
École polytechnique de Louvain

Practical domotics with sensor
fusion

A two-wheeled self-balancing butler

Authors: Arthur DANDOY, Sam RAYMAKERS
Supervisor: Peter VAN ROY
Readers: Peer STRITZINGER, Raphael JUNGERS
Academic year 2024-2025
Master [120] in Computer Science & Electrical Engineering





Acknowledgements

First, we are deeply grateful to Professor Van Roy for his sustained involvement,
insightful ideas, and steady encouragement. His high expectations continually
challenged us to strive for the very best.

We would also like to thank the CREDEM team, especially Simon De Jaeger,
for their support, invaluable advice, and practical training with all the equipment
we used, as well as for granting us access to it.

We gratefully acknowledge François Goens and Cédric Ponsard for their
generous advice and hands-on assistance during the robot’s construction. Their
guidance saved us considerable time, and their prompt, thoughtful responses kept
the project moving.

Warm thanks go to Thomas and Nicolas for their helpful suggestions and
generous sharing of resources. Facing similar challenges, we were able to support
one another and exchange ideas, which helped us advance together.

Finally, our sincere thanks to our families and friends for their patience, and
steady support, and for clearing space at home so the robot could run safely. We
would also like to apologize for the occasional broken glass along the way; we
promise it helped us get through this challenge.

i



Abstract

Connected systems and the Internet of Things (IoT) are becoming more integrated
into daily life, offering greater comfort, efficiency, and safety. However, these
technologies often rely on complex, real-time interactions that make the control of
unstable systems, such as dynamic self-balancing robots, particularly challenging
due to sensor noise, latency, and limited precision. This master’s thesis aims to
transform a two-wheeled self-balancing robot prototype into a functional domestic
butler capable of transporting payloads, like a glass of wine, without spilling and
avoiding obstacles in real-world environments.

This work builds upon the Hera framework and employs GRiSP embedded
boards to implement a Kalman filter-based sensor fusion, thereby enhancing the
reliability of noisy sensor measurements. A two-wheeled self-balancing butler
with a tall and robust chassis, retractable support arms, a mounting platform
for payloads, and three ultrasonic sonars for obstacle detection, was designed.
Stability is achieved through a cascade of PID controllers, while a distributed
multi-GRiSP architecture synchronizes sensor data in real time.

Additional features include two operational modes, dynamic self-balancing and
static stability mode, and remote control via an ESP module. The resulting system
is multi-level: an outer executive loop manages motion and obstacle avoidance,
and an inner loop maintains balance. Experimental results show stable operation
under different payloads, floor types, and obstacles, demonstrating the feasibility of
applying advanced robotics in smart home environments and providing a reusable
framework for similar IoT-based systems.

ii



AI disclaimer

The use of AI, such as ChatGPT and DeepL for traduction purpose, grammar
correction, and rewriting, and GitHub Copilot for support in code development
and structuring, is acknowledged in this work.

iii



Contents

List of figures x

List of tables xi

List of acronyms xiii

1 Introduction 1
1.1 Context . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Roadmap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Resources and background 6
2.1 Erlang programming language . . . . . . . . . . . . . . . . . . . . . 6
2.2 GRiSP2 board and platform . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Technical specifications of the board . . . . . . . . . . . . . 8
2.2.2 Pmod standards . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.2.1 Pmod NAV . . . . . . . . . . . . . . . . . . . . . . 9
2.2.2.2 Pmod MAXSONAR . . . . . . . . . . . . . . . . . 9

2.3 Communication protocols . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.1 I2C protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.2 SPI protocol . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3.3 UART Protocol . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.4 Hera framework . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.4.1 Kalman filter . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4.2 Extended Kalman Filter (EKF) . . . . . . . . . . . . . . . . 14

2.5 Control systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.1 Control loop . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5.2 PID control strategy . . . . . . . . . . . . . . . . . . . . . . 16

2.6 Auto-stabilized two-wheeled robot . . . . . . . . . . . . . . . . . . . 17

iv



3 Overall design 20
3.1 Hardware overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Objectives and specifications . . . . . . . . . . . . . . . . . . . . . . 21
3.3 Overall system diagram . . . . . . . . . . . . . . . . . . . . . . . . . 23

4 Multi-level system architecture 25
4.1 Sensor fusion : Kalman filter . . . . . . . . . . . . . . . . . . . . . . 26

4.1.1 Physical modeling . . . . . . . . . . . . . . . . . . . . . . . . 27
4.1.1.1 Movement equations . . . . . . . . . . . . . . . . . 27

4.1.2 Advanced "digital twin" model for the Extended Kalman Filter 28
4.1.2.1 State and input definition . . . . . . . . . . . . . . 28
4.1.2.2 Non-linear dynamic model . . . . . . . . . . . . . . 28
4.1.2.3 State transition Jacobian . . . . . . . . . . . . . . 29
4.1.2.4 Measurement model . . . . . . . . . . . . . . . . . 29
4.1.2.5 The observation model . . . . . . . . . . . . . . . . 29
4.1.2.6 Observation Jacobian . . . . . . . . . . . . . . . . 30
4.1.2.7 R : The measurement noise covariance . . . . . . . 30
4.1.2.8 Q : The process noise covariance . . . . . . . . . . 31

4.2 Stability loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
4.2.1 Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.1.1 Trapezoidal speed profiles . . . . . . . . . . . . . . 33
4.2.1.2 Controller parameters tuning . . . . . . . . . . . . 34

4.2.2 Motor drivers . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.2.1 Wheel motors control . . . . . . . . . . . . . . . . . 35
4.2.2.2 Arm motor control . . . . . . . . . . . . . . . . . . 36
4.2.2.3 Logical command operator . . . . . . . . . . . . . . 36

4.3 Obstacle avoidance . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.4 Executive loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.4.1 FSM overview . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.2 State descriptions . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.3 Transition triggers . . . . . . . . . . . . . . . . . . . . . . . 39

5 Hardware implementation 40
5.1 Part 1 : The base of the robot . . . . . . . . . . . . . . . . . . . . . 41

5.1.1 Floor 0: The robot’s drivetrain . . . . . . . . . . . . . . . . 42
5.1.1.1 The static support system . . . . . . . . . . . . . . 42

5.1.2 Floor 1: Stepper motor drivers, the Lilygo LoRa32 and
voltage converters . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.2.1 Stepper motor drivers and PCB . . . . . . . . . . . 45
5.1.2.2 Lilygo LoRa32 . . . . . . . . . . . . . . . . . . . . 46
5.1.2.3 Voltage converters . . . . . . . . . . . . . . . . . . 46

v



5.1.3 Floor 3: The GRiSPs, sonars and battery . . . . . . . . . . . 47
5.1.3.1 GRiSP functions and positions . . . . . . . . . . . 47
5.1.3.2 Optimization of sonar placement . . . . . . . . . . 47

5.2 Part 2: Height structure of the robot . . . . . . . . . . . . . . . . . 49
5.3 Part 3: Main GRiSP casing . . . . . . . . . . . . . . . . . . . . . . 50
5.4 Top plate and counterweight design for dynamic stability . . . . . . 51
5.5 Overall electrical circuit . . . . . . . . . . . . . . . . . . . . . . . . 51

6 Software implementation 53
6.1 Distributed architecture . . . . . . . . . . . . . . . . . . . . . . . . 53
6.2 GRiSP software architecture . . . . . . . . . . . . . . . . . . . . . . 54

6.2.1 Balancing control and communication handling . . . . . . . 55
6.2.1.1 Configuration of the GRiSP . . . . . . . . . . . . . 56
6.2.1.2 Sonar scheduler for the obstacle avoidance mechanism 57
6.2.1.3 Communication and message handling . . . . . . . 58

6.2.2 High-level main loop . . . . . . . . . . . . . . . . . . . . . . 59
6.2.3 Navigation measurements . . . . . . . . . . . . . . . . . . . 61
6.2.4 Sonar measurements . . . . . . . . . . . . . . . . . . . . . . 62
6.2.5 Stability controller engine . . . . . . . . . . . . . . . . . . . 63
6.2.6 Debugging tools . . . . . . . . . . . . . . . . . . . . . . . . . 63

6.3 Lyligo ESP32 software architecture . . . . . . . . . . . . . . . . . . 64
6.4 Server and user interface architecture . . . . . . . . . . . . . . . . . 66

7 Evaluation 67
7.1 Stability reference case . . . . . . . . . . . . . . . . . . . . . . . . . 67

7.1.1 Translation movement . . . . . . . . . . . . . . . . . . . . . 69
7.1.2 Turning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
7.1.3 Dynamic/static mode transition . . . . . . . . . . . . . . . . 71
7.1.4 Performance of the obstacle avoidance mechanism . . . . . . 71

7.2 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
7.2.1 External limitations . . . . . . . . . . . . . . . . . . . . . . 73

7.2.1.1 Types of floors . . . . . . . . . . . . . . . . . . . . 73
7.2.1.2 Impact of the payload . . . . . . . . . . . . . . . . 74

7.2.2 Internal limitations . . . . . . . . . . . . . . . . . . . . . . . 75
7.2.2.1 Speed and acceleration commands . . . . . . . . . 75
7.2.2.2 Processing frequency . . . . . . . . . . . . . . . . . 75

7.2.3 Additional limitations . . . . . . . . . . . . . . . . . . . . . 76
7.3 Materials and costs . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
7.4 Power consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
7.5 Comparison with the previous master’s thesis . . . . . . . . . . . . 77

vi



8 Conclusion and future works 79

Bibliography 81

Appendices 84

A User interface 85

B Evaluation static support system 86

C Materials and costs table 88

D Sonar placement optimization code 90

E PCB design 92

F Physical modelling 93

G Newton-Euler equations 96

H Algorithms 99

I I2C packet structure 102

J LED debugging indicators 103

K Experimentation setup for payload tests 104

L Obstacle avoidance evaluation of the backward sonar 105

M Full source code 106

vii



List of Figures

1.1 Evolution of the robot. . . . . . . . . . . . . . . . . . . . . . . . . . 3

2.1 Annotated view of the GRiSP2 circuit board, highlighting key speci-
fications and components. Modified from [10]. . . . . . . . . . . . . 8

2.2 Top view of the Pmod NAV sensor [13]. . . . . . . . . . . . . . . . . 9
2.3 Top view of the Pmod MAXSONAR module used for ultrasonic

distance measurement [14]. . . . . . . . . . . . . . . . . . . . . . . . 10
2.4 Diagram illustrating the Hera framework supervision tree [21]. . . . 12
2.5 The combination of Gaussians in Kalman filtering, showing the

prediction and update phases as well as the result of the product of
the Gaussians [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.6 Generic schematic representation of a closed-loop control system
with a feedback. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Block diagram of a Proportional-Integral-Derivative (PID) controller.
The error between the set-point and the measured output is used to
compute a control signal composed of three terms: proportional to
the error, integral of the error over time, and derivative of the error.
This control variable is then applied to the system to minimize the
error [26]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Two-wheeled self-balancing robot designed by Cédric Ponsard and
François Goens. The SolidWorks 3D model is represented on the
left, while the final design is on the right [22]. . . . . . . . . . . . . 18

3.1 Front and side views of the butler robot. . . . . . . . . . . . . . . . 20
3.2 High-level architecture of the self-balancing table. . . . . . . . . . . 24

4.1 More detailed system diagram of the architecture, showing the
internal workings of the blocks, their inputs and their outputs.
Based on the design from the previous master’s thesis [22]. . . . . . 26

4.2 The whole schematic representation of the controller block. . . . . . 33
4.3 Trapezoidal profile for speed reference transitions [22]. . . . . . . . . 33

viii



4.4 Schematic representation of the motor driver block with its inputs
and outputs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.5 Top view of the robot performing a left turn. A higher speed on the
right wheel compared to the left wheel generates a counterclockwise
rotation around the robot’s center [22]. . . . . . . . . . . . . . . . . 36

4.6 Overview of the Finite State Machine (FSM) representing the states
of the butler with each transition. . . . . . . . . . . . . . . . . . . . 38

5.1 Complete front view of the two-wheeled self-balancing table. . . . . 40
5.2 Front view of the base of the two-wheeled self-balancing butler.

Modified from [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
5.3 The drive train with the 2 wheels connected to 2 stepper motors

with their brackets [22]. . . . . . . . . . . . . . . . . . . . . . . . . . 42
5.4 3D design of the arms. . . . . . . . . . . . . . . . . . . . . . . . . . 43
5.5 3D printed version of the robotic arm. . . . . . . . . . . . . . . . . 43
5.6 Static support system in static mode. The arms are fully extended. 44
5.7 Static support system in dynamic mode. The arms are fully retracted. 44
5.8 The arm system in static mode. . . . . . . . . . . . . . . . . . . . . 45
5.9 Bottom view of the robot for the optimization of sonar placement. . 48
5.10 3D design of the support of the front and back sonars, sonar-only

GRiSPs and battery. . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.11 Side view of the height structure of the robot. . . . . . . . . . . . . 49
5.12 The main GRiSP with the Pmod NAV. . . . . . . . . . . . . . . . . 50
5.13 Side view of the top part of the robot. It is composed of a rounded

plate and a counterweight. . . . . . . . . . . . . . . . . . . . . . . . 51
5.14 Global overview of the Butler’s electrical system. . . . . . . . . . . 52

6.1 The distributed architecture of the different devices and their con-
nections. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

6.2 GRiSP architecture and sequential loops of the GRiSP boards. . . 55
6.3 Process hierarchy based on the roles assigned to each GRiSP board. 56
6.4 Handshake between a GRiSP board and the server. . . . . . . . . . 57
6.5 Diagram showing the different inter-process and inter-GRiSP com-

munications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
6.6 Overview of the ESP32 software architecture, showing task distribu-

tion across cores and communication interfaces [22]. . . . . . . . . . 65

7.1 Analysis of the robot’s pitch angle: (a) time-domain variation and (b)
frequency-domain representation, under normal dynamic conditions. 68

ix



7.2 [Top graph] Robot speed variation and reference speed over time.
[Bottom graph] Pitch angle variation over time when the robot is
moving forward. The robot has an advancing speed of 24 cm/s and
an advancing acceleration of 9 cm/s2. . . . . . . . . . . . . . . . . . 69

7.3 Pitch angle variation over time when the robot is turning for 25
seconds. The robot has a turning speed of 40 cm/s and a turning
acceleration of 200 cm/s2. The blue vertical lines designate the
starting and ending of the turning operation. . . . . . . . . . . . . . 70

7.4 Pitch angle variation when the robot switches between the static to
the dynamic mode and then again from the dynamic to the static. . 71

7.5 [Top graph] Sonar measures of the two front sonars. [Bottom graph]
Robot speed variation and reference speed over time when the robot
is going forward in the direction of an obstacle. . . . . . . . . . . . 72

7.6 Pitch angle variation for 3 different types of floors tested when
the robot is in a stable upright position. [Top graph] Pitch angle
variation for tile floor. [Middle graph] Pitch angle variation for
carpet floor. [Bottom graph] Pitch angle variation for parquet floor. 73

7.7 Pitch angle variation for the different payloads tested on the robot
when the robot is at stable upright position. . . . . . . . . . . . . . 74

7.8 Pitch angle variation for the different frequencies tested on the robot
when it is in a stable upright position. . . . . . . . . . . . . . . . . 75

A.1 User interface for robot control and logs visualization. . . . . . . . . 85

B.1 Side view of the robot with the static support system. The support
arms form a triangular base preventing tipping, even under a top load. 87

E.1 Schematics and physical implementation of the PCB for stepper
motor control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

F.1 Reference scheme of the robot for developing the physical model of
the system [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

L.1 [Top graph] Sonar measures of the main back sonar. [Bottom graph]
Robot speed variation and reference speed over time when the robot
is going backward in the direction of an obstacle (a couch). . . . . . 105

x



List of Tables

3.1 Specifications of the self-balancing butler. F: Function, FR: Func-
tional Requirement, C: Constraint, CR: Constraint Requirement.
Adapted from [22]. . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4.1 Description of variables and constants in the equation of motion. . . 27

C.1 Table of materials for the butler robot and their costs. . . . . . . . 89

F.2 List of variables and constants used in the physical model [22]. . . . 95

I.1 Structure of the 5-byte I2C packet from the ESP32. . . . . . . . . . 102
I.2 Bit decomposition of the I2C control byte (Byte 5). . . . . . . . . . 102

J.1 LED indicators used in balancing_robot for runtime debugging . . 103

xi



Acronyms

CG center of gravity.

CV Control Variable.

DoF Degree of Freedom.

EKF Extended Kalman Filter.

ESC Electronic Stability Control.

ESP32 Espressif Systems ESP32 Microcontroller.

FCE Final Control Element.

FDM Fused Deposition Modeling.

FFT Fast Fourier Transform.

FSM Finite State Machine.

I2C Inter-Integrated Circuit.

IMU inertial measurement unit.

IoT Internet of Things.

NIF Native Implemented Function.

NN Neural Network.

OTP Open Telecom Platform.

PCB Printed Circuit Board.

PD Proportional-Derivative.

xii



PI Proportional-Integral.

PID Proportional-Integral-Derivative.

Pmod Peripheral Module.

PV Process Variable.

SP Set Point.

SPI Serial Peripheral Interface.

UART Universal Asynchronous Receiver-Transmitter.

UDP User Datagram Protocol.

USB Universal Serial Bus.

xiii



Chapter 1

Introduction

1.1 Context
Nowadays, connected systems are widely used in our daily lives. We all have at
least one connected device, such as a smart thermostat, an autonomous vacuum
cleaner, or a connected watch. All these technologies are categorized under the
term Internet of Things (IoT). IoT is a growing field that combines embedded
computing, communication technologies, and automation to enhance comfort,
efficiency, and safety across various domains, ranging from home automation to
mobile robotics. However, these systems face significant challenges that they must
address in order to ensure reliability and safety.

In dynamic environments, stability and responsiveness are critical challenges.
The emphasis on stability in robotics and related fields arises from the fact that
instability can rapidly result in loss of control and unsafe conditions due to its
unpredictable nature. Instability is a phenomenon observed across a wide range of
systems. Examples include a car skidding on ice, an aircraft entering a stall, or
a nuclear reactor approaching a critical state. Fortunately, such problems occur
only very rarely. Indeed, thanks to the application of control theories and sensor
technologies, humans have developed effective strategies to avoid and even exploit
such instabilities. Systems such as anti-lock braking in cars, stall prevention in
aircraft, control rod mechanisms in reactors, and anti-seismic systems in buildings
all demonstrate that the capability to restore balance is a fundamental aspect of
modern engineering.

Dynamic self-balancing systems are a particularly good example of this principle.
Just as humans rely on a combination of senses, such as vision, proprioception
and the vestibular system, to maintain balance, artificial systems use sensors

1



and control algorithms. However, the reliability of such systems depends heavily
on the quality of the sensor data. In real-time embedded applications, sensor
measurements are often affected by noise, latency and limited precision. This
makes effective signal processing and sensor fusion crucial. The ’garbage in,
garbage out’ principle applies: control systems are only as reliable as the data they
receive.

Sensor fusion is a widely used mechanism for overcoming these challenges. It
involves combining information from multiple sensors to produce a more accurate
and robust estimation of a system’s state. The Kalman filter is a particularly good
implementation of sensor fusion. Its principle is to combine noisy measurements
with a predictive model to produce an optimal real-time estimation. This filtering
technique is very well suited for embedded systems, where processing power is
limited and sensor data is often unreliable. In this context, the Hera framework is
a modular architecture that integrates a Kalman-based sensor fusion for real-time
embedded and distributed applications. It is an Erlang-based open-source platform
that runs on the GRiSP board. It combines Erlang’s fault-tolerant concurrency
with direct low-level hardware control through Pmod interfaces.

1.2 Objectives
The aim of this master’s thesis is to design and build a functional prototype of a
robot that acts as a butler. The robot must be able to move around with a full
glass of wine on top without spilling any of its contents. The robot must also
be equipped with an obstacle avoidance mechanism to prevent collisions with
objects and people in its environment. The robot is developed as if intended for
commercial production. This approach requires consideration of the technical
design as well as factors such as cost, feasibility, scalability, and long-term reliability.

This project builds upon the previous work of François Goens and Cédric
Ponsard, who previously developed a 30 cm two-wheeled self-balancing robot using
the GRiSP embedded platform and the Hera sensor fusion framework. Their work
demonstrated the feasibility of real-time stability control using Kalman filters, PID
controllers, and an Erlang-based architecture. The objective here is to develop that
prototype into a practical, real-world application: a self-stabilizing butler that is
stronger and taller than its predecessor as shown in Figure 1.1. It must be able to
carry heavier payloads at a suitable human-accessible height.

2



 

Figure 1.1: Evolution of the robot.

1.3 Contributions
The main contributions of this thesis are the complete development and imple-
mentation of a multi-level embedded control system for a self-balancing butler,
including:

• A robot designed and built as a two-wheeled, self-balancing robot with a
strong, high chassis to facilitate human interaction at an appropriate height.

• A mounting plate for carrying various objects, as well as an improved center
of mass distribution, enabling it to effectively carry heavy payloads.

• Retractable support arms that can be inserted into its body, enabling the
robot to operate in dynamic balancing mode while moving and to rest in a
’static’ mode when stationary.

• A stabilization mechanism using two consecutive PID controllers. The tilt
angle is calculated based on IMU data, which, once acquired, is subject to a
Kalman filtering process to reduce noise from the sensor before entering the
stability loop.

3



• An obstacle avoidance mechanism featuring three ultrasonic sonars, providing
wide coverage across the angles of movement. The robot also exhibits an
emergency strategy, where the algorithm calculates if it is getting too close
to an obstacle.

• A synchronized multi-GRiSP communication system to exchange sonar data
between boards. The distributed architecture employs three GRiSP boards,
a server, and an ESP.

• An ESP used for remote control, connected to a user interface that allows
users to control the robot from a distance. The robot is tested in domestic
scenarios to evaluate its performance and identify its limitations in real-world
environments.

This work demonstrates the transformation of an academic prototype into a
multi-layered system that integrates multiple technologies. It serves as a proof of
concept for future applications in smart home robotics. It integrates technologies
not yet widely used in such domains. A demonstration video is available at:
https://youtu.be/wnIwVkGkAvY. The full source code and schematics are
available: https://github.com/Artal44/Grisp_robot.git.

1.4 Roadmap
This master’s thesis is divided into eight chapters:

• Chapter 1 - Introduction: Presents the context, objectives, and contribu-
tions of the study.

• Chapter 2 - Background: Provides background information and explains
the technologies and tools used in the research.

• Chapter 3 - Overall design: Introduces the hardware developments along
with an explanation of its main components. This chapter also includes a
diagram of the system.

• Chapter 4 - System architecture: Details the system architecture, ex-
plaining its different layers and the interactions between them.

• Chapter 5 - Hardware implementation: Focuses on the complete hard-
ware implementation of the robot, providing a comprehensive explanation of
each part of the robot, from the bottom to the top.

4

https://youtu.be/wnIwVkGkAvY
https://github.com/Artal44/Grisp_robot.git


• Chapter 6 - Software implementation: Provides a summary of the
software implementation and describes the architecture of the distributed
system. It then goes into detail about each piece of software, including the
GRiSP architecture, the LilyGO module and the user interface architecture.

• Chapter 7 - Evaluation and discussion: Presents an evaluation of the
robot and outlines its limitations. It also provides an analysis of materials
and costs and a discussion about the evaluation of this work.

• Chapter 8 - Conclusion and future works: Concludes the thesis and
presents possible future works.

A comprehensive appendix includes multiple documents, tables, photos, and algo-
rithms for further details on specific parts, and the complete source code is also
provided.

5



Chapter 2

Resources and background

2.1 Erlang programming language
Erlang is a programming language used for building massively scalable, soft
real-time systems [1]. Those systems require properties such as high availability,
fault tolerance, distribution and hot code swapping (i.e., the ability to update
parts of the system while it continues to run [2]). Erlang achieves these goals by
using a lightweight actor-based concurrency model. The processes communicate
via asynchronous message passing and are strongly isolated from one another. The
term ’Erlang’ is often used with Erlang/OTP, where OTP stands for Open Telecom
Platform [3]. This includes the Erlang runtime system, a set of middleware libraries
and a suite of ready-to-use design patterns such as gen_server, supervisor and
application, which promote best practices for structuring reliable, concurrent
systems.

A core strength of Erlang lies in its inherent fault tolerance where individual
components may fail without compromising the stability of the overall system
[4]. When supervision hierarchies are used, failed processes can be automatically
restarted and restored to a defined stable state. This principle is called "let it crash"
and is encapsulated in Erlang’s philosophy. Additionally, Erlang supports hot code
swapping which is essential for applications requiring continuous availability. Erlang
is also particularly advantageous for concurrent programming. It offers a simple
and efficient mechanism to spawn thousands of lightweight processes. This enables
the creation of highly distributed systems with many components interacting
concurrently and independently. These design principles contribute to Erlang’s
natural resilience to faults, while also supporting predictable and deterministic
behavior. Erlang has been successfully deployed in large-scale production
environments such as WhatsApp, RabbitMQ, and telecoms infrastructure.

6



To simplify the development of Erlang applications, the ecosystem provides
rebar3, a modern build tool and package manager designed specifically for
Erlang/OTP systems [5]. Rebar3 automates compilation, testing, and dependency
management, and facilitates the creation of reproducible releases [6]. Rebar3
enforces standard Erlang/OTP project conventions, which promotes consistency
and enhances accessibility, particularly for developers new to Erlang. Its flexible
plugin architecture also allows it to be extended and adapted to other languages
targeting the BEAM virtual machine.

Despite its strengths, Erlang is not particularly optimized for high-performance
numerical computations as highlighted in Lylian Brunet’s and Basile Couplet’s
master thesis [7]. In applications requiring high-frequency control loops or compu-
tationally intensive tasks, Erlang may introduce latency or limitations. However,
such situations can be addressed by interfacing Erlang with native code through
ports or Native Implemented Functions (NIFs). Those are programmed in C to
offload performance-critical operations from the system.

2.2 GRiSP2 board and platform
The GRiSP2 board was created by Peer Stritzinger GmbH [8] . It is a modular
prototyping platform specifically designed for embedded and distributed systems
[9]. It provides support for running Erlang applications directly on microcontrollers,
both in terms of hardware and software. As a result, there is no need for a
traditional operating system. The device has built-in support for Ethernet and
Wi-Fi, as well as a variety of digital and analog interfaces. Those functionalities
make it ideal for real-time applications in control systems, robotics, and sensor
networks.

Development is done entirely in Erlang using the GRiSP toolchain. Applications
are cross-compiled and flashed to the microcontroller, which runs them using a
customized version of the BEAM virtual machine. This setup allows developers to
take advantage of Erlang/OTP’s fault tolerance and message-passing concurrency
within the constraints of real-time hardware. In contrast, traditional platforms
such as the Raspberry Pi or ESP32 rely on general-purpose operating systems and
typically require mixed-language development. In comparison, the GRiSP2 offers
a unified, low-latency environment ideal for embedded and distributed robotics.
Another key strength of the GRiSP2 lies in its Peripheral Module (Pmod) connec-
tors, which allow direct integration of peripherals such as ultrasonic rangefinders,
gyroscopes, and inertial measurement units (IMUs) without the need of micro-

7



controllers. This modularity, combined with Erlang’s concurrency model and
the deterministic behavior of bare-metal execution, makes it highly adaptable for
time-critical embedded systems.

Figure 2.1: Annotated view of the GRiSP2 circuit board, highlighting key specifi-
cations and components. Modified from [10].

2.2.1 Technical specifications of the board
Several of the GRiSP2 board’s hardware features are particularly useful for designing
and implementing embedded robotic systems (see Figure 2.1). First, the microSD
card socket supports standard microSD [10]. This socket is commonly used to store
application code, log files, and runtime data, which enables autonomous operation
of the board without external dependencies. Additionally, the board is equipped
with two user-programmable RGB LEDs. These LEDs can be used to indicate
connection status, system heartbeat, or errors, which makes them useful for debug-
ging and runtime monitoring. Another important component is the set of five DIP
switches that offer a way to configure hardware parameters for the board at startup.

In terms of connectivity, the GRiSP2 board provides several I/O interfaces
essential for communicating with external sensors and actuators. These include
one Pmod connector compatible with Inter-Integrated Circuit (I2C), one with
Serial Peripheral Interface (SPI), and one with Universal Asynchronous Receiver-
Transmitter (UART), among others. This allows Pmod peripherals such as the
NAV or MAXSONAR to be connected directly, without additional microcontrollers

8



or converters.

2.2.2 Pmod standards
2.2.2.1 Pmod NAV

The Pmod NAV is a sensor module that combines a 3-axis accelerometer, a 3-axis
gyroscope, a 3-axis magnetometer, and a digital barometer, offering a complete
10 Degree of Freedom (DoF) sensor suite (Figure 2.2) [11]. The term "degree of
freedom" refers in this context to the number of independent sensor measurements
provided [12]. This combination of sensors allows for precise determination of the
module’s position, orientation, and motion state [11]. It can be used to assess the
robot’s movement, heading direction, and whether it is tilting, falling, or rotating.
The SPI protocol is used by the Pmod NAV to communicate with the GRiSP2 board.
Data acquisition is done using the appropriate chip select signal to address each
of the four onboard sensors. The accelerometer measures both the gravitational
acceleration and any linear acceleration due to movement along the X, Y, and Z
axes in 16-bit signed measurements. Since each axis is measured independently, the
outputs are not affected by crosstalk or interference between axes. The gyroscope
reports the angular velocity of the module.

Figure 2.2: Top view of the Pmod NAV sensor [13].

2.2.2.2 Pmod MAXSONAR

The Pmod MAXSONAR is an ultrasonic range finder that provides accurate
measurements of the distance to nearby objects (Figure 2.3) [14]. It has an effective
detection range of 15 cm to 648 cm. Range data is obtained by emitting thirteen
ultrasonic beams at 42 kHz, each with different widths. The module requires
approximately 250 ms to power up. It then performs an internal calibration over
50 ms, waits an additional 100 ms, and begins producing distance measurements at
a rate of one reading every 50 ms. The communication with the GRiSP2 board is
possible using an UART interface that sends each measurement as a five-character
ASCII message.

9



Figure 2.3: Top view of the Pmod MAXSONAR module used for ultrasonic distance
measurement [14].

2.3 Communication protocols
A communication protocol is a set of rules and procedures that determine how
the exchange of data between two or more devices or systems is done. These
rules define how data is formatted, transmitted, received, and interpreted [15].
They play a crucial role in developing microcontroller-based systems by enabling
the smooth interaction of various components within an embedded architecture.
Among the most commonly used communication protocols in embedded systems
are: Inter-Integrated Circuit (I2C), Serial Peripheral Interface (SPI), Universal
Asynchronous Receiver-Transmitter (UART). Each of these protocols has its own
characteristics, advantages, and limitations.

2.3.1 I2C protocol
Inter-Integrated Circuit (I2C) is a widely used serial communication protocol in
embedded systems and IoT devices [16]. I2C follows a master-slave architecture,
where a single master controls the clock and initiates communication with one or
more slave devices [16]. It is a synchronous protocol, in which the timing of data
exchange is coordinated by the shared clock provided by the master. However, I2C
has its limitations. It has a relatively low bandwidth which makes it unsuitable for
high-throughput applications [17]. It is also designed for short-distance communica-
tion. Signal integrity may degrade over longer distances due to bus capacitance and
electromagnetic noise. Additionally, large networks present challenges in terms of
management due to potential address conflicts. Furthermore, I2C uses single-ended
signaling, which is more susceptible to interference than differential signaling. This
reduces noise immunity in electrically noisy environments.

2.3.2 SPI protocol
The Serial Peripheral Interface (SPI) is a synchronous serial communication pro-
tocol designed for short-distance data exchange of a few centimeters. Longer SPI

10



connections are possible by lowering the data rate, using better wires, and adding
shielding [18]. It operates in full-duplex mode and follows a master-slave architec-
ture, where a single master device can communicate with multiple slave devices [19].
One of the key advantages of SPI is its ability to transmit continuous data streams
of arbitrary lengths easily. This enables high-speed communication that can reach
several megabits per second. However, SPI also has some drawbacks. In fact, each
slave device requires its own dedicated communication line with the master. As
the number of slaves increases, the wiring becomes more complex, which can limit
systems with constrained physical space [20].

2.3.3 UART Protocol
Universal Asynchronous Receiver-Transmitter (UART) is a communication protocol
that enables data transmission between a microcontroller and peripheral devices
asynchronously. This means that it does not use a clock to synchronize data ex-
change. UART offers several advantages. Notably, its simplicity of implementation
and the fact that it does not require a clock make it well-suited to straightfor-
ward or low-bandwidth communication tasks. It also provides flexibility through
configurable baud rates and data formats. Additionally, it is widely supported
across microcontrollers and peripheral devices. This facilitates the integration into
embedded systems. However, UART has notable limitations. Its maximum data
rate is generally lower than that of SPI, and it does not support multiple devices on
a shared bus like I2C does. Furthermore, as it is asynchronous, the receiver must
remain constantly synchronized, and communication is more susceptible to timing
errors, particularly over longer distances where signal degradation can occur [20].

2.4 Hera framework
Internet of Things (IoT) systems are composed of a large number of small,
low-power, and wireless devices. They operate at the logical edge of the network,
farthest from centralized cloud services [21]. These devices are embedded within the
physical environment and are capable of performing computation and coordination
directly where the data is produced. The IoT represents a fast-growing segment of
the Internet, with constantly evolving computational capabilities and distributed
intelligence. In such edge-centric and resource-constrained environments, it
becomes difficult to interpret noisy, partial, and asynchronous sensor data. This is
where sensor fusion becomes essential. Sensor fusion is the process of combining
data from multiple heterogeneous sensors to produce a unified and coherent
view of the real world. By integrating redundant or complementary data, sensor
fusion improves the accuracy, reliability, and richness of the information. This is

11



especially important for embedded and robotic systems operating under uncertainty.

hera_sup

hera_measure_suphera_comhera_data

hera_measure
<1>

hera_measure
<1>

...

Figure 2.4: Diagram illustrating the Hera framework supervision tree [21].

Hera is a Kalman filter-based sensor fusion framework for Erlang. Lightweight
and robust, it was designed for the GRiSP platform to support asynchronous and
dynamic sensor measurements. Hera provides high-level abstractions that simplify
the development of embedded applications by abstracting away low-level concerns
such as network setup, communication, fault tolerance, and hardware access. It
follows a supervision tree architecture (Figure 2.4) with two supervisors: hera_sup
and hera_measure_sup. The hera_sup supervisor manages three independent
processes: hera_data, hera_com, and hera_measure_sup.

hera_data is a gen_server (i.e., implementation of a client/server model) used
for storing measurement data from the sensors. hera_com handles communication
over the network between different nodes and uses User Datagram Protocol (UDP)
for fast but unreliable data sharing. hera_measure_sup, the second supervisor,
oversees the hera_measure processes. These are generic measurement processes
that often interface with sensors to interact with the physical world. As a result,
they are more likely to fail and thus require supervision. These processes are the only
files a user must provide. They are easy to use: the user only needs to implement
an init(Args) and a measure(State) function to perform measurements.

2.4.1 Kalman filter
In applications involving multiple sensors, filters that perform sensor fusion are
essential for enhancing measurement accuracy and reducing noise [22]. These
filters combine data from different sources to provide a more reliable estimate of
the system’s state. Several filtering techniques exist for this purpose, including

12



the complementary filter and the Kalman filter. In this work, the focus is on
the Kalman filter due to its recursive nature and statistical optimality in linear
Gaussian systems. Its effectiveness has already been demonstrated in similar
robotics applications, including the master’s thesis of Cédric Ponsard and François
Goens [22].

The Kalman filter is a powerful algorithm that relies on a mathematical model
of the system to predict and correct noisy sensor measurements [23]. It provides
accurate and responsive estimations by continuously updating the state of a system
using a combination of prediction and observation. One of its key strengths lies in
its ability to dynamically adjust the confidence given to each measurement. It
makes it an ideal tool for sensor fusion.

Each iteration of the Kalman filter is composed of two main steps:

• Prediction: The system’s next state is estimated based on the physical
model and control inputs.

• Update: The prediction is corrected using actual sensor measurements,
weighted by their estimated uncertainties.

At each step, the filter manages two key entities:

• x: the vector that represents the system’s state,

• P : the covariance matrix representing the uncertainty in the estimated state
x. In more intuitive terms, it quantifies the expected error in the state
estimation and serves as a measure of confidence in the accuracy of x.

Prediction step:

x̂k = Fkxk−1 (2.1)
P̂k = FkPk−1F

⊤
k + Qk (2.2)

Update step:

Kk = P̂kH⊤
k (HkP̂kH⊤

k + Rk)−1 (2.3)
xk = x̂k + Kk(zk − Hkx̂k) (2.4)
Pk = (I − KkHk)P̂k (2.5)

Where:

13



• F : the state transition model, which describes how the state naturally evolves
over time.

• Q: the process noise covariance, representing the imperfections of the predic-
tive model.

• H: the observation matrix, mapping states to expected measurements.

• R: the measurement noise covariance, describing the uncertainty in sensor
readings.

• z: the vector of the actual sensor measurement.

• K: the Kalman gain, computed to minimize the posterior error covariance.

One of the mathematical foundations of the Kalman filter is the combination of
two Gaussian distributions: the predicted state and the measured state [22]. The
product of these distributions is a new Gaussian with lower variance. This results
in a more accurate estimation with reduced noise. This is ideal for sensor fusion
scenarios. As illustrated in Figure 2.5, this fusion process is key to achieving high
precision.

Figure 2.5: The combination of Gaussians in Kalman filtering, showing the predic-
tion and update phases as well as the result of the product of the Gaussians [22].

2.4.2 Extended Kalman Filter (EKF)
The standard Kalman filter is optimal for systems that are linear and can be
modeled using linear equations for both the state evolution and measurement
processes. However, many real-world systems, including robots, exhibit non-linear

14



dynamics or sensor relationships. In such cases, the Extended Kalman Filter
(EKF) is used. The EKF extends the original Kalman filter to handle non-linear
systems by linearizing the system around the current estimate using first-order
Taylor expansions [24]. This allows the application of the Kalman filter logic to
non-linear models by approximating them locally with linear ones. The main
difference with the standard Kalman filter lies in the fact that the state transition
and observation models are no longer required to be linear functions of the
state. Instead, they can be any differentiable non-linear functions. Specifically, a
function f is used to compute the predicted state from the previous estimate, and
a function h is used to compute the expected measurement from the predicted state.

However, unlike linear systems, these non-linear functions f and h cannot be
applied directly to the covariance matrix. The Extended Kalman Filter (EKF)
relies on linear approximations of these functions, which are obtained through their
Jacobians (i.e., matrices of partial derivatives evaluated at the current estimate).

• Fk = ∂f
∂x

∣∣∣
x=x̂k−1

: Jacobian of the state transition function.

• Hk = ∂h
∂x

∣∣∣
x=x̂k|k−1

: Jacobian of the observation function.

Consequently, the Jacobian of the state transition function replaces the constant
transition matrix, and similarly, the Jacobian of the observation function is used in
place of the standard observation matrix, as can be seen in the equations above.

2.5 Control systems

2.5.1 Control loop
The selection and design of the control loop are fundamental elements in the design
of a robot. In industrial control, a loop consists of a sensor, a controller, and a Final
Control Element (FCE) that work together to drive a process toward a desired
Set Point (SP) [25]. The Control Variable (CV) is the physical quantity that is
regulated. Sensors produce measurements (i.e., the Process Variable (PV)), which
are used by the controller to compute the actuation sent to the FCE. The loop
continuously adjusts the actuation so that the CV tracks the SP. Two common
classes of control exist:

• Open-loop control has no feedback. The control action is computed without
using the measured PV. It typically relies on timers, precomputed profiles, or
other signals independent of the process measurement.

15



• Closed-loop (feedback) control uses both the desired SP and the measured
PV to compute the control action. PV is an estimate of the CV from the
sensors’ measurements. The controller computes the error e = SP − PV and
outputs a command that adjusts the FCE, closing the loop so that the CV
tracks the SP. This mechanism is illustrated in Figure 2.6, where the set-point
and the PV are compared to compute the error and adapt the actuation
accordingly.

Controller Final Control
Element (FCE)

Measured
errorSet-point (SP)

Sensor

+

-

Feedbacks

Measured 
process variable (PV)

Control
action

Figure 2.6: Generic schematic representation of a closed-loop control system with
a feedback.

2.5.2 PID control strategy
Proportional-Integral-Derivative (PID) controllers are extensively used across vari-
ous fields, particularly in industry, due to their relative simplicity, versatility, and
robustness [26, 27]. A PID controller combines three fundamental control actions,
proportional, integral, and derivative, each associated with a gain coefficient. These
coefficients can be tuned to achieve the desired response of the control variable.
In certain applications, simplified versions using only two of the three terms, such
as Proportional-Integral (PI) or Proportional-Derivative (PD) controllers, are also
employed. The PID controller operates based on the measured error, e defined
as the difference between the desired set-point and the measured output (Figure
2.7). The Control Variable (CV) u (i.e., the system input in Figure 2.6) is then
computed by applying the three terms to this error:

u = Kp · e + Ki ·
∫ t

0
e dt + Kd · de

dt
(2.6)

Where Kp, Ki, and Kd are the proportional, integral, and derivative gains,
respectively. The proportional term adjusts the controller output proportionally
to the current error. Increasing the proportional gain Kp increases the speed of
the control response. However, if Kp is too large, it may cause overshoot and

16



oscillations around the desired set-point, or even lead to unstable behavior. The
integral term reacts to the error accumulated over time; this enables it to correct
persistent errors and eliminate the steady-state error. The derivative term responds
to the rate of change of the error, effectively providing a predictive action based
on the future behaviour of the system. Its contribution to the control output is
proportional to how rapidly the error varies; a higher rate of change results in a
stronger corrective action. However, the derivative term is highly sensitive to noise,
which manifests as rapid fluctuations caused by sensors or external disturbances
rather than genuine changes in the measured output. Consequently, an excessively
large derivative gain Kd can amplify these noise effects, leading to undesirable
oscillations. For this reason, the value of Kd is typically kept small. Additionally,
the derivative action helps to dampen the system response, reducing overshoot and
slowing the correction as the measured output approaches the set-point.

Figure 2.7: Block diagram of a Proportional-Integral-Derivative (PID) controller.
The error between the set-point and the measured output is used to compute a
control signal composed of three terms: proportional to the error, integral of the
error over time, and derivative of the error. This control variable is then applied to
the system to minimize the error [26].

2.6 Auto-stabilized two-wheeled robot
Cédric Ponsard and François Goens’s master’s thesis focuses on building a two-
wheeled self-balancing robot (Figure 2.8) [22]. The robot measures approximately
32cm in height, 20cm in length, and 12cm in width. It weighs approximately 1.5kg.
It is compact, with a low center of gravity, yet remains large enough to integrate
all the necessary sensors and electronics. A short video of their robot can be found
at: https://youtu.be/-GYXGzXmlVE. The main objective of their master’s thesis

17

https://youtu.be/-GYXGzXmlVE


was to design a stability engine capable of controlling unstable systems and to
make it easily deployable across different devices. They implemented this engine
specifically on the GRiSP board and then tested and validated it by building a
two-wheeled inverted pendulum robot. To further increase the autonomy of the
robot, they also designed a lifting mechanism, which allows the robot to recover
from a fall and return to its self-balancing state without human intervention. This
mechanism, coupled with a robust control strategy, enables the robot to withstand
external disturbances and remain functional even in the event of a complete crash.

Figure 2.8: Two-wheeled self-balancing robot designed by Cédric Ponsard and
François Goens. The SolidWorks 3D model is represented on the left, while the
final design is on the right [22].

The system uses the Hera framework as the interface for asynchronous sensor
fusion and relies heavily on sensor data provided by the Pmod NAV module.
The IMU is the primary source for real-time estimation of the robot’s tilt and
angular velocity. Two filtering methods are implemented to preprocess this data:
a complementary filter and a Kalman filter. The complementary filter combines
accelerometer and gyroscope data with fixed gains to provide a lightweight solution,
whereas the Kalman filter uses a dynamic weighting approach that takes sensor
noise and system uncertainty into account. These two filters are implemented to
enable a performance comparison. Finally, it turns out that the Kalman filter

18



is more robust and accurate. This is particularly the case when dealing with
sensor noise and transient disturbances. This results in better state estimation and
smoother control. However, the Kalman filter has slightly higher computational
complexity.

Cédric and François implement a Kalman filter based on a simple 2D state model
that focuses on the robot’s tilt angle and angular velocity. This basic Kalman filter
dynamically adjusts the weighting of the gyroscope and accelerometer readings with
each iteration. Its simplicity means that it can run efficiently on the GRiSP board.
The only issue is that it cannot handle situations involving strong linear accelera-
tions or gyroscope saturation, as it does not take into account the full dynamics of
the robot or its control inputs. However, this is sufficient for a small robot like theirs.

The control strategy is implemented as a cascade control system, with two
dedicated controllers:

• A Proportional-Integral (PI) controller is responsible for computing the
target tilt angle based on the difference between the reference speed and the
measured wheel speed. This controller ensures that the robot reaches and
maintains its desired speed.

• A Proportional-Derivative (PD) controller then compares the reference tilt
angle (i.e., output of the PI) with the measured tilt angle (i.e., output of the
Kalman filter). Its output directly sets the wheel acceleration command.

Despite its robustness, the system has a few limitations. For example, the Kalman
filter requires careful tuning of the process and measurement noise parameters.
This can affect its performance if the characteristics of the sensors change. The
IMU of the Pmod NAV is noisy and less accurate under certain conditions. In
fact, it is sensitive to vibration and magnetic disturbances, which can cause drift
in heading estimation. Additionally, the lifting mechanism increases the robot’s
weight and mechanical complexity.

19



Chapter 3

Overall design

This chapter introduces the self-balancing butler robot (Figure 3.1) as a complete
system integrating mechanical design, embedded electronics, and complex software
architecture. Its purpose is to outline the overall structure and the key design
choices that guided its development. It also provides the foundation for the next
chapter, which details the system architecture, hardware, and software.

 

(a) Front view of the butler robot. (b) Side view of the butler robot.

Figure 3.1: Front and side views of the butler robot.

20



3.1 Hardware overview
The self-balancing butler is designed to operate in indoor environments with flat,
even floors and without significant surface irregularities. The robot measures
95 cm in height and 18.5 cm in width. The robot features a tall, narrow form with
two wheels for balancing, retractable arms for different operating modes, a central
frame housing the electronics, and a flat top surface to carry objects. The robot
can carry different types of objects, such as phones, bottles, or glasses, on its upper
platform. The design ensures that the payload remains stable during transport,
even when the robot is in motion.

The self-balancing butler is able to move forward, backward, and turn in
both directions. These movements are controlled through simple user commands
provided via a user interface. An emergency stop button is also implemented for
safety, allowing the power to be cut immediately if needed. The user can switch
between two operating modes: static and dynamic. The static mode is used when
the robot does not move; the arms are deployed so that the robot rests on four
wheels and no longer needs to actively maintain balance. The dynamic mode is
used for movement and maneuverability; the robot operates in balancing mode on
two wheels and can move in all directions.

To prevent collisions, the robot is equipped with an obstacle-avoidance system.
It uses sonars to detect objects in its path and automatically brakes or turn to
avoid them. This feature ensures safe navigation in indoor environments and helps
protect both the robot and surrounding objects.

3.2 Objectives and specifications
The capabilities described in the previous section can be translated into specific
functional requirements and design constraints. These have been formalized into
measurable objectives and technical specifications, which are presented in Table 3.1.

21



Table 3.1: Specifications of the self-balancing butler. F: Function, FR: Functional
Requirement, C: Constraint, CR: Constraint Requirement. Adapted from [22].

Functions

F1 High table on two wheels using a dynamic balancing
algorithm implemented with Hera on GRiSP.

F2 Multi-GRiSP communication system enabling data shar-
ing between multiple GRiSP boards for obstacle avoid-
ance.

Functional Requirements

FR1.1 Mechanically unstable device.

FR1.2 Designed for domestic use.

FR1.3 Use of actuation to stabilize the device.

FR1.4 Dynamic and static stabilization.

FR1.5 Autonomous: no need for an external power supply.

FR1.6 Must support a minimum payload of 500 grams.

Constraints

C1 Use of the GRiSP 2 board.

C2 Easy to prototype and replicate.

C3 Safe to use.

Constraint Requirements

CR1.1 5 V power supply for GRiSP.

CR2.1 Use of off-the-shelf components, 3D printing, laser cutting
and a custom PCB.

CR2.2 Keep costs below a reasonable threshold.

CR3.1 Include an emergency stop.

CR3.2 Operate with voltages lower than 20 V.

CR3.3 Use non-flammable batteries.

CR3.4 Total weight less than 8 kg.

CR3.5 Height between 70 and 100 cm.

CR3.6 Width small enough to pass through typical home doors.

22



3.3 Overall system diagram
Figure 3.2 presents a high-level representation of the overall architecture, which is
composed of several interconnected levels, each fulfilling a specific role within the
system. It is built as a multi-level stack where a low-level block handles devices
and data acquisition; intermediate layers perform data filtering, state estimation,
and control; and an upper layer orchestrates decision-making, coordination, and
communication.

The system architecture of the robot is made of five parts: the executive loop,
the stability loop, the obstacle-avoidance block, the sensor-fusion block, and the
sensors block. The executive loop supervises higher-level behaviors and manages
transitions between the robot’s operational modes. Specifically, it monitors flags
and authorization signals, handles the switch between dynamic and static modes,
and manages entry into emergency mode when necessary. The stability loop is a
low-level control loop responsible for dynamically stabilizing the robot. It computes
the appropriate actuation commands through the stability controllers and drives
the actuators in real time. The obstacle-avoidance block handles communication
between the GRiSP boards in order to retrieve distance measurements from the
sonar sensors. It then processes these measurements through its obstacle-avoidance
mechanism to avoid nearby obstacles. The sensor-fusion block is a critical part of
the architecture. It collects data from the IMU and combines it with motion data
from the robot to estimate its precise state. This fusion process filters out noise
and improves the accuracy of orientation and velocity measurements, which are
then given as inputs to the control loops. Finally, the sensors block manages the
raw data acquisition from the various sensors. These sensors are either triggered
by the executive loop or activated at fixed intervals based on a predefined timeout,
ensuring regular and consistent measurements.

23



Executive
User inputs

Flags
Executive controller

Command

Controller stability
engine

Actuators input

Motor drivers

ESP & motor feedback Motors

State estimation

Kalman filter

Stability

Sensor data Pmod NAV

Sensors and actuators

Pmod MAXSONAR

Sensor fusion 

Sensor data

Obstacle avoidance

Commands

Command

Obstacle avoidance
mechanism

Figure 3.2: High-level architecture of the self-balancing table.

24



Chapter 4

Multi-level system architecture

This chapter details the multi-level system architecture of the butler robot by
describing how its different functional blocks work and interact with each other
(Figure 4.1). It starts with the sensor fusion block, which receives raw measurements
from the sensors and then filters and transforms them. Then it sends the measured
pitch angle to the controller. The controller then adjusts the pitch angle to follow
the desired reference input to maintain stability during a dynamic phase. In
parallel, the obstacle avoidance block monitors the environment using sonar sensors
to detect potential collisions and adjusts commands if necessary. The output of the
controller is then sent to the motor drivers, which convert these commands into
low-level signals for the motors, allowing the robot to move, stay balanced, and
avoid obstacles. Above all these blocks, the executive loop serves as the high-level
control layer. It manages transitions between different operating modes using a
Finite State Machine (FSM), based on user inputs and motor feedback.

25



Figure 4.1: More detailed system diagram of the architecture, showing the internal
workings of the blocks, their inputs and their outputs. Based on the design from
the previous master’s thesis [22].

4.1 Sensor fusion : Kalman filter
The sensor fusion unit is responsible for filtering and interpreting the raw data
collected from the sensors before it can be used by the control system. In this
master’s thesis, the sensor fusion focuses on data from the inertial measurement
unit (IMU), which include the accelerations from the accelerometer and the angular
velocity from the gyroscope. These data are used to estimate the pitch angle
(θ) of the robot. Sensor fusion is necessary because raw sensor data cannot be
used directly for two main reasons. First, sensor readings are often affected by
noise and interference, which can vary depending on the sensor type and operating

26



environment. Therefore, filtering is necessary to improve data quality. Then,
the physical quantities measured by the sensors, such as acceleration, are not
always directly representative of the variable of interest (i.e., the pitch angle). A
transformation is thus required to derive the desired information. To accomplish
both of these tasks, the sensor fusion step uses an Extended Kalman Filter (EKF).

4.1.1 Physical modeling
The Kalman filter performs predictions based on a mathematical model. Therefore,
it is essential to first develop a physical model of the robot based on a set of
hypotheses. This allows us to derive a mathematical representation of the robot’s
behavior. The schematic representation of the physical model, along with the
associated modeling assumptions, is presented in Appendix F and serves as the
foundation for the state-space formulation used in the Kalman filter.

4.1.1.1 Movement equations

From this physical model, the Newton-Euler equations were derived. The full
development is provided in Appendix G. The resulting equation of motion, which
will be used in the EKF, is given below:

ẍ cos θ +
(

h + J

mh

)
θ̈ = g sin θ (4.1)

Table 4.1: Description of variables and constants in the equation of motion.

Symbol Description

ẍ Linear acceleration of the robot along the x-axis [m/s2]

θ Tilt angle of the robot relative to the vertical axis [rad]

θ̈ Angular acceleration of the robot [rad/s2]

h Distance between wheel axis and center of gravity [m]

J Moment of inertia of the robot [kg · m2]

m Mass of the robot [kg]

g Gravitational acceleration [m/s2]

27



4.1.2 Advanced "digital twin" model for the Extended
Kalman Filter

In François Goens and Cédric Ponsard’s master’s thesis, the Kalman filter relied on
a simplified model where most of the physics of the robot is ignored [22]. While this
simple model was sufficiently accurate for their robot, it proved inadequate for the
butler. To improve estimation accuracy, an advanced digital twin model was used
in this thesis based on the physical equation of motion of the robot (Equation 4.1).
A digital twin is a model of a system’s physics running in real time. The resulting
nonlinear state model allows for more accurate predictions by integrating the real
dynamics of the robot into the Extended Kalman Filter (EKF) framework. To
construct this EKF, the following sections define the vectors and matrices necessary
for the prediction and update steps.

4.1.2.1 State and input definition

The robot’s state vector is defined as:

x =

θ

θ̇


where θ is the pitch angle of the robot with respect to the vertical axis, and θ̇ is
the angular velocity.

4.1.2.2 Non-linear dynamic model

The nonlinear motion model is derived from the equation 4.1 of motion:

ẍ cos θ +
(

h + J

mh

)
θ̈ = g sin θ

Solving for θ̈:

θ̈ = g sin θ − u cos θ

h + J
mh

= g sin θ − u cos θ

c
with c = h + J

mh

The linear acceleration of the robot is simplified along the x-axis by assuming
that the acceleration of the wheel command input u directly corresponds to this
acceleration :

u = ẍ

Using Euler integration with timestep ∆t, the state update equations are:

θk = θk−1 + θ̇k−1 · ∆t (4.2)
θ̇k = θ̇k−1 + θ̈k−1 · ∆t (4.3)

28



The nonlinear state transition function becomes:

f(x, u) =

 θ + θ̇ · ∆t

θ̇ +
(

g sin θ−u cos θ
c

)
· ∆t


4.1.2.3 State transition Jacobian

To use the EKF, a linearization f(x, u) is performed by computing its Jacobian
with respect to the state x:

Jf = ∂f

∂x
=

∂f1
∂θ

∂f1
∂θ̇

∂f2
∂θ

∂f2
∂θ̇

 =

 1 ∆t(
g cos θ+u sin θ

c

)
∆t 1


This Jacobian is used as the state transition matrix Fk in the EKF equations.

4.1.2.4 Measurement model

The measurement vector consists of:

z =


ax

az

θ̇


where ax and az are the accelerations measured along the robot’s vertical axis and
θ̇ is the angular velocity measured by the gyroscope.

4.1.2.5 The observation model

To use EKF, the observation model should map the accelerometer inputs. For that
a nonlinear observation function h(x, u) is defined that predicts what the IMU
would measure given the current state and input:

h(x, u) =


âx

âz

ω̂y


The acceleration of any point on the robot’s vertical axis X̂3, is a combination of
four different phenomena (as derived from Appendix G and Figure F.1):

29



• Lateral acceleration: ẍÎ1 = u cos(θ)X̂1 + u sin(θ)X̂3

• Angular acceleration effect: θ̈rX̂1 =
(

g
c

sin(θ) − u
c

cos(θ)
)

rX̂1

• Centripetal acceleration effect: −θ̇2rX̂3

• Gravitational acceleration: −gÎ3 = g sin(θ)X̂1 − g cos(θ)X̂3

Where r is the distance between the wheel axis and the sensors mounted on the
top of the robot. The total acceleration perceived by the sensor axis is the sum of
the preceding phenomena:

âx = u cos θ +
(

g sin θ − u cos θ

c

)
r + g sin θ

âz = u sin θ − θ̇2r − g cos θ

ˆ̇θ = θ̇

The observation function becomes:

h(x, u) =


u cos θ +

(
g sin θ−u cos θ

c

)
r + g sin θ

u sin θ − θ̇2r − g cos θ

θ̇


4.1.2.6 Observation Jacobian

Finally, the Jacobian of h(x, u) with respect to the state x:

Jh = ∂h

∂x
=


(
−u sin θ + g cos θ+u sin θ

c
r + g cos θ

)
0

u cos θ + g sin θ −2θ̇r

0 1


This matrix is used as the observation model Jacobian Hk in the EKF update step.

4.1.2.7 R : The measurement noise covariance

The covariance matrices for the measurement (R) and process noise (Q) are based
on sensor datasheets, general rules of thumb, and have been further adjusted
through empirical tuning.

30



R =


3.0 0.0 0.0

0.0 3.0 0.0

0.0 0.0 3.0 × 10−6


The measurement noise covariance matrix R is defined as a 3 × 3 diagonal matrix,
corresponding to the three components of the measurement vector: the horizontal
and vertical accelerations (ax, az), and the angular velocity θ̇. The first two
diagonal elements, associated with the accelerometer, have relatively large values,
reflecting the high noise levels typically observed in acceleration measurements.
In contrast, the much smaller value of R3,3 indicates greater confidence in the
gyroscope readings, as gyroscopic data is generally more stable and accurate [11].

4.1.2.8 Q : The process noise covariance

Q =

1.0 × 10−6 0.0

0.0 2.5


The magnitude of the entries in the process noise matrix Q reflects the relative
confidence in different components of the prediction model. The low value of Q1,1
indicates strong trust in the Euler integration of angular velocity over time. On
the other hand, a higher variance in Q2,2 acknowledges the uncertainty introduced
by using a physical model to estimate angular acceleration. Since this model may
not perfectly capture all real-world effects such as unmodeled forces, parameter
inaccuracies, it is reasonable to assign a larger uncertainty to this component.

4.2 Stability loop
The stability loop is composed of two main components: the controller block
and the motor driver block. Its purpose is to stabilize the robot whether it is
stationary, moving forward or backward. The overall structure of the stability
loop was originally designed in a previous master’s thesis [22]. However the real
challenge in this work was to retune this control to fit it to the robot, which is
higher and inherently more unstable.

4.2.1 Controllers
Once the pitch angle has been estimated from the sensor fusion, the controller
block is responsible for computing the corrective commands that maintain the

31



robot in its stable position. The controller is designed to make the robot follow a
given angle reference by producing appropriate accelerations at the wheels. A PD
controller is sufficient to do that (Figure 4.2). However, this approach alone is
problematic when the reference angle does not correspond to the actual equilibrium
angle of the system. In such cases, a persistent force imbalance arises, which would
require a constant acceleration to maintain position. This is not feasible for the
motors as they would saturate in speed.

To address this, the control strategy imposes the reference angle as the
equilibrium angle, the angle at which all forces acting on the robot cancel each
other out. Since this angle depends on dynamic factors such as speed and external
forces. Thus, it cannot be predefined. Instead, it is continuously estimated and
updated by a dedicated controller. This controller dynamically computes the
equilibrium angle based on the robot’s motion, allowing the system to adapt as the
robot moves away from or returns to its balance point.

For this dedicated controller, the robot’s speed command is used as input
to estimate the equilibrium angle. Speed is a reliable indicator of the robot’s
equilibrium position. When the robot accelerates and reaches a high speed in a
given direction, the equilibrium angle shifts in the same direction. This shift occurs
because the robot must lean forward (or backward) to counteract the inertial forces
generated by the acceleration and maintain stability. Speed control is also good for
making the robot move with the desired speed and preventing excessive motion
that could exceed hardware capabilities. To generate this equilibrium angle, a PI
controller is used (Figure 4.2). The proportional term acts directly on the speed
error, providing a fast correction that tilts the robot appropriately to match the
desired speed. The integral term is linked to the integral of the speed and therefore
linked to a distance. In this way, stabilization takes place over the distance. This
results in a stabilizing behavior similar to a marble settling at the bottom of a
bowl.

32



∑ PI ∑ PD
+- +

-

speed command turning speed command

reference 

speed

speed measured
speed error

equilibrium 

angle 

kalman angle

angle error
wheels acceleration

turning speed reference

Figure 4.2: The whole schematic representation of the controller block.

4.2.1.1 Trapezoidal speed profiles

To ensure smooth movement, the speed command is not directly sent to the PI
controller. Instead, a trapezoidal speed profile is used, which introduces gradual
acceleration and deceleration phases (Figure 4.3). This approach limits the rate of
change in speed, reducing the risk of instability and abrupt transitions that could
destabilize the robot.

The same trapezoidal speed profile is applied to the turning speed command.
Although the turning speed is not directly linked to the stability, applying a similar
profile to rotational speed control helps reduce sudden, sharp movements. This in
turn lowers the risk of wheel slippage.

Figure 4.3: Trapezoidal profile for speed reference transitions [22].

33



4.2.1.2 Controller parameters tuning

One of the most time-consuming yet important tasks was tuning the parameters.
To tune the parameters of the PD controller initially, the Ziegler-Nichols tuning
method [28] was applied, a classical heuristic approach for tuning the parameters
of a PID controller. The method involves disabling the integral and derivative
components, then gradually increasing the proportional gain Kp until the system
begins to exhibit consistent oscillations. The gain at this point is known as the
ultimate gain Ku, and the period of oscillation is referred to as Tu. The two values
were obtained experimentally: Ku = 22, Tu = 4.5s. Then, the Ziegler-Nichols
formulas were used to estimate the initial parameters of the PD controller:

Kp = 0.8 · Ku = 17.6, Kd = 0.1 · Kp · Tu = 9.9

While these values provided a solid starting point, The behavior obtained showed
instability during testing. To improve the system’s behavior, a manual fine-tuning
through iterative experimentation was done.

For the PI controller, the parameters used in the previous thesis were retained
[22], with only slight adjustments through manual tuning while keeping them within
the same order of magnitude. The final gains were selected as follows:

• PI controller:
Kp = −0.063, Ki = −0.053, Kd = 0.0

• PD controller:
Kp = 16.3, Ki = 0.0, Kd = 9.4

The PI controller gains are kept small to ensure a smooth response and to
prevent the speed loop from dominating the stability (PD) loop. The negative
signs of the PI gains come from the robot’s sign convention: forward movement
corresponds to a negative pitch angle. Therefore, a positive velocity error requires
a negative pitch reference to accelerate in the desired direction. This, in turn,
requires negative gains in the PI controller.

4.2.2 Motor drivers
The motor drivers block is responsible for generating low-level commands to control
both the wheel motors and the arm motor, based on inputs received from the
controller block and the executive loop.

34



Figure 4.4: Schematic representation of the motor driver block with its inputs and
outputs.

First, the motor drivers receive 2 types of commands which are used to control
the robot’s wheels (Figure 4.4):

• awheels: wheels acceleration.

• ϕ̇: turning velocity of the robot (°/s)

However, wheel motors require other types of inputs:

• vleft: left wheel velocity.

• vright: right wheel velocity.

It is therefore necessary to convert these two commands into individual wheel
velocities. Additionally, a logical control layer must be added to take into account
high-level commands.

4.2.2.1 Wheel motors control

To obtain two individual wheel velocities, the system first integrates the acceleration
command over time to obtain the translational (forward/backward) velocity:

vadvance =
∫

awheels dt (4.4)

Then, to enable rotation, a velocity difference is required between the wheels
(Figure 4.5). To compute the wheel velocity difference vdiff from the turning velocity
command ϕ̇, the following relation is used:

ϕ̇ = vdiff

L
· 180

π
⇒ vdiff = ϕ̇ · L · π

180 (4.5)

35



Where L is the distance between the left and right wheels.

The final wheel velocities are obtained by combining these two components:

vleft = vadvance − vdiff (4.6)
vright = vadvance + vdiff (4.7)

Figure 4.5: Top view of the robot performing a left turn. A higher speed on the
right wheel compared to the left wheel generates a counterclockwise rotation around
the robot’s center [22].

4.2.2.2 Arm motor control

The motor drivers block also controls the arms mechanism (see section 5.1.1.1).
This mechanism is driven by a separate motor, which receives a command in the
form of an angular velocity θ̇arms. This command is generated by the executive
loop, through the logical control block, to manage transitions between modes.

4.2.2.3 Logical command operator

A logical operator manages the three motors’ behavior based on state flags from
the executive loop. It serves several purposes:

• To control the velocity of the arms.

• To disable all motors in off/emergency mode.

• To override wheel velocities (vctrl) when in static mode.

• To provide feedback on the status of the arm deployment (arm_ready) to
the executive loop, facilitating state transitions.

36



4.3 Obstacle avoidance
The obstacle avoidance block is responsible for ensuring that the robot does not
bump into an object by detecting and reacting to nearby obstacles. It acts as
a safety layer within the high-level control system, continuously monitoring the
environment and taking corrective actions when necessary. This mechanism relies
on three sonars mounted on the lower part of the robot, which measure the distance
to the closest obstacle in their respective field of view. These measurements are
then compared to two thresholds:

• A safety threshold at 65 cm, which triggers a smooth deceleration and stop.

• An emergency threshold at 30 cm, which triggers a more immediate reaction
by initiating an evasive turn.

These two thresholds were selected by considering both the robot’s dynamic
braking capabilities and its physical footprint. Assuming a maximum speed of
24 cm/s and a deceleration of 9 cm/s2, the theoretical stopping distance is:

dbrake = v2

2a
= (0.24)2

2 · 0.09 = 0.0576
0.018 = 0.32 m = 32 cm

The system latency was neglected as it is very small (in microseconds). Thus,
the total minimum required distance to safely come to a stop is approximately
32 cm. The chosen safety threshold of 65 cm integrates this value, while also
accounting for residual inertial effects. Those may cause the robot to overshoot
slightly beyond the theoretical value. The emergency threshold of 30 cm may
appear far away from the object, but it is intentionally set to ensure that the robot
has enough space for evasive maneuvers. Given a body width of 29 cm, a clearance
of 30 cm guarantees that the robot can perform a full-body turn without risk of
immediate collision with nearby obstacles.

The obstacle avoidance logic is executed in the executive loop in parallel to the
stability loop. It does not require explicit commands from the user. Instead, it acts
autonomously, overriding or adapting motor commands when a threat is detected.
When no obstacle is present, the system remains passive and lets the robot follow
the intended path.

4.4 Executive loop
The executive loop is the high-level control structure responsible for supervising
the robot’s global behavior and managing transitions between different operational

37



modes. Unlike the inner stability loop, which maintains the robot’s pitch in real
time, the executive loop determines the current operating mode: off, dynamic
balancing, transitioning to static support or resting on the static support. There
are several ways to implement the executive loop, but a Finite State Machine
(FSM) was chosen because it is simple to visualize, maintain and a FSM framework
had already been implemented in previous work, making it easier to build upon an
existing structure rather than starting from scratch.

4.4.1 FSM overview

off/emergency dynamic

static prepare_static

stability

! stability

! stability static_request

arm_ready

! static_request! static_request

Figure 4.6: Overview of the FSM representing the states of the butler with each
transition.

An FSM is composed of a finite set of states and transitions (Figure 4.6). In
this system, each state corresponds to a well-defined behavior of the robot, while
transitions are triggered by events such as user inputs or actuator feedback.

At every iteration, the FSM evaluates the current state and the conditions for
transition and generates command flags for the motor drivers operator.

4.4.2 State descriptions
The FSM implemented includes the following states:

• off/emergency: Motors are disabled and the robot is off. This mode is also
used in case of emergency stop.

• dynamic: The robot has fully transitioned into dynamic balancing mode.
The support arms are retracted, and the control loop maintains stability.

38



• prepare_static: The robot prepares to enter a resting position. While still
dynamically balancing, it extends its arms in anticipation of resting.

• static: The robot rests fully on the extended support arms. The motors
enter freeze mode (motors in holding state) to minimize power consumption.

4.4.3 Transition triggers
Transitions between states are determined by user commands and actuator feedback.
On the user side, two flags are used: the stability flag indicates whether the robot
should actively maintain balance and the static_request flag specifies if the robot
must rest on its support arms. On the actuator side, a feedback flag arm_ready
confirms that the arms are either fully extended or fully retracted. This flag is
used to switch from prepare_static to static mode.

39



Chapter 5

Hardware implementation

To meet the defined objectives and constraints and to assemble the interconnected
blocks in one physical robot, the robot illustrated in Figure 5.1 was designed and
constructed. An important point to consider during the design process is that the
weight distribution between the right and left wheels must be balanced to ensure
similar grip on both wheels. The system is divided into four distinct parts, each
fulfilling a specific function. The following sections provide a detailed explanation
of the role and characteristics of each part.

part 1

part 2

part 3

part 4

Figure 5.1: Complete front view of the two-wheeled self-balancing table.

40



5.1 Part 1 : The base of the robot

Pmod MAXSONARS

Figure 5.2: Front view of the base of the two-wheeled self-balancing butler. Modified
from [22].

As shown in Figure 5.2, the base of the robot is divided into four distinct levels:
• Floor 0: The robot’s drivetrain. This includes the entire wheel drive system

as well as the actuator for the static support mechanism.

• Floor 1: Contains the stepper motor drivers, the Lilygo LoRa32, components
of the static system and voltage converters.

• Floor 2: Dedicated space for electrical cables.

• Floor 3: Hosts two GRiSP 2 boards, two front-mounted Pmod MAXSONARs,
one rear Pmod MAXSONAR and a LiFePO4 battery with a 3D-printed
support structure.

Laser-cut wooden boards are used to separate the different levels of the
structure. 6 mm thick laser-cut wooden boards were used because they provided
sufficient mechanical strength to support the weight of the various components
while offering a good balance between quality and cost. To support and secure the
various components, vertical wooden panels are inserted between the horizontal
layers using a mortise and tenon joint system. This technique allows for quick
assembly but relies on compression to maintain structural integrity. To ensure the
assembly remains secure, vertical screws working in tension apply compressive
force on the joints, thereby holding the entire structure firmly together.

41



5.1.1 Floor 0: The robot’s drivetrain
One of the main constraints of the project was that the robot had to balance on
two wheels. The robot requires actuators to convert electrical signals into physical
motion and drive the wheels. For this purpose, stepper motors were selected,
more specifically NEMA 17 series stepper motors. Compared to other types of
electric motors (such as DC motors, servo motors, or BLDC motors), the stepper
motor was the most suitable technology for this application because it has good
torque/speed ratio, easy to control and relatively cheap for actuators ([22]). The
NEMA 17 stepper motor is a good choice as stepper motor because it is commonly
used in the 3D printing industry where the torque and speed requirements are
comparable to those of this robot [29].

Figure 5.3: The drive train with the 2 wheels connected to 2 stepper motors with
their brackets [22].

As illustrated in the Figure 5.3, the two stepper motors share the same horizontal
axis, each directly driving one wheel mounted on its shaft. The wheels have a
diameter of 100mm and consist of a solid polyurethane. Polyurethane was selected
for its excellent grip, vibration-damping capabilities, and non-marking properties,
making it ideal for indoor use. The wheel is secured to the motor shaft via a steel
hub with a set screw ensuring a reliable mechanical connection and good torque
transmission. Each stepper motor is mounted on its own right-angle bracket, which
is then attached to the chassis.

5.1.1.1 The static support system

The static support system is used when the robot no longer needs to move for a
time and switch to a stationary mode. In this configuration, two support arms,
illustrated in Figure 5.5, can be deployed to stabilize the structure.

42



These arms are equipped with small wheels to allow the robot to be manually
displaced when necessary. To guarantee stability and smooth manual movement,
the wheels had to be tangent to the ground once the arms were fully deployed.
To meet these criteria, wheels with a diameter of 50 mm were selected, which
corresponds to the radius of the robot’s wheels. This made it possible to align the
contact surface of the arm with the center of the wheel, as shown in Figure 5.6,
ensuring both stability and ease of manual handling.

The design of the support arms draws inspiration from the lifting mechanism
developed in the master’s thesis by Goens and Ponsard [22]. The same core idea of
maintaining a compact system that integrates seamlessly with the robot’s structure
was retained. Due to the complex geometry of the arms and the need for them to
support the robot’s weight, resin 3D printing was chosen. This fabrication method
was selected for its simplicity and speed. The choice of resin as material was made
for its price/quality balance.

Figure 5.4: 3D design of the arms.
Figure 5.5: 3D printed version of the
robotic arm.

43



Figure 5.6: Static support system in
static mode. The arms are fully ex-
tended.

Figure 5.7: Static support system in
dynamic mode. The arms are fully re-
tracted.

The designed mechanism consists of three moving parts: a straight bevel pinion
connected to the motor shaft, and two curved racks that form segments of a bevel
gear (Figure 5.8). The actuator controlling the motor is positioned underneath the
mechanism in the middle of the robot in order to lower the center of gravity and
distribute the weight more evenly across both wheels. For reasons of simplicity and
cost efficiency, the static support system uses the same type of stepper motor as
the drivetrain.

44



Figure 5.8: The arm system in static mode.

To ensure that the robot remains stable when the support arms are deployed,
an evaluation was made to determine whether it would still resist tipping with an
additional load placed on top. The full development of this evaluation is provided
in Appendix B. This analysis confirms that the robot is stable within a tipping
margin of approximately 15.4◦.

5.1.2 Floor 1: Stepper motor drivers, the Lilygo LoRa32
and voltage converters

Level 1 consists of three important electrical components, the stepper motor drivers,
Lilygo LoRa32 and the voltage converters.

5.1.2.1 Stepper motor drivers and PCB

The role of the stepper motor drivers is to convert the controller outputs into
electrical signals capable of driving the stepper motors. The TMC2208 stepper
motor drivers were chosen because they operate with almost no noise compared to
other drivers. The motor driver is controlled through three logical input pins:

• En (Enable): Enable when the pin is set to high. The motor can no longer
spin. When the pin is set to low, the motor is disabled and can rotate freely
without resistance.

• Step: Each rising edge on this pin triggers the motor to perform one step.

• Dir (Direction): Defines the direction of rotation for the motor.

The driver outputs are connected to the motor windings via four terminals:
M1A, M1B, M2A and M2B, corresponding to the motor inductance. This driver

45



supports micro-stepping, allowing for finer position control and smoother motion.
Additionally, the motor torque can be tuned using a built-in potentiometer that
adjusts the current supplied to the stepper motor inductance.

For the stepper motor interface, a PCB designed in the master’s thesis of
Goens and Ponsard [22] is used to facilitate the connections between the different
components. It connects the motor drivers, the main GRiSP 2 board, and the
LilyGO LoRa32 module [22]. The features of the PCB are:

• Eight logical input signals: one STEP and one DIR input per motor, one
dedicated EN signal for the central driver, and one shared EN signal for the
two other drivers.

• Logic supply voltage: ranging from 3 V to 5 V.

• Motor power supply: supports input voltages up to 36 V.
The enable pins of the first and last stepper motor drivers are connected together,

since they correspond to the motors used in the differential drive system and are
always enabled simultaneously. The design of this PCB can be seen in Appendix E.

5.1.2.2 Lilygo LoRa32

To address the limitations of the GRiSP board in generating high-frequency control
signals for stepper motors, an additional microcontroller, the Lilygo LoRa32, was
integrated into the system [22]. Lilygo is an ESP32-based circuit board. This
board offers both I2C communication and LoRa wireless capabilities. Its main
role is to receive actuation commands from the GRiSP via I2C and translate them
into motor control signals (step, direction, enable) for the three stepper drivers.
Additionally, it handles wireless commands sent by a second Lilygo LoRa32 using
LoRa communication. This secondary Lilygo captures user inputs and transmits
them to the robot in real time, enabling remote control.

5.1.2.3 Voltage converters

The robot’s electrical system requires two distinct voltage levels, which is why two
buck converters were integrated. Boost converters are avoided because they tend
to introduce electrical noise, which can interfere with communication buses [22]. A
12.8V LiFePO4 battery is used as the main power source because it is the safest
type of lithium-based battery [22]. The first voltage converter steps down the 12.8V
to 10V to supply the stepper motor drivers. The second converter reduces the
voltage to 5V, which is needed to power the logic components such as the GRiSP 2
boards and the Lilygo LoRa32. Using separate voltage converters ensures electrical
isolation between high-current motor components and sensitive digital logic.

46



5.1.3 Floor 3: The GRiSPs, sonars and battery
5.1.3.1 GRiSP functions and positions

To ensure efficient obstacle detection across the entire width of the robot, three
GRiSP boards are used, each playing a distinct role. Two GRiSP boards are
mounted near the battery on either side of the robot. Each of these handles a single
sonar sensor. These front-facing sensors provide the main detection capability for
obstacles in the robot’s path. A third sonar is installed at the rear of the robot,
connected to the last GRiSP which is the main one (which is in the third part of
the robot). The rear sonar, used when the robot moves backward, operates alone
and therefore provides a narrower coverage angle of about 25°. This limitation is
not critical, as backward motion is generally used for small maneuvers.

5.1.3.2 Optimization of sonar placement

To determine the optimal placement and orientation of the two sonar sensors on
the robot, a Python script was developed (see Appendix D) based on trigonometric
modeling of the sonar coverage area (Figure 5.9). The goal was to minimize the
maximum vertical detection distance (h), which corresponds to the minimum
distance at which an obstacle can be detected, in order to reduce blind spots in
front of the robot.

The setup involves two front-facing Pmod MAXSONAR modules placed sym-
metrically around the robot’s central axis. The sensors are rotated by α degrees
with α ∈ [0◦, 12◦]. The maximum angle was limited to 12◦ because beyond that,
the projected distance h2 becomes undefined (no intersection occurs). In addition
to angular variation, the lateral distances (along the x-axis) from the robot’s center
were also varied using a variable offset x. The sonars are positioned with a fixed
minimum of 55.5 mm from the wheels (the physical limit of the chassis) and a fixed
maximum of 72.5 mm from the center.

47



h2
h1 25°

77
.5

°  - 
α

77.5 ° + α

55.5 mm + x 72.5 mm - x

Figure 5.9: Bottom view of the robot for the optimization of sonar placement.

For each pair (α, x), the vertical detection distance is calculated using the
tangent function:

hi = tan(θi) · di,

where θ1 = 75◦ − α and θ2 = 75◦ + α, and d1 and d2 are the respective lateral
distances from the robot’s center. All feasible configurations were evaluated, and
the maximum of the two distances h1 and h2 was recorded to account for the worst
detection distance. The configuration that minimized this value was then selected.

The optimal configuration was found when α = 0◦, meaning both sensors
are oriented straight ahead, and the lateral offset x is equal to 10 mm. This
configuration results in a maximum detection of 233.25 mm, which is acceptable for
this application. To implement this configuration, a 3D-printed part was created to
securely attach the sonar sensors to the robot in the correct positions, as illustrated
in Figure 5.10.

48



Figure 5.10: 3D design of the support of the front and back sonars, sonar-only
GRiSPs and battery.

5.2 Part 2: Height structure of the robot

Figure 5.11: Side view of the
height structure of the robot.

As shown in Figure 5.11, this structural
part was designed to increase the height
of the robot while minimizing additional
weight and maintaining rigidity. It is com-
posed of laminated rods chosen for their
strength, although they proved too flex-
ible on their own. To address this, they
are reinforced with lightweight 3D-printed
PLA supports that enhance stiffness with-
out increasing too much the mass. Addi-
tional layers of wood were also added to
further improve the overall rigidity of the
structure.

49



5.3 Part 3: Main GRiSP casing

Figure 5.12: The main GRiSP with the Pmod NAV.

The main GRiSP is mounted at the top of the robot, and it is responsible for
handling the Pmod NAV sensor and the data transmission to the Espressif Systems
ESP32 Microcontroller (ESP32). This placement was chosen specifically to improve
the sensitivity of the inertial measurements. Mounting the Pmod NAV higher
makes it more responsive to subtle balance changes, improving reaction time and
stability. An alternative approach using a bottom-mounted GRiSP with a cable
extending the Pmod NAV to the top was tested, but it failed. The SPI port to
which the Pmod NAV was connected could not detect the sensor properly over a
serial cable extension, likely due to signal degradation or lack of proper shielding.
In contrast to Pmod NAV, placing the Pmod MAXSONAR module at the bottom
of the robot did not cause any communication issues, even though the cable length
was approximately 70 cm. This is because the module communicates via UART,
which is more tolerant of longer distances [20].

50



5.4 Top plate and counterweight design for dy-
namic stability

Figure 5.13: Side view of the top part of the robot. It is composed of a rounded
plate and a counterweight.

To reduce the sensitivity of the stability system to load variations, a 1 kg
counterweight was added just below the top plate of the robot. Its position and
mass was chosen to keep the center of mass at a fixed height of approximately
41 cm above the wheel axis, just below the center of the robot. Since objects
are placed on the table during use (books, glasses, keys, ...), this counterweight
helps minimize the resulting changes in both the vertical center of mass position
and the moment of inertia. By minimizing these variations, the physical
parameters used by the Kalman filter remain nearly constant. This avoids the
need for dynamic retuning of both the filter and controller parameters, ensuring
that the system remains stable and predictable even when external loads are applied.

The top plate itself was made of lightweight plastic with a non-slip coating,
ensuring both practical usability and minimal mass.

5.5 Overall electrical circuit
The diagram in Figure 5.14 provides a global overview of the Butler’s electrical
system, helping to visualize how the various components are connected and how
they communicate. The top part of the schematic shows all the electrical elements
located on the robot itself, while the lower section highlights the user input block,
which consists of a remote emergency switch. This remote is built using a Lilygo
LoRa32 module and an emergency push button [22]. Since the robot is inherently
unstable by design, placing the emergency stop directly on the robot was considered
unsafe. Instead, a remote solution was chosen. The remote is powered and receives
user inputs via Universal Serial Bus (USB), which are then transmitted wirelessly
through LoRa to the corresponding Lilygo on the robot.

51



Legend

computer

emergency
switch

10V buck
converter

ESP32
pico

OLED
screen

LoRa
module

5V buck
converter 

12.8V 32000mAh
LiFePO4 battery

GRiSP 2

GRiSP 2

GRiSP 2

Pmod NAV

Pmod MAXSONAR

TMC2208
stepper
driver

stepper
A

stepper
B

stepper
C

Lilygo LoRa32

ESP32
pico

OLED
screen

LoRa
module

Lilygo LoRa32

PCB-Stepper driver interface

TMC2208
stepper
driver

TMC2208
stepper
driver

Pmod MAXSONAR

Pmod MAXSONAR

server

GND

12.8V

GND

10V

GND

5V

GND3.3V

Master

Master

Master

Master

Slave Slave

Slave

Slave

Slave

Power supply

UART bus

GPIO communication

USB (UART + 5V)

I2C bus

SPI bus

LoRa communication

WIFI communication

Figure 5.14: Global overview of the Butler’s electrical system.

52



Chapter 6

Software implementation

6.1 Distributed architecture
The distributed architecture of the system is designed to handle 3 main functions:
stability control, obstacle avoidance, and inter-board communication. To achieve
this, the system integrates multiple GRiSP boards that share information and
coordinate their actions, a central server that initiates the communications, and an
ESP32 LyLiGo board that manages the motors (Figure 6.1).

Left-sonar GRiSP Right-sonar GRiSP

ESP32

Main GRiSP

Figure 6.1: The distributed architecture of the different devices and their connec-
tions.

53



The server plays a key role during both initialization and operation. It is
responsible for enabling device discovery at startup so that all GRiSP boards can
identify and communicate with each other. It is also used for system monitoring
and centralized logging. This ensures that diagnostic and runtime information
is collected in one place. The GRiSP boards form the core of the system and
handle the control logic. They are responsible for stability control and obstacle
avoidance, as well as managing communication with each other once the system is
initialized. The main controller GRiSP board is directly connected to the motors
and to the user commands through the ESP32 board. This board serves as the
interface between the user and the robot by relaying commands and managing
motor control signals so that user inputs are reliably translated into actions.

The following sections will detail the software implementation of each of these
elements. An explanation on how the GRiSP boards are structured, how the server
manages system monitoring and discovery, and how the ESP32 board interfaces
with the main controller to handle user commands and control the motors, is given.

6.2 GRiSP software architecture
The GRiSP software architecture was designed with two key features in mind:
modularity and ease of use. To achieve this, the same software is installed on every
GRiSP board to avoid the need to customize the code for each board. At startup,
each board dynamically determines its role based on its DIP jumper configuration
and connect to the network. Once done, the GRiSP boards begin executing their
assigned functions. The description below provides an abstract overview of the
software architecture and the control loops, highlighting the role of each board in
the system (Figure 6.2).

The controller board is responsible for the core functions of the robot. This
includes data fusion, obstacle avoidance, and stability control (i.e., the blue frame
in Figure 6.2). Each loop iteration involves:

1. Acquire sensor data from the IMU and the sonar nodes.

2. Process and filter the data.

3. Run the obstacle avoidance logic and the stability controllers.

4. Send motor commands and schedule the sonar measurements.

Each sonar node board focuses on distance measurement (i.e., the orange frame
in Figure 6.2). Their loop is simpler and follows a basic sequence:

54



1. Wait for authorization from the main controller to prevent sonar interference.

2. Perform a sonar measurement and filter the result.

3. Transmit the data back to the main controller.

Main GRiSP Front sonars GRiSP (x2)

Sensor and I2C data
acquisition

Preprocessing

Obstacle avoidance
logic

Sending motor
commands

Wait for
authorization

Sonar
measurements

Filter data

Send data to main
Stability controllers

Sonar measurement
scheduling

Authorize flag

Sensor data

Sequential execution

Communication

Figure 6.2: GRiSP architecture and sequential loops of the GRiSP boards.

After the initial discovery phase, the communication between the GRiSP boards
occurs directly over UDP, without passing through the server. This guarantees
low-latency data exchange and allows the main controller to maintain a high control
frequency. It also allow the sonar nodes to operate asynchronously from the rest
of the system. Of course, the actual implementation is more complex than this
abstraction. In practice, the sequential execution on each GRiSP board is divided
into multiple processes that communicate with each other internally. The following
subsections provide a detailed review of each process.

6.2.1 Balancing control and communication handling
The process, called balancing_robot, is the highest-level process in the supervision
tree of the software. It is launched when the GRiSP card boots up and it is
responsible for launching the various processes according to the role assigned to

55



each GRiSP board. Additionally, it also handles the sonar scheduling mechanism
and configures the board for network communication. Once the configurations are
done, it manages both inter-process and inter-GRiSP communication exchanges.
This process is identical on all three GRiSP boards of the robot. Based on the
configuration set using the jumpers, each GRiSP board is assigned a specific role,
from 0 to 3, within the system (Figure 6.3).

Main GRiSP Front left
sonar GRiSP

Front right
sonar GRiSP

balancing_robotbalancing_robot balancing_robot

main_loop nav_measure

sonar_measure

sonar_measure sonar_measure

controllers

Spawns

Role of the GRiSP board

Process

Figure 6.3: Process hierarchy based on the roles assigned to each GRiSP board.

6.2.1.1 Configuration of the GRiSP

At startup, the balancing_robot process determines the board’s role based on the
jumper configuration. Three roles are available: The first role corresponds to the
main GRiSP board. This board is responsible for handling the stability loop (i.e.,
main_loop process) and running two hera_measure processes: the nav_measure
and the sonar_measure. The second role is the front-left sonar board. It spawns
only the sonar_measure process to handle sonar data collection. The last role is
the front-right sonar board. Similar to the front-left sonar board, it only manages
a sonar_measure process.

In addition to device initialization, the balancing_robot process configures
the network connection. This configuration consists of two steps:

1. WiFi connection: The WiFi connection is handled entirely by the
Hera framework. At startup, the board subscribes to Hera events with

56



hera_subscribe:subscribe(self()), which means it will receive notifica-
tions about the network status. Hera automatically attempts to join the
preconfigured WiFi network. The board waits up to 18 seconds to receive a
"connected" notification from Hera. After this timeout, it changes the LED
color to two magenta LEDs and tries again. If it connects, the LEDs flash in
white.

2. Server discovery and handshake: As shown in Figure 6.4, once connected
to a network connection, the board listens for a "ping" message from the
server. If received, the server’s IP and port are stored in Hera, and the LEDs
flash green. If the message is not received within 9 seconds, the process retries
and the LEDs flash red. After receiving the ping message, the board sends a
unicast "Hello" message to the server and waits for an "Ack" message. Upon
success, the LEDs turn aqua to indicate that the system is fully connected.
In parallel, a method called alive_loop/0 is spawned as a separate process.

This robust three-step procedure ensures that each GRiSP board is properly
connected to the WiFi network and to the server before starting normal operations.
Thanks to Hera, the application does not need to manually handle WiFi credentials
or connection attempts: it only reacts to the hera_notify events indicating the
current network state.

GRiSP Server

ping(name, IP, port)

hello(name)

ack

Figure 6.4: Handshake between a GRiSP board and the server.

6.2.1.2 Sonar scheduler for the obstacle avoidance mechanism

The sonar scheduler for the obstacle avoidance mechanism is also implemented in
the main supervisor (Algorithm 1). Since the sonars cannot measure simultaneously
to avoid interference, the sonar scheduler grants authorization to one sonar to
take measurements every 75 ms. It is the time it takes for a sonar to perform a

57



single measurement with a 25 ms margin added. This allows long-range echoes
to return with minimal interference. Depending on whether the robot is moving
forward or backward, the corresponding sonar is activated. When the robot is
moving forward, two front sonars are used to cover a larger angle. The scheduler
uses a round-robin approach and alternates between the two every 75 ms. The
term round-robin refers to a scheduling and load-balancing method that distributes
resources (e.g., time slices to processes or requests to servers) in a fair and circular
manner [30]. When the robot is moving backward, only the rear sonar is used. In
this case, the scheduler simply reauthorizes the same sonar every 75 ms as long as
the robot continues to move backward.

6.2.1.3 Communication and message handling

The balancing_robot process also manages ongoing communications with the
server and between GRiSP boards (Figure 6.5). Two main loops handle these tasks
in balancing_robot :

• The alive loop is spawned after the server handshake. It periodically (every
20 seconds) sends a unicast message "alive : {name}" to the server. This
ensures the server is aware that the GRiSP board is still connected. It makes
the system more robust, as a GRiSP board could be disconnected by crashing
or losing the network connection. Even in such cases, it is able to recover
and reconnect to the server without problems.

• The message notification loop waits for incoming hera_notify messages
from the Hera framework or from other GRiSP boards. Each message is
passed to the handle_hera_notify/1 function, which processes the message
based on its type:

– "ping": Ignored because it was already handled during the initial
handshake.

– "Add_Device": Calls add_device/3 to dynamically register a new
GRiSP device with its IP and port in Hera.

– "authorize": Sends an authorize message to the sonar process, al-
lowing it to start measurements.

– "sonar_data": This message is exclusive to the main GRiSP. It forwards
the sonar distance from the other GRiSPs to the main_loop process.

– Unhandled messages: Any other message types are logged for debug-
ging purposes.

58



This design allows the main board to coordinate sonar boards dynamically. It
allows the different GRiSP boards to maintain active communication with the
server even after the initial connection is established. The full source code of the
balancing_robot module is available in Listing M.1.

balancing_robot balancing_robot

nav_measuresonar_measure

main_loop
PID_stability

Pmod
MAXSONAR Pmod NAV

Hera measure

sonar_measure

Pmod
MAXSONAR

Main GRiSP Sonar GRiSP (x2)

Spawns

Role of the GRiSP board

PID_speed

Process

Inter-process communication

Inter-GRiSP communication

Pmod data sending through
dedicated port

UART portUART port SPI port

A
ut

ho
riz

e

So
na

r d
at

a

A
ut

ho
riz

e

So
na

r d
at

a

N
av

 d
at

a

Sonar data

Input & setpoint / output

Authorize Input & setpoint / output

Figure 6.5: Diagram showing the different inter-process and inter-GRiSP communi-
cations.

6.2.2 High-level main loop
The main_loop module process is the robot’s main execution thread, as it handles
the entire control pipeline. It is divided into two parts: The initialization function
and the real-time loop. Initialization of the main loop is critical. It runs only once at
startup and is assigned the highest priority to ensure deterministic execution. This
function performs the initial calibration of the robot by initializing the Kalman
filter with a valid starting state (i.e., initial angle and velocity), spawning the
PID controllers with their tuned parameters and defining the initial state of the
control loop. Once these steps have been completed, the main loop function starts,
continuously handling sensor readings, control updates and actuation in real time.
The full implementation of the main_loop module can be found at Listing M.3.
The following sequential steps describe the operations performed by the main loop

59



function at each control iteration:

1) Time and ∆t calculation At the beginning of each loop iteration, the
current timestamp is recorded. The time step ∆t is then computed as the difference
between this timestamp and the one from the previous iteration.

2) Logging This step is not directly involved in the robot’s control. It is used
for debugging. Since the control loop runs at a high frequency, logs are recorded at
fixed intervals. They are stored every 500 ms to limit the amount of data that is
stored

3) Kalman filtering It handles the filtering of navigation data and produces
a real-time estimate of the robot’s tilt angle. As the Pmod NAV sensor data is
processed in the nav_measure module, it is sent asynchronously to the main loop
and handled through message reception. Since the main loop typically might run
faster than the IMU sampling rate, the Kalman logic first checks whether a new
message has been received. If one is available, a full Kalman update is performed
(prediction + correction). Otherwise, only the prediction step is executed. This
mechanism allows the control loop to maintain a high frequency even when sensor
updates are delayed. The pseudo-code for this message-based Kalman update logic
is detailed in Algorithm 3.

4) I2C read Control inputs are collected from the remote controller through the
I2C interface. A total of five bytes are received from the ESP32 (Table I.1). The
first four bytes represent two half-float values that encode the rotation speeds of
the left and right wheels. The fifth byte is a control byte that encodes input flags
from the user interface, such as commands for arm movement, forward/backward
motion, or left/right turning. These binary signals are decoded and used to generate
motion goals for the robot. They are also used to update its internal state. A full
breakdown of the control byte is provided in Table I.2.

5) Sonar message handling This step processes the sonar readings to determine
the proximity and direction of any obstacles. Similar to the Kalman filtering step,
sonar data is received asynchronously from other processes via message passing.
As a result, a new sonar measurement is not necessarily available at every loop
iteration. If no new data is received, the previously stored value is reused.

6) Stability engine This is the most critical step of the main loop, as it handles
the actual stability control of the robot. It takes as input all previously acquired
and processed physical data (such as the estimated tilt angle, the linear speed,

60



and sonar readings) and computes the required actuation command to maintain
balance. The output of this step is an acceleration value that will be sent to the
motors to adjust the robot’s tilt.

7) State machine and I2C write In this step, the next robot state is determined
among rest, preparing_static, static, and dynamic. This new state is based
on the current input flags. After the state has been determined, the acceleration,
the desired turning speed, and the new robot state are sent to the ESP32 via the
I2C bus to update the control commands.

8) Frequency control The loop frequency is essential in the implementation of
the robot’s control. Indeed, a loop frequency that is too low prevents the robot
from maintaining balance without moving, while a frequency that is too high
causes abnormal behaviors.Therefore, this part of the loop stabilizes the frequency
according to a target frequency (220 Hz in this case), which is set during the
initialization of the main loop.

9) Server transmission The server transmission step is used for debugging.
The logs are stored in a buffer and send to the server. The transmission is triggered
when the robot is in the static state.

10) State update After completing all the previous steps, the control loop
restarts using the updated state variables.

6.2.3 Navigation measurements
The nav_measure module implements the hera_measure behaviour and is
responsible for continuously acquiring data from the Pmod NAV sensor. This
process is launched during the initialization of the main GRiSP board in the
balancing_robot process (Figure 6.3). It takes as parameters the process ID
of the main_loop and the role of the board. The process ID is used to send
navigation data and the role is mainly used for naming and reusability purposes,
but in this case it always corresponds to robot_main, as it is the only board
spawning this process.

A hera_measure process needs to define two methods: init/1 and measure/1.
The init/1 function is called once when the process is started and is responsible
for initializing the internal state and parameters (e.g., saving the process ID of the
main_loop and the role of the board). The measurement function measure/1 is
called periodically by the Hera framework. It reads the three-axis acceleration and

61



gyroscope data from the Pmod NAV sensor using the pmod_nav:read/3 function.

Once the data is acquired, a message is sent directly to the main loop process via
Erlang message passing. This allows the main control loop to immediately process
the latest navigation data for the control algorithm. If a sensor read operation fails,
the process catches the error, logs it, and continues measuring without crashing.
This is important because this process is critical for maintaining the robot’s stability.
The decoupling of the Pmod NAV reading from the control logic helps reduce the
workload and allows the control loop to run at a higher frequency. The full source
code of the nav_measure module is available in Listing M.5.

6.2.4 Sonar measurements
The sonar_measure module is responsible for acquiring distance measurements
from the Pmod MAXSONAR sensors. Unlike the nav_measure process, this
module only performs a measurement when it receives an authorize message from
the main controller. This scheduling avoids interference between the different sonar
sensors, as explained earlier in the sonar scheduler. When the process receives an
authorization signal, it performs the following steps:

1. It triggers a sonar reading that returns the raw distance measurement in
inches. It is then converted into centimeters and rounded. Invalid readings
outside the 15 to 648 cm range of the sonar specifications are discarded and
replaced with the previous valid measurement.

2. Then, a simple low-pass filter is applied to the distance values to smooth
them out:

Dfiltered = α · Dprevious + (1 − α) · Dnew (6.1)
where α = 0.2 is the filter coefficient; Dprevious is the previous measured
distance; and Dnew is the new measured distance. The value of α was chosen
to be small enough to effectively smooth out measurement noise while avoiding
significant latency in the detection of fast-changing distances.

3. Finally, the filtered measurement is sent back to the main controller and the
server for logging purposes.

As with the navigation measurements, this process is fully decoupled from the
main loop. This prevents any delay caused by the sonar hardware, such as waiting
for the ultrasonic pulse, from blocking the execution of the control logic running
on the main_loop. The complete code of the sonar_measure module is available
in Listing M.6.

62



6.2.5 Stability controller engine
The stability controllers are implemented within the stability_engine module
(Listing M.4). This module is responsible for maintaining the robot’s upright posture
and velocity tracking using two cascaded PID controllers. It also implements the
object avoidance behavior based on sonar readings. The controller receives as input
the system state {Dt, Angle, Speed}, sonar data, and the desired velocities for
forward motion and turning. The function follows several steps:

1) Obstacle avoidance The first step is the obstacle avoidance logic. It is
implemented into two main stages, as detailed in Algorithm 2. First, if the sonar
reading falls below a critical threshold of 30 cm (i.e., the emergency threshold
below which forward motion is no longer permitted), the controller triggers an
immediate evasive maneuver by forcing a right turn at maximum turning speed.
This acts as an emergency escape. Second, if an obstacle is detected at a distance
of 65 cm (i.e., the safety threshold where braking begins) and is detected in the
current direction of motion, the robot applies a virtual brake by setting the forward
velocity to zero. If no valid sonar reading is available, the robot uses its previously
planned velocities.

2) Acceleration saturation The second step of the stability engine saturates
the acceleration based on the maximum velocity and acceleration. This ensures that
the velocity profile remains trapezoidal. This profile helps prevent sudden changes
in speed that could cause the robot to become unstable. The system applies a
limiting function that restricts the rate at which both forward and angular velocities
change. As a result, movement transitions stay fluid and physically achievable.

3) Cascade control with dual PID loops Finally, the architecture uses a
two-stage PID control structure: The Pid_Speed compares the current linear
velocity Speed with the reference velocity. It then outputs a desired tilt angle. The
Pid_Stability uses this target angle and compares it with the measured angle to
generate the actuation command Acc, which corresponds to the motor torque.

6.2.6 Debugging tools
To support development and parameter tuning, as well as to improve real-time
visibility, several debugging tools are implemented. These tools have helped us to
diagnose issues efficiently, monitor system behavior during execution and analyse
sensor and control data over time.

63



First a logging system to monitor the robot’s behavior was implemented. This
includes the progression of the Kalman filter, the PID outputs, the robot’s internal
state, and the loop frequency. These logs are automatically sent to the server
without any manual intervention being required, and they are ready to be used
for plotting and performance analysis. Data is only transmitted when the robot
is in a static state, preventing any loss of control loop frequency during critical
phases, such as dynamic balancing or movement. This ensures that logging does
not interfere with real-time control performance. The full implementation of the
logging system can be found in Listing M.8.

Secondly, the on-board LEDs of the GRiSP were used to implement a useful
debugging tool. These LEDs provide immediate visual feedback on the internal
state of the robot. Since it is often difficult to know whether a process has crashed
or is stuck without being connected to the robot via serial cable, the LEDs offer
an efficient way to monitor system behavior in real-time. Each color or blinking
pattern represents a specific status, such as startup, Wi-Fi connection, device
initialization, or server discovery. This makes it easy to identify where the robot is
in its boot or operational cycle without the need of any external tools. A table
summarizing the different states can be found J.1.

6.3 Lyligo ESP32 software architecture
The LilyGO ESP32 module plays a fundamental role in the robot’s embedded
system. It handles the low-level operations of the GRiSP board and acts as a
communication and actuation bridge between the user interface, the main GRiSP
board, and the motors. The ESP32 is responsible of:

• Receiving user commands via LoRa.

• Exchanging data with the GRiSP board over the I2C protocol in a slave
configuration.

• Generating control signals for the stepper motors based on the output data
provided by the GRiSP.

To manage these tasks efficiently, the ESP32 uses a dual-core architecture, as
illustrated in Figure 6.6. The first core acts as the main execution loop, handling
user commands received via LoRa. It also incorporates an interrupt-driven I2C
handler, as the LilyGO module operates as a slave device to the GRiSP board.
When the GRiSP sends an interrupt request, the LoRa loop is temporarily
interrupted to process it. There are two types of I2C interruptions: send request
and receive. The first one is triggered when the master wants to read data such as,

64



user input flags, feedback flags, or speed measurements. The receive is triggered
when the master sends data to the slave, such as acceleration values and control flags.

Figure 6.6: Overview of the ESP32 software architecture, showing task distribution
across cores and communication interfaces [22].

The second core is responsible for executing the motor control logic (Figure
6.6). It is activated when an emergency stop is triggered or when movement and
acceleration flags are received from the GRiSP. This core is divided into two parts:
the signal generator and the speed calculator. The signal generator produces
pulses at the correct frequency to drive the motor steps, manages the direction and
activation signals needed to control the motors. The speed calculator computes the
desired speed for each motor based on the acceleration and the differential speed.
It then converts this speed into a step frequency using the following formula:

f = v

2πr
× #steps/turn × #microsteps

Where v is the linear speed; r the wheel radius and the other terms represent
the number of steps per turn and the number of microsteps of the stepper motors.

65



6.4 Server and user interface architecture
The last element of the global system architecture is the user interface (UI). This
interface provides interactive control of the robot and is also designed to manage
communication between the different GRiSP boards. To achieve this, the interface
is structured into two main components: the UI and the server.

The graphical UI acts as the robot’s control station. It operates as both a
remote controller and a real-time graphical interface for the user. Through this
interface, the operator can control the robot’s movements, receive continuous
feedback about its current state, view the control signals being applied and monitor
messages transmitted from the robot to the server (figure A.1).

The server main purpose is to act as a network discovery and coordination hub
for the GRiSP boards. In fact, the Hera framework does not allow GRiSP boards
to send UDP broadcast messages. GRiSP boards cannot initiate communication
without knowing the IP address of another board. The server is thus responsible
for network discovery, aliveness monitoring, and logging. At start, it broadcasts
its own IP address periodically over the network using a "ping" message. GRiSP
boards that receive this message can extract the server’s address and initiate a
handshake process. During this process, the server stores the GRiSP board’s
information in a buffer. Once all three expected GRiSP boards have registered, the
server sends the buffer containing details of all the devices on the network. This
enables direct inter-GRiSP communication using Hera’s unicast messaging model.

The server is also responsible for monitoring the different GRiSP boards. To
achieve this, it maintains a dictionary of last-seen timestamps for each registered
board. It then periodically checks if any board has been silent for more than 30
seconds. If so, it flags the GRiSP as lost and attempts to reestablish communication.
The final use of the server is the logging system. GRiSP boards send debug logs
using UDP messages. The server appends each of these logs to a file for later
debugging.

66



Chapter 7

Evaluation

This chapter provides an evaluation of the robot’s performance and identifies
its limitations. The analysis is based on experimental measurements conducted
under normal operating conditions, aiming to assess how the butler responds.
Factors influencing the robot’s behavior can originate from internal commands
issued by the user or from external disturbances arising from the environment.
Understanding these influences is essential to determine the system’s operational
boundaries and potential areas for improvement.

The first part of this evaluation focuses on the robot’s stability in response
to internal commands issued by the user. Tests are conducted under different
scenarios: when the robot remains stationary, when moving forward, when turning,
during transitions between static and dynamic modes, and while evaluating the
performance of the obstacle-avoidance mechanism. The second part examines
the robot’s limitations. All analyses are based on the tilt angle estimated by the
Kalman filter. The pitch angle from the Kalman filter is not a perfect reference, as
it may be affected by sensor bias or suboptimal filter tuning, leading to small offsets
or errors over time. Nevertheless, it remains sufficiently consistent to provide a
meaningful basis for evaluating the robot’s stability and identifying performance
trends.

7.1 Stability reference case
The first test analyzes the stability of the robot in dynamic mode under normal
conditions, meaning no external disturbances are applied and the test is conducted
indoors on a flat parquet floor. This baseline scenario provides a solid point of
comparison for other tests. Figure 7.1a shows that the robot’s pitch angle oscillates
between 0.3° and 0.5° with an oscillation of maximum 0.2°. Such a small variation

67



is barely perceptible to the naked eye, indicating that the robot maintains a good
degree of stability. It is also noticeable that the pitch angle does not oscillate
around 0°. Instead it is centered near 0.4°, which corresponds to the equilibrium
angle. This offset suggests that the robot is not perfectly mechanically symmetrical
in height, likely due to the counterweight being slightly off-center or the Pmod
NAV not being perfectly aligned with the vertical axis. However, this deviation is
negligible as an equilibrium shift of 0.4° is too small to have any important impact
on objects placed on the table top surface.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

An
gl

e 
(°

)

Pitch angle

(a) Pitch angle variation over time when
the robot is in a stable upright position.

10 1 100 101

Frequency (Hz) [log]

0.000

0.005

0.010

0.015

0.020

0.025

Am
pl

itu
de

 [°
]

f = 0.1 Hz
A = 0.02624 °

Peak: 0.1 Hz (~10 s)

(b) Fast Fourier transform of the pitch angle
variation.

Figure 7.1: Analysis of the robot’s pitch angle: (a) time-domain variation and (b)
frequency-domain representation, under normal dynamic conditions.

Interestingly, the frequency-domain analysis of the pitch angle in this reference
case, obtained using the Fast Fourier Transform (FFT) and shown in Figure 7.1b,
reveals a distinct peak at 0.1 Hz with an amplitude of 0.02624◦. This frequency
corresponds to the natural frequency of the system in static conditions, with a
period of approximately 10 seconds and a very small amplitude. Given this low
oscillation, the observed pitch angle variation of 0.2° in the time domain is unlikely
to originate from the control system itself. Instead, it is more plausibly explained by
small structural flexibilities since the structure is not perfectly rigid or by external
factors such as micro-irregularities on the floor surface.

68



7.1.1 Translation movement

10

0

10

20

30

40

Sp
ee

d 
(c

m
/s

)

Reference speed
Robot speed

0 5 10 15 20 25 30
Time (s)

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

An
gl

e 
(°

)

Pitch angle

Figure 7.2: [Top graph] Robot speed variation and reference speed over time.
[Bottom graph] Pitch angle variation over time when the robot is moving forward.
The robot has an advancing speed of 24 cm/s and an advancing acceleration of
9 cm/s2.

Figure 7.2 shows the variation of the robot’s pitch angle when moving forward.
Between 0 s and 4 s, the robot accelerates at a constant rate of 9 cm/s2. During
this acceleration, the pitch angle increases steadily, reaching a maximum of 1.4°.
From 4 s to around 22 s, the robot maintains a nearly constant forward velocity of
approximately 24 cm/s2. After reaching this steady speed, the pitch oscillations
gradually diminish and stabilize around 1°. Between 22 s and 25 s, the robot
decelerates at the same rate as the acceleration when the forward command
is released. The pitch angle exhibits increased oscillations during deceleration,
although these are less pronounced than during acceleration. At around 2 s, the
robot reaches a negative speed due to a slight backward motion caused by inertial
effects during braking. This occurs because the robot’s center of mass continues
moving forward even after the wheels decelerate. This leads to a brief overshoot
in the opposite direction before stabilization. After this point, the system begins
to re-stabilize. In this forward movement test, the maximum variation in pitch
angle is approximately 1.25°, with an absolute maximum angle of 1.5°. This is
noticeably higher than the baseline case when the robot is stationary, likely due to
the additional corrective torque required to counteract the inertial forces generated
during forward motion. Nevertheless, this level of variation is well within acceptable
limits for the intended application, as such small pitch angles do not displace objects
on the tabletop.

69



7.1.2 Turning

0 5 10 15 20 25 30
Time (s)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
An

gl
e 

(d
eg

)

Pitch angle

Figure 7.3: Pitch angle variation over time when the robot is turning for 25 seconds.
The robot has a turning speed of 40 cm/s and a turning acceleration of 200 cm/s2.
The blue vertical lines designate the starting and ending of the turning operation.

For this test, the robot was continuously turning for 25 s. Figure 7.3 shows that
the pitch angle variation displayed a clear sinusoidal pattern with a period of
approximately 10 s and a peak-to-peak amplitude of about 1°. These oscillations
may be linked to additional effects introduced during rotational movement such
as, gyroscopic effect (i.e., rotation of the wheels generating a torque when their
axis orientation changes), centripetal force (i.e., lateral force pulling the center of
mass toward the turn’s center), and the Coriolis effect (i.e., apparent deviation of
internal motions within the rotating frame).

Another observation is that a larger maximum pitch angle of 2.5° was recorded
compared to the other tests. This may be due to the turning velocity command
not going through the controllers and being sent directly to the motor drivers. The
PI controller is then not aware that it should adjust the equilibrium angle. As a
result, it takes longer to compensate, allowing the pitch angle to increase further.
Despite reaching a pitch angle of 2.5° and having a sinusoidal oscillation with a
10 s period, it remains acceptable for this application, as it does not significantly
affect the stability of objects placed on the tabletop surface.

70



7.1.3 Dynamic/static mode transition

0 5 10 15 20 25 30
Time (s)

2

1

0

1

2

3

4

5

An
gl

e 
(°

) dynamic

static

st
at

ic

Pitch angle

Figure 7.4: Pitch angle variation when the robot switches between the static to
the dynamic mode and then again from the dynamic to the static.

Figure 7.4 shows that when transitioning from static to dynamic mode, the robot
exhibits a pronounced peak in pitch angle of approximately 4.5° before settling
around its equilibrium angle. This larger peak can be explained by the sudden
release of the wheel locks in combination with the immediate engagement of the
controllers, which must rapidly accelerate the wheels to achieve stability. The
resulting inertial torque causes a brief overshoot before the control loop compensates.
In contrast, the transition from dynamic to static mode also produces a peak in
pitch variation, but of much lower magnitude. This can occur because the arms
extend quickly but if the robot is not perfectly upright when they make contact
with the ground, a small jolt occurs as one arm touches down before the other,
causing this peak. The peak observed during the static-to-dynamic transition
remains acceptable for the intended application. In practical testing with a full
glass of wine, the wine oscillated slightly within the glass but not enough to spill a
drop.

7.1.4 Performance of the obstacle avoidance mechanism
For this test, the robot was driven forward toward a couch, starting 4 meters away
from it.The top graph of Figure 7.5 shows that at large distances (greater than
1.5,m), distance measurement errors appear. These errors fall below the braking

71



threshold and cause false positives1. As a result, the robot believes it is close to
an obstacle and brakes slightly, as seen in the speed graph. However, this effect
is negligible, as the erroneous readings are too short in duration to produce a
significant reduction in speed. At short distances (less than 1.5 meters), repeated
tests showed that the sonars no longer produce incorrect readings. In this range,
the braking behavior is consistent: the robot begins braking at 60 cm (the braking
threshold) and continues decelerating until it stops at around 30 cm from the
obstacle, leaving enough space for turning.

0

100

200

300

400

Di
st

an
ce

 (c
m

)

front_left sonar
front_right sonar
braking threshold
emergency threshold

0 5 10 15 20 25
Time (s)

20

10

0

10

20

30

40

Sp
ee

d 
(c

m
/s

)

Reference speed
Robot speed

Figure 7.5: [Top graph] Sonar measures of the two front sonars. [Bottom graph]
Robot speed variation and reference speed over time when the robot is going
forward in the direction of an obstacle.

The distance measurement errors at long distances are likely caused the alternat-
ing operation of the two sonars. Long-distance measurements can be distorted by
residual echoes or cross interference. In fact, the echo from a previous transmission
may still be present when the other sonar is firing, or may be picked up by it.
Results from a similar test for the backward sonar (Appendix L.1) are consistent
with this hypothesis as it does not exhibit that kind of error because it operates on
its own. An attempt to reduce this interference was made by increasing the delay
between sonar firings and by implementing filters, such as the Hampel filter [31].
This did not help, as it introduced measurement errors at short distances. Therefore,
occasional false positives were accepted rather than risking false negatives2.

1False positive: the sonar detects an obstacle when there is none at the measured distance,
causing the robot to brake unnecessarily.

2False negative = the sonar fails to detect an obstacle that is actually within the critical

72



7.2 Limitations
The aim of this section is to study the operational limits of the butler. There
are many factors limiting the stability of the robot. A few were tested. Their
characterization is divided into two categories:

• External limitations refer to external influences on the robot, such as the
type of floor or the maximum payload it can carry.

• Internal limitations refer to parameters that are directly part of the control
loop. This includes speed and acceleration commands and the processing
frequency.

• Additional limitations refer to additional limitations in software and
hardware components (e.g., sensor interference, process crashes, unsecured
communications), along with some potential solutions.

7.2.1 External limitations
7.2.1.1 Types of floors

0.0

0.2

0.4

0.6

0.8

An
gl

e 
(°

)

Tile

0.0

0.2

0.4

0.6

0.8

An
gl

e 
(°

)

Carpet

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.0

0.2

0.4

0.6

0.8

An
gl

e 
(°

)

Reference

Figure 7.6: Pitch angle variation for 3 different types of floors tested when the
robot is in a stable upright position. [Top graph] Pitch angle variation for tile floor.
[Middle graph] Pitch angle variation for carpet floor. [Bottom graph] Pitch angle
variation for parquet floor.

This test analyzes the robot’s stability on three different types of floors. The
reference case tests were conducted on a parquet floor. In addition to parquet,

distance, meaning the robot does not brake when it should.

73



tests were performed on carpet and tile floor, which are common in domestic
environments. As shown in Figure 7.6, when no velocity command is issued, the
robot’s dynamic stability remains consistent across all tested surfaces, with no
greater pitch variation observed. This demonstrates that the system is well adapted
to operate on multiple floor types. Tests with internal commands issued by the user
produced similar results, confirming that stability performance is not significantly
affected by the type of floor. From a mechanical perspective, the limited influence
of surface type can be explained by the robot’s wheels, which provide sufficient
grip and rolling efficiency on a variety of common indoor surfaces.

7.2.1.2 Impact of the payload

2.5 5.0 7.5 10.0 12.5 15.0 17.5
Time (s)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

An
gl

e 
(°

)

Reference
200 g

6 kg
14 kg

Figure 7.7: Pitch angle variation for the different payloads tested on the robot
when the robot is at stable upright position.

This test evaluates the stability of the robot when payload is added. The first trial
was conducted with a full glass of wine (200 g). Compared to the reference case,
stability remains unchanged except that the pitch angle now oscillates around 0.65°
instead of 0.4° (Figure 7.7). Across all payload tests, this offset varied slightly,
most likely because the added weights were not placed exactly at the center,
resulting in a shift in weight distribution.

The different payload tests demonstrated that the robot remains stable with
up to 14 kg of payload, 2.8 times the weight of the robot. A slight increase in
pitch angle variation was observed, although it was imperceptible to the naked eye.
At 14 kg, The system remained stable, but the chassis began to deform slightly,
indicating that the maximum weight capacity of the physical system had been
reached. Pictures of the test setup can be found in Appendix K.

74



7.2.2 Internal limitations
7.2.2.1 Speed and acceleration commands

The selection of speed and acceleration commands required a careful compromise
between performance and stability. On the one hand, the robot needed to move fast
enough to be practical, while on the other, excessive speed reduced stability. The
maximum achievable speed was found to be 60 cm/s, limited by an electromagnetic
stall between the stepper motor’s rotor and stator. Although higher speeds could
theoretically be reached by increasing the motor current, this would cause the
drivers to overheat and was therefore not considered viable. Acceleration proved
to be an even more critical parameter. A higher acceleration allows the robot
to reach its maximum speed quickly, but excessive values introduce large inertial
shocks during acceleration and braking, which compromise stability. Moreover,
the choice of speed and acceleration directly affects the braking distance: if too
long, the robot risks colliding with obstacles unless the braking threshold is set
unreasonably far away. After iterative testing, a speed of 24 cm/s combined with
an acceleration of 9 cm/s2 was selected. This configuration offered a good balance
between responsiveness and stability. It also ensured a good braking distance for
the obstacle avoidance system.

7.2.2.2 Processing frequency

2 4 6 8 10 12
Time (s)

0.25

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

An
gl

e 
(°

)

Reference
170 Hz

155 Hz

Figure 7.8: Pitch angle variation for the different frequencies tested on the robot
when it is in a stable upright position.

The system’s frequency is a critical constant. A low update frequency implies an
unresponsive system and therefore compromises dynamic balancing. Tests have
shown that the robot remains very stable between 220 (reference case) Hz and 200
Hz. Between 200 Hz and 180 Hz, the system is still stable but feels less reactive

75



to user inputs. At lower frequencies, from 170 Hz to 155 Hz, the system becomes
marginally stable, with large-amplitude oscillations. Under these conditions, the
robot remains upright but is no longer able to withstand disturbances. Below 155
Hz, the robot is totally unstable and no longer able to maintain its equilibrium.
The behavior of the robot in standstill condition at various frequencies (Figure
7.8).

7.2.3 Additional limitations
First, the Pmod NAV is not perfectly fixed in his position. In fact it often slightly
moved in its pins due to the robot’s vibrations inducing some small tilting, which
directly impacted the obtained pitch angle. In addition, as it is located at 90 cm, it
is more susceptible to fluctuations in the chassis. As a result, the calibration at
start-up was not always sufficient and a small bias could appear, causing the robot
to drift. A potential solution to this is to add a second Pmod NAV on one of the
GRiSP boards at the bottom of the robot. With two IMUs, it would be possible to
select the more stable signal or to fuse the two measurements for reduced drift and
improved robustness.

Another limitation of the Pmod NAV is its occasional unexpected crashes.
The ESP32 also crashed following abrupt power outages. Following these events,
the GRiSP did not always detect the ESP32 upon reboot. A manual reboot was
necessary for it to work properly again. These problems could be solved by taking
greater advantage of the Erlang supervision architecture to implement automatic
reboots of the affected processes.

7.3 Materials and costs
To evaluate the feasibility of commercializing this robot, it is essential to consider
its total cost. The breakdown of the components and their prices is shown
in Table C.1, with a total cost of 1,068.67 e. This cost is relatively high
but the current version is a prototype. Thus, significant cost reductions could
be achieved through bulk purchasing and the selection of less expensive components.

The three GRiSP 2 boards are the most expensive items. While these boards
offer a wide range of functionalities, many of these are not required for this
application. For instance, the GRiSP boards connected to the sonar modules can
perform at a high level of efficiency, but the system only needs to take distance
measurements every 50 ms and transmit this data. There are many unused
features, such as multiple Pmod ports, SPI and UART interfaces, high-throughput

76



networking capabilities, and additional GPIO pins. Even the processing power and
memory capacity of the GRiSP boards far exceed the requirements for basic sonar
acquisition and transmission. Developing and sourcing customized GRiSP boards
designed specifically for the project’s requirements could substantially reduce the
overall cost. Similar optimization strategies could be applied at a larger scale to
every part of the robot. Some components could be replaced with more cost-effective
alternatives while maintaining the required performance.

7.4 Power consumption
An important point is the power consumption of the robot because it indicates
how long the robot can run in its different modes without charging. The robot
is powered by a 12.8 V, 32,000 mAh lithium battery pack, corresponding to
approximately 410 Wh of usable energy. Power is distributed through two buck
converters. The first delivers 5 V to the main GRiSP board (0.28 A), two auxiliary
GRiSP boards (0.25 A each), and the LilyGO module (0.06 A). Together, these
electronics draw 0.84 A at 5 V, or about 4.2 W. Considering a converter efficiency
of 90%, this represents about 4.7 W from the battery.

The second buck converter provides 10 V to three TMC2208 stepper drivers
powering NEMA17 motors. In dynamic mode, each motor consumes on average 0.7
A at 10 V, for a total of 21 W. With an assumed 90% efficiency, this corresponds to
23.3 W from the battery, which results in an autonomy of approximately 15 hours
in dynamic mode. In static mode, the motors remain powered to lock the wheels,
but their holding current (0.3 A) is reduced. The average draw is estimated at 9
W at the load or 10 W from the battery. This gives a autonomy in static mode of
28 hours. The power consumption results and the calculated autonomy are already
impressive for a first domestic robot prototype. However, from a more practical
and long-term perspective, it means the robot needs to be recharged every day,
which is somewhat limiting.

7.5 Comparison with the previous master’s thesis
As a reminder, this robot was a prototype developed based on the robot of François
Goens and Cedric Ponsard. A small comparison of the performance of the two
robots was performed and highlights interesting insights.

First, for similar reference cases where the two robots stand upright on a
flat floor without any external disturbance, their smaller robot exhibited a pitch

77



angle oscillation of less than 0.1◦, while this taller robot oscillated around 0.2◦.
The slight increase is due to the greater height and weight of the robot, which
make perfect stabilization more difficult. However, it is important to keep in
mind that these oscillations are not visible to the naked eye and that a design
trade-off had to be made between payload capacity and static stability. Then,
during translational movement, both robots exhibit very similar behavior, with
a slight speed overshoot and small angle variation. The speed overshoot is
relatively smaller for the butler, due to the reduced acceleration. In fact, to
allow stabilization of this taller robot, the acceleration was significantly reduced
compared to theirs, being 9 cm/s2 and 75 cm/s2 respectively. Additionally, the
behavior of the two robots at different frequencies is interesting to compare.
In their master’s thesis, the robot was capable of balancing at a frequency as
low as 75 Hz, which is not the case here. In fact, the limiting frequency in
this system is 155 Hz. This clearly shows that the increase in size and inertia
at the top of the robot necessitates a higher control frequency. If the weight
at the top is larger, a low frequency, meaning a longer interval between loop
iterations, induces a larger "fall" movement at the tip of the robots, which is more
difficult to counteract. Therefore, a higher frequency becomes inevitable to sus-
tain stability, whereas for their smaller robot, the reduced frequency has less impact.

In their master’s thesis, François Goens and Cedric Ponsard performed a change-
in-inertia test, where they added a book on their robot. The results show that the
robot stays upright but with large oscillations, highlighting that their robot was
not adapted to inertia changes. In comparison, the butler, as demonstrated above,
is capable of maintaining balance with a 14 kg payload. This confirms the design
compromise made in this work, where priority was given to payload capacity over
absolute static stability. It even far exceeded expectations, as the initial objective
was simply to carry a full glass of wine.

78



Chapter 8

Conclusion and future works

The main objective of this thesis was to develop a practical device for domotics
using a self-balancing two-wheeled robot prototype. This device required additional
functionalities such as stable payload transport and obstacle avoidance capabilities.
To achieve this goal, a fully designed two-wheeled butler was created. While
keeping elements of the original robot that performed well, such as the motor and
power hardware, the ESP32 design, the Kalman filter-based sensor fusion, the
cascade PID stability loop, and the Hera framework implementation, the hardware
and software were redesigned and expanded.

In terms of hardware, a taller, more robust chassis with a platform was con-
structed, retractable support arms were integrated, and three ultrasonic sonars were
added to detect obstacles. Regarding the software, the existing stability framework
to account for the physical model using an extended Kalman filter. The PID param-
eters were tuned, and a multi-sonar obstacle avoidance mechanism was integrated.
Additionally, an increased control-loop frequency was attained by taking advantage
of the Hera measurement framework strengths. The architecture was refactored into
a distributed, multi-GRiSP system to enable synchronized sensor data exchange.
Two operating modes were developed: a dynamic self-balancing mode for motion
and a static mode with extendable wheels for increased stability and energy savings.

A series of tests were performed to evaluate the butler’s performance under
normal conditions and identify its limits. The experiments demonstrated stable
operation with various payloads, ranging from a full glass of wine to 14 kg,
without any loss of balance. The obstacle avoidance mechanism was verified
through realistic scenarios. It confirmed the reliability of the braking and turning
near obstacles despite occasional long-range sonar errors. The robot was tested
on multiple surfaces and demonstrated that it maintained stability regardless
of the flooring material. Finally, the measurement of the power consumption

79



revealed an autonomy of approximately 15 hours in dynamic mode and 28 hours
in static mode. This is promising for a prototype. However, it indicates the
need for daily recharging for long-term use, which could be problematic. Several
limitations were also identified. These include Pmod NAV sensitivity issues and
the need for occasional calibration. Sonar-based obstacle detection was subject to
interference. There were also ESP and Pmod module crashes that required manual
restarts and the ESP’s LoRa communication protocol lacked security. These
issues highlight areas for improvement in future iterations of the system. Overall,
this thesis has demonstrated the successful transformation of a two-wheeled
robot prototype into a functional self-balancing butler capable of carrying
heavy payloads, avoiding obstacles, and operating in realistic domestic environ-
ments. The robot’s performance exceeded the objectives and expectations of this
thesis, proving its potential as a foundation for future domestic robotic applications.

Looking ahead, several promising directions could further enhance the system.
One important improvement would be the implementation of a low-power safety
mode. This mode would allow the robot to stabilize or lock itself safely when
the battery is nearly depleted. Another improvement would be the development
of an adaptive controller that dynamically adjusts to payload variations, thereby
reducing the need for static counterweights. The obstacle avoidance system could
be more sophisticated to enable smoother and more reliable decision-making. One
approach could be to combine different types of sensors, for example ultrasonic,
infrared, or LiDAR, to increase reliability and reduce false detections. Another
approach would be to implement Simultaneous Localization and Mapping (SLAM),
which would allow the robot not only to avoid nearby obstacles but also to build
a map of its environment and plan optimized trajectories. At the system level,
fault detection and graceful-degradation strategies across GRiSP nodes could be
implemented to mitigate sudden failures. Finally, by refining the industrial design
and improving energy management, it would be possible to extend runtime and
enhance the robot’s safety and usability in long-term domestic operation.

80



Bibliography

[1] Erlang/OTP Team. The Erlang Programming Language. Accessed July 2025.
Erlang.org. url: https://www.erlang.org/.

[2] Wikipedia contributors. Hot swapping. Accessed July 2025. url: https:
//en.wikipedia.org/wiki/Hot_swapping.

[3] Wikipedia contributors. Erlang (programming language). Accessed July
2025. Wikipedia. url: https : / / en . wikipedia . org / wiki / Erlang _
(programming_language).

[4] Adabeat. Why use Erlang for your next project. Accessed July 2025. 2024.
url: https://adabeat.com/insight/why-use-erlang-for-your-next-
project/.

[5] Rebar3 contributors. Rebar3 Documentation. Accessed July 2025. url: https:
//www.rebar3.org/.

[6] Rebar3 contributors. Rebar3. Accessed July 2025. url: https://github.
com/erlang/rebar3.

[7] Lylian BRUNET and Basile COUPLET. “The best of both worlds–Fast numer-
ical computation in Erlang”. MA thesis. Ecole polytechnique de Louvain, 2022.
url: https://thesis.dial.uclouvain.be/entities/masterthesis/
8527cb73-6ebe-43bb-b5f7-0c7df3f5361a.

[8] Peer Stritzinger GmbH. Technology for Embedded Systems, Industrial Automa-
tion & IoT Security. Accessed June 2025. url: https://stritzinger.com.

[9] GRiSP contributors. Powering Embedded Systems with BEAM. Accessed
June 2025. Grisp.org. url: https://www.grisp.org.

81

https://www.erlang.org/
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Hot_swapping
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://en.wikipedia.org/wiki/Erlang_(programming_language)
https://adabeat.com/insight/why-use-erlang-for-your-next-project/
https://adabeat.com/insight/why-use-erlang-for-your-next-project/
https://www.rebar3.org/
https://www.rebar3.org/
https://github.com/erlang/rebar3
https://github.com/erlang/rebar3
https://thesis.dial.uclouvain.be/entities/masterthesis/8527cb73-6ebe-43bb-b5f7-0c7df3f5361a
https://thesis.dial.uclouvain.be/entities/masterthesis/8527cb73-6ebe-43bb-b5f7-0c7df3f5361a
https://stritzinger.com
https://www.grisp.org


[10] GRiSP contributors. GRiSP 2–Scalable Prototyping for Embedded Systems.
Accessed July 2025. Grisp.org. url: https://www.grisp.org/hardware#
grisp2-details-section.

[11] Digilent Inc. Pmod NAV Reference Manual. Accessed July 2025. 2017. url:
https://digilent.com/reference/_media/reference/pmod/pmodnav/
pmod_nav_rm.pdf.

[12] Northern Digital Inc. 6DOF Explained. Accessed July 2025. 2023. url: https:
//www.ndigital.com/6dof-explained/.

[13] Digilent Inc. Pmod NAV - 9-axis IMU Plus Barometer. Accessed July 2025.
2024. url: https://digilent.com/reference/pmod/pmodnav/start.

[14] Digilent Inc. Pmod MaxSonar Reference Manual. Accessed July 2025. 2024.
url: https://digilent.com/reference/pmod/pmodmaxsonar.

[15] Wikipedia contributors. Communication protocol — Wikipedia, The Free
Encyclopedia. Accessed July 2025. 2024. url: https://en.wikipedia.org/
wiki/Communication_protocol.

[16] Texas Instruments. Introduction to the I2C Bus. Tech. rep. SBAA565. Ac-
cessed July 2025. Texas Instruments, 2022. url: https://www.ti.com/lit/
an/sbaa565/sbaa565.pdf.

[17] Newhaven Display. I2C Communication Interface. Accessed July 2025. 2021.
url: https : / / newhavendisplay . com / fr / blog / i2c - communication -
interface/.

[18] Tobias Weltner. SPI (Serial Peripheral Interface) – High-Speed Interface for
Connecting Data-Hungry Peripherals to Microcontrollers. Accessed July 2025.
May 2024. url: https://done.land/fundamentals/interface/spi/.

[19] Admin. SPI Protocol - Prodigy Technovations. Accessed July 2025. May 2023.
url: https://www.prodigytechno.com/spi-protocol#:~:text=SPI%
20Protocol%3A%20Introduction&text=SPI%20is%20a%20full%20duplex,
takes%20instructions%20from%20the%20master..

[20] Kaouthar Draif. “Les protocoles de communication SPI, I2C et UART -
Moussasoft”. In: (Apr. 2024). Accessed July 2025. url: https : / / www .
moussasoft . com / les - protocoles - de - communication - spi - i2c - et -
uart / # : ~ : text = %C5 % 93uvre % 20du % 20syst % C3 % A8me. - ,Protocole %

82

https://www.grisp.org/hardware#grisp2-details-section
https://www.grisp.org/hardware#grisp2-details-section
https://digilent.com/reference/_media/reference/pmod/pmodnav/pmod_nav_rm.pdf
https://digilent.com/reference/_media/reference/pmod/pmodnav/pmod_nav_rm.pdf
https://www.ndigital.com/6dof-explained/
https://www.ndigital.com/6dof-explained/
https://digilent.com/reference/pmod/pmodnav/start
https://digilent.com/reference/pmod/pmodmaxsonar
https://en.wikipedia.org/wiki/Communication_protocol
https://en.wikipedia.org/wiki/Communication_protocol
https://www.ti.com/lit/an/sbaa565/sbaa565.pdf
https://www.ti.com/lit/an/sbaa565/sbaa565.pdf
https://newhavendisplay.com/fr/blog/i2c-communication-interface/
https://newhavendisplay.com/fr/blog/i2c-communication-interface/
https://done.land/fundamentals/interface/spi/
https://www.prodigytechno.com/spi-protocol#:~:text=SPI%20Protocol%3A%20Introduction&text=SPI%20is%20a%20full%20duplex,takes%20instructions%20from%20the%20master.
https://www.prodigytechno.com/spi-protocol#:~:text=SPI%20Protocol%3A%20Introduction&text=SPI%20is%20a%20full%20duplex,takes%20instructions%20from%20the%20master.
https://www.prodigytechno.com/spi-protocol#:~:text=SPI%20Protocol%3A%20Introduction&text=SPI%20is%20a%20full%20duplex,takes%20instructions%20from%20the%20master.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.


20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%
20distincte..

[21] Sebastien Kalbusch, Vincent Verpoten, and Peter Van Roy. “The Hera
Framework for Fault-Tolerant Sensor Fusion with Erlang and GRiSP on an
IoT Network”. In: Proceedings of the 20th ACM SIGPLAN International
Workshop on Erlang. Erlang ’21. Virtual, Republic of Korea: Association for
Computing Machinery, Aug. 2021, pp. 1–13. isbn: 978-1-4503-8612-8. doi:
10.1145/3471871.3472962. url: https://doi.org/10.1145/3471871.
3472962.

[22] Goens Francois and Ponsard Cedric. “Dynamic balancing in the real world
with GRiSP”. Master thesis. Universite catholique de Louvain, 2024. url:
https : / / thesis . dial . uclouvain . cbe / entities / masterthesis /
c11f8a20-c183-4f9e-b3ec-b14248faa61a.

[23] Wikipedia contributors. Kalman filter. Accessed July 2025. Wikipedia. url:
https://en.wikipedia.org/wiki/Kalman_filter.

[24] Wikipedia contributors. Extended Kalman filter. Accessed July 2025.
Wikipedia. url: https://en.wikipedia.org/wiki/Extended_Kalman_
filter.

[25] TutorialsPoint contributors. Control Systems–Introduction. Accessed April
2025. TutorialsPoint. url: https://www.tutorialspoint.com/control_
systems/control_systems_introduction.htm.

[26] Wikipedia contributors. Proportional–integral–derivative controller. Accessed
April 2025. Wikipedia. url: https : / / en . wikipedia . org / wiki /
Proportional%E2%80%93integral%E2%80%93derivative_controller.

[27] The PID controller & theory explained. Accessed July 2025. Aug. 2006.
url: https://www.ni.com/en/shop/labview/pid-theory-explained.
html ? srsltid = AfmBOopRRGCQsFCgzFRvkS _ ZBbMBgdX6HjITpx3cFv -
rsnJwIHNeEnA3.

[28] Wikipedia contributors. Ziegler-Nichols method. Accessed May 2025. url:
https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method.

[29] Lauren Fuentes. 3D Printer Stepper Motor: All You Need to Know. All3DP.
Mar. 10, 2022. url: https://all3dp.com/2/3d-printer-stepper-motor-
what-to-consider-and-which-to-choose-2/ (visited on 08/16/2025).

83

https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://www.moussasoft.com/les-protocoles-de-communication-spi-i2c-et-uart/#:~:text=%C5%93uvre%20du%20syst%C3%A8me.-,Protocole%20de%20communication%20SPI,une%20ligne%20de%20s%C3%A9lection%20distincte.
https://doi.org/10.1145/3471871.3472962
https://doi.org/10.1145/3471871.3472962
https://doi.org/10.1145/3471871.3472962
https://thesis.dial.uclouvain.cbe/entities/masterthesis/c11f8a20-c183-4f9e-b3ec-b14248faa61a
https://thesis.dial.uclouvain.cbe/entities/masterthesis/c11f8a20-c183-4f9e-b3ec-b14248faa61a
https://en.wikipedia.org/wiki/Kalman_filter
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://en.wikipedia.org/wiki/Extended_Kalman_filter
https://www.tutorialspoint.com/control_systems/control_systems_introduction.htm
https://www.tutorialspoint.com/control_systems/control_systems_introduction.htm
https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controller
https://en.wikipedia.org/wiki/Proportional%E2%80%93integral%E2%80%93derivative_controller
https://www.ni.com/en/shop/labview/pid-theory-explained.html?srsltid=AfmBOopRRGCQsFCgzFRvkS_ZBbMBgdX6HjITpx3cFv-rsnJwIHNeEnA3
https://www.ni.com/en/shop/labview/pid-theory-explained.html?srsltid=AfmBOopRRGCQsFCgzFRvkS_ZBbMBgdX6HjITpx3cFv-rsnJwIHNeEnA3
https://www.ni.com/en/shop/labview/pid-theory-explained.html?srsltid=AfmBOopRRGCQsFCgzFRvkS_ZBbMBgdX6HjITpx3cFv-rsnJwIHNeEnA3
https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
https://all3dp.com/2/3d-printer-stepper-motor-what-to-consider-and-which-to-choose-2/
https://all3dp.com/2/3d-printer-stepper-motor-what-to-consider-and-which-to-choose-2/


[30] GeeksforGeeks. Round Robin Scheduling in Operating System. Accessed 28
Jul, 2025. 2025. url: https : / / www . geeksforgeeks . org / operating -
systems/round-robin-scheduling-in-operating-system/.

[31] Ronald K. Pearson et al. “Generalized Hampel Filters”. In: EURASIP Journal
on Advances in Signal Processing 2016 (2016). Article 87, pp. 1–18. doi:
10 . 1186 / s13634 - 016 - 0383 - 6. url: https : / / link . springer . com /
article/10.1186/s13634-016-0383-6.

[32] G. Campion J.-C. Samin and P. Maes. FSAB 1202 Exercices de Mecanique.
UCLouvain, 2008.

84

https://www.geeksforgeeks.org/operating-systems/round-robin-scheduling-in-operating-system/
https://www.geeksforgeeks.org/operating-systems/round-robin-scheduling-in-operating-system/
https://doi.org/10.1186/s13634-016-0383-6
https://link.springer.com/article/10.1186/s13634-016-0383-6
https://link.springer.com/article/10.1186/s13634-016-0383-6


Appendix A

User interface

Robot movements
Robot state

Server logs

Figure A.1: User interface for robot control and logs visualization.

85



Appendix B

Evaluation static support system

o ensure that the robot remains stable when the support arms are deployed, an
evaluation was made to determine whether it would still resist tipping with an
additional load placed on top. For this purpose, a few assumptions were made:
The two support arms are located at a height of 8.1 cm from the ground and
extend 12.5 cm laterally on each side from the center, resulting in a total support
base of 25 cm. This structure forms a triangular contact area with the ground on
each side.

The effectiveness of this design was evaluated by calculating the critical tipping
angle based on the robot’s center of mass (CoM) and the dimensions of the support
base. Since the robot is symmetrical, only the vertical position of the CoM needed
to be determined. This was done using the balancing method, also known as
the static equilibrium or bascule method: the robot was placed horizontally on a
narrow edge and slowly moved until it reached a stable, balanced position. At that
point, the center of mass lies directly above the edge. By measuring the vertical
distance from the center of the wheels to the balance point, the height of the CoM
was estimated. Initially, the CoM of the robot alone was found to be 41 cm. To
determine the combined CoM of the robot and an additional payload placed at its
top, the classical formula for the CoM of a system of discrete masses was applied
as follow:

zCoM =
∑

i mizi∑
i mi

where:

• mi is the mass of the i-th component,

• zi is the vertical position of the center of mass of the i-th component,

86



• zCoM is the resulting combined center of mass.
The robot has a mass mr = 5 kg and its center of mass is located at zr = 0.41 m.

An additional payload of mp = 0.5 kg is placed at the very top of the robot, at a
height of zp = 0.9 m. Applying the formula:

zCoM = mrzr + mpzp

mr + mp

= (5 × 0.41) + (0.5 × 0.85)
5 + 0.5 = 2.05 + 0.425

5.5 = 0.45 m

Thus, the combined center of mass of the loaded robot is located at approxi-
mately 45 cm from the center of the wheels. The system can be analyzed using the
principle that tipping occurs when the vertical projection of the center of mass lies
outside the support polygon. The critical tipping angle θ is given by:

tan(θ) = half base support
height of CoM = 0.125

0.450 ⇒ θ ≈ 15.4◦

This means the robot can be tilted by up to 15.4◦ before the center of mass
exceeds the boundary defined by the support arms, thereby triggering a fall. As
illustrated in Figure B.1, the red dot represents the CoM of the loaded robot, and
the red dashed line shows its vertical projection. The blue dashed line indicates
the tipping boundary, the point where the robot would begin to lose balance if
tilted further.

Figure B.1: Side view of the robot with the static support system. The support
arms form a triangular base preventing tipping, even under a top load.

87



Appendix C

Materials and costs table

Table containing the materials used for the building of the robot along with their
costs. It is also important to note that shipping fees were not included in the
calculation, as the components were not ordered all at once and no cost optimization
was applied for combined deliveries. As a result, the presented total is slightly
lower than the actual cost of the prototype.

Component Cost [e] Quantity Total [e]

Mechanical Components

9 Laser-Cut Wooden Pieces (2 x
6 mm Wooden Boards)

3.30 2 6.60

36 Custom PLA Pieces 16 e/kg ± 790g 12.64

2 arms resin Clear v4 Pieces 169.40
e/L

± 0.2L 33.88

Wheels 11.90 2 23.80

Stepper Motor Attachments 3.00 2 6.00

Round Non-Slip Serving Tray 5.51 1 5.51

Counterweight 0.70 1 0.70

Metal Rods 2.50 4 10.00

Arm Wheels 2.20 4 8.80

Screws, Nuts, and Inserts 3.00 1 3.00

Mechanical Subtotal 110.93

88



Electrical Components

Stepper Motors (NEMA17) 10.52 3 31.56

GRiSP 2 Board 213.00 3 639.00

Buck Converters 6.99 2 13.98

12.8V LiFePO4 Battery 65.00 1 65.00

Stepper Drivers 4.20 3 12.60

LilyGO LoRa32 18.75 2 37.50

Custom PCB 4.00 1 4.00

Micro USB Cables 6.00 4 24.00

Jumper Wires Pack 5.97 1 5.97

Pmod NAV 30.00 1 30.00

Pmod MAXSONAR 30.00 3 90.00

Electrical Subtotal 953.61

Machine Usage

30 Minutes Laser Cutting 4.13 1 4.13

Machine Usage Subtotal 4.13

Total 1068.67

Table C.1: Table of materials for the butler robot and their costs.

89



Appendix D

Sonar placement optimization
code

1 import math as mt
2

3 results = {}
4

5 # Distance and angle bounds
6 initial_distance1 = 145 / 2 # maximum distance to center in mm
7 initial_distance2 = 52.5 # minimal distance to the wheels in

mm
8 max_delta = int( initial_distance1 - 1) # minimum 1 mm between the

sonars
9

10 # Loop over the distance offset (x in mm)
11 for x in range(0, max_delta + 1):
12 distance1 = initial_distance1 - x
13 distance2 = initial_distance2 + x
14

15 # Loop over the angle alpha (from 0 to 12 degrees )
16 alpha = 0
17 while alpha <= 12:
18 angle1 = 75 - alpha
19 angle2 = 75 + alpha
20 h1 = mt.tan(mt. radians ( angle1 )) * distance1
21 h2 = mt.tan(mt. radians ( angle2 )) * distance2
22 big_h = max(h1 , h2)
23

24 results [(alpha , x)] = big_h
25 alpha += 0.5
26

27 optimal_config = min(results , key= results .get)
28 optimal_height = results [ optimal_config ]

90



29 print (f" Meilleure configuration : angle = { optimal_config [0]},
decalage distance = {
optimal_config [1]} mm")

30 print (f" Hauteur maximale minimale : { optimal_height :.2f} mm")

91



Appendix E

PCB design

(a) Electrical diagram of the stepper
motor driver interface PCB (Kicad) [22]. (b) Physical PCB manufactured by JL-

CPCB [22].

Figure E.1: Schematics and physical implementation of the PCB for stepper motor
control.

92



Appendix F

Physical modelling

The purpose of this physical model is to give the relation between the input and
the output of the physical system of the robot. As our robot is a physical extension
in height of the robot developed in the Master’s thesis by Ponsard and Goens [22],
we were able to reuse the same physical model and underlying hypotheses, which
are detailed below.

Hypotheses
Some hypotheses are necessary to simplify the physical model of the robot. They
allow the derivation of a more simple mathematical model that can be used in
the design of the Kalman filter. The following hypotheses are assumed for the
development of the physical model [22]:

1. The robot behaves as a rigid body, with no structural deformation during
motion.

2. The mass of the wheels is negligible and their rotational inertia is neglected.

3. Wheel slip is assumed to be negligible, so it is assumed a perfect rolling
contact with the ground.

4. The effect of the torque generated by the wheels on the robot is negligible.

5. The translational motion resulting from changes in the robot’s tilt is considered
negligible, allowing a decoupling of rotational and translational dynamics.

6. Only two external forces are taken into account: the gravitational force and
the ground reaction force, which includes static friction.

93



Scheme of the robot

Figure F.1: Reference scheme of the robot for developing the physical model of the
system [22].

94



Symbol Description

θ Tilt angle of the robot relative to the vertical axis [rad]

θ̇ Angular velocity of the robot [rad/s]

θ̈ Angular acceleration of the robot [rad/s2]

x Position of the robot in the global frame [m]

ẍ Linear acceleration of the robot in the x-axis [m/s2]

F⃗ Ground contact force applied to the robot [N]

h Distance between the center of gravity (CG) and the rotation axis of
the wheels [m]

m Total mass of the robot [kg]

J Moment of inertia of the robot at its center of mass [kg · m2]

g Gravitational acceleration [m/s2]
Table F.2: List of variables and constants used in the physical model [22].

The model relies on two distinct reference frames. The first frame, attached
to the robot, is defined by the axes X̂3 and X̂1. The axis X̂3 is aligned with the
line connecting the center of gravity and the wheel axle, while X̂1 is perpendicular
to X̂3 and oriented toward the front of the robot. The second frame corresponds
to the ground reference frame, defined by the axes Î1 and Î3. In this frame, Î1 is
parallel to the ground, and Î3 is perpendicular to it and oriented upwards.

95



Appendix G

Newton-Euler equations

This appendix presents the full derivation of the robot’s mathematical repre-
sentation using the Newton-Euler formalism. The goal is to obtain a compact
expression linking the robot’s angular acceleration to external inputs and forces.
The derivation follows the approach proposed in ([22],p 89-91) and is inspired by
classical mechanics principles presented in ([32], p.60).

The Newton-Euler formalism combines Newton’s second law (force balance)
and Euler’s equation (torque balance) to describe the motion of a rigid body. To
apply this method, we first need to compute:

• The position and acceleration of the center of gravity (CG),

• The angular momentum and its derivative,

• The external forces acting on the body,

• The torques applied about the CG.

1. CG position vector and derivatives
The position of the center of gravity is:

R⃗ = xÎ1 + hX̂3

Using derivative rules in rotating frames:
˙⃗

R = ẋÎ1 + hθ̇X̂1

¨⃗
R = ẍÎ1 + hθ̈X̂1 + hθ̇2X̂3 (D.1)

Those are found from the vector derivative of a mobile basis formula :
du⃗

dt
=
(

du⃗

dt

)
rot

+ ω⃗ × u⃗

96



2. Angular momentum relative to the CG and its derivative

H⃗G = Jθ̇X̂2,
˙⃗

HG = Jθ̈X̂2 (D.2)

3. External forces acting on the robot
- Gravity: F⃗g = −mgÎ3

- Ground contact reaction: F⃗c = −Fc,1Î1 − Fc,3Î3
Thus, the total force applied to the robot is:

F⃗total = F⃗g + F⃗c = −mgÎ3 − Fc,1Î1 − Fc,3Î3 (D.3)

4. Moment of forces about the CG
The torque generated by the ground contact forces about the CG is:

L⃗G = −hX̂3 × F⃗c = h(Fc,1 cos θ − Fc,3 sin θ)X̂2 (D.4)

Explanation: We project the torque along the axis perpendicular to the plane of
motion.

5. Newton’s second law
From m

¨⃗
R = F⃗ and projecting on Î1 and Î3:

m(ẍ + hθ̈ cos θ − hθ̇2 sin θ) = −Fc,1 (D.5)
m(−hθ̈ sin θ + hθ̇2 cos θ) = −Fc,3 + mg (D.6)

These equations express the horizontal and vertical force balances.

6. Euler’s rotational equation

From ˙⃗
HG = L⃗G, we get:

Jθ̈ = h(Fc,1 cos θ − Fc,3 sin θ) (D.7)

7. Elimination of contact forces
To eliminate Fc,1 and Fc,3, we multiply (D.5) by cos θ, multiply (D.6) by sin θ, add
the resulting expressions and substitute into (D.7).

97



After simplification:

mẍ cos θ +
(

mh + J

h

)
θ̈ = mg sin θ

⇒ ẍ cos θ +
(

h + J

mh

)
θ̈ = g sin θ (D.8)

This equation will serve as the basis for the nonlinear state transition model used
in the Extended Kalman Filter.

98



Appendix H

Algorithms

Sonar scheduler algorithm

Algorithm 1 Sonar scheduler for obstacle avoidance mechanism
Start the scheduler as a background task
while true do

Wait 50ms
if robot moving backward then

Send Authorize to rear sonar
else if robot moving forward then

Alternate between left and right front sonars,
Send Authorize to selected front sonar

else
Do nothing (no sonar measurement)

end if
end while

99



Obstacle avoidance algorithm

Algorithm 2 Obstacle avoidance mechanism
Require: Sonar reading and movement intention
Ensure: Adjusted commands for safety

// Step 1: Emergency turn if too close
if distance to obstacle is very small then

force a full-speed rotation
else

keep the planned turning speed
end if
// Step 2: Stop forward motion if risky
if no sonar data then

keep the planned forward speed
else if obstacle is detected at moderate range then

if moving forward toward the obstacle then
stop immediately

else if moving backward toward the obstacle then
stop immediately

else
keep moving

end if
else

no action needed
end if

100



Kalman message handling algorithm

Algorithm 3 Kalman message handling logic
Require: Previous state (Xk, Pk), acceleration input Acc, timestep Dt
Ensure: Estimated tilt angle and updated Kalman state

1: Convert Acc from cm/s2 to m/s2

2: if new IMU message {nav_data, (Gy, Ax, Az)} is received then
3: Perform prediction + correction using EKF
4: Return filtered angle and updated state
5: else
6: Perform prediction-only step using EKF
7: Return predicted angle and updated state
8: end if

101



Appendix I

I2C packet structure

Table I.1: Structure of the 5-byte I2C packet from the ESP32.

Byte Index Content Description

1–2 Speed_Left Half-float encoded rotation speed of the left wheel

3–4 Speed_Right Half-float encoded rotation speed of the right wheel

5 Input Flags User control commands encoded as individual bits

Table I.2: Bit decomposition of the I2C control byte (Byte 5).

Bit Index Function

1 Arm_Ready: Lifting mechanism feedback

2 Switch: Unused

3 Test: Unused

4 Get_Up: Transition between dynamic and static mode

5 Forward: Command to move forward

6 Backward: Command to move backward

7 Left: Command to turn left

8 Right: Command to turn right

102



Appendix J

LED debugging indicators

LED Color Pattern (ms) Meaning

Yellow Flash 500 Balancing robot initialization

Yellow Flash 250 Device added successfully

Red Flash 250 Device registration failed

Red Flash 1000 No ping from server (connection error)

Magenta Flash 500 Wi-Fi setup failed, retrying connection

White Flash 500 Wi-Fi connection established

Green Flash 1000 Server discovered via ping

Aqua Solid Server acknowledged, robot ready

Table J.1: LED indicators used in balancing_robot for runtime debugging
.

103



Appendix K

Experimentation setup for payload
tests

The 2 following pictures are pictures of the test setup of payloads.

(a) Picture of the robot during the test with
a glass of wine.

(b) Picture of the robot during the test
with 14 kg of payload.

104



Appendix L

Obstacle avoidance evaluation of
the backward sonar

0

50

100

150

200

250

300

Di
st

an
ce

 (c
m

)

main sonar
braking threshold
emergency threshold

0 2 4 6 8 10 12 14
Time (s)

10

0

10

20

30

40

Sp
ee

d 
(c

m
/s

)

Reference speed
Robot speed

Figure L.1: [Top graph] Sonar measures of the main back sonar. [Bottom graph]
Robot speed variation and reference speed over time when the robot is going
backward in the direction of an obstacle (a couch).

105



Appendix M

Full source code

This appendix contains all the code needed to operate the system, in four main
sections: the GRiSP code, the Lilygo LoRa32 code on the robot side, the Lilygo
LoRa32 code on the emergency stop side, and the python user interface and server
code. The latest version of the code can be found on our two GitHub repositories:
https://github.com/Artal44/Grisp_robot/tree/main.

GRiSP board code

Full balancing_robot.erl source code
1 -module(balancing_robot).
2

3 -behavior(application).
4

5 -export([start/2, stop/1]).
6

7 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
8 %% STARTUP
9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

10

11 start(_Type, _Args) ->
12 {ok, Supervisor} = balancing_robot_sup:start_link(),
13 [grisp_led:flash(L, yellow, 500) || L <- [1, 2]],
14

15 %% Initialize log buffer
16 log_buffer:init(100000),
17

18 numerl:init(),

106

https://github.com/Artal44/Grisp_robot/tree/main


19 hera_subscribe:subscribe(self()),
20 persistent_term:put(server_on, false),
21

22 %% Get GRiSP ID and start correct processes
23 {ok, Id} = get_grisp_id(),
24 init_grisp(Id),
25

26 %% Setup WiFi and server discovery
27 config(),
28

29 %% Start alive loop in its own process
30 spawn(fun alive_loop/0),
31

32 %% Keep process alive to handle Hera messages
33 hera_notify_loop(),
34

35 {ok, Supervisor}.
36

37 stop(_State) ->
38 persistent_term:get(name),
39 case persistent_term:get(name) of
40 robot_main ->
41 ets:delete(adv_goal_tab);
42 _ ->
43 ok
44 end,
45 ok.
46

47

48 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
49 %% INITIALIZATION
50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
51

52 init_grisp(0) ->
53 io:format("[BALANCING_ROBOT] GRiSP ID: 0, Spawning robot_main~n",

[]),↪→

54 persistent_term:put(name, robot_main),
55

56 %% Initialize ETS table for adv_goal
57 ets:new(adv_goal_tab, [set, public, named_table]),
58 ets:insert(adv_goal_tab, {adv_goal, 0.0}),
59

60 add_GRISP_device(spi2, pmod_nav),

107



61 add_GRISP_device(uart, pmod_maxsonar),
62 pmod_nav:config(acc, #{odr_g => {hz,238}}),
63 timer:sleep(10000),
64

65 Pid_Main = spawn(main_loop, robot_init, []),
66 persistent_term:put(pid_main, Pid_Main),
67

68 %% Start sonar scheduler
69 persistent_term:put(current_sonar, robot_front_left),
70 start_sonar_scheduler(),
71

72 spawning_sonar(0, robot_main),
73 hera:start_measure(nav_measure, [Pid_Main, robot_main]);
74

75 init_grisp(1) ->
76 persistent_term:put(name, robot_front_left),
77 add_GRISP_device(uart, pmod_maxsonar),
78 timer:sleep(2000),
79 spawning_sonar(1, robot_front_left);
80

81 init_grisp(2) ->
82 persistent_term:put(name, robot_front_right),
83 add_GRISP_device(uart, pmod_maxsonar),
84 timer:sleep(2000),
85 spawning_sonar(2, robot_front_right);
86

87 init_grisp(_) ->
88 io:format("[BALANCING_ROBOT][ERROR] Unknown GRiSP ID~n", []).
89

90 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
91 %% DEVICES
92 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
93

94 add_GRISP_device(Port, Name) ->
95 case catch grisp:add_device(Port, Name) of
96 {device, _, _, _, _} = DeviceInfo ->
97 [grisp_led:flash(L, yellow, 250) || L <- [1, 2]],
98 io:format("[~p] Device ~p added (info: ~p)~n",
99 [persistent_term:get(name), Name, DeviceInfo]);

100 Other ->
101 [grisp_led:flash(L, red, 250) || L <- [1, 2]],
102 io:format("[~p] Failed to add device ~p: ~p~n",
103 [persistent_term:get(name), Name, Other]),

108



104 timer:sleep(2000),
105 add_GRISP_device(Port, Name)
106 end.
107

108 get_grisp_id() ->
109 JMPs = [jumper_1, jumper_2, jumper_3, jumper_4, jumper_5],
110 Bits = [grisp_gpio:get(grisp_gpio:open(J, #{mode => input})) || J <-

JMPs],↪→

111 {ok, lists:foldl(fun(B, Acc) -> (Acc bsl 1) + B end, 0,
lists:reverse(Bits))}.↪→

112

113 spawning_sonar(Id, Role) ->
114 {ok, Pid_Sonar} = hera:start_measure(sonar_measure, [Role]),
115 persistent_term:put(pid_sonar, Pid_Sonar),
116 io:format("[BALANCING_ROBOT] GRiSP ~p spawned ~p (PID: ~p)~n",
117 [Id, Role, Pid_Sonar]).
118

119 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
120 %% NETWORK / SERVER
121 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
122

123 config() -> await_connection().
124

125 await_connection() ->
126 io:format("[~p] WiFi setup starting...~n",

[persistent_term:get(name)]),↪→

127 receive
128 {hera_notify, "connected"} ->
129 io:format("[~p] WiFi connected~n",

[persistent_term:get(name)]),↪→

130 [grisp_led:flash(L, white, 500) || L <- [1, 2]],
131 discover_server()
132

133 after 18000 ->
134 io:format("[~p] WiFi setup failed. Retrying...~n",

[persistent_term:get(name)]),↪→

135 [grisp_led:flash(L, magenta, 500) || L <- [1, 2]],
136 await_connection()
137 end.
138

139 discover_server() ->
140 receive
141 {hera_notify, ["ping", Name, SIp, Port]} ->

109



142 {ok, Ip} = inet:parse_address(SIp),
143 [grisp_led:flash(L, green, 1000) || L <- [1, 2]],
144 hera_com:add_device(list_to_atom(Name), Ip,

list_to_integer(Port)),↪→

145 ack_loop()
146 after 9000 ->
147 io:format("[~p] No ping from server. Retrying...~n",

[persistent_term:get(name)]),↪→

148 [grisp_led:flash(L, red, 1000) || L <- [1, 2]],
149 discover_server()
150 end.
151

152 ack_loop() ->
153 Payload = "Hello from " ++ atom_to_list(persistent_term:get(name)),
154 hera_com:send_unicast(server, Payload, "UTF8"),
155 receive
156 {hera_notify, ["Ack", _]} ->
157 persistent_term:put(server_on, true),
158 [grisp_led:color(L, aqua) || L <- [1, 2]],
159 io:format("[~p] Received ACK from server~n",

[persistent_term:get(name)])↪→

160 after 5000 ->
161 ack_loop()
162 end.
163

164 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
165 %% LOOPS
166 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
167

168 alive_loop() ->
169 Msg = "alive : " ++ atom_to_list(persistent_term:get(name)),
170 hera_com:send_unicast(server, Msg, "UTF8"),
171 timer:sleep(20000),
172 alive_loop().
173

174 hera_notify_loop() ->
175 receive
176 {hera_notify, Msg} ->
177 io:format("[~p] Received hera_notify: ~p~n",

[persistent_term:get(name), Msg]),↪→

178 handle_hera_notify(Msg),
179 hera_notify_loop();
180 Other ->

110



181 io:format("[~p] Unexpected message: ~p~n",
182 [persistent_term:get(name), Other]),
183 hera_notify_loop()
184 end.
185

186 handle_hera_notify(["ping", _, _, _]) -> ok;
187 handle_hera_notify(["Add_Device", Name, SIp, Port]) ->
188 add_device(Name, SIp, Port);
189 handle_hera_notify(["authorize"]) ->
190 persistent_term:get(pid_sonar) ! {authorize, robot_main};
191 handle_hera_notify(["sonar_data", Sonar_Name, D, Seq]) ->
192 case persistent_term:get(pid_main, undefined) of
193 undefined ->
194 io:format("[~p] sonar_data ignored (no pid_main)~n",
195 [persistent_term:get(name)]);
196 Pid_Main ->
197 Pid_Main ! {sonar_data, list_to_atom(Sonar_Name),
198 [list_to_float(D), list_to_integer(Seq)]}
199 end;
200 handle_hera_notify(Other) ->
201 io:format("[~p] Unhandled hera_notify: ~p~n",
202 [persistent_term:get(name), Other]).
203

204 add_device(Name, SIp, SPort) ->
205 Self = persistent_term:get(name),
206 case list_to_atom(Name) of
207 Self -> ok;
208 OName ->
209 {ok, Ip} = inet:parse_address(SIp),
210 hera_com:add_device(OName, Ip, list_to_integer(SPort)),
211 io:format("[BALANCING_ROBOT] Added device ~p (IP: ~p, Port:

~p)~n",↪→

212 [OName, Ip, SPort])
213 end.
214

215 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
216 %% SONAR SCHEDULER
217 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
218

219 start_sonar_scheduler() ->
220 spawn(fun sonar_scheduler/0).
221

222 sonar_scheduler() ->

111



223 receive
224 after 75 -> % run every 50 ms
225 [{adv_goal, Adv_V_Goal}] = ets:lookup(adv_goal_tab,

adv_goal),↪→

226 handle_sonar_authorization(Adv_V_Goal),
227 sonar_scheduler()
228 end.
229

230 handle_sonar_authorization(Adv_V_Goal) ->
231 case Adv_V_Goal of
232 V when V > 0 ->
233 % Recule : only back sonar
234 persistent_term:get(pid_sonar) ! {authorize,

persistent_term:get(pid_main)};↪→

235 V when V < 0 ->
236 % Avance : alternate front_left / front_right
237 Sonar_Role = persistent_term:get(current_sonar),
238 Next_Role = case Sonar_Role of
239 robot_front_left -> robot_front_right;
240 robot_front_right -> robot_front_left
241 end,
242 persistent_term:put(current_sonar, Next_Role),
243 spawn(fun() ->
244 hera_com:send_unicast(Next_Role, "authorize", "UTF8")
245 end);
246 _ -> ok
247 end.

Listing M.1: Full balancing_robot.erl code.

Full balancing_robot_sup.erl source code
1 % @private
2 % @doc balancing_robot top level supervisor.
3 -module(balancing_robot_sup).
4

5 -behavior(supervisor).
6

7 % API
8 -export([start_link/0]).
9

112



10 % Callbacks
11 -export([init/1]).
12

13 %--- API
-----------------------------------------------------------------------↪→

14

15 start_link() -> supervisor:start_link({local, ?MODULE}, ?MODULE, []).
16

17 %--- Callbacks
-----------------------------------------------------------------↪→

18

19 init([]) -> {ok, { {one_for_all, 0, 1}, []} }.

Listing M.2: Full balancing_robot_sup.erl code.

Full main_loop.erl source code
1 -module(main_loop).
2

3 -export([robot_init/0]).
4

5 -define(ADV_V_MAX, 24.0).
6 -define(TURN_V_MAX, 80.0).
7 -define(LOG_INTERVAL, 50). % ms
8

9 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
10 % INITIALISATION
11 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
12 robot_init() ->
13 process_flag(priority, max),
14 calibrate(),
15 {X0, P0} = kalman_computations:init_kalman(),
16

17 %I2C bus
18 I2Cbus = grisp_i2c:open(i2c1),
19 persistent_term:put(i2c, I2Cbus),
20

21 % PIDs initialization with adjusted gains
22 Pid_Speed = spawn(hera_pid_controller, pid_init, [-0.0635, -0.053,

0.0, -1, 15.0, 0.0]),↪→

23 Pid_Stability = spawn(hera_pid_controller, pid_init, [16.3, 0.0,
9.4, -1, -1, 0.0]),↪→

113



24 persistent_term:put(controllers, {Pid_Speed, Pid_Stability}),
25 persistent_term:put(freq_goal, 220.0),
26

27 T0 = erlang:system_time()/1.0e6,
28 State = #{
29 robot_state => {rest, false}, % {Robot_State, Robot_Up}
30 kalman_state => {T0, X0, P0}, % {Tk, Xk, Pk}
31 move_speed => {0.0, 0.0}, % {Adv_V_Ref, Turn_V_Ref}
32 frequency => {0, 0, 220.0, T0}, % {N, Freq, Mean_Freq, T_End}
33 acc_prev => 0.0, % Acc_Prev
34 sonar => {0, none, none}, % {Current_Seq, Prev_Dist,

Prev_Direction}↪→

35 last_log_time => erlang:system_time(millisecond) % LastLog
36 },
37

38 robot_loop(State).
39

40 robot_loop(State) ->
41 Start_log = erlang:system_time(millisecond),
42 Start = erlang:system_time(microsecond),
43

44 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Dt Computation
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

45 {Tk, Xk, Pk} = maps:get(kalman_state, State),
46 T1 = erlang:system_time()/1.0e6,
47 Dt = (T1 - Tk) / 1000.0,
48 T_Dt = erlang:system_time(microsecond),
49

50 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% LOGGING
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

51 LastLog = maps:get(last_log_time, State),
52 {Robot_State, Robot_Up} = maps:get(robot_state, State),
53 {DoLog, New_LastLog} = logging(T1, LastLog),
54 {N, Freq, Mean_Freq, T_End} = maps:get(frequency, State),
55 add_log({main_loop, Start_log, robot_frequency, [Freq, N,

Mean_Freq]}, DoLog),↪→

56 T_Log = erlang:system_time(microsecond),
57

58 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% KALMAN LOGIC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

59 Acc_Prev = maps:get(acc_prev, State),
60 {Angle, X1, P1} = kalman_message_handling(Xk, Pk, Acc_Prev, Dt),
61 T_Kalman = erlang:system_time(microsecond),

114



62

63 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% INPUT FROM I2C + CONTROLS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

64 {Speed, CtrlByte} = i2c_read(),
65 [Arm_Ready, _, _, Get_Up, Forward, Backward, Left, Right] =

hera_com:get_bits(CtrlByte),↪→

66 Adv_V_Goal = speed_ref(Forward, Backward),
67 ets:insert(adv_goal_tab, {adv_goal, Adv_V_Goal}),
68 Turn_V_Goal = turn_ref(Left, Right),
69 T_I2C = erlang:system_time(microsecond),
70

71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SONAR LOGIC
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

72 {Current_Seq, Prev_Dist, Prev_Direction} = maps:get(sonar, State),
73 {Sonar_Data, New_Seq, New_Direction} =

sonar_message_handling(Current_Seq, Prev_Dist, Prev_Direction),↪→

74 T_Sonar = erlang:system_time(microsecond),
75

76 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STABILITY ENGINE CONTROLLER
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

77 {Adv_V_Ref, Turn_V_Ref} = maps:get(move_speed, State),
78 {Acc, Adv_V_Ref_New, Turn_V_Ref_New} = stability_engine:controller(
79 {Dt, Angle, Speed},
80 {Sonar_Data, New_Direction},
81 {Adv_V_Goal, Adv_V_Ref},
82 {Turn_V_Goal, Turn_V_Ref},
83 {DoLog, Start_log}),
84 T_Controller = erlang:system_time(microsecond),
85

86 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% ROBOT STATE + I2C WRITE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

87 Robot_Up_New = is_robot_up(Angle, Robot_Up),
88 Next_Robot_State = get_robot_state({Robot_State, Robot_Up, Get_Up,

Arm_Ready, Angle}),↪→

89 Output_Byte = get_output_state(Next_Robot_State),
90 i2c_write(Acc, Turn_V_Ref_New, Output_Byte),
91 T_Write = erlang:system_time(microsecond),
92

93 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% FREQUENCY STABILISATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

94 {N_New, Freq_New, Mean_Freq_New} = frequency_computation(Dt, N,
Freq, Mean_Freq),↪→

95 maximum_frequency(T1, T_End),

115



96 T_Freq = erlang:system_time(microsecond),
97

98 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% SERVER COMMUNICATION
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

99 send_to_server(Robot_State),
100 T_Server = erlang:system_time(microsecond),
101

102 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% STATE UPDATE
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

103 T_End_New = erlang:system_time()/1.0e6,
104 NewState = State#{
105 robot_state => {Next_Robot_State, Robot_Up_New},
106 kalman_state => {T1, X1, P1},
107 move_speed => {Adv_V_Ref_New, Turn_V_Ref_New},
108 frequency => {N_New, Freq_New, Mean_Freq_New, T_End_New},
109 acc_prev => Acc,
110 sonar => {New_Seq, Sonar_Data, New_Direction},
111 last_log_time => New_LastLog
112 },
113 T_State = erlang:system_time(microsecond),
114

115 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% TIMING LOGS
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%↪→

116 Total = T_State - Start,
117 add_log({timing, erlang:system_time(millisecond), [
118 {"Dt", T_Dt - Start},
119 {"Logging", T_Log - T_Dt},
120 {"Kalman", T_Kalman - T_Log},
121 {"I2C_Read+Controls", T_I2C - T_Kalman},
122 {"Sonar", T_Sonar - T_I2C},
123 {"Controller", T_Controller - T_Sonar},
124 {"I2C_Write+State", T_Write - T_Controller},
125 {"Frequency_Stab", T_Freq - T_Write},
126 {"Server", T_Server - T_Freq},
127 {"State_Update", T_State - T_Server},
128 {"Total", Total}
129 ]}, DoLog),
130

131 robot_loop(NewState).
132

133

134 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
135 % ROBOT STATE LOGIC

116



136 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
137

138 get_robot_state(Robot_State) -> % {Robot_state, Robot_Up, Get_Up,
Arm_ready, Angle}↪→

139 case Robot_State of
140 % From rest
141 {rest, true, _, _, _} -> dynamic;
142 {rest, _, _, _, _} -> rest;
143

144 % Dynamic âĘŠ static
145 {dynamic, _, true, _, _} -> preparing_static;
146 {dynamic, false, _, _, _} -> rest;
147 {dynamic, _, _, _, _} -> dynamic;
148

149 % Preparing static âĘŠ static
150 {preparing_static, _, _, true, _} -> static;
151 {preparing_static, _, _, false, _} -> dynamic;
152 {preparing_static, _, _, _, _} -> preparing_static;
153

154 % Static âĘŠ dynamic
155 {static, false, _, _, _} -> rest;
156 {static, _, false, _, _} -> dynamic;
157 {static, _, _, _, _} -> static
158 end.
159

160 get_output_state(State) ->
161 % Output bits = [Power, Freeze, Extend, Robot_Up_Bit,

Move_direction, 0, 0, 0]↪→

162 case State of
163 rest -> get_byte([0,0,0,0,0,0,0,0]);
164 dynamic -> get_byte([1,0,0,1,0,0,0,0]);
165 preparing_static -> get_byte([1,0,1,1,0,0,0,0]); % arms

extending↪→

166 static -> get_byte([1,1,1,1,0,0,0,0])
167 end.
168

169 is_robot_up(Angle, Robot_Up) ->
170 if
171 Robot_Up and (abs(Angle) > 80) ->
172 false;
173 not Robot_Up and (abs(Angle) < 78) ->
174 true;
175 true ->

117



176 Robot_Up
177 end.
178

179 get_byte(List) ->
180 [A, B, C, D, E, F, G, H] = List,
181 A*128 + B*64 + C*32 + D*16 + E*8 + F*4 + G*2 + H.
182

183

184 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
185 % I2C COMMUNICATION
186 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
187

188 i2c_read() ->
189 %Receive I2C and conversion
190 I2Cbus = persistent_term:get(i2c),
191 case grisp_i2c:transfer(I2Cbus, [{read, 16#40, 1, 5}]) of
192 [<<SL1,SL2,SR1,SR2,CtrlByte>>] ->
193 [Speed_L,Speed_R] = hera_com:decode_half_float([<<SL1,

SL2>>, <<SR1, SR2>>]),↪→

194 Speed = (Speed_L + Speed_R)/2,
195 {Speed, CtrlByte};
196 {error, Reason} ->
197 io:format("[ROBOT][I2C ERROR] Error response: ~p~n",

[{error, Reason}]),↪→

198 [grisp_led:color(L, red) || L <- [1, 2]],
199 timer:sleep(5000),
200 i2c_read();
201 Other ->
202 io:format("[ROBOT][I2C ERROR] Unexpected response: ~p~n",

[Other]),↪→

203 timer:sleep(5000),
204 i2c_read()
205 end.
206

207 i2c_write(Acc, Turn_V_Ref_New, Output_Byte) ->
208 I2Cbus = persistent_term:get(i2c),
209 case hera_com:encode_half_float([Acc, Turn_V_Ref_New]) of
210 [HF1, HF2] ->
211 grisp_i2c:transfer(I2Cbus, [{write, 16#40, 1, [HF1, HF2,

<<Output_Byte>>]}]);↪→

212 Error ->
213 log_buffer:add({i2c_error, erlang:system_time(millisecond),

Error})↪→

118



214 end.
215

216

217 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
218 % MISCELLANIOUS
219 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
220 speed_ref(Forward, Backward) ->
221 if
222 Forward ->
223 Adv_V_Goal = +?ADV_V_MAX;
224 Backward ->
225 Adv_V_Goal = -?ADV_V_MAX;
226 true ->
227 Adv_V_Goal = 0.0
228 end,
229 Adv_V_Goal.
230

231 turn_ref(Left, Right) ->
232 if
233 Right ->
234 Turn_V_Goal = ?TURN_V_MAX;
235 Left ->
236 Turn_V_Goal = - ?TURN_V_MAX;
237 true ->
238 Turn_V_Goal = 0.0
239 end,
240 Turn_V_Goal.
241

242 frequency_computation(Dt, N, Freq, Mean_Freq) ->
243 if
244 N == 100 ->
245 N_New = 0,
246 Freq_New = 0,
247 Mean_Freq_New = Freq;
248 true ->
249 N_New = N+1,
250 Freq_New = ((Freq*N)+(1/Dt))/(N+1),
251 Mean_Freq_New = Mean_Freq
252 end,
253 {N_New, Freq_New, Mean_Freq_New}.
254

255 maximum_frequency(T1, T_End) ->
256 T2 = erlang:system_time()/1.0e6,

119



257 Freq_Goal = persistent_term:get(freq_goal),
258 Delay_Goal = 1.0/Freq_Goal * 1000.0,
259 if
260 T2-T_End < Delay_Goal ->
261 wait(Delay_Goal-(T2-T1));
262 true ->
263 ok
264 end.
265

266 wait(T) ->
267 Tnow = erlang:system_time()/1.0e6,
268 wait_help(Tnow,Tnow+T).
269 wait_help(Tnow, Tend) when Tnow >= Tend -> ok;
270 wait_help(_, Tend) ->
271 Tnow = erlang:system_time()/1.0e6,
272 wait_help(Tnow,Tend).
273

274 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
275 % LOGGING
276 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
277 logging(Now, Last_Log_Time) ->
278 case Now - Last_Log_Time > ?LOG_INTERVAL of
279 true ->
280 {true, Now};
281 false ->
282 {false, Last_Log_Time}
283 end.
284

285 add_log(Log, DoLog) ->
286 case DoLog of
287 true ->
288 log_buffer:add(Log);
289 false -> ok
290 end.
291

292 send_to_server(Robot_State) ->
293 case Robot_State of
294 static ->
295 case persistent_term:get(server_on) of
296 true ->
297 log_buffer:flush_to_server(server,

persistent_term:get(name));↪→

298 _ ->

120



299 ok
300 end;
301 _ -> ok
302 end.
303

304 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
305 % SONAR
306 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
307 sonar_message_handling(Current_Seq, Prev_Dist, Prev_Direction) ->
308 receive
309 {sonar_data, Sonar_Name, [D, Seq]} ->
310 D_M = D / 100.0,
311 add_log({main_loop, erlang:system_time(millisecond),

new_sonar_measure, [Sonar_Name, D_M]}, true),↪→

312 % io:format("[ROBOT][SONAR] Sonar data received: ~p from
~p~n", [D_M, Sonar_Name]),↪→

313 Direction = case Sonar_Name of
314 robot_front_left -> front;
315 robot_front_right -> front;
316 _ -> back
317 end,
318 {D_M, Seq, Direction}
319 after 0 ->
320 {Prev_Dist, Current_Seq, Prev_Direction}
321 end.
322

323

324 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
325 % KALMAN
326 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
327 kalman_message_handling(Xk, Pk, Acc_Prev, Dt) ->
328 Acc_SI = Acc_Prev / 100.0, % Convert acceleration from cm/s^2 to

m/s^2↪→

329 {Angle, X1, P1} =
330 receive
331 {nav_data, [Gy, Ax, Az]} ->
332 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
333 % KALMAN PREDICTION + CORRECTION
334 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
335 [Angle1, {X1a, P1a}] = kalman_computations:kalman_angle(Dt,

Ax, Az, Gy, Acc_SI, Xk, Pk),↪→

336

337 {Angle1, X1a, P1a}

121



338 after 0 ->
339 kalman_predict_only(Xk, Pk, Dt, Acc_SI)
340 end,
341 {Angle, X1, P1}.
342

343

344 kalman_predict_only(Xk, Pk, Dt, Acc_SI) ->
345 % Kalman prediction
346 [Angle1, {X1a, P1a}] = kalman_computations:kalman_predict_only(Dt,

[Xk, Pk], Acc_SI),↪→

347

348 {Angle1, X1a, P1a}.
349

350 calibrate() ->
351 N = 500,
352 Y_List = [pmod_nav:read(acc, [out_y_g]) || _ <- lists:seq(1, N)],
353 Gy0 = lists:sum([Y || [Y] <- Y_List]) / N,
354 persistent_term:put(gy0, Gy0).

Listing M.3: Full main_loop.erl code.

Full stability_engine.erl source code
1 -module(stability_engine).
2

3 -export([controller/5]).
4

5 -define(ADV_V_MAX, 24.0).
6 -define(ADV_ACCEL, 8.0).
7

8 -define(TURN_V_MAX, 40.0).
9 -define(OBSTACLE_TURN_V_MAX, 80.0).

10 -define(TURN_ACCEL, 200.0).
11

12 -define(MIN_SONAR_DIST, 0.30).
13 -define(MAX_SONAR_DIST, 0.65).
14

15 controller({Dt, Angle, Speed}, {Sonar_Data, Direction}, {Adv_V_Goal,
Adv_V_Ref}, {Turn_V_Goal, Turn_V_Ref}, {DoLog, Time}) ->↪→

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 % CONTROLLER

122



18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 {Pid_Speed, Pid_Stability} = persistent_term:get(controllers),
20

21 % ÃĽvitement automatique si bloquÃľ
22 Turn_V_Goal_Avoid =
23 case Sonar_Data =< ?MIN_SONAR_DIST andalso (Adv_V_Goal > 0

orelse Adv_V_Goal < 0) of↪→

24 true -> ?OBSTACLE_TURN_V_MAX; % tourne Ãă droite (ou
-?TURN_V_MAX Ãă gauche)↪→

25 false -> Turn_V_Goal
26 end,
27

28 % Applique un freinage si lâĂŹobstacle est dÃľtectÃľ
29 Adv_V_Goal_Safe =
30 case Sonar_Data of
31 none ->
32 Adv_V_Goal; % Pas de donnÃľe sonar, on garde la

vitesse↪→

33 _ ->
34 case Sonar_Data < ?MAX_SONAR_DIST of
35 true ->
36 case Adv_V_Goal of
37 V when V < 0.0 andalso Direction =:= front

->↪→

38 0.0; % Stop en marche avant
39 V when V > 0.0 andalso Direction =:= back

->↪→

40 0.0; % Stop en marche arriÃĺre
41 _ ->
42 Adv_V_Goal
43 end;
44 false ->
45 Adv_V_Goal
46 end
47 end,
48

49 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
50 % ACCELERATION SATURATION
51 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
52 Adv_V_Ref_New = saturate_acceleration(Adv_V_Goal_Safe, Adv_V_Ref,

Dt, ?ADV_ACCEL, ?ADV_V_MAX),↪→

53 Turn_V_Ref_New = saturate_acceleration(Turn_V_Goal_Avoid,
Turn_V_Ref, Dt, ?TURN_ACCEL, ?TURN_V_MAX),↪→

123



54

55 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
56 % ADVANCED SPEED CONTROLLER
57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 Pid_Speed ! {self(), {set_point, Adv_V_Ref_New}},
59 Pid_Speed ! {self(), {input, Speed}},
60 receive {_, {control, Target_Angle}} -> ok end,
61

62 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
63 % STABILITY CONTROLLER
64 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
65 Pid_Stability ! {self(), {set_point, Target_Angle}},
66 Pid_Stability ! {self(), {input, Angle}},
67 receive {_, {control, Acc}} -> ok end,
68

69 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
70 % LOGGING
71 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
72 add_log({controller, Time, speed_controller, [Adv_V_Ref_New,

Turn_V_Ref_New, Speed, Target_Angle]}, DoLog),↪→

73 add_log({controller, Time, stability_controller, [Target_Angle,
Angle, Acc]}, DoLog),↪→

74

75 {Acc, Adv_V_Ref_New, Turn_V_Ref_New}.
76

77 % Saturates the acceleration based on the goal and reference speed.
78 % If the goal is positive, it accelerates towards the goal, if negative,

it decelerates.↪→

79 % If the goal is zero, it checks the reference speed and applies a
deceleration or acceleration based on the current speed.↪→

80 saturate_acceleration(Goal, Ref, Dt, Accel, V_Max) ->
81 case Goal of
82 G when G > 0.0 ->
83 hera_pid_controller:saturation(Ref + Accel * Dt, V_Max);
84 G when G < 0.0 ->
85 hera_pid_controller:saturation(Ref - Accel * Dt, V_Max);
86 _ ->
87 case Ref of
88 R when R > 0.05 ->
89 hera_pid_controller:saturation(Ref - Accel * Dt,

V_Max);↪→

90 R when R < -0.05 ->

124



91 hera_pid_controller:saturation(Ref + Accel * Dt,
V_Max);↪→

92 _ ->
93 0.0
94 end
95 end.
96

97 add_log(Log, DoLog) ->
98 case DoLog of
99 true ->

100 log_buffer:add(Log);
101 false -> ok
102 end.

Listing M.4: Full stability_engine.erl code.

Full nav_measure.erl source code
1 -module(nav_measure).
2 -behavior(hera_measure).
3

4 -export([init/1, measure/1]).
5

6 init([Pid, Role]) ->
7 Name = list_to_atom("NAV_" ++ atom_to_list(Role)),
8 io:format("[NAV] Starting ~p~n", [Role]),
9 {ok, #{seq => 1, target => Pid, role => Role}, #{

10 name => Name,
11 iter => infinity,
12 timeout => 5 % ODR is 238 Hz, the sensor updates every ~4.2 ms.
13 }}.
14

15 measure(State) ->
16 try
17 [Gy, Ax, Az] = pmod_nav:read(acc, [out_y_g, out_x_xl, out_z_xl],

#{g_unit => dps}),↪→

18 Pid = maps:get(target, State),
19 Pid ! {nav_data, [Gy, Ax, Az]},
20 Seq = maps:get(seq, State),
21 NewState = State#{seq => Seq + 1},
22 {ok, [Gy, Ax, Az], nav_measure, maps:get(role, State),

NewState}↪→

125



23 catch
24 _:Error ->
25 io:format("[NAV][ERROR] ~p~n", [Error]),
26 {ok, [], maps:get(role, State), State}
27 end.

Listing M.5: Full nav_measure.erl code.

Full sonar_measure.erl source code
1 -module(sonar_measure).
2 -behaviour(hera_measure).
3

4 -export([init/1, measure/1]).
5

6 -define(ALPHA, 0.15).
7 -define(MIN_CM, 15.0).
8 -define(MAX_CM, 648.0).
9

10 init([Role]) ->
11 Name = list_to_atom("SONAR_" ++ atom_to_list(Role)),
12 io:format("[SONAR] Starting ~p~n", [Role]),
13 State = #{
14 seq => 1,
15 role => Role,
16 last_distance => none
17 },
18 {ok, State, #{name => Name, iter => infinity, timeout => 50}} .
19

20 measure(State) ->
21 Role = maps:get(role, State),
22 receive
23 {authorize, Sender} ->
24 RawD0 = measure_distance(),
25

26 %% Hard gate
27 Valid = (RawD0 >= ?MIN_CM) andalso (RawD0 =< ?MAX_CM),
28 PrevD = maps:get(last_distance, State),
29 RawD = case Valid of true -> RawD0; false -> (PrevD =/=

none andalso PrevD) orelse RawD0 end,↪→

30

126



31 % Lowa-pass filter + hampel + smoothnig
32 LPF_filtered = low_pass_filter(RawD, PrevD, ?ALPHA),
33

34 Final = round_to(LPF_filtered, 2),
35 Seq = maps:get(seq, State),
36 send_to_main(Role, Sender, Final, Seq),
37 send_to_server(Role, Final, Seq),
38

39 NewState = State#{
40 seq => Seq + 1,
41 last_distance => Final,
42 hampel_buffer => LPF_filtered
43 },
44 {ok, [Final], NewState}
45 after 0 ->
46 {ok, [-1], State}
47 end.
48

49 %% --- helpers ---
50

51 measure_distance() ->
52 Dist_inch = pmod_maxsonar:get(),
53 Dist_inch * 2.54.
54

55 round_to(Value, Precision) ->
56 Factor = math:pow(10, Precision),
57 round(Value * Factor) / Factor.
58

59 low_pass_filter(RawD, LastD, Alpha) ->
60 case LastD of
61 none -> RawD;
62 _ -> Alpha * LastD + (1-Alpha) * RawD
63 end.
64

65 send_to_server(Role, D, Seq) ->
66 Msg = "sonar_data , " ++ atom_to_list(Role) ++ " , " ++

float_to_list(D) ++ " , " ++ integer_to_list(Seq),↪→

67 hera_com:send_unicast(server, Msg, "UTF8").
68

69 send_to_main(Role, Sender, D, Seq) ->
70 case Role of
71 robot_main ->
72 Sender ! {sonar_data, Role, [D, Seq]};

127



73 _ ->
74 Msg = "sonar_data , " ++ atom_to_list(Role) ++ " , " ++

float_to_list(D) ++ " , " ++ integer_to_list(Seq),↪→

75 hera_com:send_unicast(Sender, Msg, "UTF8")
76 end.

Listing M.6: Full sonar_measure.erl code.

Full kalman_computations.erl source code
1 -module(kalman_computations).
2

3 -export([init_kalman/0, old_init_kalman/0, update_with_measurement/4,
old_kalman_angle/6, kalman_predict_only/3, kalman_angle/7]).↪→

4

5 -define(RAD_TO_DEG, 180.0/math:pi()).
6 -define(DEG_TO_RAD, math:pi()/180.0).
7

8 -define(g, 9.81). % Gravity in m/sÂš
9 -define(M, 5.3). % Mass of the robot (kg)

10 -define(h, 0.41). % Height of the robot center of mass (m)
11 % Poid en haut -> un metre de g
12 -define(width, 0.185). % Width of the robot (m)
13 -define(height, 0.95). % Height of the robot (m)
14 -define(I, ?M * (math:pow(?width, 2) + math:pow(?height, 2)) / 12). % I

= M * (wÂš + hÂš) / 12 (rectangular parallelepiped)↪→

15

16 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
17 % KALMAN INITIALIZATION
18 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
19 calibrate_initial_state() ->
20 N = 500, % Increase the number of samples for better accuracy
21 Measurements = [pmod_nav:read(acc, [out_x_xl, out_z_xl, out_y_g])

|| _ <- lists:seq(1, N)],↪→

22 {Ax_Sum, Az_Sum, Gy_Sum} = lists:foldl(
23 fun ([Ax, Az, Gy], {Ax_Acc, Az_Acc, Gy_Acc}) ->
24 {Ax_Acc + Ax, Az_Acc + Az, Gy_Acc + Gy}
25 end,
26 {0.0, 0.0, 0.0},
27 Measurements
28 ),

128



29 Ax_Avg = Ax_Sum / N,
30 Az_Avg = Az_Sum / N,
31 Gy_Avg = Gy_Sum / N,
32

33 % Compute the initial angle and angular velocity
34 Initial_Angle = math:atan(Az_Avg / (-Ax_Avg)),
35 Initial_Angular_Velocity = (Gy_Avg - persistent_term:get(gy0)) *

?DEG_TO_RAD, % Subtract gyroscope bias↪→

36 log_buffer:add({main_loop, erlang:system_time(millisecond),
kalman_calibration, [Initial_Angle* ?RAD_TO_DEG,
Initial_Angular_Velocity]}),

↪→

↪→

37 {Initial_Angle, Initial_Angular_Velocity}.
38

39 init_kalman() ->
40 % Adjusted Kalman constants
41 R = mat:matrix([[3.0, 0.0], [0, 3.0e-6]]),
42 Q = mat:matrix([[1.0e-6, 0.0], [0.0, 2.5]]),
43

44 % Model constants
45 G = ?g,
46 Hh = ?h + (?I / (?M * ?h)),
47

48 Jh = fun (_) -> mat:matrix([[1, 0], [0, 1]]) end,
49 persistent_term:put(kalman_constant, {R, Q, Jh, G, Hh}),
50

51 % Initial State and Covariance matrices
52 {Initial_Angle, Initial_Angular_Velocity} =

calibrate_initial_state(),↪→

53 X0 = mat:matrix([[Initial_Angle], [Initial_Angular_Velocity]]),
54 P0 = mat:matrix([[0.01, 0], [0, 0.01]]), % Slightly increased

initial covariance↪→

55 {X0, P0}.
56

57 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
58 % KALMAN COMPUTATION
59 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
60 update_with_measurement(Gy, Ax, Az, [Xk, Pk]) ->
61 {R, _Q, Jh, _G, _Hh} = persistent_term:get(kalman_constant),
62 H = fun (X) -> [Th, W] = mat:to_array(X), mat:matrix([[Th], [W]])

end,↪→

63 Z = mat:matrix([[math:atan(Az / (-Ax))], [(Gy -
persistent_term:get(gy0)) * ?DEG_TO_RAD]]),↪→

64 {X1, P1} = hera_kalman:ekf_correct({Xk, Pk}, H, Jh, R, Z),

129



65 [Th_Kalman, _] = mat:to_array(X1),
66 Angle = Th_Kalman * ?RAD_TO_DEG,
67 [Angle, {X1, P1}].
68

69 kalman_predict_only(Dt, [Xk, Pk], Acc) ->
70 {_R, Q, _Jh, G, Hh} = persistent_term:get(kalman_constant),
71 F = fun (X, U) ->
72 [Th, W] = mat:to_array(X),
73 Th1 = Th + W * Dt,
74 W1 = W + ((G / Hh) * math:sin(Th) - (U / Hh) * math:cos(Th)) *

Dt,↪→

75 mat:matrix([[Th1], [W1]])
76 end,
77 Jf = fun (X) ->
78 [Th, _] = mat:to_array(X),
79 DW_dTh = ((G / Hh) * math:cos(Th) + (Acc / Hh) * math:sin(Th))

* Dt,↪→

80 mat:matrix([[1, Dt], [DW_dTh, 1]])
81 end,
82 {X1, P1} = hera_kalman:ekf_predict({Xk, Pk}, F, Jf, Q, Acc), % {X1,

P1}.↪→

83 [Th_Kalman, _] = mat:to_array(X1),
84 Angle = Th_Kalman * ?RAD_TO_DEG,
85 [Angle, {X1, P1}].
86

87 kalman_angle(Dt, Ax, Az, Gy, Acc, X0, P0) ->
88 {R, Q, Jh, G, Hh} = persistent_term:get(kalman_constant),
89

90 % Nonlinear state model (digital twin)
91 F = fun (X, U) ->
92 [Th, W] = mat:to_array(X),
93 Th1 = Th + W * Dt,
94 W1 = W + ((G / Hh) * math:sin(Th) - (U / Hh) * math:cos(Th)) *

Dt,↪→

95 mat:matrix([[Th1], [W1]])
96 end,
97

98 % Jacobian of F
99 Jf = fun (X) ->

100 [Th, _W] = mat:to_array(X),
101 DW_dTh = ((G / Hh) * math:cos(Th) + (Acc / Hh) * math:sin(Th))

* Dt,↪→

102 mat:matrix([[1, Dt],

130



103 [DW_dTh, 1]])
104 end,
105

106 % Observation function
107 H = fun (X) ->
108 [Th, W] = mat:to_array(X),
109 mat:matrix([[Th], [W]])
110 end,
111

112 % Measurement vector: angle from accelerometer, angular velocity
from gyro↪→

113 Z = mat:matrix([[math:atan(Az / (-Ax))], [(Gy -
persistent_term:get(gy0)) * ?DEG_TO_RAD]]),↪→

114 {X1, P1} = hera_kalman:ekf_control({X0, P0}, {F, Jf}, {H, Jh}, Q, R,
Z, Acc),↪→

115

116 [Th_Kalman, _W_Kalman] = mat:to_array(X1),
117 Angle = Th_Kalman * ?RAD_TO_DEG,
118 [Angle, {X1, P1}].
119

120

121 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
122 % OLD KALMAN COMPUTATION
123 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
124

125 old_init_kalman() ->
126 % Initiating kalman constants
127 R = mat:matrix([[3.0, 0.0], [0, 3.0e-6]]),
128 Q = mat:matrix([[3.0e-5, 0.0], [0.0, 10.0]]),
129 Jh = fun (_) -> mat:matrix([ [1, 0],
130 [0,

1]
])

↪→

↪→

131 end,
132 persistent_term:put(old_kalman_constant, {R, Q, Jh}),
133

134 % Initial State and Covariance matrices
135 X0 = mat:matrix([[0], [0]]),
136 P0 = mat:matrix([[0.1, 0], [0, 0.1]]),
137 {X0, P0}.
138

139 old_kalman_angle(Dt, Ax, Az, Gy, X0, P0) ->
140 Gy0 = persistent_term:get(gy0),

131



141 {R, Q, Jh} = persistent_term:get(old_kalman_constant),
142

143 F = fun (X) -> [Th, W] = mat:to_array(X),
144 mat:matrix([ [Th+Dt*W],
145 [W

]
])

↪→

↪→

146 end,
147 Jf = fun (_) -> mat:matrix([ [1, Dt],
148 [0,

1
]
])

↪→

↪→

↪→

149 end,
150 H = fun (X) -> [Th, W] = mat:to_array(X),
151 mat:matrix([ [Th],
152 [W ] ])
153 end,
154

155 Z = mat:matrix([[math:atan(Az / (-Ax))], [(Gy-Gy0)*?DEG_TO_RAD]]),
156 {X1, P1} = hera_kalman:ekf({X0, P0}, {F, Jf}, {H, Jh}, Q, R, Z),
157

158 [Th_Kalman, _W_Kalman] = mat:to_array(X1),
159 Angle = Th_Kalman * ?RAD_TO_DEG,
160 [Angle, {X1, P1}].

Listing M.7: Full kalman_computations.erl code.

Full log_buffer.erl source code
1 -module(log_buffer).
2 -export([init/1, add/1, flush_to_server/2]).
3

4 %% Create two ETS tables: one for logs, one for metadata (max, idx)
5 init(MaxSize) ->
6 ets:new(logs, [named_table, set, public]),
7 ets:new(log_meta, [named_table, set, public]),
8 ets:insert(log_meta, {max, MaxSize}),
9 ets:insert(log_meta, {count, 0}),

10 %% Start idx at -1 so first increment yields 0
11 ets:insert(log_meta, {idx, -1}).

132



12

13

14 add(Entry) ->
15 [{max, Max}] = ets:lookup(log_meta, max),
16 NewIndex = ets:update_counter(log_meta, idx, {2, 1, Max, 0}),
17 ets:insert(logs, {NewIndex, Entry}),
18 _ = ets:update_counter(log_meta, count, {2, 1, Max, Max}), %

saturating at Max↪→

19 ok.
20

21 dump() ->
22 [{idx, Last}] = ets:lookup(log_meta, idx),
23 [{count, Cnt}] = ets:lookup(log_meta, count),
24 [{max, Max}] = ets:lookup(log_meta, max),
25 case Cnt of
26 0 -> [];
27 _ ->
28 Start = ((Last - Cnt + 1) rem Max + Max) rem Max,
29 Indices = [((Start + I) rem Max) || I <- lists:seq(0, Cnt -

1)],↪→

30 [ {I, E} || I <- Indices, [{I, E}] <- [ets:lookup(logs, I)]
]↪→

31 end.
32

33 to_string(Value) when is_binary(Value) ->
34 binary_to_list(Value);
35 to_string(Value) when is_atom(Value) ->
36 atom_to_list(Value);
37 to_string(Value) ->
38 io_lib:format("~p", [Value]).
39

40 flush_to_server(ServerRole, SelfRole) ->
41 L = dump(),
42 lists:foreach(fun({Index, Entry}) ->
43 LogStr = format_log_entry(Entry),
44 Msg = "log : " ++ atom_to_list(SelfRole) ++ " , " ++

lists:flatten(LogStr),↪→

45 hera_com:send_unicast(ServerRole, Msg, "UTF8"),
46 ets:delete(logs, Index) %% <-- delete the entry after printing
47 end, L).
48

49 format_log_entry({Level, Timestamp, Category, Message}) ->
50 io_lib:format("[~s] ~p | ~s | ~s",

133



51 [string:to_upper(atom_to_list(Level)), Timestamp,
to_string(Category), to_string(Message)]);↪→

52 format_log_entry({Level, Timestamp, Message}) ->
53 io_lib:format("[~s] ~p | ~s",
54 [string:to_upper(atom_to_list(Level)), Timestamp,

to_string(Message)]);↪→

55 format_log_entry({Level, Timestamp}) ->
56 io_lib:format("[~s] ~p", [string:to_upper(atom_to_list(Level)),

Timestamp]);↪→

57 format_log_entry(Other) ->
58 io_lib:format("~p", [Other]).

Listing M.8: Full log_buffer.erl code.

Full numerl.erl source code
1 -module(numerl).
2 %-on_load(init/0).
3 -export([ eval/1, eye/1, zeros/2, equals/2, add/2, sub/2,mult/2,

divide/2, matrix/1, rnd_matrix/1, get/3, at/2, mtfli/1, mtfl/1,
row/2, col/2, transpose/1, inv/1, nrm2/1, vec_dot/2, dot/2,
init/0]).

↪→

↪→

↪→

4

5 %Matrices are represented as such:
6 %-record(matrix, {n_rows, n_cols, bin}).
7

8 init()->
9 ok = erlang:load_nif(atom_to_list(?MODULE), 0).

10

11 %Creates a random matrix.
12 rnd_matrix(N)->
13 L = [[rand:uniform(20) || _ <- lists:seq(1,N) ] || _ <-

lists:seq(1,N)],↪→

14 matrix(L).
15

16 %Combine multiple functions.
17 eval([L,O,R|T])->
18 F = fun numerl:O/2,
19 eval([F(L,R) |T]);
20 eval([Res])->
21 Res.

134



22

23 %%Creates a matrix.
24 %List: List of doubles, of length N.
25 %Return: a matrix of dimension MxN, containing the data.
26 matrix(_) ->
27 nif_not_loaded.
28

29 %%Returns the Nth value contained within Matrix.
30 at(_Matrix,_Nth)->
31 nif_not_loaded.
32

33 %%Returns the matrix as a flattened list of ints.
34 mtfli(_mtrix)->
35 nif_not_loaded.
36

37 %%Returns the matrix as a flattened list of doubles.
38 mtfl(_mtrix)->
39 nif_not_loaded.
40

41 %%Returns a value from a matrix.
42 get(_,_,_) ->
43 nif_not_loaded.
44

45 %%Returns requested row.
46 row(_,_) ->
47 nif_not_loaded.
48

49

50 %%Returns requested col.
51 col(_,_) ->
52 nif_not_loaded.
53

54

55 %%Equality test between matrixes.
56 equals(_, _) ->
57 nif_not_loaded.
58

59

60 %%Addition of matrix.
61 add(_, _) ->
62 nif_not_loaded.
63

64

135



65 %%Subtraction of matrix.
66 sub(_, _) ->
67 nif_not_loaded.
68

69

70 %% Matrix multiplication.
71 mult(A,B) when is_number(B) -> '*_num'(A,B);
72 mult(A,B) -> '*_matrix'(A,B).
73

74 '*_num'(_,_)->
75 nif_not_loaded.
76

77 '*_matrix'(_, _)->
78 nif_not_loaded.
79

80 %Matrix division by a number
81 divide(_,_)->
82 nif_not_loaded.
83

84

85 %% build a null matrix of size NxM
86 zeros(_, _) ->
87 nif_not_loaded.
88

89 %%Returns an Identity matrix NxN.
90 eye(_)->
91 nif_not_loaded.
92

93 %Returns the transpose of the given square matrix.
94 transpose(_)->
95 nif_not_loaded.
96

97 %Returns the inverse of asked square matrix.
98 inv(_)->
99 nif_not_loaded.

100

101

102 %------CBLAS--------
103

104 %nrm2
105 %Calculates the squared root of the sum of the squared contents.
106 nrm2(_)->
107 nif_not_loaded.

136



108

109 % : dot product of two vectors
110 % Arguments: vector x, vector y.
111 % x and y are matrices
112 % Returns the dot product of all the coordinates of X,Y.
113 vec_dot(_, _)->
114 nif_not_loaded.
115

116 % dgemm: A dot B
117 % Arguments: Matrix A, Matrix B.
118 % alpha, beta: numbers (float or ints) used as doubles.
119 % A,B,C: matrices.
120 % Returns the matrice resulting of the operations alpha * A * B + beta

* C.↪→

121 dot(_,_)->
122 nif_not_loaded.

Listing M.9: Full numerl.erl code [22].

Full user interface and server code

User interface code: RC_robot_UI.py

1 import pygame
2 import pygame_gui
3 import sys
4 import numpy as np
5 import serial
6 from Server import Server
7 import socket
8 import threading
9

10 class User_interface :
11 # App General State
12 WIDTH , HEIGHT = 1920 , 540 # Screen Size
13 running = True
14 in_popup = False
15 active_popup = None
16 temp_origin = None
17 x = 0
18 string = ""
19 image_dict = {}
20 rect_dict = {}

137



21 current_action = ""
22

23 # Log settings
24 logs = []
25 MAX_LOGS = 10
26 log_messages = []
27 LOG_PORT = 5001 # Port for receiving logs from the robot
28

29 # Robot state
30 message = 0 # Message to send to the robot
31 run = True
32 stand = False
33 kalman = True # Kalman filter is always enabled and cannot be

disabled
34 release_space = True
35 release_enter = True
36 release_t = True
37

38 def __init__ (self):
39

40 pygame .init ()
41 self.ser = serial . Serial (port="/dev/ ttyACM0 ", baudrate

=115200)
42

43 self. screen = pygame . display . set_mode (( self.WIDTH , self.
HEIGHT ), pygame . RESIZABLE )

44 pygame . display . set_caption ("Robot Controller ")
45

46 self. manager = pygame_gui . UIManager (( self.WIDTH , self.
HEIGHT ))

47 self.clock = pygame .time.Clock ()
48 self.clock.tick (200)
49

50 self. server = Server ()
51

52 self. load_figures ()
53

54 self. ui_socket = socket . socket ( socket .AF_INET , socket .
SOCK_DGRAM )

55 self. ui_socket .bind ((" 0.0.0.0 ", 6000)) # Port UI listens
on

56

57 self. log_thread = threading . Thread ( target =self.
listen_to_logs , daemon =True)

58 self. log_thread .start ()
59

60 def load_figures (self):
61 arrow_img = pygame .image.load('./ img/arrow.png ')
62 arrow_img = pygame . transform .scale(arrow_img , ( arrow_img .

138



get_width () // 4, arrow_img . get_height () // 4))
63

64 circle_img = pygame .image.load('./ img/point.png ')
65 circle_img = pygame . transform .scale(circle_img , (

circle_img . get_width () // 2, circle_img . get_height () // 2))
66

67 stop_img = pygame .image.load('./ img/ Stop_sign .png ')
68 stop_img = pygame . transform .scale(stop_img , ( stop_img .

get_width () // 10, stop_img . get_height () // 10))
69

70 self. image_dict ["stop"] = stop_img
71 self. image_dict ["arrow"] = arrow_img
72 self. image_dict [" circle "] = circle_img
73

74 # ######################################################## TRIGGER
CHECK #################################################

75

76 def event_handler (self):
77 for event in pygame .event.get ():
78 if event.type == pygame .QUIT:
79 self. running = False
80 self. manager . process_events (event)
81

82

83 # ######################################################## KEYBOARD
FUNCTIONS #################################################

84

85 def check_keys_movement (self , keys):
86 if keys[ pygame . K_SPACE ]:
87 if self. release_space :
88 self. release_space = False
89 if self. message < 10000000:
90 self.run = True
91 else:
92 self.run = False
93 self. current_action = ""
94 elif keys[ pygame .K_z] or keys[ pygame .K_UP] or self.

current_action == "front":
95 self.x += -1
96 elif keys[ pygame .K_s] or keys[ pygame . K_DOWN ] or self.

current_action == "back":
97 self.x += 1
98 elif keys[ pygame .K_q] or keys[ pygame . K_LEFT ] or self.

current_action == "left":
99 self.x += 1j

100 elif keys[ pygame .K_d] or keys[ pygame . K_RIGHT ] or self.
current_action == "right":

101 self.x += -1j
102 elif keys[ pygame . K_ESCAPE ]:

139



103 self. running = False
104

105 else:
106 self. release_space = True
107

108 def check_keys_kalman (self , keys):
109 # Kalman filter is always enabled and cannot be disabled
110 self. kalman = True
111

112 def check_test (self , keys):
113 if keys[ pygame .K_t] and self. release_t :
114 self.test , self. release_t = True , False
115 else:
116 self.test , self. release_t = False , True
117

118 def check_standing (self , keys):
119 if keys[ pygame . K_RETURN ] or self. current_action == "stand"

:
120 if self. release_enter :
121 self. stand = not self.stand
122 self. release_enter = False
123 else:
124 self. release_enter = True
125

126 # ######################################################## DRAWING
FUNCTIONS #################################################

127

128 def update_screen_size (self):
129 self.WIDTH , self. HEIGHT = self. screen . get_size ()
130 self. manager . set_window_resolution (( self.WIDTH , self.

HEIGHT ))
131

132 def draw_move_ctrl (self):
133 if self. message < 10000000:
134 self. draw_image ("stop", self.WIDTH //2, 100)
135 elif abs(self.x) == 0:
136 self. draw_image (" circle ", self.WIDTH //2, 100)
137 else:
138 angle = np.angle (-1* self.x, deg=True)
139 rotated_arrow = pygame . transform . rotate (self.

image_dict .get("arrow"), angle)
140 rotated_rect = rotated_arrow . get_rect ( center = (self.

WIDTH //2, 100))
141 self. screen .blit( rotated_arrow , rotated_rect . topleft )
142

143 def draw_string (self):
144 font = pygame .font.Font(None , 28)
145 self. string += " DYNAMIC \n" if not self.stand else " STATIC \

n"

140



146 self. string += " Kalman filter \n" if self. kalman else ""
147 self. string += " Running \n" if self.run else " Stopped \n"
148 self. string += " Message : " + str(self. message ) + "\n"
149

150 lines = self. string .split("\n") + [" --- LOGS ---"] + self.
log_messages

151

152 for i, line in enumerate (lines):
153 text = font. render (line , True , (0, 128, 0))
154 self. screen .blit(text , (10, 10 + i * 24))
155

156

157 # ######################################################## SERIAL
COMM FUNCTIONS
#################################################

158

159 def serial_comm (self):
160 data = self.run << 7 | self. kalman << 6 | self.test << 5 |

self.stand << 4 | (self.x.real == 1) << 3 | (self.x.real ==
-1) << 2 | (

161 self.x.imag == 1) << 1 | (self.x.imag == -1)
162 self.ser.write(bytes ([ data ]))
163

164 Content = self.ser. readline ()
165 Content = Content . decode (). replace ("\r\n", "")
166 self. message = int( Content )
167

168 # ###########################################################
HELPER FUNCTIONS
#####################################################

169 def is_click_image (self , name , event):
170 return self. rect_dict .get(name) != None and self. rect_dict

.get(name). collidepoint (event.pos)
171

172 def load_image (self , room_num , object , side):
173 img = pygame .image.load( object .img)
174 img = pygame . transform .scale(img , (img. get_width () // 5,

img. get_height () // 5))
175

176 name = object .type + "_" + side + "_" + str( room_num )
177 self. image_dict [name] = img
178

179 def draw_image (self , name , x, y):
180 plus_rect = self. image_dict .get(name). get_rect ( center = (x

, y))
181 self. screen .blit(self. image_dict .get(name), self.

image_dict .get(name). get_rect ( center = plus_rect . center ))
182 self. rect_dict [name] = plus_rect
183

141



184 def close_popup (self):
185 self. active_popup .kill ()
186 self. active_popup = None
187

188 # ########################################### LOG LISTENER
################################################

189

190 def listen_to_logs (self):
191 with socket . socket ( socket .AF_INET , socket . SOCK_DGRAM ) as s

:
192 s. setsockopt ( socket .SOL_SOCKET , socket . SO_REUSEADDR ,

1)
193 try:
194 s.bind (('', self. LOG_PORT ))
195 except OSError as e:
196 print (f"[ERROR] Cannot bind UDP log socket on port

{self. LOG_PORT }: {e}")
197 return
198

199 while True:
200 try:
201 data , _ = s. recvfrom (1024)
202 msg = data. decode ().strip ()
203 self.logs. append (msg)
204 if len(self.logs) > self. MAX_LOGS :
205 self.logs.pop (0)
206 except :
207 continue
208

209 def draw_logs (self):
210 font = pygame .font.Font(None , 24)
211 base_y = self. HEIGHT - 25 * self. MAX_LOGS - 10
212 for i, line in enumerate (self.logs):
213 text = font. render (line , True , (0, 0, 0))
214 self. screen .blit(text , (10, base_y + i * 25))
215

216

217 # ######################################################## MAIN
LOOP
############################################################

218

219 def main_loop (self):
220 while self. running :
221 self. screen .fill ((255 , 255, 255))
222

223 self. event_handler ()
224 self. update_screen_size ()
225

226 keys = pygame .key. get_pressed ()

142



227 self.x = 0
228 self. string = ""
229

230 if not self. in_popup :
231

232 self. check_keys_movement (keys)
233 self. check_keys_kalman (keys)
234 self. check_test (keys)
235 self. check_standing (keys)
236

237 self. draw_move_ctrl ()
238 self. draw_string ()
239 self. draw_logs ()
240

241 self. manager . update (self.clock.tick (60) /1000)
242 self. manager . draw_ui (self. screen )
243 pygame . display .flip ()
244 self. serial_comm ()
245

246 # Quit
247 pygame .quit ()
248 sys.exit ()
249

250 if __name__ == '__main__ ':
251 ui = User_interface ()
252 ui. main_loop ()

Code Listing M.1: Python RC robot interface

Server implementation: Server.py

1 import socket
2 import threading
3 from Sonar import Sonar
4 import time
5

6 class Server :
7 HOST = " 172.20.10.5 " # "172.20.10.4"
8

9 UI_PORT = 5001 # Port sur lequel le UI Ãľcoute
10 PORT = 5000 # Use the same port on both the server and the

GRiSP device
11 robot_sonar = {}
12 last_seen = {} # role -> last timestamp
13 lost_robots = set ()
14

15 def __init__ (self):
16 # Create robot_debug .txt if it doesn 't exist otherwise

clear it

143



17 with open(" robot_debug .txt", "w") as log_file :
18 log_file .write(" LOGGING STARTED \n")
19 self. rcvServer = threading . Thread ( target =self.rcv_server ,

daemon =True)
20 self. rcvServer .start ()
21 self. pinger = threading . Thread ( target =self. ping_server ,

daemon =True)
22 self. pinger .start ()
23 self. alive_checker = threading . Thread ( target =self.

check_alive_loop , daemon =True)
24 self. alive_checker .start ()
25

26 def ping_server (self):
27 while not len(self. robot_sonar ) == 3:
28 time.sleep (5)
29 message = "ping : server , " + self.HOST + " , " + str

(self.PORT)
30 self.send(message , "brd")
31

32 def broadcast_devices (self):
33 for role , sonar in self. robot_sonar .items ():
34 msg = f" Add_Device , {role} , {sonar.ip} , {sonar.port

}"
35 self.send(msg , "brd")
36 self.log(f"[ SERVER ] Broadcasted device info for {role}

")
37

38 def uni_devices (self , receiver ):
39 for role , sonar in self. robot_sonar .items ():
40 msg = f" Add_Device , {role} , {sonar.ip} , {sonar.port

}"
41 self.send(msg , " uni_sonar ", role= receiver )
42 self.log(f"[ SERVER ] Broadcasted device info for {role}

")
43

44 def rcv_server (self):
45 with socket . socket ( socket .AF_INET , socket . SOCK_DGRAM ) as

server_socket :
46 server_socket .bind (( self.HOST , self.PORT))
47 self.log(f"[ SERVER ] Listening for UDP packets on {self

.HOST }:{ self.PORT}")
48

49 while True:
50 data , addr = server_socket . recvfrom (1024)
51 try :
52 data = data. decode ()
53 if data [:16] == "Hello from robot":
54 role = data [11:]
55 is_reconnect = role in self. robot_sonar

144



56 self. robot_sonar [role] = Sonar(addr [0],
addr [1], role)

57 self. last_seen [role] = int(time.time ())
58 self.send("Ack , server ", " uni_sonar ",

role=role)
59 self.log("[ SERVER ] Received hello from " +

role)
60

61 if len(self. robot_sonar ) == 3:
62 self. broadcast_devices ()
63 elif is_reconnect :
64 self. lost_robots . discard (role)
65 self.log(f"[ SERVER ] Reconnected robot

{role}, rebroadcasting peers")
66 self. uni_devices (role)
67 elif data. startswith ("log :"):
68 log_message = data [6:]. strip ()
69 with open(" robot_debug .txt", "a") as

log_file :
70 log_file .write( log_message + "\n")
71 elif data. startswith ("alive :"):
72 role = data.split(":", 1) [1]. strip ()
73 self. last_seen [role] = int(time.time ())
74 if role not in self. robot_sonar :
75 self. robot_sonar [role] = Sonar(addr

[0], addr [1], role)
76 if len(self. robot_sonar ) == 3:
77 self. broadcast_devices ()
78 self.log(f"[ SERVER ] Received ALIVE from {

role} at {self. last_seen [role ]}")
79 elif data. startswith (" sonar_data ,"):
80 parts = data.split(",")
81 if len(parts) == 4:
82 role = parts [1]. strip ()
83 distance = float (parts [2]. strip ())
84 seq = int(parts [3]. strip ())
85 self.log(f"[ SERVER ] Received sonar

data from {role }: { distance } cm , seq: {seq}")
86 if role in self. robot_sonar :
87 self. robot_sonar [role ].

update_distance (distance , seq)
88 self. last_seen [role] = int(time.

time ())
89 else:
90 self.log(f"[ SERVER ] Unknown role

in sonar data: {role}")
91 else :
92 self.log(f"[ SERVER ] Received unknown

message : {data}")

145



93 except :
94 pass
95

96 def send(self , message , type , id=None , role=None):
97 if type == "brd":
98 threading . Thread ( target =self.brd_server , args =( message

,), daemon =True).start ()
99 elif type == " uni_sonar ":

100 threading . Thread ( target =self. uni_server_sonar , args =(
message , role), daemon =True).start ()

101 elif type == " uni_main ":
102 threading . Thread ( target =self. uni_server_main , args =(

message ,), daemon =True).start ()
103

104 def brd_server (self , message ):
105 with socket . socket ( socket .AF_INET , socket . SOCK_DGRAM ) as

srv_socket :
106 srv_socket . setsockopt ( socket .SOL_SOCKET , socket .

SO_BROADCAST , 1)
107

108 broadcast_ip = '172.20.10.15 '
109 port = 9000
110

111 srv_socket . sendto ( message . encode (), ( broadcast_ip ,
port))

112 self.log(f"[ SERVER ] Broadcasted to ({ broadcast_ip }, {
port }): { message }")

113

114 def uni_server_sonar (self , message , role):
115 with socket . socket ( socket .AF_INET , socket . SOCK_DGRAM ) as

srv_socket :
116 sonar = self. robot_sonar .get(role)
117 ip = sonar.ip
118 port = sonar.port
119 srv_socket . sendto ( message . encode (), (ip , port))
120 self.log("[ SERVER ] Sent to " + str(sonar.role) + " on

(" + str(ip) + ", " + str(port) + ") : " + str( message ))
121

122 def uni_server_main (self , message ):
123 robot_main = self. robot_sonar .get(" robot_main ")
124 if robot_main :
125 with socket . socket ( socket .AF_INET , socket . SOCK_DGRAM )

as srv_socket :
126 ip = robot_main .ip
127 port = robot_main .port
128 srv_socket . sendto ( message . encode (), (ip , port))
129 self.log(f"[ SERVER ] Sent to robot_main ({ip}, {

port }) : { message }")
130

146



131 def check_alive_loop (self):
132 while True:
133 now = int(time.time ()) # Current time in seconds
134 for role , last_time in self. last_seen .items ():
135 if now - last_time > 30:
136 self.log(f"[ SERVER ] Lost contact with {role }!

Last seen {now - last_time } seconds ago.")
137 if role not in self. lost_robots :
138 self. lost_robots .add(role)
139 self. try_reconnect (role)
140 else:
141 self. lost_robots . discard (role) # It 's alive

again
142 time.sleep (5)
143

144 def try_reconnect (self , role):
145 self.log(f"[ SERVER ] Attempting to reconnect {role }...")
146 msg = "ping : server , " + self.HOST + " , " + str(self.

PORT)
147 self.send(msg , "brd")
148

149 def log(self , msg):
150 print (msg)
151 self. send_to_ui (msg)
152

153 def send_to_ui (self , message ):
154 if self.HOST and self. UI_PORT :
155 with socket . socket ( socket .AF_INET , socket . SOCK_DGRAM )

as sock:
156 sock. sendto ( message . encode (), (self.HOST , self.

UI_PORT ))
157

158 def get_local_ip ():
159 s = socket . socket ( socket .AF_INET , socket . SOCK_DGRAM )
160 try:
161 # dummy connect to find your IP
162 s. connect ((" 8.8.8.8 ", 80))
163 IP = s. getsockname () [0]
164 except Exception :
165 IP = " 127.0.0.1 "
166 finally :
167 s.close ()
168 return IP
169

170 if __name__ == '__main__ ':
171 serv = Server ()

Code Listing M.2: Python server

147



Sonar class: Sonar.py

1 import time
2

3 class Sonar :
4 def __init__ (self , IP , Port , Role):
5 self.ip = IP
6 self.port = Port
7 self.role = Role
8 self. last_seen = int(time.time ())
9 self. distance = 0.0

10

11 def update_distance (self , distance , seq):
12 self. distance = distance
13 self.seq = seq
14 self. last_seen = int(time.time ())

Code Listing M.3: Python sonar class

Full source code of the lilygo on the robot side

Full lilygo_bot.ino source code
1 #include <SPI.h>
2 #include <LoRa.h>
3 #include <Arduino.h>
4 #include <Wire.h>
5

6 #include "motor_engine.h"
7

8 #define BAND 433E6
9 #define CONFIG_MOSI 27

10 #define CONFIG_MISO 19
11 #define CONFIG_CLK 5
12 #define CONFIG_NSS 18
13 #define CONFIG_RST 23
14 #define CONFIG_DIO0 26
15

16 #define SDCARD_MOSI 15
17 #define SDCARD_MISO 2
18 #define SDCARD_SCLK 14
19 #define SDCARD_CS 13
20

21 #define I2C_SLAVE_ADDR 0x40
22

148



23 // trapezoidal speed command parametter for turning, migration on GRiSP
for this part↪→

24 #define max_turn_speed 80
25 #define turn_acc 400
26

27

28 float I2C_command[2] = {0.0, 0.0}; // value received from GRiSP :
{wheels acceleration , turn speed}↪→

29

30 float freq_lim [13] = {300,200,175,150,125,100,90,80,70,60,50,40,30};
31 int size_test_freq = sizeof(freq_lim)/sizeof(freq_lim[0]);
32 int index_lim = 0;
33

34 // time mesure variable
35 unsigned long t_GRiSP;
36 unsigned long t_LORA;
37 unsigned long t_test;
38 unsigned long t_ESP;
39

40 // freq and period variable
41 float dt_GRiSP = 10;
42 float freq_GRiSP = 200;
43 float dt_ESP = 0;
44

45 // control byte received
46 byte cmd = 0; // received from LoRa communication and transfered to

GRiSP↪→

47 byte GRiSP_flags = 0; // Received from GRiSP
48

49 //control flag
50 bool new_cmd =false;
51 bool test = false;
52 bool disturb = false;
53 bool ext_end = true;
54

55

56

57 void setup() {
58 Serial.begin(115200);
59 // SPI - LoRa init
60 SPI.begin(CONFIG_CLK, CONFIG_MISO, CONFIG_MOSI, CONFIG_NSS);
61 LoRa.setPins(CONFIG_NSS, CONFIG_RST, CONFIG_DIO0);
62 if (!LoRa.begin(BAND)) {

149



63 Serial.println("Starting LoRa failed!");
64 while (1);
65 }
66

67 // I2C Slave init, work with IRQ so no need to incorporate into the
main loop↪→

68 Wire.begin(I2C_SLAVE_ADDR);
69 Wire.onReceive(GRiSP_receiver);
70 Wire.onRequest(GRiSP_sender);
71

72 // motor init, works on core nÂř2
73 engine_init();
74 delay(1000);
75 set_speed(0, 0);
76 set_acceleration(0, 0);
77

78 // time init
79 t_GRiSP = millis();
80 t_LORA = t_GRiSP;
81 t_ESP = t_GRiSP;
82 }
83

84

85 void loop() {
86 unsigned long new_t_ESP = millis();
87 dt_ESP = (new_t_ESP - t_ESP) / 1000.0;
88 t_ESP = new_t_ESP;
89 LoRa_receiver();
90 Event_handle();
91 delay(1);
92 }
93

94

95

96 void GRiSP_receiver(int howMany) {
97 if(howMany == 5){ // check if the packet match the expected lenght
98 unsigned long new_t_GRiSP = millis();
99 dt_GRiSP = (new_t_GRiSP - t_GRiSP) / 1000.0;

100 freq_GRiSP = freq_GRiSP * 0.99 + 1.0 / dt_GRiSP * 0.01;
101 t_GRiSP = new_t_GRiSP;
102

103 byte A;
104 byte B;

150



105 if (Wire.available()) {
106

107 // read and decode the wheel acceleration
108 A = Wire.read();
109 B = Wire.read();
110 I2C_command[0] = decoder(A, B);
111

112 // read and decode the differential turn speed
113 A = Wire.read();
114 B = Wire.read();
115 I2C_command[1] = decoder(A, B);
116

117 // read the flags
118 GRiSP_flags = Wire.read();
119 }
120

121 //set acceleration
122 if(!disturb && bitRead(GRiSP_flags, 4) && !bitRead(GRiSP_flags,

6)){↪→

123 set_acceleration(I2C_command[0], I2C_command[0]);
124 }
125

126 // Freeze
127 if (bitRead(GRiSP_flags, 6)) {
128 set_acceleration(0, 0);
129 set_speed(0, 0);
130 }
131

132 // extension/retraction of the rising system
133 if(bitRead(GRiSP_flags, 5)){
134 ext_end = stand(-30,60.0);
135 } else {
136 ext_end = stand(0,60.0);
137 }
138

139 }
140

141 // Empty the stack
142 while(Wire.available()){
143 Wire.read();
144 }
145 }
146

151



147 void GRiSP_sender()
148 {
149 byte v[5];
150 float* speeds = get_speed();
151 encoder(v, speeds[0]);
152 encoder(v+2, speeds[2]);
153

154 // control byte send to GRiSP witth : finsish extension/retraction
flag and the command inputs↪→

155 v[4] = (cmd & 127) | (is_ready() * 128);
156

157 //send
158 Wire.write((byte*) v, sizeof(v));
159 }
160

161 double decoder(byte X, byte Y) {
162 // decode half float to double
163

164 byte A = (X & 192);
165 if ((A & 64) == 0) A = A | 63; // fill the missing exponnent bytes

with the right value↪→

166 byte B = ((X << 2) & 252) | ((Y >> 6) & 3);
167 byte C = ((Y << 2) & 252);
168

169 byte vals[] = { 0x00, 0x00, 0x00, 0x00, 0x00, C, B, A };
170 double d = 0;
171 memcpy(&d, vals, 8);
172

173 return d;
174 }
175

176 void encoder(byte* res, double X){
177 // encode double to half float
178 byte vals[8];
179 memcpy(vals, &X,8);
180 byte A = vals[7];
181 byte B = vals[6];
182 byte C = vals[5];
183

184 res[0] = (A&192)|((B>>2)&63);
185 res[1] = ((B<<6)&192)|((C>>2)&63);
186

187 return ;

152



188 }
189

190 void LoRa_receiver(){
191 // receiption of LoRa packets
192 if (LoRa.parsePacket()) {
193 if(LoRa.available()>=2){
194 byte cmd1 = LoRa.read();
195 byte cmd2 = LoRa.read();
196 if(cmd1 == cmd2){
197 cmd = cmd1;
198 new_cmd = true;
199 }
200 }
201 while (LoRa.available()){
202 LoRa.read();
203 }
204 }
205 }
206

207 void Event_handle(){
208

209 //emergency stop
210 emergency(!bitRead(cmd, 7) || !bitRead(GRiSP_flags, 7));
211 if (!bitRead(cmd, 7) || !bitRead(GRiSP_flags, 7)){
212 set_acceleration(0, 0);
213 set_speed(0, 0);
214 }
215

216

217 // start test procedure
218 if(bitRead(cmd, 5)){
219 test = true;
220 t_test = millis();
221 }
222 if(test){
223 //start the disturbance 500ms to let the record start
224 if(millis()> t_test + 500){
225 //disturb = true;
226 //set_acceleration(40, 40);
227 }
228 // the disturbance is only applied between t=500 and t=800
229 if(millis()> t_test + 800){
230 disturb = false;

153



231 test = false;
232 }
233 }
234

235 set_turn(I2C_command[1]);
236

237 new_cmd =false;
238 }

Listing M.10: Full lilygo_bot.ino code.

Full motor_engine.cpp source code
1 #include "motor_engine.h"
2 TaskHandle_t Motor_engine_task;
3

4 int long total_stepA = 0;
5 int long total_stepB = 0;
6 int long total_stepC = 0;
7

8 //motor dir
9 int dirA = 0;

10 int dirB = 0;
11 int dirC = 0;
12

13 //motor dt
14 int dt_MA = 0;
15 int dt_MB = 0;
16 int dt_MC = 0;
17

18 //motor avance speed, rot/s
19 float v_MA = 0;
20 float v_MB = 0;
21 float v_MC = 0;
22

23

24

25 // Total wheel speed
26 float v_tot_A = 0;
27 float v_tot_B = 0;
28 float v_tot_C = 0;

154



29

30 float v_diff =0.0;
31

32 //motor accelerations, only applied on motor avance speed, rot/sÂš
33 float a_MA = 0;
34 float a_MB = 0;
35 float a_MC = 0;
36

37 //motor dist
38 float total_dist_A = 0;
39 float total_dist_B = 0;
40 float total_dist_C = 0;
41

42 //motor freq
43 double f_MA = 0;
44 double f_MB = 0;
45 double f_MC = 0;
46

47 //Rise system parameters
48 int target_step = 0;
49 float Speed_stand =0;
50

51 float v_max_ang = v_max /(PI * diameter);
52

53 void engine_init() {
54

55 pinMode(MOTOR_AC_EN_PIN, OUTPUT);
56 pinMode(MOTOR_B_EN_PIN, OUTPUT);
57 digitalWrite(MOTOR_AC_EN_PIN, LOW);
58 digitalWrite(MOTOR_B_EN_PIN, LOW);
59

60 pinMode(MOTOR_A_STEP_PIN, OUTPUT);
61 pinMode(MOTOR_B_STEP_PIN, OUTPUT);
62 pinMode(MOTOR_C_STEP_PIN, OUTPUT);
63 digitalWrite(MOTOR_A_STEP_PIN, LOW);
64 digitalWrite(MOTOR_B_STEP_PIN, LOW);
65 digitalWrite(MOTOR_C_STEP_PIN, LOW);
66

67 pinMode(MOTOR_A_DIR_PIN, OUTPUT);
68 pinMode(MOTOR_B_DIR_PIN, OUTPUT);
69 pinMode(MOTOR_C_DIR_PIN, OUTPUT);
70 digitalWrite(MOTOR_A_DIR_PIN, LOW);
71 digitalWrite(MOTOR_B_DIR_PIN, LOW);

155



72 digitalWrite(MOTOR_C_DIR_PIN, HIGH);
73

74

75 xTaskCreatePinnedToCore(
76 Motor_engine, /* Task function. */
77 "Motor_engine", /* name of task. */
78 10000, /* Stack size of task */
79 (void*)NULL, /* parameter of the task */
80 1, /* priority of the task */
81 &Motor_engine_task, /* Task handle to keep track of created task */
82 1); /* pin task to core 1 */
83 }
84

85

86 void Motor_engine(void* Parameters) {
87 //setup
88 Serial.print("Motor Engine running on core ");
89 Serial.println(xPortGetCoreID());
90

91

92 unsigned long t_MA = 0;
93 unsigned long t_MB = 0;
94 unsigned long t_MC = 0;
95

96 unsigned long t_motor = micros();
97 unsigned long dt_motor;
98 unsigned long new_t_motor;
99

100 //loop
101 while (true) {
102

103 //time calculation
104 new_t_motor = micros();
105 dt_motor = new_t_motor - t_motor;
106 t_motor = new_t_motor;
107 t_MA += dt_motor;
108 t_MB += dt_motor;
109 t_MC += dt_motor;
110

111

112 // incrementation of the stepper motors
113 if (dirA != 0 && t_MA > dt_MA) {
114 digitalWrite(MOTOR_A_STEP_PIN, HIGH);

156



115 total_stepA += dirA;
116 t_MA = 0;
117 } else {
118 digitalWrite(MOTOR_A_STEP_PIN, LOW);
119 }
120

121 if (dirB != 0 && t_MB > dt_MB) {
122 digitalWrite(MOTOR_B_STEP_PIN, HIGH);
123 total_stepB += dirB;
124 t_MB = 0;
125 } else {
126 digitalWrite(MOTOR_B_STEP_PIN, LOW);
127 }
128

129 if (dirC != 0 && t_MC > dt_MC) {
130 digitalWrite(MOTOR_C_STEP_PIN, HIGH);
131 total_stepC += dirC;
132 t_MC = 0;
133 } else {
134 digitalWrite(MOTOR_C_STEP_PIN, LOW);
135 }
136

137 engine_update(dt_motor); // uptate each motor step period
138 }
139 }
140

141

142

143 void set_speed(float vA, float vC) {
144 v_MA = vA/(PI * diameter);
145 v_MC = vC/(PI * diameter);
146 }
147

148 void set_angular_speed(float vA, float vC) {
149 v_MA = vA;
150 v_MC = vC;
151 }
152

153 void set_acceleration(float aA, float aC) {
154 a_MA = aA/(PI * diameter);
155 a_MC = aC/(PI * diameter);
156 }
157

157



158 void set_angular_acceleration(float aA, float aC) {
159 a_MA = aA;
160 a_MC = aC;
161 }
162

163 float list_speed[3] = { 0.0, 0.0, 0.0 };
164 float* get_speed() {
165 list_speed[0] = v_tot_A*(PI * diameter);
166 list_speed[1] = v_tot_B * lever_ratio;
167 list_speed[2] = v_tot_C*(PI * diameter);
168 return list_speed;
169 }
170

171 float list_dist[3] = { 0.0, 0.0, 0.0 };
172 float* get_dist() {
173 list_dist[0] = total_stepA * 1.0 / (steps * microsteps) * diameter *

PI;↪→

174 list_dist[1] = total_stepB * 1.0 / (steps * microsteps) *
lever_ratio;↪→

175 list_dist[2] = total_stepC * 1.0 / (steps * microsteps) * diameter *
PI;↪→

176 return list_dist;
177 }
178

179 //low speed loop
180 void engine_update(unsigned long dt_loop) {
181

182 //acceleration calculation of motor A with limit to +/- vmax
183 v_MA += a_MA * dt_loop * 1e-6 ;
184 if (v_MA > v_max_ang) {
185 v_MA = v_max_ang;
186 } else if (v_MA < -v_max_ang) {
187 v_MA = -v_max_ang;
188 }
189

190 //displacement calculation of motor B to set the extension/retraction
speed↪→

191 //and the wheel counter rotation
192 if (total_stepB > target_step){
193 v_MB = Speed_stand / lever_ratio;
194

195 } else if (total_stepB < target_step){
196 v_MB = -Speed_stand / lever_ratio;

158



197

198 } else {
199 v_MB = 0;
200 }
201

202 //acceleration calculation of motor A with limit to +/- vmax
203 v_MC += a_MC * dt_loop * 1e-6;
204 if (v_MC > v_max_ang) {
205 v_MC = v_max_ang;
206 } else if (v_MC < -v_max_ang) {
207 v_MC = -v_max_ang;
208 }
209

210 //total speeds
211 v_tot_A = v_MA + v_diff;
212 v_tot_B = v_MB;
213 v_tot_C = v_MC - v_diff;
214

215

216 //compute freq from speed
217 f_MA = v_tot_A * steps * microsteps;
218 f_MB = v_tot_B * steps * microsteps;
219 f_MC = v_tot_C * steps * microsteps;
220

221 //compute the increment period from freq and set the direction
222 if (f_MA < 0) {
223 dt_MA = 1e6 / abs(f_MA);
224 digitalWrite(MOTOR_A_DIR_PIN, HIGH);
225 dirA = 1;
226 } else if (f_MA > 0) {
227 dt_MA = 1e6 / abs(f_MA);
228 digitalWrite(MOTOR_A_DIR_PIN, LOW);
229 dirA = -1;
230 } else {
231 dirA = 0;
232 }
233

234

235 if (f_MB > 0) {
236 dt_MB = 1e6 / abs(f_MB);
237 digitalWrite(MOTOR_B_DIR_PIN, LOW);
238 dirB = -1;
239 } else if (f_MB < 0) {

159



240 dt_MB = 1e6 / abs(f_MB);
241 digitalWrite(MOTOR_B_DIR_PIN, HIGH);
242 dirB = 1;
243 } else {
244 dirB = 0;
245 }
246

247 if (f_MC > 0) {
248 dt_MC = 1e6 / abs(f_MC);
249 digitalWrite(MOTOR_C_DIR_PIN, HIGH);
250 dirC = -1;
251 } else if (f_MC < 0) {
252 dt_MC = 1e6 / abs(f_MC);
253 digitalWrite(MOTOR_C_DIR_PIN, LOW);
254 dirC = 1;
255 } else {
256 dirC = 0;
257 }
258 }
259

260 void reset_dist() { //reset function
261 total_stepA = 0;
262 total_stepB = 0;
263 total_stepC = 0;
264 }
265

266 void set_turn(float angular_speed){ // apply a differential speed on
the wheel to turn↪→

267 v_diff = (lenght_btw_wheels*PI*angular_speed / (180.0*2))/(PI *
diameter) ;↪→

268 }
269

270 void emergency(bool stop){ //shut off the power
271 if(stop){
272 digitalWrite(MOTOR_AC_EN_PIN, HIGH);
273 digitalWrite(MOTOR_B_EN_PIN, HIGH);
274 }else{
275 digitalWrite(MOTOR_AC_EN_PIN, LOW);
276 digitalWrite(MOTOR_B_EN_PIN, LOW);
277 }
278 }
279

280 bool stand(float angle, float speed){

160



281 target_step = angle/ (360 * lever_ratio) * steps * microsteps;
282 Speed_stand = speed*1.0/360.0 ; // go from deg/s to rot/s
283 return total_stepB == target_step;
284 }
285

286

287 bool is_ready(){
288 return total_stepB == target_step;
289 }

Listing M.11: Full motor_engine.cpp code.

Full motor_engine.h source code
1 #pragma once
2

3 //#include <stdint.h>
4 #include <Arduino.h>
5

6 #define sgn(x) ((x) < 0 ? -1 : ((x) > 0 ? 1 : 0))
7

8 #define MOTOR_AC_EN_PIN 14
9 #define MOTOR_A_STEP_PIN 12

10 #define MOTOR_A_DIR_PIN 13
11 #define MOTOR_B_EN_PIN 15
12 #define MOTOR_B_STEP_PIN 2
13 #define MOTOR_B_DIR_PIN 0
14 #define MOTOR_C_STEP_PIN 4
15 #define MOTOR_C_DIR_PIN 25
16

17 #define v_max 100 // speed max, in cm/s
18 #define microsteps 4
19 #define steps 400
20 #define diameter 10 // cm
21 #define lever_ratio 0.09090909090909090909090909090909 // 12/132
22 #define lenght_btw_wheels 24 // cm
23

24 void engine_init();
25

26 void Motor_engine(void *);
27

161



28 void engine_update(unsigned long dt_loop);
29

30 void set_speed(float,float);
31

32 void set_angular_speed(float,float);
33

34 void set_acceleration(float,float);
35

36 void set_angular_acceleration(float,float);
37

38 float* get_speed();
39

40 float* get_dist();
41

42 void reset_dist();
43

44 void set_turn(float);
45

46 void emergency(bool);
47

48 bool stand(float,float);
49

50 void raise_dir(int);
51

52 bool is_ready();

Listing M.12: Full motor_engine.h code.

Full source code of the lilygo on the user side

Full liygo_user.ino source code
1 #include <SPI.h>
2 #include <LoRa.h>
3 #include <Wire.h>
4

5

6 #define Pin 15
7 #define Buzz 13
8

9 #define LORA_PERIOD 433

162



10 #define BAND 433E6
11

12

13 #define CONFIG_MOSI 27
14 #define CONFIG_MISO 19
15 #define CONFIG_CLK 5
16 #define CONFIG_NSS 18
17 #define CONFIG_RST 23
18 #define CONFIG_DIO0 26
19

20

21

22 unsigned long t ;
23 int state = 0;
24 int prevstate = 0;
25 byte cmd;
26

27 void setup()
28 {
29 // init serial
30 Serial.begin(115200);
31 while (!Serial);
32

33

34 // init LoRa
35 SPI.begin(CONFIG_CLK, CONFIG_MISO, CONFIG_MOSI, CONFIG_NSS);
36 LoRa.setPins(CONFIG_NSS, CONFIG_RST, CONFIG_DIO0);
37 if (!LoRa.begin(BAND)) {
38 Serial.println("Starting LoRa failed!");
39 while (1);
40 }
41

42 //init Pin
43 pinMode(Pin, OUTPUT);
44 pinMode(Pin, INPUT_PULLUP);
45 pinMode(Buzz, OUTPUT);
46 digitalWrite(Buzz, LOW);
47

48 prevstate = esp_sleep_get_wakeup_cause()!=ESP_SLEEP_WAKEUP_TIMER &&
!digitalRead(Pin);↪→

49 t = millis();
50 }
51

163



52 int count = 0;
53

54 //main loop
55 void loop(){
56 Keyboard_input();
57 LoRA_sender();
58 }
59

60 void LoRA_sender(){
61

62 state = digitalRead(Pin);
63

64 if(state==HIGH){
65 cmd = cmd & 127;
66 }
67

68 LoRa.beginPacket();
69 // send two packet for redundancy
70 LoRa.write(cmd);
71 LoRa.write(cmd);
72 LoRa.endPacket();
73 Serial.println(cmd, BIN);
74

75

76 //buzzer logic
77 if(state == HIGH && prevstate == LOW){
78 digitalWrite(Buzz, HIGH);
79 delay(100);
80 digitalWrite(Buzz, LOW);
81 }
82

83

84 if(state == LOW && prevstate == HIGH){
85 digitalWrite(Buzz, HIGH);
86 delay(100);
87 digitalWrite(Buzz, LOW);
88 }
89 prevstate = state;
90 }
91

92

93 void Keyboard_input(){
94 if (Serial.available() > 0) {

164



95 cmd = Serial.read();
96 }
97

98 while(Serial.available()){
99 Serial.read();

100 }
101 }

Listing M.13: Full liygo_user.ino code [22].

Full board_def.h source code
1 #include <Arduino.h>
2

3 #define LORA_V1_0_OLED 0
4 #define LORA_V1_2_OLED 0
5 #define LORA_V1_6_OLED 1
6 #define LORA_V2_0_OLED 0
7

8 // Change here whether you define Sender or Receiver.
9 // The rest should be the same

10 //#define LORA_SENDER 0
11 #define LORA_SENDER 1
12

13 #define LORA_PERIOD 433
14 // #define LORA_PERIOD 915
15 //#define LORA_PERIOD 433
16

17 #if LORA_V1_0_OLED
18 #include <Wire.h>
19 #include "SSD1306Wire.h"
20 #define OLED_CLASS_OBJ SSD1306Wire
21 #define OLED_ADDRESS 0x3C
22 #define OLED_SDA 4
23 #define OLED_SCL 15
24 #define OLED_RST 16
25 #define CONFIG_MOSI 27
26 #define CONFIG_MISO 19
27 #define CONFIG_CLK 5
28 #define CONFIG_NSS 18
29 #define CONFIG_RST 14

165



30 #define CONFIG_DIO0 26
31 // ! There are two versions of TTGO LoRa V1.0,
32 // ! the 868 version uses the 3D WiFi antenna, and the 433 version

uses the PCB antenna.↪→

33 // ! You need to change the frequency according to the board.
34

35 #define SDCARD_MOSI -1
36 #define SDCARD_MISO -1
37 #define SDCARD_SCLK -1
38 #define SDCARD_CS -1
39

40 #elif LORA_V1_2_OLED
41 //Lora V1.2 ds3231
42 #include <Wire.h>
43 #include "SSD1306Wire.h"
44 #define OLED_CLASS_OBJ SSD1306Wire
45 #define OLED_ADDRESS 0x3C
46 #define OLED_SDA 21
47 #define OLED_SCL 22
48 #define OLED_RST -1
49 #define CONFIG_MOSI 27
50 #define CONFIG_MISO 19
51 #define CONFIG_CLK 5
52 #define CONFIG_NSS 18
53 #define CONFIG_RST 23
54 #define CONFIG_DIO0 26
55

56 #define SDCARD_MOSI -1
57 #define SDCARD_MISO -1
58 #define SDCARD_SCLK -1
59 #define SDCARD_CS -1
60

61 #define ENABLE_DS3231
62

63 #elif LORA_V1_6_OLED
64 #include <Wire.h>
65 #include "SSD1306Wire.h"
66 #define OLED_CLASS_OBJ SSD1306Wire
67 #define OLED_ADDRESS 0x3C
68 #define OLED_SDA 21
69 #define OLED_SCL 22
70 #define OLED_RST -1
71

166



72 #define CONFIG_MOSI 27
73 #define CONFIG_MISO 19
74 #define CONFIG_CLK 5
75 #define CONFIG_NSS 18
76 #define CONFIG_RST 23
77 #define CONFIG_DIO0 26
78

79 #define SDCARD_MOSI 15
80 #define SDCARD_MISO 2
81 #define SDCARD_SCLK 14
82 #define SDCARD_CS 13
83

84 #elif LORA_V2_0_OLED
85 #include <Wire.h>
86 #include "SSD1306Wire.h"
87 #define OLED_CLASS_OBJ SSD1306Wire
88 #define OLED_ADDRESS 0x3C
89 #define OLED_SDA 21
90 #define OLED_SCL 22
91 #define OLED_RST -1
92

93 #define CONFIG_MOSI 27
94 #define CONFIG_MISO 19
95 #define CONFIG_CLK 5
96 #define CONFIG_NSS 18
97 #define CONFIG_RST 23
98 #define CONFIG_DIO0 26
99

100 #define SDCARD_MOSI 15
101 #define SDCARD_MISO 2
102 #define SDCARD_SCLK 14
103 #define SDCARD_CS 13
104

105 #else
106 #error "please select board"
107 #endif
108

109

110 #if LORA_PERIOD == 433
111 #define BAND 433E6
112 #elif LORA_PERIOD == 868
113 #define BAND 868E6
114 #elif LORA_PERIOD == 915

167



115 #define BAND 915E6
116 #else
117 #error "Please select the correct lora frequency"
118 #endif

Listing M.14: Full board_def.h code [22].

168



UNIVERSITÉ CATHOLIQUE DE LOUVAIN 
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl


	List of figures
	List of tables
	List of acronyms
	Introduction
	Context
	Objectives
	Contributions
	Roadmap

	Resources and background
	Erlang programming language
	GRiSP2 board and platform
	Technical specifications of the board
	Pmod standards
	Pmod NAV
	Pmod MAXSONAR


	Communication protocols
	I2C protocol
	SPI protocol
	UART Protocol

	Hera framework
	Kalman filter
	Extended Kalman Filter (EKF)

	Control systems
	Control loop
	PID control strategy

	Auto-stabilized two-wheeled robot

	Overall design
	Hardware overview
	Objectives and specifications
	Overall system diagram

	Multi-level system architecture
	Sensor fusion : Kalman filter
	Physical modeling
	Movement equations

	Advanced "digital twin" model for the Extended Kalman Filter
	State and input definition
	Non-linear dynamic model
	State transition Jacobian
	Measurement model
	The observation model
	Observation Jacobian
	R : The measurement noise covariance
	Q : The process noise covariance


	Stability loop
	Controllers
	Trapezoidal speed profiles
	Controller parameters tuning

	Motor drivers
	Wheel motors control
	Arm motor control
	Logical command operator


	Obstacle avoidance
	Executive loop
	FSM overview
	State descriptions
	Transition triggers


	Hardware implementation
	Part 1 : The base of the robot
	Floor 0: The robot's drivetrain
	The static support system

	Floor 1: Stepper motor drivers, the Lilygo LoRa32 and voltage converters
	Stepper motor drivers and PCB
	Lilygo LoRa32
	Voltage converters

	Floor 3: The GRiSPs, sonars and battery
	GRiSP functions and positions
	Optimization of sonar placement


	Part 2: Height structure of the robot
	Part 3: Main GRiSP casing
	Top plate and counterweight design for dynamic stability
	Overall electrical circuit

	Software implementation
	Distributed architecture
	GRiSP software architecture
	Balancing control and communication handling
	Configuration of the GRiSP
	Sonar scheduler for the obstacle avoidance mechanism
	Communication and message handling

	High-level main loop
	Navigation measurements
	Sonar measurements
	Stability controller engine
	Debugging tools

	Lyligo ESP32 software architecture
	Server and user interface architecture

	Evaluation
	Stability reference case
	Translation movement
	Turning
	Dynamic/static mode transition
	Performance of the obstacle avoidance mechanism

	Limitations
	External limitations
	Types of floors
	Impact of the payload

	Internal limitations
	Speed and acceleration commands
	Processing frequency

	Additional limitations

	Materials and costs
	Power consumption
	Comparison with the previous master's thesis

	Conclusion and future works
	Bibliography
	Appendices
	User interface
	Evaluation static support system
	Materials and costs table
	Sonar placement optimization code
	PCB design
	Physical modelling
	Newton-Euler equations
	Algorithms
	I2C packet structure
	LED debugging indicators
	Experimentation setup for payload tests
	Obstacle avoidance evaluation of the backward sonar
	Full source code



