This is a common
practice in almost every genre, going from Classical music, to Rock and Pop.
Here are some of the most common musical forms ﬂgﬂ:

20

e One-part form A : Most primitive song structure, it presents slight to no
changes in each successive verse.

e Binary form AB : It consists of two contrasting parts. This form can
also be expanded to AABB.

o Ternary form ABA : In here, B represents the bridge between the two A
parts. It can be expanded to AABBA or AABA.

o Arch form ABCBA : The song starts with a part A then moves to a
part B, then C, then comes back to B to finish with the beginning part A.

« Rondo ABACADA : The song revolves around part A and the parts B,
C and D are tying the parts A of the song.

With the musical forms, we can observe the importance of having Blocks with
different constraints that can be juxtaposed. Chapter [7] provide musical scenarios
where different or same Blocks are juxtaposed.

2.3 Music Composition

It is true that there are no unbreakable rules in music. However, the probability
of creating a pleasant piece of music without following some kind of guidelines is
really low. Throughout history, humans have discovered and learned concepts,
patterns, sets of notes, chord progressions that “work well" and that are free for
musicians to pick without having to discover it all over again. We do not pretend
to give a complete music composition support course. Nevertheless, we are going
to list some of those tips that create a good melody.

2.3.1 Tip 1 : Let the listener rest

Imagine reading a story. If there is nothing happening, you will most probably
become bored and stop reading. Meanwhile, if the story is too packed with action
and does not let you rest, then you will probably lose attention as well. As
a matter of fact, writing music is similar to writing a story. In order to keep
the listener interested, it is a good idea to alternate between action and rest in
your melody. So instead of having evenly distributed notes, try to have different
densities throughout it.

2.3.2 Tip 2 : Tension and release

Similarly to action and rest, a good story should not provoke the same emotion
all along the narration. Building up tension has more sense if it is followed by
some kind of release and vice versa. This tip can apply to rhythm as well as
melody and harmony or even in the arrangement of the song.

21

2.3.3 Tip 3 : Coming back home

A good way to imagine a melody is to see it as an adventure were the further
you get from the fundamental note, the further from home you are. You will
eventually come back home to the fundamental and be ready for a new adventure.
The distance from home and the duration of the adventure provokes different
kinds of feelings to the listener.

2.3.4 Tip 4 : Popular chord progressions

If you are lacking inspiration and can’t come up with anything, you can begin
by considering some of the popular chord progressions that are used in the musical
genre you are willing to compose. To mention some of them, we have the [-IV-V
chord used to write many hits and the 12-bar blues, for example. Once you have
found the popular chord progression that pleases you, you can change it in your
style and start developing the melody that interlaces the best with the harmony.

2.3.5 Tip 5 : Repetition with a twist

Once you have composed a catchy musical phrase, how should you continue
your song ? One widely used technique is to replay the phrase but giving it an
interesting unexpected twist to captivate the audience. This makes the phrase
stick more easily into the listener head and with the introduced twist you don’t
make it sound repetitive. It is also an intelligent way to transition smoothly into
a new musical part.

2.3.6 Tip 6 : Arpeggio

It’s not always sufficient to have a melody accompanied by a chord progression.
In some cases, you can create much more interest by having more than one musical
idea moving in a melodic way. It is therefore not a bad idea to consider instead
of striking the notes of the chords simultaneously playing them in an arpeggio
fashion. This not only allows for the harmonic part to “dialog" with the melodic
part, but it also adds a second layer to play with rhythm.

2.4 Constraint Programming

As we have already mentioned, music can be represented or translated into a
mathematical language. You can picture this by considering the time signature
presented as a fraction, the tempo expressed in beats per minute, or the pitch
represented by its frequency or by its MIDI value.

Likewise, musical composition can be expressed as a Constraint Satisfaction

Problem. For example, where the composer constraints the notes to follow a
given tonality and the rhythm to a certain genre specific thythm. The constraints

22

can also depend on the mood that the composer wants to convey. For instance; if
they wants to transmit happiness, they will probably constraint the notes to be
short, so that the pace of the piece is fast, and to follow a major mode, known to
be the brighter version of its minor counterpart. While, if the composer wants to
express sadness, they will probably constraint the notes to be long and to follow
a minor mode.

It is important to understand that we do not want to replace musician’s
creativity with Constraint Programming. On the contrary, it should be used as
an aid to enhance its inspiration.

2.4.1 Definitions

Constraint programming (CP) is a programming paradigm that aims at
solving combinatorial problems by narrowing down the domains of the variables
that specify it using mathematical constraints. Constraint programming is one
of the closest paradigms to what would be considered as the “holy grail of
programming" where the only task for the programmer is to state the problem
and the computer will find a solution. Does this mean that we only have to focus
on the modeling part and blindly trust Gecode to find a solution? Technically
we could. But if the problem is large, we won’t know if the performance of the
solver is poor because the stated model has too many variables with complex
constraint or simply because we have chosen an inefficient Branching heuristic
or an unsuitable Search engine (these terms are explained in detail later). This
is why we can resume the Constraint programming mantra into the following
equation :

Constraint programming = Model + (Search)

Although the modeling part is considered to be the most important; the search
part that appears in parenthesis implies that it isn’t mandatory to know specific
algorithmic details about how the search tree is computed, how the constraints are
propagated, and how the search engine explores the tree. However, having a solid
foundation understanding how these three aspects work and how they interact is
crucial especially when dealing with complex models with many constraints.

A Constraint Satisfaction Problem (CSP) is an application of Constraint
Programming for solving problems arising in artificial intelligence tasks. A CSP
P =(X,D,C) is a tuple of a set X = {3, j,...} of n variables, D = {D;, D;, ...} a
set of n domains for the variables and a set of constraints C imposing logical, arith-
metic or combinatorial relation on one or more variables of X'. A solution for P is a
set of values {I; }jex s.t. Vj € X, I; € D; that satisfies all the constraints in C [11].

Constraint Optimisation Problem (COP) is a CSP where the quality

of a solution is estimated by an objective function that the algorithm tries to
maximize or minimize.

23

The Search is the organized review of combinations of values for the variables.
The Search Space is the set of all possible combinations or values for all variables.
A search is said to be complete when it reviews the entire search space.

Backtracking Search is a very popular complete search algorithm for con-
straint programming. It organizes the search space as a tree that it runs through
with Depth First Search. Every node of the tree represents a subset of the initial
D = {D;,Dj,...}. Every branch of the tree represents a reduction of domain
for one or more variables. The subset of domains of any node is the updated
set of domain of its parent node with regard to the change in domain that the
branch imposes. The domains are updated so that all the constraints remain true.
The update of the domains due to a change in some other variable’s domain is
called propagation. If after the propagation all the domains are empty, then
the algorithm must backtrack to the parent node and choose another branch [5] |7].

A common way to organize the tree is as a binary tree where the first branch
of a node sets a variable to a certain value in its domain and the second branch
removes it from the domain. Surely, there are other strategies such as removing
half of the domain in the first branch and the other half in the second.

2.4.2 Example 1 : Solving a sudoku

The task of solving a sudoku is an excellent example for understanding the
concepts of constraints, backtracking and propagation. It happens that the way
most humans solve a sudoku is really similar to how a computer does it using
constraint programming. The rules of this very popular American game (and not
Japanese as its name might suggest !) are very simple and probably well-known
by any reader of this text. Still, a quick reminder makes sure that everyone is on
the same page.

The game takes place in a square divided in 9 boxes of equal dimensions,
each of which is also divided in 9 equal squares. There are only 4 rules in this game :

Rule 1. Every square has to be given a number between 1 and 9.
Rule 2. Every row must have distinct numbers.

Rule 3. Every column must have distinct numbers.

Rule 4. Every 3x3 box must have distinct numbers.

The game starts with some of the squares fixed to some values that makes it
more or less difficult for the player to fill in the rest of the squares while respecting
the rules.

As explained earlier, a CSP is defined by a tuple of three sets of variable,

respective domains and constraints. For this problem, we can use a matrix of
variables x; ; with ¢ as row index and j as column index (see Figure 2.13). The

24

T11(21,2|1,3|L1,4|21,5|21,6[L1,7|L1,8|L1,9

T21|T22|T23| %24 |T25|T26|T2,7|T28|%29

T31 |32 T33]|T34|L35|T36|L3,7|L38|L3,9

Tl |T42|Ta3|Taa|Tas|Tae|Ta7|Ta8|Ta9

X51|X52|X5,3|T54|L5,5|L5,6|L5,7 |58 |L5,9

X6,1|%6,2|%6,3|L6,4|26,5|26,6[L6,7|26,8|L6,9

T71|T72| X7 3| X7 4| L75|L76|T7,7|278|T7,9

Tg1|T82| L8 3|L84a|Ls5|T86|Ls,7|T88|L89

L9,1{L9,2|L9,3|L94|L95|L9,6[L9,7|L98|L99

Figure 2.13: Variable distribution for sudoku puzzle

initial domain of these variables would be integers between 1 and 9 for every
variable. The constraints would be distinct rows, columns and boxes. Equations

(2.1), (2.2)), (2.3) and (2.4) show the mathematical definition of the sudoku CSP
[20].

P=(Xx,D,C) (2.1)
X ={zi,li,j eNAL<i,j <0} (2.2)
D={D,;={1,2,...9}i,j eNAL<ij <9} (2.3)
C = {Vi : distinct(row;), ¥y : distinct(column;),Ybox : distinct(box)} (2.4)

Figure shows an instance of a sudoku puzzle. Some of the variables have
been fixed to their initial value. The others still have their domain untouched.
The first intuition one might have when implementing the distinct constraint
for sudoku is to simply remove from the other variables’” domain the value of
all fixed variables from the row, column or box. For instance, variable z;; in
figure would have a domain of {1,2,4,6,7,8}. Propagating this constraint on
every variable would reveal that zg 5 is a 7 as it is the only value remaining in its
domain (figure [2.14b)).

At this point, all variables have more than one value left in their domain.
The computer has to branch on the value of a variable. Let 274 be the selected
variable for branching. Its domain is currently {3, 5, 6}. Let now 5 be the chosen
value for branching (figure Propagating this change in domain leaves {6}
as domain for both xg5 and x9¢, which violates the distinct constraint. The
computer has to backtrack and remove 5 from the domain of x74 which becomes
{3,6}. Let 3 be the chosen value for branching. Then, 3 is removed from zg 5 and
Z96 domain and the program can keep running.

If, in addition to the previous intuition on the distinct constraint implemen-

tation, we fix a variable to a certain value if this value is absent from all other
variables’ domain from the row, column or box, then the very first propagation

25

5 3 9 5 3 9
8 6 8 6
7 7
5 2 9|1 5 2 911
3 9|1 6 3 9|1 6
9 3|2 9 3|2
1 409 1 409
9 68 1 5 9 68|71 5
7 2 1 7 2 1
(a) Initial sudoku puzzle (b) Weak constraint implemen-

tation (1) : Propagation

5 3 9 5 3 9
8 6 8 6
7 7
5 2 9|1 5 2 9|1
3 91 6 3 91 6
9 3| 2 9 3|2
1]s5]4]9 13409
9 68|71 5 9 68|71 5
7 2 1 7 2 1
(c) Weak constraint implemen- (d) Weak constraint implemen-
tation (2) : Branch tation (3) : Backtrack and
branch

Figure 2.14: Sudoku puzzle CSP - Weak constraint propagation

26

5 2 9113

3 911 |6
9 8 3|2
5113|419

91 |68 7|1 5
7 2 91

Figure 2.15: Sudoku puzzle CSP - Strong constraint implementation

gives what you can see on figure [2.15] With this implementation, we avoid wrong
guesses on 74, but also on many other variables.

This example is a good illustration of how significant of an impact can the
implementation of a constraint have on the execution of the algorithm. While
being complete and sound, the first implementation is weaker than its improved
version because of its lack of foresight into what choices of values are doomed
to fail. On the other hand, the second implementation is more computationally
expensive. This is a very typical situation in constraint programming where there
is a trade off to be done between constraint strength and computational price
the propagation is executed.

2.4.3 Constraint Propagation

We already had a quick insight in constraint propagation with the sudoku
example and we concluded that it wasn’t trivial to choose between a weak
constraints propagation and a strong one. A strong propagation prunes more
values from the domain of the variables and it will probably lead to a smaller
search tree. But, at each node of the tree, the propagation is more computationally
expensive. While a weak propagation prunes less values from the domain of the
variables and that will probably lead to a bigger search tree. Yet at each node
of the tree the propagation is less computationally expensive [21]. In order to
illustrate this better, we consider a single line of the sudoku example using the
distinct constraint with the three propagation levels proposed by Gecode (which
are the most known in CP) :

e Value propagation : In the distinct constraint, it naively waits a variable
to be bound in order to prune it from the domain of the other variables.

+ Bound propagation : Achieves bound consistency by mainly considering
the minimal and maximal values of the variables domain during propagation
[3]-

o Domain propagation : Achieves domain consistency, therefore, it is a
stronger propagation than the bound propagation. And that is because

27

when propagating it takes into account all the variables’ domain’s values
and not only its minimum and maximum value.

1.2 3 123 123] 7.809 7.9 7.9
456 2 45 1 45 3
X, X, X, X, X, X5 X, Xg X

Figure 2.16: Sudoku line

We therefore know that domain propagation is stronger than bound propa-
gation, which is stronger than value propagation as well. By stronger we mean
that the constraint propagation prunes more values from the domain of the
variables. If we consider the sudoku line at figure where variables x9, x4 and
x7 are bound, we can observe that the values in red will be pruned by all three
propagators. If we consider the values in black, a decent sudoku player would
notice that x3 and x5 can only take values 4 and 5 which means that we can prune
these values from x; and that z; will be bound to 6. Similarly, since xg and z¢ can
only take values 7 and 9, we can prune these values from x; and that xg will be
bound to 8. Thus, without further information, this sudoku line could have four
possible different solutions. Testing these three types of propagation led to the
following expected results: Firstly, all three propagations pruned the red values
1, 2 and 3, and the naive value propagation could only pruned these three values.
Secondly, the domain propagation, which is the strongest, functioned as a decent
sudoku player that could prune 4 and 5 from z; and 7 and 9 from xg. Thirdly,
bound propagation, since it works mainly with the minimum and maximum values
of the domains, it could prune 4 and 5 from x; but couldn’t prune 7 and 9 from zg.

We can observe in figure that the stronger the propagation applied is,
the smaller the search tree will be. We can also notice that the propagation does
not modify the stated model and thus the same four solutions are found. It could
consequently seem that the propagation should be chosen in a case by case basis
but there are actually some level of propagation that work better with certain
type of constraints. However, we won’t go into details since this topic would be
outside of the scope of this master thesis.

2.4.4 Branching heuristics

The branching is a two step decision that defines the shape and size of the
search tree. In this two step decision, first we have to choose which variable we
are going to branch on and secondly to which values we are going to bound the
variable at each branch [14]. We can observe in figure how some different
branching strategies influences the ramification at a given node and thus forge
the entire tree. We mainly focus on binary trees since they benefit more from
propagation than the n-ary tree as in figure [22].

28

(a) Search tree with (b) Search tree
value propagation with bound prop-
agation

(c) Search tree
with domain
propagation

Figure 2.17: Search tree applying three different propagation levels

It is important to make good branching decisions considering that it may
have a strong impact on the size of the decision tree. This said, there are two
logical branching heuristics for the variable selection and for the value selection.
These are widely used in Constraint programming and it helped us choose a
good branching strategy that reduces the size of the search tree and “provides' a
quickly solution to the search engine. These two heuristics are :

« First-fail for variable selection : If there are no solutions under a node
(failure), we prefer to discover this quickly, not to waste too much time
exploring the subtree under the node [7] [11].

» First-success for value and partition selection : Once a variable x is
selected, if there is a solution under the node, we want to find it as soon
as possible. Therefore, we would want to first inspect the most promising
value v of the domain of x by bounding x to v into the left branch of the
node [11].

Gecode provides many implemented variable selection strategies that the user
only has to introduce, equivalent to a parameter when choosing the search engine.
Some of them follow the first-fail principle such as :

e choosing the variable that has the smallest domain size.

« choosing the variable that has the most propagators (approximated measure
of how much the variable is constrained).

o choosing the variable with the most accumulated failure count.

29

o choosing the variable with the higher propagators to domain size ratio.

/ /

Y \ v N

X=V XFV X=v X>V

(a) Binary branching (b) Binary branching
strategy =~ where we strategy where we split
bound the variable x the domain of x

- ~h

X=V;3 [N X =V,

(c¢) N-ary branching strategy where we bound x to
each value of its domain

Figure 2.18: Search tree ramification with three different branching strategy

We won’t revisit all the variable selection strategies into detail since it would
be outside of the scope of this thesis. However, it is important not to choose a
variable selection proposed by Gecode that goes against the first-fail principle,
they might be there for instructional purpose rather than for actual application
utility.

As far as the value selection is concerned, choosing a strategy that follows the
first-success principle is a more subtle task that requires more specific knowledge
about the problem. As an illustration, if we desire to have a decreasing pitch
melody, where each note is a variable and the variable selection branching strategy
naively branches the notes in the staff from left to right; then, the most promising
value to bound the variables in the left branch is to choose the maximum value of
its domain. Nevertheless, if there isn’t a clear value selection strategy that follows
the first-success principle and we also want the solver to surprise us by generating
original melodies, a simple random value selection strategy would work well.

2.4.5 Exploration and search engines

After having analyzed the different types of propagators: how they prune
values from the variable’s domain at each node of the search tree, and the different

30

branching that defines the shape of the tree, we now tackle the strategy adopted to
explore the tree. We thus present in this section the three search engines proposed
by Gecode: Depth-First Search, Limited Discrepancy Search, and Branch and
Bound.There is also the Large Neighborhood Search (LNS) that inspired us on how
to use Branch and Bound intending to solve the problem of not having solutions
that resemble too much and that only change by one note, as an example. At
each time, we not only discuss strictly about constraint programming aspects but
we also observe the possible advantages and disadvantages of these explorations
with the eyes of a composer. Furthermore, we examine parallel search and under
which scenarios it can be useful or not.

Depth-First Search (DFS)

This is probably the most popular exploration strategy. Firstly it inspects, as
the name indicates, the depth-first left-most leaf node of the tree, and then it
visits all the leaf nodes from left to right as shown in figure [2.19,

Figure 2.19: Depth-First Search of a tree from left-most leaf to right-most leaf

The first issue we have with this search engine is that it can only be used for
a Constraint Satisfaction problem and thus we cannot have an objective function
to maximize or minimize. The second main problem we get as a composer’s
viewpoint, is that if the solver finds a solution, then the next solution the solver
provides to the composer will probably be very similar. For example, if each note
is a variable, it could indeed differ by only one note from one solution to another.

Moreover, if the branching strategy is not optimal and hence the first left

branch does not lead to any solution, then the search engine wastes a lot of time
exploring the left-hand side subtree before exploring the subtree from the right.

31

One interesting tool that we can easily exploit, thanks to Gecode, is the use
of multiple threads for this search engine. This does not only improve search
performance but it also provides more diversity from one solution to the next one.
In fact, the first solution found could eventually not be the left-most one. Note
that parallel search is beneficial in large search trees; in smaller ones it won’t
make much difference compared to the classic DF'S using only one thread.

Limited Discrepancy Search (LDS)
This exploration strategy proceed as follows:

e in its first iteration, the search engine starts as in DF'S with the left-most
node,

 in its second iteration, it visits all the leaf nodes where we arrive by taking
at most one right branch and all the other are left branches,

e in its third iteration, it visits all the leaf nodes where we arrive by taking
at most two right branch and all the other are left branches

and so on [§].

If we consider a perfectly balanced depth three the LDS engine will visit the
nodes as shown in figure [2.20

Iteration 0 Iteration 1

Ay

1] 1 2 3 4

Iteration 2
Q.. Q._ :B _.B _.B
B { -:B { a‘ { -.B.
5 3 7 [3 10 11

Iteration 3

MHAKS

Figure 2.20: Iterations of the Limited Discrepancy Search (8]

As with DF'S, in Gecode, this search engine can only be used for a Constraint
Satisfaction problem and thus we cannot have an objective function to maximize
or minimize. As seen in figure 2.20] the exploration is much less sequential than
the classic DF'S that explores each leaf node from left to right. This has two main
benefits:

32

o The first one is that we have an improvement in terms of diversity in
solutions provided by the solver compared to DFS, as we can observe in

figure [2.20]

o Another advantage of LDS compared to DFS is, that if the first left branch
doesn’t lead to any solutions the engine won’t explore all the left subtree
before exploring the right one since we saw that the exploration was more
dispersed throughout the tree and not as a sequential.

However, the major drawback of the Limited Discrepancy Search is that Gecode
doesn’t provide the use of multiple threads with this search engine.

Large Neighborhood Search (LNS)

We wont get into much details for this exploration strategy since we are
introducing it because it inspired us on how to use Branch-and-Bound to solve
the problem of not having similar solutions. Nevertheless, the algorithm of LNS
proceeds roughly as follows |17] [12]:

1. It finds a first solution S.

2. Randomly relaxes S and searches for a better solution with a search limit.
Relaxing S means to fix some variables to their values in S and then proceed
to find a better solution with the non-fixed variables.

3. Replaces S by the best solution found and repeats step 2.

In the scope of our thesis we prefer to use Branch-and-Bound (BAB) rather
that Large Neighborhood Search (LNS) because it is much more straightforward
to use in Gecode (LNS is considered as meta-search engine in Gecode) and also
because BAB can benefit from the use of multiple threads in Gecode.

2.4.6 Branch-and-Bound (BAB)

Branch and Bound should normally belong to the previous subsection just like
DFS, LDS and LNS. However, due to its special importance detailed hereinafter,
we decided to dedicate an entire subsection for this exploration strategy.

This exploration strategy works similarly as the depth-first search algorithm
(from depth-first left-most leaf to the right-most leaf) with the difference that it
can maximize (or minimize) an objective function. In other words, branch-and-
bound can solve constraint optimization problems while the depth-first search
and limited discrepancy search can only solve constraint satisfaction problems.

To be more specific, the exploration works as the depth first search (same
path order) except that at each time the solver finds a solution, it adds a new
constraint to impose to have an objective function to the next solution found. It
will be smaller in the case of a minimization problem or larger in the case of a

33

maximization problem. [2]. Therefore, the last solution found is the best solution
with a maximum/minimum objective function. Since at each time a solution is
found, a constraint is added and thus more values from the variables domain will
be pruned. Then, the tree explored by BAB is smaller than the tree explored by
DF'S of the analogous problem without an objective function.

This exploration strategy can expand to a broader extent the possible mod-
eling scenarios. For instance, if there are two different instruments that play
at different scales (e.g., two friends where one has a harmonica in the scale of
C and the other one has a harmonica in the scale of A), therefore, the com-
positor would probably like to minimize the dissonance of the two melodies
played simultaneously. Furthermore, another case scenario where the compositor
would need a COP instead of a CSP is if the compositor has a chord progression
played in its root position but it sounds too disjointed. Then, they can opt
to inverse its chords such that the transition is smoother. To do so, us, as
compositors, could indeed minimize the span (maximum pitch minus minimum
pith) of the chord progression. If you have a keyboard by your side (or a MIDI
piano keyboard software [27] as we used for figure [2.21)), you can hear (and also
observe) the difference of playing a C Major followed by a A Minor chord both
played in root position as in figure rather than its much smoother C Ma-
jor in root position followed by a second inverted A Minor chord as in figure

(a) C Major - A Minor played in root (b) C Major in root position - second
position inverted A Minor

Figure 2.21: Making a smoother transition by inverting chords

Moreover, BAB can handle two issues that are more CSP related that DFS
and LDS cannot manage:
The first one is related to the diversity of the solutions provided. Although LDS
gives better solution diversity than DFS, it is still not optimal since we can’t
really control the diversity that the solver provides from one solution to another.
Thanks to the flexibility that Gecode provides with BAB, we can use this search
engine in more manners than a simple minimization/maximization of an objective
function.

34

This said, when a solution is found, we can add as many constraints as we
intend, so we can ask for the solver to have at least a X% of diversity from one
solution to another. We go more into details about the model we use for Melodizer
2.0 in Chapter [5] But it can be useful to have a first glance in the difference
in terms of solution diversification that we can obtain with DFS in figure 2.22]
compared to BAB in figure [2.23] Moreover, this flexibility allows us also to
minimize two objective functions. For example, if we want the least amount of
possible dissonance and the least amount of span in the harmonic part of the piece.

The second issue that BAB can handle is that if we have a CSP, where the
solution space is empty, we could indeed relax the problem so that the solution
space contains some solution vectors. We can do this with BAB by minimizing
the number of constraints that are not satisfied (we tackle this topic more in
details in Chapter [3| with the reified constraints).

i
E

P

e@;aé
¥
bl

460

I /\ /—\
) 2 2

g — : —F —X = ; e \
% % “ﬁ qg | v - ;‘ | 58’ U

Figure 2.22: First four solutions with DF'S where only the circled chords have
changed

el

Figure 2.23: First two solutions imposing diversity with BAB

35

Chapter 3

Tools

In this chapter we explain the main features and the usage of the two most
important tools for the realization of this project, namely Gecode and OpenMusic.
Gecode is an open source C++ toolkit used to develop constraint-based systems
and applications E] and OpenMusic is a visual programming environment designed
to help composers in their work E] If you are more interested in Gecode, section
is for you, if you prefer to read about OpenMusic, you can jump to section
0.2

3.1 Gecode

Gecode T'is an open, free, accessible, and efficient environment responsible
for developing constraint-based systems and applications. It is implemented in
C++ and offers a great deal of powerful and efficiently implemented constraints
[23], branching strategies and search engines. It also allows the programmer to
craft its custom constraints, branching strategies and search engines, which can
be really useful for some uncommon tasks.

Since integer sets are the main foundation for Melodizer’s 2.0 model (posteriorly
explained in section [5.2)), this chapter revolves around set variables, constraints
and branching.

3.1.1 Search Space

In Gecode, CSPs are typically modelled by creating a class extending the Space
class. The Space class serves as a home for variables, propagators(constraints
implementations), branchers and a facultative objective function to determine
a best solution during the search [23]. Once our model is created, we ought to
create a search engine for that model that is responsible for finding the possible
solutions.

9

thttps:/ /www.gecode.org/
Zhttps://openmusic-project.github.io/

36

V)

3.1.2 Variables

Gecode provides four types of variables : integer, boolean, float and set.
The following code lines shows how to declare each of these.

IntVar i(home, -4, 20); // creates an integer variable i
and sets its domain to {-4,..., 20}

BoolVar b(home, 0, 1); // creates a boolean variable b and
sets its domain to {0, 1%}

FloatVar f(home, -1.0, 1.0); // creates a float variable f
and sets its domain to [-1.0 ... 1.0]

SetVar s(home, IntSet::empty, IntSet(1,3), 1, 2); //
creates a set variable s and sets its domain to [{}
{1,2,3}] and its cardinality domain to [1 ... 2].
Therefore, considering the cardinality (set’s size
measure), the actual domain will be [{1} {2} {3} {1,2}
{1,3} {2,3%}]

In these examples, home is the variable pointing to the Space class containing
the whole CSP.

Gecode also provides arrays structures for each type of variable. Thereby, an
array of integer variables can be declared with the following code line.

IntVarArray x(home, 4, -10, 10); // creates an array of 4
integer variables with domain {-10, ..., 10}

Similarly, arrays of sets can be declared with the following code line.

SetVarArray x(home, 10, IntSet::empty, IntSet(1,3), 1, 2);
// creates an array of 10 integer set variables with
domain [{} ... {1,2,3}] and its cardinality domain to [1

2] .

Dynamic arguments arrays

Useful variable array type, that can grow dynamically by adding elements
or whole arrays with the operator “<<” and two arrays can be concatenated by
using the “+” operator. Practical for when we don’t want to fix the size of the
array when creating it as demonstrated in the following lines of code.

SetVarArgs x;

x << SetVar (home, IntSet::empty, IntSet(1,3), 1, 2);

X << SetVar (home, IntSet::empty, IntSet(0,5), 1, 2);

SetVarArgs y;

y << SetVar (home, IntSet::empty, IntSet(0,3), 0, 3);

y << x; // y thus has three integer set variables elements,
the first one with domain[{}...{1,2,3}] and cardinality
[1...2], the second one with domain

[{}...{0,1,2,3,4,5}] and cardinality [1...2] and the
third one domain[{}...{1,2,3}] and cardinality [O0...3]

37

3.1.3 Constraints

Gecode has many sorts of constraints for every type of variable. The following
code lines give a few examples of typical constraints for integer variables.

i rel (home, x, IRT_LE, y); // x < y
rel (home, x, IRT_NQ, 4); // x '= 4
3 dom Chome, x, 2, 12); // 2 <= x <= 12

N

There are also constraints designed for constraining arrays of integers. Here
are a few examples.

1 distinct (home, x); // all values in x are different
nvalues (home, x, IRT EQ, 4); // 4 different values in x

N

Some constraints also create a relation between variables of different types.
For example, the following constrain z (integer variable) to be equal to the number
of elements of x (integer variable array) that are equal to y (integer value).

i count (home, x, y, IRT_EQ, z);

Note that the data type of the arguments passed defines the behavior of the
constraint. If we consider the count() function previously introduced, but instead
of passing an integer y as third variable we pass an array of integers c as follows.

1 count (home, x, c, IRT_EQ, z);// where x is an integer
variable array, c is an array of integers of the same
size of x and z is an integer variable

Then, z is constrained to be equal to how often x; = ¢; . Or, alternatively, in
mathematical notation [21]:

z=#{ie{0,1,..]z| =1} | 2 = ¢}

Gecode also allows a user-friendlier manner to write constraints by including
the MiniModel library header to you program. The first three shown constraints
could be rewritten more comprehensibly as follows.

1 rel(Chome, x < y); // x <y

rel (home, x != 4); // x !'= 4

s rel(Chome, 2 <= x <= 12); // 2 <= x <= 12

rel (home, (2 <= x) && (x <= 12)); // Another form for 2 <=
x and x <= 12

V)

Set constraints

Relation constraints are the mainly functions used to constraint set variables
and set variable arrays, by using the classical set operators and relations presented
in figure [3.1] Again, the arguments you pass to the function define its behavior.
For example,

1 rel (home, x, SOT_INTER, y, SRT_EQ, z);

38

V)

Identifier Relation
SRT EQ Equality (=)
SRT NQ Disequality (#)

SRT_SUB | Subset (C) Identifier Operation

SRT SUP Superset (D) SOT UNION Union (V)
SRT_DISJ | Disjoint (]|) SOT_DUNION | Disjoint union
SRT_CMPL | Complement SOT_INTER | Intersection (N)
SRT LQ Less or Equal (<) SOT MINUS | Difference (\)

SRT LE Less (<)
SRT GQ Greater or equals (>)
SRT GR Greater (>)

Figure 3.1: Operation and relations types on SetVar ||

where x, y and z are set variables, constrains x Ny = z .
rel (home, x, SRT_SUP, y);

Where x and y are set variables, constrains = 2 vy .
rel (home, SOT_UNION, x, y);

Where x is a set variable array and y is a set variable, constrains zo U x; U
U=y

As mentioned before, by adding the Minimodel library header, these three
constraints can be rewritten more comprehensibly as presented hereinafter.

rel (home, x & y == z);// x intersection y equals =z
rel (home, x >= y);// x is a superset of y

s rel (home, setunion(x) == y);// the union of all the sets

V)

variables of the array x is equal to y

Domain constraints, as the name indicates, define the domains of set
variable and set variable arrays as shown below.

dom (home , x, SRT_SUB, 1, 5); // Constrains the domain of x
to be a subset of the set {1, 2, ..., 5}. Note that x
can either be a set variable or a set variable array.

dom (home, x, SRT_SUB, IntSet(1, 5));// Same constraint
differently written.

Cardinality constraints, are also quiet self-explanatory, imposes the number
of elements a set variable can have, as follows.

cardinality (home, x, 2, 4); // Imposes the cardinality of x
to be between 2 and 4. In other words, x must have
minimum two elements and maximum four. Again, x can
either be a set variable or a set variable array.

Notice that the cardinality and domain for set variables and set variable arrays
can also be directly specified in its constructor.

39

Different constrains functions with different arguments can actually express
the same constraint as demonstrated hereunder.

i dom (home, x, SRT_SUB, 1, 5);
> rel C(home, (min(x)>=1) && (max(x)<=5));

Channel constraints can link arrays of booleans, integers and sets variables.
Its conduct can notably differ depending on the arguments passed. This said, we
provide the two most significant examples in the context of our master thesis.

channel (home, x, y);

For two set variable arrays x and y, the channel function posts the constraints :
jexieicy; for 0<i<|z|-1 0<j<|yl—1

This constraint allows us to have a “dual®| variable structure that allows us to
set some constraints more comfortably. In practice, it allows us to represent a
set variable array where each index correspond to a specific time period; the sets
are the pitches being played into another set variable array where each index
correspond to a pitch and the sets are the time periods when this pitch is being
played. A simple example is shown in figure This is explained in more details
in section

{1,2,5} { {2,3}

0 o 02} 2 o o

Figure 3.2: Channel example with two set variables arrays passed as argument

Another interesting behavior of the channel constraint is when a boolean
variable array b and a set array x are passed as arguments as shown below.

1 channel Chome, b, x);

Enforces the constraint

bi=1sicx for 0<i<|b—1

3We put dual inside quote-marks because it is not the correct terminology used in optimization
problems

40

Finally, the element constraint presented hereunder
1 element (home, SOT_UNION,x, y, 2z);
constrains the set variable array x and the set variables y and z as follows
€Y

We have just presented the useful set constraints that were used for the
musical constraints without entering too much into the details. For an exhaustive
explanation on how these constraints functions were used to model the musical
constraints, please refer to section

Reified constraints

Many constraints exist in their reified form where a boolean control variable
is passed as the last variable. This boolean eventually inform us if the constraint
was satisfied or not. For example,

rel (home, x, SRT_SUP, y);
rel (home, x, SRT_SUP, y, b); // fully reified version

V)

the reified version constrain
roy<—b=1

We expand the different types of reification and how their propagation occurs in
section

3.1.4 Propagators

Gecode provides the following propagation levels which are passed as an
optional argument to the constraint functions :

o IPL_VAL to perform value propagation.

o IPL_BND to perform bound propagation.

o IPL_DOM to perform domain propagation.

o IPL_DEF to perform the default propagation.

o IPL_BASIC to optimize the execution performance at the expense of having
a weaker propagation.

o IPL_ADVANCED to optimize the propagation strength at the expense of
the execution performance.

Note that IPL_DEF can be omitted since it is the one performed if we don’t
pass any argument. In addition, we can request two propagation levels. The
particular combination IPL._ BASIC | IPL__ ADVANCED is the most relevant
since we would be requesting both advanced and basic propagation.

41

V]

3.1.5 Branching

Gecode proposes different variable and value selection strategies that are
passed to the function branch() which is in charge of performing the branching. If
we pass a single variable to branch(), then we only need to pass a value selection
strategy as an argument. Whilst, if we pass a variable array to the branch
function, we then need to specify the variable and value selection strategy as
extra arguments. For an n-sized array of integer set variables x, we can consider
the two following fragments of code, which provide the same branching, as an
example.
for(int i =0 ; i<n; i++)

branch (home, x[i], SET_VAL _RND_INC(xr)); // x[i] is a
set variable and thus we only have to pass a value
selection strategy as extra argument

branch (home, x, SET_VAR_NONE(), SET_VAL_RND_INC(r));// x is
an array of set variable and thus we have to pass a
value and a variable selection strategy as extra
argument. In this case the variable selection strategy
simply chooses the first unassigned variable of the
array as in the for loop implemented above

Let’s recall that the branching doesn’t affect the solution set of the problem.
Nevertheless, it affects the tree shape, the execution time to find solutions and
which are the firsts solutions provided.

Variable selection strategy

When choosing our variable selection strategy we should make sure that
it follows the first-fail principle stated in or that at least that it doesn’t
oppose this principle. For example, the SET VAR RND(r) strategy doesn’t
follow the first-fail principle. However, it doesn’t go against this principle and
can actually provide very original rhythmic solutions. We won’t state all the
variable selection strategies proposed by Gecode since many of them go against
the first-fail principle. Let’s thus mention in figure some of the strategies (out
of the 26 proposed by Gecode) that could be reasonable to use.

We won’t dive into a deep comparison analysis of the different variable se-
lection strategies since it would lie outside of the scope of this thesis. However,
we wanted to make a point about the importance of choosing a reasonable
variable selection strategy. And not choosing an inadequate strategy such as
SET VAR _DEGREE_SIZE MIN() where the branching would first be per-
formed in variables that are less constrained and with a large domain. Which
would imply a time-consuming execution to find solutions.

42

SET_VAR_NONE() first unassigned

SET_VAR_RND(r) randomly
SET_VAR_DEGREE_MAX() most number of propagators depending
on the variable
SET VAR AFC_MAX() largest accumulated failure count of all
propagators depending on the variable
SET_VAR_ACTION_MAX() variables whose domain were pruned more often
SET_VAR_SIZE_MIN() smallest unknown set

SET_ VAR_DEGREE_SIZE MAX() largest number of propagators depending on
the variable divided by domain’s size

SET VAR AFC_SIZE MAX() largest accumulated failure count divided by
domain’s size

SET_VAR_ACTION_SIZE MAX() variables whose domain were pruned more often
by their domain’s size

Figure 3.3: Set variable selection strategies [22]

SET_VAL_RND_INC(r) include random element
SET_VAL_RND_EXC(r) exclude random element

Figure 3.4: Set value selection strategies [22]

Value selection strategy

Once we have decided which variable selection strategy to use, choosing a
value selection strategy that follows the first-success principle is a significantly
more subtle task that requires both a broader knowledge of the problem’s con-
straints and of the selected variable selection strategy. For instance, if we want
an increasing pitch melody and that we have a naive variable selection strategy
where we branch from the left-hand side of the musical staff to its right-hand
side, then a value selection strategy that follows the first-success principle would
be to choose the smallest value of the domain as the value for the left branch.
However, if we choose a more performant variable selection strategy such as to
branch on the most constrained variable compared to its domain’s size, then
choosing a value selection strategy that follows the first-success principle becomes
more complicated.

Hence, since choosing a value selection strategy that follows the first-success
principle is a complex exercise for our model, we decided to employ the random
set value selection proposed by Gecode. Its main advantage is that it provides
more original and thus inspiring score solutions to the composer. Gecode gives
the two random set value selection presented in figure [3.4]

If we want the first musical scores provided by the solver to be fuller, usually as-

sociated to a more fast chaotic pace sensation, we use SET__VAL_RND_ INC(r).
Conversely, if we want the first musical scores provided by the solver to be

43

V]

emptier, usually associated to a more slow peaceful pace sensation, we use

SET_VAL_RND_EXC(r).

We would like to reiterate that the chosen branching heuristic won’t change
the solution set, but it definitely influences the order in which solutions are
presented. If there are hundreds or even thousands of solutions, the users of
Melodizer 2.0 won'’t revisit all of them but only the first proposed ones. Therefore,
branching should not be neglected.

3.1.6 Search

In figure [3.5] we can observe Gecode’s proposed search engines. The theory
behind each search engine has already been covered in section . We have
decided to use branch-and-bound for two reasons. Firstly, the possibility to
maximize or minimize an objective function allowed us to recreate more musical
scenarios. Secondly, the flexibility of the constraint() function provided by Gecode
allowed us to do much more than simply maximizing or minimizing an objective
function. It allowed us to provide different solutions to the composer contrarily
to DFS that provided us solutions where only one note changed.

‘ engine | shortcut | exploration | best solution | parallel |
DFS dfs depth-first left-most v
LDS lds limited discrepancy
BAB bab branch-and-bound v v

Figure 3.5: Available search engines in Gecode [25]

Search options

Search options are passed as an argument to the selected search engines. These
can include : the number of solutions solicited, the maximum acceptable execution
time before stopping the search, the maximum number of explored nodes to stop
the search and the number of threads between others. In the following lines of
code, we demonstrate an example of how to instruct the branch-and-bound search
engine to look for the first ten solutions by using four threads.

SizeOptions opt("Problem"); // option object created
opt.solutions (10); // first ten solutions
opt.threads (4); // four threads solicited
Script::run<Problem ,BAB,SizeOptions>(opt); // solve the
problem modelled with BAB and the specified options

44

3.2 OpenMusic

OpenMusic (OM) is a visual programming language, based on Common Lisp
and CLOS[] designed for music composition [18]. Since OM is a musical extension
of Lisp (abbreviation of List processing), you might expect to have parenthesized
lists with many parenthesized sub-lists inside, in order to represent rhythms or
chords progressions, for example.

When OM is launched a workspace and a Lisp listener are opened. The
workspace is the main interface which can contain maquettes, lisp functions and
patches. The Lisp listener shows the results of program evaluations and error
messages, among others. Most of the visual programming is done inside the
patch editor, which opens by double clicking on the patch icon [18]. Patches can
communicate between them through their respective inputs and outputs.

3.2.1 Boxes within Patches

Boxes are the main components of patches. Boxes communicate between them
through their respective inlets and outlets. A given box receives information
through its inlets which are represented by blue dots on top of the box; then it
transfers information through its inlets which are represented by blue dots on the
bottom part of the box. Notice that boxes can have multiple inlets and outlets
and that the type of information they receive and transfer depends from box to
box, inlet to inlet and outlet to outlet. To connect two boxes simply click the
outlet of a box and drag the line into the inlet of another box.

Data boxes represent primitive Lisp types, such as integers, floats, lists or
strings. They do not have inlets and have only one outlet that transfers its value.

Function boxes works exactly like programming functions where we pass the
arguments through the inlets and the returned values are communicated through
the outlets. Note that the output of a function box can depend of the inlets’
arguments type. For instance, if we attach two integers to the multiplication
function of figure [3.6] the output that the outlet communicates will be an integer
equals to the product of the two arguments. Whereas, if we pass an integer and
a list of integers to the multiplication function, it returns a list of same length
where each element correspond to the product of the integer argument times
element at the same index of the argument list.

Object boxes produce instances of objects which are represented by classes,
an important concept deriving from object-oriented programming. The first inlet
and outlet reference the object itself, while the other inlets and outlets act as

4subset of Common Lisp dealing with object-oriented programming

45

setters and getters respectively.

Figure provides an example of the OpenMusic environment and how we
can connect objects, functions and data boxes through their inlets and outlets.
We can observe how the text box only serves to take a peek into the list that is
passed from the “mktree” function’s outlet to the voice object’s second inlet.

Data Box : list Data Box : list
(1/8 1/8 1/8 1/8 1/4 1/2 1/4 1/2) | [(4a4)] [te0(s26563) (6064)6560626460) | [100| Data Box : integer
! |
’ mktree function LI M .
mktree) 4 OM Multiplication function
Text-box f

1]
[C (@) (1) a1 11))([(44) (1.0 12) ‘

| ! Inlets

Voice Object

VOICE

¢ “ ¢ © ¢ © Outlets

Figure 3.6: Example of the patch environment where data, functions and object
boxes are connected

We won’t explain all the features of OM nor explain OM in detail since there
is already a complete documentation . However, we look through the objects
and functions that we considered to be relevant for the use of Melodizer 2.0 . If
you have any doubts about the OM patch environment you can visit the OM
documentation. Or, you can also type SHIFT+CTRL+H or click “Help->Editor
Command Keys” for a window to pop with all the commands that might be
useful as shown in figure [3.7]

3.2.2 How to represent score sheets in OM

Score boxes are a group of objects used to represent notes, chords and
partitions. These objects can be instantiated by connecting data boxes through
the inlets or by using its editor (double-click on the box) where you can modify
and play the score. Figure |3.8 shows the different score objects proposed by OM.

Figure [3.9 presents the hierarchy of score objects. Multiple notes compose
a chord as shown in figure [3.10] as well as a chord-seq and voice objects as

illustrated in figure [3.11] and Multiple voice objects compose a poly object

46

Move E add comment box
I§|+ Move faster Change Color

Delete |E| Change Font Style

E eval E Align

m lock or change eval mode Button m relnitialize size

E E addiremove One optional input m relnitialize value
+ addiremove Al optional inputs E showihide Miniview

m m addiremove Keyword inputs E showihide all Miniviews
E ‘show Documentation E showrhide Name

Edit lisp code E internalize patch Abstraction
‘ouput lisp expression in listener m activate/switch bg picture
m show Tutorial patch E @ encapsulationide-encap.
m reactive box onloff Play | Pause

m add function or class m E Play | Stop

Figure 3.7: Useful OM patch’s command keys

m Functions Windows Help

| Kernel >
Basic Tools >

NOTE
Midi > CHORD
Audio > CHORD-SEQ
Constraints > MULTI-SEQ
MathTools 3 VOICE
OMChroma » POLY
Libraries > Extras b
User >

Figure 3.8: Different score objects proposed by OM

as demonstrated in figure [3.13]and multiple chord-seq objects compose a multi-seq
object as illustrated in figure

Notice that in figure we could have rather attached this (6000 6400 6700)
MIDICENT list to the corresponding inlet and it would have given the same
chord. Similarly, for the examples in figures [3.11) and [3.12 we could have attached

this ((6200 6500 6900) (6700 7100 7400) (6000 6400 6700)) list with MIDICENT
sub-lists, representing a chord progression, to the corresponding inlets instead.

multi-seq poly

1 voice
chord-seq ‘1*

Figure 3.9: Score objects hierarchy

47

CHORD : C Major
€ © © &6 ¢ ¢©

Figure 3.10: C Major chord made of C, E and G notes

e e o o o o
9 Y. — x x x

¥ ? = % = =

T & © © T T
CHORD : D minor CHORD : G Major CHORD : C Major
T [T o © 0 L‘u T © 0 [. T ¢ © ©

e .
Lisp
list

CHORD : D minor CHORD : G Major CHORD : C Major
0 0 T 3

o . o o o o o o {
. |
o . I o o o
Jow
* ry 2 3

i £

CHORD-SEQ : Jazz the Cat _ii - V - 1 progression in Cmajor
0 < g T G O g
VOICE : Jazz the Cat ii - V - 1 progression in C Major
© 3 0 <

T 3

Figure 3.11: Chord-seq object represent-_)))
ing Figure 3.12: Voice object representing

the Jazz Cat ii - V - I progression in Cthe.JaZZ Cat ii - V - I progression in C
Major Major

48

X
I Jow p I
0 ot ol @ > : 0 : 2
7 E vt py —f > T 7 " T t T T T
%_"""H_“’_H_’_“H'""_'—‘—'_‘_"_-.”” o r=r«j # S ™ Y | == T
=== = T T T - - F - .
VOICE : Counter-Melody VOICE : Harmonic part
VOICE : Melody 7] © © 3 © © 7 © ©
C © © © C C
L & e
Lisp
list
. Ll
Jew
L.\ . : 3
7 r T—— i . e
Sy
=== = T T T
Joe
f
7 " = t
S — T t
% e — : . = +
- - e - <=
Jow

POLY : Whole piece

Figure 3.13: Poly object representing a piece made of a melody, a counter-melody
and an harmonic part each represented by a voice object

X
™
Ty
™
"

r C 3 € 3 © ©]
] [] L]] L") [°]] L °]
X
0
2 T T
% T T T T > T T T
T —" T T T o T
- bl - - - -

CHORD-SEQ : Counter-Melody
r) © © © © c ©
<

e) P P P P e
X

5 = ¥

CHORD-SEQ : Harmonic part

[2 © C < © [() [
LISP
list
[
]]

He
™
He

B
T
Y
Y
T
T
T

e
L
L 18
y
I
L
L
I
L
N
L

g 3 $

MULTI-SEQ : Whole piece

Figure 3.14: Multi-seq object representing the same piece as in figure piece
but the melody, the counter-melody and the harmonic part are now represented
by a chord-seq objects.

49

Rhythm tree is a list that represents a rhythmic structure. It is mainly

used for voice objects. The first element is the total number of measures that the
rhythm has, but if there is an interrogation mark “?” it is OM’s task to compute
it. The second element is a list that contains as many sub-lists as measures.
Each sub-list represents a bar and also has two sub-list as elements. The first
one indicates the time signature while the second one represents the rhythmic
proportion of the bar.
The rhythmic proportion’s size list indicates how many notes and rests we have
where the length of each note depends on its value accordingly to the total sum of
the bar. Note that equal proportional structures, such as (1 2 1), (4 8 4) and (30
60 30), produce the same rhythmic result. There can be groups of notes that are
again represented by a sub-list of two elements where the first one indicates the
length duration of the group and the second is a sub-list indicating the rhythmic
proportion of the group. Positive values represent notes, negative values represent
rests and values followed by a “.0” are tied to the previous note. Let’s observe
figure’s [3.15| example to have a better understanding.

In practice, it can be a little overwhelming to use as many sub-lists since you

can easily get lost amongst this jungle of parenthesis. This is why you can easily
generate rhythmic trees with the box function “mktree” as shown in figure [3.6]

Time signatures Rhythmic proportions

Jeo 11 2 101

. = % =
(2((‘(44)(1-12))"((44)(1-012))‘)) £ : SRS S s

v)\ Y ! L

First measure Second measure ! !
First measure Second measure
Number of measures
(a) Rhythm tree (b) Resulting voice object

Figure 3.15: Rhythm tree example

Voice and chord-seq objects

Let’s begin by presenting the differences between chord-seq and voice objects
and compare their main advantages. Voice objects can be instantiate by con-
necting a rhythm tree to the second inlet and a MIDICENT list into the third
inlet for the pitch related part. While, chord-seq objects can be instantiate by
connecting a MIDICENT list into the second inlet; the third inlet is used for
specifying at what time expressed in milliseconds the note or chord starts to be
played and its duration (also expressed in milliseconds) is specified through the
fourth inlet.

20

It can thus be seen that voice objects respect classical score sheets representa-
tion as introduced in which explains theoretically rhythm principles. Voice
objects are thus preferred by instrument performers and by composers that are
very comfortable with Music theory. While, on the other hand, chord-seq are more
familiar to composers that are used to music creation softwares. Furthermore, it

is significantly more intuitive to employ chord-seq with the variable structure of
Melodizer 2.0 introduced in 5.2 .

Notice that chord-seq and voice objects can also be edited by double-clicking
on its box and then using the editor’s available commands shown in figures [3.16|
and We won’t dive into details since the interface is pretty intuitive to
use. To prove this with an example, you can change the pitch of a note or chord
by selecting it with your mouse and dragging it up or down. Similarly, in the
chord-seq object, you can change the beginning time that a note or chord is
played by selecting it with your mouse and dragging it left or right. Furthermore,
there is an entire section of the OM’s documentation dedicated to Score objects
[19].

e G IEI showHide crid + N AddNote/Chord/Measure IE‘ Change Color
: Detete Setection E] it o step 4_ Delete Selection E Open RT Editor
—1 Change Obj. Mode E] Open Tempo Editor
Change Obj. Mode IEI Adjust Chords/Durs to Grid
Obj/Time Selection E Remove Tempo
EI Obj/Time Selection Change Color E
TransposeSelection IZ‘ Extra Edition Palette
[t 4] Tran i IEI Set Editor Scale
+- Transpose Octave E Set Editor Scale
@4- Transpose Octave E] Set/Remove Tonality
+ Union Pulses m H Set/Remove Tonality
Change Offsets/Dur. E Extra Edition Palette 7]
Iz‘ Break Group (Group Mode) IE Set Voice Name
E Group Chords E] Set Voice Name
Switch Note/Silence E Open Internal Editor
Union Chords (Group + Offset) E Open Internal Chord Editor
Subdivise Pulse IZ‘ Show Channel Color
Show Channel Color space Play/Stop m IE‘
EI IE‘ Tie Selection m Show Selectioninfo
Show Selection info - Stop + Reset
EI @ Untie Selection space Play/Stop

Figure 3.16: Commands for Figure 3.17: Commands for
CHORD-SEQ Editor VOICE Editor

3.2.3 Box evaluation

Once we have visually structured our program by connecting the different
boxes in order to run it, we have to evaluate the desired box by clicking on it
and pressing it. If we don’t evaluate, boxes are set to their default value; as you
can compare between figure [3.18 and its evaluated counterpart [3.6]

When evaluating a box, all the upstream boxes connected directly or indirectly
to the inlets of the box are also evaluated one by one, unless they are locked.
This evaluation chain is performed bottom-up and left to right.

If you edit a voice object, for example through his editor window, and don’t
want to re-evaluate the box and lose your modifications. Then, you should make
sure that the box is locked with a little blue cross on its top-left corner. To lock
and unlock boxes you simply have to click on it and press b.

51

(1/8 1/8 1/8 1/8 1/4 1/2 1/4 1/2) | [(a4)| |(s0(626565) (s064)6560626460) | [100

[r [

<] L% < 7] 7]
Joa
4]
% :S===
L H A
VOICE
e

Figure 3.18: Figure’s example before evaluation

52

Chapter 4
GiL

When trying to build a constraint based musical composition tool into Open-
Music the first challenge is unsurprisingly bringing the constraint solver to Lisp.
This task was done by Baptiste Lapiere |[10jwhen he created the GiL interface
between Lisp and Gecode. We used his work to create our own composition tool,
but we also improved Gil to handle more cases and realize specific task that were
not thought of before.

In this section we give a brief explanation of the functioning of GilL without
going in much details as it was already thoroughly detailed in another master
thesis that the interested reader can find here[l0]. Instead, we focus on the
improvement that were brought to GilL and how you can use it or modify it
yourself.

4.1 How does it work ... briefly

GiL is composed of 4 main files that can easily be divided in 2 distinct parts:
the C wrapper and the Lisp Wrapper. Those two parts are linked thanks to
the “Common Foreign Function Interface (CFFI)”. As its name suggests, this
interface allows us to call function and access variables in another programming
language, in this case C. Figure shows the structure of Gil, each rectangle
represents a file and arrows show the direction of function calls.

4.1.1 Lisp Wrapper

The Lisp wrapper is there to wrap our C library, which is explained just below,
using CFFI. The main part is the definition of the foreign function to link C

gecode-wrapper-ui.lisp == gecode-wrapper.lisp gecode_wrapper.cpp —#| Sspace_wrapper.cpp

Figure 4.1: Gil file structure

53

and Lisp, each foreign function is used to call a specific method of the Gecode
Wrapper. The second part is a simple wrapper to this first part to make the
signature of the function more readable and streamlined, in order to facilitate
the usage of GiLL and make it as similar as possible to using Gecode.

4.1.2 C Wrapper

As said just above CFFI allows us to call C function from Lisp code, but our
constraint solver Gecode is a C++ toolkit so we first had to build a C library
capable of executing Gecode functions while being called from Lisp code.

The C wrapper is also made of two parts: the Gecode Wrapper and the Space
Wrapper. The first one is the C library that used to call the methods from the
Space Wrapper while being called from the Lisp Wrapper explained before. The
second one, contains all the calls to the Gecode functions and the definition of
the WSpace (for wrapper space) class which is the translation of the Gecode’s
space. It also represents a problem and contains all the methods to add variables
and post constraints as well as branching. In order to use WSpace with CFFTI,
that we already know it doesn’t support this kind of data structure, we have to
cast it to a void pointer and inversely cast it back to a WSpace object when we
want to use in the space Wrapper.

Variables are instances of C++ class, so we can not reference them from the
C code as they are not compatible. To overcome this problem, we store them
in vectors. There is one vector per variable type namely IntVar, BoolVar, and
SetVar. When creating a new variable, its index in the vector is returned and is
the value we need to pass when calling a function to post a new constraint.

Constraints are simply called using one or more methods wrapped in the
WSpace.

Search engines are a bit more complex as they have their own wrapper
containing a reference to an existing Gecode search engine. They have to provide
methods to search the next solution which return a new space that holds the
solution to the CSP. Ideally, they should also provide methods to stop the search
and set the options of the search, the number of threads and the timeout, for
example.

4.2 New features

Improving Gil. was not the main objective of this master thesis but it was a
necessary step in order for our music composition tool to achieve all the things
we planned it to. So all the following features were added with a specific usage in
mind. Still, their implementation was made as general as possible to be usable

54

Identifier Relation
SRT EQ Equality (=)
SRT NQ Disequality (#)

SRT_SUB | Subset (C) Identifier Operation

SRT SUP Superset (D) SOT UNION Union (V)
SRT_DISJ | Disjoint (]|) SOT_DUNION | Disjoint union
SRT_CMPL | Complement SOT_INTER | Intersection (N)
SRT_ LQ Less or Equal (<) SOT_MINUS | Difference (\)

SRT LE Less (<)
SRT GQ Greater or equals (>)
SRT GR Greater (>)

Figure 4.2: Operation and relation types on SetVar [24]

by other people in other projects and in a way that makes it easy to develop over
them or add new features without conflicts.

o Linux compatibility E] : Before, this work Gil was only usable on MacOS,
making it inaccessible for an important number of potentially interested
users. In this objective a new compilation method was added to create a
.so file compatible with Linux. The loader file of Melodizer 2.0 used by
Open Music to load the library automatically chooses the correct file to use
depending on the operating system.

o SetVar : GiL was limited to use only a few basic Gecode variable types,
namely IntVar and BoolVar, with their respective arrays variation: Int-
VarArray and BoolVarArray. When dealing with music, this representation
seemed a bit weak as music is usually the combination of multiple tones
playing at the same time and having specific relations between them, which
is hard to represent with the variable types previously cited. The SetVar
variable is used to represent a set of int values which can easily be transferred
to a chord of notes being played at the same time. This new variable type
is the core of the new features that were added, and most of the following
additions were made to allow us to interact more with those SetVars.

e Operation and relation constraints : Two essential constraints to work
with a new variable type. These two constraints, as their name suggests,
allow us to execute operations and ensure some relation between SetVars.
In figure is located the list of possible relation types and operations
on SetVar along with their Gecode variable names that can also be used
through GiL.

o Cardinality constraint : It constrains the size of the domain of a SetVar.
Given a SetVar x and two integer i and j, the constraint ensures that the

'the compatibility was only tested on Debian distribution

95

domain size is larger or equal to i and smaller or equal to j.

i <z <j (4.1)

Domain constraint : It is very similar to the relation constraint but instead
of having a relation between two SetVars, we have a relation between a
SetVar and a domain that can be represented in many ways. The two ways
of representing a domain in the domain constraint we have added to GiL
are :

1. a full domain represented by its lower and upper bound. For a SetVar
x, a relation r and a domain with bound i and j we constrain that :

o~ {i) (4.2)

2. a domain represented by a SetVar. For two SetVars x and d we can
constrain domain of x according to domain of d.

Using a SetVar in the domain constraint can seem surprising as we have
just written that the relation constraint can do that. Yet, constraining
two SetVar using the domain constraint actually creates between them a
superset /subset relation in a more efficient and easy way to use than the
relation constraint.

Empty constraint : This constraint directly inherits from the domain
constraint but in the specific case in which we want the domain of a SetVar
to be empty. For a SetVar x we ensure that :

z=1 (4.3)

Channel constraint : This constraint creates a channel between two
arrays of SetVars. For two arrays of SetVars x and d, it ensures that if i is
an element of the domain of the SetVar at index j in x, then j is an element
of the SetVar at index i in d.

JET, = 1€d; (4.4)

Minimum and Maximum constraint : They create a new IntVar
constrained to the minimum/maximum value of a SetVar. For a SetVar s
and an IntVar x, they ensure that x is the minimal /maximal element of s,
and therefore that s is not empty.

Reification : This was added as optional to multiple constraints. Reifi-
cation is a way to control the validity of a constraint through the use of a
boolean variable. For example, the following constraint posts that the int
variable x should be equal to the int variable y.

. rel(home, x, IRT_EQ, y);

26

Reification mode identifier | propagation
Equivalence (full) | RM_EQV | b=1<4c¢
Implication RM ITMP| b=1<+c¢c
inverse implication | RM_PMI | b=1—c¢

Figure 4.3: Reification modes with their propagation’s direction [21]

Next is the reified version of this constraint with the boolean variable b

rel (home, x, IRT_EQ, y, b);
The propagation associated to this constraint function as follows :

1. if b is assigned to 1, the constraint x = y is propagated.
2. if b is assigned to 0, the constraint x # y is propagated.
3. if x = y holds, b = 1 is propagated.
4. if z # y holds, b = 0 is propagated.

In this case we are presenting full reification, however, half of it was also
added to Gil.. The implication reification only propagates according to 1.
and 4. . While inverse implication reification only propagates according
to 2. and 3. . Figure [£.3] presents a list of the various possible modes for
reification and how they modify the propagation of a constraint c.

BAB search constraint : Branch and bound was already present in Gil,
but it was not possible yet to add new constraint after finding a solution to
influence the next solution found, in other words using the BAB search was
equivalent to using a DFS. The constrain function, which is called every
time the user request the next solution was implemented into Gil the same
way as a new constraint. It takes as argument the space of the previous best
solution and is executed in the space of the next solution. For the moment,
this function ensures that a certain percentage of the next solution is differ-
ent from the previous one as explained in section [5.6] Below is the code in
Gil for this constrain function with the current constraints used in Melodizer.

1 void WSpace::constrain(const Space& _b) {
2 const WSpace& b = static_cast<const WSpace&>(_b);
//getting variables of the previous solution

4 SetVarArgs bvars(b.var_sol_size);
: for(int i = 0; i < b.var_sol _size; i++)
6 bvars[i] = (b.set_vars) .at((b.

solution variable_ indexes) [i]);
7 //getting variables for the next solution

8 SetVarArgs vars(b.var_sol_size);
0 for(int 1 = 0; i < b.var_sol_size; i++)
10 vars[i] = (set_vars) .at((b.

solution_variable_indexes) [i]);

o7

1
2

3

!

11 //Constraints on the variables, should be modified
according to the use

12 for (int i=0; i<b.var_sol _size; i++){

13 if ((rand () %100)< b.percent_diff){

14 SetVar tmp(bvars[i]);

15 rel (xthis, (tmp!=IntSet::empty) >> (vars/[i]
= tmp));

16 }

17 }

As seen in the code above we use solution_variable__indexes to specify on
which variables the constrain function should add constraints. This is neces-
sary as the variables in Gil are stored in arrays without information on their
uses and in most applications we don’t want to apply the constrain function
on all the variables. The variables to be used in the constrain function can
be specified through the g-specify-sol-variables (sp vids) method.

4.3 How to use GiL

In this section we show the usage of GiLi through an example comparing how
to solve a problem in C++ using Gecode and in Lisp using GiL. The problem we
are trying to solve is finding correct Golomb rulers of a specific size. A Golomb
ruler is a set of marks at integer positions along a ruler such that there are no
pairs of marks that are at the same distance apart. You can find in listing [4.1]
the C4++ implementation which was taken from the official Gecode examplesﬂ
and slightly modified, and in listing the lisp code. In this example, we have
a distinct constraint on an IntVarArray and multiple operations and relations
on IntVar. The branching strategy we use selects the first unassigned value and
the smallest value of the domain first. We then use a depth first search engine to
find the solutions.

class GolombRuler : public IntMinimizeScript {
protected:
IntVarArray m;
public:
GolombRuler (const SizeOptions& opt)
IntMinimizeScript (opt),
m(*xthis,opt.size(),0,(1 << (opt.size()-1))-1) {

// Assume first mark to be zero
rel (xthis, m[0], IRT_EQ, O0);

// Order marks
rel (xthis, m, IRT_LE);

Zhttps://www.gecode.org/doc/6.2.0 /reference/classGolombRuler.html

o8

// Number of marks and differences
const int n = m.size();
const int n_d = (n*n-n)/2;

// Array of differences
IntVarArgs d(xthis, n_d, 0, (1 << (m.size()-1))-1);

// Setup difference constraints
for (int k=0, i=0; i<mn-1; i++)
for (int j=i+1; j<n; j++, k++)
// dlk] is m[jl-m[i] and must be at least sum of

first j-i integers

rel (xthis, d[k] = expr(xthis, m[jl-m[i]),
IRT_GQ, (j-i)*(j-i+1)/2);

distinct (xthis, d);
// Symmetry breaking
if (n > 2)
rel (xthis, d[0], IRT_LE, d[n_d-11);

branch(*this, m, INT_VAR_NONE(), INT_VAL_MINQ));

Code that doesn’t help comparing Gecode and GiL

int main(int argc, charx*x argv[]) {
SizeOptions opt("GolombRuler");
opt.solutions (0);
opt.size (10);
opt.parse (argc,argv) ;
if (opt.size() > 0)
IntMinimizeScript::run<GolombRuler ,DFS,Size0Options>(opt
)

return O;

Listing 4.1: Golomb ruler using C++

(defun golomb-ruler (size)

(let ((sp (gil::new-space))
m d se sopts size-d k)
; initializing the IntVarArray
(setq m (gil::add-int-var-array sp size O
(- (expt 2 (- size 1)) 1)))

; Assuming first mark to be =zero
(gil::g-rel sp (nth 0 m) gil::IRT_EQ O0)

39

39

10

41

; Order marks
(gil::g-rel sp m gil::IRT_LE nil)

; Number of differences
(setf size-d (/ (- (x size size) size) 2))

; array of differences
(setq d (gil::add-int-var-array sp size-d O
(- (expt 2 (- size 1)) 1)))

; Setup difference constraints
(setf k 0)
(loop :for i :from O :below (- size 1) :by 1 :do
(loop :for j :from (+ i 1) :below size :by 1
do
(progn
(gil::g-linear sp ’(1 -1) (list (nth j
m) (nth i m))
gil::IRT_EQ (nth k d))
(gil::g-rel sp (nth k d)
gil::IRT_GQ (x (- j i) (/ C + (- j i)
1 2)))
(setf k (+ k 1)))))

(gil::g-distinct sp d)

; Symmetry breaking
(if (> size 2)
(gil::g-rel sp (nth 0 d) gil::IRT_LE (nth (-
size-d 1) d)))

(gil::g-branch sp m gil::INT_VAR_NONE gil::
INT_VAL_MIN)

(setq sopts (gil::search-opts))
(gil::init-search-opts sopts)

(setq se (gil::search-engine sp (gil::opts sopts)
gil::DFS))
(list se m sopts)))

(defun search-next-golomb-ruler (1)

(let ((se (first 1)) (mark* (second 1)) (sopts (third 1
)) sol marks)
(setq sol (gil::search-next se))
(if (null sol)
(error "No more solution"))

60

(setq marks (gil::g-values sol markx*))))
Listing 4.2: Golomb ruler using GiLi

4.4 How to improve GiL yourself

Gil is open source and any improvements are most welcome. If you feel like
adding some constraints or more, here is the procedure to follow:

To add to GiLL you first have to get the source code ﬂ then you can wrap
your gecode code in the space wrapper.cpp file. Most usage only requires you to
wrap your code in a single C++ function. However, some special addition, like a
complete search engine, needs to be wrapped using a class. After that, you have to
create one or more functions in the gecode wrapper.cpp file to call the functions
you have just created in the space wrapper. Don’t forget to complete the headers
files with the signature of all the functions you created in the corresponding files.

Now we are going to write some Lisp. Head to the gecodewrapper.lisp file and
call the C function you’ve just created using CFFI. Also, add more user friendly
call to those lisp function in the gecodewrapperui.lisp file and all the coding is done.

Now head to the C++ folder where lies the make-file that helps you compile
your new Gil version. Open a terminal and, depending on your OS, execute make
so if you are using Linux or make dylib if you are on MacOS. Now everything
should be setup. Note that if you compile Gil on Linux and switch to MacOS
you will have to recompile it in order to use it, and reciprocally from MacOS to
Linux.

Shttps://github.com /sprockeelsd/GiLv2.0

61

Chapter 5

Melodizer 2.0

In this chapter is presented the center part of our work, the OpenMusic’
library Melodizer 2.0. The next sections contain information about the new
features of the library, the new structure of variables used, all the available
musical constraints, how the solver works and all of the implementation to it.

5.1 What is Melodizer ?

Melodizer is a tool for musicians to create melodies in the non-traditional way
of describing music with mathematical constraints, rather than regular music
theory. It has been created by Damien Sprockeels and released in January 2022
as a part of his master thesis. It is coded in Common Lisp and runs in Open
Music as an external library. Since its release, we have been developing a new ver-
sion in which we wanted to improve its completeness, its usability and its efficiency.

It is important to understand that we do not want Melodizer to replace musi-
cian’s creativity nor come up with a full masterpiece when launched. Instead, we
like to think of Melodizer as a melody synthesizer with many knobs and buttons
to tweak in search of inspiring results. In fact, the main purpose of the tool is to
amplify the composer’s creativity.

5.1.1 New features

There is a lot of novelty to this version of Melodizer, first off the structure
of the variables has been completely modified, with new a variable type and a
representation that allow to create the rhythm of the melody, more about that in
section New Open Music objects were also added to give more control on
the constraints, and more complexity to the solution. You can find more on this
subject in section As expected new musical constraints are also available,
to give more options of composition, and also to control the rhythm which was
not editable previously, all those constraints are listed and explained in section

62

(.4 Finally a new and improved solving algorithm was implemented, with new
features and more control given to the user, this part is developed in section [5.6

5.2 Variable structure

In this new representation, we decided to use SetVarArrays, instead of Int-
VarArrays, in order to represent multiple notes at the same time. Each entry
of the array is not a note but a specific time (where we discretized the beats).
The size of the arrays depends on how much the composers want to discretize
a measure and how many measures does his melody have. For example, if they
want to have 4 measures and discretize each measure 16 possible notes, then Push
and Pull will be of size 4 x 16 + 1 = 65. We added one extra element to the array
in order to pull all the notes that were played at the end of the array and finish
the piece. At each entry, we can push (start playing) or pull (stop playing) a set
of notes (expressed as MIDI pitches) as in figure [5.1]

o LTI
w LTI

TIME

Figure 5.1: New representation

Hence, it can be seen that with this new representation, pushing chords
and playing several notes at the same time is much easier and intuitive. Let’s
consider the following example where we want to make a 4 bar C-Am-G-G chord
progression with a 1 beat quantification. We just have to constrain the variables
as in figure [5.2] Figure [5.3| provides the score representation of the C-Am-G-G
chord progression.

36 3 3 N
PUSH 40 36 35 35
43 40 38 38
36 33 31 3l
PULL 40 36 35 as
43 40 a8 as

Figure 5.2: C-Am-G-G chord progression example

63

J=GD
23 : ; ;
TN,

e

Figure 5.3: C-Am-G-G chord progression score representation

In this new model, we decided to create some redundant variables that consid-
erably ease the task of modeling some musical constraints. By redundant variables
we mean variables that aren’t independent to Push and Pull variables and thus
that we don’t have to branch on. The principal redundant Set Variable Array is
Playing, a link between Push and Pull, with each entry still being a time and
the value inserted represents a note being played at this specific time, meaning
the note has already been pushed but not pulled yet. Figure [5.4] illustrates the
Playing array of C-Am-G-G chord progression example given at figure [5.2] .

588
558
558
588
588
588
588
588
R
gae
R
gae
gae
gae
g&e
gae

PLAYING

Figure 5.4: C-Am-G-G chord progression example Playing variable

In order for our model to work, we had to impose some structure constraints
such that it had mathematical sense:

« Pull[0] has to be empty. Logical since it’s the beginning of the piece and
we haven’t pushed any keys yet. Pully = ()

o Similarly, Push[end] has to be empty. Pushe,q = ()
o Cannot pull a note that is not being played. Pull; C Playing;

o Cannot push a note that is played and isn’t pulled. Push; N (Playing;_1 —

PushMap and PullMap are also important redundant variable arrays of sets
of integer created using the channel constraint where each entry of the array
corresponds to a pitch and the sets are the times where those pitches are pushed
or pulled as shown in figure [5.5] These arrays are considered as an alternative
approach to represent Push and Pull that help us when modeling some musical
constraints. Figure [5.6] provides the C-Am-G-G chord progression example of
figure 5.2 represented by pushMap and pullMap. Notice how the pushMap and
pullMap representation resemble more to the MIDI Piano representation shown in
figure 5.7, While the Push and Pull representation resemble more to the classical
music score as illustrated in figure [5.3|

64

pusnttap I:‘

SEEE
e oI IO

0 108

Midi Values

Figure 5.5: Representation of pushMap and pullMap

12 12 | 4
owe [][] T Je]¢]

0 3 32 33 34 3% 36 37 38 39 40 41 42 43 108

omo []-[&] Te] TB13] 8] T3] 1 T+]-[]

0 H 32 33 34 35 38 37 38 39 40 41 42 43 108

12 4
[[8] [[o]~|

0

Midi Values.

Figure 5.6: pushMap and pullMap : C-Am-G-G chord progression example

5.3 Blocks

Blocks are one of the most important new feature of Melodizer 2.0. It was
introduced to allow the creation of more complex and interesting melodies. In
practice, blocks are a new class in Open Music that can be linked together to
mix and juxtapose constraints. The next section gives a detailed explanation of
what are blocks and how they work individually, while the following section goes
over how to connect blocks and what this does.

5.3.1 Block definition

A block is an abstraction that can be used to represent a part or the totality
of a melody of various length using constraints. Before connections every block is
an independent instance of a lisp class with its own set of variables as described
above (push, pull, pushMap, ...) and constraints selected by the user, it therefore
represents a full constraint solving problem that can be individually solved.

In Open Music blocks are embodied by an object with multiple inputs and
outputs which is discussed in the next subsection. Every block object added by
the user are independent before linking and can be used with a search object
(see subsection Solver) to find a solution to a CSP representing a melody.
In order to control the constraints contained in the problem, blocks come with
an interface allowing to add and modify multiple musical constraints listed and
explained in subsection [5.4}

In figure [5.8] is a visual representation of the operation of a simple individual
block, here the rectangle represent a block with its constraints chosen by the user,
the blue squircle represents the CSP contained in the block, this CSP can be

65

Il
11
{If
bl

Figure 5.7: MIDI Piano : C-Am-G-G chord progression example

User constraints

< Search >

Figure 5.8: A simple block structure representation

fed into a search block which takes care of finding solutions. It is important to
understand that the block doesn’t return a fixed melody, but a CSP representing
a melody with a defined length.

5.3.2 Blocks connection

Blocks used individually don’t give much more option than the old Melodizer
implementation, except for the new variety of musical constraints. But as you
might expect blocks actually have much more to offer through the way we can
connect them together. When composing music it is hardly possible to create a
whole piece with every notes bound to the same sets of constraints, it is usually
necessary to apply specific constraints on specific part of a score and individual
voice. All of this is possible by connecting blocks together.

The main principle is that a block, that we will call parent from now on,

can take one or more blocks as input, that we will call children, with a specific
position as seen in figures and When doing so the parent block considers

66

Child block 1 Child block 2 Child block 1 Child block 2

User constraints User constraints User constraints User constraints
Positions Positions \
User constraints | Parent block User constraints | parent block
. [eee—
Figure 5.9: Blocks structure Figure 5.10: Another block structure
representation with juxtaposition representation with superposition
of children constraints of children constraints

the constraint of the child block in addition to its own constraints, this layering
of constraints takes place from the specified position and for the length of the
child block, both can be sets by the composer. using this mechanic in a tree like
structure allow to enforce very specific constraints on precise note of a full piece.
This mechanic help composer to mix various melody or simply put them one after
the other.

In fig|5.9|is a more visual representation of how the interaction between the
blocks work in the same simple example as in figure [5.11] Here a parent block
has two child, each one creating a one bar melody with their own constraints,
the parent block create a 3 bars melody and place the child blocks constraint
respectively at positions 0 and 1 in bar. As seen in the figure [5.9] the final 3 bars
melody is constraint on its whole length by the constraints of the parent block,
but in addition we have the constraints of the first child block on the first bar,
and the constraints of the second child block on the second bar.

This example shows the juxtaposition of the two child blocks constraints and
superposition with the parent block constraints, but some combinations of block
length and positions can lead to superposition of the child blocks in addition
to the superposition with the parent blocks as seen in figure [5.10| where the
first child still create a one bar melody but the second one generate a two bars
melody, creating an overlap between the constraints of the two blocks in the
final CSP. Layering multiple blocks constraints in this fashion is useful to create
different voices in the melody, separating chords, bass and lead for example, while

67

i

r [[
CCJ
£

X append [
ﬂ% I

Figure 5.11: Connection between blocks in Open Music

juxtaposition of constraints as shown previously is more meant to create evolution
throughout the composition, like it is done in classical ragtime with the famous
AA BB A C melody pattern.

To achieve this in practice we constrain that the various variables described
above in the parent block, at the positions specified by the user, have to be a
superset of the same variables in the child block. When doing so we ensure that
the constraint of the child are respected at the specified location and also the con-
straint of the parent block that applies on the whole melody described by the block.

After having build our inheritance tree and specified all our constraints we
need to get a score from all those blocks, in order to do that we have to connect
the root of the tree to a search object, which handles the call to the solver. In
fig is an example of how to connect blocks and the search object with a
parent blocks and two children, more information on how to practically connect
the block is given in chapter [6] User manual.

Voice object input

Sometimes a composer want to add an already existing melody to his piece,
to do that it is possible to use a voice object as an input of a block in addition to
eventual child blocks as they both use different inputs. When using this possibility
the content of the voice object is added to the CSP and is therefore part of the
constraints allowing to more easily create melody or chords to go with an existing
piece of music.

To achieve this in practice we create a fake block in which the variables push

and pull are already set to represent the same melody as the voice object, this
fake block is then considered in the same way a child block would be.

68

5.4 Musical constraints

When opening a block object in Open Music you are met with a lot of button
slider, all modifying various parameters of constraints in the background. In this
section we describe their actions in a more mathematical and computational way,
for information on their musical usage we recommend reading chapter [6] "User
Manual".

Below is the list of all available options sorted as they are in the Open Music
interface, with the constraints they use, their mathematical explanation and a
basic implementation using Gecode. The implementation is shown using Gecode
as it is more compact and easier to read than Lisp using Gil, the implementation
might not seem optimal in some cases as we tried to keep the same idea as the
final implementation used in Melodizer, which is bound to other restriction than
Gecode. Also notes that some small elements like adding one to the size of array
and other equivalent operations have been neglected in the math representation
and shown implementation as they are not important for the understanding of
the constraint and would hide the essential.

5.4.1 Blocks’ general constraints

« Bar length : This option is used to set the total length of the melody
created by the current block. It determines the number of bars of the
melody, each bars containing four beats. The implementation is pretty
straightforward as we simply have to multiply the value of the length
entered by the user (denoted barLength) by a predefined quantification
factor (denoted quant) and use this value as the size of the arrays described
above that represent our score.

| Push| = | Pull| = barLength * quant (5.1)

In Gecode constraint programming this translate to the creation of two set
variable array

1 SetVarArray push(*this, barLength * quant, IntSet::
empty, O, max_pitch);

SetVarArray pull(*this, barLength * quant, IntSet::
empty, O, max_pitch);

N

with the range [0, max_ pitch] being a range of acceptable pitch.

e Voices : Determine the maximum number of notes that can be played at
the same time. To achieve our goal we simply constrain that the cardinality

69

N

V)

of each elements of the playing array should be between 0 and the number
entered by the user (denoted voices).

0 < |playing;| < voices for 0 < i < barLength * quant (5.2)

To do so we use the cardinality constraint of a set variable which enforce the
minimum and maximum number of elements contained by a set variable.

cardinality (xthis, playing, O, voices);

Minimum /maximum pushed notes : Set the minimum and maximum
number of notes that can start playing at the same time. As the push
array represent the time at which we start playing a note, we ensure that
the elements of this array have a cardinality below the maximum value
(denoted MaxPushed) and above the minimum value (denoted minPushed).

minPushed < |Push;| < maxPushed for 0 <1 < barLength * quant

(5.3)
To achieve that using Gecode we have to create an array of int variable
representing the cardinality of each elements of push

IntVarArray notes_array (xthis, barLength * quant, O,
max_pitch);
for(int i = 0; i < barLength * quant; i++)
cardinality (*this, push[i], notes_array[i]);

Once we have this array we can add some relation constraint with reification
to take account of the element of push that should not add any notes and
therefore should keep a cardinality of 0 despite the minimum pushed notes
value.

for(int i = 0; i < barLength * quant; i++){
Boolvar isEmpty (*this, 0, 1);
BoolVar isNotEmpty (*this, 0, 1);
rel (xthis, isEmpty == (notes_arrayl[i] == 0));
rel (xthis, isNotEmpty == (minPushed <= notes_arrayl
i] <= maxPushed));

Minimum/Maximum notes : Determines the total number of notes that
are in the melody at the exit of this block, also counting the notes that were
eventually added by sub blocks. This is helpful to control the total number
of notes or simply to mute a section of the tree in a complex structure. to
do that we have to limits between the minimum value minNotes and the
maximum value maxNotes the sum of the cardinality of every elements of
the push array.

minNotes < X7 ,|push;| < maxNotes for n = barLength * quant
(5.4)

70

In practice we take advantage of the array of cardinality notes_array we
have created just before to get the sum of the cardinality and then use
simple relation constraints.

1 IntVar notes (*xthis, O, barLength * quant *
max_pitch);

rel (xthis, notes
notes_array)));

V)

expr (xthis, sum(

\ rel (xthis, notes >= minNotes) ;
rel (¥xthis, notes <= maxNotes) ;

e Minimum/Maximum added notes : using these options allows to

control the number of notes added by this specific bloc in addition to the
one eventually coming from any sub blocks, if the maximum is set to zero
this block only return notes coming from its sub blocks. To do that we
have to set a maximum and minimum value to the cardinality of the push
variable from this block, which depends on the value selected by the user
and the cardinality of the sub-blocks, but we can’t simply take the sum of
the cardinality of the push variable of the sub blocks as a limit because two
sub blocks can generate the same value adding one to the cardinality of
the final push variable but two to the sum of the cardinalities of the push
variables of the sub blocks. To get around this problem we create a new
variable (pushUnion) which is the union of the push variables of the sub
blocks and use its cardinality plus the minimum or maximum value chosen
as the limits for the considered block push variable cardinality.
Below, in the mathematical representation, subPush; ; represent the element
at index j in the push variable of sub block i, maxAddedNotes is the
maximum number of notes chosen by the user to be added by this block
and minAddedNotes is the minimum number of notes to be added.

pushUnion; = U}' subPush; ;
|pushUnion;| + minAddedNotes < |push;| < |pushUnion;| + maxAddedN otes

¢ n the number of sub blocks
or
0 < j < barLength * quant
(5.5)

The implementation add the allPush variable which contains at index i a
SetVarArray containing all the set at index i in the push variable of each sub
blocks. To create pushUnion we use an union relation over the element of
allPush, we then create an array of cardinality of the elements of pushUnion
to set the constraint using a relation constraints between the cardinality of
each elements of push and the corresponding elements of pushUnion.

1 SetVarArray allPush[barlLength * quant];
> SetVarArray pushUnion (*this, barLength * quant, O,
max_pitch, 0, max_pitch);

71

; IntVarArray pushUnion_card (*this, barLength * quant, O,
127) ;

1 //n is the number of sub blocks

5 for(int j = 0; j < barLength * quant; j++){

6 allPush[j] = new SetVarArray(xthis, n, O, max_pitch
, 0, max_pitch);

7 for(int i = 0; i < n; i++){

8 allPush[j]l[i] = subPush[il[j]

9 }

10 rel (*this, pushUnion[j], SRT_EQ, expr (*this,
setunion(allPush[j1)));

11 cardinality (*this, pushUnion[j], pushUnion_card[j])

12 //Getting cardinality of the push element

13 IntVar pushCard (*this, 0, 127);

14 cardinality (*this, push[j]l, pushCard);

15 rel (xthis, pushUnion_card + minAddedNotes <=
pushCard <= pushUnion_card + maxAddedNotes);

5.4.2 Rhythm constraints

e Minimum note length : Set the minimum length of all the notes being
played. This is done by ensuring that a note appearing at an index i of the
push array does not appear in the pull array before index i + minLength is
reached, minLength being the value chosen by the user.

0 < 7 < minLength

5.6
0 <7 < barLength * quant (56)

Push; N Pully; =0 for {
In order to do that we use a disjoint relation between each push element
and the minLength following pull elements that should not contain the
pushed notes.
for (int i = 0; i <= barLengthx*quant; i++){

for (int j = 1; j < minlength && i+j <= barLengthx*

quant ; j++){

rel (xthis, pull[i+j] || push[il);

V]

I }

5}

« Maximum note length : Set the maximum length of all the notes being
played to a value chosen by the user (denoted maxLength). this is equivalent
to imposing that a note that starts to play at time i, which mean it appears
at index i in the push array, is pulled before time i + maxLength, meaning
it does appear in the pull array before index i + maxLength.

mazxLength

push; € U, pull;y for 0 < i < barLength * quant - maxLength
(5.7)

72

N

To do that we create a set variable containing the union of all the sets
contained in pull from index i to i + maxLength, then we use a relation
constraint to ensure that the set at index i of push is a subset of this union.

for(int i = 0; i < barLength * quant - maxLength; i++){

SetVarArray 1_pull (*this, maxLength, O, max_pitch,
0, max_pitch) ;

SetVar 1_pull _union(*this, 0, max_pitch, O,
max_pitch);

for(int j = 0; j < maxLength; j++){

rel (*this, 1_pull([j] == pullli + jl);

}

rel (*this, SOT_UNION, 1_pull, 1_pull_union);

rel (xthis, push([i], SRT_SUB, 1_pull_union);

Quantification : Select the smallest beat fraction allowed in the melody.
The easy way to do that would be to change the quantification factor (quant)
we have been using in many constraint shown until now, but in doing so
we would lose compatibility between blocks with different quantification
as some variables would represent time that don’t exist in variables with
other quantification. To get around this problem we use the same global
quantification through all the blocks and we enforce the set that are not
on time fraction compatible with the quantification chosen by the user
(denoted userQuant) to be empty.

0 < i < barLength * quant

i mod (userQuant) # 0 (5:8)

Push; = Pull; = for {

In Gecode this is done with a simple empty domain constraint on each set
variables not accepted by the quantification.

for(int i = 0; i < barLength * quant; i++){
if(j % userQuant !'= 0){
dom (*this, push[i], STR_EQ, IntSet::Empty);
dom (*this, pull[i], STR_EQ, IntSet::Empty);

Note repartition : Constrains the distribution of the notes throughout
the measures. The user defines how the note are spread with a distribution
percentage. A 0% constrains to play all the notes simultaneously. Whereas
100% constrains to play the notes as distributed as possible across the
measures.

if (percentDist == 0.0){

73

V)

SetVar unionPush (*this, IntSet::empty, IntSet (0,

bars*quantification), 0O, bars*quantification+1) ;
rel (xthis, SOT_UNION, pushMap, unionPush);
cardinality (*this, unionPush, 1, 1);

5 Yelse{

V)

w

}

int pushEvery = int(minLength/percentDist);
for(int i=0; i<barsx*quantification; i++){
if (i%pushEvery==0){
rel (xthis, cardinality(push[i]) >=1);
}else{
cardinality (xthis, push[i], IRT_EQ, 0);

Rhythm repetition : Forces some rhythm patterns of a length chosen by
the user to be repeated throughout the melody, we consider that the rhythm
is defined by the cardinality of a sequence of set variables, so repeating
rhythm is equivalent to repeating the same sequence of cardinality as much
as needed on the duration of the melody. In this case the user choose a value
of length (denoted len) that represent the length of the rhythm pattern
that will be repeated throughout the melody as described right after.

0<i<len
’PUSM = |pu5hi+(j*l€”)‘ for {1 <j< barLength * quant i (59)

len

In practice we create an array of int variables the same size as push, each
elements being constrained to the cardinality of the push element at the
same index. We then post equality relations between elements of this array
at fixed intervals.

IntVarArray notes_array (*this, barLength * quant, O,

127) ;
for(int i = 0; i < barLength * quant; i++){
cardinality (*this, push[i], notes_array[i]);
for(int i = 0; i < len; i++)A{
for(int j = 1; j < barLength * quant && i + (j *
len) < barLength * quant){
rel (*this, notes_array[i] == notes_array[i + (j
* len)]) ;
}
}

Pause quantity : Fixes the number of rest in the melody, a rest is
equivalent to an empty set in the array of set variables Playing. In this
case the user can fixes the quantity of rests (denoted pauseQuantity) they

74

Jun

N

desire, from none to a melody full of pause.

{G = {ist Playmgi =0} for 0 <i < barLength * quant
|G| = pauseQuantity

(5.10)
We implemented this by first creating an array of int variables each con-
strained to the cardinality of elements of the push array which are not
already set to empty by the quantification constraint as those are not neces-
sarily rest but might just be time during which notes are being held down
and played. We use this array with a sequence constraint to ensure that
there is the right number of zero value, in other words the right number of
empty set variables. You might be wondering why we don’t use the playing
array as suggested above, that’s because playing is not constrained by the
quantification constraint, meaning that using it to enforce the number of
rests might lead to smaller rest than the quantification should accept and
they might be on unwanted beats.

//q-push is the array of element of push compatible
with the quantification of the user

SetVarArray q_push(xthis, barLength * userQuant, O,
max_pitch, 0, max_pitch);

3 for(int i1 = 0; i < barLength * userQuant; i++){

rel (xthis, q_push([i], SRT_EQ, push[i * \frac{quant
}{userQuantl}]) ;

+
i IntVarArray q_push_card(xthis, barLength * userQuant,
0, 127);
for(int i = 0; i < barLength * userQuant; i++){

cardinality (*this, q_push[i], q_push_card[i]);
b
//number of pause to add, pauseQuantity is in
percentage and goes from 1 to 100
int pause = pauseQuantity * (barLength * userQuant) /
100 ;
count (this, q_push_card, 0, IRT_EQ, pause) ;

Pause repartition : this enforces that any sub sequence of a given length
from the melody contains at least one rest, the length (denoted pauseLength)
is a value chosen by the user. As previously mentioned a rest is equivalent
to an empty set in the playing array, so we want any sub-list of length
pauseLength from the playing array to contains an empty set.

G = {playing; s.t. k < i < pauseLength + k}
Ded

(5.11)

To do that we reuse the array of cardinality created just before but this

time we use a sequence constraint which post that the number of repetition

75

for 0 <k < (barLength * quant) - 1

modes intervals
Tonian (major) 2212221
Dorian 2122212
Phrygian 1222122
Lydian 2221221
Mixolydian 2212212
Aeolian (natural minor) 2122122
Locrian 1221222
Harmonic minor 2122131
Pentatonic 22323
Chromatic 111111111111

Figure 5.12: scale modes and the associated intervals between notes

of a given sequence in every sub-sequence of a given length must be between
two chosen values.

1 int length = ((barLength * userQuant) * (192 -
pauselength)) / 192 ;

> //sub-sequence of q_push_card of length length must
have at least 1 and maximum length =zero.

s sequence (xthis, q_push_card, IntSet(0, 0), length, 1,
length) ;

5.4.3 Pitch constraints

 Key and mode selection : Determine in what key and mode the melody
should be written. Those are two different buttons in the interface but
are strongly linked when creating the constraints. Following a key and
mode is simply ensuring that the notes played are taken from a specific
sets of acceptable pitch (denoted scaleSet) build according to those two
information. in fig|5.12]is the list of possible modes and the associated list
of intervals between notes, a value of 1 correspond to a semitone, 2 to a
tone and so on.

Push; C scaleSet for 0 < < barLength * quant (5.12)

In Gecode this translate to a subset relation constraint between each element
of push and the scaleSet.

i for(int i = 0; i < barLength*quant; i++){
2 rel (xthis, push[i] <= scaleSet);
3}

When selecting a key but no mode we assume that the last one is major,
but when selecting a mode but no key we can’t really assume anything, in
this case we create the scaleSet for every key with this mode and ensure

76

V)

modes intervals

Major 435
Minor 345
Augmented 444
Diminished 336
Major 7 4341
Minor 7 3432

Dominant 7 4332
Minor 7 flat 5 | 3342
Diminished 7 3333
Minor-major 7 | 3441

Figure 5.13: chord modes and the associated intervals between notes

that the melody is composed of notes contained in at list one of the scaleSet.
To do that in Gecode we use reification and enforce that at least one of the
boolean used for reification is True.

//12 possible keys identified by a int in [0, 12[
reification BoolVarArray (*this, 12, 0, 1);
s for(int key = 0; key < 12; key++){

scaleset = build_scaleset(key, mode);

for(int i = 0; i < barLength*quant; i++){

rel (*this, push[i], SRT_SUB, scaleSet,

reification[key]l, RM_IMP);
, +
s }
9o //1 is equivalent to True
rel (xthis, BOT_OR, reification, 1)

Chord key and quality : This constraint is identical to the previous
one in the way it works, except that the sets of acceptable pitch is build
differently. In fig[5.13]is the list of possible chord modes and their associated
list of pitch intervals, obviously those values lead to different results than
using the values in [5.12] Each combination of mode and key as multiple
sets of possible pitch, representing the same chord on different octave.

Minimum/maximum pitch : set the respectively the minimum and
maximum pitch value any note from this block can have. Once again for
compatibility between blocks reasons we can’t simply change the range of
the set variable when creating them, so we have to make each set variable
in push a subset of a full domain between the minimum pitch (minPitch)
and the maximum pitch (maxPitch).

Push; C [minPitch, maz Pitch) for 0 <i < barLength * quant
(5.13)
Concretely this translate to a relation constraint to enforce that each element
of push is a subset of a domain.

77

2

for(int i = 0; i < barLength * quant; i++)
dom (*this, push([i], SRT_SUB, minPitch, maxPitch);

3 F

2

6

Note repetition and repetition type : determine approximately how
much the same notes should be repeated throughout the melody. The
user use slider to set a percentage (repeatPercentage) of the notes that
should be a repetition of another note, 0% means all the notes will be
different from each other and 100% that the melody only use one note. in
the mathematical form we take a random subset of the possible index, the
size of this subset is determined by the percentage chosen by the user, we
then ensure that the notes at index contained in the subset are repetition
of another note, while note at index not contained in the subset are not a
repetition.

1€ G
Push; € Push \ Push; ¢ j¢G
or
Push; & Push \ Push; G C [0, barLength * quant
J J g
‘ G| __ repeatPercentage * barLength * quant

100

(5.14)
In practice, we also use the repetition type option, which determine how
to enforce the repetition constraint among three strategies. The three
strategies give different results and have different impact on the solver
performance. For the random selection we shuffle the list of possible notes
index and randomly use relation constraint to make set variable equivalent
or disjoint two by two depending on the percentage requested by the user.

//range create an array from O to barLength * quant by
step of userQuant

int [] index = shuffle(range (0, barLength * quant,
userQuant)) ;

s for(int i = 0; i < (sizeof(index)/sizeof (index[0])) -
1; i++9)d{
if (rand() % 100 < repeatPercentage)
rel (*this, push[index[i]] == push[index[i +
111D
GllEE
rel (xthis, push[index[i]] || push[index[i +
111);
+

3

1

For the soft and hard option we use the cardinality of the pushMap array,
which represent how much times a given appear in the melody, below is the
implementation of the pushMap_card array containing the cardinality of
every pushMap elements.

IntVarArray pushMap_card(xthis, max_pitch, O, barLength
* quant) ;

78

> for(int i = 0; i < max_pitch; i++){

3 cardinality (*this, pushMap[i], pushMap_card[il]);

C}
Then the soft option enforces that a certain percentage of the notes are not
in the melody, thus forcing remaining notes to repeat themselves. This is

done with a count constraint that ensure that a minimum number of the
pushMap_card value are set to zero.

1 //repeatPercentage goes from O to 100
> int ¢ = repeatPercentage * (max_pitch - 1) / 100 ;
count (*this, pushMap_card, 0, IRT_GQ, c)

The hard option simply make sure that one note repeat at least a minimum
number of times in the whole melody. Once again this is done using a count
constraint.

int repetition = percent * max-repetition / 100 ;
count (*this, pushMap_card, repetition, IRT_GQ, 1);

V)

You have probably noticed that these 3 methods have a very different
interpretation of what note repetition is, either repeating one note a lot
of times, ensuring that multiple notes are repeated a few times or an in-
between that let the choice to the solver. This is the objective of this option,
to give more possibilities to the composer.

Pitch direction : set how the melody should evolve through time, either
with increasing or decreasing pitch. Increasing pitch is equivalent to making
sure that the minimum value of all the sets after index i are larger than the
minimum value of the set at index i, for decreasing pitch the idea is similar
except that we take the maximum values that have to be smaller further in
the list than the maximum value at index i.

Increasing pitch :

0 <7 < barLength * quant

i < j < barLength * quant
(5.15)

min(Push;) < min(Push,;) for {

Decreasing pitch :

0 <7 < barLength * quant

i < j < barLength * quant

(5.16)
These first constraints make sure that the melody globally goes up or
down in pitch, but if we want to be more constraining we can use strictly
increasing and strictly decreasing constraints that respectively enforce that
after playing a note, all the following notes are of greater pitch or of smaller
pitch.

maz(Push;) > max(Push;) for {

79

V)

Strictly increasing pitch :

max(Push;) < min(Push;) for {

0 < i < barLength * quant

i < j < barLength * quant
(5.17)

Strictly decreasing pitch :

min(Push;) > max(Push;) for {

0 < i < barLength * quant

i < j < barLength * quant
(5.18)

This is done using relation constraints with reification. We need reification
to avoid adding the constraint on empty set variable as they don’t add
notes. First we create the boolean variables isPlayed linked to push that
hold true if the element of push at the same index contains a note and false
if this element is empty.

// [0, max_pitch] is the range of acceptable pitch

SetVar allPlayed (*this, IntSet::empty, O, max_pitch, O,
max_pitch);

3 BoolVarArray isPlayed (*this, max_pitch, 0, 1);

rel (*this, SOT_UNION, push, allPlayed);

channel (*¥this, isPlayed, allPlayed);

Now we can create the four constraints.

// increasing pitch

for (int i =

0; i < max_pitch - 1; i++){

for (int j=i+1; j< max_pitch; j++){
rel (*this, (isPlayed[i] && isPlayed[j]) >> (min(
push[i]) <= min(push[j1)));

}

+

//decreasing pitch

for (int i = 0; i < max_pitch - 1; i++){
for (int j = i+1; j < max_pitch; j++){

rel (xthis, (isPlayed[i] && isPlayed[j]) >> (max(
push[i]) >= max(push[jl)));

}

for (int i =

s // strictly increasing pitch
0; 1 < max_pitch-1; i++){

for (int j = i+1; j < max_pitch; j++){

rel (xthis,

(isPlayed[i] && isPlayed[j]) >> (max(pushl[

i]) < min(push([j])));

}

80

N

5.5

// strictly decreasing pitch

; for (int i = 0; i < max_pitch-1; i++){

for (int j = i+1; j < max_pitch; j++){

rel (xthis, (isPlayed[i] && isPlayed[j]) >> (min(
push[il) > max(push([j])));
}

Golomb ruler size : set as much note as chosen by the user at the
beginning of the melody to form a Golomb ruler. First off a Golomb ruler
is a set of marks at integer positions along a ruler such that no two pairs of
marks are the same distance apart [26]. In other words this constraint allow
to create melody with varying intervals between notes. this constraint works
only when playing one note at the time, and we have that the difference
between any two notes is unique among all the other possible differences.

0 < i < barLength * quant

i < j < barLength * quant

0 < k < barLength * quant

k <[< barLength * quant
(5.19)

In Gecode we create an array of int variable and we constrain each element

to the difference of two element of push, we then enforce that all elements
of this array are different.

push; — push; # pushy, — push for

//size of the difference array based on n, the size
chosen by the user
const int size_d = (n*n-n)/2;

// Array of differences
IntVarArgs d(xthis, n_d, O, max_pitch);

// Setup difference constraints
for (int k=0, i=0; i<n-1; i++)
for (int j=i+1; j<n; j++, k++)

rel (xthis, d[k] = expr(xthis, m[jl-m[i]));

distinct (xthis, d);

Branch and bound

One major upgrade of Melodizer 2.0 is the addition of the branch and bound
search algorithm which allows to find way more interesting solutions. You can
find more information on the branch and bound in section [2.4.6] in this section we
discuss its implementation in Melodizer 2.0 using Gil. Adding the BAB algorithm

81

in itself is an easy task, as easy as adding any other search engine, the difficulty
appears when trying to use the full capacity of branch and bound.

When using the branch and bound search algorithm we can add new constraints
every time we look for a new solution in order to conduct our results in a certain
direction. We have decided to use this opportunity to ensure variety among the
returned melody. More practically this is done by constraining that a certain
percentage of values in the next solution have to be different from the values
of the previous solution. This percentage has a huge influence on the results of
the search so we let the user chose it. If the composer likes the first proposition
they can set the percentage to a small value and get just a few modification,
otherwise if they do not like it, they can set the percentage to 100% and get a
totally different solution. With "Next" representing the array of notes in the next
solution, "Prev" the array of notes in the previous solution and "diffPercentage’
the percentage of difference chosen by the user, the mathematical representation
is :

iceG
Next; # Prev; for ¢ G C [0,barLength * quant] (5.20)
| G’ __ diffPercentage * barLength * quant

100

In Gecode we add these constraints by using the constrain function, this function
is called inside the space of the next solution and take as argument the space
of the previous best solution, having access to these two spaces allow us to add
constraint between the variables of the two solutions. Below is the code we can
use in Gecode to get solution with a percentage of varying elements using an
inequality relation between equivalent elements of the two spaces. Note that we
constraint the inequality only if the previous solution variable is not empty, this
is because the quantification chosen by the user force some sets to be empty and
this doesn’t change between solutions, an inequality relation between two set
constrained to be empty would immediately lead to no solutions, which wouldn’t
be a good thing.

1 virtual void constrain(const Space& _b) {

2 const Melody& b = static_cast<const Melody&>(_b);
3 for(int i = 0; i <= barLength * quant; i=i+1){

1 if ((rand () %100) < diffPercentage){

5 //get the previous solution variables

6 SetVar tmp(b.push[i]);

7 //inequality relation only if the set is not

empty

8 rel (*this, (tmp !'= IntSet::empty) >> (push[i] !=
tmp)) ;

9 }

10 }

82

~

1

N

5.6 Solver

The solver is embodied by the search object in Open Music as it is the interface
that allow the user to interact with the solving algorithm. The search object has
to be connected to a block or a tree structure of blocks which represents a CSP
as described in subsection to find solution to this problem.

Below is the code used by Melodizer to create a new search engine object, we
use the Gecode option to stop the search after a certain amount of time if no
solution have been found to prevent search taking too much time. If the timeout
is reached and the search is stopped, the user is informed that no solution have
been found. If needed the search can also be stopped by the click of a button in
the search object interface.

(setq tstop (gil::t-stop)); create the time stop object
(gil::time-stop-init tstop 500); initialize it (time is
expressed in ms)

;search options

(setq sopts (gil::search-opts)); create the search options
object

(gil::init-search-opts sopts); initialize it

(gil::set-n-threads sopts 1); set the number of threads to
be used during the search (default is 1, O means as many

as available)

(gil::set-time-stop sopts tstop); set the timestop object

to stop the search if it takes too long

; search engine
(setq se (gil::search-engine sp (gil::opts sopts) gil::BAB)
)

The search is done in a separated thread than the rest of the execution to
avoid blocking the execution of Open Music during the search. The thread
is created using mp:process-run-function in the Lisp code of Melodizer when
the next solution is requested by the user. The code used can be found below,
new-search-next is the call to the function that interact with Gil to get a solution
and return an Open Music object representing the melody found by the solver.

(mp:process-run-function ; start a new thread for the
execution of the next method
"next thread" ; name of the thread, not necessary but
useful for debugging
nil ; process initialization keywords, not needed here
(lambda () ; function to call

(setf (solution (om::object editor)) (
new-search-next (result (om::object editor)) (om::object
editor)))

83

6 (om::openeditorframe ; open a voice window
displaying the solution

7 (om::omNG-make-new-instance (solution (om::
object editor)) "current solution")

8)

9)

As explained in previous section we use the branch and bound search algorithm
and the user can choose a percentage of modification they want to see in the next
solutions, but that’s not all, one important element of the searching algorithm is
the branching strategy, the next subsection explains the options available to the
user and then we compare the result of the solver for different inputs.

5.6.1 Branching heuristics

The branching strategy is an important aspect as it determines our path
through the search tree and thus the order of the solutions provided by the search
engine. Our solver branch over the two arrays of set variables push and pull as
they are the main variables describing the final solution, all other variables are
redundant but helpful for some constraints.

How to branch

As the solver can be dealing we some complex mix of constraints over a wide
range of variables we want to favor performance in order to get a result in a
decent amount of time. We have to be aware of how the branch function works
in Gecode, for example if we branch on the push and pull arrays as follows:

. branch (xthis, push, SET_VAR_SIZE_MIN(), SET_VAL_RND_INC(ri1)
D g

branch (*this, pull, SET_VAR_SIZE_MIN(), SET_VAL_RND_INC (r2)
'y

It might seem that we have chosen a good variable selection heuristic since it
follows the first-fail principle. However, it is not a very efficient branching strategy
since it firstly branches through all the push variable array before branching the
pull variable array. There is multiple ways we can create better branching that
gives different and interesting results. To give more diversity of solutions to the
user we have decided to implement 3 different variables branching. The first one
called "Top Down" first branch on the push and pull variables of the root block,
then on the same variables of its child blocks and so on. Going from the top, the
root, to the leaf of the tree structure. To do so we have access to push_ list and
pull_list, respectively the list of push and pull variables of all the blocks in the
structure, variables of the root being at the last position in the lists.

0; i--){

N

A\
I

i for(int i = push_list_size - 1; i
2 SetVarArgs pushPull ;

84

3 pushPull < push_list[i] ;
| pushPull < pull_list[i] ;
branch (¥this, pushPull, SET_VAR_SIZE_MINQ),
SET_VAL _RND_INC(Rnd(3U))) ;
6 ¥

The second option is called "Full" as it branches on all the push and pull elements
of all the blocks in the tree structure at the same time, this is implemented in
the code below using the same variables as before.

1 SetVarArgs fullPush ;

2 SetVarArgs fullPull ;

3 for(int 1 = 0; i < push_list_size; i++){

i fullPush << push_list[i] ;

5 fullPull << pull_list[i] ;

6 }

7 //concatenate all push and pull variables into fullPush

¢ fullPush << fullPull ;

o branch (*this, fullPush, SET VAR _SIZE MIN(), SET_VAL RND_INC
(Rnd (3U))) ;

In those two example we have used SET VAR, SIZE MIN() as the variable

selection heuristic and SET VAL RND_ INC() as the value selection heuristic.
We have decided to branch on the variable with the smallest domain because it’s
an easy way to set variables faster and get a solution in a decent amount of time,
then choosing a random value seemed logic as there is not really a mathematically
better solution than another when dealing with music, so randomness is a great
way to give a chance to every possibilities. In every examples we use Rnd() to
set a random number generator with a specific seed, this is useful to guarantee
reproducibility of the research.
This said the final option for branching is similar to the first one "top down" with
the difference that we use a random variable selection heuristic this time, hence
its name "Top down random". This method can be less efficient, but it can also
yield more interesting and unpredictable results, which makes it an attractive
method.

for(int i = push_list_size - 1; i >= 0; i--){

2 SetVarArgs pushPull ;

: pushPull << push_list[i] ;

pushPull << pull_list[i] ;

branch (*this, pushPull, SET_VAR_RND(Rnd (1U)),
SET_VAL_RND_INC(Rnd (3U))) ;

Comparison

Now that we have shown our three branching heuristics let’s compare them.
In figure [5.14] are the execution time to find the next solution of the different
branching for different difficulty of constraints and blocks structure, by that we

85

difficulty branching 1 2 3 4 5 | Mean
Easy Top down 242 | 90 | 147 | 92 | 163 | 147
Basy Full 253 | 148 | 103 | 96 | 140 | 148
Easy Top down random | 265 | 146 | 163 | 110 | 107 | 158
Medium Top down 290 | 153 | 155 | 141 | 139 | 176
Medium Full 261 | 319 | 232 | 250 | 246 | 262
Medium | Top down random | 202 | 149 | 121 | 139 | 143 | 151
Hard Top down 265 | 231 | 304 | 233 | 239 | 254
Hard Full 235 | 185 | 164 | 174 | 180 | 188
Hard Top down random | TO | TO | TO | TO | TO | TO

Figure 5.14: Comparison of execution time of different branching

OM6.20 File Edit Presentation Windows Help
OMG620 File Edit Presentation Windows Help oaa = N

]

nnnnnnn ¢ oasms = - o
s Eflel 2 p 2ot 0 , =3 =
= ——- - 5 ———= =
= s I T s T o = - .3
—
,,,,,, | Ermms |
Figure 5.15: Second solutions found Figure 5.16: Second solution found

with "Top down" strategy with "Full" strategy

mean that more blocks and more constraints is harder to solve, some constraints
like pitch direction are also harder than other, like quantification. The time is
expressed in ms and was computed on 5 successive solutions for each case. In
this table we can see that the "top down" and "full" strategies have quite similar
result, with slightly better performance for the "full" option on a hard scenario.
On the other hand the "random" strategy timed out with difficult constraints,
which was expected, the fact that it has quite similar execution time as the two
other in easier structure is due to a bit of luck and quite easy constraint being
used, adding a constraint like "pitch direction" almost always results in a time out
of the random branching. You can also find in figure [5.15 and [5.16] a comparison
of the second solution found by the two branching strategy "Top down" and "Full"
in the hard scenario, this is not meant to compare the quality of the two solutions,
but more to show the differences between them.

5.7 Implementation structure

The implementation of Melodizer 2.0 is split in 4 files to make the code easier
to read. In figure [5.17|is a diagram of the relation between the files, an arrow
going from file A to file B show that a function from B is called inside A. Below is
a description of each file as well as the list of the main features they each contain.
The complete code for all these files can be found in Appendix [D]

86

melodizer-csts.lisp

block.lisp *» melodizer-csp.lisp

melodizer-utils.lisp

Figure 5.17: File structure of Melodizer 2.0

5.7.1 block.lisp

This file contains the code for the two objects of the library: the block and
search objects. It includes the code for the interface of both objects and the call
to all the needed functions from other files. The main parts are :

Declaration of the block class with its attributes.

Declaration of the search class with its attributes.

Creation of the 3 panels composing the interface of the block object.
Creation of the single panel composing the interface of the search object.

Creation of the thread for searching the next solution

5.7.2 melodizer-csp.lisp

This file is the main part of creating the csp, it creates all the variables and
post constraints or call function to post them. The main functions are :

new-melodizer which creates the csp by setting variables, posting the con-
straints and creating the search engine.

get-sub-block-values which adds the eventual constraints brought by sub-
blocks.

post-optional-constraints which posts optional constraints according to the
user’s will.

new-search-next which looks for the next solution found by the solver and
translates this solution to musical representation.

stopped-or-ended which allows the user to stop the search early

87

5.7.3 melodizer-csts.lisp

This files is used to post more complex constraints that would have congest
other files, or simply constraints that can be used in multiple situations to avoid
repetition and make them easier to call. the main constraints are :

scale-follow and scale-follow-reify that make all elements of a SetVarArray
subset of a given set, used to follow a specific scale or chords.

chordprog-follow which is similar to the previous but the SetVarArray
elements are subset of different sets for different index, used to follow a
chord progression.

pitch-range which limits the maximum and minimum possible pitch.
note-min-length which constraint the minimum length of the notes.

chords-rhythm which forces some beats to contain a chords and other a
single note

chords-length which constraints the minimum length of a chord, obviously
has to be greater than the minimum length of a note.

num-added-note which limits the number of notes added

set-quantification which constrains the variables to use the quantification
chose by the user by setting out of quantification beats to be empty

set-rhythm-repetition which creates repetition in the rhythm of the melody
set-pause-quantity which sets the quantity of rests in the melody.

set-pause-repartition which distributes the rest throughout the melody
according to some distribution value.

4 pitch direction functions that sets the pitch to be either increasing, strictly
increasing, decreasing, strictly decreasing.

golomb-rule which sets a certain number of the notes pitch to be acceptable
value for Golomb ruler

repeat-note which makes sure that a certain percentage of the note pitch
are duplicated throughout the melody.

5.7.4 melodizer-utils.lisp

This file provides multiple functions useful to manipulate some data, as there
is quite a lot of function in there we only give the list of the most important ones.

Conversion function to change MIDI value to MIDICent, or keys Letter to
their pitch values, etc

88

List manipulation function to get the maximum/minimum values of list,
make a list from a range, etc

Functions to change from the Gecode variable to Open Music Object and
vice versa.

Function to build set that is used to follow a scale, a chord or a chord
progression.

Small utility function of various usage.

89

Chapter 6

User Manual

Melodizer’s 2.0 presents two different objects. On the one hand, the Block ob-
ject allows to select the constraints for a specific part or for the whole piece. While,
on the other hand, the Search object, whose name is is quite self-explanatory,
looks for solutions with some characteristic defined by the user.

Search objects receive through his second inlet a Block. Each musical phrase
can have distinct musical ideas inside. This is why we introduced the possibility
for the Block objects to also receive a list of Blocks, through his second inlet as
well. Some real musical scenarios are provided as examples in chapter [7}

6.1 Block object

When we create a Block object inside an OpenMusic patch, the box in figure
6.1] appears. We can observe that it has four inlets and four outlets. The inlets
represent the setter of the object while the outlets are the getters. The first
inlet /outlet, also called ’self’, represents the object itself. The ’self” outlet is used
to communicate to other Block objects or Search objects the computed object
itself. The second and fourth inlets are respectively used to receive a list of Block
objects and a list with its starting positions expressed in bars as shown in figure
[6.2l The second inlet can also be simply used to receive a Block as shown in
figure [6.3] . The third inlet can receive a voice object as illustrated in figure [6.4]

I]

Figure 6.1: Block object’s box

By double-clicking on the Block object box, its interface editor pops up as
portrayed in figure [6.5f We can notice that there three panels, the block con-
straints panel (1), the time constraints panel (2) and the pitch constraints panel

90

Figure 6.2: List of Block objects with pigure 6.3: Block object connected to
its starting position connected to a 5 Block object

Block object

|

e e 6@

Figure 6.4: Voice object connected to a Block object

(3), each with its own different check-boxes, pop-up menus and sliders.

6.1.1 Block constraint panel

This panel serves for general constraints concerning the block. We present
the different pop-up menus from top to bottom.

Bar length : The pop-up menu (4) allows the user to choose the number of
measures that the block encompasses. Each bar contains four beats.

Voices : The pop-up menu (5) determines the number of notes that can be
played simultaneously. For example, you want to model a harmonic part with
seventh chords accompanied by a monophonic melody, you would set the voices
to 5. For monophonic instruments representation such as the trumpet, you would
set the voices to 1. And for a five stringed guitar you would set the voices to 5.

91

Block constraints 1 Time constraints 2 Pitch constraints 3

Bar length 0 [} Minimum not te length 12 Key selection None a/18
Voices None | s Maximum note length 13 Mode selection None 819
Minimum pushed notes None B8 6 Quantification None © 14 Chordkey None 820
Maximum pushed notes None a 7 Rhythm repetition None e 15 Chord quality None s 21
Minimum not tes None e s Pause quantity 16 Minimum pitch 22
Maximum notes None a 9 Pause distribution 17 Maximum pitch 23
Minimum added notes None @10 Note repetition 24
Maximum added notes None 811 Repetition type Random 825

Pitch direction None 826

Golomb ruler size None 827

Figure 6.5: Block object’s interface

Minimum/Maximum pushed notes : The pop-up menus (6) and (7)
constrains the minimum and maximum notes that can be pushed. In other
words, it defines the cardinality domain of non-empty pushed sets of notes. For
example if we want to represent a guitar that strums all the strings at the same
time we would set the minimum pushed notes to five. While, if we want to rep-
resent a guitar playing an arpeggio, then we set the maximum pushed notes to one.

Minimum/Maximum notes : The pop-up menus (8) and (9) defines the
minimum and maximum number of notes that are played within the block. For
instance, to represent a french horn since it is not an instrument built for speed
the maximum notes is relatively low [9]. While, when composing for a violinist
with Paganini’s skills this maximum notes can be fairly high. It also depends
on the sensation we want to transmit to the listener. For a quieter and peaceful
sensation the minimum and maximum permitted notes has to be lower than for
a fuller and denser sensation.

Minimum/Maximum added notes : The pop-up menus (10) and (11)
allows the users to choose the minimum and maximum notes we want to add to
the notes that are generated from attached sub-blocks or voice objects. These
menus are only relevant if we have attached blocks or a voice object to the inlets
of the block.

6.1.2 Time constraint panel :

This panel presents rhythmic constraints. We present the different pop-up
menus, check-boxes and sliders from top to bottom.

Minimum/Maximum note length : Pop-up menus (12) and (13) constrain

92

the minimum and maximum length of the notes. For fast-paced melodies, the
maximum note length can be reasonably short. Contrarily to slow-paced melodies
where the minimum length notes can be fairly long. Once again, these fields
depend on the emotion you want to convey.

Quantification : Pop-up menu (14) select the smallest beat fraction allowed
in the block. This allows the user to play with varied rhythms and include duplets
and triplets to your piece.

Rhythm repetition : The pop-up menu (15) allows the user to choose the
length of the repeated rhythmic pattern throughout the block. This is a common
practice in many musical genres where the rhythmic pattern is usually one or two
long.

Pause quantity : By checking the box (16) the composer can decide the
percentage of silences that the block has. If the slider is completely to the right
the block will contain no notes. While, if it is completely to the left the block
won’t contain any silences.

Pause distribution : By checking the box (17) the composer can decide
through the slider the minimal length between pauses. With the slider completely
to the left the pauses occurs very frequently. Contrarily, with the slider completely
to the right the pauses occurs rarely.

6.1.3 Pitch constraint panel

This panel provides melodic and harmonic related constraints. Again, we
present the different pop-up menus, check-boxes and sliders from top to bottom.

Key and Mode selection : With the pop-up menus (18) and (19) the
composer chooses the key and mode of the block. In other words, at chosen key,
if they can decide to follow a major, minor or a pentatonic scale amongst other.
Figure all the available modes and its associated in semitones between two
consecutive notes.

Chord key and quality : Pop-up menus (20) and (21) permits to choose
the type of chord the composer wants to represent. Figure all the available
modes.

Minimum /Maximum pitch : The check-boxes and sliders (22) and (23)
allow the users to define the minimum and maximum pitch of the notes. This

can be practical for representing instruments ranges or voices tessitura for example.

Note repetition : By checking the box (24), the user chooses whether they

93

modes intervals
Tonian (major) 2212221
Dorian 2122212
Phrygian 1222122
Lydian 2221221
Mixolydian 2212212
Aeolian (natural minor) 2122122
Locrian 1221222
Harmonic minor 2122131
Pentatonic 22323
Chromatic 111111111111

Figure 6.6: scale modes and the associated intervals between notes

modes intervals
Major 435
Minor 345
Augmented 444
Diminished 336
Major 7 4341
Minor 7 3432

Dominant 7 4332
Minor 7 flat 5 | 3342
Diminished 7 3333
Minor-major 7 | 3441

Figure 6.7: chord modes and the associated intervals between notes

would rather like to have many repeated notes or not. A slider tuned completely
to the left imposes all the notes to be different. While a slider tuned completely
to the right generates a single-noted melody.

Repetition type : The pop-up menu (25) allows to select which type of
repetition is going to be set with the value from Note repetition. It gives a choice
between Random, Soft an Hard repetition. Random will randomly link two time
slots and impose the same notes triggered at these moments. Soft will decrease
the size of available notes to make them more repetitive. Hard will force a note
to repeat itself as much as the Note repetition value forces it.

Pitch direction : This pop-up menu (26) allows to constrain the melody’s
direction. The composer can choose between an increasing, strictly increasing,

decreasing or strictly decreasing pitch melody.

Golomb ruler size : The pop-up menu (27) allows you to choose how many
notes constitute your Golomb ruler. A Golomb ruler is a list of integer positions

94

along a ruler such that no two pairs of marks are the same distance apart [26].
The distance between two integer position is here represented as the interval
between two pitches. This constraint generates very creative solution since it
benefits from a very uncommon tool in the musical field.

6.2 Search object

When we create a Search object, the box in figure[6.8 appears. We can observe
that it has three inlets and four outlets. Again, the inlets represent the setter of
the object while the outlets are the getters and the first inlet/outlet, also called
‘self’, represents the object itself. The second inlet is used to receive a Block
object as shown in figure [6.9

The Search object functionalities are :

o Select the tempo expressed in beats per minute in which the piece will be
played.

e Start the search.
o Ask for the next solution.
e Stop the search if it is taking too much time.

o Select the Branching. Currently there are three types of branching : Top
Down, Full and Top Down random. Top Down and Full are the most
efficient while Top Down random can provide the most unexpected original
solutions. Full is the most efficient when dealing with big musical pieces.

» Set the percentage of diversity from one solution to another. If you like the
solution provided, set a low percentage. If not, set a high percentage in the
hope of finding better solutions.

& & ©

Figure 6.8: Search object’s box

6.3 Connecting blocks to form a structured piece
Now that we have explained the Block and Search object’s interface editor

as well as what can be connected to its inlets and outlets, let’s recapitulate how
a whole piece can be structured by connecting Voice, Block and Search objects.

95

"I I]

Figure 6.9: Block object connected to a Search object

First of all, a Voice object, a Block or a list of Blocks along with its starting
positions can be passed to a Block object, that can be also passed to one or more
Blocks. Then, a Block or a list of Blocks along with its starting positions can be
passed to a Search object.

Let’s represent this using a simple example where we connect the first outlet
of Block object representing a chord to the second inlet of a Search object as
illustrated in figure[6.9f We select the constraints available in the editor’s interface
to represent a C Major chord as shown in figure [6.10] And finally, we evaluate
the Search object to obtain the solution [6.11] This example is explained in details
in section [T.1]

Block constraints Time constraints Pitch constraints
Bar length 1 Minimum note length Key selection None
Voices 5

Maximum note length Mode selection None

Minimum pushed notes | 5 Quantification 1 bar Chord key c

e B & ©®

Maximum pushed notes None Rhythm repetition None (2] Chord quality Major
Pause quantity Minimum pitch

Pause distribution Maximum pitch

Note repetition

e ® 6 0o & & & O

Maximum added notes | None Repetition type Random)

Pitch direction None

Golomb ruler size None

Figure 6.10: Block object editor’s interface to represent a C Major chord

Taking everything into consideration, we can deduce that there are several
possible manners that a piece can be structured using this Block tree structure.
In chapter [7] we provide many examples to clarify how this box interconnection
can be applied to real musical scenarios.

96

o0 e current solution

CHORD-SEQ % 1| J]ie= »jujueje
="
-
Duration: 3000 ms

midic Zoom | 100 Staff G

chord Fontsize 24 &) Approx 1/2

Figure 6.11: C Major chord solution

97

Chapter 7

Making music with Melodizer

This section is dedicated to the composition of music with Melodizer. It
is separated in different scenarios, each showing the potential of an aspect of
Melodizer. As the scenarios are organised in increasing level of complexity, we
advise you to follow their order.

Melodizer uses two types of objects : Block and Search. The Block object
is used to describe the piece of music you want to create using mathematical
constraints. The Search object receives the described "mathemusical" problem
from the Block structure and tries to find a solution to it.

7.1 Scenario 1 : Playing with a chord

7.1.1 Description

This very first scenario is a very easy introduction to the use of Melodizer.
After this scenario, you will be able to use the chord constraints of Melodizer and
combine them with other constraints to create interesting results.

What we want to create here is a melody around a chord with some interesting
rhythmic and melodic patterns. All the musical solutions found in this scenario
are available in this SoundCloud playlist.

7.1.2 Patch set up

This scenario uses the most basic block set up : a Block and a Search. The
self outlet from the Block is linked to the block-csp inlet of the Search. After
having created our block structure, we must not forget to evaluate the Search,
that is clicking on it and pressing v. This also evaluates the Block due to their
link. Figure [7.1] shows what the OM patch looks like.

98

https://soundcloud.com/user-975383821/sets/scenario-1-playing-with-a-chord/s-n2CkoIZcqqh?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

7.1.3 Modus operandi

First, we can open the Block window by double clicking on the Block ob-
ject. We now have to set some Block constraints to describe the melody that
we have in mind. We can start by setting Bar length to 1 since we only want
to create a short 1 chord melody. We can set Voices to 5. Minimum pushed
notes can be set to 5 to force a full chord style of play. In the time constraints
window, we can set Minimum note length to the maximum value to force a
long chord. Finally, in the pitch constraints window, we can select C in Chord
key and Major in Chord quality. We can also raise the Minimum pitch value
and lower the Maximum pitch value. Our Block window now looks like Figure

L.
L

s

e

[

Figure 7.1: Scenario 1 : Patch set up

Block constraints Time constraints Pitch constraints
Bar length 1 Minimum note length Key selection None
Voices 5

Maximum note length Mode selection None

Minimum pushed notes | 5 Quantification 1 bar Chord key c

Maximum pushed notes = None Rhythm repetition None Chord quality Major
Pause quantity Minimum pitch
Maximum notes None

Pause distribution Maximum pitch

Minimum added notes | None Note repetition

Maximum added notes | None Repetition type Random e
Pitch direction None

Golomb ruler size None e

Figure 7.2: Scenario 1 : Block window

We can now start the search of a solution to our CSP. To do so, we have to
open the Search window, set the BPM to 80 for example, and press Start. We
can see the message "new-melodizer CSP constructed" printed on the OM listener.
Pressing Next starts the search and shows us the solution. Figure shows the
CHORD-SEQ object containing the solution.

Now lets try to create some arpeggios around this chord. To do so, we can set
Minimum pushed notes to None and Maximum pushed notes to 1. We also have

99

o0 e current solution 00 current solution

CHORD-SEQ w1 ﬂ =] >uimele CHORD-SEQ w ﬂ ﬂ =] >ujm ele

8 . P
@ 6 0
Duration: 3000 ms. Duration: 2766 ms
midic (@ Zoom [100 | staff G midic (@ Zoom (100 | staff G
chord Fontsize 24 [Approx 172 @ chord Fontsize | 24 @) Approx 172 @
Figure 7.3: Scenario 1 : Solution 1 Figure 7.4: Scenario 1 : Solution 2
e e current solution
CHORD-SEQ % 1|)i > ufujele
9 P
A |

Duration: 2766 ms

midic 1 Zoom [100 | staff | G e

chord Fontsize 24 @ Approx 172 B

Figure 7.5: Scenario 1 : Solution 3

to reduce Minimum note length to less than half of the slider as notes of 1 bar
length can only fit in a 1 bar length melody if they start at the very beginning,
which we do not want. Then we can set Quantification to 1/2 bar. The solution
to these settings can be found on Figure [7.4]

Finally, let’s try to use a different, more complex type of chord. We are going
to set Chord quality to Major 7. Figure shows the solution to this set of
constraints.

7.2 Scenario 2 : Playing with two chords

7.2.1 Description

In this scenario, we are going to learn how to use links between Blocks to
create more complex melodies. The objective of this scenario is to create a 2 bars
melody containing two different chords. All the musical solutions found in this
scenario are available in this SoundCloud playlist.

7.2.2 Patch set up

As explained in the description, Melodizer uses OM links to create dependen-
cies between Block objects. Since we want our melody to contain two chords,
we are going to use three different Blocks. The two first Blocks each describe
constraints for one of the chords and the last Block describe the constraints for
the whole melody. We can start by naming our Blocks by pressing cmd + 1,
entering a name, then pressing n to display it on the Block. Our three Blocks are

100

https://soundcloud.com/user-975383821/sets/scenario-2-playing-with-2-chords-1/s-GMvHtdeXA2z?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

ey

[LLL e ee
e ©

RiH CEY

x-append

Figure 7.6: Scenario 2 : Patch set up

named Chord 1, Chord 2 and Piece. The patch we want to create is in Figure
[7.6l We are using a z-append OM operator to create a list containing Chord 1
and Chord 2. This list is linked to the block-list inlet from Piece. They should be
considered as sub blocks of Piece, meaning that every constraint from Piece also
constrain them but not the opposite. The last element from the patch is the (0
1) list. Those numbers are the respective starting positions (in bars) of Chord 1
and Chord 2 in Piece.

7.2.3 Modus operandi

Figures [7.7] and show the settings for the three different blocks. A
good idea when creating music is to start with very simple melodies and add to
them step by step. This is especially true with Melodizer where it is really difficult
to predict how different constraints might interact with each other. Starting
with too many constraints often results in creating a problem with no solution.
We thus start this scenario with two chords, a C major followed by a D minor,
playing for 1 bar each. Figure [7.10| shows the results of these settings.

Now let’s try to create some arpeggios around these chords two have a bit
more rhythmic complexity. The first thing to do is to set a Maximum pushed
notes constraint to 1 and lower the Quantification to 1/2 beat on Piece. Then we
can lower the Minimum note length to around half the slider. Figure shows
the solution to these settings.

101

n @
e ©

!

°
®

Figure 7.7: Scenario 2 : Piece window

®

Figure 7.8: Scenario 2 : Chord 1 window

®

®

Figure 7.9: Scenario 2 : Chord 2 window

v
None

None

o
® @ ®

®

o
o ® ©

®

eoe current solution [XN) current solution

CHORD-SEQ x1 Jlie= > n mfee CHORD-SEQ x 1 Jli= > nmfee

A s <) =fF . - £
=4 94 — f — =
6 | . —
(O T - +
Duration: 6000 ms Duration: 5938 ms
midic @ Zoom | 100 Staff G midic @ Zoom | 100 Staff | G
chord (@) Fontsize 24 @) Approx 1/2 chord (@) Fontsize 24 Approx 12 @

Figure 7.10: Scenario 2 : Solution 1 Figure 7.11: Scenario 2 : Solution 2

7.3 Scenario 3 : Melody on top of chords

7.3.1 Description

In this scenario, we are going to create a 4 bars melody composed of 4 different
chords, following a simple I VI I V progression, and a melody on top. Both the
chords and the melody are in the C major scale. All the musical solutions found
in this scenario are available in this SoundCloud playlist.

7.3.2 Patch set up

The set up for this scenario is more complex than for the previous ones.
Figure shows what the patch looks like. The idea is to recursively divide
components of the melody into smaller pieces, each represented by Blocks, until
you can describe these pieces with the constraints of a Block. We thus start with
the Piece, which represents the whole melody. We can divide the Piece into two
parts : the Chord progression and the Melody. The Melody can be described
precisely enough with a Block so there is no need to separate it. The chord
progression, on the other hand, needs to be told what chords to play. We are
thus going to create 4 more Blocks, one for each chord.

7.3.3 Modus operandi

For this scenario, we are going to change settings of blocks starting from the
most general to the most precise. The Piece needs it’s Bar length constraint set
4 and Voices set to 5 (to allow the Piece to feel full but not too much). As we
do not want to add more notes than the chords and the melody, we have to set
Maximum added notes to 0. We can set the Quantification to 1/4 beat and the
Rhythm repetition to 1 bar to keep the same rhythmic between chords. We can
set the Key selection to C and the Mode selection to ionian (major).

The Melody Block also has a Bar length of 4. We are going to set the Voices
to 1 as we want the melody to be monophonic. We can raise the Minimum note
length a bit. We can set the Minimum pitch and Maximum pitch in order to
have a melody higher than the chords.

103

https://soundcloud.com/user-975383821/sets/scenario-3-melody-on-top-of-chords/s-Y880wmp5LuS?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

© ©
‘th ©90

»-append

Figure 7.12: Scenario 3 : Patch set up

The Chord progression Block must contain the constraints that affect all the
chords. Let’s start by setting Bar length to 4 and Voices to 4. We can set the
Quantification to 1 bar. Finally, we can set the Minimum pitch and Maximum
pitch around the middle of the slider and close enough to each other to limit
large pitch differences between chords notes.

Finally, we can set Bar length to 1 for all blocks and give them respectively C
major, A minor, D minor and G major as Chord key and quality. We can also set
the minimum length to the maximum value to force full long chords. The result

for this setting is on Figure

If you listen to the resulting melody, you will probably find it completely
overloaded and not beautiful at all. To change that, we can tweak a few buttons
in the Melody Block. The first thing we can do is to add silences to the melody.
To do so, we can increase the pause quantity. We can also increase the Pause
distribution to spread the silences more evenly in the melody. Figures and
show the Melody pause settings and the resulting melody.

Now, we can hear that the pitch range of the melody feels slightly too large
and that the notes seems to go all over the place. We can increase the Minimum

104

pitch to narrow the pitch range down. We can also increase the note repetition
and set the Repetition type to Soft. Finally, we can lower the tempo of the
melody in the Search down to 100 as it felt a bit too fast. Figure [7.16| shows the
result of these changes in settings. Figure [7.17) shows what happens if you select
Hard for Repetition type (it’s obviously more repetitive). Random repetition
does not work well with a Rhythm repetition constraint so we don’t use it in this
scenario.

Pause quantity v

Pause distribution >

Figure 7.13: Scenario 3 : Melody pause settings

ece current solution) ‘e e cumentsol lution
nnnnnnnn Q x 1)]s »inimees o t 2903 ms. CHORD-SEQ 1| J]i= > umfeles &
g o omey o ne, (et el et g e e [e e 2
& = »%w T i i 7 i 1 f 5 0 # HEE i‘ t ¥ H—
Durstion: 000 ms Duraton: 8000 m
gc @ [| 00 | - e mdc @ | m (100 | Staft [c)
ccccc [®] Font size | 24)) chor %@ ox |12 @

Figure 7.16: Scenario 3 : Solution 3 Figure 7.17: Scenario 3 : Solution 4

7.4 Scenario 4 : Blues in C Major

7.4.1 Description

In this scenario, we are going to explore the technique for repeating Blocks
multiple times in the same song. This is particularly useful when the piece of
music we want to create uses the same chord multiple times in the progression.
For example, let’s have a look at a simple C major blues chord progression on
Figure [1]. We can see that both C, F and G are repeated at least twice.
We could simply create a Block for each bar but that would be very exhausting.
Instead, we are simply going to use three chord Blocks, one for each chord. All
the musical solutions found in this scenario are available in this SoundCloud
playlist.

105

https://soundcloud.com/user-975383821/sets/scenario-4-blues-in-c/s-1380ppmHTtP?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-975383821/sets/scenario-4-blues-in-c/s-1380ppmHTtP?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

12 Bar Blues in the Key of C

C C C C
h
)" i T T I]
&3 % | | |
x I T T 1
D)
5 F F C C
H
)" i T T T]
T T T]
% I I I]
G F C G

T T T il |
I T i |

i |
i |

w
Ne-IN

UL

o

CEEOEEEEEED |{o 123456789 1011)
[{4]
[$1] [

x-append

g

IR

Figure 7.19: Scenario 4 : Wrong patch set up

7.4.2 Patch set up

As explained earlier, we want to minimise the quantity of Blocks for clarity
and not spending too much time changing Block settings. At first, we could
be tempted to use the set up shown on Figure to describe the Blues chord
progression but this does not work as expected. When being evaluated, the
Chord progression Block creates as many chord Blocks as there are links to the
x-append function. As a result, there is 7 C Blocks, 3 F blocks and 2 G blocks
created. These Blocks are different and completely independent from each other
thus changing settings on a Block window only affect one of them.

Figure [7.20] shows the patch organisation for this scenario. To solve the
multiple Block problem, we are going to use the OM function create-list to create
a list of pointers to the same Block. With this structure, changing settings on a
chord Block (C, F or G) has an impact on all occurrences of this Block. If we
take a look at the input list of positions of the Chord progression Block, we can
see that the list is not ordered. This is because the first seven values of this list
describe all C chord starting positions, then the following three are the F chord
starting positions and finally the two last define the G chord starting positions.

106

CRCEC]
e e

© :
ic) L‘ E‘
[+ *
create-list (3%
[k]

]

Figure 7.20: Scenario 4 : Patch set up

7.4.3 Modus operandi

Settings for this scenario are really basic and do not require much explana-
tions. The Chord progression Block has its length set to 12. We can set Voices
to 5 for a good balance between rich and simple chords. We also set Maximum
added notes to 0 and Quantification to 1 bar. Finally, we can apply a small in-
terval of pitches by setting Minimum pitch and Maximum pitch close to each other.

Settings for chords are also really basic. We simply set Bar Length to 1,
Minimum note length to the maximum, Chord Key to C, F or G, and Chord
quality to dominant 7 to get that characteristic bluesy warmth in the chords.

7.5 Scenario 5 : The strumming effect

7.5.1 Description

In the previous scenarios, we were more focusing on creating the melody rather
than making it expressive or giving it personality. What really makes a melody
interesting is the way it is played on the instrument. Some instruments have
very recognizable expressive signatures that give strength to the melody. Some of

107

theses signatures can actually be described with constraints. In this scenario, we
are going to describe the way guitarists strum chords on a guitar with constraints.
All the musical solution found in this scenario are available in this SoundCloud
playlist.

7.5.2 Patch set up

The patch set up for this scenario is really simple and does not require much
description. Figure shows the patch.

)
]

E

]]

L

Figure 7.21: Scenario 5 : Patch set up

7.5.3 Modus operandi

In order to describe strumming into constraints, we first have to fully under-
stand what it means. Strumming is the action of playing strings on a guitar in
a single movement. This results in chords being activated in increasing order
of pitch highness at different but really close times. In this scenario, we have
chosen to describe a 4 string guitar strumming. Figure [7.22] shows the settings
for this scenario. There are three important constraints here. The first one is
the Maximum pushed notes set to 1 to make sure notes are activated at different
times. The second is the quantification which is set to 1/12. The quantification
makes the strumming speed vary. The last important constraint is the increasing
constraint in Pitch direction. This truly makes that strumming feels real. Settings
for the Em Block are similar except for the Chord key and Chord quality.

Figure and show solutions for a Quantification set to respectively

1/12 beat and 1/4 beat. We can see that, as we increase Quantification, the
solutions tends to feel more like arpeggios rather than strumming.

108

https://soundcloud.com/user-975383821/sets/scenario-5-the-strumming-effect/s-Ni9W07L7sZD?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing
https://soundcloud.com/user-975383821/sets/scenario-5-the-strumming-effect/s-Ni9W07L7sZD?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

Block constraints Time constraints Pitch constraints
Bar length 1 : Minimum note length v/ e Key selection None
Voices 4 2 Maximum note length SE—— Mode selection None
Minimum pushed notes None : Quantification 1112 beat s Chord key A

Maximum pushed notes 1| B Rhythm repetition None ¢ Chord quality Minor

Maximum notes None) Pause distribution — Maximum pitch v — ——
Minimum added notes None) Note repetition
Maximum added notes None ¢ Repetition type Random

Pitch direction ncreasing

Golomb ruler size None

Figure 7.22: Scenario 5 : Am window

[} [] rent solution
RD-SEQ 1| il »innfefes o & 3653 ms SHone sy ST = tlujzjeled o SAEDD
7 - P \.DY
< I 4 v
nnnnnnnnnnnnn son: 7755 ms
mic @ m 100 sarr) Statt
(2] ze 24 /: <] /:

Figure 7.23: Scenario 5 : Solution 1 Figure 7.24: Scenario 5 : Solution 2

7.6 Scenario 6 : Unexpected results

7.6.1 Description

In this section, we are going to try generating the most unexpected results
from Melodizer. There are many Block constraints which may have unexpected
results. However, result unexpectedness can also reside in the Search object
settings. In this scenario, we are going to focus on the Search object and its
capability to get original melodies from a simple 1-Block CSP structure. All the
musical solution found in this scenario are available in this SoundCloud playlist.

7.6.2 Patch set up

Patch set up for this scenario is exactly the same as for Scenario 1. Figure
shows what it looks like.

7.6.3 Modus operandi

As for the patch set up, we want really simple settings on the Block object to
remove as few unexpected results from the set of solutions as possible. On the
other hand, we will also use less efficient searching options for which we cannot
afford too large search spaces. Figure shows the Block window for this
scenario. As we can see, we have set Voices to 1 for a very simple monophonic

109

https://soundcloud.com/user-975383821/sets/scenario-6-unexpected-results/s-qkWj3HhI4Om?utm_source=clipboard&utm_medium=text&utm_campaign=social_sharing

melody. We have set Quantification to 1/4 beat to allow more complex rhythmic
patterns. We have decided to set the scale to F major.

Block constraints Time constraints Pitch constraints

Bar length 2 <) Minimum note length Key selection F (<)
Voices 1 2] Maximum note length Mode selection ionian (major)
Minimum pushed notes | <) Quantification 1/4 beat <) Chord key None (<)
Maximum pushed notes None <) Rhythm repetition None <) Chord quality None
Minimum notes None <) Pause quantity Minimum pitch

Maximum notes None 2] Pause distribution Maximum pitch

Minimum added notes None <) Note repetition

Maximum added notes None <) Repetition type Random

Pitch direction None

Golomb ruler size None

Figure 7.25: Scenario 6 : Block window

In order to fully understand what this scenario is about, we recommend having
a listen at all the results on the playlist. The first 5 solutions were found with
Top down Branching setting. Difference percentage was set around 70 percent.
The first solution has all its pauses at the end of the melody. As we search for
next solutions and impose a 70 percent difference, we can see that the pauses
start diffusing across the melody and give more variety in rhythm. The rhythmic
difference between Solution 1 and Solution 5 speaks for itself.

The last 3 solutions were found with a Top down random Branching setting.
This immediately gives a more unexpected nature to the melody. Length of notes
vary and pauses are spread all across the melody. A 70 percent difference creates
almost completely different melodies.

110

Chapter 8

Conclusion

8.1 Melodizer 2.0 major achievements

As a whole, if we have to explain to a musician why they should upgrade to
the new version of Melodizer, there would be four principal reasons :

o The new faculty of generating polyphonic pieces. Contrarily to the previous
version that would only generate monophonic melodies.

o Its ability to combine both rhythm and pitch constraints. The anterior tool
would only present pitch related constraints.

o The definition and implementation of Block and Search objects that allows
you to structure your piece. The composer can now combine Blocks, each
one with its specific constraints, to be played simultaneously or consecutively.
This would open the door to many new musical scenarios compared to the
previous version where the same constraints were applied to the whole piece.
Blocks, similarly to musical phrases can be repeated. For example, in the
basic ternary form ABA, parts A and B can be represented by two different
Blocks and we juxtapose Block A, Block B and then repeat Block A.

o Melodizer 2.0 guarantees that the solver provides diverse solutions. In fact,
the users can now decide what is the percentage that they would like to
change from one solution to another. This is a big improvement compared
to the previous version of Melodizer that provided solutions where only one
note would change. In order to achieve this, the Branch-and-Bound search
engine had to be introduced to Melodizer 2.0 .

8.1.1 Necessary steps to develop Melodizer 2.0

In order to achieve these goals there were many steps to complete :

o We conceived an entire new model in Gecode that would allow us to state
a Constraint Satisfaction Problem to generate musical polyphonic solutions
with the composer’s pitch and rhythm constraints. Within this framework,

111

we had to translate musical constraints into mathematical constraints.
Furthermore, we had to implement the base structure that would allow
block connection to combine musical phrases to be played sequentially
or simultaneously. We analyzed the proposed branching heuristics and
exploration strategies to generate more diverse solutions efficiently.

o We introduced our model with all the musical constraints, and, Branch-
and-Bound to GiL, the interface between Gecode and Lisp.

» Create an interactive user-friendly interface in OpenMusic that would easily
allow composers to choose amongst the implemented musical constraints,
the ones they would like to incorporate into their theme. We developed
the Block objects that can eventually be connected to recreate a structured
piece with different constrained parts played together or successively.

» We played with our tool by recreating musical scenarios to see what aspects
could improve the user experience and what interesting constraints could

be added.

8.2 Further improvements and using Melodizer
2.0 as a cornerstone

With a tool that offers as many possibilities as Melodizer 2.0 there is still a lot
of room for improvements and for additional features. The following subsections
contains both the features we would have liked to add and the ideas we had when
testing our final product. The following element are all the relevant things that
should be incorporated specifically to Melodizer 2.0 and not to Gil.. Since we
consider GiLL as a tool that should be upgraded along the way.

8.2.1 Some general ideas

o Rhythm control : As of now the control over rhythm given to the composer
is on 3 main parts, choosing the quantification, changing the quantity and
distribution of rests and tweaking the number of notes in the melody. Those
elements together with some complex blocks tree structure can give a good
control over rhythm but this method is tough, not intuitive and still not
perfect as rhythm is often more complex. Accomplishing this can be done
through multiple means, like making the solver more creative in its solution,
adding new constraints that can give better control over rhythm, or even
completely separating melody and rhythm in two different elements that
can work together but we talk more about that in the next subsection [8.2.2]

o Improving the Searching experience : Without much surprise the
research algorithm and branching are the most determining elements to
find solutions and there is always place for upgrade in this domain. For

112

the moment, we have settled for what felt like a good compromise between
time of research and interest of the solution but offering more option and
letting the user choose between them could be a great improvement. In the
specific case of music creation, as there is no wrong or bad solution, just
new musical ideas that are always interesting to someone, there are good
reasons to add some randomness to the solver, always with the possibility
to reproduce the results in order to not loose anything by inadvertence.
Randomness is a great way to find unexpected solutions that doesn’t follow
any pattern, it can be a great motor for creativity.

« Better user experience : Using Melodizer is probably not an easy task
for the uninitiated but of course this can be improved by various additions.
One of the most important is probably to give constructive feedback on
error. When dealing with a lot of constraints it’s easy to end up with no
solution, sometimes simply because two constraints are in direct contradic-
tion and the user didn’t realize it because they are not supposed to deal
with constraint but with music. In this case, in its current state Melodizer
would return a simple "no more solutions" which is not helping much.
Improving the experience can also be done by adding a database to the tool,
in order to save some solutions for later usage, and allowing to modify and
concatenate these solution to create a bigger piece. The sets of constraint
that was used to create a solution can also be saved in order to retry them
later and find similar solutions with some new branching for example.

8.2.2 Extending the block structure

The block structure is the main feature of Melodizer 2.0, it allows to create a
lot of complexity in the melody found and give a different vision of music, in a
tree like structure, similarly to what is usually done by most music composition
software. But the blocks implementation is far from perfect and many improve-
ments can be brought.

First of all, new blocks. Melodizer 2.0 only comes with two Open Music
classes, the block and search objects, blocks alone are used to describe all the
aspects of a melody. This versatility of the blocks in representing many different
things was an objective for us in order to keep things simple, but it turned out
that it might not be that simple. Trying to do everything from the same class
make some things harder, like as stated previously rhythm control. This can be
improved by dividing the constraints among different classes, we can imagine a
pitch block which, as its name suggest, take the constraint to find the pitch of the
notes and a rhythm block, that find some rhythm, obviously they have to work
together as the number of pitch to find is linked to the rhythm of the melody,
yet this is completely possible with the tree like structure already introduced.
Figure presents an example of how the interaction between these new blocks
could work. Here, a pitch block take the combination of two other pitch blocks to

113

Pitch block Pitch block

Pitch block

Alteration
block

Rhythm block

Search

Figure 8.1: An idea for the future of the block structure

create its output, this result is mixed with the output of a rhythm block and an
alteration block, in this case an alteration block is a class that add constraint to
create irregularities in the result of the pitch block, resulting in some dissonance
for example. There is a lot of these kind of blocks that can be added either
from completely new ideas or by separating the current functionalities of the
block object. It is nevertheless important to not get carried away, a block should
not replace what can be a single constraint, for example an increasing pitch
block which only create melody with increasing pitch is probably not a good
idea as it multiplies objects for what could be a simple constraint in the pitch block.

Next is the interaction between blocks. At the moment blocks only interaction
is through some kind of constraints sharing while there is a lot more that can
be done. Allowing to fix the melody generated by a specific block for example,
instead of sharing its constraint, this block does it’s own search, fix its melody
output and shares it with the parent block, then when the composer search for
new melody there is always a part of the solution that doesn’t change which is
useful when we found a nice musical voice for the lead, but the chords are not
that good.

Furthermore, we could include genre Blocks such as a Jazz, Blues, Rock,
Metal or Pop Blocks by extending the already existing Block. This would allow
the composer to select musical constraints, rhythms and chord progressions that
are more genre specific. For example, it would not make sense in Pop music to

114

include a constraint allowing the devil’s tritone[[] intervals since Pop music follows
quiet rigorously the musical rules of consonance. This is why it tends to sound
catchy at first but can quickly become monotonous. However in Metal, it would
perfectly make sense to include dissonance by allowing devil’s tritone intervals.

Finally, along the same line, we could include instrument specific Blocks
also by extending the already existing Block. This would allow to generate an
orchestral pieces where each block would represent an instrument. These blocks
would already contain its specific physical constraints such as the tessitura or
range of the instrument in order for the solver to provide realistic scores. For
instance, it wouldn’t generate a fast sequence of high pitched notes for a tuba.
Whereas for a piccolo it could be perfectly possible.

8.2.3 A final word about musical constraints

Adding new possibility of musical constraints is the most obvious and easiest
way to improve Melodizer 2.0. Giving a list of constraint ideas would be useless
because while working on this project we quickly realized that any constraint can
in a fact be a musical constraint, it’s a matter of applying it on the right musical
aspect. When creating new constraint opportunities one should not be stopped
by thinking that a constraint will not serve any purpose as composers always
enjoy more possibilities and find way to create some melodies out of the most
unexpected tools.

It is needless to say that there can be an immense amount of possible musical
constraints with all the existing genres and compositional styles. This is why, in
the context of our thesis we focused more in developing the main building blocks
where more features could be added on top. Rather than attempting to represent
all the possible musical constraints. Nevertheless, we questioned ourselves how
we could eventually integrate as many musical constraints as possible. We came
up with the following ideas :

o Ask advise to several composer of different genres in order to cover the
most widely used constraints.

e Create an Open Source project. This would allow for computer-savvy
composers to add the musical constraints they need but that aren’t available
yet.

o Allow the composer to write some kind of code to create themselves the
constraints that fits them best. This was a question asked by a spectator of
the audience at IRCAM when Damien Sprockeels presented Melodizer. He
requested if it was possible for the user to encode himself his own musical
constraints. However, the major drawback is that not all the composers
know nor want to code!

Lalso known as augmented fourth or diminished fifth

115

Bibliography

[12]

Aidan. An Introduction To The 12 Bar Blues. Happy Bluesman. Aug. 25,
2019. URL: https://happybluesman.com/introduction-12-bar-blues/
(visited on 06/03/2022).

Stephen Boyd and Jacob Mattingley. “Branch and bound methods”. In:
Notes for EE364b, Stanford University (2007), pp. 2006-07.

C. W. Choi et al. “Finite Domain Bounds Consistency Revisited”. In: ATl
2006: Advances in Artificial Intelligence. Ed. by Abdul Sattar and Byeong-
ho Kang. Berlin, Heidelberg: Springer Berlin Heidelberg, 2006, pp. 49-58.
ISBN: 978-3-540-49788-2.

Adolphe Danhauser. Théorie de la musique. Lemoine, 1994.

Romuald Debruyne and Christian Bessiere. “Some practicable filtering
techniques for the constraint satisfaction problem”. In: In Proceedings of
IJCATI’97. Citeseer. 1997.

Jean-Louis Foucart. Vingt lecons d’harmonie pour comprendre et composer
la musique. 2004.

Robert M Haralick and Gordon L Elliott. “Increasing tree search efficiency
for constraint satisfaction problems”. In: Artificial intelligence 14.3 (1980),
pp- 263-313.

William D Harvey and Matthew L Ginsberg. “Limited discrepancy search”.
In: IJCAI (1). 1995, pp. 607-615.

Scott Jarrett and Holly Day. Music composition for dummies. John Wiley
& Sons, 2008.

Baptiste Lapiere. “Computer-aided musical composition Constraint pro-
gramming and music”. MA thesis. UCLouvain, 2019-2020.

Pascal Van Hentenryck Laurent Michel Pierre Schaus. Part 1: Querview of
CP, Filtering, Search, Consistency, Fixpoint. 2021. URL: https://minicp.
readthedocs.io/en/latest/learning minicp/part_1.html (visited on
05,/04,/2022).

Pascal Van Hentenryck Laurent Michel Pierre Schaus. Part 5: Circuit
Constraint, TSP, Optimization, LNS, and VRP. 2021. URL: https://
minicp.readthedocs.io/en/latest/learning minicp/part_5.html
(visited on 05/04/2022).

116

https://happybluesman.com/introduction-12-bar-blues/
https://minicp.readthedocs.io/en/latest/learning_minicp/part_1.html
https://minicp.readthedocs.io/en/latest/learning_minicp/part_1.html
https://minicp.readthedocs.io/en/latest/learning_minicp/part_5.html
https://minicp.readthedocs.io/en/latest/learning_minicp/part_5.html

[13]
[14]

[15]

[16]
[17]

[18]

[19]

[20]
[21]
[22]
[23]
[24]
[25]

[20]

Deborah Lupton. Digital sociology. Routledge, 2014.

Laurent Michel, Pierre Schaus, and Pascal Van Hentenryck. “MiniCP: a
lightweight solver for constraint programming”. In: Mathematical Program-
ming Computation 13.1 (2021), pp. 133-184.

Global Guitar Network. Chord Progressions in a Major Key. URL: https://
globalguitarnetwork.com/chord-progressions-major-key/| (visited

on 05/25/2022).

Michael Pilhofer and Holly Day. Music theory for dummies. John Wiley &
Sons, 2019.

David Pisinger and Stefan Ropke. “Large neighborhood search”. In: Hand-
book of metaheuristics. Springer, 2010, pp. 399-419.

Ircam - Centre Pompidou. OpenMusic Documentation. URL: https: //
support.ircam.fr/docs/om/om6-manual/co/0OM-Documentation.html
(visited on 05/17/2022).

Ircam - Centre Pompidou. OpenMusic Documentation : Score objects. URL:
https://support.ircam.fr/docs/om/om6-manual/co/ScoreObjects.
html| (visited on 05/17/2022).

Christopher G Reeson et al. “An interactive constraint-based approach to
Sudoku”. In: AAAIL 2007, pp. 1976-1977.

Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. “Modeling and
programming with gecode”. In: vol. 1. 2010. Chap. 4, pp. 55-290.

Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. “Modeling and
programming with gecode”. In: vol. 1. 2010. Chap. 8, pp. 121-148.

Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. “Modeling and
programming with gecode”. In: vol. 1. 2010. Chap. 2, pp. 13-34.

Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. “Modeling and
programming with gecode”. In: vol. 1. 2010. Chap. 5, pp. 83-92.

Christian Schulte, Guido Tack, and Mikael Z Lagerkvist. “Modeling and
programming with gecode”. In: vol. 1. 2010. Chap. 9, pp. 149-184.

Barabara M Smith, Kostas Stergiou, and Toby Walsh. “Modelling the
Golomb ruler problem”. In: Research report series-university of Leeds school
of computer studies LU SCS RR (1999).

Piano Time [Computer Software]. URL: https://apps.microsoft.com/
store/detail/piano-time/9WZDNCRFJC9S?hl=en-us&gl=US.

Damien Sprockeels. “Melodizer : A Constraint Programming Tool For
Computer-aided Musical Composition”. MA thesis. UCLouvain, 2020-2021.

ThePiano.SG. How To Tell The Quality Of A Musical Chord. URL: https:
//www .thepiano.sg/piano/read/how-tell-quality-musical-chord
(visited on 05/25/2022).

117

https://globalguitarnetwork.com/chord-progressions-major-key/
https://globalguitarnetwork.com/chord-progressions-major-key/
https://support.ircam.fr/docs/om/om6-manual/co/OM-Documentation.html
https://support.ircam.fr/docs/om/om6-manual/co/OM-Documentation.html
https://support.ircam.fr/docs/om/om6-manual/co/ScoreObjects.html
https://support.ircam.fr/docs/om/om6-manual/co/ScoreObjects.html
https://apps.microsoft.com/store/detail/piano-time/9WZDNCRFJC9S?hl=en-us&gl=US
https://apps.microsoft.com/store/detail/piano-time/9WZDNCRFJC9S?hl=en-us&gl=US
https://www.thepiano.sg/piano/read/how-tell-quality-musical-chord
https://www.thepiano.sg/piano/read/how-tell-quality-musical-chord

Appendix A

How to install Melodizer 2.0

This appendix explains how to download and install Melodizer 2.0. GiL does
not work on Windows because Lisp’s license used by OpenMusic is a 32bit version,
and the Gecode Windows version is 64 bits by default. Therefore Melodizer 2.0
work only in the MacOS and Linux operating systems.

A.1 Download and install

In order to use Melodizer 2.0 inside OpenMusic, we frstly have to :

Download and install Gecode : https://www.gecode.org/download.html
Download and install OpenMusic : https://openmusic-project.github.io/openmusic/
Download GiL : https://github.com/sprockeelsd/GiLv2.0

Download Melodizer 2.0 : https://github.com/clemsky/TFE-Composition-
Musicale

A.2 Loading the libraries to OpenMusic

To load the libraries and start using it you first have to launch Open Music.
On the first window you can either create a new workspace or open the previous
one as seen in figure [A.T] When you workspace is open, in the toolbar in the
upper part of the interface click the "windows" button highlighted in figure
and then "Library" in the dropdown menu. A new window will open, select
"File" in the toolbar and the "Add remote library", from there you will be able
to navigate your file system to find the path to your Melodizer and Gil library
previously downloaded. Finally the two libraries should appear in the "Library"
window under the "libraries" folder as seen in figure [A.3] right click on Melodizer
and select "load", if no error appears everything should be up and ready to go.
Nevertheless if an error does appear, there is great chance that it is due to a
linking problem with the Gecode library, to solve it on MacOS you can use the
script found in the c++ folder of the gil library, before using it you should edit

118

OpenMusic - Workspaces X

o Open previous workspace

homelamdiels/Bureaw/'OM workspace/

Open a workspace

[Select the wiorkspace root directory]

| Create a new workspace

Quit oK

Figure A.1: First window when launching Open Music

OM workspace - o0

OM6.20 File Edit Presentation Help

patch patch2 patch3

Figure A.2: The workspace of Open Music

the path to Gecode inside it to be the one used by your system. If you are using
Linux you should add the Gecode library to the LD LIBRARY_ PATH variable,
to do that head to the folder /etc/ld.so.conf.d of your system and add a new
.conf file if one is not already present. Paste the full path to your Gecode library
in this file and save it, then run sudo ldconfig to update your system with the
new library and you should be ready to properly use Melodizer.

119

OM Packages Libr... - O X

OM6.20 File Edit windows H

b BB kemel
p 5 basic wools
b i sCore
b B midi
b B audio
B osc
B8 sdi
B mathtools
< [ibraries
[v B3 metodizer]
=E
b - user
ES globals

3
3

Figure A.3: The library window of Open Music

120

14

[SRIoNIEN RN

AW N =

WwWwWwWwwWwNNNNDNNDNNN
TRV ~O© W0 T

Appendix B

(Gecode source code

B.1 Sudoku propagation example

#include <gecode/driver .hh>
#include <gecode/int .hh>

#include <gecode/minimodel.hh>
#include <gecode/int/arithmetic.hh>
#include <gecode/set.hh>

#include <vector>

using namespace Gecode;

class Melody : public Space {
protected :

IntVarArray x;
public:

Melody (void) : x(*this, 9, 1, 9) {

int v[] ={ 7, 9 };
IntSet c(v, 2);

rel (xthis, x[1] |
rel (xthis, x[3], IRT_EQ, 1);
x[6] 3) 5

rel (xthis , [, IRT_EQ 8
dom(*this, x[0], 1, 6);
dom(*this, x[2], 1, 5);
dom(*this, x[4], 1, 5);
dom(*this , x[5], 7, 9);

dom (*this , x[7], c);

dom (*this , x[8], c);

distinct (*this, x, IPL DOM); //for domain propagation
//distinct (xthis , x, IPL_VAL); //for value propagation
//distinct (xthis, x, IPL_BND); //for bound propagation

branch (# this , x, INT_VAR_NONE() , INT_VAL_MIN()) ;

b
Melody (Melody& s) : Space(s) {
x.update (*this , s.x);

virtual Spacex copy(void) {
return new Melody (*this);

void print(std::ostream& os) const {
os << x << std::endl;
}

5

int main(int argc, charx argv([]) {
Melody* m = new Melody;
Gist :: Print<Melody> p("Print solution");
Gist :: Options o;
o.inspect.click(&p);
Gist :: dfs (m, o0);
delete m;
return 0;

}

121

Appendix C

Gil source code

This appendix contains the code of Gil, the interface between Lisp and
Gecode which was first implemented by Baptiste Lapiere [10], then improved
by Damien Sprockeels [28] and finally we further developed it during our the-
sis. The code is divided in two main parts, the C wrapper in section and
the lisp wrapper in section [C.2 You can find more about Gil and how we
upgraded it in chapter [l The complete code can also be found on github at
https://github.com /sprockeelsd /GiLv2.0

C.1

C Wrapper

The C wrapper is used to wrap Gecode function with C functions, in order to
be able to call them from Lisp using CFFI. It is made of 4 files :

space__wrapper.hpp : header file that contains the declaration of the c+-+
function and classes wrapping gecode elements, but also the declaration of
the space and the arrays containing all the variables.

space__wrapper.cpp : implements the function and classes to wrap
Gecode.

gecode__wrapper.hpp : declares the C function that will wrap the C++
functions of space wrapper.cpp.

gecode__wrapper.hpp : implements the function of gecode wrapper.hpp.

C.1.1 space__ wrapper.hpp

1 #ifndef space__wrapper__hpp
2 #define space__wrapper__hpp
3

3
I #include <vector>

5 #include <iostream >
6 #include <stdlib.h>
7 #include <exception>

8 #include "gecode/kernel.hh"
9 #include "gecode/int.hh"

0 #include "gecode/search.hh"

11 #include "gecode/minimodel.hh"
12 #include "gecode/set.hh"

122

https://github.com/sprockeelsd/GiLv2.0

29
30

31
32
33
34
35
36
37
38
39
40
41

43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59

using namespace Gecode;
using namespace Gecode::
using namespace Gecode::
using namespace std;

using namespace Gecode:: Search;

class WSpace: public IntMinimizeSpace {
protected :

vector<IntVar> int__vars;

vector<BoolVar> bool__vars;

vector<SetVar> set__vars;

int i_size;

int b__size;

int s__size;

int cost_id;

//int* solution_variable indexes;// to know what variables will hold

for bab

int* solution__variable_indexes;

int var__sol_size;

int percent_ diff;

//

//= Variables from idx =

//

/%%

Return the IntVar contained in int__vars at index vid.

*/

IntVar get_int_var(int vid);

/%%

Return the BoolVar contained in bool_ vars at index vid.

*/

BoolVar get_bool var(int vid);

/%%

Return the SetVar contained in set__vars at index vid.

*/

SetVar get_ set_var(int vid);

//

//= Args for methods =

//

/%%

Return an IntVarArgs of size n, containing the n IntVars contained

int__vars at indices vids.

*

IntVarArgs int_var_ args(int n, intx vids);

/%%

Return a BoolVarArgs of size n, containing the n BoolVars contained

bool_vars at indices vids.

*/

BoolVarArgs bool_ var_args(int n, int* vids);

Ve

Return a SetVarArgs of size n, containing the n SetVars contained in

set__vars at indices vids.

*/

SetVarArgs set_var_args(int n, intx vids);

/%%

Return an IntArgs of size n, containing the n values in vals

*/

IntArgs int_args(int n, intx vals);

/%%

Return the expression int_rel(vid, val)

*/

BoolVar bool_ expr_val(int vid, int int_rel, int val);

VEES

Return the expression int_rel(vidl, vid2)

*/

BoolVar bool_expr_var(int vidl, int int_rel, int vid2);
public:

/%%

Default constructor

*/

WSpace () ;

//

//= Variables and domains =

//

/%%

Add an IntVar to the WSpace ranging from min to max.

In practice, push a new IntVar at the end of the vector int_vars.

123

the

in

in

solution ,

useful

105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131

132
133
134
135
136

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195

Return the index of the IntVar in int_vars
*/

int add_intVar(int min, int max);

/%%

Add an IntVar to the WSpace with domain dom of size s.

In practice, push a new IntVar at the end of the vector int_vars.
Return the index of the IntVar in int__vars
*/

int add_intVarWithDom (int s, intx dom);

/%%

Add n IntVars to the WSpace ranging from min to max.

In practice, push n new IntVars at the end of the vector int__vars.
Return the indices of the IntVars in int__vars.

*/

int* add__intVarArray (int n, int min, int max);

/%%

Add n IntVars to the WSpace with domain dom of size s.

In practice, push n new IntVars at the end of the vector int_vars.
Return the indices of the IntVars in int__vars.

*/

int* add_intVarArrayWithDom (int n, int s, int* dom);

Ve

Define which variables are to be the solution so they can be accessed to add a
constraint with bab

*/

void set__as_solution__variables(int n, int*x vids);

/%%

Define the percentage of the solution that should change when searching for the next

solution with BAB
*/

void set__percent_diff(int diff);

/%%

Return the number of IntVars in the space.
*/

int nvars();

enum {
//Relations for BoolExpr
B_EQ,
B_NQ,

s
/%%

Add a BoolVar to the WSpace ranging from min to max.

In practice, push a new BoolVar at the end of the vector bool_ vars.
Return the index of the BoolVar in bool_vars

*/

int add_boolVar(int min, int max);

Ve

Add n BoolVars to the WSpace ranging from min to max.

In practice, push n new BoolVars at the end of the vector bool wvars.
Return the indices of the BoolVars in bool_ vars.

o/

int* add_boolVarArray(int n, int min, int max);

* %

Add a BoolVar to the WSpace corresponding to the evaluation of int_rel(vid, wval).

In practice, push a new BoolVar at the end of the vector bool_ vars.
Return the index of the BoolVar in bool_vars
*/

int add__boolVar_expr_val(int vid, int int_rel, int wval);

/%%

Add a BoolVar to the WSpace corresponding to the evaluation of int_ rel(vidl, vid2).

In practice, push a new BoolVar at the end of the vector bool_ vars.
Return the index of the BoolVar in bool_vars
*/

int add_boolVar_expr_var(int vidl, int int_rel, int vid2);

/%%

Add a SetVar to the WSpace initialized with n integer from array r.
In practice, push a new SetVar at the end of the vector set__vars.
Return the index of the SetVar in set__vars.

*/

int add_setVar(int lub_min, int lub_max, int card _min, int card_ max);

/%%

Add n SetVars to the WSpace ranging with cardinality card_min to card_max.

In practice, push n new SetVars at the end of the vector set_ vars.
Return the indices of the SetVars in set__vars.
*/

int* add_setVarArray(int n, int lub_min, int lub_max, int card min, int card max) ;

124

//
//= Posting constraints =
//

//=—= INTVARS =—

Ve

Post a relation constraint between the IntVar denoted by vid and the wval.
*/

void cst_val_rel(int vid, int rel_type, int wval);

/%%

Post a relation constraint between the IntVars denoted by vidl and vid2.
*/

void cst_var_rel(int vidl, int rel_type, int vid2);

/%%

Post a relation constraint between the IntVars denoted by vidl and vid2 with reification .
*/

void cst__var_rel_ reify (int vidl, int rel_ type, int vid2, int vid3, int mode);

/%%

Post a relation constraint between the IntVars denoted by vidl and val with reification .
*/

void cst_val_rel_reify (int vidl, int rel_type, int val, int vid2, int mode);

/%%

Post a relation constraint between the n IntVars denoted by vids and the wval.
*/

void cst_arr_val_rel(int n, int* vids, int rel _type, int val);

/%%

Post a relation constraint between the n IntVars denoted by vids and the the IntVar vid.
void cst__arr_var_rel(int n, int* vids, int rel type, int vid);

/%%

Post a relation constraint between the n IntVars denoted by vids.
*/

void cst_arr_rel(int n, int*x vids, int rel_ type);

[®

Post a lexicographic relation constraint between the nl IntVars denoted by vidsl and
the n2 IntVars denoted by vids2.

*/

void cst_arr_arr_rel(int nl, int*x vidsl, int rel_type, int n2, int*x vids2);

/%%

Post the constraint that the n IntVars denoted by vids are distinct
void cst__distinct(int n, intx vids);
/%%

Post the linear constraint [c]x*[vids] rel val.

*/

void cst__val_linear(int n, int* c, int*x vids, int rel_type, int val);
VEES

Post the linear constraint [c]*[vids] rel_type vid.

*/

void cst_var_linear (int n, int* c, int* vids, int rel_type, int vid);
* %

Post the constraint that |vidl| = vid2.

*/

void cst_abs(int vidl, int vid2);

/%%

Post the constraint that dom(vid) = d, where d is a set of size n.
v:k){d cst_dom(int vid, int n, intx d);

/%%

Post the constraint that vid is included in {vids[0], ..., vids[n—1]}
v:;{d cst_member(int n, intx vids, int vid);

[®

Post the constraint that vidl / vid2 = vid3.
*/

void cst_div(int vidl, int vid2, int vid3);

/%%

Post the constraint that vidl % vid2 = vid3.
*/

void cst_mod(int vidl, int vid2, int vid3);

/%%

Post the constraint that vidl / vid2 = vid3
and vidl % vid2 = div4

*/

void cst_divmod(int vidl, int vid2, int vid3, int vid4);

125

289
290

292

w W
(SRS
=]

WwWwwwww
[Se
O Ut W N

vl G o

w
ot
0

359
360
361
362
363

364
365
366
367
368
369

370
371
372
373
374
375

376

/%%

Post the constraint that min(vidl, vid2) = vid3.
*/

void ecst_min(int vidl, int vid2, int vid3);
VEES

Post the constraint that vid = min(vids).
*/

void cst_arr_min(int n, int*x vids, int vid);
/%%

Post the constraint that vid = argmin(vids).
«/

void cst_argmin(int n, intx vids, int vid);
/%%

Post the constraint that max(vidl, vid2) = vid3.
«/

void cst_max(int vidl, int vid2, int vid3);
/%%

Post the constraint that vid = max(vids).
*/

void cst_arr_max(int n, intx vids, int vid);
Ve

Post the constraint that vid = argmax(vids).
*/

void cst_argmax(int n, intx vids, int wvid);
*

Post the constraint that vidl % vid2 = vid3.
*/

void cst_mult(int vidl, int vid2, int vid3);
/%%

Post the constraint that sqr(vidl) = vid2.
*/

void cst_sqr(int vidl, int vid2);

VEES

Post the constraint that sqrt(vidl) = vid2.
*/

void cst_sqrt(int vidl, int vid2);

/%%

Post the constraint that pow(vidl, n) = vid2.
“/

void est_pow(int vidl, int n, int vid2);

/%%

Post the constraint that nroot(vidl, n) = vid2.
*/

void cst_nroot(int vidl, int n, int vid2);
/%%

Post the constraint that vid = sum(vids).
*/

void cst_sum(int vid, int n, intx vids);

/®x

Post the constraint that the number of variables in vids equal to wvall has
rel__type

with val2.

*/

void cst_count_val_val(int n, int* vids, int vall, int rel _type, int val2);

/%%

relation

Post the constraint that the number of variables in vids equal to val has relation

relation

rel_type

with vid.

*/

void cst_count_val var(int n, int* vids, int val, int rel type, int vid);
VEES

Post the constraint that the number of variables in vids equal to vid has relation
rel__type

with val.

*/

void cst_count_var_val(int n, int* vids, int vid, int rel _type, int val);

* %

Post the constraint that the number of variables in vids equal to vidl has
rel_type

with vid2.

*/

void cst_count_var_var(int n, int* vids, int vidl, int rel type, int vid2);
/%%

Post the constraint that the number of variables in vids in the set set has
rel type with vid2
*/

126

relation

377
378
379
380

381
382
383
384
385

386
387
388
389
390
391
392
393
394
395
396
397
398

399
400
401
402
403
404
405
406
407
408
409
410

412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466

void cst_count_var_set_val(int n, intxvids, int s, intx set, int rel type, int val);

/%%

Post the constraint that the number of variables in vids where vars[i] = c[i] and c

an array of integers has rel_ type to val
*/

void cst_count_array_ val(int n, int*vids, intx c, int rel type, int wval);

Ve

Post the constraint that the number of occurences of s—set in every subsequence of

length
vall in vids must be higher than val2 and lower than val3

*/

void cst_sequence_var(int n, intxvids, int s, int*x set, int vall, int val2, int val3);

/%%

Post the constraint the number of distinct values in the n variables denoted by vids

has the given rel type relation with the variable vid.

*/

void cst_nvalues(int n, int*x vids, int rel_type, int vid);

/%%

Post the constraint that values of vidsl are the edges of an hamiltonian circuit
the graph formed by the n variables in vidsl, vids2 are the costs of these edges
described

by ¢, and vid is the total cost of the circuit, i.e. sum(vids2).
*/

void c¢cst__circuit (int n, int* c, int*x vidsl, int*x vids2, int vid);
/%%

Post the constraint that if there exists j (O[U+FFFD]j < |x|) such thatx[j] = t,
then there must exist i with i < j such that x[i] = s

*/

void cst_precede(int n, int*x vids, int t, int u);

/ /=== BOOLVARS =—=

/%%

Post the constraint that vidl bool _op vid2 = wval.

*/

void cst_boolop_val(int vidl, int bool op, int vid2, int val);

[®

Post the constraint that elements of vids bool_op wval.

*/

void cst_boolop_arr_val(int bool_op, int s, int* vids, int val);
/%%

Post the constraint that y is the result of bool op between all element of vids.
*/

void cst_boolop_arr_var(int bool _op, int s, int*x vids, int vidl);
/%%

Post the constraint that vidl bool op vid2 = vid3.

*/

void cst_boolop_var(int vidl, int bool op, int vid2, int vid3);
/%%

Post a relation constraint between vid and val.

*/

void cst_boolrel_val(int vid, int rel_type, int val);

/%%

Post a relation constraint between vidl and vid2.

*/

void cst__boolrel_var(int vidl, int rel_type, int vid2);

//=——= SETVARS ——

/%%

Post the constraint that vidl set_op vid2 = wvid3.

*/

void cst_setop_var(int vidl, int set_op, int vid2, int set_rel, int vid3);
/%%

Post the constraint that y set_op x.

*/

void cst_setop_arr(int set_op, int s, intx vidl, int vid2);

/%%

Post a relation constraint between vidl and vid2.

*/

void cst_setrel_var (int vidl, int rel_type, int vid2);

/%%

Post a relation constraint between vidl and vid2.

*/

void cst_setrel val(int vidl, int rel type, int* dom, int s);
/%%

Post a relation constraint between vidl and domain dom with reify.

*/

void cst_setrel val_ reify (int vidl, int rel type, intx dom, int s, int r, int mode);

127

467

468 /%%

469 Post a relation constraint between vidl and vid2 with reify.

470 «/

471 void cst_setrel_ var_reify (int vidl, int rel_type, int vid2, int r, int mode);

472

473 /%%

474 Post a dom constraint between vidl and dom {i,..., j}.

475 */

476 void cst_setdom_ints(int vidl, int rel type, int i, int j);

477

478 /%%

479 Post a dom constraint between vidl and vid2.

480 */

481 void cst_setdom_set(int vidl, int vid2);

482

483 /%%

484 Post a constraint that SetVar vidl has to be empty

485 */

486 void cst_set_empty(int vidl);

487

488 e

489 Post a cardinality constraint on vidl.

490 */

491 void cst_card val(int n, intx vids, int min card, int max_card);

492

493 /%%

494 Post a cardinality constraint on vidl with intvar vid2

495 */

496 void cst_card_var(int vidl, int vid2);

497

498 /%%

499 Post a channeling constraint between vidl and vid2

500 */

501 void cst__channel(int nl, int* vidsl, int n2, intx vids2);

502

503 /%%

504 Post a channeling constraint between boolVarArray vidl and SetVar vid2

505 «/

506 void cst_channel sb(int nl, intx vidsl, int vid2);

507

508 /%%

509 Return an intvar constrained to the minimum of setvar vidl

510 */

511 int cst_setmin(int vidl);

512

513 /%%

514 Return an intvar constrained to the maximum of the setvar vidl

515 */

516 int cst_setmax(int vidl);

517

518 /%%

519 Return an intvar constrained to the minimum of the setvar vidl with reification

520 */

521 void cst_setmin_reify (int vidl, int vid2, int r, int mode);

522

523 e

524 Return an intvar constrained to the maximum of the setvar vidl with reification

525 */

526 void cst_setmax_reify (int vidl, int vid2, int r, int mode);

527

528 /%%

529 Post a relation constraint beween setvar vidl and the union of the set in wvids

530 */

531 void cst_setunion (int vidl, int n, int*x vids);

532

533 /%%

534 Post a relation constraint beween setvar vidl and the union of the set in vids

535 */

536 void cst_element(int set_op, int n, int* vids, int vidl, int vid2);

537

538

539 //

540 //Branch and bound constraint function =

541 //

542

543 /*

544 Constrain method for BAB search

545 This is called everytime the solver finds a solution

546 */

547 virtual void constrain(const Space& _b);

548

549 //

550 //= Exploration strategies =

551 //

552

553 /%%

554 Post a branching strategy on the n IntVars in vids, with strategies denoted by
var__strategy and

555 val strategy .

556 */

557 void branch(int n, intx vids, int var_ strategy, int val strategy);

558

128

559 /%%

denoted by

denoted by

560 Post a branching strategy on the n BoolVars in vids, with strategies
var__strategy and
561 val_strategy .
562 */
563 void branch_b(int n, int*x vids, int var_strategy, int val_ strategy);
564
565 /%%
566 Post a branching strategy on the n SetVars in vids, with strategies
var__strategy and
567 val_ strategy .
568 ®/
569 void branch_set(int n, intx vids, int var_strategy, int val_strategy);
570
571 //
572 //= Search support =
573 //
574
575 void cost(int vid);
576
577 virtual IntVar cost(void) const;
578
579 WSpace (WSpace& s) ;
580
581 virtual Spacex copy(void);
582
583 //
584 //= Getting solutions =
585 //
586
587 /% *
588 Return the current values of the variable denoted by vid.
589 */
590 int value(int wvid);
591
592 /%%
593 Return the current values of the variable denoted by vid.
594 */
595 int value__bool(int wvid);
596
597 [x
598 Return the current values of the SetVar denoted by vid.
599 Wy
600 int* value_set(int vid, int n);
601
602 /**
603 Return the current size of the SetVar denoted by vid.
604 ®/
605 int value_size(int wvid);
606
607
608 /%%
609 Return the current values of the n variables denoted by vids.
610 */
611 int* values(int n, int*x vids);
612
613 //
614 //= Printing solutions =
615 //
616
617 /%%
618 Print the n variables denoted by vids.
619 */
620 void print(int n, int*x vids);
621 };
622
623 //
624 //= Search options =
625 //
626
627 class WTimeStop {
628 protected :
629 Gecode :: Search :: TimeStop stop;
630 Gecode :: Search :: TimeStop* stop_ ptr;
631
5 public:
WTimeStop (int maxTime) ;
~WTimeStop () ;
void reset ();
TimeStop getStop () ;
TimeStop* getStopPtr () ;
b
641 class WSearchOptions {
642 protected :
643 Gecode :: Search :: Options opts;
645 public:
646 WSearchOptions () ;
647 ~WSearchOptions () ;
648
649 [%%

129

665
666
667
668
669
670
671
672

674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703

N O U W N

getter for the opts field
*/
Options getOpts () ;

/%%
Different functions to add options

*/
Ve

set the number of threads to use for parallel search

*/
int setNbThreads(int nThreads) ;

/%%

Set the time stopping mechanism that is to be used during the

duration in ms
*/
void setTimeStop (WTimeStopx timestop);

};

//
//= Search engine =
//

class WhbabEngine { // new version
protected :
BAB<WSpace>* bab;
public:
WhbabEngine (WSpacex sp, Options opts);
~WbabEngine () ;

/%%

Search the next solution for this search engine.
*/

WSpace* next () ;

int stopped();

Hs
class WdfsEngine {
protected :
DFS<WSpace>* dfs ;
public:
WdfsEngine (WSpace*x sp, Options opts);
~WdfsEngine () ;
/%%
Search the next solution for this search engine.
*/
WSpace* next () ;
int stopped();
+s
#endif

C.1.2 space__wrapper.cpp

#include "headers/space__wrapper.hpp"
#include <iostream>
#include <fstream>

using namespace Gecode;
using namespace Gecode::
using namespace Gecode::
using namespace std;

/*
To Print value to a file
ofstream myfile;
myfile.open ("/home/amdiels/Bureau/example.txt", ios
myfile << value << endl;
myfile.close ();

*/

/%%

Default constructor
*/

WSpace : : WSpace () {
i_size = 0;
b_size = 0;
s__size = 0;

}

//

//= Variables from idx =
//

/

Return the IntVar contained in int__vars at index vid

130

1app);

search to a certain

[SN

[B B e B B B |
© 00 ~J w

95

98

99
100
101
102
103
104
105
106
107
108
109
110

*/

IntVar WSpace:: get_int_var(int vid) {

return

}
VEES

Return

int_vars.at(vid);

the BoolVar contained

in bool_v

ars at index vid

*/
BoolVar WSpace:: get__bool_var(int vid) {

return

¥
/%%

Return

*/

SetVar WSpace:: get__set__var(int

the SetVar

bool__vars.at(vid);

contained in

vid){

return set__vars.at(vid);

Args

for methods =

Return

int__vars at

*/

IntVarArgs WSpace::int__var_args(int n,

an IntVarArgs of

size n,

indices vids.

IntVarArgs x(n);

for (

x[i] =

int i = 0; i < n; i+4)

get_int__var(vids[i]);

return x;

/%%

Return an
bool_vars at

*/

BoolVarArgs WSpace:: bool var_args(int n,

BoolVarArgs of size n,
indices vids.

BoolVarArgs x(n);

for (

x[i] =

int i = 0; i

< n; i++)
get__bool_var(vids[i]);

return x;

}
/%%

Return

set__var

*/

SetVarArgs WSpace::

a SetVarArgs of size n,
s at indices vids.

SetVarArgs x(n);

for (

x[i]

int i = 0; i

< n; i++)
= get_set_var(vids[i]);

return x;

¥
/%%

Return

*/

IntArgs WSpace::int_args(int n,
IntArgs

for (

an IntArgs of size n,

c(n);
int i = 0; i

c[i] =

< nj
vals [i];

i++4)

return c;

¥
/%%

Return

*/

BoolVar WSpace:: bool__expr_val(int vid,

the expression int_rel(vid,

switch (int_rel) {

¥
/%%

Return

*
BoolVar WSpace:: bool _expr_var(int vidl, int int_rel, int vid2) {

case B_EQ: return expr(xthis,
case B NQ: return expr(xthis,
case B_LE: return expr(xthis,
case B_LQ: return expr(xthis,
case B_GQ: return expr(xthis,
case B GR: return expr(xthis,
default :
cout << "Wrong expression
return BoolVar () ;
the expression int_rel(vidl,

switch (int_rel) {

case B_EQ: return expr(xthis,
case B NQ: return expr(xthis,
case B_LE: return expr(xthis,
case B_LQ: return expr(xthis,
case B_GQ: return expr(xthis,

set__vars at

containing the n IntVars

containing the n BoolVars

containing the n

set__var_args(int n,

containing the n values

index vid.

int* vids) {

int* vids) {

SetVars

int* vids) {

in vals

intx vals) {

val)

int int_rel, int wval) {
get_int__var(vid) == val);
get_int_var(vid) != val);
get_int_var(vid) < val);
get_int_var(vid) <= val);
get_int__var(vid) >= val);

get_int_var(vid) > val);

type in BoolVar creation.

vid2)

get_int_var(vidl) ==
get__int_var(vidl) !=
get_int__var(vidl)
get_int_var(vidl)
get_int__var (vidl)

131

contained in

contained in

contained in

<< endl;

get__int__var(vid2
get__int__var(vid2
< get_int_var(vid2)
<= get_int_var(vid2
>= get__int_var(vid2

5
5
5

5

126
127
128
129
130

132
133
134
135
136
137
138
139
140
141
142
143
144
145
146

183
184
185
186

188

case B_GR: return expr(*this,
default :
cout << "Wrong expression

return BoolVar () ;

-

Variables and domains

Add an IntVar to the WSpace
In practice, push a new IntVar
Return the index of the IntVar
*/

int WSpace::add__intVar(int min,
return i_ size++;
¥

/%%

Add an IntVar to the WSpace with
at
in

In practice, push a new IntVar
Return the index of the IntVar
*/

int WSpace::add_intVarWithDom (int

int__vars.push_back(IntVar(xthis ,

return

i_size++;
¥

/%%

Add n IntVars
In practice ,
Return the indices
*/

int* WSpace::

to the WSpace
push n new IntVars

ranging from
at the end of the vector
in

of the IntVars

add__intVarArray(int n,

get_int_var(vidl) > get_int_var(vid2));

type in BoolVar creation." << endl;

min to max.
int__vars.

int__vars

int max) {
int__vars.push_back(IntVar (xthis ,

min, max));

domain dom of size s.
the end of the vector

int__vars

int__vars.

s, int* dom)

IntSet (dom, s)));

ranging from min to max.

at the end of the vector
in int_vars.

int__vars.

int min, int max) {

int* vids = new int[n];
for(int i = 0; i < n; i++4)
vids [i] = this—>add_intVar(min, max);

return vids;
}
/xx
Add n IntVars to the WSpace with domain dom of size s.
In practice, push n new IntVars at the end of the vector int_vars.
Return the indices of the IntVars in int__vars.

*/

int* WSpace::add_intVarArrayWithDom (int n, int s, int* dom) {
int* vids = new int[n];
for (int i = 0; i < nj; i++4)
vids [i] = this—>add_intVarWithDom (s, dom) ;
return vids;

b
/%%

Define which variables
with bab

are

*/
void WSpace::
solution__variable__indexes
for (int i=0; i<n; i++4+) {
solution__variable__indexes
¥

var__sol__size

n;

¥
/%%

Define the percentage
solution with BAB
*/

void WSpace:: set__percent__diff(int
percent__diff diff;
}

of the

VEES

Return the number of IntVars in
*/

int WSpace:: nvars () {

return i_ size;

}

/%%

Add a BoolVar to the WSpace

In practice, push a new BoolVar

Return the index of the BoolVar

*/

int WSpace::add__boolVar(int min,
bool_vars.push_back(BoolVar (*
return b_size++;

to be the

set__as_solution__variables(int n,
= new

solution that

solution
intx vids){
int [n];

[i]=vids [i];

should change when searching for

diff){

the space.

ranging from min to max.

at the end of the vector
in bool__vars

bool__vars.

int max) {

this , min, max));

132

so they can be accessed to add a constraint

217 [**
218 Add n BoolVars to the WSpace ranging from min to max.

219 In practice, push n new BoolVars at the end of the vector bool_ vars.
220 Return the indices of the BoolVars in bool_vars.

221 x/

222 int* WSpace:: add__boolVarArray (int n, int min, int max) {

223 int* vids = n int [n];

224 for(int i = 0; i < n; i++4)

225 vids[i] = this—>add_boolVar(min, max);

226 return vids;

227 }

228

229 /[**

230 Add a BoolVar to the WSpace corresponding to the evaluation of int_rel(vid, val).
231 In practice, push a new BoolVar at the end of the vector bool__vars.
232 Return the index of the BoolVar in bool_vars

233 %/

234 int WSpace::add_boolVar_expr_val(int vid, int int_rel, int val) {
235 bool_vars.push_ back(bool expr_val(vid, int_rel, val));

236 return b_ size++;

237 }

238

239 [k

240 Add a BoolVar to the WSpace corresponding to the evaluation of int_rel(vidl, vid2).
241 In practice, push a new BoolVar at the end of the vector bool vars.
242 Return the index of the BoolVar in bool_vars

243 x/

244 int WSpace::add_boolVar_expr_var(int vidl, int int_rel, int vid2) {
245 bool__vars.push_back(bool_expr_var(vidl, int_rel, vid2));

246 return b__size++;

247 }

248

249 [**

250 Add a SetVar to the WSpace initialized with n integer from array r.
251 In practice, push a new SetVar at the end of the vector set_vars.

252 Return the index of the SetVar in set_vars.

253 %/

254 int WSpace::add_ setVar(int lub_min, int lub_max, int card min, int card max) {
255 set__vars.push_ back(SetVar(xthis ,IntSet ::empty, lub_min, lub_max, card min, card max));
256 return s_size++;

257 }

258

259 /#*

260 Add n SetVars to the WSpace ranging with cardinality card_min to card__max.
261 In practice, push n new SetVars at the end of the vector set_vars.
262 Return the indices of the SetVars in set_vars.

263 x/

264 intx WSpace::add_setVarArray(int n, int lub_min, int lub_max, int card_min, int card_max) {

265 int* vids = new int[n];

266 for (int i = 0; i < n; i4++4)

267 vids [i] = this—>add_setVar(lub_min, lub_max, card min, card_ max);

268 return vids;

269 }

270

271

272 //

273 //= Posting constraints =

4 /)

275

276 //=—= INTVAR ——

277

278 [**

279 Post a relation constraint between the IntVar denoted by vid and the val.

280 x/

281 void WSpace:: cst_val_rel(int vid, int rel_type, int val) {

282 rel (xthis, get_int_var(vid), (IntRelType) rel _type, val);

283

284

285 /**

286 Post a relation constraint between the IntVars denoted by vidl and vid2.

287 x/

288 void WSpace::cst__var_rel(int vidl, int rel_ type, int vid2) {

289 rel (xthis, get_ int var(vidl), (IntRelType) rel type, get int_ var(vid2));

290

291

202 [k

293 Post a relation constraint between the IntVars denoted by vidl and vid2 with reification .

204 %/

295 void WSpace:: cst__var_rel_reify (int vidl, int rel _type, int vid2, int vid3, int mode) {

296 rel (xthis , get_int_var(vidl), (IntRelType) rel type, get_int_var(vid2), Reify(
get__bool_var(vid3), (ReifyMode) mode)) ;

297 }

298

299 /**

300 Post a relation constraint between the IntVars denoted by vidl and vid2 with reification.

301 x/

302 void WSpace:: cst__val_rel_ reify (int vidl, int rel_type, int val, int vid2, int mode) {

303 rel (xthis, get int var(vidl), (IntRelType) rel type, val, Reify(get_bool var(vid2), (
ReifyMode) mode)) ;

304 }

305

306 /o

307 Post a relation constraint between the n IntVars denoted by vids and the wval.

133

308 */
309 void WSpace:: cst__arr__val_rel(int n, int* vids, int rel_type, int val) {
rel (xthis, int_var_ args(n, vids), (IntRelType) rel type, val);

VEES
Post a relation constraint between the n IntVars denoted by vids and the the IntVar vid.
*/
void WSpace::cst_arr_var_rel(int n, intx vids, int rel_type, int vid) {
rel (xthis , int_var_args(n, vids), (IntRelType) rel_type, get_int_var(vid));

/%%
Post a relation constraint between the n IntVars denoted by vids.
*/
void WSpace:: cst__arr_rel(int n, int*x vids, int rel _type) {
rel (xthis, int_var_args(n, vids), (IntRelType) rel_type);
¥

/%%

Post a lexicographic relation constraint between the nl IntVars denoted by vidsl and

the n2 IntVars denoted by vids2.

*/

void WSpace::cst_arr_arr_rel(int nl, int* vidsl, int rel_type, int n2, int*x vids2) {
rel (xthis, int_ var args(nl, vidsl), (IntRelType) rel type, int_ var args(n2, vids2));

Ve
Post the constraint that all IntVars denoted by vids are distinct
*/
void WSpace:: cst__distinct (int n, int* vids) {
distinct (xthis, int_var_args(n, vids));
}

/%%

Post the linear constraint [c]x[vids] rel type val.

*/

void WSpace:: cst__val_ linear(int n, int*x c, intx vids, int rel type, int wval) {
linear (xthis , int_args(n, c), int_var_args(n, vids), (IntRelType) rel type, val);

}

VEES
Post the linear constraint [c]=*[vids] rel_type vid.
*/
void WSpace:: cst__var_linear (int n, int* ¢, int* vids, int rel_type, int vid) {
linear (xthis , int_args(n, c¢), int_var_args(n, vids), (IntRelType) rel type, get_int_var(

vid));
356 /**
357 Post the constraint that |vidl| = vid2.
358 %/
359 void WSpace::cst_abs(int vidl, int vid2) {
360 abs(*this, get_int_ var(vidl), get_int_ var(vid2));
361
362
363 [/
364 Post the constaraint that dom(vid) = d.
365 %/
366 void WSpace::cst_dom(int vid, int n, intx d) {
367 dom (*this , get_int_var(vid), IntSet(d, n));
368
369
370 /%%
371 Post the constraint that vid is included in {vids[O], ., vids[n—1]}
372 x/
373 void WSpace:: cst_member(int n, intx vids, int vid) {
374 member (x this , int__var_args(n, vids), get_int_ var(vid));
375 }
376
377 [x%
378 Post the constraint that vidl / vid2 = vid3.
379 %/
380 void WSpace:: cst_div(int vidl, int vid2, int vid3) {
381 div (xthis , get_int_var(vidl), get_int_var(vid2), get_int_var(vid3));
382
383
384 /xx
385 Post the constraint that vidl % vid2 = vid3.
386 %/
387 void WSpace::cst_mod(int vidl, int vid2, int vid3) {
388 mod (* this , get_int_var(vidl), get_int_var(vid2), get_int_var(vid3));
389
390
391 /x*

392 Post the constraint that vidl / vid2 = vid3

393 and vidl % vid2 div4

3094 x/

395 void WSpace::cst_divmod (int vidl, int vid2, int vid3, int vid4)

396 divmod (* this , get_ int var(vidl), get_ int var(vid2), get_int_var(vid3), get_int_ var(vid4))
;

397 }

398

134

399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415

416

481

486
487
488
489
490
491

/%%

Post the

*/

void WSpace::

}
VEES

Post the

*/

void WSpace::

¥
/%%

Post the

*/

void WSpace::

¥
/%%

Post the

*/

cst_min(int vidl,
Gecode :: min(* this ,

cst_argmin(int n,
Gecode :: argmin (* this ,

constraint that min(vidl,

constraint that vid =

cst__arr_min(int n,
Gecode :: min (* this ,

constraint that max(vidl,

int*
int__var_args(n,

get_int__var(vidl),

min (vid

int* vids,
int_var_args(n,

int vid2, int
get_int_var(vid2),

vids) ,

constraint that vid = argmin(vids).

vids , int

vids) ,

void WSpace::cst_max(int vidl, int vid2, int

}

* %k

Post the

*/

void WSpace::

}
/%%

Post the

*/

void WSpace::

}
VEES

Post the constraint that vidl * vid2

*/

void WSpace::

/%%

Post the

*/

void WSpace::
sqr (xthis , get_int_var(vidl),

/%%

Post the

*/

void WSpace::
Gecode :: sqrt (xthis ,

}

* ok

Post the

*/

Gecode : :max(* this ,

mult (x this ,

cst_argmax(int n,
Gecode ::argmax (* this ,

constraint that

cst__

constraint that

cst__

constraint that

cst_arr_max(int n,
Gecode : :max(* this ,

constraint that vid =

cst_mult (int vidl,
get_int_var(vidl),

get_int_var(vidl),

int* vids,
int_var_args(n,

argmax (

int_var_ args(n,

constraint that vid = max(vids).

vids) ,

vids) .

int* vids, int
vids) ,

vid3.

int vid2, int

get_int_var(vid2),

sqr (vidl) = vid2.

sqr (int vidl, int vid2)

sqrt (int vidl,

void WSpace::cst_pow (int vidl, i

}
/%%

Post the

*/

void WSpace::

VEES

Gecode :: pow (* this ,

nroot (*this ,

constraint that

cst__

nroot (int wvidl,

pow (vidl ,

nroot (vidl ,

sqrt (vidl) = vid2.

int vid2) {

get__int_var(vidl),

vid2) = vid3.

vid3) {

int vid) {

get_int__var (

vid) {

vid2) = vid3.

vid3) {

get_int_var(vid2),

vid));

get_int__var(vid));

int vid) {// comig[U+FFFD]

get_int__var(vid));

vid) {

vid3) {

{
get__int__var(vid2));

n) = vid2.

nt n, int vid2) {
get_int__var(vid2));

int n,

get_int_ var(vidl), n,

Post the constraint that vid =

*/

void WSpace::cst_sum(int vid,
rel (xthis , get_int_var(vid), IRT_EQ,

/%%

Post the

with val2.

*/

void WSpace::

}
VEES

count (xthis ,

constraint that the number

cst__count_val_ val(int n,

int__var_args(n,

int n,

get_int_var(vidl), n,

n) = vi

d2.

int vid2) {
get_int__var(vid2));

sum (vids) .

vids) ,

vall ,

int* vids) {
expr (x this ,

of variables in vids

int* vids, int wvall,

(IntRelType)

135

get_int_var(vid));

get_int_var(vid2));

get_int__var(vid3));

get_int__var(vid3));

get_int_var(vid3));

sum (int__var_args(n, vids))));

equal to vall has relation

int rel_type, int val2) {

rel type,

val2);

rel type

492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515

516

517
518

wt ot ot
Ot Ot Ot
SN

SRS
S
o

ut
at
o

Post the constraint that the number of variables in vids equal to val has relation rel type
with vid.
*/
void WSpace:: cst__count__val var(int n, int*x vids, int val, int rel type, int vid) {
count (xthis , int_var_args(m, vids), val, (IntRelType) rel type, get_int_ var(vid));

VEES

Post the constraint that the number of variables in vids equal to vid has relation rel type

with val.

*/

void WSpace::cst_count_var_val(int n, int* vids, int vid, int rel_type, int val) {// comiglU+FFFD]
count (*this , int_var_args(n, vids), get_int_var(vid), (IntRelType) rel_type, val);

/%%
Post the constraint that the number of variables in vids equal to vidl has relation rel type
with vid2.
*/
void WSpace:: cst__count__var_var(int n, int* vids, int vidl, int rel type, int vid2) {
count (xthis , int_var_ args(mn, vids), vidl, (IntRelType) rel type, get_int_ var(vid2));

VEES

Post the constraint that the number of variables in vids in the set set has relation
rel _type with val

*/

void WSpace:: cst_count_var_set_val(int n, intxvids, int s, intx set, int rel_type, int val){
// ajout[U+FFFD]
count (*this , int_var_args(n, vids), IntSet(set, s), (IntRelType) rel_type, val);

¥
/%%

Post the constraint that the number of variables in vids where vars[i] = c[i] and c is an
array of integers has rel_ type to val
*/

void WSpace:: cst__count__array_val(int n, intxvids, int* c, int rel_type, int val){
count (xthis , int_ var_ args(m, vids), int_args(n, c), (IntRelType) rel type, val);

VEES
Post the constraint that the number of occurences of s—set in every subsequence of length
vall in vids must be higher than val2 and lower than val3
*/
void WSpace:: cst_sequence_var(int n, intxvids, int s, intx set, int vall, int val2, int wval3)
{// aput[U+FFFD]
sequence (*this , int_var_args(n, vids), IntSet(set, s), vall, val2, val3);

/%%
Post the constraint that the number of distinct values in the n variables denoted by vids
has the given rel type relation with the variable vid.
*/
void WSpace:: cst__nvalues(int n, int*x vids, int rel type, int vid) {
nvalues (*this, int_var_ args(n, vids), (IntRelType) rel type, get_int_var(vid));
}

VEES

Post the constraint that values of vidsl are the edges of an hamiltonian circuit in

the graph formed by the n variables in vidsl, vids2 are the costs of these edges described

by ¢, and vid is the total cost of the circuit, i.e. sum(vids2).

*

/

void WSpace:: cst__circuit (int n, int*x c, intx vidsl, int*x vids2, int vid) {
circuit (xthis, int_args(n*n, c), int_var_args(n, vidsl), int_var_args(n, vids2),
get_int__var(vid));

/%%

Post the constraint that if there exists j (O[U+FFFD]j < |x|) such that x[j] = u,
then there must exist i with i < j such that x[i] = s
*/
void WSpace:: cst__precede(int n, int*x vids, int s, int u){
precede (*this , int_ var_ args(m, vids), s, u);

}

/ /=== BOOLVAR =
* %
Post the constraint that vidl bool op vid2 = val.

*/
void WSpace:: cst__boolop_val(int vidl, int bool_op, int vid2, int val) {

rel (xthis, get_bool_var(vidl), (BoolOpType) bool _op, get_bool var(vid2), val);
}

/%%

Post the constraint that elements of vids bool op val.

*/

void WSpace:: cst__boolop_arr_val(int bool op, int s, int*x vids, int val) {
rel (xthis, (BoolOpType) bool op, bool var_ args(s, vids), val);

136

580 /**
581 Post the constraint that y is the result of bool op between all element of vids.

582 %/

583 void WSpace:: cst__boolop_arr_var(int bool op, int s, intx vids, int vidl) {

584 rel (xthis, (BoolOpType) bool op, bool_ var_args(s, vids), get_ bool var(vidl));

585

586

587 /%

588 Post the constraint that vidl bool _op vid2 = vid3.

589 x/

590 void WSpace:: cst__boolop_var(int vidl, int bool_op, int vid2, int vid3) {

591 rel (xthis , get_bool_var(vidl), (BoolOpType) bool_op, get_bool_ var(vid2), get_bool_var(
vid3));

592

593

594 /% *

595 Post a relation constraint between vid and val.

596 x/

597 void WSpace:: cst__boolrel val(int vid, int rel type, int val) {

598 rel (xthis, get_bool var(vid), (IntRelType) rel_ type, val);

599 }

600

601 /[

602 Post a relation constraint between vidl and vid2.

603 %/

604 void WSpace:: cst__boolrel var(int vidl, int rel type, int vid2)

605 rel (xthis , get_bool_var(vidl), (IntRelType) rel_type, get_bool var(vid2));

606 }

607

608 //=—= SETVAR ——

609

610 /%%

611 Post the constraint that vidl set_op vid2 = vid3.

612 =/

613 void WSpace:: cst_setop__var(int vidl, int set_op, int vid2, int set_rel, int vid3) {

614 rel (xthis, get_ set var(vidl), (SetOpType) set_op, get_ set var(vid2), (SetRelType) set_rel

, get_set_var(vid3));

b
VEES

Post the constraint that y set_op x.
*/
void WSpace:: cst_setop_arr(int set_op, int s, int*x vidl, int vid2) {
rel (xthis , (SetOpType) set_op, set_var_args(s, vidl), get_set_var(vid2));

/%%
Post a relation constraint between vidl and vid2.
*/
void WSpace:: cst__setrel__var(int vidl, int rel_type, int vid2) {
rel (xthis, get_set var(vidl), (SetRelType) rel type, get_ set_ var(vid2));

/%%

Post a relation constraint between vidl and domain dom.

*/

void WSpace:: cst__setrel val(int vidl, int rel type, intx domain, int s) {
dom (*this , get_ set_ var(vidl), (SetRelType) rel type, IntSet(domain, s));

VEES

Post a relation constraint between vidl and domain dom with a reify variable

*/

void WSpace:: cst__setrel__val_reify (int vidl, int rel_type, int* domain, int s, int r, int mode

{
dom (*this , get_set_var(vidl), (SetRelType) rel type, IntSet(domain, s), Reify(
get_bool_var(r), (ReifyMode) mode)) ;

/%%

Post a relation constraint between vidl and vid2 with a reify variable

*/

void WSpace:: cst__setrel var_reify (int vidl, int rel type, int vid2, int r, int mode) {
rel (xthis, get_set var(vidl), (SetRelType) rel type, get_ set_var(vid2), Reify(
get__bool_var(r), (ReifyMode) mode)) ;

VEES

Post a constraint that SetVar vidl has to be empty

*/

void WSpace::cst_set_empty (int vidl) {
dom (*this , get_set_var(vidl), (SetRelType) 0, IntSet::empty);

/%%

Post a dom constraint between vidl and dom {i,..., j}.

*/

void WSpace:: cst_setdom__ints(int vidl, int rel type, int i, int j) {
dom (*this , get_set_var(vidl), (SetRelType) rel type, i, j);

VEES

667 Post a dom constraint between vidl and dom vid2.

137

702

*/

void WSpace:: cst_setdom__set(int vidl, int

vid2) {

dom (*this , get_set_ var(vidl), get_ set_ var(vid2));

VEES

Post a cardinality constraint on vids with 2 bounds min_card

*/

void WSpace::cst_card_val(int n, intx vids, int min_card, int
cardinality (xthis, set_var_args(n, vids), min_card, max_card);

}
/%%

Post a cardinality constraint on vidl with intvar vid2

*/

void WSpace::cst_card_var(int vidl, int vid2) {

cardinality (xthis, get_set_ var(vidl),

¥
/%%

Post a channeling constraint between vidl

*/

get_int__var(vid2));

and vid2

max__card

max_card) {

void WSpace:: cst__channel(int nl, intx vidsl, int n2, intx vids2){

channel (xthis, set_var_ args(nl, vidsl

}
Ve

), set_var_args(n2,

vids2));

Post a channeling constraint between boolVarArray vidl and SetVar vid2

*/

void WSpace:: cst__channel sb(int nl, int=*

vidsl, int vid2){

channel (xthis , bool_var_args(nl, vidsl), get_set_var(vid2

¥
/%%

Return an intvar constrained to the minimum of the setvar vid

*/

int WSpace::cst_setmin (int vidl){

int__vars.push back(expr(xthis, min(get_set_ var(vidl))));

return i_ sized++ ;

}
VEES

Return an intvar constrained to the maximum of the setvar vid

*/
int WSpace:: cst_setmax(int vidl){

int__vars.push_back(expr(*xthis , max(get_set_var(vidl))));

return i_ size++ ;

/%%

Post a constraint between vid2 and the minimum of the setvar

*/

))s

1

1

vidl with reification

void WSpace:: cst__setmin_reify (int vidl, int vid2, int r, int mode){

min (% this , get_set_var(vidl), get_int_var(vid2), Reify(get_bool _var(r),

)5
}

VEES

Post a constraint between vid2 and the maximum of the setvar

*/

void WSpace:: cst__setmax_reify (int vidl, int vid2, int r, int

max (*this , get_set_var(vidl), get_int_var(vid2), Reify(get_bool var(r),

)5
}

/%%

Post a relation constraint beween setvar

*/

(ReifyMode) mode)

vidl with reification

mode) {

vidl and the union of the set in vids

void WSpace:: cst__setunion (int vidl, int n, intx vids){

rel (xthis , SOT_UNION, set_ var_args(n,

/%%

Post an element constraints

*/

vids), get_set_var(

vidl));

void WSpace:: cst_element (int set_op, int n, intx vids, int vidl, int vid2){
element (xthis , (SetOpType) set_op, set_var_args(n, vids),

vid2));

}

//

//Branch and bound constraint function =
//

/

*
Constrain method for BAB search

This is called everytime the solver finds a solution

This is a virtual method as declared in
*/

void WSpace:: constrain (const Space& _b)

space__wrapper.h

{
const WSpace& b = static_cast<const WSpace&>(_b) ;

SetVarArgs bvars(b.var_sol_ size);

138

get_set_ var(vidl),

(ReifyMode) mode)

get_set_var(

for(int i = 0; i < b.var_sol_size; i++)
bvars[i] = (b.set_vars).at((b.solution_variable_ indexes)[i]);

SetVarArgs vars(b.var_sol_size);
for(int i = 0; i < b.var_sol_size; i++)
vars[i] = (set_vars).at((solution_variable_indexes)[i]);

for(int i=0; i<b.var_sol_size; i++){
if ((rand () %100)< b.percent_diff){
SetVar tmp(bvars[i]);
rel (xthis ,(vars[i] != tmp));
}

}

—

//
//= Exploration strategies =
//
/

* %k

Post a branching strategy on the variables in vids, with strategies denoted by var_strategy

and

val_ strategy .

var__strategy :

— 0 : INT VAR SIZE MIN ()

— 1 : INT VAR RND(r)

— 2 : INT VAR DEGREE MAX()

— 3 : INT_ VAR NONE()
val_strategy:

: INT_VAL_MIN ()

: INT_VAL_RND(r)
INT_VAL_SPLIT_MIN ()
INT_VAL_SPLIT MAX()
INT VAL MED()

B W =o

*/
void WSpace:: branch(int n, int*x vids, int var_strategy, int val_strategy) {
IntVarBranch var_strat;
IntValBranch val_strat;

Rnd rl1(1U);
Rnd r2(3U);

//determine the variable strategy
if (var_strategy == 0){//INT_VAR_SIZE MIN ()
var_strat = INT_VAR_SIZE MIN () ;

¥
else if(var_strategy = 1){//INT_VAR RND(rl)
var_strat = INT_VAR RND(rl);
¥
else if(var_strategy = 2){//INT_VAR DEGREE MAX()
var_strat = INT_VAR_DEGREE MAX() ;
¥
else if(var_strategy = 3){//INT_VAR NONE()
var__strat = INT_VAR NONE() ;
¥
//determine the value strategy
if (val_strategy == 0){//INT_VAL_MIN()
val_ strat = INT_ VAL MIN() ;
else if(val_strategy == 1){//INT_VAL_RND(r2)
val_strat = INT_VAL RND(r2);
¥
else if(val_strategy == 2){//INT_VAL_SPLIT MIN ()
val__strat = INT_VAL_ SPLIT MIN() ;
¥
else if(val_strategy = 3){//INT_VAL_SPLIT MAX()
val_strat = INT_ VAL SPLIT MAX() ;
¥
else if(val_strategy == 4){//INT_VAL MED()
val_strat = INT VAL MED() ;
¥
Gecode :: branch (*this , int_var_ args(n, vids), var_strat, val_ strat);
}
834 [k
835 Post a branching strategy on the n BoolVars in vids, with strategies denoted by var_ strategy
and
836 val_ strategy .
837 %/
838 void WSpace::branch_b(int n, intx vids, int var_strategy, int val_strategy) {
839 Gecode :: branch (xthis , bool_var_args(n, vids), BOOL VAR NONE(), BOOL_VAL MIN()); //default
for now
840 }
841
842 /x*
843 Post a branching strategy on the n SetVars in vids.
844 x/

845 void WSpace:: branch_set(int n, intx vids, int var_strategy, int val_strategy) {
846 SetVarBranch var_strat;
847 SetValBranch val_strat;

139

902

903
904
905

906
907
908
909
910

911
912
913
914
915

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934

Rnd r1(1U);
Rnd r2(3U);

//determine the variable strategy
if (var_strategy == 0){//SET_VAR_SIZE MIN ()
var_strat = SET VAR SIZE MIN() ;

}
else if(var_strategy == 1){//SET_VAR RND(rl)
var_strat = SET_VAR _RND(rl);

}
else if(var_strategy == 2){//SET_VAR DEGREE MAX()
var_strat = SET_VAR_DEGREE_MAX() ;

¥

else if(var_strategy = 3){//SET_VAR NONE()
var_strat = SET VAR NONE() ;

¥

//determine the value strategy
if (val_strategy == 0){//SET_VAL_MIN()
val strat = SET_ VAL MIN INC() ;

else if(val_strategy = 1){//SET VAL RND(r2)
val_strat = SET_VAL RND_INC(r2) ;

else if(val_strategy == 2){//SET_VAL_SPLIT MIN ()
val strat = SET VAL MIN EXC() ;

}
else if(val_strategy == 3){//SET_VAL_SPLIT MAX()
val__strat = SET_VAL RND_EXC(r2);

}

else if(val_strategy = 4){//SET_VAL MED()
val__strat = SET_VAL MED_INC() ;

}

Gecode :: branch (xthis , set_var_ args(n, vids), var_strat, val_ strat);

}

//

//= Search support =
//

/

Define which variable, denoted by vid, will be considered as the cost.
*
void WSpace:: cost (int vid) {

cost__id = vid;

IntVar WSpace:: cost (void) const {
return int_vars.at(cost_id);
¥

WSpace : : WSpace (WSpace& s): IntMinimizeSpace(s), int_vars(s.i_size), bool vars(s.b_size),

set__vars(s.s_size), i_size(s.i_size), b_size(s.b_size), s_size(s.s_size), cost_id(s.
cost__id) ,

var_sol_size(s.var_sol_size), solution_ variable_ indexes(s.
solution__variable_indexes), percent_diff(s.percent_diff) {
//IntVars update
vector<IntVar >::iterator itd, its;
for (itd = int_vars.begin (), its = s.int_vars.begin(); itd != int_vars.end(); ++itd, ++its
)

itd—>update(xthis , xits);

//BoolVars update
vector<BoolVar >::iterator btd, bts;
for (btd = bool__vars.begin(), bts = s.bool_vars.begin(); btd != bool_vars.end(); —++btd, ++
bts)
btd—>update (* this , *xbts);

//SetVars update
vector<SetVar >::iterator std, sts;
for (std = set_vars.begin(), sts = s.set_vars.begin(); std != set_vars.end(); ++std, ++sts

)

std—>update (x this , *sts);

//Solutions for BAB
for (int i=0; i<var_sol_size; i++4)
s.solution__variable_ indexes[i]=solution__variable indexes[i];

}

Spacex WSpace:: copy (void) {
return new WSpace(*this);
}

//

//= Getting solutions =

//
/%%

Return the current values of the variable denoted by wvid.

*/

140

935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027

int WSpace:: value(int vid) {
return get_int_var(vid).val();
}

/%%

Return the current values of the variable denoted by wvid.

*/
int WSpace:: value_bool(int vid) {
return get_bool_var(vid).val();

/%%

Return the current values of the variable denoted by vid.

*/
int* WSpace:: value_set(int vid, int n) {
SetVar sv = get_set__var(vid);
int* vals = new int [n] ;
int i = 0 ;
for (SetVarGlbValues d(sv);d();++d){
vals[i] = d.val() ;
i+

return vals;

}

int WSpace:: value_size (int vid) {
return get_set_var(vid).glbSize () ;
}

/%%

Return the current values of the n variables denoted by vids.

*/
int* WSpace:: values (int n, intx vids) {
int* vals = new int[n];
for (int i = 0; i < nj; i++4)
vals[i] = get_int_var(vids[i]).val();
return vals;

}
//
//= Printing solutions =
//

void WSpace:: print (int n, intx vids) {
std :: cout << "{";
for(int i = 0; i < n; i+4) {
std :: cout << get_int_var(vids[i]);
if(i < n— 1) std::cout << ", ";

std::cout << "}'" << std::endl;

}
//
//= Search options managment =
//
// == TIME STOP OBJECT ——

Default constructor

*/

WTimeStop : : WTimeStop (int maxTime) : stop(Gecode:: Search
stop__ptr = &stop;

WTimeStop : : ~ WTimeStop () {

}

TimeStop WTimeStop:: getStop () {
return stop;
}

TimeStop*x WTimeStop:: getStopPtr () {
return stop__ptr;
}

[xx
Reset the time value of the time stop object
*/
void WTimeStop:: reset () {
stop.reset () ;

// === OPTIONS OBJECT =——
/%%
Default constructor
*/
WSearchOptions :: WSearchOptions () {

}

141

:: TimeStop (maxTime)) {

1028
1029 WSearchOptions::~ WSearchOptions () {
1030

1031 }

1032

1033 /%%

1034 getter for the opts field

1035 */

1036 Options WSearchOptions:: getOpts () {

1037 return opts;

1038 }

1039 /%%

1040 set the number of threads to use for parallel search
1041 =/

1042 int WSearchOptions:: setNbThreads(int nThreads){

1043 opts.threads = nThreads;

1044 return opts.threads;

1045 }

1046

1047 /%%

1048 Set the time stopping mechanism that is to be used during the search to a certain duration

in ms
1049 Takes a WTimeStop object as argument, and sets the WSearchOptions object’s opts.stop field
to the TimeStop pointer of the WTimeStop object

1050 */

1051 void WSearchOptions::setTimeStop (WTimeStop* timestop){
1052 opts.stop = timestop—>getStopPtr () ;

1053 }

1054

1055 //

1056 //= Search engine =

1057 //

1058

1059 /*

1060 Branch and bound

1061 x/

1062 WbabEngine : : WbabEngine (WSpace*x sp, Options opts) {
1063 bab = new BAB<WSpace>(sp, opts);

1064 }

1065

1066 WhbabEngine : : ~ WbabEngine () {

1067 delete bab;

1068 }

1069

1070 /%

1071 Search the next solution for this search engine.
1072 */

1073 WSpacex WbabEngine:: next () {

1074 return bab—>next () ;

1075 }

1076

1077 [/**

1078 Returns true if the search has been stopped by a search object
1079/

1080 int WhbabEngine::stopped () {

1081 return bab—>stopped () ;

1082 }

1083

1084 /*

1085 Depth—first search

1086 =/

1087 WdfsEngine :: WdfsEngine (WSpace* sp, Options opts) {
1088 dfs = new DFS<WSpace>(sp, opts);

1089 }

1090

1091 WdfsEngine::~ WdfsEngine () {

1092 delete dfs;

1093 }

1094

1095 /%

1096 Search the next solution for this search engine.
1097 x/

1098 WSpacex WdfsEngine :: next () {

1099 return dfs—>next () ;

1100 }

1101

1102 /#*

1103 Returns true if the search has been stopped by a search object
1104 */

1105 int WdfsEngine::stopped () {

1106 return dfs—>stopped () ;

1107 }

C.1.3 gecode__wrapper.hpp

#ifndef gecode__wrapper__hpp
#define gecode__wrapper__hpp

#include <stdlib.h>

142

37

39
40
41
42
43
44
45
46
47
48
49
50
51

S el
INJXEN)

SRS
O O

ot
o

74
75
76
77
78
79
80

82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98

#ifdef ___ cplusplus
extern "C" {

#endif
enum {
IRT_EQ,
IRT_NQ,
IRT_LQ,
IRT LE,
IRT_GQ,
IRT_GR
}s
enum {
BOT_AND,
BOT_OR,
BOT_IMP,
BOT_EQV,
BOT_XOR
s
/%%
Wraps the WSpace constructor.
*/
void* computation_space();
[®x
Wraps the WSpace add__intVar method.
*/
int add_intVar(void* sp, int min, int max);
/%%
Wraps the WSpace add_intVarWithDom method.
*/
int add_intVarWithDom (void* sp, int s, int* dom);
/%%
Wraps the WSpace add_intVarArray method.
./
int* add_intVarArray(void* sp, int n, int min, int max);
VEES
Wraps the WSpace add_intVarArrayWithDom method.
*/
int* add_intVarArrayWithDom (void* sp, int n, int s, intx dom);
/%%
Wraps the WSpace set__as__solution__variables method.
«/
void set_solution_vars(void* sp, int n, intx vids);
/%%
Wraps the WSpace set_percent_diff method.
*/
void set__percent_diff(voidx sp, int diff);
/%%
Wraps the WSpace nvars method.
*/
int nvars(voids* sp);
Ve
Wraps the WSpace add__boolVar method.
./
int add_boolVar(void* sp, int min, int max);
/%%
Wraps the WSpace add__boolVarArray method.
*/
int* add_boolVarArray(void* sp, int n, int min, int max);
/%%
Wraps the WSpace add_boolVar expr_val method.
*/
int add_boolVar_expr_val(void* sp, int vid, int rel type, int val);
VEES
Wraps the WSpace add__boolVar_expr__var method.
*/
int add_boolVar_expr_var(void* sp, int vidl, int rel_type, int vid2);
/%%
Wraps the WSpace add__setVar method
*/
int add_setVar(void* sp, int lub_min, int lub_max, int card _min, int card max);
/%%
Wraps the WSpace add_setVarArray method
*/

int* add_setVarArray(void* sp, int n, int lub_min, int lub_max, int card min, int card max);

/%%

Wraps the WSpace cst__var_relr method.

143

144

149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

168
169
170

172

T4
175
176
177
178
179
180
181
182
183
184
185
186

188
189
190
191

*/

void var_rel(void* sp, int vidl, int rel type, int vid2);

/%%

Wraps the WSpace cst__var_ rel reify method.

./

void var_rel_ reify (void* sp, int vidl, int rel_ type, int vid2, int vid3, int mode);
[xx

Wraps the WSpace cst__val_ rel_ reify method.

*/

void val_rel_reify(voidx sp, int vidl, int rel type, int val, int vid2, int mode);
/%%

Wraps the WSpace cst__val_rel method.

*

void val_rel(void* sp, int vid, int rel_type, int val);

/%%

Wraps the WSpace cst__arr__val_ rel method.

./

void arr_val_rel(void* sp, int n, intx vids, int rel type, int val);
VEES

Wraps the WSpace cst__arr_var_rel method.

*/

void arr_var_rel(void* sp, int n, int*x vids, int rel _type, int vid);
* %

Wraps the WSpace cst__arr_rel method.

./

void arr_rel(void* sp, int n, int* vids, int rel_type);

/%%

Wraps the WSpace cst__arr_arr_rel method.

*/

void arr__arr_rel(void* sp, int nl, int*x vidsl, int rel_ type, int n2, int*x vids2);
/%%

Wraps the WSpace cst_distinct method.

*/

void distinct (void* sp, int n, int*x vids);

[xx

Wraps the WSpace cst__val_ linear method.

*/

void val_linear(void* sp, int n, int* c, int* vids, int rel_type, int value);
/%%

Wraps the WSpace cst__var_linear method.

«/

void var_linear(voidx sp, int n, int* ¢, int* vids, int rel_type, int vid);
/%%

Wraps the WSpace cst__abs method.

*/

void arithmetics__abs(void* sp, int vidl, int vid2);

VEES

Wraps the WSpace acst__div method.

*/

void arithmetics_div(void* sp, int vidl, int vid2, int vid3);

* %

Wraps the WSpace cst__var__mod method.

./

void arithmetics_mod(void* sp, int vidl, int vid2, int vid3);

/%%

Wraps the WSpace cst__divmod method.

./

void arithmetics__divmod (void* sp, int vidl, int vid2, int vid3, int vid4);
/%%

Wraps the WSpace cst__min method.

*/

void arithmetics_min(void* sp, int vidl, int vid2, int vid3);

[xx

Wraps the WSpace cst__arr__min method.

*/

void arithmetics__arr_min(void* sp, int n, intx vids, int vid);

/%%

Wraps the WSpace cst__argmin method.

*/

void arithmetics__argmin(void* sp, int n, int* vids, int vid);

/%%

Wraps the WSpace cst__max method.

*/

void arithmetics_max(void* sp, int vidl, int vid2, int vid3);

144

192 /=%
193 Wraps the WSpace cst__arr__max method.

194 x/

195 void arithmetics__arr_max(void* sp, int n, int*x vids, int vid);
196

197 /%

198 Wraps the WSpace cst__argmax method.

199 x/

200 void arithmetics_argmax(void* sp, int n, intx vids, int vid);
201

202 /#x

203 Wraps the WSpace cst__mult method.

204 x/

205 void arithmetics_mult(void* sp, int vidl, int vid2, int vid3);
206

207 [**

208 Wraps the WSpace cst__sqr method.

209 x/

210 void arithmetics_sqr(voidx sp, int vidl, int vid2);

211

212 /**

213 Wraps the WSpace cst__sqrt method.

214 %/

215 void arithmetics__sqrt(void* sp, int vidl, int vid2);

216

217 Jwx

218 Wraps the WSpace cst__pow method.

219 x/

220 void arithmetics_pow(void* sp, int vidl, int n, int vid2);
221

222 /[**

223 Wraps the WSpace cst_nroot method.

224 %/

225 void arithmetics_nroot(void* sp, int vidl, int n, int vid2);
226

227 [**

228 Wraps the WSpace cst_dom method.

229 x/

230 void set_dom(void* sp, int vid, int n, intx d);

231

232 /%%

233 Wraps the WSpace cst__member method.

234 x/

235 void set_member(void* sp, int n, intx vids, int vid);

236

237 [**

238 Wraps the WSpace cst_sum method.

239 %/

240 void rel_sum(void* sp, int vid, int n, intx vids);

241

242 [**

243 Wraps the WSpace cst__count__val val method.

244 x/

245 void count_val_ val(void* sp, int n, intx vids, int vall, int rel_type, int val2);
246

247 [x*

248 Wraps the WSpace cst__count__val_ var method.

249 %/

250 void count_val_ var(void* sp, int n, intx vids, int val, int rel _type, int vid);
251

252 [**
253 Wraps the WSpace cst__count__var__val method.
254 %/

255 void count_var_val(void* sp, int n, intx vids, int vid, int rel_type, int wval);
256

257 [**
258 Wraps the WSpace cst__count__var__var method.
259 x/

260 void count_var_var(void* sp, int n, intx vids, int vidl, int rel_type, int vid2);
261

262 /**

263 Wraps the WSpace cst__count__var_set__val method.

264 x/

265 void count_var_set_val(void*sp, int n, intx vids, int s, int* set, int rel type, int val);
266

267 [xx

268 Wraps the WSpace cst__count_array val method.

269 x/

270 void count_array_val(voidx sp, int n, int* vids, int* ¢, int rel_type, int val);
271

272 [**
273 Wraps the WSpace cst__sequence__var method.
274 %/

275 void sequence_var(voidxsp, int n, intx vids, int s, int* set, int vall, int val2, int val3);
276

277 [x*

278 Wraps the WSpace cst_nvalues method.

279 x/

280 void nvalues(void* sp, int n, intx vids, int rel _type, int vid);
281

282 [k

283 Wraps the WSpace cst__circuit method.

284 %/

145

341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

void circuit(void* sp, int n, int* c, int*x vidsl, intx vids2, int vid)

/%%

Wraps the WSpace cst__precede method

*/

void precede(void* sp, int n, int* vids, int s, int u);

VEES

Wraps the WSpace cst__boolop__val method.

*/

void val_boolop(void* sp, int vidl, int bool_op, int vid2, int val);
/%%

Wraps the WSpace cst__boolop__arr__val method.

*/

void val_arr_boolop(void* sp, int bool _op, int s, intx vids, int val);
/%%

Wraps the WSpace cst__boolop__arr__var method.

./

void var__arr_boolop(void* sp, int bool _op, int s, intx vids, int vidl)
/%%

Wraps the WSpace cst__boolop__var method.

*/

void var_boolop(void* sp, int vidl, int bool_op, int vid2, int vid3);
/%%

Wraps the WSpace cst__boolrel_ val method.

*/

void val_boolrel(void* sp, int vid, int rel_type, int val);

/%%

Wraps the WSpace cst__boolrel var method.

«/

void var__boolrel(void* sp, int vidl, int rel type, int vid2);

/%%

Wraps the WSpace cst__setop__var method.

*/

void var_setop(void* sp, int vidl, int set_op, int vid2, int set_rel,
VEES

Wraps the WSpace cst__setop__arr method.

*/

void arr_setop(void* sp, int set_op, int s, intx vidl, int vid2);
/%%

Wraps the WSpace cst__setrel_var method.

*/

void var_setrel(voidx sp, int vidl, int rel type, int vid2);

/%%

Wraps the WSpace cst__setrel__val method.

*/

void val_setrel(voidx= sp, int vidl, int rel type, int* dom, int s);
/%%

Wraps the WSpace cst__setrel_ val_ reify method.

*/

void val_setrel_reify (void* sp, int vidl, int rel_type, int*x dom, int
/%%

Wraps the WSpace cst_setrel var_ reify method.

*/

void var_setrel_reify (void* sp, int vidl, int rel _type, int vid2, int
/%%

Wraps the WSpace cst_setdom__ints method.

*/

void ints_setdom (void* sp, int vidl, int rel type, int i, int j);
/%%

Wraps the WSpace cst_setdom__set method.

*/

void set_setdom(voidx sp, int vidl, int vid2);

VEES

Wraps the WSpace cst__set__empty method.

*/

void empty_set(void* sp, int vidl);

/%%

Wraps the WSpace cst__card__val method.

*/

void val_card(void* sp, int n, intx vids, int min_card, int max_card);
/%%

Wraps the WSpace cst__setrel__var method.

*/

void var_card(void* sp, int vidl, int vid2);

/%%

146

5

;

int vid3);

S,

T,

int r, int mode);

int mode) ;

378 Wraps the WSpace cst__channel method.

379 %/

380 void channel_ set(void* sp, int nl, int*x vidsl, int n2, int*x vids2);
381

382 [k

383 Wraps the WSpace cst__channel sb method.

384 */

385 void channel_ set_bool(void* sp, int nl, ints* vidsl, int vid2);
386

387 [xx

388 Wraps the WSpace cst__setmin method.

389 x/

390 int set_min(void* sp, int vidl);

391

392 /x*

393 Wraps the WSpace cst_setmax method.

394 x/

395 int set_max(void* sp, int vidl);

396

397 [/x%

398 Wraps the WSpace cst__setmin_reify method.

399 */

400 void set__min_reify(voidx* sp, int vidl, int vid2, int r, int mode);
401

402 /xx
403 Wraps the WSpace cst__setmax_ reify method.
404 */

405 void set_max_reify(void* sp, int vidl, int vid2, int r, int mode);

406

407 [/**

408 Wraps the WSpace cst__setunion method.

409 =/

410 void set_union(void* sp, int vidl, int n, intx vids);

411

412 [x*

413 Wraps the WSpace cst__element method.

414 */

415 void element(void* sp, int set_op, int n, intx vids, int vidl, int vid2);
416

417

418 /%%

419 Wraps the WSpace branch method.

420 %/

421 void branch(void* sp, int n, intx vids, int var_strategy, int val_strategy);
422

423 [#*
424 Wraps the WSpace branch_b method.
425

*
426 void branch_b(void* sp, int n, intx vids, int var_strategy, int val_strategy);
427

428 [x*

429 Wraps the WSpace branch_set method.

430 %/

431 void branch_set(void* sp, int n, int* vids, int var_strategy, int val_ strategy);
432

433 [**

434 Wraps the WSpace cost method.

435 %/

436 void cost(void* sp, int vid);

437

438 [**

439 Wraps the WTimeStop constructor

440 %/

441 voidx new_time_stop(int maxTime) ;

442

443 [**

444 Wraps the WTimeStop reset method

445 */

446 void reset__time_stop(void* tStop);

447

448 [**

449 Wraps the WSearchOptions constructor

450 %/

451 voidx new__search_ options () ;

452

453 [k

454 Wraps the WSearchOptions setNbThreads method.
455 %/

456 int set_nb_threads(voidx sOpts, int nThreads);
457

458 [*

459 Wraps the WSearchOptions setTimeStop method.
460 */

461 void* set_time_stop(void* sOpts, void* tStop);
462

463 //new version

464 [/**

465 Wraps the WbabEngine constructor.

166 x/

467 voidx new__bab__engine(void* sp, void*x opts);
468

469 /o

470 Wraps the WbabEngine next method.

147

471 %/
472 voidx bab_next(voidx* se);

473

474 [**

475 Wraps the WbabEngine stopped method.
476 x/

477 int bab__stopped(voidx se);

478

479 [**

480 Wraps the WdfsEngine constructor.

481 */

482 void* new_dfs_engine(void* sp, void* opts);
483

484 [/**

485 Wraps the WdfsEngine next method.

486 *

487 voidx dfs_next(voidx* se);

488

489 [/x*

490 Wraps the WdfsEngine stopped method.
491 x/

492 int dfs_stopped(voidx se);

493

494 /%%

495 Wraps the WSpace destructor.

496 x/

497 void release (voidx* sp);

498

499 /**

500 Wraps the WSpace value method.

501 %/

502 int get__value(void* sp, int vid);

503

504 /**

505 Wraps the WSpace value method.

506 %/

507 int get__value_bool(void* sp, int vid);
508

509 /%%

510 Wraps the WSpace value method.

511 %/

512 int* get_value_ set(void* sp, int vid, int n);
513

514 /*x*

515 Wraps the WSpace value method.

516 x/

517 int get_value_size(void* sp, int vid);
518

519 /*x*

520 Wraps the WSpace values method.

521 x/

522 int* get__values(void* sp, int n, intx vids);
523

524 /**

525 Wraps the WSpace print method.

526 %/

527 void print__vars(void* sp, int n, intx vids);
528

529 #ifdef ___ cplusplus
530 };

531 #endif

532 #endif

C.1.4 gecode__wrapper.cpp

1 #include "headers/gecode_ wrapper.hpp"

2 #include "headers/space_ wrapper.hpp"

3

4 [xx

5 Wraps the WSpace constructor.

6 */

7 void* computation_space ()

8 return (voidx*) new WSpace() ;

9 }

10

11 /%%

12 Wraps the WSpace add__intVar method.

13 x/

14 int add_intVar(void* sp, int min, int max) {

15 return static cast <WSpacex>(sp)—>add__intVar (min, max) ;
16 }

17

18 /*%*

19 Wraps the WSpace add_intVarWithDom method.

20 x/

21 int add_intVarWithDom (void=* sp, int s, int* dom) {
22 return static_cast <WSpacex>(sp)—>add_intVarWithDom (s, dom) ;
23

24

25 [xx

148

26 Wraps the WSpace add_intVarArray method .

27 */

28 int* add__intVarArray(void* sp, int n, int min, int max) {

29 return static cast <WSpacex>(sp)—>add__intVarArray(n, min, max);
30 }

31

32 /xxk

33 Wraps the WSpace add_intVarArrayWithDom method.

34 %/

35 int* add_intVarArrayWithDom (void* sp, int n, int s, intx dom)

36 return static_cast <WSpacex>(sp)—>add__intVarArrayWithDom (n, s, dom) ;
37 }

38

39 /xx

40 Wraps the WSpace set__as__solution__variables method.

41 */

42 void set_solution__vars(void* sp, int n, int*x vids)({

43 return static_cast <WSpacex>(sp)—>set__as_solution_variables(n, vids);
44 }

45

46 [/**

47 Wraps the WSpace set_percent_diff method.

48 %/

49 void set_percent_diff(void* sp, int diff){

50 return static_cast <WSpacex>(sp)—>set__percent_diff (diff);
51 }

52

53 /xx

54 Wraps the WSpace nvars method.

55 %/

56 int nvars(voidx* sp) {

57 return static_cast <WSpacex>(sp)—>nvars () ;

58

59

60 /xx*

61 Wraps the WSpace add_boolVar method.

62 */

63 int add_boolVar(void* sp, int min, int max) {

64 return static_cast <WSpacex>(sp)—>add__boolVar(min, max);
65 }

66

67 [k

68 Wraps the WSpace add_boolVarArray method.

69 %/

70 intx add_boolVarArray (void* sp, int n, int min, int max) {
71 return static_ cast <WSpacex>(sp)—>add__boolVarArray (n, min, max);

72}
(/%%

73
74
75 Wraps the WSpace add__boolVar__expr__val method.
76
77

-
int add__boolVar_expr_val(void* sp, int vid, int rel_type, int wval) {

78 return static cast <WSpacex>(sp)—>add__boolVar_expr_val(vid, rel type, val);
79 }

80

81 /xx

82 Wraps the WSpace add__boolVar_expr_var method.

83 %/

84 int add_boolVar_expr_var(void* sp, int vidl, int rel_type, int vid2) {

85 return static cast <WSpacex>(sp)—>add_boolVar_ expr_ var(vidl, rel type, vid2);
86 }

87

88 int add_setVar(void* sp, int lub_min, int lub_max, int card_min, int card_max) {
89 return static_cast <WSpacex>(sp)—>add_setVar (lub_min, lub_max, card_min, card_max);
90 }

91

92 /xx

93 Wraps the WSpace add_ setVarArray method.
94 */
95 int* add_setVarArray(void* sp, int n, int lub_min, int lub_max, int card _min, int card_max) {

96 return static_cast <WSpacex>(sp)—>add_setVarArray(n, lub_min, lub_max, card_ min, card_ max)
;

97 }

98

99 /% *

100 Wraps the WSpace cst__val_ rel method.

101 */

102 void val_rel(void* sp, int vid, int rel_type, int val) {

103 return static_cast <WSpacex>(sp)—>cst__val_rel(vid, rel_type, val);

104

105

106 /*x*

107 Wraps the WSpace cst__var_rel method.

108 */

109 void var_rel(void* sp, int vidl, int rel _type, int vid2) {

110 return static_cast <WSpacex>(sp)—>cst__var_rel(vidl, rel _type, vid2);

111}

112

113 /=%

114 Wraps the WSpace cst__var_rel_ reify method.

115 */

116 void var_rel reify(void* sp, int vidl, int rel type, int vid2, int vid3, int mode) {

117 return static cast <WSpacex>(sp)—>cst__var_rel_ reify(vidl, rel type, vid2, vid3, mode);

149

118 }

119

120 /[

121 Wraps the WSpace cst__val_ rel reify method.

122 %/

123 void val_rel_reify (voidx sp, int vidl, int rel_type, int val, int vid2, int mode) {
124 return static cast <WSpacex>(sp)—>cst__val_rel reify(vidl, rel type, val, vid2, mode);
125 }

126

127 /s

128 Wraps the WSpace cst__arr__val_rel method.

120 x/

130 void arr_val_rel(void* sp, int n, int*x vids, int rel_type, int val) {

131 return static_cast <WSpacex>(sp)—>cst__arr_val_rel(n, vids, rel_type, val);
132 }

133

134 /%

135 Wraps the WSpace cst__arr__var_rel method.

136 %/

137 void arr__var_rel(void* sp, int n, int* vids, int rel_type, int vid) {

138 return static cast <WSpacex>(sp)—>cst__arr_var_rel(n, vids, rel type, vid);
139 }

140

141 [

142 Wraps the WSpace cst__arr_rel method.

143 %/

144 void arr_rel(voidx sp, int n, intx vids, int rel_type) {

145 return static_cast <WSpacex>(sp)—>cst__arr_rel(n, vids, rel_type);

146

147

148 /% *

149 Wraps the WSpace cst__arr__arr_rel method.

150 */

151 void arr_arr_rel(void* sp, int nl, intx vidsl, int rel type, int n2, intx vids2) {
152 return static cast <WSpacex>(sp)—>cst__arr__arr_rel(nl, vidsl, rel type, n2, vids2);
153 }

154

155 /%

156 Wraps the WSpace cst__distinct method.

157 %/

158 void distinct(void* sp, int n, intx vids) {

159 return static_ cast <WSpacex>(sp)—>cst_distinct (n, vids);

160 }

161

162 /**

163 Wraps the WSpace cst__val_ linear method.

164 */

165 void val_linear (void* sp, int n, intx ¢, intx vids, int rel _type, int value) {
166 return static_cast <WSpacex>(sp)—>cst_val_linear(n, c, vids, rel_type, value);
167 }

168

169 /%

170 Wraps the WSpace cst__var_linear method.

171 %/

172 void var_linear (void* sp, int n, int*x c, intx vids, int rel type, int vid) {
178 return static_cast <WSpacex>(sp)—>cst__var_linear(n, c, vids, rel_type, vid);
174 }

175

176 [#*

177 Wraps the WSpace cst__abs method.

178 %/

179 void arithmetics_abs(voidx* sp, int vidl, int vid2) {

180 return static_cast <WSpace*x>(sp)—>cst__abs(vidl, vid2);

181

182

183 /#x

184 Wraps the WSpace acst__div method.

185 */

186 void arithmetics_div(void* sp, int vidl, int vid2, int vid3) {

187 return static_ cast <WSpacex>(sp)—>cst_div(vidl, vid2, vid3);

188 }

189

190 /[

191 Wraps the WSpace cst__mod method.

192 %/

193 void arithmetics_mod(void* sp, int vidl, int vid2, int vid3) {

194 return static cast <WSpacex>(sp)—>cst_mod(vidl, vid2, vid3);

195 }

196

197 /*x*

198 Wraps the WSpace cst__divmod method.

199 x/

200 void arithmetics_divmod(void* sp, int vidl, int vid2, int vid3, int vid4) {
201 return static_cast <WSpacex>(sp)—>cst_divmod (vidl, vid2, vid3, vid4);

202 }

203

204 /**

205 Wraps the WSpace cst_min method.

206 */

207 void arithmetics_min(void* sp, int vidl, int vid2, int vid3) {

208 return static_cast <WSpacex>(sp)—>cst_min(vidl, vid2, vid3);

209 }

210

150

211
212
213
214
215
216
217
218

220

285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303

/%%

Wraps the WSpace cst__arr__min method.

*/

void arithmetics__arr_min(void* sp, int n, intx vids, int vid) {
return static_cast <WSpacex>(sp)—>cst__arr_min(n, vids, vid);

}

VEES

Wraps the WSpace cst__argmin method.

*/

void arithmetics__argmin(void* sp, int n, int* vids, int vid) {
return static_cast <WSpacex>(sp)—>cst__argmin(n, vids, vid);

/%%

Wraps the WSpace cst__max method.

*/

void arithmetics_max(void* sp, int vidl, int vid2, int vid3) {
return static_cast <WSpacex>(sp)—>cst_max(vidl, vid2, vid3);

¥

/%%

Wraps the WSpace cst__arr _max method.

*/

void arithmetics_arr_max(void* sp, int n, intx vids, int vid) {
return static_cast <WSpacex>(sp)—>cst_arr_max(n, vids, vid);

}

/%%

Wraps the WSpace cst__argmax method.

*/

void arithmetics__argmax(void* sp, int n, int* vids, int vid) {
return static__cast <WSpacex>(sp)—>cst__argmax(n, vids, vid);

}

/%%

Wraps the WSpace cst__mult method.

*/

void arithmetics_mult(void* sp, int vidl, int vid2, int vid3) {
return static cast <WSpacex>(sp)—>cst_mult(vidl, vid2, vid3);

VEES

Wraps the WSpace cst__sqr method.

*/

void arithmetics_sqr(void=* sp, int vidl, int vid2) {
return static_cast <WSpacex>(sp)—>cst_sqr(vidl, vid2);

/%%

Wraps the WSpace cst__sqrt method.

*/

void arithmetics__sqrt(void* sp, int vidl, int vid2) {
return static_cast <WSpacex>(sp)—>cst_sqrt(vidl, vid2);

b

/%%

Wraps the WSpace cst_pow method.

*/

void arithmetics_pow (void* sp, int vidl, int n, int vid2) {
return static_cast <WSpacex>(sp)—>cst_pow (vidl, n, vid2);

}

/%%

Wraps the WSpace cst_nroot method.

*/

void arithmetics_nroot(void* sp, int vidl, int n, int vid2) {
return static cast <WSpacex>(sp)—>cst_nroot(vidl, n, vid2);

}

/%%
Wraps the WSpace cst__dom method.
*/
void set_dom(void* sp, int vid, int n, intx d) {
return static cast <WSpacex>(sp)—>cst_dom(vid, n, d);
}

VEES
Wraps the WSpace cst__member method.
*/
void set_member(void* sp, int n, int* vids, int vid) {
return static_cast <WSpacex>(sp)—>cst_member(n, vids, vid);

/%%
Wraps the WSpace cst_sum method.
*/
void rel_sum(void* sp, int vid, int n, intx vids) {
return static_cast <WSpacex>(sp)—>cst_sum(vid, n, vids);
b

/%%

Wraps the WSpace cst__count__val_ val method.

151

382
383
384
385
386
387
388
389
390
391
392
393
394
395
396

*/

void count_val_val(void* sp, int n, intx vids, int vall, int rel_type, int val2) {
return static cast <WSpacex>(sp)—>cst__count__val val(n, vids, vall, rel type, val2);

}

VEES

Wraps the WSpace cst__count__val_ var method.

*/

void count_val_var(void* sp, int n, intx vids, int val, int rel_type, int vid) {

return static_cast <WSpacex>(sp)—>cst_count_val_ var(n, vids, val, rel_type, vid);

}
/%%

Wraps the WSpace cst__count__var__val method.
*/

void count_var_val(voidx sp, int n, int* vids, int vid, int rel _type, int val) {

return static_cast <WSpacex>(sp)—>cst__count_var_val(n, vids, vid, rel_type, val);

¥
/%%

Wraps the WSpace cst__count__var_var method.

*/

void count_var_var(void* sp, int n, intx vids, int vidl, int rel type, int vid2) {
return static cast <WSpacex>(sp)—>cst__count_var_ var(n, vids, vidl, rel_ type, vid2);

}

Ve

Wraps the WSpace cst__count__var__set__val method.

*/

void count_var_set_val(void*sp, int n, intx vids, int s, int*x set, int rel type, int wval){
return static_cast <WSpacex>(sp)—>cst__count__var_set_val(n, vids, s, set, rel_type, val);

/%%

Wraps the WSpace cst__count__array_val method.

void count__array_val(void* sp, int n, int*x vids, int*x c, int rel _type, int wval)({
return static cast <WSpacex>(sp)—>cst__count_array_val(n, vids, c, rel type, val
}

VEES

Wraps the WSpace cst_sequence_var method.

*/

void sequence_var(void*sp, int n, intx vids, int s, int*x set, int vall, int val2,
return static_cast <WSpacex>(sp)—>cst__sequence_var(n, vids, s, set, vall, val2,

¥

/%%
Wraps the WSpace cst__nvalues method.
*/
void nvalues(void* sp, int n, int* vids, int rel_type, int vid) {
return static_cast <WSpacex>(sp)—>cst_nvalues(n, vids, rel type, vid);
}

/%%

Wraps the WSpace cst__circuit method.

*/

void circuit (void* sp, int n, int* c, intx vidsl, int* vids2, int vid) {
return static_cast <WSpacex>(sp)—>cst__circuit(n, c, vidsl, vids2, vid);

}

/xx
Wraps the WSpace cst__precede method
*/
void precede(voidx sp, int n, int* vids, int s, int u){
return static cast <WSpacex>(sp)—>cst_precede(n, vids, s, u);
¥

/%%
Wraps the WSpace cst__boolop_val method.
*/
void val_boolop(void=* sp, int vidl, int bool_op, int vid2, int val) {
return static cast <WSpacex>(sp)—>cst__boolop__val(vidl, bool op, vid2, val);
}

VEES
Wraps the WSpace cst__boolop_ arr_ val method.
*/
void val_arr_boolop(void* sp, int bool_op, int s, int* vids, int val) {
return static_cast <WSpacex>(sp)—>cst__boolop__arr_val(bool_op, s, vids, val);
¥

/%%
Wraps the WSpace cst__boolop__arr__var method.
*/
void var_arr_boolop(void* sp, int bool _op, int s, int* vids, int vidl) {
return static_cast <WSpacex>(sp)—>cst__boolop__arr_var(bool_op, s, vids, vidl);
b

/%%

Wraps the WSpace cst__boolop_var method.
*/

void var_boolop(void* sp, int vidl, int bool_op, int vid2, int vid3) {

152

)

int val3){
val3);

397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429

483

486
487

489

return static cast <WSpacex>(sp)—>cst__boolop__var(vidl, bool op, vid2, vid3);

b
/%%

Wraps the WSpace cst__boolrel val method.
*/
void val_boolrel(void* sp, int vid, int rel_type, int val) {
return static cast <WSpacex>(sp)—>cst__boolrel val(vid, rel _type, val);

/%%
Wraps the WSpace cst__boolrel var method.
*/
void var__boolrel(void* sp, int vidl, int rel _type, int vid2) {
return static__cast <WSpacex>(sp)—>cst__boolrel_var(vidl, rel_type, vid2);

}

/%%

Wraps the WSpace cst__setop__var method.

*/

void var_setop(void* sp, int vidl, int set_op, int vid2, int set_rel, int vid3) {
return static cast <WSpacex>(sp)—>cst__setop__var(vidl, set_op, vid2, set_rel, vid3);

}

VEES

Wraps the WSpace cst__setop__arr method.

*/

void arr_setop(voidx sp, int set_op, int s, intx vidl, int vid2) {
return static_cast <WSpacex>(sp)—>cst__setop__arr(set_op, s, vidl, vid2);
}

/%%

Wraps the WSpace cst__setrel_ var method.

void var_setrel(voidx sp, int vidl, int rel type, int vid2) {
return static cast <WSpacex>(sp)—>cst__setrel var(vidl, rel type, vid2);

/%%

Wraps the WSpace cst__setrel val method.

void val_setrel(void* sp, int vidl, int rel type, intx dom, int s)
return static_cast <WSpacex>(sp)—>cst_setrel__val(vidl, rel type, dom, s);
}

/%%

Wraps the WSpace cst_setrel val reify method.

*/

void val_setrel_reify (void* sp, int vidl, int rel _type, intx dom, int s, int r, int mode) {

return static_cast <WSpacex>(sp)—>cst_setrel_val_ reify(vidl, rel_type, dom, s, r,

mode) ;

}

/%%

Wraps the WSpace cst__setrel var_reify method.

*/

void var_setrel_ reify (voidx sp, int vidl, int rel type, int vid2, int r, int mode) {
return static cast <WSpacex>(sp)—>cst__setrel var_reify(vidl, rel type, vid2, r, mode);

}

VEES

Wraps the WSpace cst__setdom__ints method.

*/

void ints_setdom (void* sp, int vidl, int rel_type, int i, int j) {
return static_cast <WSpacex>(sp)—>cst_setdom__ints(vidl, rel_type, i, j);
}

/%%
Wraps the WSpace cst_setdom_ set method.
*/
void set_setdom(voidx sp, int vidl, int vid2) {
return static_cast <WSpacex>(sp)—>cst_setdom_set(vidl, vid2);
¥

/%%
Wraps the WSpace cst_set__empty method.
*/
void empty_set(void* sp, int vidl) {
return static__cast <WSpacex>(sp)—>cst_set__empty (vidl);

/%%
Wraps the WSpace cst__setrel__val method.
*/
void val_card(void* sp, int n, intx vids, int min_card, int max_card) {
return static_cast <WSpacex>(sp)—>cst__card_val(n, vids, min_card, max_card);
}

/%%
Wraps the WSpace cst__setrel__var method.
*/
void var_card(void* sp, int vidl, int vid2) {
return static cast <WSpacex>(sp)—>cst_card_var(vidl, vid2);
}

153

/%%

Wraps the WSpace cst__channel method.

*/

void channel_ set(void* sp, int nl, int*x vidsl, int n2, int*x vids2) {
return static cast <WSpacex>(sp)—>cst_channel(nl, vidsl, n2, vids2);

}

[xx

Wraps the WSpace cst__channel sb method.

*/

void channel_set_bool(void* sp, int nl, intx vidsl, int vid2) {
return static__cast <WSpacex>(sp)—>cst__channel_sb(nl, vidsl, vid2);

/%%
Wraps the WSpace cst__setmin method.
*/
int set_min(void* sp, int vidl){
return static__cast <WSpacex>(sp)—>cst__setmin (vidl);
¥

/%%
Wraps the WSpace cst__setmax method.
*/
int set_max(void* sp, int vidl){
return static_ cast <WSpace*>(sp)—>cst_setmax (vidl);
}

/%%
Wraps the WSpace cst_setmin_reify method.
*/
void set_min_reify(void* sp, int vidl, int vid2, int r, int mode){
return static cast <WSpacex>(sp)—>cst_setmin_reify (vidl, vid2, r, mode);
¥

/%%

Wraps the WSpace cst__setmax_reify method.

void set__max_reify(voidx sp, int vidl, int vid2, int r, int mode){
return static cast <WSpacex>(sp)—>cst_setmax_reify (vidl, vid2, r, mode);

[xx
Wraps the WSpace cst__setunion method.
*/
void set_union(void* sp, int vidl, int n, intx vids){
return static_cast <WSpacex>(sp)—>cst_setunion(vidl, n, vids);

/%%

41 Wraps the WSpace cst__element method.

42 =/

43 void element(void* sp, int set_op, int n, intx vids, int vidl, int vid2){

44 return static cast <WSpacex>(sp)—>cst__element (set_op, n, vids, vidl, vid2);
546

547 [**

548 Wraps the WSpace branch method.

549 x/

550 void branch(void* sp, int n, int* vids, int var_strategy, int val_strategy) {

551 return static_cast <WSpacex>(sp)—>branch(n, vids, var_strategy, val_strategy);
552 }

553

554 /**

555 Wraps the WSpace branch__b method.

556 *

557 void branch_b(void* sp, int n, int*x vids, int var_strategy, int val_strategy) {
558 return static_cast <WSpacex>(sp)—>branch_b(n, vids, var_strategy, val_ strategy);
559 }

o

/%%

Wraps the WSpace branch_set method.

*

/

564 void branch_set(voidx sp, int n, intx vids, int var_strategy, int val_ strategy) {
565 return static cast <WSpacex>(sp)—>branch_set(n, vids, var_strategy, val_ strategy):;
566 }

567

568 /**

569 Wraps the WSpace cost method.

570 %/

571 void cost(voidx sp, int vid) {

572 return static_cast <WSpacex>(sp)—>cost (vid);
573

574

575 /%%

576 Wraps the WTimeStop constructor

577 x/

578 void* new__time_stop(int maxTime){

579 return (void*) new WTimeStop(maxTime) ;

580 }

581

582 /#*

154

583 Wraps the WTimeStop reset method

584 %/

585 void reset__time_stop(voidx tStop){

586 WTimeStop* _ tStop = static_cast <WTimeStop*>(tStop) ;
587 _tStop—>reset () ;

588 }

589

590 /%

591 Wraps the WSearchOptions constructor.
592 %/

593 void* new_search_options () {

594 return (voidx*) new WSearchOptions () ;
595

596

597 [**
598 Wraps the WSearchOptions setNbThreads method.

599 x/

600 int set_nb_threads(voidx sOpts, int nThreads){

601 return static_ cast <WSearchOptions*x>(sOpts)—>setNbThreads(nThreads) ;
602 }

603

604 /o

605 Wraps the WSearchOptions setTimeStop method.

606 Returns the options object passed as an argument as a void pointer
607 x/

608 void* set_time_stop(voidx sOpts, voidx tStop){

609 WTimeStop* __tStop = static_cast <WTimeStop*>(tStop) ;

610 WSearchOptions* _sOpts = static_cast <WSearchOptionsx>(sOpts) ;
611 _sOpts—>setTimeStop (_tStop) ;

612 return (void=x) _sOpts;

613 }

614

6

//new version

/%%

Wraps the WbabEngine constructor.

void* new__bab__engine(void* sp, void* opts) {
WSpacex _sp = static_cast <WSpacex>(sp) ;
WSearchOptions* __opts = static cast<WSearchOptions*>(opts) ;

return (voidx) new WbabEngine(_sp, _opts—>getOpts());
VEES
Wraps the WbabEngine next method.
*/

void* bab_next(voidx* se) {
return (void=x) static_cast <WbabEngine*>(se)—>next () ;

/%%
Wraps the WbabEngine stopped method.
*/
int bab__stopped(voidx* se){
return static_cast <WbabEnginex>(se)—>stopped () ;
b

/%%

Wraps the WdfsEngine constructor.

*/

void* new_dfs_engine(voidx sp, void* opts) {
WSpace*x _sp = static__cast <WSpacex>(sp) ;
WSearchOptions* _opts = static_cast <WSearchOptions*>(opts) ;
return (voidx) new WdfsEngine(_sp, _opts—>getOpts());

/%%
Wraps the WdfsEngine next method.
*/
void* dfs_next(voidx* se) {
return (void*) static_cast <WdfsEnginex>(se)—>next () ;

/%%
Wraps the WdfsEngine stopped method.
*/
int dfs_stopped(voids* se){
return static cast <WdfsEnginex>(se)—>stopped () ;
}

Ve

Wraps the WSpace destructor .

*/

void release(voidx* sp) {

delete static_cast <WSpace*>(sp);

}
669 /%%
670 Wraps the WSpace value method.
671 %/
672 int get_value(void* sp, int vid) {
673 return static_cast <WSpacex>(sp)—>value(vid);
674 }

675

155

O U AW

N = O ©

NN NN NN
D UL W N =

N

N N
[0}

/%%
Wraps the WSpace value method.
*/
int get__value_bool(void* sp, int vid) {
return static_cast <WSpacex>(sp)—>value_bool(vid);
}

VEES
Wraps the WSpace value method.
*/
intx get_value_set(void* sp, int vid, int n) {
return static_cast <WSpacex>(sp)—>value_set(vid, n);
¥

/%%
Wraps the WSpace value method.
*/
int get__value_size(void* sp, int vid) {
return static__cast <WSpacex>(sp)—>value_size(vid);
¥

VEES
Wraps the WSpace values method.
*/
int*x get_values(void* sp, int n, int* vids) {
return static cast <WSpacex>(sp)—>values(n, vids);

¥
/xx
Wraps the WSpace print method.
*/
void print_vars(voidx sp, int n, intx vids)
return static__cast <WSpacex>(sp)—>print (n, vids);
¥

C.2 Lisp Wrapper

The lisp wrapper is used to call the C function previously defined from Lisp
code, using the C Foreign Function Interface, it is composed of two files :

» gecode-wrapper.lisp : implements the calls to the function from the C
library of Gil.

» gecode-wrapper-ui.lisp : wraps the function of gecode-wrapper.lisp to
make them more user-friendly.

C.2.1 gecode-wrapper.lisp

cl:defpackage gi
l1:def k 1"
(:nicknames "GIL")
(:use common—lisp :cl—user :cl :cffi))

(in—package :gil)

(cffi::defcfun ("computation_ space'" new—space) :pointer
"Create a new computation space."

(cffi::defcfun ("add_intVar" add—int—var—low) :int
"Add an IntVar ranging from min to max to the specified space. Return the reference of
this variable for this space."
(sp :pointer)
(min :int)
(max :int)

(cffi::defcfun ("add intVarWithDom" add—int—var—dom—aux) :int
"Add an IntVar with domain dom of size s to the specified space. Return the reference of
this wvariable for this space."
(sp :pointer)
(s :int)
(dom :pointer)

)

(defun add—int—var—dom—low (sp dom)
"Add an IntVar with domain dom to the specified space. Return the reference of this
variable for this space."
(let ((x (cffi::foreign—alloc :int :initial—contents dom)))
(add—int—var—dom—aux sp (length dom) x))

156

29

)

(cffi::defcfun ("add intVarArray"' add—int—var—array—aux) :pointer
"Add n IntVar ranging from min to max to the specified space.
(sp :pointer)
(n :int)
(min :int)
(max :int)

)

(defun add—int—var—array—low (sp n min max)
"Add n IntVar ranging from min to max to the specified space.
those variables for this space"
(let ((p (add—int—var—array—aux sp n min max)))
(loop for i from 0 below n
collect (cffi::mem—aref p :int i)))

)

(cffi::defcfun ("add_ boolVarArray" add—bool—var—array—aux) :point

"Add n boolVar ranging from min to max to the specified space.

(sp :pointer)
(n :int)

(min :int)
(max :int)

)

(defun add—bool—var—array—low (sp n min max)
"Add n BoolVar ranging from min to max to the specified space
those variables for this space"
(let ((p (add—bool—var—array—aux sp n min max)))
(loop for i from 0 below n
collect (cffi::mem—aref p :int i)))

)

Return the references

er
"

. Return the references

(cffi::defcfun ("add_ intVarArrayWithDom" add—int—var—array—dom—aux) :pointer

"Add n IntVar with domain dom of size s to the specified spac
(sp :pointer)

(n :int)

(s :int)

(dom :pointer)

)

(defun add—int—var—array—dom—low (sp n dom)
"Add n IntVar with domain dom to the specified space. Return
variables for this space"
(let ((x (cffi::foreign—alloc :int :initial—contents dom))
p)
(setq p (add—int—var—array—dom—aux sp n (length dom) x))
(loop for i from 0 below n
collect (cffi::mem—aref p :int i)))

)

(cffi::defcfun ("set_ solution_ vars' set—solution—vars—aux) :void
(sp :pointer)
(n :int)

(vids :pointer)

(defun set—solution—vars (sp vids)
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(set—solution—vars—aux sp (length vids) x)
)

)

(cffi::defcfun ("set_percent_diff" set—percent—diff) :void
(sp :pointer)
(diff :int)

(cffi::defcfun ("nvars" nvars) :int
"Return the number of variables in the space.
(sp :pointer)

;IntVar relation flags

(defparameter gil ::IRT_EQ 0) ; equality relation
(defparameter gil ::IRT _NQ 1) ; inequality
(defparameter gil::IRT_LQ 2) ; Less or equal
(defparameter gil ::IRT_LE 3) ; Strictly lower
(defparameter gil ::IRT_GQ 4) ; Greater or equal
(defparameter gil ::IRT_GR 5) ; Strictly greater

(cffi::defcfun ("add_boolVar" add—bool—var—range) :int
"Add a BoolVar ranging from | to h. Return the index to this
(sp :pointer)
(1 :int)
(h :int)
)

(cffi::defcfun ("add_ boolVar expr_ val" add—bool—var—expr—val) :in

e."

the references

BoolVar."

t

"Add a BoolVar corresponding to the evalueation of rel—type(vid, val)."

(sp :pointer)
(vid :int)

157

of those

of

of

(rel—type :int)
(val :int)

(cffi::defcfun ("add boolVar_ expr_var' add—bool—var—expr—var) :int
"Add a BoolVar corresponding to the evalueation of rel—type(vidl, vid2)."
(sp :pointer)
(vidl :int)
(rel—type :int)
(vid2 :int)

)

(cffi::defcfun ("add_setVar" add—set—var—card) :int
"Add a SetVar ranging from 1 to h. Return the index to this BoolVar."
(sp :pointer)
(lub—min :int)
(lub—max :int)
(card—min :int)
(card—max :int)

)

(cffi::defcfun ("add_ setVarArray" add—set—var—array—aux) :pointer
"Add n setVar with cardinality card—min to card—max to the specified space.
(sp :pointer)
(n :int)
(lub—min :int)
(lub—max :int)
(card—min :int)
(card—max :int)

"

)

(defun add—set—var—array—card (sp n lub—min lub—max card—min card—max)
"Add n SetVar ranging cardinality from card—min to card—max to the specified
Return the references of those variables for this space"
(let ((p (add—set—var—array—aux sp n lub—min lub—max card—min card—max)))
(loop for i from 0 below n
collect (cffi::mem—aref p :int i)))

)

(cffi::defcfun ("val rel" val—rel) :void
"Post a variable/value rel constraint."
(sp :pointer)

(vid :int)
(rel—type :int)
(val :int)

)

(cffi::defcfun ("var_rel" var—rel) :void
"Post a variable/variable rel constraint."
(sp :pointer)

(vidl :int)
(rel—type :int)
(vid2 :int)

)

(cffi::defcfun ("var_rel reify" var—rel—reify) :void
"Post a variable/variable rel constraint with reification .
(sp :pointer)
(vidl :int)
(rel—type :int)
(vid2 :int)
(vid3 :int)
(mode :int)

)

(cffi::defcfun ("val_rel reify" val—rel—reify) :void
"Post a variable/value rel constraint with reification .
(sp :pointer)
(vidl :int)
(rel—type :int)
(val :int)
(vid2 :int)
(mode :int)

)

(cffi::defcfun ("arr_val rel" arr—val—rel—aux) :void
"Post a variable—array/value rel constraint."
(sp :pointer)
(n :int)
(vids :pointer)
(rel—type :int)
(val :int)

)

(defun arr—val—rel (sp vids rel—type val)
"Post a variable—array/value rel constraint."
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(arr—val—rel—aux sp (length vids) x rel—type val))

)

(cffi::defcfun ("arr_var_rel" arr—var—rel—aux) :void
"Post a variable—array/variable rel constraint."
(sp :pointer)

158

space.

(n :int)

(vids :pointer)
(rel—type :int)
(vid :int)

)

(defun arr—var—rel (sp vids rel—type vid)
"Post a variable—array/variable rel constraint."'
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(arr—var—rel—aux sp (length vids) x rel—type vid))

)

(cffi::defcfun ("arr_rel" arr—rel—aux) :void
"Post a variable—array rel constraint."
(sp :pointer)

(n :int)
(vids :pointer)
(rel—type :int)

)

(defun arr—rel (sp vids rel—type)
"Post a variable—array rel constraint."
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(arr—rel—aux sp (length vids) x rel—type))

)

(cffi::defcfun ("arr_arr_rel" arr—arr—rel—aux) :void
"Post a variable—array/variable—array rel constraint.
(sp :pointer)

(nl :int)
(vidsl :pointer)
(rel—type :int)
(n2 :int)
(vids2 :pointer)

)

(defun arr—arr—rel (sp vidsl rel—type vids2)
"Post a variable—array/variable—array rel constraint.
(let ((x (cffi::foreign—alloc :int :initial—contents vidsl))
(y (cffi::foreign—alloc :int :initial—contents vids2)))
(arr—arr—rel—aux sp (length vidsl) x rel—type (length vids2) y))

)

(cffi::defcfun ("distinct" distinct—aux) :void
"Post a distinct constraint on the n variables denoted in vids.
(sp :pointer)
(n :int)
(vids :pointer)

(defun distinct (sp vids)
"Post a distinct constraint on the variables denoted in vids.
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(distinct—aux sp (length vids) x))

)

(cffi::defcfun ("val_ linear" val—linear—aux) :void
"Post a linear equation constraint."
(sp :pointer)
(n :int)
(c :pointer)
(vids :pointer)
(rel—type :int)
(val :int)

)

(defun val—linear (sp coeffs vars rel—type value)

"Post a linear equation constraint. coeffs and vars must have the same number of elements
(let ((c (cffi::foreign—alloc :int :initial—contents coeffs))
(x (cffi::foreign—alloc :int :initial—contents vars)))

(val—linear—aux sp (length coeffs) ¢ x rel—type value))

)

(cffi::defcfun ("var_ linear" var—linear—aux) :void
"Post a linear equation constraint."
(sp :pointer)
(n :int)
(c :pointer)
(vids :pointer)
(rel—type :int)
(vid :int)

)

(defun var—linear (sp coeffs vars rel—type vid)

"Post a linear equation constraint. coeffs and vars must have the same number of elements
296 (let ((c (cffi::foreign—alloc :int :initial—contents coeffs))
297 (x (cffi::foreign—alloc :int :initial—contents vars)))
298 (var—linear—aux sp (length coeffs) ¢ x rel—type vid))
209)
300

301 (cffi::defcfun ("arithmetics abs" ge—abs) :void

302 "Post the constraint that |vidl| = vid2."

303 (sp :pointer)

304 (vidl :int)

305 (vid2 :int)

306)

307

308 (cffi::defcfun ("arithmetics_div" ge—div) :void
309 "Post the constraint that vid3 = vidl/vid2."
310 (sp :pointer)

311 (vidl :int)

312 (vid2 :int)

313 (vid3 :int)

314)

315

316 (cffi::defcfun ("arithmetics_mod" var—mod) :void
"Post the constraint that vidl % vid2 = vid3."
(sp :pointer)

(vidl :int)

(vid2 :int)

(vid3 :int)

)
(cffi::defcfun ("arithmetics divmod" ge—divmod) :void
"Post the constraint that vid3 = vidl/vid2 and vid4 = vidl % vid2."
(sp :pointer)
(vidl :int)
(vid2 :int)
(vid3 :int)
(vid4 :int)
)

(cffi:defcfun ("arithmetics_min" ge—min) :void
"Post the constraint that vid3 = min(vidl, vid2)."
(sp :pointer)
(vidl :int)
(vid2 :int)
(vid3 :int)

)
(cffi:defcfun ("arithmetics arr min" ge—arr—min—aux) :void
"Post the constraint that vid = min(vids)."
(sp :pointer)
(n :int)
(vids :pointer)
(vid :int)
347)
348
349 (defun ge—arr—min (sp vid vids)
350 "Post the constraint that vid = min(vids)."
351 (let ((x (cffi::foreign—alloc :int :initial—contents vids)))
352 (ge—arr—min—aux sp (length vids) x vid))
353)
354
355 (cffi:defcfun ("arithmetics argmin' ge—argmin—aux) :void
356 "Post the constraint that vid = argmin(vids)."
357 (sp :pointer)
358 (n :int)
359 (vids :pointer)
360 (vid :int)
361)

(defun ge—argmin (sp vids vid)
"Post the constraint that vid = argmin(vids)."
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(ge—argmin—aux sp (length vids) x vid))

367)
368
369 (cffi:defcfun ("arithmetics_ max" ge—max) :void
370 "Post the constraint that vid3 = max(vidl, vid2)."
371 (sp :pointer)
372 (vidl :int)
373 (vid2 :int)
374 (vid3 :int)
375)
376
377 (cffi:defcfun ("arithmetics arr max" ge—arr—max—aux) :void
"Post the constraint that vid = max(vids)."
(sp :pointer)
(n :int)
(vids :pointer)
(vid :int)

383)
(defun ge—arr—max (sp vid vids)

"Post the constraint that vid = max(vids).

(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(ge—arr—max—aux sp (length vids) x vid))

389)

390

391 (cffi:defcfun ("arithmetics argmax' ge—argmax—aux) :void
392 "Post the constraint that vid = argmax(vids)."

393 (sp :pointer)

394 (n :int)

160

449

450
451
452
453
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469

479

485

487

(vids :pointer)

(vid :int)
)
(defun ge—argmax (sp vids vid)
"Post the constraint that vid = argmax(vids)."

(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(ge—argmax—aux sp (length vids) x vid))

)

(cffi:defcfun ("arithmetics_mult" ge—mult) :void
"Post the constraint that vid3 = vidl % vid2."
(sp :pointer)

(vidl :int)
(vid2 :int)
(vid3 :int)

)

(cffi:defcfun ("arithmetics_sqr" ge—sqr) :void
"Post the constraint that vid2 = vidl~2."
(sp :pointer)

(vidl :int)
(vid2 :int)

)

(cffi:defcfun ("arithmetics_sqrt" ge—sqrt) :void
"Post the constraint that vid2 = vidl7(1/2)."
(sp :pointer)

(vidl :int)
(vid2 :int)

)

(cffi:defcfun ("arithmetics_ pow" ge—pow) :void
"Post the constraint that vid2 = vidl n."
(sp :pointer)

(vidl :int)
(n :int)
(vid2 :int)

)

(cffi:defcfun ("arithmetics nroot" ge—nroot) :void
"Post the constraint that vid2 = vidl (1/n)."
(sp :pointer)

(vidl :int)
(n :int)
(vid2 :int)

)
(cffi::defcfun ("set_dom" set—dom—aux) :void
"Post the constraint that dom(vid) = domain of size n."
(sp :pointer)
(vid :int)
(n :int)
(domain :pointer)
)
(defun set—dom (sp vid domain)
"Post the constraint that dom(vid) = domain."
(let ((x (cffi::foreign—alloc :int :initial—contents domain)))
(set—dom—aux sp vid (length domain) x))
)

(cffi::defcfun ("set_member" set—member—aux) :void
"Post the constraint that vid is a member vids.
(sp :pointer)

(n :int)
(vids :pointer)
(vid :int)

)

(defun set—member (sp vids vid)
"Post the constraint that vid is a member vids.
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(set—member—aux sp (length vids) x vid))

)

(cffi::defcfun ("rel sum' rel—sum—aux) :void
"Post the constraint that vid = sum(vids). n is the number of vars in
(sp :pointer)
(vid :int)
(n :int)
(vids :pointer)

(defun rel—sum (sp vid vids)
"Post the constraint that vid = sum(vids).
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))

(rel—sum—aux sp vid (length vids) x))

)

(cffi::defcfun ("count_ val val" count—val—val—aux) :void

"Post the constraint that the number of variables in vids equal to vall has

rel—type with val2."

161

vids .

"

relation

488 (sp :pointer)

489 (n :int)

490 (vids :pointer)

491 (vall :int)

492 (rel—type :int)

493 (val2 :int)

494)

495

496 (defun count—val—val (sp vids vall rel—type val2)

497 "Post the constraint that the number of variables in vids equal to vall has relation
498 rel—type with val2."

499 (let ((x (cffi::foreign—alloc :int :initial—contents vids)))
500 (count—val—val—aux sp (length vids) x vall rel—type val2))
501)

502

503 (cffi::defcfun ("count_ val var"' count—val—var—aux) :void

504 "Post the constraint that the number of variables in vids equal to vall has relation
505 rel—type with vid."

506 (sp :pointer)

507 (n :int)

508 (vids :pointer)

509 (val :int)

510 (rel—type :int)

511 (vid :int)

512)

513

514 (defun count—val—var (sp vids val rel—type vid)

515 "Post the constraint that the number of variables in vids equal to val has relation
516 rel—type with vid."

517 (let ((x (cffi::foreign—alloc :int :initial—contents vids)))
518 (count—val—var—aux sp (length vids) x val rel—type vid))
519)

520

521 (cffi::defcfun ("count_ var_ val' count—var—val—aux) :void

522 "Post the constraint that the number of variables in vids equal to vid has relation
523 rel—type with val."

524 (sp :pointer)

525 (n :int)

526 (vids :pointer)

527 (vid :int)

528 (rel—type :int)

529 (val :int)

530)

531

532 (defun count—var—val (sp vids vid rel—type val)

ot

rel—type with val."

2

533 "Post the constraint that the number of variables in vids equal to vid has relation
1
5 (let ((x (cffi::foreign—alloc :int :initial—contents vids)))

ot

536 (count—var—val—aux sp (length vids) x vid rel—type val))
537)

538

539 (cffi::defcfun ("count_var_ var' count—var—var—aux) :void

wt

"Post the constraint that the number of variables in vids equal to vidl has relation
rel—type with vid2."

(sp :pointer)

(n :int)

(vids :pointer)

(vidl :int)

(rel—type :int)

(vid2 :int)

wt

wt

S

ot

SIS
N o

)

(defun count—var—var (sp vids vidl rel—type vid2)

9
©

ot

o
TUR W=

551 "Post the constraint that the number of variables in vids equal to vidl has relation

552 rel—type with vid2."

553 (let ((x (cffi::foreign—alloc :int :initial—contents vids)))

554 (count—var—var—aux sp (length vids) x vidl rel—type vid2))

555)

556

557 (cffi::defcfun ("count_ var_ set_val" count—var—set—val—aux) :void

558 "Post the constraint that the number of variables in vids belonging to the set set has
relation rel—type with wval."

559 (sp :pointer)

560 (n :int)

561 (vids :pointer)

562 (s :int)

563 (s—set :pointer)

564 (rel—type :int)

565 (val :int)

566)

567

568 (defun count—var—set—val (sp vids s—set rel—type val)
569 "Post the constraint that the number of variables in vids belonging to the set set has
relation rel—type with val."

570 (let ((x (cffi::foreign—alloc :int :initial—contents vids))

571 (y (cffi::foreign—alloc :int :initial—contents s—set)))

572 (count—var—set—val—aux sp (length vids) x (length s—set) y rel—type val))
573)

574

575 (cffi::defcfun ("count_ array val" count—array—val—aux) :void

576 (sp :pointer)

577 (n :int)

578 (vids :pointer)

162

579 (c :pointer)

580 (rel—type :int)

581 (val :int)

582

583

584 (defun count—array—val (sp vids c rel—type val)

585 "Post the constraint that the number of times that vars[i] = c[i] is equal to val"
586 (let ((x (cffi::foreign—alloc :int :initial—contents vids))

587 (y (cffi::foreign—alloc :int :initial—contents c)))

588 (count—array—val—aux sp (length vids) x y rel—type val))

589)

90

91 (cffi::defcfun ("sequence_var"' sequence—var—aux) :void

92 "Post the constraint that the number of occurences of s—set in every subsequence of
length

vall in vids must be higher than val2 and lower than val3"

(sp :pointer)

(n :int)
(vids :pointer)
(s :int)

(s—set :pointer)
(vall :int)
(val2 :int)
(val3 :int)

)

(defun sequence—var (sp vids s—set vall val2 val3)
(let ((x (cffi::foreign—alloc :int :initial—contents vids))
(y (cffi::foreign—alloc :int :initial—contents s—set)))
(sequence—var—aux sp (length vids) x (length s—set) y vall val2 wval3))

)

(cffi::defcfun ("nvalues" nvalues—aux) :void
"Post the constraint the number of distinct values in the n variables denoted by vids
has the given rel—type relation with the variable vid."
(sp :pointer)
(n :int)
(vids :pointer)
(rel—type :int)
(vid :int)

)

(defun nvalues (sp vids rel—type vid)
"Post the constraint the number of distinct values in the n variables denoted by vids
has the given rel—type relation with the variable vid."
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(nvalues—aux sp (length vids) x rel—type vid))

)

(cffi::defcfun ("circuit" hcircuit—aux) :void
"Post the constraint that values of vidsl are the edges of an hamiltonian circuit in
the graph formed by the n variables in vidsl, vids2 are the costs of these edges
described
by ¢, and vid is the total cost of the circuit, i.e. sum(vids2)."
(sp :pointer)
(n :int)
(c :pointer)
(vidsl :pointer)
(vids2 :pointer)
(vid :int)

)

(defun hcircuit (sp ¢ vidsl vids2 vid)

"Post the constraint that values of vidsl are the edges of an hamiltonian circuit in
the graph formed by the variables in vidsl, vids2 are the costs of these edges described
by ¢, and vid is the total cost of the circuit, i.e. sum(vids2)."
(let ((costs (cffi::foreign—alloc :int :initial—contents c))

(x (cffi::foreign—alloc :int :initial—contents vidsl))

(y (cffi::foreign—alloc :int :initial—contents vids2)))

(hcircuit—aux sp (length vidsl) costs x y vid))

)
(cffi::defcfun ("precede" precede—aux) :void
"Post the constraint that if there exists j (O[U+FFFD]j < |x|) such that x[j] = u,
then there must exist i with i < j such that x[i] = s"
(sp :pointer)
(n :int)
(vids :pointer)
(s :int)
(u :int)
)
(defun precede (sp vids s u)
"Post the constraint that if there exists j (O[U+FFFD]j < |x|) such that x[j] = u,
then there must exist i with i < j such that x[i] = s"

(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(precede—aux sp (length vids) x s u)

)
)
; Reification mode
(defparameter gil ::RM _EQV 0) ; Equivalent
(defparameter gil ::RM_IMP 1) ; Implication

163

714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730

52
53
54
55

1

Sy
o

(defparameter gil ::RM_PMI 2) ; Inverse implication

; BoolVar operation flags
(defparameter gil ::
(defparameter gil :: logical or

(defparameter gil :: ; logical implication
(defparameter gil ::BOT_EQV 3) ; logical equivalence
(defparameter gil ::BOT_XOR 4) ; logical exclusive or

logical and

(cffi::defcfun ("val_boolop" val—bool—op) :void
"Post the constraint that val = bool—op(vidl, vid2)."
(sp :pointer)
(vidl :int)
(bool—op :int)
(vid2 :int)
(val :int)

)

(cffi::defcfun ("val_ arr_ boolop" val—arr—bool—op—aux) :void
"Post the constraint that elements of vids bool _op val"
(sp :pointer)
(bool_op :int)
(s :int)
(vids :pointer)
(val :int)

)

(defun val—arr—bool—op (sp bool—op vids val)
"Post the constraint that elements of vids bool—op val"
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(val—arr—bool—op—aux sp bool—op (length vids) x val)
)

)

(cffi::defcfun ("var_arr_ boolop" var—arr—bool—op—aux) :void
"Post the constraint that vid equals bool op between all element of
(sp :pointer)
(bool_op :int)

(s :int)
(vids :pointer)
(vid :int)

)

(defun var—arr—bool—op (sp bool—op vids vid)
"Post the constraint that vid equals bool_op between all element of
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(var—arr—bool—op—aux sp bool—op (length vids) x vid)
)

)

(cffi::defcfun ("var_boolop" var—bool—op) :void
"Post the constraint that vid3 = bool—op(vidl, vid2)."
(sp :pointer)
(vidl :int)
(bool—op :int)
(vid2 :int)
(vid3 :int)

)

(cffi::defcfun ("val_ boolrel” val—bool—rel) :void
"Post boolean rel constraint."
(sp :pointer)
(vid :int)
(rel—type :int)
(val :int)

)

(cffi::defcfun ("var_ boolrel" var—bool—rel) :void
"Post boolean rel constraint."
(sp :pointer)
(vidl :int)
(rel—type :int)
(vid2 :int)

)

;SetVar relation flags
(defparameter gil :: v
(defparameter gil::SRT_NQ 1) ; inequality
(defparameter gil ::SRT_SUB 2) ; Subset
(defparameter gil::SRT_SUP 3) ; Superset
(defparameter gil ::SRT_DISJ 4) ; Disjoint

; equality relation

(defparameter gil ::SRT_CMPL 5) ; Complement
(defparameter gil ::SRT_LQ 6) ; Less or equal
(defparameter gil ::SRT_LE 7) ; Strictly lower
(defparameter gil ::SRT_GQ 8) ; Greater or equal
(defparameter gil ::SRT_GR 9) ; Strictly greater
; SetVar operation flags

(defparameter gil ::SOT_UNION 0) ; union
(defparameter gil ::SOT_DUNION 1) ; disjoint union
(defparameter gil ::SOT_INTER 2) ; intersection
(defparameter gil ::SOT_MINUS 3) ; difference

164

vids"

vids"

O W N

w0~ o

INES BN ENER ER RN BN

l
7
7
7
7
7
7
7
7
7

(cffi::defcfun ("var_setop'
"Post the constraint that vid3
(sp :pointer)

(vidl :int)
(set—op :int)
(vid2 :int)
(set—rel :int)
(vid3 :int)

)

(cffi::defcfun ("arr_setop"
"Post the constraint that vid2
(sp :pointer)

(set_op :int)
(s :int)

(vidl :pointer)
(vid2 :int)

)

(defun arr—set—op (sp set_op vidl
"Post the constraint that vid2
(let ((x (cffi::foreign—alloc
(arr—set—op—aux sp set_op

)

(cffi::defcfun ("var_setrel"
"Post setVar rel constraint."'
(sp :pointer)

(vidl :int)
(rel—type :int)
(vid2 :int)

)

(cffi::defcfun ("empty set"
"post that vidl has

:pointer)

:int)

(cffi::defcfun ("val_ setrel"
"Post setVar rel constraint."
(sp :pointer)

(vid :int)
(rel—type :int)
(dom :pointer)
(s :int)

)

var—set—op)

arr—set—op—aux)

var—set—rel)

empty—set)
to be empty"

val—set—rel—aux)

:void

set_rel(set—op(vidl, vid2))

:void
set_op wvidl."

vid2)

set_op wvidl."

:int :initial—contents
(length vidl) x vid2))

vidl))

:void

:void

:void

(defun val—set—rel

(sp vidl

rel—type dom)

"

)

"Post the

constraint that vid = min(vids).

(let ((x (cffi

:: foreign—alloc

(val—set—rel—aux sp vidl

:int :initial—contents dom)))
rel—type x (length dom)))

)

(cffi
"Post
(sp
(vid
(dom :
(s
(r
(mode

)

::defcfun ("val setrel reify"

setVar rel constraint

:pointer)
:int)
(rel—type

cint)
pointer)

:int)
:int)

:int)

(defun val—set—rel—reify (sp vidl

"Post the

constraint that vid

val—set—rel—reify—aux) :void

with reify ."

rel—type dom r mode)

= min(vids) ."

(let ((x (cffi

:: foreign—alloc

(val—set—rel—reify—aux sp

)

(cffi::defcfun ("var_setrel reify"
"Post setVar rel

constraint with

:int :initial—contents dom)))
vidl rel—type x (length dom)

var—set—rel—reify) :void

reify ."

(sp
(vidl

(rel—type

(vid2
(r

(mode

:pointer)

:int)
cint)
:int)

:int)

:int)

)

(cffi::defcfun ("ints_setdom"

"Post setVar dom constraint."

(sp :pointer)
(vidl :int)
(rel—type :int)
(i :int)
(j :int)
)
(cffi::defcfun ("set_setdom" set—s

"Post
(sp

setVar dom constraint."
:pointer)

ints—set—dom)

:void

etdom) :void

165

r mode))

856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876

77
878

79

(vidl :int)
(vid2 :int)

)
(cffi::defcfun ("val card" val—card—aux) :void
"Post setVar cardinality constraint."
(sp :pointer)
(n :int)
(vids :pointer)
(min—card :int)
(max—card :int)
)

(defun val—card (sp vids min—card max—card)
"Post cardinality constraint on the SetVars denoted by vids."
(let ((x (cffi::foreign—alloc :int :initial—contents vids)))
(val—card—aux sp (length vids) x min—card max—card))

)

(cffi::defcfun ("var_card" var—card) :void
"Post setVar cardinality constraint."
(sp :pointer)
(vidl :int)
(vid2 :int)

)

(cffi::defcfun ("var_ setrel" var—set—rel) :void
"Post setVar rel constraint."
(sp :pointer)
(vidl :int)
(rel—type :int)
(vid2 :int)

)
(cffi::defcfun ("channel set" channel—set—aux) :void
"Post setVar channel constraint."
(sp :pointer)
(nl :int)
(vidsl :pointer)
(n2 :int)
(vids2 :pointer)
)

(defun channel—set (sp vidsl vids2)
"Post channel constraint on the SetVars denoted by vids."
(let ((x (cffi::foreign—alloc :int :initial—contents vidsl))
(y (cffi::foreign—alloc :int :initial—contents vids2)))
(channel—set—aux sp (length vidsl) x (length vids2) y))

)

(cffi::defcfun ("channel set bool" channel—set—bool—aux) :void
"Post setVar channel constraint."
(sp :pointer)
(nl :int)
(vidsl :pointer)
(vid2 :int)

)

(defun channel—set—bool (sp vidsl vid2)

"Post channel constraint on the SetVar vid2 and boolVarArray vidsl."

(let ((x (cffi::foreign—alloc :int :initial—contents vidsl)))
(channel—set—bool—aux sp (length vidsl) x vid2))

)

(cffi::defcfun ("set_min" set—min) :int
"Post minimum of SetVar constraint.’
(sp :pointer)
(vidl :int)

)

(cffi::defcfun ("set_max" set—max) :int
"Post maximum of SetVar constraint.'
(sp :pointer)
(vidl :int)

)

(cffi::defcfun ("set min reify" set—min—reify) :void
"Post minimum of SetVar constraint with reification .
(sp :pointer)

(vidl :int)
(vid2 :int)
(r :int)

(mode :int)

"

)

(cffi::defcfun ("set_max_reify" set—max—reify) :void
"Post maximum of SetVar constraint with reification
(sp :pointer)

(vidl :int)
(vid2 :int)
(r :int)

(mode :int)

166

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
103:

1034
1035
1036
1037
1038
1039
1040
1041

(cffi

::defcfun ("set_union" set—union—aux) :void

"Post setVar cardinality constraint."
(sp :pointer)
(vidl :int)

(n

cint)

(vids :pointer)

)

(defun

set—union (sp vidl vids)

"Post cardinality constraint on
(let ((x (cffi::foreign—alloc :int :initial—contents
(set—union—aux sp vidl (length vids) x))

)
(cffi

"Post setVar element constraint.
(sp :pointer)
(set—op :int)

(n

:int)

(vids :pointer)
(vidl :int)
(vid2 :int)

)
(defun

element (sp set—op vids vidl

"Post cardinality constraint on
(let ((x (cffi::foreign—alloc :int :initial—contents

)
(cffi

(element—aux sp set—op (length

::defcfun ("branch' branch—aux)
"Post branching on the n IntVars

(sp :pointer)

(n

:int)

(vids :pointer)
(var—strat :int)
(val—strat :int)

)

(defun

"Post branching on the IntVars

the SetVars denoted by vids."

::defcfun ("element" element—aux) :void

vid2)

vids)))

the SetVars denoted by vids."

:void
denoted by vids."

branch (sp vids var—strat val—strat)

denoted by vids."

(let ((x (cffi::foreign—alloc :int :initial—contents
(branch—aux sp (length vids) x var—strat val—strat))

)
(cffi

::defcfun ("branch_b" branch—b—
"Post branching on the n BoolVars denoted by vids.

(sp :pointer)

(n

:int)

(vids :pointer)
(var—strat :int)
(val—strat :int)

)

(defun

)

(cffi

"Post branching on the n SetVars

aux) :void

branch—b (sp vids var—strat val—strat)
"Post branching on the BoolVars
(let ((x (cffi::foreign—alloc :int :initial—contents
(branch—b—aux sp (length vids) x var—strat val—strat))

(sp :pointer)

(n

:int)

(vids :pointer)
(var_strat :int)
(val_strat :int)

)

(defun

"Post branching on the SetVars denoted by vids.

branch—set (sp vids var_strat

denoted by vids.

::defcfun ("branch_set" branch—set—aux) :void

denoted by vids."

val_strat)

(let ((x (cffi::foreign—alloc :int :initial—contents
(branch—set—aux sp (length vids) x var_strat val_ strat))

)

(cffi

::defcfun ("cost

"Define which wvariable is to be
(sp :pointer)
(vid :int)

(cffi

(max—time :int)

)
(cffi

"Reset the timer

(t—stop :pointer)

)
(cffi

::defcfun ("new_search options"

set—cost) :void

the cost."

::defcfun ("new__time_ stop" new—time—stop) :pointer
"Create a new TimeStop object to

vids)))

vids) x vidl vid2))

vids)))

vids)))

vids)))

specify the time after which the

::defcfun ("reset_ time stop" reset—time—stop) :void
of the timeStop object"

new—search—options)

167

:pointer

search

should

stop"

1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091

1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110

"Create a new options object to specify the search options"

)

(cffi::defcfun ("set_nb_ threads" set—nb—threads) :int
"Sets the number of threads to use during the search"
(s—opts :pointer)

(n—threads :int)

)

(cffi::defcfun ("set_time_ stop" set—t—stop) :pointer
"Sets the stop field of the Options object to the timeStop
(s—opts :pointer)
(t—stop :pointer)

(cffi::defcfun ("new_bab_ engine" bab—engine—low) :pointer
"Create a new branch and bound search—engine."
(sp :pointer)
(opts :pointer)

(cffi::defcfun ("bab_next" bab—next) :pointer
"Find the next solution for the search—engine se.
(se :pointer)

(cffi::defcfun ("bab_stopped" bab—stopped) :int

(se :pointer)

(cffi::defcfun ("new_dfs_engine" dfs—engine—low) :pointer
"Create a new depth—first search search—engine."
(sp :pointer)
(opts :pointer)

(cffi::defcfun ("dfs next" dfs—next) :pointer
"Find the next solution for the search—engine se.
(se :pointer)

"

)

(cffi::defcfun ("dfs_stopped" dfs—stopped) :int

(se :pointer)

(cffi::defcfun ("get_value' get—value) :int
"Get the value of the variable denoted by vid."
(sp :pointer)
(vid :int)

(cffi::defcfun ("get_ value bool" get—value—bool) :int
"Get the value of the variable denoted by vid."
(sp :pointer)
(vid :int)

(cffi::defcfun ("get_ value set" get—value—set—aux) :pointer
"Get the value of the variable denoted by vid."
(sp :pointer)
(vid :int)
(n :int)

(defun get—value—set (sp vid n)
"get all the values of a SetVar"'
(let ((p (get—value—set—aux sp vid n)))
(loop for i from 0 below n
collect (cffi::mem—aref p :int i)))

)

(cffi::defcfun ("get_ value size" get—value—size) :int
"Get the size of the solution of SetVar denoted by vid."
(sp :pointer)
(vid :int)

(cffi::defcfun ("get_values" get—values—aux) :pointer
"Get the values of the n variables denoted by vids.
(sp :pointer)
(n :int)
(vids :pointer)

)

(defun get—values (sp vids)
"Print the values of the variables denoted by vids."
(let ((x (cffi::foreign—alloc :int :initial—contents vids))
P
(setq p (get—values—aux sp (length vids) x))
(loop for i from 0 below (length vids)
collect (cffi::mem—aref p :int i)))

168

object"

returns t if the search engine has been stopped, nil otherwise"

returns t if the search engine has been stopped, nil otherwise"

1135)

1136

1137 (cffi::defcfun ("print_ vars' print—vars—aux) :void

1138 "Print the values of the n variables denoted by vids."
1139 (sp :pointer)

1140 (n :int)

1141 (vids :pointer)

1142)

1143

1144 (defun print—vars (sp vids)

1145 "Print the values of the variables denoted by vids."
1146 (let ((x (cffi::foreign—alloc :int :initial—contents vids)))
1147 (print—vars—aux sp (length vids) x))

1148)

C.2.2 gecode-wrapper-ui.lisp

(cl:defpackage "gil"
(:nicknames "GIL")
(:use common—lisp :cl—user :cl :cffi))

(in—package :gil)

10 (defclass int—var ()
11 ((id :initarg :id :accessor id))
12)

(defmethod add—int—var (sp 1 h)
"Adds a integer variable with domain [l,h] to sp"
(make—instance ’int—var :id (add—int—var—low sp 1 h)))

(defmethod add—int—var—dom (sp dom)
"Adds a integer variable with domain dom to sp"
(make—instance ’int—var :id (add—int—var—dom—low sp dom)))

(defmethod add—int—var—array (sp n 1 h)
"Adds an array of n integer variables with domain [l,h] to sp"
(loop for v in (add—int—var—array—low sp n I h) collect
(make—instance ’int—var :id v)))

(defmethod add—int—var—array—dom (sp n dom)
"Adds an array of n integer variables with domain dom to sp"
(loop for v in (add—int—var—array—dom—low sp n dom) collect
(make—instance ’int—var :id v)))

(defmethod g—specify—sol—variables (sp vids)
"Specifies the variables that will contain the solution
(set—solution—vars sp (vid vids)))

(defmethod g—specify—percent—diff (sp diff)
"Specifies the percent of modification when searching the next solution
(set—percent—diff sp diff))

"

39
40 ;id getter
41 (defmethod vid ((self int—var))

42 "Gets the vid of the variable self"

43 (id self))

45 (defmethod vid ((self list))

46 "Gets the vids of the variables in self"

47 (loop for v in self collect (vid v)))

48

49

50

51

52

53 (defclass bool—var ()

5¢ ((id :initarg :id :accessor id))

55

56

57 (defmethod add—bool—var (sp 1 h)

58 "Adds a boolean variable with domain [l,h] to sp"
59 (make—instance ’bool—var :id (add—bool—var—range sp 1 h)))

61 (defmethod add—bool—var—array (sp n 1 h)

62 "Adds an array of n boolean variables with domain [l,h] to sp"
63 (loop for v in (add—bool—var—array—low sp n 1 h) collect
64 (make—instance ’'bool—var :id v)))

66 (defmethod add—bool—var—expr (sp (vl int—var) rel—type (v2 fixnum))

67 "Adds a boolean variable representing the expression

68 vl rel—type v2 to sp"

69 (make—instance ’bool—var

70 :id (add—bool—var—expr—val sp (vid vl) rel—type v2)))

72 (defmethod add—bool—var—expr (sp (vl int—var) rel—type (v2 int—var))
73 (make—instance ’bool—var

169

RN

REC RSN

=~~~
o

0 00 00 00 -

00 O

0 00
01D TR W N =

8

150

152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

:id (add—bool—var—expr—var sp (vid vl) rel—type (vid v2))))

;id getter
(defmethod vid ((self bool—var)) (id self))

Creating set variables ;

(defclass set—var ()

((id :initarg :id :accessor id))
)

(defmethod add—set—var (sp lub—min lub—max card—min card—max)
"Adds a set variable with minimum cardinality card—min and max card—max"

(make—instance ’set—var :id (add—set—var—card sp lub—min lub—max card—min card—max)))

(defmethod add—set—var—array (sp n lub—min lub—max card—min card—max)
"Adds an array of n set variables with cardinality card—min to card—max to

(loop for v in (add—set—var—array—card sp n lub—min lub—max card—min card—max)

(make—instance ’set—var :id v)))

;id getter
(defmethod vid ((self set—var)) (id self))

Methods for int

:REL
(defmethod g—rel (sp (vl int—var) rel—type (v2 fixnum))
"Post the constraint that vl rel—type v2."
(val—rel sp (vid vl) rel—type v2))

(defmethod g—rel (sp (vl int—var) rel—type (v2 int—var))
(var—rel sp (vid vl) rel—type (vid v2)))

(defmethod g—rel (sp (vl list) rel—type (v2 null))
(arr—rel sp (vid vl) rel—type))

(defmethod g—rel (sp (vl list) rel—type (v2 fixnum))
(arr—val—rel sp (vid vl) rel—type v2))

(defmethod g—rel (sp (vl list) rel—type (v2 int—var))
(arr—var—rel sp (vid vl) rel—type (vid v2)))

(defmethod g—rel (sp (vl list) rel—type (v2 list))
(arr—arr—rel sp (vid vl) rel—type (vid v2)))

(defmethod g—rel—reify (sp (vl int—var) rel—type (v2 int—var) (v3 bool—var) &optional

(if (not mode)
(setf mode gil ::RM _EQV))
(var—rel—reify sp (vid vl) rel—type (vid v2) (vid v3) mode))

collect

mode)

(defmethod g—rel—reify (sp (vl int—var) rel—type (v2 fixnum) (v3 bool—var) &optional mode)

(if (not mode)
(setf mode gil ::RM_EQV))
(val—rel—reify sp (vid vl) rel—type v2 (vid v3) mode))

; DISTINCT

(defmethod g—distinct (sp vars)
"Post the constraint that the given vars are distinct."
(distinct sp (vid vars)))

;LINEAR

(defmethod g—linear (sp coeffs vars rel—type (v fixnum))
"Post the linear relation coeffs*vars rel—type v."
(val—linear sp coeffs (vid vars) rel—type v))

(defmethod g—linear (sp coeffs vars rel—type (v int—var))
(var—linear sp coeffs (vid vars) rel—type (vid v)))

; ARITHMETICS
(defmethod g—abs (sp (vl int—var) (v2 int—var))
"Post the constraints that v2 = |vl1]|."

(ge—abs sp (vid vl) (vid v2)))

(defmethod g—div (sp (vl int—var) (v2 int—var) (v3 int—var))
"Post the constraints that v3 = vl1/v2."
(ge—div sp (vid vl) (vid v2) (vid v3)))

(defmethod g—mod (sp (vl int—var) (v2 int—var) (v3 int—var))
"Post the constraints that v3 = v1%v2."
(var—mod sp (vid vl) (vid v2) (vid v3)))

(defmethod g—divmod (sp (vl int—var) (v2 int—var) (v3 int—var) (v4 int—var))
"Post the constraints that v3 = vl1/v2 and v4 = v1%v2."
(ge—divmod sp (vid vl) (vid v2) (vid v3) (vid v4)))

(defmethod g—min (sp (vl int—var) (v2 int—var) (v3 int—var) &rest vars)
"Post the constraints that vl = min(v2, v3, ...)."
(cond
((null vars)

170

167 (ge—min sp (vid v2) (vid v3) (vid vl)))

168 (t (ge—arr—min sp (vid vl)

169 (append (list (vid v2) (vid v3)) (vid vars))))))
170

171 (defmethod g—lmin (sp (v int—var) vars)

172 "Post the constraints that v = min(vars)."

(ge—arr—min sp (vid v) (vid vars)))

(defmethod g—argmin (sp vars (v int—var))
"Post the constraints that v = argmin(vars)."
(ge—argmin sp (vid vars) (vid v2)))

(defmethod g—max (sp (vl int—var) (v2 int—var) (v3 int—var) &rest vars)
"Post the constraints that vl = max(v2, v3, D
(cond ((null vars) (ge—max sp (vid v2) (vid v3) (vid vl)))
(t (ge—arr—max sp (vid vl) (append (list (vid v2) (vid v3)) (vid vars))))))

efmetho g—Ilmax sp v int—var vars

def hod 1 i
"Post the constraints that v = max(vars).
(ge—arr—max sp (vid v) (vid vars)))

"

(defmethod g—argmax (sp vars (v int—var))
"Post the constraints that v2 = argmax(vars)."
(ge—argmax sp (vid vars) (vid v)))

(defmethod g—mult (sp (vl int—var) (v2 int—var) (v3 int—var))
"Post the constraints that v3 = vlxv2."
(ge—mult sp (vid vl) (vid v2) (vid v3)))

(defmethod g—sqr (sp (vl int—var) (v2 int—var))
"Post the constraints that v2 is the square of v1."
(ge—sqr sp (vid vl) (vid v2)))

(defmethod g—sqrt (sp (vl int—var) (v2 int—var))
"Post the constraints that v2 square root of v1."
(ge—sqrt sp (vid vl) (vid v2)))

(defmethod g—pow (sp (vl int—var) n (v2 int—var))
"Post the constraints that v2 nth power of v1."
(ge—pow sp (vid vl) n (vid v2)))

(defmethod g—nroot (sp (vl int—var) n (v2 int—var))
"Post the constraints that v2 is the nth root of vl1."
(ge—nroot sp (vid vl) n (vid v2)))

(defmethod g—sum (sp (v int—var) vars)
"Post the constraints that v = sum(vars)."
(rel—sum sp (vid v) (vid vars)))

; DOM

(defmethod g—dom (sp (v int—var) dom)
"Post the constraints that dom(v) = dom."
(set—dom sp (vid v) dom))

efmetho g—member sp vars v int—var

def hod b i
"Post the constraints that v is in vars.
(set—member sp (vid vars) (vid v)))

; COUNT

(defmethod g—count (sp vars (vl fixnum) rel—type (v2 fixnum))
"Post the constraints that v2 is the number of times vl occurs in vars."
(count—val—val sp (vid vars) vl rel—type v2))

(defmethod g—count (sp vars (vl fixnum) rel—type (v2 int—var))
(count—val—var sp (vid vars) vl rel—type (vid v2)))

(defmethod g—count (sp vars (vl int—var) rel—type (v2 fixnum))
(count—var—val sp (vid vars) (vid vl) rel—type v2))

(defmethod g—count (sp vars (vl int—var) rel—type (v2 int—var))
count—var—var sp (vid vars vid v rel—type (vid v
id id v1 1 id v2

(defmethod g—count (sp vars (s—set list) rel—type (val fixnum)); ajout[U+FFFD]
(count—var—set—val sp (vid vars) s—set rel—type val)

242)
3

244 (defmethod g—count—array (sp vars (c list) rel—type (val fixnum)); aout[U+FFFD]
245 (count—array—val sp (vid vars) c rel—type val)

248 ;SEQUENCE
249 (defmethod g—sequence (sp vars (s—set list) (vl fixnum) (v2 fixnum) (v3 fixnum))
250 (sequence—var sp (vid vars) s—set vl v2 v3)

4 ;NUMBER OF VALUES

255 (defmethod g—nvalues (sp vars rel—type (v int—var))
6 "Post the constraints that v is the number of distinct values in vars."
7

(nvalues sp (vid vars) rel—type (vid v)))

59 ;HAMILTONIAN PATH/CIRCUIT

171

260 (defmethod g—circuit (sp costs varsl vars2 v)

261 "Post the constraint that values of varsl are the edges of an hamiltonian circuit
262 the graph formed by the n variables in varsl, vars2 are the costs of these edges
described

by costs, and v is the total cost of the circuit, i.e. sum(vars2)."
(hcircuit sp costs (vid varsl) (vid vars2) (vid v)))

; VALUE PRECEDENCE

(defmethod g—precede (sp vars s u)
"Post the constraint that if there exists j (O[U+FFFD]j < |x|) such that x[j] = u,
then there must exist i with i < j such that x[i] = s"
(precede sp (vid vars) s u)

; OP

(defmethod g—op (sp (vl bool—var) bool—op (v2 bool—var) (v3 fixnum))
"Post the constraints that vl bool—op v2 = v3."
(val—bool—op sp (vid vl) bool—op (vid v2) v3))

(defmethod g—op (sp (vl bool—var) bool—op (v2 bool—var) (v3 bool—var))
(var—bool—op sp (vid vl) bool—op (vid v2) (vid v3)))

; REL

(defmethod g—rel (sp (vl bool—var) rel—type (v2 fixnum))
"Post the constraints that vl rel—type v2."
(val—bool—rel sp (vid vl) rel—type v2))

(defmethod g—rel (sp (vl bool—var) rel—type (v2 bool—var))
(var—bool—rel sp (vid vl) rel—type (vid v2)))

(defmethod g—rel (sp bool—op (vl list) (v2 fixnum))
(val—arr—bool—op sp bool—op (vid vl) v2))

(defmethod g—rel (sp bool—op (vl list) (v2 bool—var))
(var—arr—bool—op sp bool—op (vid vl) (vid v2)))

; Methods for setVar constraints

SO
(defmethod g—op (sp (vl set—var) set—op (v2 set—var) (v3 set—var))
(var—set—op sp (vid vl) set—op (vid v2) gil::SRT _EQ (vid v3)))

(defmethod g—set—op (sp (vl set—var) set—op (v2 set—var) set_rel (v3 set—var))
(var—set—op sp (vid vl) set—op (vid v2) set_rel (vid v3)))

(defmethod g—arr—op (sp set—op (vl list) (v2 set—var))
(arr—set—op sp set—op (vid vl) (vid v2)))

:REL

(defmethod g—rel (sp (vl set—var) rel—type (v2 set—var))
"Post the constraints that vl rel—type v2."
(var—set—rel sp (vid vl) rel—type (vid v2)))

(defmethod g—rel (sp (vl set—var) rel—type dom)
"Post the constraints that vl rel—type domain dom.
(val—set—rel sp (vid vl) rel—type dom))

(defmethod g—rel—reify (sp (vl set—var) rel—type (dom list) r &optional mode)
"Post the constraints that vl rel—type domain dom."
(if (not mode)
(setf mode gil ::RM_EQV))
(val—set—rel—reify sp (vid vl) rel—type dom (vid r) mode))

(defmethod g—rel—reify (sp (vl set—var) rel—type (v2 set—var) r &optional mode)
"Post the constraints that vl rel—type domain dom."
(if (not mode)
(setf mode gil ::RM _EQV))
(var—set—rel—reify sp (vid vl) rel—type (vid v2) (vid r) mode))

; DOM

(defmethod g—dom (sp (vl set—var) (v2 set—var))
"Post the constraints that dom(v) = dom."
(set—setdom sp (vid vl) (vid v2)))

(defmethod g—dom—ints (sp (vl set—var) rel—type i j)
"Post the constraints that vl rel—type domain {i, ..., j}.
(ints—set—dom sp (vid vl) rel—type i j))

(defmethod g—empty (sp (vl set—var))
"Post the constraints that vl is empty."
(empty—set sp (vid vl)))

347 ;CARDINALITY
348 (defmethod g—card (sp (vl set—var) min—card max—card)
349 (val—card sp (list (vid vl)) min—card max—card))

351 (defmethod g—card (sp (v list) min—card max—card)

172

413

414
415

(val—card sp (vid v) min—card max—card))

(defmethod g—card—var (sp (vl set—var) (v2 int—var))
(var—card sp (vid vl1) (vid v2)))

; CHANNEL
(defmethod g—channel (sp (vl list) (v2 list))
(channel—set sp (vid vl1) (vid v2)))

(defmethod g—channel (sp (vl list) (v2 set—var))
(channel—set—bool sp (vid vl) (vid v2)))

; MINIMUM
(defmethod g—setmin (sp (vl set—var))
(make—instance ’int—var :id (set—min sp (vid v1))))

(defmethod g—setmin—reify (sp (vl set—var) (v2 int—var) (r bool—var) &optional mode)
(if (not mode)
(setf mode gil ::RM_EQV))
(set—min—reify sp (vid vl1) (vid v2) (vid r) mode))

: MAXIMUM
(defmethod g—setmax (sp (vl set—var))
(make—instance ’int—var :id (set—max sp (vid vl1))))

(defmethod g—setmax—reify (sp (vl set—var) (v2 int—var) (r bool—var) &optional mode)
(if (not mode)
(setf mode gil::RM_EQV))
(set—max—reify sp (vid vl1) (vid v2) (vid r) mode))

; SETUNION
(defmethod g—setunion (sp (vl set—var) (v2 list))
(set—union sp (vid vl) (vid v2)))

; ELEMENT
(defmethod g—element (sp set—op (vl list) (v2 set—var) (v3 set—var))
(element sp set—op (vid vl) (vid v2) (vid v3))

; Variable branching strategies

(defparameter gil ::INT_VAR_SIZE MIN 0) ; select first the variable with the smallest
domain

(defparameter gil ::INT_VAR RND 1) ; select first a random variable

(defparameter gil ::INT_ VAR DEGREE MAX 2); select the variable with the highest degree

(defparameter gil ::INT_VAR NONE 3) ;select first unassigned

; Value branching strategies

(defparameter gil ::INT_VAL_MIN 0) ; select first the smallest value of the domain
(defparameter gil ::INT_VAL RND 1) ; select first a random value

(defparameter gil ::INT_VAL_ SPLIT_MIN 2) ; select the values not greater than the (mintmax)/2
(defparameter gil ::INT_VAL_SPLIT _MAX 3) ; select the values greater than (mintmax)/2
(defparameter gil ::INT_ VAL MED 4) ; selects the greatest value not bigger than the median

5 53 SETVARS

; Variable branching strategies

(defparameter gil ::SET_VAR_SIZE MIN 0) ; select first the variable with the smallest
unknown domain

(defparameter gil ::SET_ VAR RND 1) ; select first a random variable

(defparameter gil ::SET__VAR DEGREE MAX 2); select the variable with the highest degree

(defparameter gil ::SET_VAR NONE 3) ;select first unassigned

; Value branching strategies

(defparameter gil ::SET_VAL_ MIN_INC 0) ; select first the smallest value of the domain
(defparameter gil ::SET_VAL RND_INC 1) ; select first a random value

(defparameter gil ::SET_VAL MIN_EXC 2) ; select the values not greater than the (mintmax)/2
(defparameter gil ::SET_VAL RND_EXC 3) ; select the values greater than (mintmax)/2
(defparameter gil ::SET_VAL MED INC 4) ; selects the greatest value not bigger than the median

(defmethod g—branch (sp (v int—var) var—strat val—strat)
"Post a branching on v with strategies var—strat and val—strat."
(branch sp (list (vid v)) var—strat val—strat))

(defmethod g—branch (sp (v bool—var) var—strat val—strat)
(branch—b sp (list (vid v)) var—strat val—strat))

(defmethod g—branch (sp (v set—var) var—strat val—strat)
(branch—set sp (list (vid v)) var—strat val—strat))

(defmethod g—branch (sp (v list) var—strat val—strat)
(if (typep (car v) ’int—var)
(branch sp (vid v) var—strat val—strat)
(if (typep (car v) ’bool—var)
(branch—b sp (vid v) var—strat val—strat)
(branch—set sp (vid v) var—strat val—strat))))

; cost

173

t

SRS
N O cC

ot
©

470

472
473
474
475
476
477
478
479

480

482
483
484
485
486
487
488
489
490
491
492

506
507
508
509
510

(defmethod g—cost (sp (v int—var))

"Defines that v is the cost of sp."
(set—cost sp (vid v)))
553533533533 DI I I I I A I
Methods for search engines ;
R I I I I I B AR I A SRR AR AL A SR A SRS AR A AR SR B AR B
; Methods for search engine options
(defclass time—stop ()
((ts :initform nil :initarg ts :accessor ts)); ts

in Gecode

)

(defmethod t—stop ()
(make—instance ’time—stop)
)

(defmethod time—stop—init (tstop max—time)
(setf (ts tstop) (new—time—stop max—time))

(defmethod time—stop—reset (tstop)

(reset—time—stop (ts tstop))

)

(defclass search—options ()
((opts :initform nil :initarg opts :accessor opts));
WSearchOptions object in Gecode

)

(defmethod search—opts ()
(make—instance ’search—options)
)

(defmethod init—search—opts
(setf (opts

(sopts)
sopts) (new—search—options))

(defmethod set—n—threads
(set—nb—threads (opts

(s—opts nthreads)
s—opts) nthreads)

(defmethod set—time—stop (s—opts t—stop)

(set—t—stop (opts s—opts) (ts t—stop))
)
; Search—engine types
(defparameter gil ::DFS "dfs")
(defparameter gil ::BAB "bab")
(defclass BAB—engine ()
((bab :initform nil :initarg :bab :accessor bab))
(defclass DFS—engine ()
((dfs :initform nil :initarg :dfs :accessor dfs))
)
(defmethod search—engine (sp opts se—type)

"Creates a new search engine (dfs or bab)."
(cond
((string—equal se—type gil ::DFS) (make—instance
opts)))
((string—equal se—type gil ::BAB) (make—instance
opts)))
)
)
;solution exist?
(defun sol? (sol)
"Existence predicate for a solution"
(and (not (cffi::null—pointer—p sol)) sol))
;next solution

(defmethod search—next ((se BAB—engine))
"Search the next solution of se."
(sol? (bab—next (bab se))))

(defmethod search—next ((se DFS—engine))

(sol? (dfs—next (dfs se))))
(defmethod search—next ((se null))
nil)
;stopped
returns 1 if stopped, 0 if not

(defmethod stopped ((se BAB—engine))
(bab—stopped (bab se))
)

(defmethod stopped ((se DFS—engine))

174

a void

opts is

’DFS—engine

’BAB—engine

pointer

a void

:dfs

pointer

to a WTimeStop object

to a

(dfs—engine—low sp

:bab (bab—engine—low sp

[S e
wWwww
=W N

S s

o

ot
o W

n

oo
© oo

9

o
R N N N N N N N Rt
o

9

SRS

ot ot ot o

© 00O T W N~

wt
N

wt

ut
ot

SRS
St

ut
at
ESRIC

n

v
n

n

o

ot
3o

v v Oov Ot
&G o
=30 m

S
DO DD
SIS

wt

(dfs—stopped (dfs se))

FEE R N A R A AR A AR A
Methods for

;values

(defmethod g—values
"Get the values
(get—value sp (

(defmethod g—values
"Get the values
(get—value—bool

(defmethod g—values
"Get the values
(get—value—set

(defmethod g—value—size

"Get the size
(get—value—size

(defmethod g—values
(get—values sp

(defmethod g—values
nil)

;print

(defmethod g—print
"Print v."
(print—vars sp

(defmethod g—print
(print—vars sp

(defmethod g—print
nil)

solutions ;

(sp (v int—var))
assigned to v.'"
vid v)))

(sp (v bool—var))
assigned to v."
sp (vid v)))

(sp (v set—var))
assigned to v."

sp (vid v)))

(sp (v list))
(vid v)))

((sp null) v)

(sp (v int—var))

(list (vid v))))
(sp (v list))
(ol)

((sp null) v)

(sp (v set—var))
of a SetVar"

sp (vid v) (g—value—size sp v)))

175

O WO U WN

Appendix D

Melodizer source code

In this appendix is the code for Melodizer 2.0, the first iteration of Melodizer
was implemented by Damien Sprockeels in 2021 28], we started from his work to
create our version. Nearly everything was modified and written from scratch as a
lot of things have been modified between the two versions but we were strongly
inspired by Damien’s work. This code is composed of four files :

block.lisp : contains the code of the two Open Music objects "block" and
"search" and their interfaces.

» melodizer-csp.lisp : contains the creation of the musical CSP, the creation
of the search engine and the call to find the next solutions.

« melodizer-csts.lisp : contains some of the musical constraints that would
obfuscate melodizer-csp.lisp.

« melodizer-utils.lisp : contains some utility functions used throughout the
other files

You can find the complete code for melodizer and more on github at https://github.com/clemsky /TFE
Composition-Musicale

D.1 Dblock.lisp

(in—package :mldz)

;3= BLOCK OBJECT =

(om:: defclass! block ()

;attributes

((block—1list :accessor block—list :initarg :block—list :initform nil :documentation "")
(melody—source :accessor melody—source :initarg :melody—source :initform nil
documentation "")

(position—1list :accessor position—list :initarg :position—list :initform nil
documentation "")

(bar—length :accessor bar—length :initform 0 :type integer)

(beat—length :accessor beat—length :initform 0 :type integer)

(voices :accessor voices :initform nil :type integer)

(min—pushed—notes :accessor min—pushed—notes :initform nil :type integer)
(max—pushed—notes :accessor max—pushed—notes :initform nil :type integer)
(min—notes :accessor min—notes :initform nil :type integer)

(max—notes :accessor max—notes :initform nil :type integer)
(min—added—notes :accessor min—added—notes :initform nil :type integer)

176

https://github.com/clemsky/TFE-Composition-Musicale
https://github.com/clemsky/TFE-Composition-Musicale

(max—added—notes :accessor max—added—notes :initform nil :type integer)
(min—note—length—flag :accessor min—note—length—flag :initform nil :type integer)
(min—note—length :accessor min—note—length :initform 0 :type integer)
(max—note—length—flag :accessor max—note—length—flag :initform nil :type integer)
(max—note—length :accessor max—note—length :initform 192 :type integer)
(quantification :accessor quantification :initform nil :type string)
(note—repartition—flag :accessor note—repartition—flag :initform nil :type integer)
(note—repartition :accessor note—repartition :initform nil :type integer)
(rhythm—repetition :accessor rhythm—repetition :initform nil :type string)
(pause—quantity—flag :accessor pause—quantity—flag :initform nil :type integer)
(pause—quantity :accessor pause—quantity :initform 0 :type integer)
(pause—repartition—flag :accessor pause—repartition—flag :initform nil :type integer)
(pause—repartition :accessor pause—repartition :initform 0 :type integer)
(key—selection :accessor key—selection :initform nil :type string)

(mode—selection :accessor mode—selection :initform nil :type string)

(chord—key :accessor chord—key :initform nil :type string)

(chord—quality :accessor chord—quality :initform nil :type string)
(all—chord—notes :accessor all—chord—notes :initform nil :type integer)

(min—pitch :accessor min—pitch :initform 1 :type integer)

(min—pitch—flag :accessor min—pitch—flag :initform nil :type integer)

(max—pitch :accessor max—pitch :initform 127 :type integer)

(max—pitch—flag :accessor max—pitch—flag :initform nil :type integer)
(pitch—direction :accessor pitch—direction :initform nil :type string)
(golomb—ruler—size :accessor golomb—ruler—size :initform O :type integer)
(note—repetition—flag :accessor note—repetition—flag :initform nil :type integer)
(note—repetition—type :accessor note—repetition—type :initform "Random" :type string)
(note—repetition :accessor note—repetition :initform 0 :type integer)

)

(:icon 225)

(:documentation "This class implements Melodizer.
Melodizer is a constraints based application aiming to improve composer’s expression

and exploration abilities

51 by generating interesting and innovative melodies based on a set of constraints
expressing musical rules.

52 More information and a tutorial can be found at https://github.com/sprockeelsd/

Melodizer")

53)

54

55 (om:: defclass! search ()

56 ;attributes

57

58 (block—csp :accessor block—csp :initarg :block—csp :initform nil)

59 (solution :accessor solution :initarg :solution :initform nil :documentation "The current
solution of the CSP in the form of a voice object.")

60 (result :accessor result

61 :result :initform (list) :documentation

62 "A temporary list holder to store the result of the call to the CSPs, shouldn’t be
touched . ")

63 (stop—search :accessor stop—search :stop—search :initform nil :documentation

64 "A boolean variable to tell if the user wishes to stop the search or not.")

65 (input—rhythm :accessor input—rhythm :input—rhythm :initform (make—instance ’voice)
documentation

66 "The rhythm of the melody or a melody in the form of a voice object. ")

67 (tempo :accessor tempo :initform 120 :type integer :documentation

68 "The tempo (BPM) of the project")

69 (branching :accessor branching :initform "Top down" :type string :documentation

70 "The tempo (BPM) of the project")

71 (percent—diff :accessor percent—diff :initform O :type integer)

7

)

7: (:icon 225)

74 (:documentation "This class implements Melodizer.

75 Melodizer is a constraints based application aiming to improve composer’s expression
and exploration abilities

76 by generating interesting and innovative melodies based on a set of constraints
expressing musical rules.

77 More information and a tutorial can be found at https://github.com/sprockeelsd/
Melodizer")

78)

79

80 ; the editor for the object

81 (defclass block—editor (om::editorview) ())

82

83 (defmethod om::class—has—editor—p ((self block)) t)
84 (defmethod om:: get—editor—class ((self block)) ’block—editor)

85

86 (defmethod om::om—draw—contents ((view block—editor))
87 (let* ((object (om::object view)))

88 (om:: om—with—focused—view

89 view

90 . ;; DRAW SOMETHING ?

91)

92)

93)

94

95 ; To access the melodizer object, (om::object self)

97 (defmethod initialize—instance ((self block—editor) &rest args)

98 ;5; do what needs to be done by default

99 (call—next—method) ; start the search by default?
100 (make—my—interface self)

101)

102

103 ; function to create the tool’s interface

177

104
105
106
107
108

110

115

126

127
128
129
130
131
132
133
134
135
136

37
138
139
140

141
142

189
190
191

(defmethod make—my—interface ((self block—editor))

; create the main view of the object
(make—main—view self)

(block—constraints—panel (om::om—make—view ’om::om—view
:size (om::om—make—point 400 605)
:position (om::om—make—point 5 5)
:bg—color om::* azulito *)

)

; part of the display for everything that has to do with adding new constraints

problem
(time—constraints—panel (om::om—make—view ’om::om—view
:size (om::om—make—point 400 605)
:position (om::om—make—point 410 5)
:bg—color om::* azulito *)

)

; part of the display to put different solutions together
(pitch—constraints—panel (om::om—make—view ’om::om—view
:size (om::om—make—point 400 605)
:position (om::om—make—point 815 5)
:bg—color om::* azulito *)
)
)

(setf elements—block—constraints—panel (make—block—constraints—panel
block—constraints—panel))

self

(setf elements—time—constraints—panel (make—time—constraints—panel self

time—constraints—panel))
; create the pitch constrains panel
(setf elements—pitch—constraints—panel (make—pitch—constraints—panel
pitch—constraints—panel))
; add the subviews for the different parts into the main view
(om:: om—add—subviews
self
block—constraints—panel
time—constraints—panel
pitch—constraints—panel
)
)
; return the editor
self

; this function creates the elements for the main panel
(defun make—main—view (editor)
; background colour
(om:: om—set—bg—color editor om::* om—light—gray—colorx*) ;pour changer le
fabriquer sa propre couleur: (om—make—color r g b)

(defun make—block—constraints—panel (editor block—constraints—panel)
(om:: om—add—subviews

block—constraints—panel

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 150 2)
(om:: om—make—point 120 20)
"Block constraints"
:font om::* om—default—fontlbx

)

(om:: om—make—dialog—item
’om:: om—static—text
(om m—make—point 15 50)
(om:: om—make—point 200 20)
"Bar length"

:font om::x om—default—fontlbsx

178

self

bg color.

om

to the

peut

192
193
194
195
196
197
198
199

200
201

n

(om:: om—make—dialog—item
om : : pop—up—menu
om—make—point 170 50)
: om—make—point 200 20)
length"
:range (loop :for n :from 0 :upto 32 collect n)
:di—action #’(lambda (m)

(setf (bar—length (om::object editor)) (nth (om::om—get—selected—item—index m) (om::

om—get—item—list m)))

)

(om:: om—make—dialog—item
om:: om—static—text
(om:: om—make—point 15 100)
(om:: om—make—point 200 20)
"Beat length"
:font om::*x om—default—fontlbx*
)

(om:: om—make—dialog—item
8 ’om : : pop—up—menu
g (om::om—make—point 170 100)
g (om:: om—make—point 200 20)
3 "Beat length"
8 range (0 1 2 3)
g :di—action #’(lambda (m)
;

(setf (beat—length (om::object editor)) (nth (om::om—get—selected—item—index m)

::om—get—item—list m)))

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 100)
(om:: om—make—point 200 20)
"Voices"

:font om::x om—default—fontlbsx

: pop—up—menu

om—make—point 170 100)

(om:: om—make—point 200 20)

"Voices"

:range (append ’("None") (loop :for n :from 0 :upto 15 collect n))

:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)

(setf (voices (om::object editor)) mnil)

(setf (voices (om::object editor)) check))

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 150)
om—make—point 200 20)
"Minimum pushed notes"

:font om::x om—default—fontlbx*

: pop—up—menu

om—make—point 170 150)

om—make—point 200 20)

"Minimum pushed notes"

:range (append ’("None'") (loop :for n :from 0 :upto 10 collect n))

:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)

(setf (min—pushed—notes (om::object editor)) mnil)

(setf (min—pushed—notes (om::object editor)) check))

)
)

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 15 200)
(om:: om—make—point 200 20)
"Maximum pushed notes"
:font om::* om—default—fontlbx

: pop—up—menu

om—make—point 170 200)

(om:: om—make—point 200 20)

"Maximum pushed notes"

:range (append ’("None") (loop :for n :from 0 :upto 10 collect n))

:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)

179

(om

(setf (max—pushed—notes (om::object editor)) nil)
(setf (max—pushed—notes (om::object editor)) check))

(om:: om—make—dialog—item
::om—static—text

om—make—point 15 250)

om—make—point 200 20)

"Minimum notes"

:font om::* om—default—fontlbx

)

(om:: om—make—dialog—item
’om : : pop—up—menu
om—make—point 170 250)
(om:: om—make—point 200 20)
"Minimum notes"
:range (append ’("None") (loop :for n :from 0 :upto 100 collect n))
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)
(setf (min—notes (om::object editor)) nil)
(setf (min—notes (om::object editor)) check))

)
)

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 300)
om—make—point 200 20)
"Maximum notes"

:font om::* om—default—fontlbx*

)

(om:: om—make—dialog—item
: pop—up—menu
om—make—point 170 300)
(om:: om—make—point 200 20)
"Maximum notes"
:range (append ’("None") (loop :for n :from 0 :upto 100 collect n))
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)
(setf (max—notes (om::object editor)) nil)
(setf (max—notes (om::object editor)) check))

)
)

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 350)
om—make—point 200 20)
"Minimum added notes"

:font om::* om—default—fontlbsx

(om:: om—make—dialog—item
om : : pop—up—menu
om—make—point 170 350)
om—make—point 200 20)
"Minimum added notes"
:range (append ’("None") (loop :for n :from 0 :upto 100 collect n))
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)
(setf (min—added—notes (om::object editor)) mnil)
(setf (min—added—notes (om::object editor)) check))

)
)

(om:: om—make—dialog—item
’om:: om—static—text
(om::om—make—point 15 400)
(om:: om—make—point 200 20)
"Maximum added notes"
:font om::*x om—default—fontlbx*

)

(om:: om—make—dialog—item
’om : : pop—up—menu
om—make—point 170 400)
om—make—point 200 20)
"Maximum added notes"
:range (append ’("None") (loop :for mn :from 0O :upto 100 collect n))
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (typep check ’string)
(setf (max—added—notes (om::object editor)) mnil)
(setf (max—added—notes (om::object editor)) check))

180

379
380 this function creates the elements of the main additional constraints panel
381 coordinates here are local to constraint—panel

382 (dcfun make—time—constraints—panel (editor time—constraints—panel)

383 (om:: om—add—subviews

384 time—constraints—panel
385

386 . title

387 (om:: om—make—dialog—item

’om::om—static—text

(om:: om—make—point 150 2)
(om:: om—make—point 120 20)
"Time constraints"

:font om::* om—default—fontlbx*

(om:: om—make—dialog—item

om:: om—static—text
(om:: om—make—point 15 50)
(om:: om—make—point 200 20)

"Minimum note length"
:font om::* om—default—fontlb=

(om:: om—make—dialog—item

: om—check—box
om—make—point 170 50)
(om:: om—make—point 20 20)

:di—action #’(lambda (c)
(if (om::om—checked—p c)
(setf (min—note—length—flag (om:: object editor)) 1)
(setf (min—note—length—flag (om:: object editor)) nil)

)

; slider to express how different the solutions should be (100 = completely different ,
= almost no difference)
(om:: om—make—dialog—item

’om:: om—slider

(om:: om—make—point 190 50)

(om:: om—make—point 180 20); size

"Minimum note length"

:range (0 192)

rincrement 1

:di—action #’(lambda (s)

(setf (min—note—length (om:: object editor)) (om::om-—slider—value s))

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 100)
(om:: om—make—point 200 20)
"Maximum note length"

:font om::*x om—default—fontlbx*

(om:: om—make—dialog—item
: om—check—box
om—make—point 170 100)
(om:: om—make—point 200 20)
:di—action #’(lambda (c)
(if (om::om—checked—p c)
(setf (max—note—length—flag (om:: object editor)) 1)
(setf (max—note—length—flag (om:: object editor)) nil)

446)

447)

448)

449

450 (om:: om—make—dialog—item

451 ’om:: om—slider

452 (om:: om—make—point 190 100)
453 (om:: om—make—point 180 20); size
454 "Maximum note length"

455 :range (0 192)

456 increment 1

457 :di—action #’(lambda (s)

458 (setf (max—note—length (om:: object editor)) (om::om-—slider—value s))
459)

460)

461

462 (om:: om—make—dialog—item

463 ’om:: om—static—text

464 (om:: om—make—point 15 150)
465 (om:: om—make—point 200 20)
466 "Quantification"

467 :font om::x om—default—fontlbx

181

ot oot
SR A R
©

at

TUR W N~

ut

SRS
[

ot

wt

ot

SR
v o
N o

)

(om:: om—make—dialog—item
’om : : pop—up—menu
(om:: om—make—point 170 150)
(om:: om—make—point 200 20)
"Quantification"
:range ’("None" "1 bar" "1/2 bar" "1l beat" "1/2 beat"' "1/4 beat' "1/8 beat" "1/3 bar" "
1/6 bar" "1/3 beat" "1/6 beat" "1/12 beat")
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (string= check "None")
(setf (quantification (om::object editor)) nil)
(setf (quantification (om::object editor)) check))

)
)

(om:: om—make—dialog—item

’om:: om—static—text
8 (om:: om—make—point 15 200)
8 (om:: om—make—point 200 20)
3 "Note repartition"
3 :font om::* om—default—fontlbx*
)
;
; (om::om—make—dialog—item
3 ’om: : om—check—box
8 (om:: om—make—point 170 200)
3 (om:: om—make—point 200 20)
i :di—action #’(lambda (c)
8 (if (om::om—checked—p c)
(setf (note—repartition—flag (om::object editor)) 1)
(setf (note—repartition—flag (om::object editor)) nil)
)

i)
>
; ; slider to express how different the solutions should be (100 = completely different ,
1 = almost no difference)

(om:: om—make—dialog—item
om:: om—slider
(om:: om—make—point 190 200)
(om:: om—make—point 180 20); size
"Note repartition"
:range (1 100)
3 increment 1
8 :di—action #’(lambda (s)
3 (setf (note—repartition (om::object editor)) (om::om—slider—value s))
)

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 200)
om—make—point 200 20)
"Rhythm repetition"

:font om::x om—default—fontlbx

(om:: om—make—dialog—item
om : : pop—up—menu
om—make—point 170 200)
(om:: om—make—point 200 20)
"Rhythm repetition"
:range ’("None" "1 bar" "1/2 bar" "1 beat" "1/2 beat" "1/4 beat" "1/8 beat" "1/3 bar" "
1/6 bar" "1/3 beat" "1/6 beat" "1/12 beat")
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (string= check "None")
(setf (rhythm—repetition (om::object editor)) nil)
(setf (rhythm—repetition (om:: object editor)) check))

)
)

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 15 250)
(om:: om—make—point 200 20)
"Pause quantity"
:font om::* om—default—fontlbx

(om:: om—make—dialog—item

om: : om—check—box
om—make—point 170 250)
(om:: om—make—point 20 20)

:di—action #’(lambda (c)
(if (om::om—checked—p c)
(setf (pause—quantity—flag (om::object editor)) 1)
(setf (pause—quantity—flag (om::object editor)) nil)

182

566
567
568
569

o

S

oot o ot o
N =

B ot
SRS RN RN RN B |

SN

SRS ERe
=~~~
o © ®

ot
®
fat

o
o

> 00 1 O Ut A W N

o

ot ot
0 0o

IS
) 0 3O

SRS
© 0o ™
o ©

5¢

slider to express how different the solutions should be

= almost no difference)

(om:: om—make—dialog—item
::om—slider

om—make—point 190 250)

(om:: om—make—point 180 20); size

"Pause quantity"

:range (1 192)

rincrement 1

:di—action #’(lambda (s)

(100 = completely

(setf (pause—quantity (om::object editor)) (om::om—slider—value s))

)
)

(om:: om—make—dialog—item
’om:: om—static—text
(om:: om—make—point 15 300)
(om:: om—make—point 200 20)
"Pause repartition"
:font om::x om—default—fontlbsx

)

(om:: om—make—dialog—item
’om : : om—check—box
(om:: om—make—point 170 300)
(om:: om—make—point 20 20)
:di—action #’(lambda (c)
(if (om::om—checked—p c)

(setf (pause—repartition—flag (om::object editor)) 1)
(setf (pause—repartition—flag (om::object editor)) nil)

slider to express how different the solutions should be

= almost no difference)
(om:: om—make—dialog—item
’om:: om—slider
(om:: om—make—point 190 300)
(om:: om—make—point 180 20); size
"Pause repartition"
:range (0 191)
rincrement 1
:di—action #’(lambda (s)

(100 = completely different ,

(setf (pause—repartition (om::object editor)) (om::om-—slider—value s))

)
)
)
)

(defun make—pitch—constraints—panel (editor pitch—constraints—panel)

(om:: om—add—subviews
pitch—constraints—panel

; title

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 150 2)
(om:: om—make—point 200 20)
"Pitch constraints"
:font om::* om—default—fontlbx

Key

(om:: om—make—dialog—item
’om:: om—static—text
(om:: om—make—point 15 50)
(om:: om—make—point 200 20)
"Key selection"
:font om::x om—default—fontlbsx*

)

(om:: om—make—dialog—item
’om : : pop—up—menu
(om:: om—make—point 170 50)
(om:: om—make—point 200 20)
"Key selection"

:range ’("None" "C' "C#" 'D' "Eb" "E' "F' "F#' "G' "Ab' "A"

:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m)
(if (string= check "None")
(setf (key—selection (om::object editor)) mnil)
(setf (key—selection (om::object editor)) check))

Mode
(om:: om—make—dialog—item

183

(om: :

"Bb' "B")

om—get—item—list m)))

different ,

649 ’om:: om—static—text

650 (om:: om—make—point 15 100)
651 (om:: om—make—point 200 20)
652 "Mode selection"

653 :font om::* om—default—fontlbx
654)

655

656 (om:: om—make—dialog—item

657 ’om : : pop—up—menu

658 :: om—make—point 170 100)
659 (om:: om—make—point 200 20)
660 "Mode selection"

661 :range ’("None" "ionian (major)" "dorian" "phrygian" "lydian" "mixolydian" "aeolian (

" "

natural minor)" "locrian
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (string= check "None")
(setf (mode—selection (om::object editor)) nil)
(setf (mode—selection (om::object editor)) check))

"pentatonic" "harmonic minor" "chromatic")

)
)

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 15 150)
(om:: om—make—point 200 20)
"Chord key"

:font om::* om—default—fontlbx

)

(om:: om—make—dialog—item
’om : : pop—up—menu
(om:: om—make—point 170 150)
(om:: om—make—point 200 20)
"Chord key"
:range ’("None" "C' "C#" 'D' "Eb" "E' "F' "F#' "G' "Ab' 'A' "Bb' "B'")
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (string= check "None")
(setf (chord—key (om::object editor)) mnil)
(setf (chord—key (om::object editor)) check))
)
)

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 15 200)
(om:: om—make—point 200 20)
"Chord quality"
:font om::* om—default—fontlbx

)

(om:: om—make—dialog—item

’om : : pop—up—menu
om—make—point 170 200)
om—make—point 200 20)
"Chord quality"

:range ’("None" "Major" "Minor" "Augmented" "Diminished" "Major 7" "Minor 7" "Dominant
7" "Minor 7 flat 5" "Diminished 7" "Minor—major 7"

706 "Major 9" "Minor 9" "9 Augmented 5" "9 flatted 5" "7 flat 9" "Augmented 9" "Minor 11"
"Major 11" "Dominant 11" "Dominant # 11" "Major # 11")

707 :di—action #’(lambda (m)

708 (setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))

709 (if (string= check "None")

710 (setf (chord—quality (om::object editor)) nil)

711 (setf (chord—quality (om::object editor)) check))

712)

713)

714

715 ; ;checkbox for all—different constraint

716 ; (om::om—make—dialog—item

717 ; ’om:: om—check—box

718 3 (om:: om—make—point 170 250)

719 3 (om:: om—make—point 200 20)

720 g "All chord notes"

721 g ;:checked—p (find "all—different—notes" (optional—constraints (om::object editor))

test #’equal)

g :di—action #’(lambda (c)

8 (if (om::om—checked—p c)

3 (setf (all—chord—notes (om::object editor)) 1)

3 (setf (all—chord—notes (om::object editor)) nil)
;)

;)

:font om::*x om—default—fontl*

(om:: om—make—dialog—item
::om—static—text

om—make—point 15 250)

(om:: om—make—point 200 20)

"Minimum pitch"

:font om::x om—default—fontlbsx

184

7
74
74
7
7
7
7
7
TE
7

7

7
7

3~ ~7

0 O -

@® 0

© %

M e B e B IS B IES IR S |
0 0
O A W=

13
©

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830

(om:: om—make—dialog—item
’om : : om—check—box
(om:: om—make—point 170 250)
(om:: om—make—point 20 20)
:di—action #’(lambda (c)
(if (om::om—checked—p c)
(setf (min—pitch—flag (om::
(setf (min—pitch—flag (om::

object editor)) 1)
object editor)) nil)

)
)
)
(om:: om—make—dialog—item
:slider
om—make—point 190 250)
om—make—point 180 20)
"Minimum pitch"
:range (1 127)
:increment 1
:di—action #’(lambda (s)
(setf (min—pitch (om:: object editor)) (om::om-—slider—value s))
)
)

(om:: om—make—dialog—item
::om—static—text

om—make—point 15 300)

(om:: om—make—point 200 20)

"Maximum pitch"

:font om::* om—default—fontlbx*

(om:: om—make—dialog—item

om : : om—check—box
om—make—point 170 300)
(om:: om—make—point 20 20)

:di—action #’(lambda (c)
(if (om::om—checked—p c)
(setf (max—pitch—flag (om::
(setf (max—pitch—flag (om

object editor)) 1)
object editor)) nil)

)

)
)
(om:: om—make—dialog—item

::slider
om—make—point 190 300)

(om:: om—make—point 180 20)

"Maximum pitch"

:range (1 127)

rincrement 1

:di—action #’(lambda (s)

(setf (max—pitch (om:: object editor)) (om::om-—slider—value s))

)

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 15 350)
(om:: om—make—point 200 20)
"Note repetition"
:font om::* om—default—fontlbx

(om:: om—make—dialog—item
: om—check—box
om—make—point 170 350)
(om:: om—make—point 20 20)
:di—action #’(lambda (c)
(if (om::om—checked—p c)
(setf (note—repetition—flag (om::
(setf (note—repetition—flag (om::

)
)
(om:: om—make—dialog—item
:slider
om—make—point 190 350)
(om:: om—make—point 180 20)
"Note repetition"
:range (0 100)
rincrement 1
:di—action #’(lambda (s)
(setf (note—repetition (om:: object editor)) (om::
)

(om:: om—make—dialog—item

185

object editor)) 1)
object editor)) mnil)

om—slider—value

s))

’om:: om—static—text

(om:: om—make—point 15 400)
(om:: om—make—point 200 20)
"Repetition type"

:font om::x om—default—fontlbsx*

)

(om:: om—make—dialog—item

’om : : pop—up—menu

(om:: om—make—point 170 400)

(om:: om—make—point 200 20)

"Repetition type"

:range ’("Random" "Soft" "Hard")

:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(setf (note—repetition—type (om::object editor)) check)

(om:: om—make—dialog—item
:om—static—text
om—make—point 15 450)
(om:: om—make—point 200 20)
"Pitch direction"

:font om::x om—default—fontlbx*

)

(om:: om—make—dialog—item
’om : : pop—up—menu
(om:: om—make—point 170 450)
(om:: om—make—point 200 20)
"Pitch direction"
:range ’("None" "Increasing" "Strictly increasing" "Decreasing" "Strictly decreasing")
:di—action #’(lambda (m)
(setq check (nth (om::om—get—selected—item—index m) (om::om—get—item—list m)))
(if (string= check "None")
(setf (pitch—direction (om::
(setf (pitch—direction (om::

object editor)) mnil)
object editor)) check))

)

(om:: om—make—dialog—item
’om::om—static—text
(om:: om—make—point 15 500)
(om:: om—make—point 200 20)
"Golomb ruler size"
:font om::*x om—default—fontlbx

)

(om:: om—make—dialog—item
’om : : pop—up—menu
(om:: om—make—point 170 500)
(om:: om—make—point 200 20)
"Golomb ruler size"
:range ’("Nomne" "1" "2" "3" "4" "5" "g" "7" "8" "9")
:di—action #’(lambda (m)
(setf (golomb—ruler—size (om::object editor)) (om::om—get—selected—item—index m))

; the editor for the object
(defclass search—editor (om::editorview) ())

(defmethod om::class—has—editor—p ((self search)) t)
(defmethod om:: get—editor—class ((self search)) ’search—editor)

(defmethod om::om—draw—contents ((view search—editor))
(let*x ((object (om::object view)))
(om:: om—with—focused—view
view

; 33 DRAW SOMETHING 7

)
)

907)
908
909 (defmethod initialize—instance ((self search—editor) &rest args)
910 ;35 do what needs to be done by default
911 (call—next—method) ; start the search by default?
912 (make—my—interface self)
913
914
915 ; function to create the tool’s interface
916 (defmethod make—my—interface ((self search—editor))
917
918 ; create the main view of the object
919 (make—main—view self)
920
921 (let *
922 (
923 (search—panel (om::om—make—view ’om::om—view

186

987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012

:size (om::om—make—point 400 605)
:position (om::om—make—point 5 5)
:bg—color om::* azulito *)
)
)

(setf elements—search—panel (make—search—panel self search—panel))

(om:: om—add—subviews
self
search—panel

)

)
self
)

(defun make—search—panel (editor search—panel)
(om:: om—add—subviews

search—panel

(om:: om—make—dialog—item
’om:: om—static—text
(om:: om—make—point 145 2)
(om:: om—make—point 120 20)
"Search Parameters"
:font om::x om—default—fontlbx

(om:: om—make—dialog—item
:om—button

(om:: om—make—point 5 50) ; position (horizontal, vertical)
(om:: om—make—point 130 20) ; size (horizontal, vertical)
"Start"
:di—action #’(lambda (b)

(let init

(setq init (new—melodizer (block—csp (om::object editor)) (percent—diff (om::object

editor)) (branching (om::object editor))))
(setf (result (om::object editor)) init)
; TO TEST THE GOLOMB RULER PROGRAM
; (setq init (golomb—ruler 5))
;(setf (result (om::object editor)) init)

)
)
)

(om:: om—make—dialog—item
’om:: om—button

(om:: om—make—point 135 50) ; position
(om:: om—make—point 130 20) ; size
"Next"

:di—action #’(lambda (b)
(if (typep (result (om::object editor)) ’null); if the problem is

")
)
(print "Searching for the next solution")
;reset the boolean because we want to continue the search
(setf (stop—search (om::object editor)) mnil)
;get the next solution

not initialized
(error "The problem has not been initialized. Please set the input and press Start.

(mp: process—run—function ; start a new thread for the execution of the next method
"next thread" ; name of the thread, not necessary but useful for debugging
nil ; process initialization keywords, not needed here
(lambda () ; function to call

(setf (solution (om::object editor)) (new—search—next (result (om::

) (om::object editor)))
;TO TEST THE GOLOMB—RULER PROGRAM

;(setf (solution (om::object editor)) (search—next—golomb—ruler

object editor))))

(om:: openeditorframe ; open a voice window displaying the solution

(om:: omNG—make—new—instance (solution (om::object editor))

)
)
)
)

(om:: om—make—dialog—item
om:: om—button

(om:: om—make—point 265 50) ; position (horizontal, vertical)
(om::om—make—point 130 20) ; size (horizontal, vertical)
"Stop "

:di—action #’(lambda (b)
(setf (stop—search (om::object editor)) t)

)

(om:: om—make—dialog—item
’om:: om—static—text
(om:: om—make—point 15 100)
(om:: om—make—point 200 20)
"Tempo (BPM) "
:font om::x om—default—fontlbsx

187

current

object editor)

(result (om::

solution")

1013 (om:: om—make—dialog—item

1014 ’om : : pop—up—menu

1015 om—make—point 170 100)

1016 (om:: om—make—point 200 20)

1017 "Tempo"

1018 :range (loop :for n :from 30 :upto 200 collect n)

1019 :di—action #’(lambda (m)

1020 (setf (tempo (om::object editor)) (nth (om::om—get—selected—item—index m) (om::
om—get—item—list m)))

1021

1022)

1023

1024 (om:: om—make—dialog—item

1025 ’om:: om—static—text

1026 (om:: om—make—point 15 150)

1027 (om:: om—make—point 200 20)

1028 "Branching"

1029 :font om::* om—default—fontlbx

1030)

1031

1032 (om:: om—make—dialog—item

1033 ’om : : pop—up—menu

1034 (om:: om—make—point 170 150)

1035 (om:: om—make—point 200 20)

1036 "Branching"

1037 :range ’("Top down" "Full" "Top down random")

1038 :di—action #’(lambda (m)

1039 (setf (branching (om::object editor)) (nth (om::om—get—selected—item—index m) (om::
om—get—item—list m)))

1040)

1041)

10

104:

1044 (om:: om—make—dialog—item

1045 ’om:: om—static—text

1046 (om:: om—make—point 15 200)

1047 (om:: om—make—point 200 20)

1048 "Difference Percentage"

1049 :font om::x om—default—fontlbsx

1050)

1051

1052 (om:: om—make—dialog—item

1053 ’om:: slider

1054 (om:: om—make—point 170 200)

1055 (om:: om—make—point 200 20)

1056 "Difference Percentage"

1057 :range (0 100)

1058 increment 1

1059 :di—action #’(lambda (s)

1060 (setf (percent—diff (om::object editor)) (om::om-—slider—value s))

1061

1062)

1063)

1064)

D.2 melodizer-csp.lisp

1 (in—package :mldz)

<block—csp> list of the child block objects
<percent—diff> percentage of difference wanted for the solutions

This function creates the CSP by creating the space and the variables, posting the

constraints and the branching, specifying

10 ; the search options and creating the search engine.

11 (defmethod new—melodizer (block—csp percent—diff branching)

12 (let ((sp (gil::new—space)); create the space;

13 push pull playing pushMap pullMap dfs tstop sopts scaleset pitch temp push—card
q—push

14 pos

15

16 (max—pitch 127)

7 (bars (bar—length block—csp))

18 (quant 192)

19 (min—length 1) ;minimum length of a note with associated constraint

20 (chord—rhythm 2) ;a chord is played every [chord—rhythm] quant

21 (chord—min—length 2)) ; minimum length of a chord with associated constraint

22

23 (print block—csp)

24

25 (setq push—list (list))

26 (setq pull—list (list))

27 (setq playing—list (list))

28 (setq debug (list))

29 (setq debug2 (list))

30

188

93

95

96

97

98

99
100
101
102
103
104
105
106
107
108
109

110

112
113

115

blocks

;Setting constraint for this block and child
(setq temp (get—sub—block—values sp block—csp))
(setq push (nth 0 temp))
(setq pull (nth 1 temp))
(setq playing (nth 2 temp))
(setq notes (nth 3 temp))
(setq added—notes (nth 4 temp))
(setq push—card (nth 5 temp))
(setq g—push (nth 6 temp))
(gil :: g—specify—sol—variables sp g—push)
(gil :: g—specify—percent—diff sp percent—diff)
(cond

((string—equal branching "Top down")

(loop :for i :from (— (length push—list) 1)

(gil :: g—branch sp (append (nth i
SET_VAR_SIZE_MIN gil ::SET_VAL_RND_INC)

)
((string—equal
(progn
(setq branch—push (list))
(setq branch—pull (list))

branching "Full")

:downto 0 :do
push—list) (nth i pull—list)) gil::

(loop :for 1 :in push—list :do

(setq branch—push (append branch—push 1))
)
(loop :for 1 :in pull—list :do

(setq branch—pull (append branch—pull 1))
)

(gil :: g—branch sp (append
gil : : SET_VAL_RND_INC)

((string—equal branching
(loop :for i :from (—
(gil :: g—branch sp
SET_VAR_RND gil ::SET_VAL_RND_INC)
)

(length
(append (nth i

branch—push branch—pull) gil ::SET_VAR_ SIZE MIN

"Top down random")
push—list) 1)

:do
pull—list)) gil ::

:downto 0

push—list) (nth i

)
)
;time stop
(setq tstop (gil::t—stop)); create the time stop object
(gil :: time—stop—init tstop 500); initialize it (time is expressed in ms)
;search options
(setq sopts (gil::search—opts)); create the search options object
(gil ::init—search—opts sopts); initialize it
(gil :: set—n—threads sopts 1); set the number of threads to be used during the search
(default is 1, 0 means as many as available)
(gil :: set—time—stop sopts tstop); set the timestop object to stop the search if it
takes too long
; search engine
(setq se (gil::search—engine sp (gil::opts sopts) gil ::BAB))
(print "new—melodizer CSP constructed")
; return
(list se push pull tstop sopts bars quant push—list pull—list playing—list debug
debug?2)
)
;recursive function to set the constraint on all the blocks in the tree structure
(defun get—sub—block—values (sp block—csp)
for block child of block—csp
(pull supersets de get—sub—block—values(block))
constraints
return pull push playing
(let (pull push notes playing pushMap pushMap—card pullMap block—list positions max—notes
sub—push sub—pull
push—card added—push added—notes added—push—card gq—push g—push—card
(bars (bar—length block—csp))
(quant 192)
(prevNotes (list))
(major—natural (list 2 2 1 2 2 2 1))
(max—pitch 127))
(setq max—notes (% 127 (4 (x bars quant) 1)))
;initialize the variables
(setq push (gil ::add—set—var—array sp (+ (* bars quant) 1) 0 max—pitch 0 max—pitch))
(setq pull (gil::add—set—var—array sp (+ (* bars quant) 1) 0 max—pitch 0 max—pitch))
(setq playing (gil ::add—set—var—array sp (+ (* bars quant) 1) 0 max—pitch 0 max—pitch
)
(setq push—list (nconc push—list (list push)))
(setq pull—list (nconc pull—list (list pull)))
(setq playing—list (nconc playing—list (list playing)))
;channeling array with time as index to array with pitch as index

189

ot
¥

T

o
IS ISVt

[SIRSINS
© 00 1 D

1
1
1
15
1
1
1
1
1

@ o Ut

162

163
164
165
166
167
168
169
170
17

172

173

188
189

190

(setq pushMap (gil ::add—set—var—array sp (+ max—pitch 1) 0 (+ (* bars quant) 1) 0 (+
(* bars quant) 1)))

(setq pullMap (gil::add—set—var—array sp (+ max—pitch 1) 0 (+ (x bars quant) 1) 0 (+
(* bars quant) 1)))

(gil :: g—channel sp push pushMap)

(gil :: g—channel sp pull pullMap)

(setq pushMap—card (gil ::add—int—var—array sp 128 0 (+ (% bars quant) 1)))
(loop :for i :from 0O :below (length pushMap) :by 1 :do
(gil :: g—card—var sp (nth i pushMap) (nth i pushMap—card))

)

(setq block—list (block—list block—csp))

(if (not (typep block—list ’list))
(setq block—list (list block—1list))

)

(setq positions (position—list block—csp))

;initial constraint on pull, push, playing and durations

(gil ::g—empty sp (first pull)) ; pull [0] == empty

(gil :: g—empty sp (car (last push))) ; push[barsxquant] == empty

(gil :: g—empty sp (car (last playing))) ; playing[barsxquant]| == empty
(gil::g—rel sp (first push) gil::SRT EQ (first playing)) ; push[0] == playing [O0]

;compute notes
(setq notes (gil ::add—int—var sp 0 max—notes))
(setq push—card (gil::add—int—var—array sp (4+ (* bars quant) 1) 0 127))

(loop :for i :from 0 :below (+ (* bars quant) 1) :by 1 :do
(gil :: g—card—var sp (nth i push) (nth i push—card))
)

(gil ::g—sum sp notes push—card)

;compute added notes

(setq added—push (gil ::add—set—var—array sp (+ (% bars quant) 1) 0 max—pitch 0
max—pitch))

(setq sub—push (gil::add—set—var—array sp (+ (* bars quant) 1) 0 max—pitch 0
max—pitch))

(setq sub—pull (gil::add—set—var—array sp (+ (* bars quant) 1) 0 max—pitch 0
max—pitch))

(setq added—notes (gil::add—int—var sp 0 127))

(setq added—push—card (gil ::add—int—var—array sp (+ (* bars quant) 1) 0 127))

(loop :for i :from 0 :below (4+ (* bars quant) 1) :by 1 :do

(gil :: g—card—var sp (nth i added—push) (nth i added—push—card))
)

(gil ::g—sum sp added—notes added—push—card)

;compute g—push
(setq g—push (gil::add—set—var—array sp (* bars (get—quant (quantification block—csp)
)) 0 max—pitch 0 max—pitch))
(loop :for i :from 0 :below (length g—push) :by 1 :do
(gil :: g—rel sp (nth i g—push) gil::SRT EQ (nth (x i (get—length (quantification
block—csp))) push))
)

(setq g—push—card (gil::add—int—var—array sp (length g—push) 0 127))
(loop :for i :from 0O :below (length g—push) :by 1 :do

(gil :: g—card—var sp (nth i g—push) (nth i g—push—card))
)

;connect push, pull and playing
(loop :for j :from 1 :below (+ (* bars quant) 1) :do ;for each interval
(let (temp z c¢)
(setq temp (gil ::add—set—var sp 0 max—pitch 0 max—pitch)); temporary
variables
(gil ::g—op sp (nth (— j 1) playing) gil::SOT_MINUS (nth j pull) temp); temp
[0] = playing[j—1] — pull[j]
(gil ::g—op sp temp gil ::SOT_UNION (nth j push) (nth j playing)); playing/[j]
== playing[j—1] — pull[j] + push[j] Playing note
(gil :: g—rel sp (nth j pull) gil ::SRT_SUB (nth (— j 1) playing)) ; pull[j] <=
playing [j—1] cannot pull a note not playing
(gil :: g—set—op sp (nth (— j 1) playing) gil::SOT_MINUS (nth j pull) gil::
SRT_DISJ (nth j push)); push[j] || playing[j—1] — pull[j] Cannot push a note still
playing

)

(if (melody—source block—csp)
(let (melody—temp melody—push melody—pull melody—playing)

(setq melody—temp (create—push—pull (melody—source block—csp) quant))

(setq melody—push (gil::add—set—var—array sp (length (first melody—temp)) 0
max—pitch 0 max—pitch))

(setq melody—pull (gil::add—set—var—array sp (length (second melody—temp)) 0
max—pitch 0 max—pitch))

(setq melody—playing (gil ::add—set—var—array sp (length (third melody—temp))
0 max—pitch 0 max—pitch))

(loop :for i :from O :below (length (first melody—temp)) :by 1 :do

(if (or (typep (nth i (first melody—temp)) ’list) (/= (nth i (first
melody—temp)) —1))
(gil:: g—rel sp (nth i melody—push) gil::SRT EQ (nth i (first

melody—temp)))

190

191 (gil :: g—empty sp (nth i push))

192)

193

194 (loop :for i :from 0 :below (length (second melody—temp)) :by 1 :do

195 (if (or (typep (nth i (second melody—temp)) ’list) (/= (nth i (second
melody—temp)) —1))

196 (gil:: g—rel sp (nth i melody—pull) gil::SRT EQ (nth i (second
melody—temp)))

197 (gil ::g—empty sp (nth i pull))

198

199)

200 (loop :for i :from 0O :below (length (third melody—temp)) :by 1 :do

201 (if (or (typep (mnth i (third melody—temp)) ’list) (/= (nth i (third
melody—temp)) —1))

202 (gil :: g—rel sp (nth i melody—playing) gil::SRT_EQ (nth i (third
melody—temp)))

203 (gil :: g—empty sp (nth i melody—playing))

204)

205

206 (loop :for j :from 0 :below (length melody—push) :by 1 :do

207 (gil:: g—rel sp (nth j melody—push) gil::SRT SUB (nth j push))

208 (gil:: g—rel sp (nth j melody—pull) gil::SRT SUB (nth j pull))

209)

210)

211)

212

213

214 (if (not (endp block—list))

215 ; make the push and pull array supersets of the corresponding array of the child
blocks

216 (let ((sub—push—list (list)) (sub—pull—list (list)))

217

218 (loop :for i :from 0 :below (+ (% bars quant) 1) :by 1 :do

219 (setq templ (gil::add—set—var—array sp (length block—list) 0 max—pitch 0
max—pitch))

220 (setq temp2 (gil::add—set—var—array sp (length block—list) 0 max—pitch 0

max—pitch))
(gil :: g—setunion sp (nth i sub—push) templ)
(setq sub—push—list (nconc sub—push—list (list templ)))
(gil :: g—setunion sp (nth i sub—pull) temp2)
(setq sub—pull—list (nconc sub—pull—list (list temp2)))
(gil::g—op sp (nth i push) gil::SOT _MINUS (nth i sub—push) (nth i

added—push))

226)
227 (loop :for i :from 0O :below (length block—list) :by 1 :do
228 (let (tempPush tempPull tempPlaying tempList (start (x (nth i positions

) quant)))
(setq tempList (get—sub—block—values sp (nth i block—1list)))
(setq tempPush (first tempList))
(setq tempPull (second tempList))
(setq tempPlaying (third tempList))
(setq prevNotes (nth 7 tempList))

(loop :for j :from start :below (4+ start (length tempPlaying)) :by

1 :do

236 (gil:: g—rel sp (nth (— j start) tempPush) gil ::SRT _SUB (nth j
push))

237 (gil:: g—rel sp (nth (— j start) tempPull) gil ::SRT SUB (nth j
pull))

238 (gil::g—rel sp (nth (— j start) tempPlaying) gil ::SRT SUB (
nth j playing))

239)

240

241 (loop :for j :from O :below (length push) :by 1 :do

242 (if (and (>= j start) (< j (+ start (length tempPlaying))))

243 (gil::g—rel sp (nth (— j start) tempPush) gil ::SRT_EQ (

nth i (nth j sub—push—list)))
(gil ::g—empty sp (nth i (nth j sub—push—list)))

)

(loop :for j :from O :below (length pull) :by 1 :do
(if (and (>= j start) (< j (+ start (length tempPlaying))))
(gil:: g—rel sp (nth (— j start) tempPull) gil ::SRT _EQ (

nth i (nth j sub—pull—list)))

251 (gil ::g—empty sp (nth i (nth j sub—pull—list)))
252

253)

254)

255)

256)

257 ; if no block—list

258 (progn

259 (gil :: g—rel sp added—notes gil ::SRT_EQ notes)

260 (loop :for p :in sub—push :do (gil::g—empty sp p))

261 (loop :for p :in sub—pull :do (gil::g—empty sp p))

262)

263

264

265)

266

267 ;constraints

268 (post—optional—constraints sp block—csp push pull playing pushMap pushMap—card notes

191

added—notes push—card sub—push sub—pull g—push g—push—card)
(pitch—range sp push (min—pitch block—csp) (max—pitch block—csp))
(list push pull playing notes added—notes push—card g—push)

)
272)
273
274 ;posts the optional constraints specified in the list
275 TODO CHANGE LATER SO THE FUNCTION CAN BE CALLED FROM THE STRING IN THE LIST AND NOT WITH A

SERIES OF IF STATEMENTS
276 (defun post—optional—constraints (sp block push pull playing pushMap pushMap—card notes
added—notes push—card sub—push sub—pull gq—push g—push—card)

277

278 ; Block constraints

279 (if (voices block)

280 (gil :: g—card sp playing 0 (voices block))

281

282)

283 (if (min—pushed—notes block)

284 (loop :for i :from 0O :below (length push—card) :by 1 :do

(setq bl (gil::add—bool—var sp 0 1))

(gil :: g—rel—reify sp (nth i push—card) gil::IRT EQ 0 bl)

(setq b2 (gil::add—bool—var sp 0 1))

(gil :: g—rel—reify sp (nth i push—card) gil ::IRT GQ (min—pushed—notes block) b2)
(gil:: g—rel sp bl gil::BOT_OR b2)

)

(if (max—pushed—notes block)
(gil :: g—card sp push 0 (max—pushed—notes block))

)
(if (min—notes block)
(progn
(gil :: g—rel sp notes gil ::IRT_GQ (min—notes block))
)

(if (max—notes block)
(gil::g—rel sp notes gil::IRT _LQ (max—notes block))
)

(if (min—added—notes block)
(gil::g—rel sp added—notes gil ::IRT_GQ (min—added—notes block))
)

(if (max—added—notes block)
(if (= 0 (max—added—notes block))
(progn
(loop :for i :from O :below (length push) :by 1 :do
(gil:: g—rel sp (nth i push) gil ::SRT_EQ (nth i sub—push))
)
)

(gil :: g—rel sp added—notes gil ::IRT LQ (max—added—notes block))

; Time constraints
(if (min—note—length—flag block)

(note—min—length sp push pull (min—note—length block))
)

(if (max—note—length—flag block)
(note—max—length sp push pull (max—note—length block))
)

(if (quantification block)
(set—quantification sp push pull (quantification block))
)

(if (rhythm—repetition block)
(set—rhythm—repetition sp push—card (get—length (rhythm—repetition block)))
)

(if (pause—quantity—flag block)
(set—pause—quantity sp g—push—card (pause—quantity block) (bar—length block) (
get—quant (quantification block)))

344 (if (pause—repartition—flag block)

345 (set—pause—repartition sp g—push—card (pause—repartition block))

346)

347

348 ; Pitch constraints

349 ; following a scale

350 (if (key—selection block)

351 (if (mode—selection block)

352 (let (scaleset

353 (bool (gil::add—bool—var sp 0 1)) ; afU+FFFD& le booleen pour la reify
354 (scale (get—scale (mode—selection block))) ;if — mode selectionn[U+FFFD]
355 (offset (— (name—to—note—value (key—selection block)) 60)))

356 (setq scaleset (build—scaleset scale offset))

357 (gil::g—rel sp bool gil::SRT EQ 1) ;forcer le reify a true dans ce cas

192

(scale—follow—reify sp push scaleset bool))
(let (scaleset
(bool (gil::add—bool—var sp 0 1)) ; afU+FFFD¥ le booleen pour la reify
(scale (get—scale "ionian (major)")) ;else — pas de mode selectionn[U+FFFD] =>
major natural
(offset (— (name—to—note—value (key—selection block)) 60)))
(gil:: g—rel sp bool gil::SRT EQ 1) ;forcer le reify a true dans ce cas
(setq scaleset (build—scaleset scale offset))
(scale—follow—reify sp push scaleset bool))
)
(if (mode—selection block)
(let ((bool—array (gil::add—bool—var—array sp 12 0 1))) ; afU+FFFD& le booleen pour
la reify
(loop :for key :from 0 :below 12 :by 1 :do
(setq scale (get—scale (mode—selection block)))
(setq scaleset (build—scaleset scale key))
(scale—follow—reify sp push scaleset (nth key bool—array))
)

(gil :: g—rel sp gil ::BOT_OR bool—array 1)

)

(if (chord—key block)
(if (chord—quality block)
(if (all—chord—notes block)
(let ((bool (gil::add—bool—var sp 0 1)) ; alU+FFFD& le booleen pour la reify
(bool2 (gil::add—bool—var sp 0 1))
(chord (get—chord (chord—quality block))) ;if — mode selectionn [U+FFFD]
(offset (— (name—to—note—value (chord—key block)) 60))
(all—notes (gil ::add—set—var sp 0 127 0 127))
chordset notesets bool—array)
(setq chordset (build—scaleset chord offset))
(scale—follow—reify sp push chordset bool)
(setq notesets (build—notesets chord offset))
(setq bool—array (gil::add—bool—var—array sp (length notesets) 0 1))
(loop :for i :from O :below (length notesets) :do
» (let ((push—bool—array (gil::add—bool—var—array sp (length push) O
1)
(loop :for j :from 0O :below (length push) :do
(gil:: g—rel—reify sp (nth j push) gil::SRT_DISJ (nth i
notesets) (nth j push—bool—array))

(gil:: g—rel sp gil ::BOT_AND push—bool—array (nth i bool—array))

)
(setq debug (nconc debug (list bool—array)))
(setq debug2 (nconc debug2 (list bool2)))

(gil:: g—rel sp gil ::BOT_OR bool—array bool2)
(gil:: g—rel sp bool gil::SRT EQ 1)
)

(let ((bool (gil::add—bool—var sp 0 1)) ; alU+FFFD¥ le booleen pour la reify
(chord (get—chord (chord—quality block))) ;if — mode selectionn[U+FFFD]
(offset (— (name—to—note—value (chord—key block)) 60))

(all—notes (gil::add—set—var sp 0 127 0 127))

chordset)

(gil:: g—setunion sp all—notes push)

(setq chordset (build—scaleset chord offset))

(gil::g—rel sp bool gil::SRT EQ 1) ;forcer le reify a true dans ce cas
(scale—follow—reify sp push chordset bool))

)

)
(if (chord—quality block)
(if (all—chord—notes block)
(let (chord chordset notesets
(bool—array (gil::add—bool—var—array sp 12 0 1)); alU+FFFDF le booleen
pour la reify
(all—notes (gil ::add—set—var sp 0 127 01 127)))
(gil :: g—setunion sp all—notes push)
(loop :for key :from O :below 12 :by 1 :do
(let ((booll (gil::add—bool—var sp 0 1))
(bool2 (gil::add—bool—var sp 0 1))
(bool—array—note (gil::add—bool—var—array sp (length notesets)
0 1))
chordset notesets)
(setq chord (get—chord (chord—quality block)))
(setq chordset (build—scaleset chord key))
(setq notesets (build—notesets chord key))

(loop :for i :from 0 :below (length notesets) :do
(gil::g—rel—reify sp all—notes gil::SRT_DISJ (nth i notesets
) (nth i bool—array—mnote))
)
(gil:: g—rel sp gil ::BOT_AND bool—array—note booll)
(scale—follow—reify sp push chordset bool2)
(gil::g—op sp (nth key bool—array) gil::BOT_AND bool 0))
)

(gil:: g—rel sp gil ::BOT_OR bool—array 1)

)
(let (chord chordset
(bool—array (gil::add—bool—var—array sp 12 0 1)))

193

446
447
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464

465

466

497
498
499
500
501
502
503
504
505
506
507
508
509
510

e
N

W=

NI

(loop :for key :from 0 :below 12 :by 1 :do

(setq chord (get—chord (chord—quality block)))

(setq chordset (build—scaleset chord key))
; (scale—follow—reify sp push chordset (nth key bool—array))
(gil:: g—rel sp gil ::BOT_OR bool—array 1)

(if (pitch—direction block)
(let ((allPlayed (gil::add—set—var sp O (4+ (length push) 1) 0 (4+ (length push) 1)))
(isPlayed (gil::add—bool—var—array sp (+ (length push) 1) 0 1)))

(gil::g—arr—op sp gil ::SOT_UNION pushMap allPlayed)
(gil :: g—channel sp isPlayed allPlayed)
(cond
((string= (pitch—direction block) "Increasing"') (increasing—pitch

sp push isPlayed))

((string= (pitch—direction block) "Strictly increasing") (
strictly—increasing—pitch sp push isPlayed))

((string= (pitch—direction block) "Decreasing") (decreasing—pitch
sp push isPlayed))

((string= (pitch—direction block) "Strictly decreasing") (
strictly—decreasing—pitch sp push isPlayed))

)
)

(if (/= (golomb—ruler—size block) 0)

(golomb—rule sp (golomb—ruler—size block) push (/ 192 (get—quant (quantification
block))))
)

(if (note—repetition—flag block)
(cond
((string—equal (note—repetition—type block) "Random")
(random—repeat—note sp push (note—repetition block) (get—length (quantification
block))))
((string—equal (note—repetition—type block) "Soft")
(soft—repeat—note sp (note—repetition block) pushMap—card))
((string—equal (note—repetition—type block) "Hard")
(hard—repeat—note sp (note—repetition block) pushMap—card (length g—push)))

<1> is a list containing the search engine for the problem and the variables
<melodizer—object> is a melodizer object
this function finds the next solution of the CSP using the search engine given as an

argument

(defmethod new—search—next (1 melodizer—object)

(let ((se (first 1))
(push (second 1))
(pull (third 1))
(tstop (fourth 1))
(sopts (fifth 1))
(bars (sixth 1))
(quant (seventh 1))

(push—1list (eighth 1))
(pull—list (ninth 1))
(playing—list (nth 9 1))

(debug (nth 10 1))

(debug2 (nth 11 1))

(check t); for the while loop
sol score)

(print "in search")
(om:: while check :do
(gil ::time—stop—reset tstop);reset the tstop timer before launching the search
(setq sol (gil::search—next se)); search the next solution
(if (null sol)
(stopped—or—ended (gil ::stopped se) (stop—search melodizer—object) tstop);
check if there are solutions left and if the user wishes to continue searching
(setf check mnil); we have found a solution so break the loop
)

)
;SOME CODE PIECES FOR DEBUGGING
;(print "PUSH")

; (loop :for p :in push-—list :do
3 (let (1 (list))

194

ot

ot
B RN R RS G
N

ot ot ot o

o

o

ot S|
o (SR
0D O W

SIS S G N
SRR o

or gt ot ot ot ot

wt

8 (print (gil::vid p))

5 (setqg 1 (nconc 1 (mapcar (lambda (n) (to—midicent (gil::g—values

)
o (print 1)
;)
)
;(print "PULL")
; (loop :for p :in pull—list :do
g (let (1 (list))
i (setq 1 (nconc 1 (mapcar (lambda (n) (to—midicent (gil::g—values
)
(print 1)
)
; (print "PLAYING")
; (loop :for p :in playing—list :do
g (let (1 (list))
g (setq 1 (nconc 1 (mapcar (lambda (n) (to—midicent (gil::g—values
)

3 (print 1)

; (print "DEBUG")

; (print debug)

; (loop :for p :in debug :do
;0 (let (1 (list))

(print 1)

)

; (print "DEBUG")

; (loop :for p :in debug2 :do

g (print (gil::g—values sol p))
5

)

;alU+FFFD¥ score qui retourne la liste de pitch et la rhythm tree
(setq score—chord—seq (build—chord—seq sol push pull bars quant (tempo

melodizer—object)))

(make—instance ’chord—seq
:LMidic (first score—chord—seq)
:LOnset (second score—chord—seq)
:Ldur (third score—chord—seq)

determines if the search has been stopped by the solver because there are no more

or if the user has stopped the search
(defun stopped—or—ended (stopped—se stop—user tstop)

(setq 1 (nconc 1 (mapcar (lambda (n) (gil::g—values

sol

n)) p)))

sol n))) p)

sol n))) p)

sol n))) p)

(if (= stopped—se 0); if the search has not been stopped by the TimeStop object, there

no more solutions
(error "There are no more solutions.")

;otherwise , check if the user wants to keep searching or not

(if stop—user

)

(error "The search has been stopped. Press next to continue the search.")

D.3 melodizer-csts.lisp

(defun scale—follow (sp push scaleset)

(loop :for j :from O :below (length push) :do
(gil:: g—rel sp (nth j push) gil::SRT _SUB scaleset)

)

>
(defun scale—follow—reify (sp push scaleset reify)
(setq r (gil::add—bool—var—array sp (length push) 0 1))
(loop :for j :from 0O :below (length push) :do
(gil:: g—rel—reify sp (nth j push) gil ::SRT_SUB scaleset

(gil::g—rel sp gil ::BOT_AND r reify)

195

(nth

J

r))

solutions

is

ot ot ot ot
SR W

wt

75
76

push) progsize) :by 1 :do
(gil:: g—rel sp (nth (+ k (/ (* (length push) j) progsize)) push)

:by 1 :do
(< (+ j k) (length pull))

:do

gil :: SRT_DISJ (nth j push))

(defun chordprog—follow (sp push chordset progsize)
(loop :for j :from 0 :below (length chordset) :by 1 :do
(loop :for k :from 0 :below (/ (length
nth j chordset))
)
)
LIMITING PITCH RANGE
(defun pitch—range (sp push min—pitch max—pitch)
(loop :for j :below (length push) :by 1 :do
(gil :: g—dom—ints sp (nth j push) gil::SRT SUB min—pitch max—pitch)
)
)
B
defun note—min—lengt sp push pu min—lengt
lef i 1 h b 11 i 1 h
(setq 1 (floor (* (— (length push) 1) min—length) 192))
(loop :for j :from 0O :below (length push)
(loop :for k :from 1 :below 1 :while
(gil:: g—rel sp (nth (+ j k) pull)
)
)
)

>

push) 1) 1) :by 1 :do

sp 1 0 127 0 127))

sp 0 127 0 127)))

1 :do

gil ::SRT_EQ (nth (+ 1 (+ j

(defun note—max—length (sp push pull max—length)
(setq 1 (floor (* (— (length push) 1) max—length) 192))
(loop :for j :from 0 :below (+ (— (length
(let ((1—pull (gil::add—set—var—array
(l—pull—union (gil::add—set—var
(loop :for k :from 0 :below 1 :by
(gil :: g—rel sp (nth k l—pull)
(gil :: g—setunion sp l—pull—union l—pull)
(gil:: g—rel sp (nth j push) gil ::SRT_SUB l—pull—union)
)
)
)

:by 1 :do

g—card sp (nth j push) chord—size—min chord—size—max)

:by 1 :do

—min—length :while (< (4 j

(gil::g—rel sp (nth (4+ j k) pull) gil::SRT_DISJ (nth j

(defun chords—rhythm (sp push chord—rhythm chord—size—min chord—size—max)
(loop :for j :from 0 :below (length push)
(if (= (mod j chord—rhythm) O0)
(gil::
(gil::g—card sp (nth j push) 0 1)
)
)
)
(defun chords—length (sp push pull chord—rhythm chord—min—length)
(loop :for j :from 0O :below (length push)
(if (= (mod j chord—rhythm) 0)
(loop :for k :from 1 :below chord
do
)
)
)
)
(defun num—added—note (sp playing min—card max—card)
(gil :: g—card sp playing min—card max—card)

196

k)) pull))

k) (length

push))

gil :: SRT_SUB (

118 (defun set—quantification (sp push pull quantification)

119 (setq q (/ 192 (get—quant quantification)))

120 (loop :for j :from 0O :below (length push) :by 1 :do
121 (if (/= (mod j q) 0)

122 (gil :: g—empty sp (nth j push))

123)

31 (defun set—rhythm—repetition (sp push—card len)

32 (loop :for i :from 0 :below len :while (< i (length push—card)) :do

133 (loop :for j :from 1 :below (length push—card) :while (< (+ i (x j len)) (— (length
push—card) 1)) :do

134 (gil::g—rel sp (nth i push—card) gil::IRT_EQ (nth (+ i (% j len)) push—card))

135)

136)

137)

138

139 ¢ st

IR RE R R R
. SETS PAUSE QUANTITY ;
LAL 5 555 555555553333355555

143 (defun set—pause—quantity (sp g—push—card quantity bars quant)

(setq ¢ (floor (* (length g—push—card) quantity) 192))
(gil :: g—count sp g—push—card 0 gil ::IRT_GQ c¢)

(setq 1 (ceiling (x (length g—push—card) (— 192 repartition)) 192))

1
1
1
1
1
1
151
152 (defun set—pause—repartition (sp g—push—card repartition)
153

154 (gil :: g—sequence sp g—push—card (list 0) 1 1 1)

155

1

1

1

161 (defun increasing—pitch (sp playing isPlayed)

162 (loop :for i :from 0 :below (— (length playing) 1) :by 1 :do

163 (let ((tempVarl (gil::add—int—var sp 0 127)))

164 (gil:: g—setmin—reify sp (nth i playing) tempVarl (nth i isPlayed) gil::RM _IMP)

165 (loop :for j :from (+ i 1) :below (length playing) :by 1 :do

166 (let ((tempBool (gil::add—bool—var sp 0 1)) tempVar2)

167 (setq tempVar2 (gil::add—int—var sp 0 127))

168 (gil::g—op sp (nth i isPlayed) gil ::BOT_AND (nth j isPlayed) tempBool
)

169 (gil:: g—setmin—reify sp (nth j playing) tempVar2 tempBool gil ::RM IMP
)

170 (gil:: g—rel—reify sp tempVarl gil ::IRT LQ tempVar2 tempBool gil::
RM_IMP)

171)

172)

173)

174)

175)

176

177 (defun decreasing—pitch (sp playing isPlayed)

178 (loop :for i :from 0 :below (— (length playing) 1) :by 1 :do

179 (let ((tempVarl (gil::add—int—var sp 0 127)))

180 (gil :: g—setmax—reify sp (nth i playing) tempVarl (nth i isPlayed) gil::RM IMP)

181 (loop :for j :from (+ i 1) :below (length playing) :by 1 :do

182 (let ((tempBool (gil::add—bool—var sp 0 1)) tempVar2)

183 (setq tempVar2 (gil::add—int—var sp 0 127))

184 (gil::g—op sp (nth i isPlayed) gil::BOT _AND (nth j isPlayed) tempBool
)

185 (gil:: g—setmax—reify sp (nth j playing) tempVar2 tempBool gil ::RM IMP
)

186 (gil:: g—rel—reify sp tempVarl gil ::IRT GQ tempVar2 tempBool gil::
RM_IMP)

187)

188)

189)

190)

191)

192

193 (defun strictly—increasing—pitch (sp playing isPlayed)

194 (loop :for i :from 0 :below (— (length playing) 1) :by 1 :do

195 (let ((tempVarl (gil::add—int—var sp 0 127)))

196 (gil :: g—setmax—reify sp (nth i playing) tempVarl (nth i isPlayed) gil::RM IMP)

197 (loop :for j :from (+ i 1) :below (length playing) :by 1 :do

198 (let ((tempBool (gil::add—bool—var sp 0 1)) tempVar2)

199 (setq tempVar2 (gil::add—int—var sp 0 127))

197

200 (gil ::g—op sp (nth i isPlayed) gil ::BOT_AND (nth j isPlayed) tempBool

)

201 (gil :: g—setmin—reify sp (nth j playing) tempVar2 tempBool gil ::RM IMP
)

202 (gil:: g—rel—reify sp tempVarl gil ::IRT_LE tempVar2 tempBool gil::
RM_IMP)

203)

204)

205)

206)

207)

208

209 (defun strictly—decreasing—pitch (sp playing isPlayed)

210 (loop :for i :from 0 :below (— (length playing) 1) :by 1 :do

211 (let ((tempVarl (gil::add—int—var sp 0 127)))

212 (gil:: g—setmin—reify sp (nth i playing) tempVarl (nth i isPlayed) gil::RM _IMP)

213 (loop :for j :from (+ i 1) :below (length playing) :by 1 :do

214 (let ((tempBool (gil::add—bool—var sp 0 1)) tempVar2)

215 (setq tempVar2 (gil::add—int—var sp 0 127))

216 (gil ::g—op sp (nth i isPlayed) gil ::BOT_AND (nth j isPlayed) tempBool

(gil :: g—setmax—reify sp (nth j playing) tempVar2 tempBool gil ::RM IMP

(gil:: g—rel—reify sp tempVarl gil ::IRT _GR tempVar2 tempBool gil::

(defun golomb—rule (sp size push quant)
(setf size—d (/ (— (x size size) size) 2))

array of differences
(setq d (gil ::add—int—var—array sp size—d 0 127))

(setf k 0)
(loop :for i :from 0O :below (% (— size 1) quant) :by quant :do

(loop :for j :from (+ i quant) :below (x size quant) :by quant :do

(progn
(gil:: g—linear sp ’(1 —1) (list (gil::g—setmax sp (nth j push)) (gil::g—setmax

sp (nth i push))) gil::IRT_EQ (nth k d))

(setf k (+ k 1))
)

)

(gil :: g—distinct sp d)

(defun random—repeat—note (sp push percent quant)
(let ((index (list—shuffler (range (length push) :min 0 :step quant))))
(loop :for i :from 0 :below (— (length index) 1) :by 1 :do
(if (< (random 100) percent)
(gil :: g—rel sp (nth (nth i index) push) gil ::SRT_EQ (nth (4+ (nth i index) 1)
push))
(gil :: g—rel sp (nth (nth i index) push) gil::SRT_DISJ (nth (+ (nth i index)
1) push))
)

)
)

(defun soft—repeat—note (sp percent pushMap—card)
(let ((c (round (x percent (— (length pushMap—card) 1)) 100)))
(gil :: g—count sp pushMap—card 0 gil ::IRT _GQ c¢)
)

)

(defun hard—repeat—note (sp percent pushMap—card max—repetition)
(let ((repetition (round (% percent max—repetition) 100)))
(gil :: g—count sp pushMap—card repetition gil::IRT_GQ 1)

D.4 melodizer-utils.lisp

I (in—package :mldz)

198

-~

®

; converts a list of MIDI values to MIDIcent
(defun to—midicent (1)
(if (null 1)
nil
(cons (x 100 (first 1)) (to—midicent (rest 1)))
)
)
; convert from MIDIcent to MIDI
(defun to—midi (1)
(if (null 1)
nil
(cons (/ (first 1) 100) (to—midi (rest 1)))
)
)
;converts the value of a note to its name
(defmethod note—value—to—name (note)
(cond
((eq note 60) "C")
((eq note 61) "C#"
((eq note 62) "D")
((eq note 63) "Eb")
((eq note 64) "E")
((eq note 65) "F")
((eq note 66) "F#")
((eq note 67) "G")
((eq note 68) "Ab")
((eq note 69) "A")
((eq note 70) "Bb")
((eq note 71) "B")
)
)
;converts the name of a note to its value
(defmethod name—to—note—value (name)
(cond
((string—equal name "C'") 60)
((string—equal name "C#") 61)
((string—equal name 'D") 62)
((string—equal name "Eb") 63)
((string—equal name "E'") 64)
((string—equal name "F'") 65)
((string—equal name "F#') 66)
((string—equal name "G") 67)
((string—equal name "Ab") 68)
((string—equal name "A") 69)
((string—equal name "Bb") 70)
((string—equal name "B") 71)
)
)
finds the smallest element of a list
(defun min—list (L)
(cond
((null (car L)) nil); the list is empty —> return
((null (cdr L)) (car L)); the list has 1 element
(T
(let ((head (car L)); default behavior
(tailMin (min—list (cdr L))))
(if (< head tailMin) head tailMin)
)
)
)
)
; finds the biggest element of a list
(defun max—list (L)
(cond
((null (car L)) nil); the list is empty —> return
((null (cdr L)) (car L)); the list has 1 element
(T
(let ((head (car L)); default behavior
(tailMax (max—list (cdr L))))
(if (> head tailMax) head tailMax)
)
)
)
)
; finds the biggest element in a list of lists
(defun max—list—list (L)
(cond
((null (car L)) nil); the list is empty —> return
((null (cdr L)) (max—list (car L))); the list has
(T
(let ((head (max—list (car L))); default
(tailMax (max—list—list (cdr L))))
(if (> head tailMax) head tailMax)
)

199

nil
—> return it
nil
—> return it

nil
1 element —> return

behavior

it

96)

97

98 ; create a list from min to max by step

99 (defun range (max &key (min 0) (step 1))

100 (loop for n from min below max by step

101 collect n))

102

103 ; function to update the list of solutions in a pop—up menu without having to close and
re—open the window

104 ; TODO find a more efficient way to do this

105 (defun update—pop—up (self my—panel data position size output)

106 (om:: om—add—subviews my—panel

107 (om:: om—make—dialog—item

108 ’om:: om—pop—up—dialog—item

109 position ;(om::om—make—point 5 130)

110 size ; (om::om—make—point 320 20)

111 "list of solutions"

112 :range (loop for item in (make—data—sol data) collect (car item))

113 :di—action #’(lambda (m)

114 (cond

115 ((string—equal output "output—solution")

116 (setf (output—solution (om::object self)) (nth (om::

om—get—selected—item—index m) data)); set the output solution to the currently selected
solution

117 (let ((indx (om::om—get—selected—item—index m)))

118 (om:: openeditorframe ; open the editor of the selected
solution

119 (om:: omNG—make—new—instance

120 (nth indx data)

121 (format nil "melody ~D" (14 indx)); name of the
window

122)

123)

124)

125

126 ((string—equal output "output—motif")

127 (setf (output—motif (om::object self)) (nth (om::
om—get—selected—item—index m) data))

128 (let ((indx (om::om—get—selected—item—index m)))

129 (om:: openeditorframe

130 (om:: omNG—make—new—instance

131 (output—motif (om:: object self))

132 (format nil "motif ~D" (14 indx)); name of the window

133)

134)

135)

136

137 ((string—equal output "output—phrase")

138 (setf (output—phrase (om::object self)) (nth (om::
om—get—selected—item—index m) data))

139 (let ((indx (om::om—get—selected—item—index m)))

140 (om:: openeditorframe

141 (om:: omNG—make—new—instance

142 (output—phrase (om::object self))

143 (format nil "phrase ~D" (14 indx)); name of the
window

144)

145)

146)

147)

148 ((string—equal output "output—period")

149 (setf (output—period (om::object self)) (nth (om::
om—get—selected—item—index m) data))

150 (let ((indx (om::om—get—selected—item—index m)))

151 (om:: openeditorframe

152 (om:: omNG—make—new—instance

153 (output—period (om::object self))

154 (format nil "period ~D" (14 indx))

155)

156)

157)

158)

159)

160)

161)

162)

163)

; function to get the starting times (in ms) of the notes
; from karim haddad (OM)
167 (defmethod voice—onsets ((self voice))

168 "on passe de voice a chord—seq juste pour avoir les onsets"

169 (let ((obj (om::objfromobjs self (make—instance ’om::chord—seq))))
170 (butlast (om::lonset obj))

171)

172)

173

174 ;function to get the duration (in ms) of the notes

175 (defmethod voice—durs ((self voice))

176 "on passe de voice a chord—seq juste pour avoir les onsets"

77 (let ((obj (om::objfromobjs self (make—instance ’om::chord—seq))))
178 (om::1ldur obj)

200

216
217
218
219
220
221
222
223

235
236

(list 3 3 4 2)

)

((string—equal quality
(list 3 3 3 3)

)

((string—equal quality
(list 3 4 4 1)
)

; TODO g{U+FFFDir les
((string—equal quality
(list 3 4 5)

((string—equal quality
(list 4 3 5)

((string—equal quality
(list 3 4 5)

)
((string—equal quality
(list 3 4 5)

((string—equal quality
(list 4 3 5)
)

((string—equal quality
(list 3 4 5)
)

((string—equal quality
(list 3 4 5)

)
; returns the list of intervals defining a given mode
(defun get—scale (mode)
(cond
((string—equal mode "ionian (major)")
(list 2 2 1 2 2 2 1)
((string—equal mode "dorian")
(list 2 1 2 2 2 1 2)
((string—equal mode "phrygian")
(list 1 2 2 2 1 2 2)
((string—equal mode "lydian")
(list 2 2 2 1 2 2 1)
((string—equal mode "mixolydian")
(list 2 2 1 2 2 1 2)
)
((string—equal mode "aeolian (natural minor)")
(list 21 2 2 1 2 2)
)
((string—equal mode "locrian")
(list 1 2 2 1 2 2 2)
)
((string—equal mode "harmonic minor")
(list 2 1 2 2 1 3 1)
)
((string—equal mode "pentatonic")
(list 2 2 3 2 3)
)
((string—equal mode "chromatic")
(list 11111111111 1)
)
)
)
(defun get—chord (quality)
(cond
((string—equal quality "Major")
(list 4 3 5)
((string—equal quality "Minor")
(list 3 4 5)
((string—equal quality "Augmented")
(list 4 4 4)
((string—equal quality "Diminished")
(list 3 3 6)
((string—equal quality "Major 7")
(list 4 3 4 1)
)
((string—equal quality "Minor 7")
(list 3 4 3 2)
)
((string—equal quality "Dominant 7")
(list 4 3 3 2)
)
((string—equal quality "Minor 7 flat 5")

"Diminished 7")

"Minor—major 7")

accords 9 ou +

"Major 9")
"Minor 9")

"9 Augmented 5")
"9 flatted 5")
"7 flat 9")
"Augmented 9")

"Minor 11")

201

)

((string—equal

)

((string—equal

)

((string—equal

((string—equal

)

; function to get
(defun get—all—notes

quality
(list 4 3 5)

quality
(list 3 4 5)
quality
(list 4 3 5)
quality
(list 3 4 5)

all
(note)

(let ((acc ’()) (backup note))
(om:: while (<= note 127)
(setq acc (cons
(incf note 12)

)

(setf note (— backup 12))

(om:: while (>= note 0) :do
(setq acc (cons
(decf note 12)

)

acc

)

; function to get

all notes

FOR OTHER CASES THAN M/m

(defun get—admissible—notes

of a given note

:do
note acc));

note acc)):

playable on top of a given

(chords mode

"Major 11")

"Dominant 11")

"Dominant # 11")

"Major # 11")

(e.g. C)
add it to the list
add it to the list

inversion)

(let ((return—1list ’()))
(cond
((string—equal mode "major"); on top of a major chord,
notes from the chord though the preferred order is 1-5—3

(setf return—list (reduce #’cons
(get—all—notes (first chords))
:initial—value return—list
:from—end t

))

(setf return—list (reduce #’cons
(get—all—notes (second chords))
:initial—value return—list
:from—end t

))

(setf return—list (reduce #’cons
(get—all—notes (third chords))
:initial—value return—list
:from—end t

))

)
((string—equal mode "minor"); on top of a minor chord,
notes from the chord though the preferred order is 1-5—3

(setf return—list (reduce #’cons
(get—all—notes (first chords))
:initial—value return—list
:from—end t

))

(setf return—list (reduce #’cons
(get—all—notes (second chords))
:initial—value return—list
:from—end t

(setf return—list (reduce #’cons
(get—all—notes (third chords))
initial—value return—list
:from—end t

)

((string—equal mode "diminished"); only the third can
diminished chords

(cond
((= inversion 0)

(setf return—list (reduce #’cons
(get—all—notes (second chords))
:initial—value return—list
:from—end t

))

)
((= inversion 1)

(setf return—list (reduce #’cons
(get—all—notes (first chords))
:initial—value return—list
:from—end t

)

)
((= inversion 2)

(setf

(get—all—notes

return—list (reduce #’cons

(third chords))

202

you can play either

either

you can play

be played on top of

chord CHECK WHAT NOTES CAN BE PLAYED

of the

of the

361
362
363
364
365
366
367
368
369
370
371

376

413

415
416
417
418
419
420
421

422
423

424
425
426
427
428
429
430

initial—value
:from—end t

(setq temp (read—tree push pull
length next))
(setq push (first temp))

203

return—list

playing (second

)
)
)
)
)
)
)
; function to get the mode of the chord (major, minor, diminished ,...) and the inversion (0
classical form, 1 = first inversion, 2 = second inversion)
(defun get—mode—and—inversion (intervals)
(let ((major—intervals (list (list 4 3) (list 3 5) (list 5 4))); possible intervals in
midi for major chords
(minor—intervals (list (list 3 4) (list 4 5) (list 5 3))) ; possible intervals in
midi for minor chords
(diminished—intervals (list (list 3 3) (list 3 6) (list 6 3)))); possible intervals
in midi for diminished chords
(cond
((position intervals major—intervals :test #’equal); if the chord is major
(list "major" (position intervals major—intervals :test #’equal))
((position intervals minor—intervals :test #’equal); if the chord is minor
(list "minor" (position intervals minor—intervals :test #’equal))
)
((position intervals diminished—intervals :test #’equal); if the chord is
diminished
(list "diminished" (position intervals diminished—intervals :test #’equal))
)
)
)
)
;jmakes a list (name voice—instance) from a list of voices:
; (from Karim Haddad)
(defun make—data—sol (liste)
(loop for 1 in liste
for i from 1 to (length liste)
collect (list (format nil "solution ~D: ~A" i 1) 1)))
; taken from rhythm box
; https://github.com/blapiere/Rhythm—Box
(defun rel—to—gil (rel)
"Convert a relation operator symbol to a GiL relation value."
(cond
((eq rel ’=) gil ::IRT_EQ)
((eq rel ’=/=) gil ::IRT_NQ)
((eq rel ::IRT_LE)
((eq rel IRT_LQ)
((eq rel ’>) gil ::IRT_GR)
((eq rel ’>=) gil ::IRT_GQ)
)
)
Create push and pull list from a voice object
(defun create—push—pull (input—chords quant)
(let (temp
(next 0)
(push (list))
(pull (list ’—1))
(playing (list))
(tree (om::tree input—chords))
(pitch (to—pitch—1list (om::chords input—chords))))
(setq tree (second tree))
(loop :for i :from O :below (length tree) :by 1 :do
(setq temp (read—tree (make—list quant :initial—element —1) (make—list quant
initial—element —1) (make—list quant :initial—element —1) (second (first (second (nth
tree)))) pitch 0 quant next))
(setq push (append push (first temp)))
(setq pull (append pull (second temp)))
(setq playing (append playing (third temp)))
(setf next (fourth temp))
(list push pull playing))
)
; <tree> is the rhythm tree to read
; <pitch> is the ordered list of pitch
; <pos> is the next position in push to add values
; <length> is the current duration of a note to add
; <next> is the index in pitch of the next notes we will add
;recursive function to read a rhythm tree and create push and pull
(defun read—tree (push pull playing tree pitch pos length next)
(progn
(setf length (/ length (length tree)))
(loop :for i :from 0 :below (length tree) :by 1 :do
(if (typep (nth i tree) ’list)
(let (temp)

(nth i tree)) pitch pos

i

446 (setq pull (second temp))

447 (setq playing (third temp))

448 (setf next (fourth temp))

449 (setf pos (fifth temp))

450)

451 (progn

452 (setf (nth pos push) (nth next pitch))

453 (loop :for j :from pos :below (+ pos (* length (nth i tree))) :by 1 :do

454 (setf (nth j playing) (nth next pitch))

455)

456 (setf pos (4+ pos (* length (nth i tree))))

457 (setf (nth (— pos 1) pull) (nth next pitch))

458 (setf next (4+ next 1))

459)

460)

461

462 (list push pull playing next pos)

463)

464)

465

466 <input—chords> is the voice objects for the chords

467 <quantOrig> quantification used by melodizer

468 Return a list in which each element i represent a note starting at a time i*xquant

469 —1 means no note starting at that time, a chord object means multiple note starting

470 (defun create—push (input—chords quantOrig)

471 (let ((note—starting—times (voice—onsets input—chords))

472 (quant (/ (second (first (om::tempo input—chords))) (/ quantOrig 16)))

473 (tree (om::tree input—chords))

474 (push—1list (list))

475 (chords (to—pitch—list (om::chords input—chords))) ; get chords list

476

477 (setf note—starting—times (mapcar (lambda (n) (/ n quant)) note—starting—times))
dividing note—starting—times by quant

478 (loop :for j :from 0 :below (+ (max—list note—starting—times) 1) :by 1 :do

479 (if (= j (car note—starting—times)); if j == note—starting—times [0]

480 (progn

481 (setq push—list (nconc push—list (list (car chords))))

482 (setf chords (cdr chords))

483 (setf note—starting—times (cdr note—starting—times))) ;add chords[0] to
push and prune qt[0] and pchords [0]

484 (setq push—list (nconc push—list (list —1)))) ; else add —1 to push

485)

486)

487)

488

489

490 ; <input—chords> is the voice objects for the chords

491 ; <quant> NOT USED YET (FORCED TO 500) smallest possible note length

; Return a list in which each element i represent a note stopping at a time ikxquant
4 —1 means no note stop at that time, a chord object means multiple note starting
494 (defun create—pull (input—chords)

495 (let ((note—starting—times (voice—onsets input—chords)) ; note—starting—times = start
time of each chord

496 (note—dur—times (voice—durs input—chords)) ; note—dur—times = duration of each note

497 (note—stopping—times (list))

498 (quant 500)

499 (pull—1list (list))

500 (pitch (to—pitch—list (om::chords input—chords))) : get chords list

501)

502 (setf note—starting—times (mapcar (lambda (n) (/ n quant)) note—starting—times))
dividing note—starting—times by quant

503 (setf note—dur—times (mapcar (lambda (n) (mapcar (lambda (m) (/ m quant)) n))
note—dur—times)) ; dividing note—dur—times by quant

504 (loop :for j :from O :below (length note—starting—times) :by 1 :do

505 (setq note—stopping—times (nconc note—stopping—times (list (mapcar (lambda (n)

(+ n (nth j note—starting—times))) (nth j note—dur—times))))) ; Adding
note—starting—times to note—dur—times to get note—stopping—times

506

507 (loop :for j :from 0 :below (+ (max—list—list note—stopping—times) 1) :by 1 :do

508 (setq pull—list (nconc pull—list (list —1))))

509 (loop for 1 in note—stopping—times

510 for k in pitch do

511 (loop for i in 1

512 for j in k do

513 (if (typep (nth i pull—list) ’list)

514 (setf (nth i pull—list) (nconc (nth i pull—list) (list j)))

515 (setf (nth i pull—1list) (list j)))

516)

517)

518)

519)

520

521 ; reformat a scale to be a canvas of pitch and not intervals

522 (defun adapt—scale (scale)

523 (let ((major—modified (list (first scale))))

524 (loop :for i :from 1 :below (length scale) :by 1 :do

525 (setq major—modified (nconc major—modified (list (4+ (nth i scale) (nth (— i 1)
major—modified)))))

526

527 (return—from adapt—scale major—modified)

528)

529)

530

204

Ttot Gt ot ot e
AR AR RN ;
SIS eN

vt e

ut
at

oo
ol >

n
&

SN
a v
AN ENSNIUN O,

ot
o
=N

[SeINe]
Y S D O Or Ot
o © 0w

S
@R~

ut

ut

565
566
567
568
569

o
S

o

SR

S
TUA W N =

ot
S SN S RN R |
N o w N

oo

o

Cu ot ot onoron oo
©COODOO D0 ®H Ko
SR WD~ O®n

S

96
597
598
599
600

601

; build the list of acceptable
(defun build—scaleset (scale offset)

pitch based on the

scale and a key offset

(let ((major—modified (adapt—scale scale))
(scaleset (list)))
(loop :for octave :from —1 :below 11 :by 1 append
(setq scaleset (nconc scaleset (mapcar (lambda (n) (+ (+ n (* octave 12))

offset)) major—modified)))

(setq scaleset (remove—if ’minusp scaleset))
)
)
; build the list of acceptable pitch based on the scale and a key offset
(defun build—notesets (chord offset)
(let ((chord—modified (adapt—scale chord))
(notesets (list)))
(loop :for i :from 0 :below (length chord—modified) :by 1 :do
(setq noteset (list))
(loop :for octave :from —1 :below 11 :by 1 append
(setq noteset (nconc noteset (list (+ (+ (nth i chord—modified) (* octave
12)) offset))))
)
(setq noteset (remove—if ’minusp noteset))
(setq notesets (nconc notesets (list noteset)))
)
notesets
)
)
; <chords> a list of chord object
; Return the list of pitch contained in chords in midi format
(defun to—pitch—list (chords)
(loop :for n :from 0 :below (length chords) :by 1 collect (to—midi (om::lmidic (nth n
chords))))
)
; Getting a list of chords and a rhythm tree from the playing list of intvar
(defun build—voice (sol push pull bars quant tempo)
(let ((p—push (list))
(p—pull (list))
(chords (list))
(tree (list))
(ties (list))
(prev 0)
(setq p—pull (nconc p—pull (mapcar (lambda (n) (to—midicent (gil::g—values sol n))) pull)
(setq p—push (nconc p—push (mapcar (lambda (n) (to—midicent (gil::g—values sol n))) push)

(setq count 1)

(loop :for b :from 0 :below bars :by 1 :do
(if (not (nth (*x b quant) p—push))
(setq rest 1)
(setq rest 0)
)
(setq rhythm (list))
(loop :for q :from 0 :below quant :by 1 :do
(setq i (4+ (* b quant) q))
(cond
((nth i p—push)
; if rhythm impulse
(progn
(setq durations (list))
(loop :for m :in (nth i p—push) :do
(setq j (+ i 1))
(loop
(if (nth j p—pull)
(if Efind m (nth j p—pull))
progn
(setq dur (*x (floor 60000 (% tempo quant)) (— j
)))
(setq durations (nconc durations (list dur)))
(return)
)
)
)
(incf j)
)
(setq chord (make—instance ’chord :LMidic (nth i p—push) :Ldur
durations))
(setq chords (nconc chords (list chord)))
(cond
((= rest 1)
(progn

(setq rhythm (nconc rhythm (list
(setq

(x —1 count))))
rest

0)))

205

i

617 (/= a 0)
618 (setq rhythm (nconc rhythm (list count))))

620 (setq count 1))

)
622 ; else
(t (setq count (4+ count 1)))
624)
625)
626 (if (= rest 1)
627 (setq rhythm (nconc rhythm ’(list (% —1 count))))
628 (setq rhythm (nconc rhythm (list count)))
629)
6 (setq count 0)
(setq rhythm (list ’(4 4) rhythm))

(setq tree (nconc tree (list rhythm)))

)
635 (setq tree (list ’? tree))
636
637 (list chords tree)
638
639)
640
641 (defun build—chord—seq (sol push pull bars quant tempo)
642 (let ((p—push (list))

(p—pull (list))
(chords (list))
(durations (list))
(onsets (list)))

648 (setq p—pull (nconc p—pull (mapcar (lambda (n) (to—midicent (gil::g—values sol n)))
pull)))

649 (setq p—push (nconc p—push (mapcar (lambda (n) (to—midicent (gil::g—values sol n)))
push)))

650

651 (loop :for i :from O :below (+ (* bars quant) 1) :do

652 (if (nth i p—push)

653 (progn

654 (setq onset (x (/ 60000 (* tempo (/ quant 4))) i))

655 (setq duration (list))

656 (loop :for m :in (nth i p—push) :do

657 (setq j (+ i 1))

658 (loop

659 (if (nth j p—pull)

660 (if (find m (nth j p—pull))

661 (progn

662 (setq dur (x (/ 60000 (* tempo (/ quant 4))) (— j i))
)

(setq duration (nconc duration (list dur)))

(return)

)
)
(incf j)
))
(setq chords (nconc chords (list (nth i p—push))))

(setq durations (nconc durations (list duration)))
(setq onsets (nconc onsets (list onset)))

)

(list chords onsets durations)

;return T if the two list have the same elements (order doesn’t matter)
(defun compare (11 12)
(and (subsetp 11 12) (subsetp 12 11)))

; return the quant value based on the index selected
(defun get—quant (str)

(cond ((string= str "1 bar") 1)
((string= str "1/2 bar") 2)
((string= str "1 beat") 4)
((string= str "1/2 beat") 8)
((string= str "1/4 beat") 16)
((string= str "1/8 beat") 32)
((string= str "1/3 bar") 3)
((string= str "1/6 bar") 6)
((string= str "1/3 beat") 12)
((string= str "1/6 beat") 24)
((string= str "1/12 beat") 48)
((not str) 192))

; return the quant value based on the index selected
(defun get—length (str)
(cond ((string= str "1 bar") 192)
((string= str "1/2 bar") 96)

206

707
708
709
710
711
712
713
714
715
716
717
718
719
720
721

722
723
724
725
726
727
728
729

((string= str "1 beat") 48)

((string= str "1/2 beat") 24)
((string= str "1/4 beat") 12)
((string= str "1/8 beat") 6)
((string= str "1/3 bar") 64)
((string= str "1/6 bar") 32)
((string= str "1/3 beat") 16)
((string= str "1/6 beat") 8)
((string= str "1/12 beat") 4)
((not str) 1))

shuffles a list
from https://gist.github.com/shortsightedsid /62d0ee21bfca53d9b69e

(defun list—shuffler (input—list &optional accumulator)

"Shuffle a list using tail call recursion."

(if (eq input—list nil)
accumulator
(o
(rotatef (car input—list)
(nth (random (length input—list)) input—1list))
(list—shuffler (cdr input—list)
(append accumulator (list (car input—list)))))))

207

UNIVERSITE CATHOLIQUE DE LOUVAIN
Ecole polytechnique de Louvain

Rue Archiméde, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Introduction
	Context and motivation
	Previous work and Melodizer's main upgrades
	Implementation procedure
	Playing with Melodizer 2.0 as a composer
	Contributions
	System contributions
	Musical contributions

	Melodizer 2.0 example
	Roadmap

	Theoretical framework
	What is music after all ?
	Music Theory
	Music terminology
	Rhythm
	Melody
	Harmony
	Musical Forms to structure your piece

	Music Composition
	Tip 1 : Let the listener rest
	Tip 2 : Tension and release
	Tip 3 : Coming back home
	Tip 4 : Popular chord progressions
	Tip 5 : Repetition with a twist
	Tip 6 : Arpeggio

	Constraint Programming
	Definitions
	Example 1 : Solving a sudoku
	Constraint Propagation
	Branching heuristics
	Exploration and search engines
	Branch-and-Bound (BAB)

	Tools
	Gecode
	Search Space
	Variables
	Constraints
	Propagators
	Branching
	Search

	OpenMusic
	Boxes within Patches
	How to represent score sheets in OM
	Box evaluation

	GiL
	How does it work ... briefly
	Lisp Wrapper
	C Wrapper

	New features
	How to use GiL
	How to improve GiL yourself

	Melodizer 2.0
	What is Melodizer ?
	New features

	Variable structure
	Blocks
	Block definition
	Blocks connection

	Musical constraints
	Blocks' general constraints
	Rhythm constraints
	Pitch constraints

	Branch and bound
	Solver
	Branching heuristics

	Implementation structure
	block.lisp
	melodizer-csp.lisp
	melodizer-csts.lisp
	melodizer-utils.lisp

	User Manual
	Block object
	Block constraint panel
	Time constraint panel :
	Pitch constraint panel

	Search object
	Connecting blocks to form a structured piece

	Making music with Melodizer
	Scenario 1 : Playing with a chord
	Description
	Patch set up
	Modus operandi

	Scenario 2 : Playing with two chords
	Description
	Patch set up
	Modus operandi

	Scenario 3 : Melody on top of chords
	Description
	Patch set up
	Modus operandi

	Scenario 4 : Blues in C Major
	Description
	Patch set up
	Modus operandi

	Scenario 5 : The strumming effect
	Description
	Patch set up
	Modus operandi

	Scenario 6 : Unexpected results
	Description
	Patch set up
	Modus operandi

	Conclusion
	Melodizer 2.0 major achievements
	Necessary steps to develop Melodizer 2.0

	Further improvements and using Melodizer 2.0 as a cornerstone
	Some general ideas
	Extending the block structure
	A final word about musical constraints

	Bibliography
	How to install Melodizer 2.0
	Download and install
	Loading the libraries to OpenMusic

	Gecode source code
	Sudoku propagation example

	Gil source code
	C Wrapper
	space_wrapper.hpp
	space_wrapper.cpp
	gecode_wrapper.hpp
	gecode_wrapper.cpp

	Lisp Wrapper
	gecode-wrapper.lisp
	gecode-wrapper-ui.lisp

	Melodizer source code
	block.lisp
	melodizer-csp.lisp
	melodizer-csts.lisp
	melodizer-utils.lisp

