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Abstract

Domotic systems are becoming increasingly prevalent in our daily lives, driven
by both the evolution of connected devices and advances in new technologies.
Businesses and consumers alike are increasingly encouraged to take advantage of
these innovations, both to improve their performance and for the comfort they
offer. These systems most often use multi-agent sensor networks that must operate
reliably even in changing or constrained environments. In such contexts, sensor data
fusion and dynamic management of information sources become major challenges
for maintaining the accuracy of estimates and ensuring continuity of operations.

This master’s thesis studies the integration of a dynamic sensor responsibility-
transfer mechanism between data sources used for sensor-fusion. Using GRiSP2
prototyping boards and the Hera framework, we developed a multi-agent archi-
tecture enabling a self-balancing robot to navigate a scaled-down model of a
multi-room building. The system combines ultrasonic sonars placed in each room
with an onboard inertial sensor to perform real-time sensor fusion for estimating
the position and orientation of our robot agent.






“The future of work is not about replacing humans with

machines;
it’s about augmenting human capabilities with technology”

— Satya Nadella [12]
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Part 1

Practical Domotics Using Sensor

Fusion: Responsibility Handover
of a Mobile Robot in a Building






Chapter 1

Introduction

1.1 Context

In 1960, Rudolph E. Kalman introduced the first version of his algorithm to the
Ames Research Center [3]. The aim of his algorithm was to infer an unknown state
using available noisy data. This process is known as sensor fusion. This term is
used for filters that use data from different sensors to improve the output data or
to deduce new state variables, as in the case of the Kalman filter.

Later on, NASA’s Dynamic Analysis Branch worked on the next iteration of
the filter. [11]. Their work led to the separation of the algorithm into two separate
steps: prediction and update. This separation allowed the asynchronous processing
of measurements coming from the different sensors, as prediction steps could be
done without new data.

Still, that evolved version does not have the means to choose the most relevant
data in a list of available measurements, nor to switch dynamically between different
sensors following their actual state estimation.

In today’s world, where Internet of Things (IoT) and domotic systems are
everywhere around our homes, this ability becomes critical. In a system where the
environment in which a Kalman filter operates changes or is discontinued, some
sources of data may become irrelevant or useless. Using irrelevant data in a Kalman
Filter may produce estimates without any relation with the real-world state, which
can be catastrophic.



1.2 Objectives

The goal of our master’s thesis is twofold.

First, we aim to give a robot the ability to orient itself in a complex full scale
building. Put simply, our goal is to make the robot aware of its location. In order
to achieve this feat, we will create and implement an IoT system allowing a robot to
move around in a reduced scale mockup of a house, using data coming from sonars
placed in the rooms to deduce its position. This small scale test environment will
give us a great starting point for the potential development of a full scale prototype
as it takes into consideration all the constraints that a real-world building would
impose.

Second, we will incorporate the possibility of the handover of responsibility
between the sensors used by the sensor-fusion. In other words, we aim to demon-
strate the feasibility for a system to dynamically reassign the responsibility to
different data sources used for sensor fusion and adapt to the resulting change of
responsibility.

1.3 Contributions

We can identify the following list of contributions, resulting from the work done for
this master’s thesis:

o We refactor and extend the software of a robot built for a previous master’s
thesis and integrate it in a larger system.

o We create a multi-agent distributed system using GRiSP2 prototyping boards
and sensor-fusion to allow a robot to determine its position. In other words,
we add a new layer of awareness (location awareness) in the process of the
robot.

o We demonstrate the feasibility for a robot to dynamically hand over its focus
to different groups of sensors, modifying its sensor-fusion operations in the
process.

e We demonstrate how useful the Hera framework is for the creation of an IoT
distributed system.

o We add new functionalities to the Hera framework, including the possibility
to handle the loss of connectivity, to create a publisher/subscriber system or
to communicate with non-Erlang systems.

4



We clarify the organization and document the Hera framework’s API and
inner works.

We implement a time multiplexing like protocol for the prevention of cross
talk interferences in the sonar sensors.

We create a propagation protocol that allows communication in a discontinued
environment.

We implement an executive function above a timeclock in order to check
whether a measurement is needed.

We implement a Kalman filter using Hera to determine the position, angle
and room in which an object is moving.

We create a data representation of a mutli-room building. Figure 1.1a shows
the physical representation we made of a three room building and Figure
1.1b shows its digital representation.

———

# $

®
D) e (@)

(a) Physical Mockup Representation of (b) Digital Representation of a Three
a Three Room Building Room Building

Figure 1.1: Building Representation

All the code developed for this master’s thesis is available on the GitHub

Grisp_ robot repository!, on the Hera repository? or in Appendix to the present
document.

Thttps://github.com/Nicodaube/Grisp_ robot
Zhttps://github.com /Nicodaube/hera



1.4 Roadmap

This document is divided into five main parts:

Chapter 2 summarizes all the background knowledge necessary to understand
the following development. Section 2.1 explains all the fundamental knowledge
and Section 2.2 details the three master’s thesis on which this one builds.

Chapter 3 presents the system that we designed. Section 3.1 explains the
creation of the physical mockup and parts used to test the system and Section
3.2 explains the system’s architecture and the different protocols designed for
our system.

Chapter 4 deals with the actual implementation. Section 4.1 details our
work on Hera, Section 4.2 talks about the room agent, Section 4.3 shows
our additions to the robot and Section 4.4 explains the use of the Laptop
Controller.

Chapter 5 explains how we tested each feature of our system and shows the
according results. Section 5.1 talks about the errors we encountered in the
sonar measures and how we got around them. Then, Section 5.2 shows the
results of our Kalman filter tests. Following this, Section 5.3 shows the results
of our tests on the handover protocol and on the propagation protocol.

Lastly, Chapter 6 will finish by discussing our system, its limitations and the
work that could further improve our present contributions.



Chapter 2

Background

2.1 Fundamentals
2.1.1 The GRiSP2 board

GRIiSP2 are the heart of our system, they are the main computing unit used in the
robot and the sole one in each of our sensors. At the maximum tested size, our
system features seven of those boards.

The GRiSP2 Board [9] is a system on a module (SoM) prototyping platform
developed by Peer Stritzinger GmbH [10]. Designed with IoT and distributed
systems in mind, it is able to run an Erlang/OTP virtual machine (known as
BEAM). This board features a large range of input/output ports, such as GPIO,
UART, SPI, I?2C, Ethernet, WiFi, USB and more.

GPIO (General Purpose Input Output) pins are the most basic wired way of
interfacing with outside components. Every pin can individually be set either as
an input or an output, making it very modular. The user can then use software
to put its state as 1 or 0. This very manual usage makes it perfect for interfacing
LEDs or buttons, but limits its use for communication purposes.

UART (Universal Asynchronous Receiver/Transmitter) are point-to-point serial
links using a master transmitting to a slave. It can transmit data based on an
agreed baud rate, common for both receiver and transmitter. It uses a set of three
links, namely a GND (Ground) link, an RX (Receiver) and a TX (Transmitter) link.



SPI (Serial Peripheral Interface) is a high-frequency way of transmitting data
from a master to a set of slaves and vice versa. It uses a CLK (Clock) pin, a MISO
(Master In Slave Out) pin, a MOSI (Master Out Slave In) pin and a CS (Chip
Select) pin for slave selection. It is ideal for high throughput needs.

I2C (Inter Integrated Circuit) is a multi-master connection, it is slower than
SPI, but only uses two connections : a CLK wire (Clock) and an SDA wire for
data. Its built-in addressing allows multi peripherals on the same bus.

Each GRiSP2 board also features five jumpers that can be set on or off.

GRiSP2 boards run the BEAM virtual machine thanks to an RTEMS (Real-
Time Executive for Multiprocessor Systems) [15] instance. RTEMS is an open
source version of the real-time operating system (RTOS). It supports multiple
architectures and is used in a wide range of industries including the medical and
aerospace sectors.

The GRiSP2 boards possess several Pmod enabled ports. These enable us
to use Digilent Pmod sensors to extend the capabilities of the GRiSP2 boards.
Those Pmod inputs are used in two critical components of the developed system,
as explained below.

Figure 2.1: The Peer Stritzinger Gmbh GRiSP2 Board [9]



Pmod MaxSonar

The Digilent Pmod MaxSonar [8] is an ultrasonic range finder that can be connected
to the UART port of the GRiSP2 board. It uses a burst of thirteen 42kHz impulses
of varying width to measure ranges between 6 to 255 inches (15.24 to 648cm). This
measure can be read every 50ms with a precision of around 2.54cm. It is mounted
on each of the components we call "sensors" and used to determine the distance at
which the robot is located.

Figure 2.2: The Digilent Pmod MaxSonar [8]

Pmod Nav

The Digilent Pmod Nav [18] is a multi-sensor Pmod module composed of a 3-axis
accelerometer, a 3-axis gyroscope, a 3-axis magnetometer and a barometer. It
connects to the SPI Bus of the GRiSP boards and is extensively used in the robot
in the two running Kalmans filters (stability and position).

Figure 2.3: The Digilent Pmod Nav [18§]



2.1.2 FErlang programming language

The Erlang programming language is a multi-agent message passing language.
It was originally developed by the Ericsson Computer Science Laboratory, with
telecommunication applications in mind

Erlang comes with a motto: "Let it crash!", meaning that programs are built to
handle the possibility of failure. Erlang achieves its goal by creating a hierarchy tree
of lightweight processes. The parents, called supervisors, are in charge of restarting
faulty processes following a predetermined strategy. The available strategies for
restart are one for one (only the faulty child gets restarted), one for all (when one
child dies, all children are restarted), simple one for one (restart the faulty instance
in a set of same processes) and rest for one (restart the faulty child and all the
children started after this one).

Behaviours are an other important Erlang concept. The Erlang documenta-
tion [4] defines behaviours as a formalization of the common patterns occurring in
different processes. For example, two supervisors only differ in their children and
in their way to supervise them. We will bring back this concept when explaining
how Hera works.

This multi-agent behaviour also helps with the development of distributed,
concurrent and elastic systems. Its message-passing behaviour allows data to be
passed between different Erlang processes. The programming language comes with
OTP (Open Telecom Platform), a collection of Erlang libraries allowing for easier
development.

To maximize availability, Erlang incorporates a "hot-loader" capability that
allows users to update code without shutting down the whole application.

As far as its downsides are concerned, Erlang is not aimed at performing
intensive computation tasks. This lack of performance may slow the programs
down when heavy computations are required. To accelerate those computations
or access lower components of the system, Erlang allows the integration of NIFs
(Native Implemented Functions). These function blocks are written in C and can
improve the performance of the system significantly. Of course, NIFs come with a
tradeoff. When you enter a NIF, you leave the Erlang safe environment, abandoning
the benefits of its fault tolerancy. NIFs thus need to be used with care as they
induce BEAM VM crash possibilities in the system.

10



2.1.3 Signal processing filters
Low pass filter

The Low Pass Filter (LPF) is a well-known signal processing filter. It is used to
smooth data measurement, filtering out the quick changes, often synonym of noise
or errors. It works by giving a chosen weight to the previous measure relative to
the new one. Using a parameter o we can define the new measure = at step k as:

rp=a*xxi_ 1+ (1 — ) *xg

Hampel filter

The Hampel filter [14] is a filter using a sliding window to detect and filter anomalies
or outliers in a series of data points. It works using the Median Absolute Deviation
(MAD) [2]. It measures the amount of variation in a set of data, much like the
variance but much less influenced by extreme values. The MAD of a list of points
Y is defined as :
Y = median(Y)
MAD = median(|Y; — Y/)

Let Y be the median of the original Y list. The MAD is defined as the median
of the list formed by the absolute difference between each value and this median Y.

The Hampel filter uses two different parameters :

1. The Half window size K: the size of the sliding window. The window
length must be odd to allow for a true median. The true size of the window
is thus 2K + 1.

2. The Threshold n,: the strength of the filter determines when a data point
is considered an outlier.

The algorithm is as follows [24] :
 First we add the sample to the window (buffer).

e Then we compute the median of the buffer (M) and the MAD (M AD) of
the window

o At last, the output value (x) is M if
lx — M| > n, * MAD

else return the measure x.

11



2.1.4 Kalman filter

The Kalman filter is a mathematical algorithm that efficiently and recursively
solves the problem of estimating the state of a dynamic system from noisy and
incomplete measurements. It operates by maintaining a correction prediction cycle.
First, it uses a mathematical model to predict the system’s next state. It then
corrects this prediction using real-world measurements as they become available.

Initially, the filter predicts the state of the system and the associated uncertainty.
When a new measurement is received, the filter updates its prediction by calculating
a weighted average between the predicted state and the new measurement, the
weights being inversely proportional to their uncertainties. This correction reduces
the estimation error by optimally combining model information and sensor data.

The Kalman filter assumes that all noise processes are Gaussian and that the
system can be described by linear models. Under these assumptions, it produces
an optimal estimate in the sense that it minimizes the mean squared error.

0. Set initial Values

Z9, Po

[
Ej; = Afkfl

5= T

P, =AP, A" +Q

2. Compute Kalman Gain

Ki.=P H'(HP,H" + R)™*

3. Compute the estimate

Measurement Estimate

w TV =%y + Ki(z — Hzy) — &

4. Compute the error covariance

P, = P,; — KkHP;;

Figure 2.4: Kalman Filter Algorithm Flow Chart
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As shown in Figure 3.4, the process comprises two main steps (prediction and
update) repeated at each iteration :

o Prediction: The filter estimates the current state and the associated uncer-
tainty based on the previous state and the system dynamics.

o Update: Upon receiving a new measurement, the filter updates the predicted
state and uncertainty by incorporating the new information.

Each iteration of this filter evaluates a vector and a matrix.
o The vector X represents the state of the system

e The covariance matrix P of the error on the state X. It is used to measure
the confidence level on the estimation of the vector X.

Prediction phase

This part is only based on the system’s physical model and the command given to
it.

Ty = Fragp—

b, = FP 1 F + Qi

Update phase

The update step combines both the prediction and the measurement to improve
the estimate of the state X and its associated uncertainty P.

T = i’k + Kk(Zk — kak)

A

P, = (I — K;Hy,) Py
Explanation of the different matrices and vectors in the Kalman calcula-
tion

o F': State transition model. This matrix describes the evolution of the state
based on the mathematical model of the problem.

e Q: Covariance matrix of the evolution of the noise from the prediciton. It
quantifies the noise introduced into P post-prediction, reflecting the model’s
inaccuracy.

13



e R: Covariance matrix of the evolution of the noise from the sensor. This
term accounts for the noise and inaccuracies present in the measurements.

o H: Observation model : It is a mapping matrix to link the state of the system
and sensor measurements.

e 7: Sensor measurement vector.

o K: Kalman gain matrix : The Kalman gain weights the confidence in the
sensor and the prediction in order to combine them in such a way that the
variance of P is reduced after performing the update.

The most visual way to see the Kalman filter is that it calculates the product
of two Gaussian curves. This calculation produces a new Gaussian curve that is
less noisy.

2.1.5 Extended Kalman filter

The extended Kalman filter is the non-linear version of the Kalman filter, linearizing
the model around the current estimate.

In the extended Kalman filter, the state transition and observation models do
not have to be linear functions of the state, but can be differentiable functions.

X = f(xk—l, uk_l) + Wi (21)
Z, — h(Xk) + Vi (22)

Where f is a nonlinear function, u;_; is a control input and xy, is the current
state. the function A is the measurement function that relates the current state to
the measurement z,. The Gaussian noises for the process model and the measure-
ment model are w;_; and v, with covariance QQ and R.

As with the basic Kalman filter, there is a prediction and an update step. This
is how they are described in the extended Kalman filter:

Predict
Predicted state and covariance estimates:
-1 = f(Tp—1jp—1, Ur—1)

Pyp-1 = Fu P11 B+ Qi

14



Update

Innovation or measurement residual and covariance:
Uk = 26 — h(Trjp—1)

Sk = HkPk\qu/? + Ry,

Near-optimal Kalman gain:

K, = Pk\k—lH;;TS;;l
Updated state and covariance estimates:

Ty = Trpp—1 + Kir

Py = (I — Ky Hy,) Py

The state transition and observation matrices are defined by the Jacobian :

s

Tp—1)k—1,Uk—1

Zr|k—1

2.1.6 The LilyGo TTGO LoRa32

(2.3)

The LilyGo TTGO LoRa32 (named LilyGo later in this document) is a small unit
equipped with an ESP32 micro controller capable of handling WiFi and Bluetooth
connections. It features a LoRa chip and a small OLED display. LoRa (Long Range)
is a wireless communication method focused on range and low power consumption.
In the context of this project, the LilyGo is used by the Laptop controller to
send commands to another LilyGo on the robot. That LilyGo is also in charge
of forwarding commands from the GRiSP board to the 3 stepper motors, and of

creating the WiFi access point used by the whole system.

15



2.2 Previous Work

The present work builds directly on three previous master’s theses, all supervised
by Prof. Peter Van Roy. Each of them contributed in components extensively used
or improved in our work. They provided a solid foundation combining theoretical
analysis and design decisions, offering a solid basis upon which to build, solve our
own challenges and identify new opportunities. Here, we outline the key takeaways
of these theses and outline how their findings have been essential to make decision
for our own one.

2.2.1 The Hera framework

Sébastien Kalbusch and Vincent Verpoten [17], introduced the first version of Hera
in their master’s thesis in 2021. Built for the GRiSP board, this framework was
created with the aim of facilitating the development of GRiSP IoT/Sensor fusion
applications.

Hera aims at incorporating the storage, sharing and broadcasting of data to a set
of distributed nodes through different interconnected processes. It allows framework
users to develop a top level application seamlessly using its functionalities.

Every Hera process is built as a child of the hera_sup supervisor process. This
allows for the restart of any faulty process and thus ensures a maximal availability
of the framework’s functionalities.

hera_sup

{ hera_measure_sup

hera_measure hera_measure
<1= LR <N=

Figure 2.5: Hera Supervision Tree [17]
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Originally, Hera was composed of 5 main modules :

1.

hera__com is in charge of all the external communication and connection to
the WiFi. hera_com is built to use UDP messages for data communication
between nodes.

hera_ data is the process in charge of storing and retrieving information,
that is internally packaged in a big map data structure.

. hera__measure defines a basic behaviour that can be extended by each

user-defined application to periodically gather data. Its high level utilization
is simple. Users only have to define two functions: init/1, that takes a
facultative list as argument, and measure/1, that takes a State map as
argument. The return of the init function optionally contains the name of
the hera_measure instance, a timeout defined by the user, that corresponds
to the time between two invocations of the measure function by Hera, and
other options. Once the measurements are made, the user can return this
measurement It will then be stored by hera_data and shared via hera_com.

mat defines all the necessary operations that can be executed on matrices.

kalman (now renamed hera_kalman in the newer version): defines all the
computations (using the mat module) required for Kalman filters resolutions.
Users only have to define the parameters of the filter and call the functions
to solve it.

The main design principle behind Hera is that each node takes measurements,

share them and use the gathered data to infer new information. Through a sequence
number, each node has easily access to the most recent version of each type of
measurement.

Since that initial framework was created, Hera has been expanded and improved

by other students to match their master’s theses needs. Our own contribution to
this framework is explained in Chapter 4.1 of the present document.
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Figure 2.6: Hera Data Flow Chart [17]

2.2.2 The NumErl NIF

The second master’s thesis was authored by Lucas Nils in 2023 [13]. The main
objective of this thesis was to drastically speed up matrix computations within
the GRiSP board by integrating the NumErl NIF to the Hera framework. This
optimization is of crucial importance for our project, as our Kalman filters are fed
in real time with data from various sensors.

Those filters require linear operations and matrix inversions to be performed
almost instantaneously. Without this acceleration, the latency induced by pure
Erlang calculations would compromise the responsiveness and accuracy of the state
estimation.

Thanks to the work of Lucas Nils, we can now guarantee fast enough matrix
processing and maintain sufficient performance for our Kalman filters.

2.2.3 Dynamically balanced robot

In 2024, Cédric Ponsard and Francois Goens provided the basic hardware and
software utilized and expanded upon in our own work. [6]

The central objective of this master’s thesis was to control the behaviour of an
intrinsically unstable system using a GRiSP2 board. To this end, the authors set up
a real-time dynamic control loop specifically designed to stabilize a self-balancing
two-wheeled robot.
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Initially, they integrated several inertial sensors, all packaged as a single unit
in the now retired Pmod Nav. Those sensors measurements, naturally noisy, were
filtered using a Kalman filter implemented by Cédric and Francois. By optimally
merging the different data sources, this filter considerably improved the accuracy
of the angle and speed estimates.

Additionaly, they designed and adjusted a PID controller (integrated in their
new Hera version) to continuously correct position deviations and straighten the
robot before it tipped over. The combination of the PID and the Kalman filter
yielded a robust balance, even in the presence of disturbances or rapid changes of
direction.

Their architecture can be divided in a succession of three abstract layers :

1. The deepest part is the sensor-fusion layer, using a Kalman filter to deduce
the angle of the robot.

2. Then comes the stability layer, using this angle stabilize the robot by
counterbalancing the falls.

3. Above these two layers is a excutive control layer. This layer uses variations
in the target angle and the power supplied to the robot’s stepper motors
to control the robot. It also contains controls for the robot’s central motor.
This motor is responsible for lifting the robot and returning it to an upright
position.

This architecture demonstrated a remarkable stability, resulting in a reliable
device remotely controllable. This initial starting point proved to be perfect for us
to be able to move through our test environment.

Figure 2.7: Screenshot from SolidWorks of the Balancing Robot [6]
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Chapter 3

System Design

Based on the existing architecture, we can say that our work is to add a new
abstract layer on top of the three layers already contained within the robot. We
will call this layer "Location awareness'. Conceptually, this means that the robot
needs to know its two-dimensional position and its angle of orientation at all times.
To enable it to choose which group of sensors it has to listen to, we incorporate a
fourth value into this position: the room identifier. Figure 3.1 shows the abstract
architecture of the robot system.

>

Layer

Executive Control

A

Stability Layer

Location Awareness
Layer

A

A

Abstraction

Feature/Capability

Angle Sensor-Fusion | g i
r Fusion

FSM, Stand Up
Mechanism

PID Controllers
(Stability), 5 protocols
(Position)

Kalman Filter

Implementation

Figure 3.1: Abstraction Layers System Architecture
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In black, Figure 3.1 shows the initial abstract layers already integrated to the
robot. In red, we show all the logical layers we designed to incorporate the position
awareness layer in the architecture.

o At the bottom, the environment interaction layer, it is the layer interfacing
with the real world. It contains the different data sources used for sensor-
fusion.

o This data is then used to infer the position of the robot.

o All of these previous steps allow for the top-level location awareness for the
robot. This location awareness layer is made possible thanks to five protocols
we designed. The handover protocol is one of the most important of those
protocols. Section 3.2 details their utility.

In order for us to give the robot the knowledge of its location, we need to
digitalize the real world knowledge needed about the building. We thus transform it
as a graph where each node corresponds either to a room, connected to all adjacent
rooms, or to the robot, which is linked both to the room it occupies and to any
nearby rooms. Figure 3.2 shows this transition.

Room 0 Room 1

®

Room 2

Figure 3.2: Building’s Knowledge Graph

In the following sections, we will explain how we designed and built the test
environment, the inner protocols used to create those layers and how they are
organized as a cohesive system.
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3.1 A House Mockup as a Test Environment

Since it was not possible to perform all our tests in a real-size building, we had to
scale down the environment issue. As a consequence, we built a miniature mockup
of a house to perform the tests required to validate our concepts. As we stayed in
the real world, our miniature environment presented us with the same constraints
as in a full building. Our solutions should thus remain mostly valid once scaled up
to a full-size version in the future.

3.1.1 Rooms

Implications

To model the house, we needed a simplified version of the concept of room. In
order to get a convincing model of a house, we built three modular wooden rooms.
We also needed the structure to be easy to dismantle so that it could be stored
and reassembled easily.

Each room is a parallelepiped with a square base of dimensions 1.14 [m] X 1.14
[m] X 0.61 [m] (Length, Width, Height). We chose those dimensions because they
were the most easy to build with the largest wooden planks we found. This brings
our mockup to be approximately a 1:8 or 1:9 model of a real room.

Due to its regular shape, our room induced a lot of strong acoustic resonance
modes. The reflectiveness of the plywood used as walls and ground also induces
very pronounced reflections. Added to the complete emptiness of the rooms (except
for the robot), this makes our test environment close to a worst case scenario for
sonar usage.

To mitigate the impact of those reflections, two options were open to us, we
could either modify our rooms, or filter out those reverberations in software. After
a bit of trial and error, we decided to do a bit of both. The argumentation behind
these choices are explained in Chapter 5.1.

Concerning the rooms modification, we decided to add acoustic foam to the
walls of our rooms, therefore reducing reflectiveness as much as possible. This single
modification had a major impact on the precision of the distance measurements
taken by the sonars. This impact is studied in Chapter 5.1.1. We detail the
other software solutions enforced to tackle these issues in the discussion about the
implementations of the room agents in Chapter 4.2.
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Construction

The modular rooms were designed to be as simple to build as possible and to take
up as little space as possible. As can be seen in Appendix A.4a and A.4c, we simply
put three supports in the four corners of the rooms to be able to slide the wall
panels into place. To consolidate the rooms, and create a more precise square floor,
we added some small 3D printed supports in each corner.

3.1.2 Sonars
Impact of the position of sonars

Deciding where to position the pair of sonars in the rooms was an important
decision. The aim was to maximize the area covered by both sensors. Based on this
criterion, we considered several solutions and we calculated the surface area covered
by each one according to their positions to find the best possible configuration.

Figure 3.4 was built to illustrate our finding, and thus support our decision:

Sonar fields toward room center — face to face Sonar fields toward room center — side by side

1.0

y (m)
y (m)

0.0

0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
x (m) x (m)

(a) Intersection Area in the Room = (b) Intersection Area in the room =
0.218526[m? 0.157338[m?|
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Figure 3.4: Area Comparison Depending on the Sonar Position

As can be seen, the surface area covered by both sonars is greater when they are
placed facing each other than when placed on the same wall. On the other hand,
when the sensors are placed on opposite corners, two intersections are possible
inside the room. This creates an ambiguity in the determination of the right
position of the tracked object. Choosing to put the sensors on opposite walls would
thus add complexity to the calculation of the object location in the room.

Furthermore, the increase in area is not significant enough to justify this increase
in complexity. We thus decided to place our sonars side by side in each room of
our test environment.

Sonar hardware

We wanted our sonar sensor to be iterable and easy to build. To achieve this, we
decided to split its casing into three different part, all 3D printed. Those parts are
presented in Appendix A.4

The first part is a stand to hang the GRiSP to. It also contains a slot for a
small lithium battery and a buck converter to power it. The second part is a corner
adapter, allowing the GRiSP stand to be placed in the corners of the rooms. The
previously mentioned two parts remained the same throughout the tests. The last
part was a angle adapter that allowed us to choose the inclination of the sonars
relative to our test area. This last part was changed two to three times to try to
find the best angle to maximize the ability of the sonars to see in the rooms.
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3.2 A House as a Multi-Agent System

The system we created is composed of several connected components, also named
agents. Each of them has its unique role and communicates with the others in
different ways and with different goals. Before diving deeper inside the implemen-
tation of each agent, we explain the structure of our system, the main objective of
every agent and the protocols used throughout the system.

Our system can be divided into three separate agents :

1.

2.

3.

The user controller: executed on a computer, the controller allows the end
user to control the robot, define the configuration of the house and monitor
the position of the robot in real time.

The robot: the robot is the central target of the system. It gathers informa-
tion coming from the rooms in order to deduce its position and broadcast it
to the whole system.

The rooms : The rooms are a more conceptual type of agent. We can
subdivise the room in two parts : the physical conception and the of GRiSP
sensors that gather real time data in that concerned space. As explained in
Section 3.1, the sensors are mounted in the corners of the rooms. Grouped
in pairs, they provide the robot with distance measurements coming from
their sonars. Each pair contains one master sensor and one slave sensor. The
master sensor is in charge of the clock.

The sole multi-agent system’s role is to feed the robot with the data it needs to
do its sensor fusion. Calling back to the architecture defined at Figure 3.1, it gives
all the environment data feeding in the robots position sensor-fusion layer.

3.2.1 Protocol organisation

Multiple protocols have been implemented to provide the robot with the correct
amount of data in the most reliable way possible. We can divide those protocols
into three categories by zone of influence. :

1.

The general protocols that involve the whole system. This category com-
prises the discovery and the configuration protocols. Both protocols are
currently only used once at startup. However, nothing prevents them from
being subsequently integrated into the system’s operations. This would allow
agents to enter and exit the system without issue.
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2. The neighbouring protocols deal, as their name suggest with the data
transfer in the neighbourhood of each room. This category of protocol is
composed of the handover, routing and propagation protocols. Note that the
routing and propagation protocols are extensions and are not required for
the collection of sensor-fusion data.

3. Local protocols work inside each room to gather the required data. There
are two protocols in this category, namely the room assembly protocol and
the sensor-fusion data collection protocol. The latter is, of course, the main
one.

3.2.2 General protocols
Discovery/Configuration protocol

The discovery protocol handles the initial booting of the system. It involves the
rooms and the robot and is handled the exact same way by both types of agents.
When powered up, the robot agent also spawns the WiFi access point used by the
whole system. Once connected to that WiFi, the user can launch the controller.
That controller will spawn a server that broadcasts a "ping" message on the network
every 3 seconds.

When a device manages to connect to the WiFi and receives one of those 'ping"
messages, it will send a "hello, DeviceName" to the server. The device name is
either "robot" or "sensor X" with X being an ID set by the GRiSP jumpers. The
ID is the binary addition of the jumpers value, allowing a maximum of 32 sensors in
the current state of the system. We decided to use real names instead of the GRiSP
serial number given by the node() function to be able to quickly and easily identify
a GRiSP from the others. Upon reception of this Hello, DeviceName message,
the server sends a "ack, hello" acknowledgment message to the corresponding device.

Then, the configuration phase begins. In this phase, the user can define the
simulated house configuration, the position of all sensors, and the initial position
of the robot. This allows the system to then send the relevant information to the
chosen devices. As we use a small mockup, it enables us to force the creation of
an incomplete connection graph between all devicse, which is much more similar
to a real-life situation in a home. The predefined configuration data are thus sent
to the specified devices. To prevent packet loss from destroying the entire system,
each configuration message is resent until it has been acknowledged.
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Figure 3.5: Example of a Two Rooms Configuration in the Controller

The configuration, schematized on Figure 3.6 comprises different messages, all
answered with an acknowledgment message coming from the receiving devices. The
server waits for all known devices to acknowledge a packet before advancing to the
next configuration message.
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The configuration is composed of a succession of messages of different types :

o {Add_ device, Name, Ip, Port}: Adds a device (sensor or robot) to the
list of devices reachable. We implemented this message to be able to simulate
a discontinued system, even in our small scale simulation environment.

o {Pos, Name, X, Y, Height, Angle, Room}: Defines the 3D position of
each sensor in the system (X, Y, Height). This is one of the most important
pieces of information in the entire configuration, as it is used for multiple
applications such as determining the position of the robot, computing the
ground distance or pairing the sensors in a same room.

o {Add_ Link, Name, Ip, Port}: Adds a device to the list of devices used
for information propagation between rooms. (see Section 3.2.5 for more
information).

« {Room__info, BLx, BLy, TRx, TRy}: Defines the limits of a room. As
we assume that rooms are rectangles, we only define them using the x and y
coordinates of two of their corners (bottom left corner (BL) and top right
corner (TR)).

o {Init_pos, X, Y, Angle, Room}: Defines the initial position of the robot.

Once the configuration is complete, the server sends a "Start" message. This
message is critical because it marks the start of measurements. Since "Start" is
a command and not a data packet, losing that message can cause unexpected
behaviour in the system. To prevent those packet losses from occurring, we send
the start message four times, adding some redundancy.

3.2.3 Local protocols
Room assembly protocol

During the first seconds after the "Start" message is received, the room agents
will assemble. The room assembly protocol enables paired sensors to identify each
other, elect Master and Slave roles via a handshake with random numbers, allowing
them to then organize their sonar measurement to avoid interferences. This process
is illustrated on Figure 3.7.
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Figure 3.7: Sonar Handshake Protocol

First, using the information gathered by the configuration, each sensor deduces
the name of the other sensor in the room. Once found, they will send a "handshake"
message to their partner together with a random number. The sensor with the
highest number will become the Master, the other one becoming the Slave. In the
unlikely but possible case where both sensors found the same random number, the
process restarts. Once their roles are determined, both sensors send a "ok, Role"
message to the other. The Master then becomes responsible for the synchronization
of the measurements, thus reducing the amount of interferences between the two
sonars. See Appendix C for full configuration/room assembly logs instances.

Sensor-fusion data collection protocol

Now that everything is setup, we enter the real operational phase, where sonars
take measures and where the robot determines its position. First, we explain what
happens in a room while the robot is in its jurisdiction.
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The Clock process, spawned only in the master sensor of each room agent, only
allows its room sensors to measure if the robot is inside the room or within a
predefined margin of the room. Once in that area, the clock uses a logic similar to
a time multiplexing protocol to give the right to the sensors to measure.

In time multiplexing protocols, the time is divided in "timeslots" (time frames of
a fixed duration) and devices can only transmit data during their assigned timeslot.
In our case, and as represented in Figure 3.8, the clock allows the master sonar to
measure the distance during the first 50ms timeslot of each 300ms frames, and the
slave to measure in the third timeslot, thus between the 150 and 200ms mark.

Timeslot Sonars measuring time

=
=)

—— Master
Slave

o o© o
B =) ©

Measuring State

o
]

©
o

0 50 100 150 200 250 300 350
Timeslot position

Figure 3.8: Timeslot Measure Times

As shown in Figure 3.9, the clock process, periodically sends a "Tick" message,
either to its own measuring loop, or to the other sensor via a UDP message. When
a sonar loop receives that message, it can get one measure from its sonar. Once
the measure is retrieved and filtered, Hera propagates it to all the known devices
in the system.
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Figure 3.9: Sonar Measure Logic

The internal process of the robot is a bit more complex. Two Kalman filters
are at work simultaneously. Figure 3.10 illustrates these processes.

The first filter is used for the stability loop. It uses the data coming from the
Pmod Nav’s accelerometer and the commands received by the LilyGo to determine
the pitch angle of the robot. Although we refactored the code, all the logic used
in that Kalman filter is inherited from Cédric Ponsard and Frangois Goens’s work. [6]

The second filter is the one we develop for this master’s thesis. It is in charge of
estimating the position and yaw angle of the robot based on the data coming from
the sonars and the data retrieved from the Pmod Nav accelerometer and gyroscope.
We can divide the actions of the Kalman filter in three different parts:

1. Sensor choice: based on its last position known, the robot can determine
which sensor data to use.

2. Kalman resolution: Based on the pair of sensors deduced in the previous step,
the robot can now gather the data and resolve the needed computation. It is
Important to note that the robot uses the data from the sonars only if new
data is available. If no new measurement is available, the Kalman will use its
inertial data to predict its new position, thus using its prediction as estimate.
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3. Room inference: Now that the robot has a new estimate of its position in
the building, it can deduce in which room it stands.
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Figure 3.10: Inner Robot Kalman Resolutions

3.2.4 Neighbouring rooms protocols
Handover protocol

The handover protocol handles the case where the robot changes from one room to
another. The robot needs to know who to listen to and the room needs to know
that the robot is under its responsibility.

To determine which room to listen to, the robot retrieves, before each iteration
of its position Kalman filter, the sensors that are in the same room as it. Thanks
to the configuration information received at startup and the estimated position
found in the last iteration, the robot knows in which room it is.
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In order to prevent big interferences in our small mockup, and to prevent the
congestion of message at the small ESP32 WiFi access point, we decided to allow
the rooms to take measurements only if the robot is within a predefined range of
them. We imposed this range to prevent a delay between the entry of the robot in
a room and the first reception of sonar data by the robot.

In this view, the clock always checks the robot’s position before sending the
"Tick" message to its room’s sensors. The implementation of this logic is explained
in Section 4.2.4.

Routing protocol

In a real house, it is very unlikely that all rooms always have access to all the
information available in the system. To get as close as possible to a real-world
situation, we decided to hypothesize that every room only knows the information
coming from the neighbouring ones. Moreover, the robot only communicates with
the current room and the neighbouring ones.

To implement this routing, the controller will send each room the configuration
information of the rooms adjacent to it.

Legend

— Direct Communication

— » Link Communication

Figure 3.11: Routing Graph in a Three Room System
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In the current implementation, this routing graph is artificially simulated in
software. Since our system uses UDP over WiFi, all devices communicate through
a WiFi access point, which then routes packets to the correct device based on its
IP address. In that kind of network, any device can reach any other one within the
network, so simply extending the WiFi network using extenders would allow all
room agents to communicate with every other one directly.

The purpose of this propagation protocol is therefore to show that it can be
implemented and to prepare the system for alternative communication means such
as peer-to-peer protocols (e.g LoRa or Bluetooth).

3.2.5 Propagation protocol

The propagation protocol we implemented is quite simple. It uses two different
groups of communication. The first one is the group communication provided by
the hera com module. It allows sensors in the same room to communicate with
each other and with the robot. We called it direct communication on Figure 3.11.
The second group is the "link" communication. We chose to use the slave sensor in
each room to serve as link with its adjacent rooms. When this device receives a
message that must be forwarded, it sends it to all the links it knows (the adjacent
room agents).

We acknowledge the fact that this propagation protocol is pretty simplistic

and isn’t a real contribution, the goal is more to show that it can be done on this
system.
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Chapter 4

Implementation

4.1 Hera Extensions

Before going in depth in the implementation of each of the system’s component,
we explain what we added to the existing Hera functionalities. This will ease the
understanding of the following chapters of this part.

Getting on board with new unknown technologies can be a really hard task.
When first trying to learn about the GRiSP technology, something that really
helped us getting up to speed was the GitHub GRiSP wikis. Those simple tutorials
helped us learn about the basic features of GRiSP and how to develop and test for
it. This motivated us to do the same with Hera. We thus created a wiki on the
Hera repository. The goal was to show future users how to get started, what are
the available features and what API to use for each of the existing Hera module.

Hera Measure

# @ Usage

“. API/Function to implement

t(Args):

measure(State

Figure 4.1: Screeshot of the hera measure Wiki Page
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GitHub wikis are a great and easy way to write documentation. Attached to
the repository, and written in markdown, they are an easy and understanble way
to replace a list of README files.

All the code implementing the functionalities in this Chapter is available via
the link below ! or in Appendix D of this document.

4.1.1 Hera subscribe

One of our main concern when upgrading Hera was to keep it as modular as possible
to accommodate to the widest range of [oT application possible. Hera should thus
be able to delegate some application specific messages to the high level GRiSP
application. An other thing that Hera didn’t yet allow was the notification of event
triggering from the inside of Hera to the concrete application modules. By triggers
we mean some important events undetectable by the application. As example, a
successful connection to the network triggers an event "connected".

This is why we implemented the Hera subscribe module. This module allows
user crafted processes to "subscribe" to events triggered by Hera or other user
implemented processes. For now the triggers are few, but this simple module opens
a lot of possibilities for future usages or improvements. Its API is comprised of:

« hera_ subscribe:subscribe/1: adds the Pid passed as argument to the list
of subscribers.

e hera_ subscribe:notify/1: Sends the message passed as argument to all
subscribers.

4.1.2 Handling the loss of connectivity

We also noticed that Hera was capable of determining when the system was
successfully connected to the WiFi Access Point, but not when the connection
is lost. We thus implemented a periodic check of connectivity. Every 5 seconds,
Hera analyses the information available in the address list returned by the function
inet:getifaddrs(). When no IP address is available in the wlan field, this means
that the connection is lost. Hera then restart the connection attempts and triggers
a "disconnected" event.

Thttps://github.com/Nicodaube/hera
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4.1.3 Unlink the sending of information

While implementing our system, we noticed that the main bottleneck of every
instance of the hera measure behaviour was the broadcast of the measured data
at each iteration of the loop. To go around that issue, we decided to decouple
the measure from the information sharing process. In order to achieve that goal,
each hera__measure instance spawns a second process, called hera__measure_sender.
This second process just receives the information from the hera measure process
and shares it through the system (using the hera__com module).

4.1.4 Logging

As it embeds a lot of important common IoT processes, it can be very useful for
developers to log what happens inside the Hera processes. But when debugging
the top level application, this excess of logs can cause some headaches. Since Hera
is addded as a rebar dependence, pulling Hera directly from its GitHub repository,
it can be very annoying to have to, commit, push, update and redeploy the whole
Hera application each time logs are needed. In addition, adding commits changing
logging lines simply did not make a lot of sense. We thus made the decision to
incorporate a debug mode in Hera that activates or deactivates all logging lines.

Since Hera is started at boot time, before the app is even initialized, we had to
find a way to get the argument in an other manner than with a simple function call.
The solution we found was to set this value as a application environment variable,
set in the sys.config file of the GRiSP project. This then spawns Hera with or
without debug mode. Instead of the classical io:format/1/2 method of logging, we
implemented the hera:logg/2 method, checking if debug Mode is activated before
logging. This method works much like the traditional method, taking a message
and a list of variables as argument.

4.1.5 Separation of the Kalman filter steps

While creating the Kalman filter responsible for the position of our robot, we
encountered a problem. For reasons explained in the next chapter, we weren’t
able to get new distance measurements faster than three to four times per seconds.
That frequency being too slow for the precise determination of the position by the
Kalman Filter, we had to find a solution.
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As explained in Chapter 2.1 of this master thesis, the Kalman filter can be
separated in two steps, the estimation and the prediction. Even if those two steps
are essential for the best determination of the state of the system, it is not essential
that each estimation step is followed by a prediction step.

This is the reason why we decided to separate the prediction and estimation
steps in two distinct methods in the hera_kalman module. This allows us to only
execute the prediction steps when new distance measures are available.

4.1.6 Explicit naming and saving of nodes

Hera originally refers to a GRiSP node by the serial number of the board its running
on, available in software via the node() function. This simple fact can quickly
become a burden. That serial number is only available behind the boards, meaning
it is not easy to access it when the boards are mounted. Furthermore, it becomes
increasing harder to identify boards when their number increase. This is why we
allowed the explicit naming of nodes in Hera. It allowed us to also implement a list
of known devices in Hera, allowing unicast communication within the system.

4.2 The Room Agent

The room agents are very important components in this system’s architecture.
They are composed of a physical room mockup (as explained in Chapter 3.1) and
a pair of GRiSP2 equipped with Pmod Maxsonars. Those components, that we
simply call sensors, are responsible for the measurement of the distance between
them and the robot, if he is in the room.

The simple fact of recording distance seemed, at the beginning of our work, like
a formality. The GRIiSP ecosystems embeddeds a simple pmod_mazsonar:get()
function call that allows to take a measure from the sonar. It however soon
emerged as a more complex task, with more difficult aspects that we had not
foreseen. This section will show you how we organized our sensor code, what
problems we encountered and what design decisions we made in order to solve
them. All the code used by the sensor is contained in Appendix E and on our
open-source GitHub repository?.

Zhttps://github.com /Nicodaube/Grisp_ robot /tree/main/sensor
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4.2.1 Code structure and organization

The sensor architecture is composed of 3 modules:

o The main module (called sensor) is in charge of the initial configuration
protocol and of the handling of messages coming from Hera and thus by
extension, the outside system.

o The sonar__measure module is in charge of taking measurement and filtering
them to avoid excessive noise and outliers. It is built as an hera measure
instance.

o The clock_ ticker module, which is only used in master sensors, sends
message to their sonar measure module and to the slave sensor to determine
when they have to make measurements.

As our system grew, it became harder and harder to monitor the state of each
GRIiSP2 board in the system. To ease that process, we decided to use the LEDs
available on the boards to show in which state a board is. Here is a list of the color
code used in the sensor:

» Flashing yellow: Means that the sensor is booting. Most of the time, this
means that it is waiting for Hera to notify that it has reached the WiFi access
point and that the network functionalities are now available.

o Flashing red: Means that Hera lost the connection to the WiFi access point,
and now has restarted the search for the access point.

o Flashing white: The sensor has condistancenected to the WiFi access point
and now waits for the "ping" message coming from the server.

» Flashing green: The sensor found the server and waits for the configuration
to be sent by the controller.

o Stay green: The sensor has started its measurement.

e Stay blue: The sensor is waiting for the robot to reach its room before
starting the measurements.
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4.2.2 The main module

Initialisation

The main module is the first module to spawn in the sensor. It is the one called by
the GRiSP2 system after booting. The first thing the sensor does is configuring
itself. It sets himself as an Hera subscriber and notifies the GRiSP2 that a Pmod
Maxsonar is plugged in its UART port. The initialisation logic can be found at
Appendix E.1.1. After that, the sensor will compute its ID.

Discovery/Configuration protocol

Once the initial internal setup is done, the sensor starts its Discovery /Configuration
protocol.

The implementation of this protocol is done by using a set of receive expressions
waiting for messages coming from the hera_subscribe module. They are all built
to work one after the others. A first one waits for Hera to achieve connection to
the WiFi access point, then one waits for the ping coming from the server, then
one waits for the acknowledgment message coming from the server after the hello
message was sent.

Once this initial discovery phase is done, the sensor will wait for the configuration
to arrive. This is done using a first loop, called loop__config. That loop allows the
sensor to handle any configuration sent by the server and to save it in memory. We
store the data in two different places, depending on whether the data may change
over time or not. The persistent term storage [19] contains all constant data. It
allows us to get all fixed values in constant time. The hera_data storage, on the
other hand, contains all the data that may change over time.

Room assembly protocol

All configurations are followed by a "Start" message coming from the server, sig-
nifying the end of the configuration phase. Upon reception of this message, all
sensors will start their assembly into pairs to form the room agents, following the
configuration just received.

Each sensor will start by deducing who is the other sensor in its room, based on
the sensor position determined during the configuration. It is also at this moment
that the sensor module will spawn the sonar measure module, keeping its Pid in
persistent memory to be able to contact it. The rest of the room assembly protocol
will be explained in Section 4.2.3.
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Regular Operation

Once the room assembly protocol has started, the sensor module calls the loop_ run
receive expression. This is where this module will loop until the system is exited.
This loop contains all the operational triggers used during the operational phase of
the system. From this time on, the only responsibility of the sensor process is to
react to message coming from other agents.

Exit protocol

In the idea of easing the testing phase of our master’s thesis, we incorporated an
exit function to the system. When the user controller is exited gracefully (shutting
down the window), it broadcasts a "exit" message, which is used as trigger for all
sensors to kill their sonar_measure modules, erase all the data gathered and to go
back to the discovery/configuration protocol.

4.2.3 Hera_measure instance : sonar__measure

The sonar measure module uses the hera measure behaviour. As a reminder,
this behaviour calls the measure function at a predetermined frequency set by the
developer, and sends that data through the system to all known devices. This
behaviour only needs two functions to start its looping measures : init/1 and
measure/1.

The initialisation phase

Upon startup, the behaviour will call the init function. This function is only called
once upon process creation. First, the function will want to assemble the room, to
know what is the role of this sonar module.

For that, it will call the get_sensor_role function, which checks if the sensor’s
role has already been defined, in which case it does not restart the handshake
protocol with the other sensor. This can happen when the sonar module crashes
for some reason. In that case the Hera supervisor will create a new sonar_measure
process, and the process can just extract its role from memory.

If no role has been assigned yet, the sensor will choose a random number
and send it packaged in an handshake message. When the equivalent message is
received coming from the other sensor, the process will acknowledge the reception
and compare the two numbers, the sensor with the highest number getting the role
of master. This random number method has been chosen for test purpose, but in
the real application, it could be replaced with a more meaningful number, such as a
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measure of the signal strength, like the RSST (Received Signal Strength Indicator).
The master will then spawn the clock ticker process and record its Pid.

The room assembly protocol has now done its job, we now have a fully functional
room agent.

The init function of this sonar measure process will now create an internal
state containing a sequence number, the last measure done (to use in the low
pass), a buffer used for the Hampel filter and a buffer for the final smoothing of
the measures. As far as the hera_measure parameters are concerned, we tell Hera
to use this loop infinitly and gave our loop the lowest timeout possible so we could
trigger the measure ourselves using the clock.

The measuring phase

Once this init function is done, we enter the regular measurement phase, where
Hera calls the measure function each time the previous one finished.

The measure function always starts with a receive expression, where the function
waits for the clock to send it a Tick message, granting it the possibility to take a
measure. Upon reception the sonar measure will gather the data coming from the
Pmod Maxsonar and make the conversion from inches to centimeters.

The measure is then passed through three different filters in chain. We use the
three filters to be able to use softer parameters. First, the value is passed through a
low pass filter with an alpha of 0.2, which means that the new value is taken as 20%
of the last measure + 80% of the new one. Second, Hampel filter is applied, with a
buffer of size 7 and a n, of 2.0. The role of this filter is solely to exclude absurd
spikes forming in the measures. It has almost no effect on the small measures.
Lastly, that value is passed through a soft smoothing filter, which takes the me-
dian value of its buffer. The impact of each of these filters is studied in Chapter 5.1.2.

After that data is filtered, we use the result to infer the distance between the
corner where the sonar is located and the robot. Figure 4.2 visually shows what is
computed. For that we simply use the Pythagorean equation for right triangle.

On the following graph and equation, the following notations are applied :

e Hg is the height at which the sensor sits.
e Hp is the size of the robot.
e Dyg is the distance measured by the sonar.

o D¢ is the distance on the ground.
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Figure 4.2: Ground Distance Schema

4.2.4 The clock_ ticker process

The clock process is only spawned in the master sensor of each room. This is the
process responsible for the timing of the measurement. When spawned, the process
fetches all the necessary data needed for its operational process. The process can
then start its loop function with all the data as argument.

The clock we implemented only ticks if the robot is close to its room. We
inserted a macro (STARTUP_MARGIN) that determines at which range of the
room the sonars will start to measure. This prevents a zone and time where the
robot is not in any room, or where it must wait for the new room to start its
measure. We chose a margin of 12cm, which represents approximatively 10% of
the size of the room.

The second macro that we have set is the TIMESLOT SIZFE. This one rep-
resents the time between two sonar measures. For a good compromize between
frequency of update and errors (that seem to increase with the frequency), we chose
a frequency of 1 measure every 300ms (frequency of 3.33Hz).
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Figure 4.3 shows the logic with which the clock sends its message. For that, it
first computes when the next measure should happen based on a count number
and the initial time clock. Then, it determines if the robot is in the current room,
or within the margin determined by the STARTUP_MARGIN macro. If the robot
is in the room, the robot determines which sonar must measure (still based on that
count variable). At last, the robot waits for the next measure mark to happen and
sends the message to the right sonar. As you can see on the diagram, we wait at
different times for each flow path. We do it so it is done at the very last time. This
allows for the clock to account for the computing time of the previous logic and to
skip the measure if the mark is already passed.

~

Compute next
measure mark

Y

~

Wail for next measure

mark [—Falze

True

Master ST'E
Wait for next measure Wait for next measure
mark mark

h 4 h J

Sonar_measure |

clock hera_com:send{clock)

I

Figure 4.3: Clock Flow Diagram
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4.3 The Robot Agent

The robot agent was originally developed by Cédric Ponsard and Frangois Goens [6].
For the purpose of this thesis, we have adapted their foundational design to better
suit the objectives of our system.

This mobile robot is equipped with a GRiSP board, a LilyGo microcontroller,
DC motors, and various electronic components that allow it to maintain balance
and navigate within a test environment. Among these components, we will focus
on those most relevant to our implementation and analysis.

The GRIiSP ecosystem plays a central role in our setup. It enables the retrieval
of position data computed by the Room agent and performs real-time stability
control using embedded computations. Additionally, it collects the necessary sensor
data to estimate both the position and orientation of the robot.

This chapter presents the components and subsystems that are essential for
understanding the functioning of the robot, as well as the modifications and im-
provements made throughout the project.

4.3.1 Code structure and organization

The sensor architecture is composed of 3 modules:

o The main module (called balancing robot) is in charge of the initial config-
uration protocol and the launch of the various calculations necessary for the
stability and position of the robot. As it is very similar to the sensor module
studied in Section 4.2.2, we won’t explain it a second time.

o The stability_layer module module is in charge of calculating and
controlling the robot’s stability and to allow movement.

o The position_ layer  module module is responsible for calculating the
robot’s location.

4.3.2 Stability loop and control

This chapter is a simplified explanation of the work of Cédric Ponsard and Francois
Goens [6].
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The stability loop implemented in this project uses an Extended Kalman Filter
(EKF) based on a partial digital twin of the robot. The predictive model comes
directly from the physical equations of the system, which allows to take into
account several effects at the same time: linear acceleration from the control input,
gravitational acceleration, centripetal acceleration and angular acceleration effects.
This approach provides a more accurate estimation of the states compared to
the simple model, especially for the angle 6 and its rate 0, while also using the
accelerometer measurements directly in the update step.

The state vector is defined as:

=]
0

and the prediction step of the physical model is:

;o [ O + O At ]
0, + (ﬁ S sin(0) — cosw)) At

The measurement model h(z) combines the lateral, angular, centripetal and gravi-
tational acceleration components to match the accelerometer readings. This allows
the EKF to estimate the angle and angular velocity while rejecting noise from the
Sensors.

Once the state is estimated by the EKF, the control is applied using a combina-
tion of:

o A PD controller that stabilises the robot by correcting the error between the
estimated angle ¢ and the equilibrium angle 0.

e A PI controller that adjusts 6, dynamically to reach the desired speed,
adapting to variations in payload or terrain.

The general control law of the PID/PD controller is:

de(t)
dt

u(t) = Kye(t) + K, / e(t) dt + K,

where e(t) is the difference between the reference and the measured value. To
prevent sudden changes, a trapezoidal speed profile is used, limiting accelerations
and decelerations and improving stability.

In summary, this loop combines the precision of a physics-based EKF with the
flexibility of PID control, ensuring that the robot remains stable even in changing
conditions.
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4.3.3 Kalman filter Implementation

To ensure a good estimate robot’s position in our test environment, we implemented
two kalman instances, one for the robot’s orientation and the other for its position.

Kalman filter for orientation

The explanation in this chapter is based on the work of Hadrien Sonnet [16] and
the theses of Victor Verpoten and Sébastien Kalbusch [17].

The first step in solving the robot motion tracking problem is to create an
Attitude and Heading Reference System (AHRS). This system enables us
to transform sensor frame measurements into the global reference frame, making
it possible to interpret data on gravitational acceleration, rotational acceleration,
and the strength of the magnetic field in a global context.

The Kalman filter for attitude estimation will be used to express the data and
states of each sensor in the {North, Top, East} reference frame. This guarantees a
consistent representation of orientation in our test environment.

Quaternions

Quaternions play an important role in representing the orientation of our robot.
Here, we introduce the concept of quaternions [5] and the various notations used.

Quaternions are four-dimensional numbers consisting of a real part and three
imaginary parts, representing the orientation of an object. A 3D rotation can be
described as a rotation about a certain axis by a certain angle.

A quaternion is expressed as:

g=w+zi+yj+zk (4.1)

where w, x,y, z are real numbers, and i, j, k are the imaginary units.
Quaternions can be added and multiplied, but multiplication is not commutative.
The multiplication rules for the imaginary units are:

x| i j k
i -1 k=
jl—k -1 i
k| g —i -1

Table 4.1: Multiplication rules for quaternion base elements
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Unit quaternions. Unit quaternions are particularly well suited to represent
rotations: they are unambiguous and computationally more efficient than rotation
matrices. Rotation matrices often require re-orthogonalization and renormalization
due to accumulated numerical errors in iterative computations. Quaternions, once
expressed as vectors, can be normalized just like any vector:

g=w = y 27" (4.2)

From quaternion to rotation matrix. A quaternion can be converted to a
rotation matrix:
11 Ti2 T3
R = |ra 7122 723 (4.3)

31 T32 T33

From rotation matrix to quaternion. Given R, the corresponding quaternion
is:

V141 + oo+ 133
V4 1+Tfi+7"§;+7“33 (44)

T13—731

V1+rii+rao+rss

T21 712

V1+ri1+raa+rss

N =

Rotation of a vector using a quaternion. From a quaternion, the rotation of
a vector p can be expressed as:

F(p)=qpq' (4.5)

which expands to:

2+ @) —1 2(1g2 — 033)  2(1g3 + 9092)\ (P2
F(p) = | 2(qq2 + @a3) 2(q5+@3) — 1 2(q203 — qoqr) | | py (4.6)
2103 — q0q2)  2(q2q3 + qoq1) 2(2 + %) —1) \p.

Prediction model (Gyroscope-based)

To determine the robot’s rotation at any time, we continuously update the quater-
nion using gyroscope data. The angular velocity vector from the gyroscope allows
us to approximate the quaternion derivative and predict its next state:

s doc(t)  Ade
(t) = dt At

If the perturbation angle is small:

Aqe = [ A(I)lﬂ /2] (4.8)

20
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The discrete update rule is:

1
Ani1 = qn ® (1 + 2wcAt) (4.9)
or equivalently:
1
Qnp1 = <11 + 29(w)At> a4 (4.10)
where:
0 —wy —wy —w,
w0 —w, wy
Qw) = S 0 —w, (4.11)
W, —Wy Wy 0

The quaternion is normalized after each prediction step.

Update model (Accelerometer + Magnetometer)

The measurement update combines accelerometer and magnetometer data to obtain
an absolute orientation estimate.

Gravity and magnetic field in the local frame. Let:

Gy My
Gmes = | Gy | 5 Mymes = | My,
Q my

After normalization:
m |

M| = Mpyes — (mlesgmes) Gmes; Mpor = m

Constructing the measured attitude. From g, and my,,:

Myor

, E=TxN
[0 ||

T= —Gmes, N =

The rotation matrix is:

R = [N T E}

Converted to quaternion via:

t:T11+7‘22+T33
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If¢t > 0:
w=1yTTi

— T32—T23
4w

_ Tr13—T31
4w

— Tr21—T12

Z —_— =i "l
4w

Finally, normalize @pes-

Measurement model for the Kalman filter.
Zk = Qmes = h(wk) + vy, Vg ~ N<07 R)

The gyroscope prediction is corrected using the accelerometer+magnetometer
measurement to cancel drift.
In the Appendix B, the figure a that helps to better visualize the situation.

Kalman filter model

Now that we have completed the mathematical descriptions of the various equations
used to construct our orientation Kalman filter, here are the different matrices used
in our filter. In this formulation, the quaternion state is X = (qo, q1, ¢2, ¢3) ', where
g =w, 1 =z, ¢2 =y, and g3 = z. The angular velocity components (w,,w,,w.)
are obtained from the gyroscope and expressed in rad/s.

[ 1 CweAt wyAt G At

G 5 G 1000
wa At w At wyAl
F= szt wlAt 2 wAzt ) H = oL ’
o L s 00 10
wy At wy At _ wa At 1 00 01
L 2 2 2
[0.0002 0 0 0 0.15 O 0 0 Qo
- 0 0.0002 0 0 10 015 0 0 @
Q= 0 0 0.0002 0 , R= 0 0 015 0 |’ X = G2
0 0 0 0.0002 0 0 0 0.15 q3

(7.13)

The process noise covariance Q and the measurement noise covariance R are

tuned according to the estimated noise characteristics of the gyroscope, accelerom-

eter, and magnetometer. After each prediction and update step, the quaternion
state X is normalized to maintain unit norm.
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Kalman filter for position

The other important part of localizing our robot in the environment is determining
its exact position.

For this, we implemented an Extended Kalman Filter (EKF), as our system is
nonlinear and based on noisy measurements.

Construction of the model (Prediction)

We chose a simple constant-velocity model for the position EKF":

Xk—H = Xk + Vmes,k—l—l : COS(@mes,k’) At (412)

Y;H—l = Yk’ + Vmes,k—H . Sin(gmes,k) At (413)
Here, Ve is obtained from wheel odometry, and O, from the orientation Kalman
filter.

Linear acceleration is not explicitly estimated as a separate state, but modeled
through the process noise (). This approximation is valid because:

« We have no direct linear acceleration measurement (it would require multi-
plying accelerometer data by the orientation, introducing additional error).

o The sampling rate is relatively low, limiting velocity variations between two
iterations.

« Unmodeled acceleration is captured by zero-mean Gaussian noise N(0, 02),
calibrated experimentally to balance precision and stability.

()

The state transition function and Jacobian are:

Xy + Vi 08(Ooe ) At 1
Fo) = (F C_OS( #) g (L0 (4.14)
Yy + Vines SIN(Oes 1) At 01

The state vector is:

Measurement model (Update)

The position is determined using data collected by the sonar, which measures the
shortest distance between itself and an obstacle. From these distance measurements,
we can perform a straightforward calculation to determine the object’s X and Y
coordinates within the room. The sonar is positioned in such a way that, when
calculating the intersection of circles, only one unique pair of coordinates can exist
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in our environment. Figure 3.434 provides a visual overview. After this calculation,
we can therefore determine the coordinates measured by the sonars:

o Xmes,k
= Ymes,k
X

o= ()

10
_H:
=l

The process noise covariance QQ and measurement noise covariance R are set based
on the sensor specifications and fine-tuned experimentally:

R 0.0075 0 0— 0.0002 0
N 0 0.0075) "’ a 0 0.0002

The observation model is:

with Jacobian:

Kalman filter model

In Appendix B, Figure b helps to better visualize the situation.

4.4 The User Controller

The user controller is an agent in charge of several key features:
o The creation of the connection graph between the different agents.

o The creation of the configuration describing the assembly of room agents,
with their child sensors, their size and location, and the initial position of
the robot.

o The monitoring of the real time position of the robot.

It is composed of a controller and a server module. The controller is responsible
for the Ul and the interpretation of user inputs while the server is responsible for
all the communication between the controller and the system. All the code we will
talk about in this chapter is available at Appendix G
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4.4.1 The controller module

The controller is built as a Pygame [25] / Pygame GUI [23] application. It also
uses the serial library for communication with the LilyGo. The original controller
was built during the previous balancing robot master’s thesis [6]. Even though
Pygame may not be the technology of choice to build this type of software, we
decided to extend the original controller to accelerate development, as it was not
the main concern of our project.

Launching the controller

To start the controller, we decided to use a bash script. This script fetches the IP
address of the computer, thus preventing the user from having to change its IP in
the code manually everytime the DHCP changes it.

General usage

When the controller is started, the user is presented with the Ul that is used for
the whole controller. Figure 4.4 shows all the actions initially available on the
controller.

g 788
DOWN
alman filter
ing Start
Message: 11000000 -ar
Timer : 0

Figure 4.4: Initial Controller

On Figure 4.4, we can see:

e A text box containing important data concerning the current state of the
system. This was already part of the original controller developed for the
previous master’s thesis [6].
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o The green dot shows the current control sent to the robot; It can turn into a
left, right, forward or backward arrow, idle with a green dot or stop with a
stop sign. This is also inherited from the last master’s thesis.

o The plus sign allows you to create a first room. When clicked, a pop-up
appears asking you to fill in the size of the room (in two dimensions).

o The start button notifies the controller that the configuration is ready and
that it can transmit it to the system. When clicked, all the data is transmitted
through the server to all the agents in the system.

When a first room is created, two new options appear (see Figure 4.5). The
new plus signs allow the user to add rooms to the sides or sensors to the corners.
The Place Robot button shows a pop-up asking the initial X, Y and angle position
of the robot. Once the system is started, the image of the robot (see Figure 3.5)
moves and turns following the estimated state given by the Kalman Filter.

Robot Contrller e ox
a filter

uni

Message: 11000000 Place Robot Start

Timer : 0

P
®
®

@
@
S

Figure 4.5: Controller Containing One Room
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Chapter 5

Evaluation

5.1 Sonar protocol tests

When we started measuring the distance in our rooms, we quickly noticed a drop
in measurement accuracy. Moreover, we also noticed that theses errors did not
occur when the sonars were used outside the wooden rooms.

The fact is that these errors caused huge drops in performance in our Kalman
filter, as the deduced position of the robot was completely off when encountering a
spike. To reduce the impact of these errors, we implemented two different counter-
measures. First, we paneled the test environment with absorbing material, based
on the hypothesis that the errors resulted from echoing sonar impulses. Second, we
implemented some filters on the measurements given by the sonars. We decided
to rely more on the sonar filters, because if they could perform well in a difficult
environment, they should perform even better in a more forgiving one.

It was not possible to rely solely on the filters though. To only use filters, we
had to give them very strict parameters in order for them to filter out the outliers,
thus also filtering out some valuable data. This is why we also implemented some
modifications on the rooms structure.

5.1.1 The influence of the absorbing material

For those experiments, we initially decided to use a timeslot of 200ms, meaning
that each sensor takes a measurement every 100ms. Following the specifications
given by the Pmod Maxsonar datasheet [21], this creates a no-measure time zone
of 50 ms between the end of the measure by a sensor and the start of the other
measure by the other sensor. Note that, in the tests done hereafter, the measure
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are taken without any filtering of the sonars data.

On the following graphs, we present in different colours the measures coming
from the two sensors in a same room. The red vertical lines present the tick
(beginning of the time slot) sent by the master clock.

To start measuring the impact of the hypothetic multi-path echo in our house
mockup, we decided to first use the most basic setup possible, monitoring the
measures retrieved by the sonars. Figure A.3 in Appendix A.2 shows that initial
setup.

This first experiment allowed us to have a good comparison point, and check
wether our hypothesis was correct and that there was indeed an echo forming inside
the rooms. Figure 5.1 presents the results retrieved from the sonar without any
absorption in the room.

Sonar Distance Measurements with Clock Ticks

m

Figure 5.1: Sonar Measure Without Acoustic Foam

When analyzing this graph, we identified two main issues:

1. The most obvious issue is the appearance of these huge peaks approximately
every 6 or 7 seconds.

2. The second identified issue are those small errors of around 2 to 3cm that
happen randomly. They are less important but can lead to unprecise mea-
surements if occurring too often.
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When first encountered these spikes, we blamed the clock, thinking that the
measurement frequency must have been too high, causing a cross-talk (sound waves
from one sonar read by the other one) between the two sonars. We thus tried to
increase the timeslot to 1000ms. Figure 5.2 shows the result of this test.

Sonar Distance Measurements with Clock Ticks
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Figure 5.2: Sonar Measure with a Timeslot Size of 1000ms

The clock was clearly not to blame here. We can clearly see that spikes are still
present, even with a timeslot of 1000ms.

Then, before gluing the foam to the wall panels, we decided to simply place the
acoustic foam at the opposite end of the room, relative to the sonars. We did not
put anything else in the room than the robot. Figure A.2 in Appendix A.2 shows
a picture of the experiment setup.

Analyzing the results shown on Figure 5.3 retrieved with the setup of Figure

A.2 in Appendix A.2, we can observe that the absorbing material modifies the
measures in two significant ways :

1. The number of small errors is greatly decreased, bringing them almost to a

full stop. This is a great improvement as it allows our filters to give a more
precise estimate of the real distance.

2. The impact of the large outlier spikes is highly reduced in most cases. On
Figure 5.1, we can see that the spikes have an error of between 40 to 45
cm. After the foam is installed, most errors get compressed to about 25cm,
although some of them still reach the 40cm range. In addition, the length
of the peaks is also reduced. This last observation is very important as the
filters implemented afterwards use a fixed-sized set of previous measures to
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filter the faulty ones. Having shorter errors thus reduces the impact of the
outliers on the final result.
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Figure 5.3: Sonar Measure with Acoustic Foam

Based on the previous observations, we can safely say that the absorbing acous-
tic foam in the room has a positive impact on the precision of our measures.

On the other hand, the big spikes are still present, and even though their impact
is less pronounced, an error of 25 cm in rooms of 1.14m X 1.14m is still a 22%
error rate, which is huge. We were not able to pinpoint the precise cause of this
error, and the investigation necessary for the finding of the cause of this error goes
beyond the scope of this master thesis, but we still have some candidates that could
explain these remaining spikes :

e The error may come from reflections outside the wooden test environment.
The ceiling or the walls of the labs where we tested our system may be
responsible.

o The error may also come from an other external noise. It may be caused by
an electronic device polluting the environment around the sonars.

o Although not likely, it is possible that the foam used isn’t very effective.

Nevertheless, as absorption had a positive impact, we decided to include some
acoustic foam to the setup, cutting the foam to try to get a more even distribution
of the absorption, without having to cover all the walls with it.
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5.1.2 The influence of the implemented filters

As seen in the previous point, some big error spikes still exist, even after the
absorption was installed. To mitigate these errors, we decided to introduce some
filtering on the measure. We tested three different filters, and then built upon our
findings. We used a scenario where the robot was moving to see the full impact of
the filters on our measures.

Low Pass Filter (LPF)

As explained in Chapter 2.1, the low pass filter uses a weighted portion of the
last measure (defined by the a parameter) to smooth the quick variations in the
measurement. In order to find the optimal « value, we tried to understand the
impact of this parameter on the measures. Figure 5.4 shows the impact of a on
the measurement.

Impact of the Low Pass filter on measurements
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Figure 5.4: LPF Impact Depending on the Value of o

Two phenomenons can be deduced from this graph. While, as expected, the
higher the o parameter, the smoother the measurement gets, we can see that the
increase of « also induces a loss of information for the small variations.

Hampel Filter

Then, we tried the Hampel filter. Here, two parameters are available for tuning.
First, the Hampel window size is the length of the set of measures used for filtering.
The second parameter is the N,. This value determines the tolerancy of the filter
to variation. To test the impact of the Hampel window size, we fixed N, at 1.
Figure 5.5 shows our findings.
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Impact of the size of the Hampel window (with N_sig = 1.0)
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Figure 5.5: Hampel Filter Impact Depending on the Window Size

Analyzing the graph, we can see that the Hampel filter is good at filtering the
outliers. We also notice that the filter introduces a delay between the movement
and the acceptance of the new measurement data. It appears that this parameter
seems to have an optimal point. On the green plot, the filter succeeds at rejecting
most of the spikes, but successive spikes seems to create a tolerance for errors. On
the other hand, the orange plot does not filter every outlier but seems to create
less hallucinations. The optimal value of the Hampel window size must thus be
between 4 and 8.

On Figure 5.6, we fixed the Hampel window size at 7 and changed the value
of the N, parameter. What we can see is that this parameter seems to have less
impact than expected. The sole impact that we were able to determine is that N,
seems to have an impact on the duration of the error caused by the outliers when
they are accepted.
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Figure 5.6: Hampel Filter Impact Depending on the N, Parameter
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Median Smoothing Filter

The third filter we tried was a Median Smoothing Filter. This filter simply works
by taking the median value of a neighbouring set of values. The only parameter
available is the size of this set. As for the other filters, we tried different values to
determine the impact of this parameter on the final result. Figure 5.7 shows the
results given by this filter.
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Figure 5.7: Median Smoothing Filter Impact Depending on the Window Size

This simple filter seems to give great results. It greatly improves the stability
of the measures at the cost of a bit of inaccuracy. From the graph, we can deduce
that the stability increases with the size of the smoothing window, but so does the
inaccuracy of the measure.

After testing those three filters, we wondered which of them was the best fit in
our case. All three present some advantages and imperfections. The LPF is not
strong enough to completely smooth the measurements when big spikes arise. The
Hampel filter is good at filtering the big spikes, but did not convince us much as it
creates new spikes from time to time. The Median Smoothing Filter showed good
stability, but as those data are used as corrector for the position of the robot, the
inaccuracy that it introduces can be problematic.

We thus tried to combine the filters, which allowed us to use softer parameters
and limit the impact of each of the filter’'s downsides. We found out that the
Hampel Filter worked better when paired with a soft Low Pass. Trying multiple
combination of filters, we found a satisfactory filter by using the three filters one
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after the other, with the following parameters value :
o Low Pass Filter : a = 0.2
o Hampel Filter : Window size = 7, N, = 2
e Median Smoothing Filter : Window size = 3

Figure 5.8 shows the impact of each filter on the resulting measures.

Impact of the different filters on the measurements

250 —— Raw measurement

—— Low Pass
—— Hampel on Low Pass
2001 —— Smoothing on Hampel on Low Pass

—
a
I=]

=
=)
I=]

Distance

50

0 20 40 60 80 100 120 140 160 180 200 220 240 260 280 300 320 340 360 380 400 420 440 460 480 500 520 540
Sample Index

Figure 5.8: Three Filters Impact on the Measures

5.2 Sensor Fusion/Kalman Filter Tests

In order to successfully track our robot agent in our environment, we need to know
precisely where it is located in our room. That is why, in this section, we will detail,
analyse and validate the various experiments we carried out with our Kalman filters.

First, we conducted static tests to identify the optimal values for our covariance
matrices, ensuring that the Kalman filters could respond as accurately and robustly
as possible to their environment.

To build a reliable position Kalman filter, we needed a robot orientation angle

that was both very stable and accurate. Therefore, we first tested the dynamics of
our orientation Kalman filter in order to validate and refine our covariance matrices.
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Finally, we performed dynamic tests on our position Kalman filter that also
incorporates orientation estimates.

For these various tests, the values of the different covariance matrices were
those presented in Chapter 4.3.

5.2.1 Determination of the static position of the robot

For this experiment, we studied the Kalman filter for position and the Kalman
filter for orientation independently, as they both serve different purposes when the
robot is stationary and rotating without changing places.

Position Kalman filter

When the robot is stationary, the position Kalman filter aims at maintaining an
accurate estimate of the robot’s position using the available data, such as wheel
speed and sonar measurements. The filter must rely on the state transition model
and sensor inputs to remain as close as possible to the true position, despite the
presence of noise.

To evaluate whether our Kalman filter correctly integrates the data it receives,
we conducted a simple experiment. We placed our robot at a distance where the
sonar sensors could reliably detect it, and we analyzed, using a graph, whether
the estimated position remained stable even when the sonar data was occasionally
noisy or returned erroneous measurements.

This initial experiment provided valuable insights into the tuning of the Q and
R covariance matrices. Recall that Q represents the process noise covariance, which
models uncertainties in the prediction step (e.g., imprecise motion model or wheel
slip), while R represents the measurement noise covariance, which accounts for
uncertainties in the sensors (e.g., sonar noise). Since the purpose of this test was to
achieve a stable position estimate, we experimentally adjusted the different entries
of Q and R to obtain the most stable response possible, ensuring that the Kalman
filter neither diverged nor became overly sensitive to measurement disturbances.

We conducted one test. The test was performed when the robot was completely
stationary and did not move from its starting point.
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Test results:

Figure 5.10 shows that our results are in line with our expectations. Indeed, we
can see that the robot’s position is static over time. Some measurements deviate
from the initial point, but this is negligible compared to the size of the robot’s
environment. The maximum deviation from the initial point is approximately 0.1
cm. Details of the measurements of position x as a function of time and y as a
function of time can be found in Figure 5.10 a and b.

X position when the robot is static Y position when the robot is static
0.630 0.6500

0.6475
0.625

0.6450
0.620
0.6425

0.6400
0.6375 N

0.6350

X position (m)
o
o
P
G
Y position (m)

o
o
=
5]

0.605
0.6325

0.600 T T T 0.6300 r + T
2 4 6 8 10 2 4 6 8 10
Time (s) Time (s)

(a) (b)

Trajectory when the robot is static

0.6475 1
0.6450 4
0.6425 4
0.6400 4

0.6375 1 7

0.6350 A

Y position (m)

0.6325 4

0.600 0.605 0.610 0.615 0.620 0.625 0.630
X position (m)

Figure 5.10: Static Kalman Position Test Results
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Orientation Kalman filter

For the Kalman filter of orientation, the principle is similar to that of the Kalman
filter of position. The main difference is that we analyse the estimated orientation
angle produced by the filter. Thanks to this experiment, we were also able to
validate specific values for the covariance matrices Q and R in order to ensure a
balance between modelling process noise and taking measurement noise into account.

Results

In this test, we can see in the Figure 5.11 that the angle remains static over time. A
slight drift remains but it is corrected over time thanks to our orientation Kalman
filter measurements.
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Figure 5.11: Kalman Orientation Results for a Static Position

5.2.2 Determination of the dynamic angle of the robot

The most critical factor in validating our Kalman filters was the robot’s orientation,
as its position estimation depends directly on it. We had already validated the
orientation under static conditions, and now we wanted to test the filter’s response
when the robot moves in its environment. It was essential to ensure very accurate
orientation in order to avoid the propagation of errors in the position calculation.
To do this, we conducted a series of tests designed to cover as many realistic
scenarios as possible.
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We carried out a simple test. We started with the robot at zero degrees, then
turned it to -90 degrees, then turned it directly to 90 degrees, and then returned it
to 0 degrees.

We can see from the Figure 5.12 that the test is successful and the Kalman
orientation completely follows the robot’s movement.
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Figure 5.12: Kalman orientation results for a dynamic position

5.2.3 Determination of the dynamic position of the robot
In order to validate our covariance values, we performed two tests to ensure that

our position Kalman filter worked correctly.

To validate all directions, we decided to conduct a test at a constant angle of
45 degrees to see if our robot could reach all areas of our environment.

Test results:

For this test, we decided to start at the beginning of our environment. Then we
moved from one corner of the environment to another. We can see in Figures 5.14
that our Kalman filter is fully capable of covering the entire environment.
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Figure 5.14: Dynamic Kalman Position Test Results with an Angle of 45°
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Last test results

After validating all previous tests, we conducted a comprehensive evaluation cover-
ing all possible scenarios. This final test enabled us to validate all of our filters
and guarantee the accuracy of the robot’s movements in its environment.

To do this, we created a square in our environment to validate the combination
of our Kalman filter. The results obtained are shown in Figure 5.15.
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Figure 5.15: Kalman Position Results

We can see that it is feasible to make a square with our Kalman measurements.
However, it was quite difficult to make it correctly. We had to repeat the experiment
many times to achieve the expected result. This shows that our Kalman filters are
functional but not necessarily robust in all circumstances.
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5.3 Handover and Propagation Protocols Tests

5.3.1 Handover protocol test

For this test, we created a two room setup in a straight line (on the X axis). Then
by simply controlling the robot for it to move from room 0 to room 1, we were able
to visually see that the handover was working (through the sensors LED going from
blue to green in room 1, and from green to blue in room 0). This first assumptions
was then confirmed by the data we were able to collect. Figure 5.16 shows those
results.
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Figure 5.16: Graph of the Handover of Responsibility Between Rooms

This graph illustrates the inner works of our handover protocol. The blue curve
shows the position of the robot on the x axis and the dashed lines show the trigger
of events. In red and orange, we get a boolean True value if the room is currently
measuring. In green we get a True if the robot listens to room 1, listening to room
0 otherwise.

We can clearly observe that room 1 starts measuring a bit before the robot
enters its room, as explained in Chapter 4.2.4. Then we can see that when the
robot enters room 1, it switches its focus to the sensors in room number 1. Lastly,
we can notice that when the robot is sufficiently far away from room 0, its sensors
stop measuring.
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Additionally, to avoid oscillations between rooms when the robot is near the
boundary, we implemented a form of hysteresis. This hysteresis is achieved through
a buffer zone where both room’s sensors are activated when the robot is in the
transition area. However, the robot itself determines when to change its active
room based on its calculated prediction. This approach ensures that even in a rapid
oscillation between rooms, the robot will keep its position correct. The system’s
decision to switch rooms is therefore not based solely on sensor input but mainly
influenced by the robot’s internal calculations, providing a stable transition without
unnecessary fluctuations.

Furthermore, since the change in coordinates is strongly linked to the speed
of the robot’s wheels, and given the robot’s stability during operation, we can
conclude that the change in direction is not abrupt. Instead, the transition from
one room to the other is precise, At one point in space and determined solely by
the robot.

5.3.2 Propagation protocol test
Routing graph test

In order to test that our artificial routing was done correctly, we monitored all the
configuration messages received by the sensors during the configuration phase. See
Appendix C to see those logs.

The mockup was put in a L shape with sensor 1 and sensor 2 in room zero,
sensor 8 and sensor_4 in room one and sensor b and sensor_6 in room two.

By analyzing the logs, we can check that sensor 1 received :

e server, sensor__1, robot and sensor_ 2 with a Add_Device message (Direct
communication).

o sensor_ 3 and sensor_4 with a Add_Link message (propagation communica-
tion).

The sensor__3 logs show that it received :

e server, sensor_3, robot and sensor_4 with a Add__Device message (Direct
communication).

o sensor_ 1, sensor_ 2, sensor_5 and sensor_ 6 with a Add__Link message (prop-
agation communication).

The sensor__5 logs show that it received :
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e server, sensor_ 5, robot and sensor 6 with a Add_Device message (Direct
communication).

o sensor_ 3, sensor_4 with a Add_ Link message (propagation communication).

This is what was expected by our routing protocol (see Figure 3.11)

Propagation test

To test whether our propagation protocol worked as intended, we controlled the
robot moving through the rooms to see if all the rooms received all the informations.
Figure 5.17 shows our results.
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Figure 5.17: Room Position and Sequence Number Evolution
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In the first row, each graph represents the knowledge of a specific room, showing
the room in which the robot is located according to that room’s data. The handover
from room 0 to room 1 occurs around index 85, and the handover from room 1 to
room 2 occurs around index 255.

In the second row, we plot the evolution of the sequence number associated with
each data point. This sequence number is attached to every hera data message
and corresponds to a measurement.

Based on the routing that has been checked by the logs, we can conclude that
when the robot is in room 0, room 2 should not be able to know where the robot
is, unless the information is propagated through room 1. Figure 5.18 shows what
the knowledge would look like without propagation. The fact that that room 1 has
all knowledge is due to the fact that it is central in this small scale mockup. Its
information would become partial in a larger building.
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Figure 5.18: Room Knowledge Without the Propagation Protocol

Since that knowledge is shared and since all three rooms received the same
hera data sequence number, we can conclude that, at least in this three rooms
setup, the simple propagation protocol we implemented works as intended.
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Chapter 6

Conclusion

6.1 Discussion

As a conclusion, we reached to achieve all the objectives initially fixed for our
master’s thesis. Our list of contributions is thus as follows:

o We refactored and extended the software of a robot built for a previous
master’s thesis and integrated it in a larger system.

o We created a multi-agent distributed system using GRiSP2 prototyping
boards and sensor-fusion to allow a robot to determine its position. we indeed
added a new layer of awareness (position awareness) in the process of the
robot.

o We demonstrated the feasibility for a robot to dynamically hand over its
focus to different groups of sensors.

e We demonstrated how useful the Hera framework is for the creation of an
[oT distributed system.

e We added new functionalities to the Hera framework.

o We clarified the organization and document the Hera framework’s API and
inner works.

o We implemented a time multiplexing like protocol for the prevention of cross
talk interferences in the sonar sensors.

o We created a propagation protocol that allows communication in a discontin-
ued environment.
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o We implemented an executive function above a timeclock in order to check
whether a measurement is needed.

o We implemented a Kalman filter using Hera to determine the position, angle
and room in which an object is moving.

o We created a data representation of a mutli-room building.

6.2 Limitations

As great as it looks, our system still shows lots of limitations.

First, the major limitation of our system is the Pmod maxsonar. The opening
angle of the sonar (30°) does not allow a sufficient area of coverage. The measures
from the sonars are used as corrector for the estimated state of the system. It
would thus greatly benefit from an increase in the area covered. Note that when
scalled up, this area increases.

The usage of range finding sonars also prohibits the upscalling of the system.
Indeed, those sensors only see the closest object in their sight, not all of them. In
a room filled with furniture, these sonars wouldn’t even be able to find the robot.

In this small scale mockup, the width of the robot produces a significant relative
error on its position estimate. Thankfully, the relative size of the robot decreases
as the size of the rooms increases. This error should thus reduce, to be negligible
in a full sized room.

Even though those limitations are significant, we expect their influence to reduce
when the environment used grows.

To stay on the sensors, the electric consumption of the GRiSP2 measuring at
full speed and communicating by WiFi with the other agents burns quickly through
the small lithium battery pack that we integrated. In order to create a product
out of this system, it would be necessary to find a better suited battery pack, or to
find ways to reduce the energy consumption of the system.

We achieved a total number of 8 devices, which is the maximum that can connect

to the LilyGo ESP32 access point (six sensors, one robot and one controller). This
can be a limitation if the number of room in a building is greater that three.
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The precision of the clock protocol that we implemented is bound by the Round
Trip Time (RTT) necessary for a "tick" message to reach the other sensor. If any
congestion occurs on the access point, then the clock can drift, causing new errors
on the sonar measures.

We also found the SD ports in the GRiSP2 boards to be capricious. The card
were sometimes not recognized. When using multiple cards, it can quickly become
unpleasant.

In addition to these limitations, the ones found by Cédric Ponsard and Frangois
Goens [6] in their master’s thesis are still applicable. To name a few, the 12C
communication between the GRiSP and the ESP32 sometimes can’t be opened,
the Pmod Nav is sometime unreachable by the GRiSP and the robot sometimes
fall unexpectedly due to a drop in performance.

6.3 Future Work

Our work considerably contributes to the project of a finished GRiSP/Hera robot
product. However the road ahead remains long. In this section, we discuss the
possible future developments that would be interesting towards this goal.

First, and as discussed in the previous chapter, the current performance of the
sensors is a big bottleneck for this project. The arrival of new, more performant
sensors such as an Ultrawide Band sensor [20] or a Time of Flight (ToF) [1]
sensors could allow the sensors to get a more accurate estimated position of the
robot, thus allowing a better precision of the position deduced by the Kalman filter.
It would then become possible to test and extend the system at full scale in a
real building.

Another limitation of the sensors that we discussed was their energy consump-
tion. It is true that all the sensors keep drawing energy from their battery even
when idle in a room far away from the robot. Latest advances in the GRiSP Nano
prototyping boards allow us to hope that longer lasting energy-aware sensors can
be developped, maybe integrating a sleep mode when the robot is far away from
the concerned room.
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In order to further reduce the energy consumption of the sensors, new com-
munication media could replace the current WiFi communication between the
different agents in the system. Since the robot and the User Controller already
use LoRa to communicate the movement commands, it would make sense to use
the same communication media for all communication, further reducing the energy
consumption in the process.

Second, the current system should work in a 3D building with different floors,
as their must be a link (e.g a staircase) between floors that allow to flatten the
building as a 2D representation. But in the current setup, the rooms are considered
static, what happens if the rooms start moving ? In an hotel where the link
between floors is an elevator. In this case, the room representing the elevator moves
through the building’s graph, requiring the graph to be dynamically modified each
time the elevator arrives at a different floor.

Third, on another topic, the user controller is, for now, more a testing con-
troller than a finished product. A new controller could be implemented using
more suited technologies such as React for example. It could be implemented as
a mobile app, improving the end-user experience and the portability of the system.

Last but not least, it would be nice to give the system a practical purpose.
In their ongoing master’s thesis, Arthur Dandoy and Sam Raymackers are trans-
forming the robot into a mobile table and implementing an obstacle avoidance
layer. Merged with our project, this opens an exciting possibility. It would then be
possible to implement even another layer : autonomous movements.
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Figure 6.1: Possible Autonomous Robot Architecture
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Once empowered by autonomous movement, numerous applications become
possible. The robot could, for example, be implemented as a house assistant for
elderly or handicaped people, helping them stay independent, as a nurse assistant
in a hospital carrying tools and medications... or a butler-robot carrying glasses of
wine around in a pub.

The GRiSP/Hera robotic system could then evolve from a proof of concept to

a versatile, reliable system, ready to tackle real-word issues and improve lives in
numerous meaningful ways.
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Appendix A

Environment pictures

A.1 Mockup presentation

N

(a) Side wall panel (b) Side wall support

Figure A.1: Building of a room
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A.2 Environment testing

Figure A.2: Room adapted with foam

Figure A.3: Room setup with no absorption
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A.3 Sensor Construction

(a) 3D Printed GRiSP2 Stand (b) 3D Printed Corner Adapter

(c) 3D Printed Angle Adapter

Figure A.4: Schemes of the Three 3D Printed Sonar Sensor Parts
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Appendix B

Kalman filter visualisation
diagram
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Appendix C

Configuration logs

C.1 Sensor__1 (in room 0) logs

[HERA] Startup

[HERA] DebugMode on

[HERA_COM] Could not open socket: badarg

[SENSOR] start initialization sequence

[HERA_COM] Retrying in 1 [s], attempt number 1

[HERA_SUBSCRIBE] New subscriber <0.346.0>

[SENSOR] sensor id :1

[SENSOR] WiFi setup starting...

wlanO: WPA: Key negotiation completed with 64:b7:08:ad:3a:55 [PTK=
CCMP GTK=CCMP]

wlanO: CTRL-EVENT-CONNECTED - Connection to 64:b7:08:ad:3a:55
completed [id=0 id_str=]

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 2 [s], attempt number 2

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 4 [s], attempt number 3

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 8 [s], attempt number 4

err: wlanO: ipv4_addroute: File exists

err: wlanO: ipv4_addroute: File exists

[HERA_COM] Connected to private network with IP: {192,168,4,6}

[HERA_SUBSCRIBE] Notifying "connected"

[SENSOR] WiFi setup domne

[SENSOR] Waiting for ping from server

[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_COM] Discovered new device : server

[HERA_COM] Sending "Hello,1" to server

[HERA_SUBSCRIBE] Notifying ["Ack","server"]

[SENSOR] Received ACK from server
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[SENSOR] Waiting for start signal

[HERA_SUBSCRIBE] Notifying ["Add_Device","sensor_1","192.168.4.6",
"9000"]

[HERA_COM] Sending "Ack,Add_device,sensor_1,1" to server

[HERA_SUBSCRIBE] Notifying ["Pos","1","0.12","0.98","0.6","45","0"
]

[HERA_COM] Sending "Ack,Pos,sensor_1,1" to server

[HERA_DATA] Storing room, sensor_1, 1, [O]

[HERA_DATA] Storing pos, sensor_1, 1, [0.12,0.98,0.6,45]

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_3","192.168.4.7","
9000"]

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_4","192.168.4.10","
9000"]

[HERA_COM] Sending "Ack,Add_Link,sensor_3,1" to server

[SENSOR] Discovered new link : "sensor_3"
[HERA_COM] Sending "Ack,Add_Link,sensor_4,1" to server
[SENSOR] Discovered new link : "sensor_ 4"

[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_SUBSCRIBE] Notifying ["Add_Device","sensor_2","192.168.4.8",

n 9000 ll]
[HERA_COM] Sending "Ack,Add_device,sensor_2,1" to server
[HERA_COM] Discovered new device : sensor_2
[HERA_SUBSCRIBE] Notifying ["Pos","2","0.16","0.12","0.6","315","0
|’]

[HERA_COM] Sending "Ack,Pos,sensor_2,1" to server

[HERA_DATA] Storing room, sensor_2, 1, [0]

[HERA_DATA] Storing pos, sensor_2, 1, [0.16,0.12,0.6,315]

[HERA_SUBSCRIBE] Notifying ["Room_info","0","0.0","0.0","1.14" "
1.14"]

[HERA_DATA] Storing room_info, 0, 1, [0.0,0.0,1.14,1.14]

[HERA_COM] Sending "Ack,Room_info,0,1" to server

[HERA_SUBSCRIBE] Notifying ["Room_info","1","1.14","0.0","2.28","
1.14"]

[HERA_DATA] Storing room_info, 1, 1, [1.14,0.0,2.28,1.14]

[HERA_COM] Sending "Ack,Room_info,1,1" to server

[HERA_SUBSCRIBE] Notifying ["Room_info","2","1.14","1.14","2.28","
2.28"]

[HERA_DATA] Storing room_info, 2, 1, [1.14,1.14,2.28,2.28]

[HERA_COM] Sending "Ack,Room_info,2,1" to server

[HERA_SUBSCRIBE] Notifying ["Add_Device","robot","192.168.4.2","
9000"]

[HERA_COM] Sending "Ack,Add_device ,robot,l1" to server

[HERA_COM] Discovered new device : robot

[HERA_SUBSCRIBE] Notifying ["Init_pos","0.57","0.57","0.0","0"]

[HERA_SUBSCRIBE] Notifying ["Add_Device","robot","192.168.4.2","
9000"]

[HERA_COM] Sending "Ack,Pos,robot,1" to server

[HERA_DATA] Storing robot_pos, robot, 1, [0.57,0.57,0.0,0]

[HERA_COM] Sending "Ack,Add_device ,robot,1" to server
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[HERA_SUBSCRIBE] Notifying ["Init_pos","0.57","0.57","0.0","0"]
[HERA_COM] Sending "Ack,Pos,robot,1" to server

[HERA_SUBSCRIBE] Notifying ["Start","192.168.4.4"]

[SENSOR] Start received, starting the computing phase

[SENSOR] Other sensor is : sensor_2

[HERA_COM] Sending "Handshake ,1657,163533" to sensor_2
[HERA_SUBSCRIBE] Notifying ["Handshake","1677","163713"]
[SONAR_MEASURE] External priority higher, sensor role : SLAVE
[HERA_COM] Sending "Ok,role" to sensor_2

[HERA_SUBSCRIBE] Notifying ["Ok","role"]

[SONAR_MEASURE] Starting measurements

C.2 Sensor_3 (in room 1) logs

[HERA] Startup

[HERA] DebugMode on

[HERA_COM] Could not open socket: badarg

[SENSOR] start initialization sequence

[HERA_COM] Retrying in 1 [s], attempt number 1

[HERA_SUBSCRIBE] New subscriber <0.346.0>

[SENSOR] sensor id :3

[SENSOR] WiFi setup starting...

wlanO: Trying to associate with 64:b7:08:ad:3a:55 (SSID=’RobotNet’
freq=2412 MHz)

Failed to add supported operating classes IE

info: wlanO: link state changed to UP

wlanO: Associated with 64:b7:08:ad:3a:55

err: wlanO: ipvé4_sendrawpacket: No buffer space available

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 2 [s], attempt number 2

wlanO: WPA: Key negotiation completed with 64:b7:08:ad:3a:55 [PTK=
CCMP GTK=CCMP]

wlanO: CTRL-EVENT-CONNECTED - Connection to 64:b7:08:ad:3a:55
completed [id=0 id_str=]

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 4 [s], attempt number 3

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 8 [s], attempt number 4

err: wlanO: ipv4_addroute: File exists

err: wlanO: ipv4_addroute: File exists

[HERA_COM] Connected to private network with IP: {192,168,4,7}

[HERA_SUBSCRIBE] Notifying "connected"

[SENSOR] WiFi setup domne

[SENSOR] Waiting for ping from server
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[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_COM] Discovered new device : server

[HERA_COM] Sending "Hello ,3" to server

[HERA_COM] Sending "Hello ,3" to server

[HERA_SUBSCRIBE] Notifying ["Ack","server"]

[SENSOR] Received ACK from server

[SENSOR] Waiting for start signal

[HERA_SUBSCRIBE] Notifying ["Add _Device","sensor_3","192.168.4.7",
"9000"]

[HERA_COM] Sending "Ack,Add_device,sensor_3,3" to server

[HERA_SUBSCRIBE] Notifying ["Pos","3","2.12","1.02","0.6","135","1
"]

[HERA_COM] Sending "Ack,Pos,sensor_3,3" to server

[HERA_DATA] Storing room, sensor_3, 1, [1]

[HERA_DATA] Storing pos, sensor_3, 1, [2.12,1.02,0.6,135]

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_1","192.168.4.6","
9000"]

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_2","192.168.4.8","
9000"]

[HERA_COM] Sending "Ack,Add_Link,sensor_1,3" to server

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_6","192.168.4.9",6"
9000"]

[SENSOR] Discovered new link : "sensor_ 1"

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_5","192.168.4.5","
9000"]

[HERA_COM] Sending "Ack,Add_Link,sensor_2,3" to server

[SENSOR] Discovered new link : "sensor_ 2"
[HERA_COM] Sending "Ack,Add_Link,sensor_6,3" to server
[SENSOR] Discovered new link : "sensor_ 6"
[HERA_COM] Sending "Ack,Add_Link,sensor_5,3" to server
[SENSOR] Discovered new link : "sensor_ 5"

[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_SUBSCRIBE] Notifying ["Add_Device","sensor_4","192.168.4.10"

s "9000 II]
[HERA_COM] Sending "Ack,Add_device ,sensor_4,3" to server
[HERA_COM] Discovered new device : sensor_4
[HERA_SUBSCRIBE] Notifying ["Pos","4","2.12","0.12","0.6","225" "1
|l:|

[HERA_COM] Sending "Ack,Pos,sensor_4,3" to server

[HERA_DATA] Storing room, sensor_4, 1, [1]

[HERA_DATA] Storing pos, sensor_4, 1, [2.12,0.12,0.6,225]

[HERA_SUBSCRIBE] Notifying ["Room_info","0","0.0","0.0","1.14" "
1.14"]

[HERA_DATA] Storing room_info, 0, 1, [0.0,0.0,1.14,1.14]

[HERA_COM] Sending "Ack,Room_info,0,3" to server

[HERA_SUBSCRIBE] Notifying ["Room_info","1","1.14","0.0","2.28","
1.14"]

[HERA_DATA] Storing room_info, 1, 1, [1.14,0.0,2.28,1.14]
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[HERA_COM] Sending "Ack,Room_info,1,3" to server

[HERA_SUBSCRIBE] Notifying ["Room_info","2","1.14","1.14","2.28","
2.28"]

[HERA_DATA] Storing room_info, 2, 1, [1.14,1.14,2.28,2.28]

[HERA_COM] Sending "Ack,Room_info,2,3" to server

[HERA_SUBSCRIBE] Notifying ["Add_Device","robot","192.168.4.2","
9000"]

[HERA_COM] Sending "Ack,Add_device ,robot,3" to server

[HERA_COM] Discovered new device : robot

[HERA_SUBSCRIBE] Notifying ["Init_pos","0.57","0.57","0.0","0"]

[HERA_SUBSCRIBE] Notifying ["Add_Device","robot","192.168.4.2", "
9000"]

[HERA_COM] Sending "Ack,Pos,robot,3" to server

[HERA_DATA] Storing robot_pos, robot, 1, [0.57,0.57,0.0,0]

[HERA_COM] Sending "Ack,Add_device ,robot,3" to server

[HERA_SUBSCRIBE] Notifying ["Init_pos","0.57","0.57","0.0","0"]

[HERA_COM] Sending "Ack,Pos,robot,3" to server

[HERA_SUBSCRIBE] Notifying ["Start","192.168.4.4"]

[SENSOR] Start received, starting the computing phase

[SENSOR] Other sensor is : sensor_4

[HERA_COM] Sending "Handshake ,344,163738" to sensor_4

[HERA_SUBSCRIBE] Notifying ["Handshake","2900","121972"]

[SONAR_MEASURE] External priority higher, sensor role : SLAVE

[HERA_COM] Sending "Ok,role" to sensor_4

[HERA_SUBSCRIBE] Notifying ["Ok","role"]

[SONAR_MEASURE] Starting measurements

C.3 Sensor_5 (in room 2) logs

[HERA] Startup

[HERA] DebugMode on

[HERA_COM] Could not open socket: badarg

[SENSOR] start initialization sequence

[HERA_COM] Retrying in 1 [s], attempt number 1

[HERA_SUBSCRIBE] New subscriber <0.346.0>

[SENSOR] sensor id :5

[SENSOR] WiFi setup starting...

wlanO: Trying to associate with 64:b7:08:ad:3a:55 (SSID=’RobotNet’
freq=2412 MHz)

Failed to add supported operating classes IE

info: wlanO: link state changed to UP

wlanO: Associated with 64:b7:08:ad:3a:55

err: wlanO: ipv4_sendrawpacket: No buffer space available

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 2 [s], attempt number 2

wlanO: WPA: Key negotiation completed with 64:b7:08:ad:3a:55 [PTK=
CCMP GTK=CCMP]

96




17

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38

39
40

41
42
43
44

45

46
47
48
49
50
51

52
53
54

55
56

wlanO: CTRL-EVENT-CONNECTED - Connection to 64:b7:08:ad:3a:55
completed [id=0 id_str=]

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 4 [s], attempt number 3

[HERA_COM] Could not open socket: badarg

[HERA_COM] Retrying in 8 [s], attempt number 4

err: wlanO: ipv4_addroute: File exists

err: wlanO: ipv4_addroute: File exists

[HERA_COM] Connected to private network with IP: {192,168,4,5}

[HERA_SUBSCRIBE] Notifying "connected"

[SENSOR] WiFi setup done

[SENSOR] Waiting for ping from server

[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_COM] Discovered new device : server

[HERA_COM] Sending "Hello ,5" to server

[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_COM] Sending "Hello ,5" to server

[HERA_SUBSCRIBE] Notifying ["Ack","server"]

[SENSOR] Received ACK from server

[SENSOR] Waiting for start signal

[HERA_SUBSCRIBE] Notifying ["Add_Device","sensor_5","192.168.4.5",
"9000"]

[HERA_COM] Sending "Ack,Add_device ,sensor_5,5" to server

[HERA_SUBSCRIBE] Notifying ["Pos","5","1.26","2.12","0.6","45" , "2"
]

[HERA_COM] Sending "Ack,Pos,sensor_5,5" to server

[HERA_DATA] Storing room, sensor_5, 1, [2]

[HERA_DATA] Storing pos, sensor_5, 1, [1.26,2.12,0.6,45]

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_4","192.168.4.10","

9000"]

[HERA_SUBSCRIBE] Notifying ["Add_Link","sensor_3","192.168.4.7","
9000"]

[HERA_COM] Sending "Ack,Add_Link,sensor_4,5" to server

[SENSOR] Discovered new link : "sensor_4"

[HERA_COM] Sending "Ack,Add_Link,sensor_3,5" to server

[SENSOR] Discovered new link : "sensor_ 3"

[HERA_SUBSCRIBE] Notifying ["ping","server","192.168.4.4","5000"]
[HERA_SUBSCRIBE] Notifying ["Add_Device","sensor_6","192.168.4.9",

" 9000 ll]
[HERA_COM] Sending "Ack,Add_device ,sensor_6,5" to server
[HERA_COM] Discovered new device : sensor_6
[HERA_SUBSCRIBE] Notifying ["Pos","6","2.12","2.16","0.6","135","2
||]

[HERA_COM] Sending "Ack,Pos,sensor_6,5" to server
[HERA_DATA] Storing room, sensor_6, 1, [2]
[HERA_DATA] Storing pos, sensor_6, 1, [2.12,2.16,0.6,135]
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[HERA_SUBSCRIBE] Notifying ["Room_info","0","0.0","0.0","1.14" "
1.14"]

[HERA_DATA] Storing room_info, 0, 1, [0.0,0.0,1.14,1.14]

[HERA_COM] Sending "Ack,Room_info,0,5" to server

[HERA_SUBSCRIBE] Notifying ["Room_info","1","1.14","0.0","2.28",
1.14"]

[HERA_DATA] Storing room_info, 1, 1, [1.14,0.0,2.28,1.14]

[HERA_COM] Sending "Ack,Room_info,1,5" to server

[HERA_SUBSCRIBE] Notifying ["Room_info","2","1.14","1.14","2.28"
2.28"]

[HERA_DATA] Storing room_info, 2, 1, [1.14,1.14,2.28,2.28]

[HERA_COM] Sending "Ack,Room_info,2,5" to server

[HERA_SUBSCRIBE] Notifying ["Add_Device","robot","192.168.4.2","
9000"]

[HERA_COM] Sending "Ack,Add_device ,robot,5" to server

[HERA_COM] Discovered new device : robot

[HERA_SUBSCRIBE] Notifying ["Init_pos","0.57","0.57","0.0","0"]

[HERA_SUBSCRIBE] Notifying ["Add_Device","robot","192.168.4.2","
9000"]

[HERA_COM] Sending "Ack,Pos,robot,5" to server

[HERA_DATA] Storing robot_pos, robot, 1, [0.57,0.57,0.0,0]

[HERA_COM] Sending "Ack,Add_device ,robot,5" to server

[HERA_SUBSCRIBE] Notifying ["Init_pos","0.57","0.57","0.0","0"]

[HERA_COM] Sending "Ack,Pos,robot,5" to server

[HERA_SUBSCRIBE] Notifying ["Start","192.168.4.4"]

[SENSOR] Start received, starting the computing phase

[SENSOR] Other sensor is : sensor_6

[HERA_COM] Sending "Handshake ,149,163817" to sensor_6

[HERA_SUBSCRIBE] Notifying ["Handshake","2589","128036"]

[HERA_SUBSCRIBE] Notifying ["O0k","role"]

[SONAR_MEASURE] External priority higher, sensor role : SLAVE

[HERA_COM] Sending "Ok,role" to sensor_6

[SONAR_MEASURE] Starting measurements
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Appendix D

Hera Framework

D.1 Hera main module

-module (hera) .
-behaviour (application).

-export ([start_measure/2, timestamp/0, logg/2]).
-export ([start/2, stop/1]).

-type timestamp() :: integer() | undefined.
-export_type([timestamp/0]).
Ak starts and supervise the measure defined in the callback module

A% using Module:intit (Args)
-spec start_measure (Module, Args) -> {ok, pid()} | {error, term()}

when
Module :: module (),
Args :: term().

start_measure (Module, Args) ->
hera_measure_sup:start_child (Module, Args).
-spec timestamp() -> timestamp().

timestamp () ->
erlang:monotonic_time(millisecond).

logg (Message, Args) ->

DebugMode = persistent_term:get(debugMode),
if
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DebugMode ->
io:format (Message, Args);
true ->
ok
end .

start (_StartType, _StartArgs) ->

io:format (" [HERA] ,Startup~n"),

DebugMode = application:get_env(hera, debugmode,

case DebugMode of

true ->
persistent_term:put (debugMode, true),
hera:logg (" [HERA] DebugMode on~n", []1);
->

persistent_term:put (debugMode, false),
ok

end ,
hera_sup:start_link ().

stop(_State) ->
ok.

false),
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D.2 hera com module

-module (hera_com) .

-export ([start_link/0]).
-export ([send/3, send/4,

/3, reset_devices/0]).
-export ([encode_half_float/1,decode_half_float/1]).
-export ([get_bits/1]1).

send_unicast/3, send_link/5,

-define (MULTICAST_ADDR,
-define (PORT, 9000).

{239,255,0,1}) .

start_link () ->
persistent_term:put (devices,

(n,

add_device

Pid = spawn_link(fun init/0),
register (?MODULE, Pid),
{ok, Pid}.
-spec send(Name, Seq, Values) -> ok when
Name atom (),
Seq pos_integer (),
Values [number (), ...].
send (Name, Seq, Values) ->
Message = {hera_data, Name, node(), Seq, Values},
try 7MODULE ! {send_packet, term_to_binary(Message)?}
catch
error:_ -> ok
end,
ok.
send (Name , Seq, From, Values) -> / To use when wanting to use
personalized maming
Message = {hera_data, Name, From, Seq, Values},
try 7MODULE ! {send_packet, term_to_binary(Message)}
catch
error:_ -> ok
end,
ok.

send_unicast (Name,
messages
hera:logg (" [HERA_COM]_ Sending, ~putoy~p~n",
NewMessage = case Type of
"UTF8" -> Message;
"Binary" -> term_to_binary(Message);

Message, Type)
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-> Message
end,
?MODULE ! {send_packet_unicast, Name, NewMessagel,
ok.

send_link (Name, Ip, Port, Message, Type) -> / allows to send a
message to an unregistered Ip/Port address

hera:logg (" [HERA_COM]_ Sending,link,~pyutoy,~p~n", [Message,
D,
NewMessage = case Type of
"UTF8" -> Message;
"Binary" -> term_to_binary(Message);
-> Message
end,
?MODULE ! {send_packet_unicast, Ip, Port, NewMessage},
ok.

A

ZReturns a list of each bit in the byte given by Byte

Ze.g. Byte = 163 gives [true, false, true, false, false, false
true, true]

4

get_bits (Byte) ->

if
Byte =/= 255 ->
_ = [ (Byte band round(math:pow(2,X))) =/= 0 || X
[7,6,5,4,3,2,1,0]];
true ->
[false, false, false, false, false, false, false,
falsel
end .

Z
#AEncodes a list of walues from double (8 bytes) to half-float
bytes)
AValues = [Doublel,Double2,...]
%
encode_half_float (Values) ->
lists:map(fun(X) -> enc_hf(X) end, Values).

V4

4ZDecodes a list of walues from half-float (2 bytes) to double
bytes)
AValues = [<<Hf1A, Hf1B>>, <<Hf2A, Hf2B>>, ...]

Ze.g. Values = [<<16#43,16#0A>>, <<16#4{B,16#0C>>] gives [3.52,
14.1]

A

decode_half_float (Values) when is_list(Values) ->
decode_half_float (Values, []).
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decode_half_float ([<<A:8, B:8>> | Rest], Acc) -> decode_half_float

(Rest, Acc ++ [dec_hf(<<A, B>>)1);
decode_half_float ([], Acc) -> Acc.

add_device (Name, Ip, Port) ->

Devices = persistent_term:get(devices),
case lists:member ({Name, Ip, Port}, Devices) of
false ->
hera:logg (" [HERA_COM] Discoverednew ,device,:,y~p~n",
Name]) ,
NewDevices = [{Name, Ip, Port} | Devices],
persistent_term:put(devices, NewDevices);
>
ok
end .

reset_devices () ->
persistent_term:put (devices, []).

init () ->
Socket = open_socket (1, 1),
loop (Socket).

open_socket (Delay, Attempts) ->
try open_socket ()
catch
error :Reason ->
hera:logg (" [HERA_COM] ,Could notopensocket: ~p~n",
Reasonl]),
hera:logg (" [HERA_COM]  Retryingyin,~pyuls],uattempty
number ,~p~n", [Delay, Attempts]),
timer:sleep (Delay*1000),
open_socket (min (2*Delay, 8), Attempts+1)
end.

open_socket () ->

{ok, Addrs} = inet:getifaddrs(),

Ipaddr = hd ([
Addr || {_, Opts} <- Addrs, {addr, Addr} <- Opts,
size (Addr) == 4, Addr =/= {127,0,0,1}

D,

{ok, Socket} = gen_udp:open(?PORT, [binary, {active, true},
reuseaddr, truel}l),

case Ipaddr of
{192, _, _, _}Y ->
hera:logg (" [HERA_COM] Connectedto,private networky,
with, IP: ~p~n", [Ipaddrl]),
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168

persistent_term:put(multicast, false);

- :_} ->

hera:logg (" [HERA_COM] ,Connectedtoprivate network
with, IP: ,~p~n", [Ipaddrl),

persistent_term:put(multicast, false);

{172, _, _, _} ->
hera:logg (" [HERA_COM] Connected to mobile hotspot(

unicastyonly) IP:,~p~n", [Ipaddrl),

persistent_term:put(multicast, false);

{10, _,

->
hera:logg (" [HERA_COM] ,Unknown_network IP: ~p~n", [
Ipaddrl]),
persistent_term:put(multicast, false)
end,
hera_subscribe:notify("connected"),
Socket.

loop(Socket) ->
receive
{udp, _Sock, _IP, _InPortNo, Packet} ->
case catch binary_to_term(Packet) of
{’EXIT’, _} ->
handle_string_packet (binary_to_list (Packet));
{hera_data, Name, From, Seq, Values} ->
hera_data:store(Name, From, Seq, Values)
end,
loop (Socket);
{send_packet, Packetl} ->
Multicast_enabled = persistent_term:get(multicast),
if
Multicast_enabled ->
gen_udp:send (Socket, ?MULTICAST_ADDR, ?7PORT,
Packet) ;
true ->
[gen_udp:send(Socket, IP, Port, Packet) || {_,
IP, Port} <- persistent_term:get(devices)]
end,
loop (Socket);
{send_packet_unicast, Name, Packet} ->
Devices = persistent_term:get(devices),
SelectedDevice = lists:keyfind(Name, 1, Devices),
case SelectedDevice of
false -> hera:logg("[HERA_COM]_ Unregistered Device
Luiu~p~n", [Namel);
{_, IP, Port} -> gen_udp:send(Socket, IP, Port,
Packet)
end,
loop (Socket);
{send_packet_unicast, Ip, Port, Packet} ->
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gen_udp:send(Socket, Ip, Port, Packet),
loop(Socket);
->
loop(Socket)
after 5000 ->
case test_connection() of

ok ->
loop(Socket) ;

error ->
New_Socket = restart(Socket),
loop(New_Socket)

end
end.

test_connection() ->
{ok, Addrs} = inet:getifaddrs(),
case lists:keyfind("wlanO", 1, Addrs) of
{"wlanO", Fields} ->
case proplists:get_value(broadaddr, Fields, none) of
none ->
error;
_BroadAddr ->
ok
end ;
->
error

end.

restart (Socket) ->
hera:logg (" [HERA_COM] Lost,connection~n", []),
gen_udp:close(Socket),
hera_subscribe:notify("disconnected"),
open_socket (1, 1).

handle_string_packet (String) ->
Tokens = string:tokens (String, ":,,"),
hera_subscribe:notify (Tokens) .

#Encodes one wvalue from a double to a half-float

enc_hf (Double) ->
<<_,_,A,B,C,_,_,_,_,_>>=term_to_binary (Double),
A2 = (A band 192) bor ((B bsr 2) band 63),
B2 = ((B bsl 6) band 192) bor ((C bsr 2) band 63),
<<A2,B2>>.

#Decodes one wvalue from a half-float to a double
dec_hf (<<0,0>>) -> 0.0;
dec_hf (Half_Float) ->

<<X,Y¥>> = Half_Float,
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if
(X band 64) == 0 ->
A = (X band 192) bor 63;
true ->
A = (X band 192)
end,
B = ((X bsl 2) band 252) bor ((Y bsr 6) band 3),
C = ((Y bsl 2) band 252),
binary_to_term(<<131,70,A,B,C,0,0,0,0,0>>).

D.3 hera data

-module (hera_data) .
-behaviour (gen_server) .

-export ([start_link/0]).

-export ([get/1, get/2]).

-export ([store/4, reset/0]).

-export ([init/1, handle_call/3, handle_cast/2]).

-type measure() :: {node(), pos_integer (), hera:timestamp(),
number (), ...12}.

-export_type ([measure/0]) .

-record(data, {
seq = 0 :: non_neg_integer (),
values :: [number (), ...] | undefined,
timestamp :: hera:timestamp (),
file :: string() | undefined

.

start_link () ->

gen_server:start_link({local, ?MODULE}, ?MODULE, [1, [1).

-spec get(Name) -> Measures when
Name :: atom(),
Measures :: [measure()].
get (Name) ->
gen_server:call (?MODULE, {get, Namel).

-spec get(Name, Node) -> [Measure] when
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34 Name :: atom(),

35 Node :: node(),

36 Measure :: measure ().
37
38| get (Name , Node) ->

39 gen_server:call (?MODULE, {get, Name, Nodel}).
40
41
42| ~spec store(Name, Node, Seq, Values) -> ok when

43 Name :: atom(),

44 Node :: node(),

45 Seq :: pos_integer (),

46 Values :: [number (), ...].

47
4s| store (Name , Node, Seq, Values) ->

49 hera:logg (" [HERA_DATA],Storing, ~p,u~pP,u~pP,u~p~n",[Name, Node,
Seq, Values]),
50 gen_server:cast (?MODULE, {store, Name, Node, Seq, Values}).

51
52| reset () ->

53 gen_server:cast (?MODULE, reset).
54
s5/init ([1) ->

56 {ok, #{}}.
57
58
so| handle_call ({get, Name}, _From, MapData) ->

60 MapMeasure = maps:get(Name, MapData, #{}),

61 L = maps:to_list(MapMeasure),

62 Res = [{Node,S,T,V} || {Node, #data{seq=S,values=V,timestamp=T
3} <= L1,

63 {reply, Res, MapDatal;

64
65| handle_call ({get, Name, Nodel}, _From, MapData) ->

66 MapMeasure = maps:get (Name, MapData, #{}),

67 Res = if

68 is_map_key(Node, MapMeasure) ->

69 #data{seq=S,values=V,timestamp=T} = maps:get (Node,
MapMeasure) ,

70 [{Node,S,T,V}];

71 true ->

72 (]

73 end ,

74 {reply, Res, MapData};

75
76| handle_call (_Request, _From, State) ->
77 {reply, ok, Statel}.

78
79
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handle_cast ({store, Name, Node, Seql, L}, MapData) ->
MapNodeO = maps:get (Name, MapData, #{1}),
IsLogger = application:get_env(hera, log_data, false),

MapNodel = if
is_map_key(Node, MapNodeO) ->
MapNodeO ;
IsLogger ->
File = file_name (Name, Node),
MapNodeO#{Node => #data{file=Filel}};
true ->

MapNodeO#{Node => #data{}}

end,

Data = maps:get(Node, MapNodel),

MapNode2 = case Data of

#data{seq=Seq0} when Seq0 < Seql ->
T = hera:timestamp (),
log_data(Data#data.file, {Seql, T, L}, IsLogger),
NewData = Data#data{seq=Seql,values=L,timestamp=T},
maps :put (Node, NewData, MapNodel);
->

MapNodel

end ,
{noreply, maps:put(Name, MapNode2, MapData)}l};

handle_cast (reset, _) ->
NewState = #{},
{noreply, NewStatel};

handle_cast (_Request, State) ->
{noreply, Statel.

file_name (Name, Node) ->
lists:append/(

["measures/", atom_to_list(Name), "_", atom_to_list(Node),
".csv"]).
log_data(_, _, false) ->

ok ;

log_data(File, {Seq, T, Ms}, true) ->
Vals = lists:map(fun(V) -> lists:flatten(io_lib:format("~p",
V1)) end, Ms),

S = string:join(Vals, ","),
Bytes = io_lib:format("~p,~p,~s~n", [Seq, T, S1),
ok = filelib:ensure_dir ("measures/"),

ok = file:write_file(File, Bytes, [append]).
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D.4 hera kalman module

-module (hera_kalman) .

-export ([predict/3,
/41) .
-export ([filter/6,

update/4, extended_predict/3,
extended_filter/6,

A%k see https://en.wikipedia.org/wiki/Kalman_filter

extended_update

extended_control/7]1) .

A% A kalman filter without control input
filter ({X0, PO}, F, H, Q, R, Z) ->
{Xp, Pp} = predict ({X0, PO}, F, Q),
update ({Xp, Pp}, H, R, Z).
predict ({X0, PO}, F, Q) ->
Xp = mat:’*’(F, XO0),
Pp = mat:eval ([F, °’x’, PO, ’x >,  F, ’+’, Q1),
{Xp, Pp}.
update ({Xp, Pp}, H, R, Z) ->
S = mat:eval ([H, ’x’, Pp, ’x >, H, ’+’, R]),
Sinv = mat:inv(S),
K = mat:eval ([Pp, ’x °, H, ’%’, Sinv]),
Y = mat:’-’(Z, mat:’*’(H, Xp)),
X1 = mat:eval ([K, ’x’, Y, ’+’, Xpl),
P1 = mat:’-’(Pp, mat:eval ([K, ’*’, H, ’%’, Ppl)),
{X1, P1}.
Ak An extended kalman filter without control 4nput, [XO, PO, @, R,
Z] must be mat matrices, [F, Jf, H, Jh] must be functions
extended_filter ({X0, PO}, {F, Jf}, {H, Jh}, Q, R, Z) ->
/ Prediction
{Xp, Pp} = extended_predict ({X0, PO}, {F, Jf}, Q),
% Update
extended_update ({Xp, Pp}, {H, Jh}, R, Z).
extended_predict ({X0, PO}, {F, Jf}, Q) ->
Xp = F(X0),
Jfx = Jf(X0),
Pp = mat:eval ([Jfx, ’*’, PO, °’x >, Jfx, ’+’, Q1),
{Xp, Pp}.
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extended_update ({Xp, Pp}, {H, Jh}, R, Z) ->
Jhx = Jh(Xp),
S = mat:eval([Jhx, ’*’, Pp, ’* >, Jhx, ’+’, R]),
Sinv = mat:inv(S),
K = mat:eval ([Pp, ’* ’, Jhx, ’x’, Sinv]),
Y = mat:’-"(Z, H(Xp)),

X1 = mat:eval ([K, ’*’, Y, ’+’, Xpl),
P1 = mat:’-’(Pp, mat:eval ([K, ’*’, Jhx, ’x’, Ppl)),
{X1, P1}.

A% Same function as ekf/ with command input
extended_control ({X0, PO}, {F, Jf}, {H, Jh}, Q, R, Z, U) ->
/% Prediction
Xp = F(X0,U),
Jfx = Jf(X0),
Pp = mat:eval ([Jfx, ’*’, PO, °’x >, Jfx, ’+’, Q1),

% Update

Jhx = Jh(Xp),

S = mat:eval ([Jhx, ’*’, Pp, ’* >, Jhx, ’+’, R]),
Sinv = mat:inv(S),

K = mat:eval ([Pp, ’* ’, Jhx, ’x’, Sinv]),

Y = mat:’-’(Z, H(Xp)),

X1 = mat:eval ([K, ’x’, Y, ’+°, Xpl),

P1 mat:’-’(Pp, mat:eval ([K, ’*’, Jhx, ’*’, Ppl)),
{X1, P1}.

D.5 hera measure module

-module (hera_measure) .
-export ([start_link/2]).
-type measure_spec () :: #{
name := atom (), / measure id
iter := pos_integer () | infinity, /7 number of measures to
perform
sync => boolean(), / must the measure must be synchronized? (
default: false)
timeout => timeout () / min delay between two measures (default
1)
}.

-export_type ([measure_spec/0]).

-callback init(Args :: term()) ->
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{ok, State :: term(), Spec :: measure_spec()7}.

-callback measure(State :: term()) ->
{0k, Values, NewState} | {undefined, NewState} when
Values :: [number (), ...J],
NewState :: term().

-record(state, {

name :: atom(),

sync = false :: boolean(),

monitor :: {pid(), reference()} | undefined,
timeout = 1 :: timeout (),

seq = 1 :: pos_integer (),

iter = 1 :: non_neg_integer () | infinity,
mod :: module (),

mod_state :: term(),

sender = undefined :: pid()

.

-define(record_to_tuplelist (Name, Rec),
lists:zip(record_info(fields, Name), tl(tuple_to_list(Rec)))).

start_link (Module, Args) ->
Pid = spawn_link(fun() -> init({Module, Args}) end),
{ok, Pid}.

init ({Mod, Args}) ->
case Mod:init (Args) of
{ok, ModState, Spec} ->
LO = ?record_to_tuplelist(state, #state{}),
L1 = lists:map(fun({Key, Val}) -> maps:get(Key, Spec,
Val) end, LO),
State = list_to_tuple([statelL1l]),
Seq = init_seq(State#state.name),
Sender_Pid = spawn_link(hera_measure_sender, init, [])
case State#state.sync of
true ->
PidRef = subscribe(State#state.name),
NewState =
State#state{seq=Seq,mod=Mod ,mod_state=
ModState ,monitor=PidRef , sender=
Sender _Pid},
loop (NewState, true);
false ->
NewState = State#state{seq=Seq,mod=Mod,
mod_state=ModState,sender=Sender_Pid},
loop (NewState, false)
end ;
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end .

{stop, Reason} ->
hera:logg (" [HERA_MEASURE] Measure_ notyinitialized
because: ~p~n", [Reason])

loop(State, false) ->

cont

inue (measure (State)) ;

loop(State=#state{monitor={From,Ref}}, true) ->

rece

end.

continue

ive

{authorized, From} ->
NewState = measure(State),
From ! {ok, self()},
continue (NewState) ;

{’DOWN’, Ref, _, _, _} ->

PidRef = subscribe(State#state.name),
continue (State#state{monitor=PidRef})

(#state{iter=0}) ->

{stop, normal};

continue

(State) ->

timer:sleep(State#state.timeout),

loop

subscrib
{ok,
Ref
{Pid

(State, State#state.sync).

e (Name) ->

Pid} = hera_subscribe:subscribe (Name),
= monitor (process, Pid),
, Refl}.

A% return 1 or 1 + the last seq number known among all nodes
init_seq(Name) ->
{ResL, _} = rpc:multicall (hera_data, get, [Name, node()]),

L =

end,
list

measure (
Iter,
case

lists:filtermap (fun(Res) ->
case Res of
[{_,Seq,_,_}] -> {true, Seq};
-> false
end
Resl),
s:max ([O|L]) + 1.

State=#state{name=N, mod=M, mod_state=MS, seq=Seq, iter=
sender=Sender_Pid}) ->

M:measure (MS) of
{undefined, NewMS} ->
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State#state{mod_state=NewMS};
{ok, Vals=[_|_], NewMS} ->
Sender_Pid ! {N, Seq, Vals},
NewIter = case Iter of
infinity -> Iter;
-> Iter-1
end,

State#state{seq=Seq+1, iter=NewIter, mod_state=NewMS};

{ok, Vals=[_|_], Name, From, NewMS} ->
Sender_Pid ! {Name, Seq, From, Vals},
NewIter = case Iter of

infinity -> Iter;
-> Iter-1
end,

State#state{seq=Seq+1l, iter=NewIter, mod_state=NewMS};

{no_share, NewMS} ->
NewIter = case Iter of
infinity -> Iter;
-> Iter-1
end,

State#state{seq=Seq+1l, iter=NewIter, mod_state=NewMS};

{stop, Reason} ->
hera:logg (" [HERA_MEASURE]_ Stoping becausey:,~p~n",[
Reasonl]),
State#state{seq=Seq+1, iter=0, mod_state=MS}
end .

D.6 hera measure sender module

-

-module (hera_measure_sender) .
-export ([init/0]).

init O ->
loop ().

loop () ->

© 0w N O Uk W N

e e
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15
16

receive
{Name, Seq, From, Values}->
hera_com:send(Name, Seq, From, Values);
{Name, Seq, Values}->
hera_com:send (Name, Seq, Values) ;
Msg ->
hera:logg (" [HERA_MEASURE_SENDER] received strange
message~p~n", [Msgl)
end,
loop ().
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D.7 hera_pid_controller module

-module (hera_pid_controller).

-export ([pid_init/4, pid_init/6]).
-export ([saturation/2, sign/1]).

ZController initialisation without limits on the command and on
the integral error
pid_init (Kp, Ki, Kd, Set_Point) ->

process_flag(priority, max),

TO = erlang:system_time() * 1.0e-9,
pid_interface ({Kp, Ki, Kd, -1, -1}, {Set_Point, Set_Point}, {0,
TO, 0}).

#Complete controller intitialisation
pid_init(Kp, Ki, Kd, Limit, Int_limit, Set_Point) ->
TO = erlang:system_time() * 1.0e-9,
pid_interface ({Kp, Ki, Kd, Limit, Int_limit}, {Set_Point,
Set_Point}, {0, TO, 0}).

/General case of the controller
pid_interface ({Kp, Ki, Kd, Limit, Int_limit}, {Set_point,
Current_input}, {Prev_error, TO, Integral_errorl}) ->
receive
AZExit process
{_, {exit}} ->
hera:logg (" [HERA_PID] Exiting-~n", []1);

AParameter modtification
{_, {kp, New_Kp}} ->
pid_interface ({New_Kp, Ki, Kd, Limit,
Int_1imit}, {Set_point, Current_input},
{Prev_error, TO, Integral_error});
{_, {ki, New_Kil}} ->
pid_interface ({Kp, New_Ki, Kd, Limit,
Int_1limit}, {Set_point, Current_inputl},
{Prev_error, TO, Integral_error});
{_, {kd, New_Kd}} ->
pid_interface ({Kp, Ki, New_Kd, Limit,
Int_1limit}, {Set_point, Current_inputl,
{Prev_error, TO, Integral_errorl});
{_, {limit, New_Limitl}} ->
pid_interface ({Kp, Ki, Kd, New_Limit,
Int_1imit}, {Set_point, Current_input},
{Prev_error, TO, Integral_error});
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{_, {int_limit, New_Int_limit}} ->
pid_interface ({Kp, Ki, Kd, Limit,
New_Int_limitl}, {Set_point,
Current_input}, {Prev_error, TO,
Integral_error});

#Setpoint modification
{_, {set_point, New_Set_point}} ->
pid_interface ({Kp, Ki, Kd, Limit,
Int_1imit}, {New_Set_point,
Current_input}, {Prev_error, TO,
Integral_error});

/Get mext walue
{PID, {input, New_input}} ->
pid_controller_iteration ({Kp, Ki, Xd,
Limit, Int_limit}, {Set_point,
New_input}, {Prev_error, TO,
Integral_error}, PID);

/Reset integral error
{_, {reset, _}} ->
pid_interface ({Kp, Ki, Kd, Limit,
Int_1limit}, {Set_point, Current_inputl},
{Prev_error, TO, 0})
end .

#Sends the next wvalue for the command to the process with Pid =
Output_PID
pid_controller_iteration({Kp, Ki, Kd, Limit, Int_limit}, {
Set_point, Inputl}, {Prev_error, TO, Integral_error}, Output_PID
) >
T1
Dt

erlang:system_time() * 1.0e-9,
T1 - TO,

Error = Set_point - Input,

New_Integral_error = saturation(Integral_error + Error * Dt,
Int_limit),

Derivative_error = (Error - Prev_error) / Dt,

Command = saturation(Kp * Error + Ki * New_Integral_error + Kd *

Derivative_error, Limit),

#Send control to the process with Pid = Output_PID
Output_PID ! {self(), {control, Commandl}},

pid_interface ({Kp, Ki, Kd, Limit, Int_limit}, {Set_point, Input
}, {Error, T1, New_Integral_errorl}).
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saturation(Value, Limit) ->
if
Limit =< 0 -> Value;
Value > Limit -> Limit;
Value < -Limit -> -Limit;
true -> Value
end.

sign(Value) ->
if
Value < 0 ->
_1,
true ->
1
end .

D.8 hera subscribe module

-module (hera_subscribe).
-behaviour (gen_server) .

-export ([start_link/0, subscribe/1, notify/1]).
-export ([init/1, handle_call/3, handle_cast/2]).

start_link () ->
gen_server:start_link({local, ?MODULE}, ?MODULE, [1, [1).

subscribe (Pid) ->
hera:logg (" [HERA_SUBSCRIBE] New,subscriber ~p~n",[Pid]),
gen_server:call (?MODULE, {subscribe, Pid}).

notify (Msg) ->
hera:logg (" [HERA_SUBSCRIBE] Notifying,~p~n", [Msgl),
gen_server:cast (?MODULE, {notify, Msgl}).

init ([]1) ->
{ok, [1}.

handle_call ({subscribe, Pid}, _From, Subscribers) ->
{reply, ok, [Pid|Subscribers]}.

handle_cast ({notify, Msgl}, Subscribers) ->
[Pid ! {hera_notify, Msg} || Pid <- Subscribers],
{noreply, Subscribers}’.
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D.9 hera_ sup module

-module (hera_sup) .
-behaviour (supervisor) .

-export ([start_link/0]).
-export ([init/1]) .

start_link () ->
supervisor:start_link (?MODULE, [1).

init ([1) ->
SupFlags = #{
strategy => one_for_one,
intensity => 6,
period => 3600
1,
HeraData = #{
id => hera_data,
start => {hera_data, start_1link, []}
},
HeraCom = #{
id => hera_con,
start => {hera_com, start_link, []}
},
HeraMeasureSup = #{
id => hera_measure_sup,
start => {hera_measure_sup, start_link,
type => supervisor
},
HeraSub = #{
id => hera_subscribe,
start => {hera_subscribe, start_link, []}

3,

ChildSpecs = [HeraData, HeraSub, HeraCom, HeraMeasureSup],

{ok, {SupFlags, ChildSpecs}}.

(131,

D.10 hera measure sup module

-module (hera_measure_sup) .
-behaviour (supervisor) .

-export ([start_link/0]) .
-export ([start_child/2]).
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-export ([init/1]1).

start_link () ->
supervisor:start_link({local, ?MODULE}, ?MODULE,

start_child (Module, Args) ->
supervisor:start_child (?MODULE, [Module, Args]).

init ([1) ->
SupFlags = #{
strategy => simple_one_for_one,
intensity => 10,
period => 60

},

HeraMeasure = #{
id => hera_measure,
start => {hera_measure, start_1link, []},
restart => transient

},

ChildSpecs = [HeraMeasurel],
{ok, {SupFlags, ChildSpecs}}.

(1.
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Appendix E

Sensor Software

E.1 The main module

E.1.1 Initial setup

-module (sensor) .

-behavior (application).

/4 Callbacks

-export ([start/2, stop/1]).

4 @private

start (_Type, _Args) ->
io:format (" [SENSOR] startinitialization sequence~n"),
{ok, _} = sensor_sup:start_link(),
hera_subscribe:subscribe(self ()),
[grisp_led:flash(L, yellow, 500) || L <- [1, 217,

grisp:add_device (uart, pmod_maxsonar),

config(),
{ok, self()7Z.

% @private
stop(_State) -> ok.
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E.1.2 Discovery time functions

config() ->
who_am_i (),
Id = persistent_term:get(id),
io:format (" [SENSOR] Waiting, for,startysignaly,...~n~n"),
loop_config(Id).

who_am_i () ->

% Computing sensor <d and storing it in persistent data

{ok, Id} = get_grisp_id(),

io:format (" [SENSOR] sensor,id,:~p~n",[Id]),

persistent_term:put(sensor_name, list_to_atom("sensor_" ++
integer_to_list(Id))),

persistent_term:put(id, Id),

await_connection (Id).

await_connection(Id) ->
4 Waiting for HERA to notify succesful connection
% @param Id : Sensor’s Id set by the jumpers (Integer)
io:format (" [SENSOR]_ WiFi_ setupy,starting...~n"),
receive
{hera_notify, "connected"} -> J Received when hera_com
managed to connect to the network
io:format (" [SENSOR] WiFi_ setup_done~n~n"),
[grisp_led:flash(L, white, 1000) || L <- [1, 211,
discover_server (Id)
after 23000 ->
io:format (" [SENSOR] ,WiFi setup,failed:~n~n"),
[grisp_led:flash(L, red, 750) || L <- [1, 2]],
await_connection (Id)
end.

discover_server (Id) ->
4 Waits forever until the server sends a Ping
% @param Id : Sensor’s Id set by the jumpers (Integer)
io:format (" [SENSOR] Waiting,for ping, from server~n"),
receive
{hera_notify, ["ping", Name, SIp, Portl} -> / Received
upon server ping reception
{ok, Ip} = inet:parse_address(SIp),
IntPort = list_to_integer (Port),
hera_com:add_device(list_to_atom(Name), Ip, IntPort),
ack_loop (Id);
{hera_notify, "disconnected"} -> / Received when hera
looses WiFt1 comnection
io:format ("~n[SENSOR]_ Lost_connection...~n"),
[grisp_led:flash(L, red, 750) || L <- [1, 217,
await_connection(Id);
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Msg ->
io:format("~p~n",[Msgl)
after 9000 ->
io:format (" [SENSOR] no,ping,from  server~n~n"),
discover_server (Id)
end.

ack_loop (Id) ->

4 Tries to patr with the server by a Hello -> Ack
%4 @param Id : Sensor’s Id set by the jumpers (Integer)
send_udp_message (server, "Hello," ++ integer_to_list(Id), "
UTF8"),
receive
{hera_notify, ["Ack", _1} -> / Ensures the discovery of
the sensor by the server
io:format (" [SENSOR] Received ACK, ,from_ server~n"),
[grisp_led:flash(L, green, 1000) || L <- [1, 2]],
ok
after 5000 ->
ack_loop(Id)
end.

get_grisp_id () ->

/4 Computes the Id of the GRiSP board using the jumpers
JMP1 = grisp_gpio:open(jumper_1, #{mode => inputl}),
JMP2 = grisp_gpio:open(jumper_2, #{mode => input}),
JMP3 = grisp_gpio:open(jumper_3, #{mode => inputl}),
JMP4 = grisp_gpio:open(jumper_4, #{mode => inputl}),
JMP5 = grisp_gpio:open(jumper_5, #{mode => inputl}),

Vil = grisp_gpio:get(JMP1),
V2 = grisp_gpio:get (JMP2),
V3 = grisp_gpio:get (JMP3),
V4 = grisp_gpio:get (JMP4),
V5 = grisp_gpio:get (JMP5),

SUM = (V1) + (V2 bsl 1) + (V3 bsl 2) + (V4 bsl 3) + (V5 Dbsl 4)

B

{ok, SUM}.

send_udp_message (Name , Message, Type) ->

Sends message

@param Name : mname of the device to send to (atom)

@param Message : message to be sent (String/Tuple)

@param Type : type of message, can be UTF8 or Binary (String
)

hera_com:send_unicast (Name, Message, Type).

BN
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[

loop_config(Id) ->
/% Main Sensor loop
% @param Id : Sensor’s Id set by the jumpers (Integer)
receive
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{hera_notify, ["Add_Device", Name, SIp, Portl} -> /
Received at conftig time to register all used sensors
add_device (Id, Name, SIp, Port);

{hera_notify, ["Add_Link", Name, SIp, Portl} -> /
Recetved at config time to register the propagation
links between rTooms
add_link (Id, Name, SIp, Port);

{hera_notify, ["Init_pos", SPosx, SPosy, SAngle, SRooml]}
-> ) Register Robot Device initial position
ack_message ("Pos", "robot", Id),
store_robot_position(Id, 1, SPosx, SPosy, SAngle,

SRoom) ;

{hera_notify, ["Pos", Ids, Xs, Ys, Hs, As, RoomS]} -> /
Received at config time To get all the sensors
positions (X-Azis, Y-axzis, Hetght, Angle, Room)
store_sensor_position(Id, Ids, Xs, Ys, Hs, As, RoomS);

{hera_notify, ["Room_info", RoomId, TLx, TLy, BRx, BRyl}
->
store_room_info (Id, RoomId, TLx, TLy, BRx, BRy);

{hera_notify, ["Start", _1} -> J/ Received at the end of
the configuration to launch the simulation
start_measures (Id);

{hera_notify, ["Exit"]} -> / Received when the controller
1s exited
io:format ("~n[SENSOR]_ Exit_message received~n"),
reset_state (Id);

{hera_notify, "disconnected"} -> / Received when hera
looses WiFi1 comnection
io:format ("~n[SENSOR]_ Lostconnection,  standing by,

...~n"),
[grisp_led:flash(L, red, 1000) || L <- [1, 211,
loop_config(Id);

{hera_notify, ["ping", _, _, _1} -> J Ignore the pings
after server discovery
loop_config(Id);

{hera_notify, Msg} -> / Unhandled Message
io:format (" [SENSOR] Received unhandled message : ~p~n"

, [Msgl),
loop_config(Id);

Msg -> / Message mnot from hera_mnotify
io:format (" [SENSOR] receivestrange message,:y~p~n",[

Msgl),
loop_config(Id)
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end.

add_device (Id, Name, SIp, SPort) ->
% Adds a device to the list of known devices
% @param Id : Semnsor’s Id set by the jumpers (Integer)
% @param Name : mname of the device to register (String)
% @param SIp : IP adress (String)
4 @param SPort : Port (String)
ack_message ("Add_device", Name, Id),
SelfName = persistent_term:get(sensor_name),
case list_to_atom(Name) of
SelfName -> / Don’t register self
ok;
OName ->
{ok, Ip} = inet:parse_address(SIp),
Port = list_to_integer (SPort),
hera_com:add_device (OName, Ip, Port)
end,
loop_config(Id).

add_link(Id, Name, SIp, SPort) ->

Adds a device to the list of known links to other rooms
@param Id : Sensor’s Id set by the jumpers (Integer)
@param Name : mname of the device to register (String)
@param SIp : IP adress (String)

@param SPort : Port (String)

ack_message ("Add_Link", Name, Id),

Links = persistent_term:get(links),

{ok, Ip} = inet:parse_address(SIp),

Port = list_to_integer (SPort),

case lists:member ({Name, Ip, Port}, Links) of

SR IR AL AW W

false ->
io:format (" [SENSOR] Discovered new,link,:,~p~n", [Name
1,

NewLinks = [{Name, Ip, Port} | Links],

persistent_term:put (links, NewLinks);
->

ok

end,
loop_config(Id).

store_robot_position(Id, 0Seq, SPosx, SPosy, SAngle, SRoom) ->
Stores the initial Tobot position
@param Id : Sensor’s Id set by the jumpers (Integer)
@param SPosz : X azts position (String)
@param SPosY : Y azts position (String)
@param SAngle : Robot angle (String)
@param SRoom : Robot room position (String)

osx = list_to_float (SPosx),

B AN I RN
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81 Posy = list_to_float (SPosy),

82 Angle = list_to_float(SAngle),

83 Room = list_to_integer (SRoom),

84 case hera_data:get(robot_pos) of

85 ({_, Seq, _, [_, _, _, _1}] when Seq < 0Seq->

86 hera_data:store(robot_pos, robot, 0Seq, [Posx, Posy,
Angle, Rooml),

87 propagate_pos (0Seq, SPosx, SPosy, SAngle, SRoom);

88 Lo, _, _s [, _y _y 131 —>

89 ok;

90 1 -»>

91 hera_data:store(robot_pos, robot, 1, [Posx, Posy,
Angle, Room])

92 end,

93 if

94 0Seq == 1 ->

95 loop_config(Id);

96 true ->

97 loop_run(Id, 0Seq)

98 end .

99
100 propagate_pos (Seq, SPosx, SPosy, SAngle, SRoom) ->

101 Msg = "Robot_pos,"++integer_to_list(Seq)++","++SPosx++", 6 "++
SPosy++","++SAngle++","++SRoom,

102 case persistent_term:get(sensor_role) of

103 master ->

104 ok;

105 slave ->

106 [hera_com:send_link(Link, Ip, Port, Msg, "UTF8") || {

Link, Ip, Port} <- persistent_term:get(links)]
107 end.

109| store_sensor_position(Id, Ids, Xs, Ys, Hs, As, RoomS) ->
110 Store the position of a sensor

111 @param Id : Sensor’s Id set by the jumpers (Integer)

112 @param Xs : X azts postition (String)
113 @param Ys : Y azis position (String)
114 @param Hs : Z azis position (String)
115 @param As : Angle of sensor (String)
116 @param Rooms : Room number (String)

= list_to_float(Xs),
list_to_float(Ys),
list_to_float (Hs),
list_to_integer (As),

117

118

119

= = B T B T I

120

121 Room = list_to_integer (RoomS),

122 Device_name = "sensor_" ++ Ids,

123 ack_message ("Pos", Device_name, Id),

124 SensorName = list_to_atom(Device_name),
125 case hera_data:get(room, SensorName) of
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{_, _, _, [_1}1 —>
ok;
g ->
hera_data:store(room, SensorName, 1, [Room])
end,

case hera_data:get(pos, SensorName) of
[ S I B 1 IS
ok
-
hera_data:store(pos, SensorName, 1, [X, Y, H, Al)
end,

Zi0: format ("[SENSOR] Sensor’s ~p posttion : (~p,~p) in room
n ~p~n",[ParsedId,X,Y, Rooml),
loop_config(Id).

store_room_info (Id, RoomIdS, TLxS, TLyS, BRxS, BRyS) ->

Store the dimension of a Toom
@param Id : Sensor’s Id set by the jumpers (Integer)
@param RoomIdS : Room concerned (String)
@param TLzS : Top left X cormer position (String)
@param TLyS : Top left Y corner position (String)
@param BRxzS : Bottom right X corner position (String)
@param BRyS : Bottom right Y corner position (String)

Lx = list_to_float (TLxS),

TLy list_to_float (TLyS),

BRx list_to_float (BRxS),

BRy = list_to_float (BRyS),

RoomId = list_to_integer (RoomIdS),

I SN NN

hera_data:store(room_info, RoomId, 1, [TLx, TLy, BRx, BRyl),
ack_message ("Room_info", RoomIdS, Id),
loop_config(Id).
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E.1.4 Running Loop

loop_run(Id, Num) ->
receive
{hera_notify, ["Handshake", OPriority, OTimeClock]} -> 7
Recetved from the other sensor in during the sonar
sensors role distribution
resolve_handshake (Id, Num, OPriority, 0TimeClock);
{hera_notify, ["Ok", _1} -> J Receiwved from the other
sensor to acknowledge the roles of the sensors
end_handshake (Id, Num) ;
{hera_notify, ["Exit"]} -> / Received when the controller
1s exited
io:format ("~n[SENSOR]_ Exit_ message received~n"),
reset_state (Id);
{hera_notify, ["Start", _1} -> J/ Received at the end of
the configuration to launch the simulation
io:format (" [SENSOR] Already, started~n"),
loop_run(Id, Num);
{hera_notify, "disconnected"} -> J Received when hera
looses WiFi conmnection
io:format ("~n[SENSOR] Lostconnection, standing_ by,
...~n"),
[grisp_led:flash(L, red, 1000) || L <- [1, 2]1,
loop_run(Id, Num);
{hera_notify, ["ping", _, _, _1} -> J Ignore the pings
after server discovery
loop_run(Id, Num);
{hera_notify, ["Clock", _]1} -> / Received to update the
sonar clock
tick (Id, Num);
{hera_notify, Msg} -> / Unhandled Message
io:format (" [SENSOR] Received unhandled message:,~p~n"
, [Msgl),
loop_run(Id, Num);
Msg -> / Message not from hera_notify
io:format (" [SENSOR] received,strange message,:,~p~n",[
Msgl),
loop_run(Id, Num)
end .

tick(Id, Num) ->
Pid = persistent_term:get(sonar_sensor),
Pid ! clock,
loop_run(Id, Num).
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E.1.5 Room assembly

start_measures (Id) ->
% Launch all the hera_measure modules to gather data
% @param Id : Sensor’s Id set by the jumpers (Integer)

io:format ("~n~n[SENSOR]_ Startreceived, starting, the computing
uphase~n"),

find_other_sensor (),

{0k, Sonar_Pid} = hera:start_measure (sonar_sensor, []),

persistent_term:put (sonar_sensor, Sonar_Pid),

[grisp_led:color(L, green) || L <- [1, 2]],
loop_run(Id, 0).

find_other_sensor () ->
/4 Sets up the affiliation with the room’s sensor
timer:sleep (300),

SensName = persistent_term:get(sensor_name),
case hera_data:get(room, SensName) of
[{_, — [Room]}] ->

case get_Osensor (Room) of
[HI_1 -> % Multiple semsors in a Toom
io:format (" [SENSOR]_ Other_sensoris :y~p~n", [H]),
persistent_term:put(osensor, H),
ok;
-> ) No other sensor
io:format (" [SENSOR]_ No,other_ sensor_in_ the_,room~n"
),
{error, no_other_sensor}
end;

Msg ->
io:format (" [SENSOR] Error,in,getting,sensorpos,~p~n", [Msg
D,
timer:sleep (500),
find_other_sensor ()
end.

get_Osensor (Room) ->
% Finds the other sensors tin the current ToOm
/%4 @param Room : Room to set (Integer)

Devices = persistent_term:get(devices),
lists:foldl(
fun ({Name, _, _}, Acc) ->
case Name of
->

case hera_data:get(room, Name) of
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[{_, _, _, [ORoom]}] when Room =:= ORoom

->
Aio:format ("[SENSOR] Sens : ~p s
in the same Toom as this sensor
~n", [Namel]),
[Name | Accl;
_ >
Acc
end
end
end ,
(1,
Devices

resolve_handshake (Id, Num, OPriority, OTimeClock) ->
/% Sends a message with the informations concerning the sensors
role definition
/4 @param Id : Sensor’s Id set by the jumpers (Integer)

4 @param OPriority : Other sensor’s random priority (String)
% @param OTimeclock : Other sensor’s time clock (String)
Pid = persistent_term:get(sonar_sensor, none),
case Pid of
none ->

io:format (" [SENSOR] Error, :,Sonar sensor has_ noty
spawned~n") ,

loop_run(Id, Num);

->

Zi0: format ("[SENSOR] Sending handshake tinformations~n
II) ,

Pid ! {handshake, list_to_integer (OPriority),
list_to_integer (0TimeClock)},

loop_run(Id, Num)

end.

end_handshake (Id, Num)->
% Sends a ok message to signify the end of the handshake
procedure
% @param Id : Sensor’s Id set by the jumpers (Integer)

Pid = persistent_term:get(sonar_sensor, none),
case Pid of
none ->

io:format (" [SENSOR] Error, :,Sonar,sensor has_ not,
spawned~n"),
loop_run(Id, Num);
->
Ai0: format ("[SENSOR] Sending handshake ok-~n'"),
Pid ! {ok, role}l},
loop_run(Id, Num)
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end.

ack_message (Message, Device, Id) ->
Msg = "Ack," ++ Message ++ "," ++ Device ++ "," ++
integer_to_list(Id),
send_udp_message (server, Msg, "UTF8").

E.2 sonar measure

E.2.1 Module Initialisation

-module (sonar_measure) .
-behavior (hera_measure) .

-define (ROBOT_HEIGHT, 23).
-define (LPF_ALPHA, 0.2).
-define (SMOOTHING _WINDOW, 3).
-define (HAMPEL WINDOW, 7).
-define (N_SIG, 2.0).

-export ([init/1, measure/1]).

init (_Args) ->

get_sensor_role(),

timer:sleep (200),

io:format ("~n[SONAR_MEASURE]_ Starting measurements-~n"),

State = #{
seq => get_init_seq(),
last_measure => none,
hampel_buffer => [],
smoothing_buffer => [],
n_sig => ?N_SIG

},

{ok, State, #{name=>sonar_measure, iter=>infinityl}}.

get_sensor_role() ->
case persistent_term:get(osensor, none) of
none -> J Is alone in a ToOM
io:format ("[SONAR_MEASURE]_ No_other sensor, sensor_ is,
master~n"),
persistent_term:put (sensor_role, master);
Osensor -> J Start Handshake
case persistent_term:get(sensor_role, none) of
none -> J Classical sensor bootstrap
{ok, Priority} = get_rand_num(),
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end.

end

TimeClock = erlang:monotonic_time(millisecond)

role_handshake (Osensor, Priority, TimeClock);
-> ) Case where the somar measure module

crashed and was reloaded (need to find the

latest seq number)

io:format (" [SONAR_MEASURE]_ Recovering from

crash"),
ok

role_handshake (Osensor, Priority, TimeClock) ->

hera_com:send_unicast (Osensor, "Handshake," ++ integer_to_list
(Priority) ++ "," ++ integer_to_list(TimeClock), "UTF8"),
receive

{handshake, OPriority, _} ->

{ok,

if

end ;
rol
ok

after 500 ->
role_handshake (Osensor, Priority, TimeClock)

end .

Priority > OPriority ->
io:format (" [SONAR_MEASURE] Local priority,
higher , sensorrole, : MASTER~n"),
wait_ack(Osensor),
Clock_Pid = spawn(clock_ticker, init, [
TimeClock]),
persistent_term:put(clock, Clock_Pid),
persistent_term:put(sensor_role, master);
Priority < OPriority ->
io:format (" [SONAR_MEASURE]_ External priorityy
higher ,_sensoryroley: SLAVE~n"),
wait_ack(Osensor),
persistent_term:put(sensor_role, slave);
true ->
io:format (" [SONAR_MEASURE]_ Priority,collision,
uretrying~n"),
{ok, New_Priority} = get_rand_num(),
role_handshake (Osensor, New_Priority,
TimeClock)

e} ->

wait_ack(Osensor) ->

hera_com:send_unicast (Osensor, "Ok,role", "UTF8"),
receive
{ok, _} -> ok;

-> wait_ack(Osensor)
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after 500 ->
wait_ack(Osensor)
end.

get_init_seq() ->
SensorName = persistent_term:get(sensor_name),
case hera_data:get(distance, SensorName) of
[({_, Seq, _, [_1}] -> Seq +1;
-> 1
end.

get_rand_num () ->
/4 Returns a random number between 0 and 2000
persistent_term:get (id),
Seed = {erlang:monotonic_time(), erlang:unique_integer ([
positivel), erlang:phash2(node())},
rand:seed (exsplus, Seed),
{ok, rand:uniform(3000) }.

E.2.2 Measuring loop

measure (State) ->

receive
clock ->
#{
seq := Seq,
last_measure := _,
hampel_buffer := _,
smoothing_buffer := _,
n_sig := _
} = State,
[grisp_led:color(L, green) || L <- [1, 2]],
SensorName = persistent_term:get(sensor_name),

{Measure, LPFMeasure, Hampel_buffer, Smoothing_buffer}

= get_measure(State),

hera_com:send_unicast(server, "Distance,h "++
float_to_list (Measure)++","++atom_to_list(
SensorName) ,"UTF8"),

hera_data:store(distance, SensorName, Seq, [Measure]),

NewState = State#{
seq => Seq+l,
last_measure => LPFMeasure,
hampel_buffer => Hampel_buffer,
smoothing_buffer => Smoothing_buffer,
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n_sig := ?7N_SIG
},
{0k, [Measure], distance, SensorName, NewStatel}
after 1000 ->
[grisp_led:color(L, blue) || L <- [1, 211,
{undefined, Statel}
end.

get_measure (State) ->

/% Get the Pmod Maxzsonar measure and transform it into the
right format
% @param State : the internal state of the module (tuple)

/% @param SensorName : the name of the current sensor (atom)
Dist_inch = pmod_maxsonar:get(),

Dist_cm = Dist_inch * 2.54,

SensorName = persistent_term:get(sensor_name),

LPF_filtered = low_pass_filter(Dist_cm, State),

{Hampel_Measure, Hampel_buffer} = hampel_filter (LPF_filtered,
State) ,

{Smoothed_measure, Smoothing_buffer} = smooth_measure (
Hampel_Measure, State),

case get_ground_distance(SensorName, Smoothed_measure) of
{0k, Ground_measurel} ->
{Ground_measure, LPF_filtered, Hampel_buffer,
Smoothing_buffer};
{stop, cannot_get_height} ->
{stop, cannot_get_height}
end.

get_ground_distance (SensorName, D) ->

/% Uses the basic pythagorian formula to transform the distance
based on the sensor’s hetght

% @param State : the internal state of the module (tuple)

4 @param SensorName : the name of the current sensor (atom)

%4 @param D : Somar measure in cm (integer)

case hera_data:get(pos, SensorName) of
t{_, -, _, [_, _, H, _1}] ->
Height _diff = (H*100)-7ROBOT_HEIGHT,
if
H*x100 > ?ROBOT_HEIGHT ->
if
D > Height_diff ->
Ground_measure = math:sqrt(math:pow(D,
2) - math:pow(Height_diff, 2)); /%
Taking the height of the somnar into
account
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true ->

Ground_measure = Height_diff
end;
true ->
Ground_measure = D J The robot is bigger than

the sensor’s height, mno mneed for correction
end,

{0k, Ground_measurel};
Msg ->
io:format (" [SONAR_MEASURE] Cannot getysensor height:
~p~n",[Msgl),
{stop, cannot_get_height}
end.

low_pass_filter (Ground_measure, State) ->
#{
seq -
last_measure := Last,
hampel_buffer := _,
smoothing_buffer := _,
n_sig :=
} = State,

>

case Last of
none -> Ground_measure;
-> ?LPF_ALPHA * Last + (1-?LPF_ALPHA)*Ground_measure
end.

hampel_filter (Measure, State) ->

#{
seq := _,
last_measure := _,
hampel_buffer := BufH,
smoothing_buffer := _,
n_sig := N_sig

} = State,

New_BufH = append_buf (BufH, Measure, 2*7HAMPEL_WINDOW+1),

Buffer_Median = median(New_BufH),
MAD = median([abs(X - Buffer_Median) || X <- New_BufH]),
if

abs (Measure - Buffer_Median) > N_sig * MAD ->
{Buffer_Median, New_BufH};
true ->
{Measure, New_BufH}
end .

smooth_measure (Measure, State) ->
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112 #4{

113 seq := _,

114 last_measure := _,

115 hampel_buffer := _,

116 smoothing_buffer := BufS,

117 n_sig := _

118 } = State,

119

120 New_BufS = append_buf (BufS, Measure, ?SMOOTHING_WINDOW),
121 {median (New_BufS), New_BufS}.

122
123| append_buf (Buf , X, Len) ->

124 Buf2 = lists:append(Buf, [X]),

125 Excess = length(Buf2) - Len,

126 case Excess > 0 of

127 true -> lists:sublist (Buf2, Excess+1, Len);
128 false -> Buf2

129 end.

131/ median(List) when List =/= [] ->

132 S = lists:sort(List),

133 L = length(S),

134 case L rem 2 of

135 1 -> lists:nth((L+1) div 2, S);
136 o ->

137 A = lists:nth(L div 2, 8),
138 B = lists:nth(L div 2+1, S),
139 (A + B)/2.0

140 end.

E.3 clock_ ticker module

1| -module (clock_ticker).

2

3| —export ([init/1]).

4

5| ~-define (TIMESLOT_SIZE, 300).

6| ~define (STARTUP_MARGIN, 0.11).

7

8| init (TimeClock) ->

9 io:format (" [CLOCK_TICKER]_ Starting,...~n"),

10 process_flag(priority, max),

11 Osensor = persistent_term:get(osensor),

12 Sonar_Pid = persistent_term:get(sonar_measure),
13 SensName = persistent_term:get(sensor_name),
14 {Ax, Ay, Bx, By} = get_sensor_room(SensName),
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loop(TimeClock, Sonar_Pid, Osensor, {Ax, Ay, Bx, Byl}, 1).

loop(TimeClock, Sonar_Pid, Osensor, RoomInfo, Count)->
Offset = (Count * ?TIMESLOT_SIZE) div 2,
Next_measure = TimeClock + Offset,

case is_in_room(RoomInfo) of
true ->
io:format (" [CLOCK]_ ROBOT_ IN_ ROOM~n"),
case Count rem 2 of /determine who measures (slave or

master)
0o ->
case wait_for_time(Next_measure) of
ok ->
hera_com:send_unicast (server, "Clock,"
++ integer_to_list (Count) ++ ", "
++ integer_to_list(Next_measure), "
UTF8"),
Sonar_Pid ! clock;
skip -> loop(TimeClock, Sonar_Pid, Osensor
, RoomInfo, Count + 1)
end ;
1 ->

case wait_for_time (Next_measure) of
ok -> hera_com:send_unicast (Osensor, "
Clock," ++ integer_to_list(Count), "
UTF8") ;
skip -> loop(TimeClock, Sonar_Pid, Osensor
, RoomInfo, Count + 1)
end
end ;
false ->
case wait_for_time (Next_measure) of
ok -> ok;
skip -> loop(TimeClock, Sonar_Pid, Osemnsor,
RoomInfo, Count + 1)
end,
ok
end,

loop(TimeClock, Sonar_Pid, Osensor, RoomInfo, Count + 1).

get_sensor_room(SensName) ->
case hera_data:get(room, SensName) of
({_, _, _, [Rooml}] ->
case hera_data:get(room_info, Room) of
t{_, _, _, [Ax, Ay, Bx, Byll}] ->
{Ax, Ay, Bx, By};
1 ->
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end.

io:format (" [CLOCK] Error_ing pos_ determination~
nll

end ;

1 ->
io:format ("[CLOCK] Error_ ingroom_ determination~n"),
{0, 0, 0, O}

is_in_room({Ax, Ay, Bx, By}) ->
case hera_data:get(robot_pos, robot) of

end.

[{_, _, _, [Xpos, Ypos, _, _]1}] when ((Ax-7?STARTUP_MARGIN
< Xpos andalso Xpos < Bx + ?STARTUP_MARGIN) andalso (Ay
- 7STARTUP_MARGIN < Ypos andalso Ypos < By + 7
STARTUP_MARGIN)) ->
true;

({_, _, _, [_Xpos, _Ypos, _, _1}1 ->
false;

->

false

wait_for_time (Next_measure) ->

Now = erlang:monotonic_time(millisecond),
Time_to_wait = Next_measure - Now,
if

end .

Time_to_wait > 0 ->
timer:sleep(Time_to_wait),
ok

true ->
skip
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Appendix F

Balancing Robot software

F.1 Balancing robot module

-module (balancing_robot).
-behavior (application).

-export ([start/2, stop/1]1).

start (_Type, _Args) ->
{ok, Supervisor} = balancing_robot_sup:start_link(),
[grisp_led:flash(L, yellow, 500) || L <- [1, 217,

_ = grisp:add_device(spi2, pmod_nav),

pmod_nav:config(acc, #{odr_g => {hz,238}}),
numerl:init (),
timer:sleep (2000),
spawn(stability_layer, robot_init, []),
hera_subscribe:subscribe(self ()),
config(),
loop_config(),
{ok, Supervisor}.

stop(_State) -> ok.

config() ->
persistent_term:put(name, list_to_atom("robot")),
await_connection (),
io:format ("[ROBOT] Waiting, for start, signal,...~n~n"

await_connection() ->
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4 Waiting for HERA to notify succesful connection

io:format (" [ROBOT] WiFi_setupystarting...~n"),
receive
{hera_notify, "connected"} -> J Received when hera_com
managed to comnect to the network
io:format (" [ROBOT] WiFi_,setup,done~n~n"),
grisp_led:flash(2, white, 1000),
discover_server ()
after 18000 ->
io:format (" [ROBOT] WiFi setup,failed:~n~n"),
grisp_led:flash(2, red, 750),
await_connection ()
end.

discover_server () ->
/% Waits forever wuntil the server sends a Ping
io:format (" [ROBOT] Waiting,for, ping, ,from,server~n"),
receive
{hera_notify, ["ping", Name, SIp, Portl} -> / Received
upon server ping reception
{ok, Ip} = inet:parse_address (SIp),
IntPort = list_to_integer (Port),
hera_com:add_device(list_to_atom(Name), Ip, IntPort),
ack_loop ()
after 9000 ->
io:format (" [ROBOT] no,ping, from server~n~n"),
discover_server ()
end.

ack_loop() ->
% Tries to patir with the server by a Hello -> Ack
% @param Id : Sensor’s Id set by the jumpers (Integer)
send_udp_message (server, "Hello,robot", "UTF8"),
receive
{hera_notify, ["Ack", _1} -> / Ensures the discovery of
the sensor by the server
io:format (" [ROBOT]_ Received ACK_ from server~n"),
[grisp_led:flash(L, green, 1000) || L <- [1, 2]],
ok
after 5000 ->
ack_loop ()
end.

send_udp_message (Name, Message, Type) ->
/4 Sends message
% @param Name : mname of the device to send to (atom)
% @param Message : message to be sent (String/Tuple)
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% @param Type : type of message, can be UTF8 or Binary (String
)

hera_com:send_unicast (Name, Message, Type).

loop_config() ->
receive

{hera_notify, ["Add_Device", Name, SIp, Portl} -> /
Received at conftig time to register all used sensors
add_device (Name, SIp, Port);

{hera_notify, ["Init_pos", SPosx, SPosy, SAngle, SRoom]}
-> ) Regtister Robot Device tinitial position
store_robot_position(SPosx, SPosy, SAngle, SRoom);

{hera_notify, ["Pos", Ids, Xs, Ys, Hs, As, RoomS]} -> /
Received at config time To get all the sensors
positions (X-Azis, Y-axzis, Hetight, Angle, Room)
store_sensor_position(Ids, Xs, Ys, Hs, As, RoomS);

{hera_notify, ["Room_info", RoomId, TLx, TLy, BRx, BRyl}
->
store_room_info (RoomId, TLx, TLy, BRx, BRy);

{hera_notify, ["Start", _1} -> / Received at the end of
the configuration to launch the simulation
start_measures () ;

{hera_notify, ["Exit"]} -> / Received when gracefully
erxited the controller
io:format ("~n[ROBOT]_ Exit_ message,received~n"),
reset_state () ;

{hera_notify, ["ping", _, _, _1} -> J Ignore the pings
after server discovery
loop_config();

{hera_notify, Msg} -> / Unhandled Message
io:format (" [ROBOT] Received unhandled message,:, ,~p~n",

[Msgl),

loop_config();

Msg -> 7 Message not from hera_notify
io:format (" [ROBOT] jreceivestrange message : ~p~n",[

Msgl),
loop_config()
end.

loop_run() ->
receive

{hera_notify, ["Start", _1} -> J/ Received at the end of
the configuration to launch the simulation
io:format ("~n[ROBOT] Already,started~n"),
loop_run();

{hera_notify, ["Exit"]} -> / Received when gracefully
exited the controller
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io:format ("~n[ROBOT]_ Exit_ message,received~n"),
reset_state () ;
{hera_notify, ["ping", _, _, _1} =-> J Ignore the pings
after server discovery
loop_run();
{hera_notify, Msg} -> / Unhandled Message
io:format (" [ROBOT] Received unhandled message : ~p~n"
[(Msgl),
loop_run();
Msg -> / Message not from hera_notify
io:format (" [ROBOT] receivestrange message, :y~p~n",[
Msgl),
loop_run()
end.

add_device (Name, SIp, SPort) ->
/4 Adds a device to the list of known devices
@param Id : Sensor’s Id set by the jumpers (Integer)
@param Name : mame of the device to register (String)
@param SIp : IP adress (String)
@param SPort : Port (String)
ack_message ("Add_device", Name),
case list_to_atom(Name) of
robot -> J Don’t register self
ok;
OName ->
{ok, Ip} = inet:parse_address (SIp),
Port = list_to_integer (SPort),
hera_com:add_device (OName, Ip, Port)

%
%
%
%

end,
loop_config().

store_robot_position(SPosx, SPosy, SAngle, SRoom) ->

/% Stores the initial robot position
% @param SPosz : X azis position (String)
% @param SPosY : Y azis position (String)
% @param SAngle : Robot angle (String)
/% @param SRoom : Robot room postition (String)
Posx = list_to_float (SPosx),
Posy = list_to_float (SPosy),
Angle = 1list_to_float (SAngle),
Room = list_to_integer (SRoom),
ack_message ("Pos", "robot"),
case hera_data:get(robot_pos) of

[ S I B 1 S

ok ;
1 ->
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hera_data:store(robot_pos, robot, 1, [Posx, Posy,
Angle, Room])
end,
loop_config().

store_sensor_position(Ids, Xs, Ys, Hs, As, RoomS) ->

Store the position of a sensor
@param Id : Sensor’s Id set by the jumpers (Integer)
@param Xs : X azis position (String)
@param Ys : Y azts postition (String)
@param Hs : Z azis position (String)
@param As : Angle of sensor (String)
@param Rooms : Room number (String)
= list_to_float(Xs),
list_to_float(Ys),
list_to_float (Hs),
list_to_integer (As),

i e e T T TN

Room = list_to_integer (RoomS),
Device_name = "sensor_" ++ Ids,
ack_message ("Pos", Device_name),
SensorName = list_to_atom(Device_name),

case hera_data:get(room, SensorName) of
L_, _, _, [_1}1 —>
ok;
g ->
hera_data:store(room, SensorName, 1, [Room])
end ,

case hera_data:get(pos, SensorName) of
[ S I B 1 S
ok
-
hera_data:store(pos, SensorName, 1, [X, Y, H, Al)
end,

loop_config().

store_room_info (RoomIdS, TLxS, TLyS, BRxS, BRyS) ->

Store the dimenstion of a Toom

@param Id : Sensor’s Id set by the jumpers (Integer)
@param RoomIdS : Room concerned (String)

@param TLzS : Top left X corner position (String)
@param TLyS : Top left Y corner position (String)
@param BRzS : Bottom right X corner position (String)
@param BRyS : Bottom right Y corner position (String)
TLx = list_to_float (TLxS),

BN

TLy = list_to_float (TLyS),
BRx = list_to_float (BRxS),
BRy = list_to_float (BRyS),
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232
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238
239
240
241
242
243
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245
246
247
248
249

250
251

RoomId = list_to_integer (RoomIdS),

hera_data:store(room_info, RoomId, 1, [TLx, TLy, BRx, BRyl),
ack_message ("Room_info", RoomIdS),
loop_config().

start_measures () ->

/4 Launch all the hera_measure modules to gather data

% @param Id : Sensor’s Id set by the jumpers (Integer)

io:format ("~n~n[ROBOT] Start,received, starting, the computing,
phase~n"),

{ok, Position_Pid} = hera:start_measure(position_layer, []),
persistent_term:put(position_layer, Position_Pid),
[grisp_led:color(L, green) || L <- [1, 2]],

loop_run ().

reset_state () ->

/4 Kills all hera_measures modules, resets all data and Jjump
back to server discovery

% @param Id : Sensor’s Id set by the jumpers (Integer)

exit_module (position_layer),

timer:sleep (500),
reset_data(),

grisp_led:flash(2, white, 1000),
grisp_led:flash(l, green, 1000),

discover_server (),
io:format (" [ROBOT] Waiting for,start, signaly,...~n~n"),
loop_config().

reset_data() ->

/% Delete all config dependent and hera_measures data

persistent_term:erase(position_layer),
hera_com:reset_devices (),
hera_data:reset (),

io:format (" [ROBOT] Data,resetted~n~n~n~n"),

exit_module (Name) ->

4 Kills a module stored in persistent term
/% @param Name : the name of the module (atom)
case persistent_term:get (Name, none) of
none ->
io:format (" [ROBOT] module doesn’texisty: ~p~n", [Name
D,
ok;
Pid ->
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254

256
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258

260
261

exit (Pid, shutdown)
end.

ack_message(Message, Device) ->
/% Used to send the acknowledgment message to the controller.

% @param Message : The initial type message received by the
robot (String)

%4 @param Device : The name of the device concerned by the
message (String)

Msg = "Ack," ++ Message ++ "," ++ Device ++ " ,robot",

send_udp_message (server, Msg, "UTF8").

F.2 Position_layer module

-module (position_layer).
-behavior (hera_measure) .

-export ([init/1, measure/1]).

-define (VAR_Q, 0.0002).
-define (VAR_R, 0.15).

-define (VAR_P, 0.0002).
-define (VAR_S, 0.0075).

-define (RAD_TO_DEG, 180.0/math:pi()).
-define (DEG_TO_RAD, math:pi()/180.0).

init(_Args) ->
timer:sleep (1000),
io:format ("~n[KALMAN_MEASURE] Starting measurements~n"),
calibrate_speed (),
State = #{
t0 => erlang:system_time()/1.0e6,
x_pos => mat:matrix ([[0],[0]]),
p_pos => mat:diag([1,1]),
x_or => mat:matrix ([[1],[0],[0],[0]11),
p_or => mat:diag([1,1,1,1]),
seq => 2,
seqS1 => 0,
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35
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39
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45
46
47
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59
60
61
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66
67
68
69
70

71
72
73
74
75
76
7
78
79

seqS2 => 0
+,

{ok, State, #{
name => kalman_measure,
iter => infinity,
timeout => 100

}r.
measure (State) ->

#4{
t0 := TO,
x_pos := Xpos,
p_pos := Ppos,
x_or := Xor,
p_or := Por,
seq = Seq,
seqS1 := SeqS1,
seqS2 := SeqS2

} = State,

case hera_data:get(robot_pos, robot) of
({_, _, _, [_01dX,_01dY, _0OldAngle, 0l1dRoom]}] ->

{V_mes _mm,_} = i2c_read (),
V_mes = V_mes_mm / 100,

Tl = erlang:system_time()/1.0e6,

ANAARL Kalman Orientation JLAANAL

{Xor1,Por1} = kalman_orientation(Xor, Por, Ti1, TO),
Offset = 12 * ?DEG_TO_RAD,
Theta_mes = - quat_to_yaw(normalize_quat(mat:to_array(

Xor1l))) - Offset,
RIARKIBIIRIIRRIRRRLTRIRIEIRIRIIRIIIIILLT

Q = mat:diag([?VAR_P, ?VAR_P]),

4 Fonction de transition f(z)
Dt = (T1 - TO) / 1000.0,
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100
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110
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112
113
114
115
116
117

118
119
120
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F = fun(X) ->
[Yc, Zc] = mat:to_array(X),

Yp = Yc - V_mes * math:cos(Theta_mes)x* Dt,
Ai0: format ("ThetaC : ~p et cos(thetaC) : ~p ~n ",[
Thetac,math:cos (Thetac)]),
Zp = Zc - V_mes * math:sin(Theta_mes) * Dt,
mat :matrix ([[Ypl, [Zpll)
end,

/4 Jacobienne de f
Jf = fun(_X) ->
mat:matrix ([

[1) 0]’
(o, 1]
D

end,

{Xpred ,Ppred} = hera_kalman:extended_predict ({Xpos,
Ppos}, {F, Jf}, Q),

case get_new_robot_pos(01ldRoom) of
{no_intersection, { _, _}} ->
[Xf, Yf] = mat:to_array(Xpred),
ThetaDegrees = Theta_mes * 7RAD_TO_DEG,
NewState = #{
t0 => T1,
x_pos => Xpred,
p_pos => Ppred,
x_or => Xorl,
p_or => Porl,
seq => Seq +1,
seqS1 => SeqS1,
seqS2 => SeqS2

{{X_mes, Y_mes},{Segsensorl,Seqgsensor2}} ->
case {SeqS1 < Segsensorl andalso SeqS2 <
Seqsensor2} of
{true} ->

Z = mat:matrix([[X_mes],[Y_mes]]),
io:format ("Valeur,re ugsonar, ~p,u~Pu

~n", [X_mes,Y_mes]),

R = mat:diag([?VAR_S, ?VAR_S]1),
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159
160
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168

/ Fonction de mesure h(z) = =z
H = fun(X) ->
[Xc, Yc] = mat:to_array(X),

mat:matrix ([[Xc],[Yc]])
end,
Jh = fun(_X) ->
mat:matrix ([
[1,0],
[0,1]
1
end,
{Xnew, Pnew} = hera_kalman:
extended_update ({Xpred, Ppred}, {H,
Jh}, R, Z),

[Xf, Yf] = mat:to_array(Xnew),
ThetaDegrees = Theta_mes * 7
RAD_TO_DEG,

NewState = #{
t0 => T1,
x_pos => Xnew,
p_pos => Pnew,
x_or => Xorl,
p_or => Porl,
seq => Seq +1,
seqS1 =>Seqgsensorl,
seqS2 =>S8eqgsensor2

};

{false} ->

[Xf, Yf] = mat:to_array(Xpred),

ThetaDegrees = Theta_mes * 7RAD_TO_DEG

Aio:format ("False : ~p ~n", [
ThetaDegrees]),

NewState = #{

t0 => T1,
x_pos => Xpred,
p_pos => Ppred,
x_or => Xorl,
p_or => Porl,
seq => Seq +1,
seqS1l =>SeqS1,
seqS2 =>SeqS2
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200
201
202
203
204
205

end
end,

io:format ("pos,:u~P,u~Puiu~P,uVu:iu~pu~n", [Xf,Yf,T1,

V_mes]),
io:format ("angle,:~py,u~p~ny", [ThetaDegrees,T1]),
Room = determine_robot_room(Xf, Yf, 0ldRoom),

hera_data:store(robot_pos, robot, Seq, [Xf, Yf,
ThetaDegrees, Room]),

send_robot_pos(Seq, [Xf, Yf, ThetaDegrees, Room]),

{no_share, NewStatel}; / If no propag graph, delete
prev line and replace no_share by a ok clause (see
hera_measure module)

1 ->
{undefined, Statel}

end.

calibrate_speed () ->
I2Cbus = persistent_term:get(i2c),
N = 10,
RawSpeeds = [grisp_i2c:transfer (I2Cbus, [{read, 16#40, 1, 5}])
[l _ <- lists:seq(l, N)I],
Decoded = [hera_com:decode_half_float ([<<SL1, SL2>>, <<SR1,

SR2>>1) ||
[<<SL1, SL2, SR1, SR2, _>>] <- RawSpeeds],
SpeedsL = [L || [L, _] <- Decodedl],
SpeedsR = [R || [_, R] <- Decodedl],
OffsetL = lists:sum(SpeedslL) / N,

OffsetR = lists:sum(SpeedsR) / N,
persistent_term:put(i2c_offset, {0ffsetlL, OffsetR}).

send_robot_pos(Seq, [Xf,Yf, ThetaDegrees, Room]) ->
Msg = "Robot_pos," ++ integer_to_list(Seq) ++",6 "++
float_to_list(Xf) ++ "," ++ float_to_list(Yf) ++ ", 6" ++
float_to_list(ThetaDegrees) ++ "," ++ integer_to_list (Room)
Adjacent_sensors = get_adjacent_sensors(Room), 7 To impose the
propagation graph, mot mandatory
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[hera_com:send_unicast (Device, Msg, "UTF8") || Device <- [
server | Adjacent_sensors]].

get_new_robot_pos (Room) ->
[Sensorl, Sensor2] = get_room_sensors (Room),

io:format (" [KALMAN_MEASURE]_ The_two_,sensors_,in_the current
roomyare :y~pyand,~py~n",[Sensorl, Sensor2]),
{X1, Y1, _} = get_sensor_pos(Sensorl),

{X2, Y2, _} = get_sensor_pos(Sensor2),
[{_, Segsensorl,_,[Dist1]}] = hera_data:get(distance, Sensorl)
, 4 distance on the ground

[{_, Seqgsensor2,_,[Dist2]}] = hera_data:get(distance, Sensor2)

{TLx, TLy, BRx, BRy} = get_room_info (Room),
{get_pos ({X1, Y1}, {X2, Y2}, {Dist1} , {Dist2},{TLx, TLy, BRx,
BRy}) ,{Segsensorl,Seqsensor2}}.

get_room_sensors (Room) ->
/ Returns the two sensors im the current rToom
Devices = persistent_term:get(devices),
lists:foldl(
fun ({Name, _, _}, Acc) ->
case Name of

->
case hera_data:get(room, Name) of
[{_, _, _, [ORoom]}] when Room =:= ORoom
->
[Name | Accl;
>
Acc
end
end
end,
(1,
Devices

get_adjacent_sensors (Room) ->
/4 Returns all the sensors imn the current room or in the
adjacent Tooms.
Devices = persistent_term:get(devices),
lists:foldl(
fun ({Name, _, _}, Acc) ->
case Name of

->
case hera_data:get(room, Name) of
[{_, _, _, [ORooml}] when ((Room =:= ORoom
) orelse (Room+1 =:= QORoom) orelse (
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Room-1 =:=0Room)) ->
[Name | Accl;
->
Acc

end
end
end,
(1,

Devices

get_sensor_pos (SensorName) ->
case hera_data:get(pos, SensorName) of

[{_’ — > [X, Y: — A]}] ->

{X, Y, A};
_ =>
io:format (" [KALMAN_MEASURE]_ Can’tygetthe posyof
sensor:yu~p~n", [SensorName])

end .

get_room_info(0ldRoom) ->
case hera_data:get(room_info,01dRoom) of
({_., _, _, [TLx, TLy, BRx, BRyl}] ->
{TLx, TLy, BRx, BRy};
->
io:format (" [KALMAN_MEASURE]_ Can’t,getythe_ pos of roomy
n ~p~n", [0ldRoom])

end.

get_pos ({X1,Y1}, {X2,vY2}, {Dist1}, {Dist2},{TLx, TLy, BRx, BRy})
->
Dx = (X2 - X1) * 100,
Dy = (Y2 - Y1) * 100,
D = math:sqrt(Dx*Dx + Dy * Dy),
case (D > Distl + Dist2) orelse (D < abs(Distl - Dist2))
orelse (D == 0 andalso Distl == Dist2) of
true ->
no_intersection;
false ->
A = (Distl * Distl - Dist2 * Dist2 + Dx*D) / (2%*D),
H = math:sqrt(Distl*Distl - AxA),

Px = (X1*100) + A x (Dx/D),
Py = (Y1%100) + A * (Dy/D),
Rx = -Dy * (H/D),
Ry = Dx * (H/D),

Xoutl = Px + Rx,
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Youtl = Py + Ry,

Xout2 Px - Rx,

Yout2 Py - Ry,

check_good_point (Xoutl, Youtl, Xout2, Yout2, TLx, TLy,
BRx, BRy)

end .

check_good_point (Xoutl, Youtl, Xout2, Yout2, TLx, TLy, BRx, BRy)
->

MaxRoomX = lists:max([TLx, BRx])*100,
MaxRoomy = lists:max([TLy, BRy])*100,
MinRoomX = lists:min([TLx, BRx])=*100,
MinRoomy = lists:min([TLy, BRy])=*100,
case {MinRoomX =< Xoutl andalso Xoutl =< MaxRoomX, MinRoomy =<
Youtl andalso Youtl =< MaxRoomyl} of
{true, true} ->
{Xout1/100, Youtl1/100};
->
case {MinRoomX =< Xout2 andalso Xout2 =< MaxRoomX,
MinRoomy =< Yout2 andalso Yout2 =< MaxRoomyl} of
{true, truel} ->
{Xout2/100, Yout2/100};
->
no_intersection

end
end.

determine_robot_room(X, Y, 0l1dRoom) ->

determine_robot_room(X, Y, 0ldRoom, 0).
determine_robot_room(X, Y, 0l1dRoom, RoomNum) ->

case hera_data:get(room_info, RoomNum) of

({., _, _, [TLx, TLy, BRx, BRyl}] ->
if
(X > TLx andalso X < BRx) andalso (Y > TLy andalso
Y < BRy) ->

RoomNum ;
true ->
determine_robot_room(X, Y, O0ldRoom, RoomNum+1)
end ;
1 ->
io:format (" [KALMAN MEASURE]_ Error:_ Notyinga known_ room
"'Il”
0l1dRoom

end .

scale(List, Factor) ->
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335 [X*Factor || X <- List].
336
337| get_val_nav_2(R) ->
338

339 [Ax, Ay, Az] = pmod_nav:read(acc, [out_x_xl, out_y_x1,
out_z_x11]1),

340 [Gx, Gy, Gz] = pmod_nav:read(acc, [out_x_g, out_y_g, out_z_gl)

341 [Mx, My, Mz] = pmod_nav:read(mag, [out_x_m, out_y_m, out_z_m])

342 {Ax0, Ay0, AzO} = persistent_term:get(acc_init),

343 #Acc = scale([Az - Az0, Ay - Ay0, Az - Az0], 9.81),

344 Acc = scale([ (Az - AzO0), (Ay - Ay0), -(Ax - Ax0)], 9.81),

345

346

347 {GBx, GBy, GBz} = persistent_term:get(gyro_init),

348 #Gyro = scale([Gz-GBz,Gy-GBy,Gz-GBz],math:pi()/180),

349 Gyro = scale([(Gz-GBz),(Gy-GBy) ,-(Gx-GBx)] ,math:pi()/180),

350

351 {MBx ,MBy ,MBz} = persistent_term:get(mag_init),

352 AMag = mat:matriz ([[Mzx-MBz ,My-MBy,Mz-MBz]]),

353 Mag = mat:matrix ([[(Mz-MBz),(My-MBy) ,-(Mx-MBx)]]),

354

355

356 AccRot = mat:’*’(mat:matrix([Accl), mat:tr(R)), / rotation
dans le rep Te monde

357 RotAcc = mat:’-’(AccRot, mat:matrix([[9.81, 0, 011)), /%

compensation gravit
358

359 ARO = ahrs ([Ax,Ay,Az], [(Mz-MBz),My-MBy, (Mz-MBz)]),

360 RO = ahrs([Az,Ay,-Ax], [(Mz-MBz),(My-MBy),-(Mx-MBx)]),
361 mat :tr (RO) ,

362

363 {mat:matrix ([Acc]), RotAcc, mat:matrix([Gyro]), Mag,RO}.

364
365| i2c_read () ->

366 /JRecetve I2C and conversion

367 I2Cbus = persistent_term:get(i2c),

368 [<<SL1,SL2,SR1,SR2,CtrlByte>>] = grisp_i2c:transfer (I2Cbus, [{
read, 16#40, 1, 5}]),

369 {0ffsetl ,0ffsetR} = persistent_term:get(i2c_offset),

370 [Speed_L,Speed_R] = hera_com:decode_half_float ([<<SL1, SL2>>,
<<SR1, SR2>>]),

371 Speed2 = ((Speed_L - Offsetl) + (Speed_R - 0OffsetR))/2,

372 Speed = case erlang:abs(Speed2)/100 < 0.08 of

373 true -> 0.0;

374 false -> Speed2

375 end,

376 if
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377 (Speed_L < 0 andalso Speed_R > 0) orelse (Speed_L > 0 andalso
Speed_R < 0) ->

378 io:format ("Signes, ,oppos s~n"),

379

380 {0.0, CtrlBytel;

381 true ->

382 io:format ("Autre  cas~n"),

383 {Speed, CtrlByte}

384

385 end .

386

ss7| quat_to_yaw ([[QO0], [Q1l, [Q2], [Q31]1) ->

388 math:atan2 (2% (Q0*Q3 + Q1*Q2), 1 - 2*x(Q2*Q2 + Q3*Q3)).

sso| normalize_quat ([QO, Q1, Q2, Q3]) ->

390 Norm = math:sqrt(QO*Q0 + Q1*Q1 + Q2xQ2 + Q3*Q3),

391 [[QO / Norm], [Q1l / Norm], [Q2 / Norm], [Q3 / Norm]].

392

393 kalman_orientation (Xor ,Por,T1,T0) ->

394 Dtor = (T1-T0)/1000.0,

395 Rorien = g2dcm(mat:to_array(Xor)),

396 {Acc, _Acclin, Gyro, Mag, RO} = get_val_nav_2(Rorien),

397 [Acx,Acy,Acz] = mat:to_array (Acc),

398 [Mx ,My,Mz] = mat:to_array(Mag),

399 R1 = ahrs([Acx,Acy,Acz], [Mx,My,Mzl),

400 Quat = dcm2quat (mat:’*’(R1,R0)),

401 [Wxx ,Wyy,Wzz] = mat:to_array(Gyro),

402 [Wx,Wy,Wz] = [Wxx,Wyy,Wzz],

403 Omega = mat:matrix ([

404 [0,Wx,Wy,Wz],

405 [-Wx,0,-Wz,Wy],

406 [-Wy,Wz,0,-Wx],

407 [-Wz,-Wy,Wx,0]

408 1,

409

410 For = mat:’+’(mat:eye(4), mat:’*°(0.5 * Dtor, Omega)),

411 Qor = mat:diag([?VAR_Q,?VAR_Q,?VAR_Q,?VAR_QI),

412 Hor = mat:eye (4),

413 Zor = mat:tr (Quat),

414 Ror = mat:diag([?VAR_R,?VAR_R,?VAR_R,?VAR_R]),

415

416 {Xor00, Por0} = hera_kalman:predict ({Xor,Por}, For, Qor),

417 Xor0 = normalize_vec4 (Xor00),

418 Zor_used = case qdot(mat:to_array(Zor), mat:to_array(Xor0)) >
0 of

419 true -> Zor;

420 false -> mat:’*’(-1, Zor)

421 end,

422 {Xor11, Porl} = hera_kalman:update ({Xor0O, Por0}, Hor, Ror,
Zor _used),
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423 Xorl = normalize_vec4 (Xoril),
424
425 {Xor1,Pori1}.
426

427 q2decm ([QO, Q1, Q2, Q3]) ->

428 ROO = 2 *x (QO * QO + Q1 * Q1) - 1,
429 RO1 = 2 x (Q1 * Q2 - QO * Q3),

430 RO2 = 2 * (Q1 * Q3 + QO * Q2),

431

432 R10 = 2 * (Q1 * Q2 + Q0 * Q3),

433 R11 = 2 *x (QO0 * QO + Q2 *x Q2) - 1,
434 R12 = 2 *x (Q2 * Q3 - Q0 * Q1),

435

436 R20 = 2 *x (Q1 * Q3 - Q0 * Q2),

437 R21 = 2 (Q2 * Q3 + QO * Q1),

438 R22 = 2 *x (QO0 * QO + Q3 * Q3) - 1,
439

440 mat:matrix ([

441 [ROO, RO1, RO2],

442 [R10, R11, R12],

443 [R20, R21, R22]

444 1.

445

446| dcm2quat (R) ->

447 [ROO,R01,R02,

448 R10,R11,R12,

449 R20,R21,R22] = mat:to_array(R),
450 Tr = ROO + R11 + R22,

451 {Q0,Q1,Q2,Q3} =

452 case Tr > 0 of

453 true ->

454 S = math:sqrt(Tr + 1.0) * 2.0,
455 {0.25%3,

456 (R21 - R12) / S,

457 (RO2 - R20) / S,

458 (R10 - RO1) / S};

459 false ->

460 case (ROO > R11) andalso (ROO > R22) of
461 true ->

462 S = math:sqrt(1.0 + ROO - R11 - R22) * 2.0,
463 {(R21 - R12) / S,

464 0.25%S,

465 (RO1 + R10) / S,

466 (RO2 + R20) / S};

467 false ->

468 case R11 > R22 of

469 true ->

470 S = math:sqrt(1.0 + R11 - ROO - R22) x* 2.0,
471 {(RO2 - R20) / 8,
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472 (RO1 + R10) / S,

473 0.25%xS,

474 (R12 + R21) / S3I};

475 false ->

476 S = math:sqrt(1.0 + R22 - ROO - R11l) x* 2.0,
477 {(R10 - RO1) / 8,

478 (RO2 + R20) / S,

479 (R12 + R21) / S,

480 0.25%3}

481 end

482 end

483 end,

484 N = math:sqrt (QO*Q0 + Q1*Q1 + Q2*Q2 + Q3*Q3),
485 mat:matrix ([[QO/N, Q1/N, Q2/N, Q3/N]1]).

486
47| ahrs (Acc, Mag) ->

488 Down = unit([-A || A <- Accl),

489 East = unit(cross_product (Down, unit(Mag))),
490 North = unit(cross_product (East, Down)),

491 mat:tr (mat:matrix ([North, East, Downl])).

492
403 unit (Vec) ->

494 Norm = math:sqrt(lists:sum([X*X || X <- Vecl)),
495 case Norm of

496 0 -> Vec;

497 _ => [X / Norm || X <- Vec]

498 end.

499
s00| cross_product ([U1,U2,03], [V1,V2,V3]) ->

501 [U2*xV3-U3*V2, U3*xV1-U1x%V3, U1*xV2-U2xV1].
502
so3| qdot ([Q11, Q12, Q13, Q141, [Q21, Q22, Q23, Q241) ->
504 Q11*xQ21 + Q12*Q22 + Q13*xQ23 + Q14x*xQ24.

505
506| normalize_vec4 (Q) ->

507 [Q0,Q1,Q2,Q3] = mat:to_array(Q),

508 N = math:sqrt (QO0*Q0 + Q1*Q1 + Q2*Q2 + Q3*Q3),
500 mat:matrix ([[QO/N],[Q1/N],[Q2/N]1,[Q3/N1]1).

510

s511| wrap_angle_deg(Angle) ->

512 Wrapped = math:fmod (Angle + 180, 360),
513 case Wrapped < 0O of

514 true -> Wrapped + 360 - 180;

515 false -> Wrapped - 180

516 end.

154



© 0 N O U A W N e

I T T T S S S Sy o Sy G
AW N = O © N O A W N R O

25

26

27
28
29
30
31
32
33
34

35
36

37

38

39
40

F.3 Stability_layer module

-module (stability_layer).
-export ([robot_init/0]) .

-define (RAD_TO_DEG, 180.0/math:pi()).
-define (DEG_TO_RAD, math:pi()/180.0).

-define (ADV_V_MAX, 30.0).
-define (TURN_V_MAX, 80.0).

robot_init () ->
process_flag(priority, max),

calibrate (),
calibrate2 (),

{X0, PO} = init_kalman(),

#I2C bus
case open_i2C_bus () of
ok ->
4APIDs dnitialisation
Pid_Speed = spawn(hera_pid_controller, pid_init,
[-0.12, -0.07, 0.0, -1, 60.0, 0.0]1),
Pid_Stability = spawn(hera_pid_controller, pid_init,
[1t7.0, 0.0, 4.0, -1, -1, 0.01),
persistent_term:put (controllers, {Pid_Speed,
Pid_Stability}),
persistent_term:put(freq_goal, 300.0),

TO = erlang:system_time()/1.0e6,
io:format (" [ROBOT] ,Stabilityyready.~n"),

State = #{
robot_state => {rest, false}, /{Robot_ State,
Robot_Up#
kalman_state => {TO, X0, PO}, /{Tk, Xk, Pk}
move_speed => {0.0, 0.0}, /7 {Adv_V_Ref, Turn_V_Ref
}
frequency => {0, 0, 200.0, TO} J{N, Freq,
Mean_Freq, T_End}
},

robot_loop (State) ;
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end .

robot_1lo

{Rob
{Tk,
{Adv
{N,

T1 =

[Gy,

error ->
io:format ("[ROBOT] Stability,couldynotystart, retrying
uing2,seconds.~n"),
timer:sleep (2000),
robot_init ()

op(State) ->

ot_State, Robot_Up} = maps:get(robot_state, State),
Xk, Pk} = maps:get(kalman_state, State),

_V_Ref, Turn_V_Ref} = maps:get(move_speed, State),
Freq, Mean_Freq, T_End} = maps:get(frequency, State),

erlang:system_time () /1.0e6,
Dt = (T1- Tk)/1000.0,

Ax ,Az] = pmod_nav:read(acc, [out_y_g, out_x_xl1, out_z_x1],
#{g_unit => dps}),

{Speed, CtrlByte} = i2c_read(),
[Arm_Ready, _, _, Get_Up, Forward, Backward, Left, Right] =
hera_com:get_bits (CtrlByte),

Adv _

V_Goal = speed_ref (Forward, Backward),

Turn_V_Goal = turn_ref (Left, Right),

[Angle, {X1, P1}] = kalman_angle(Dt, Ax, Az, Gy, Xk, Pk),

{Acc

, Adv_V_Ref_New, Turn_V_Ref_New} = control_engine:

controller ({Dt, Angle, Speed}, {Adv_V_Goal, Adv_V_Ref}, {
Turn_V_Goal, Turn_V_Ref}),

Robo
Next

t_Up_New = is_robot_up(Angle, Robot_Up),
_Robot_State = get_robot_state({Robot_State, Robot_Up,

Get_Up, Arm_Ready, Anglel}),
Output_Byte = get_output_state(Next_Robot_State, Angle),

i2c_write (Acc, Turn_V_Ref_New, Output_Byte),
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84
85 {N_New, Freq_New, Mean_Freq_New} = frequency_computation(Dt, N
, Freq, Mean_Freq),

36 smooth_frequency(T_End, T1),

87

88

89 T_End_New = erlang:system_time()/1.0e6,

90 NewState = State#{

91 robot_state => {Next_Robot_State, Robot_Up_New},
92 kalman_state => {T1, X1, P13},

93 move_speed => {Adv_V_Ref_New, Turn_V_Ref_Newl},
94 frequency => {N_New, Freq_New, Mean_Freq_New, T_End_New}
95 },

96

97 robot_loop(NewState).

98
99
100/ open_i2C_bus () ->

101 case grisp_i2c:open(i2cl) of

102 {error, _} ->

103 io:format (" [ROBOT] Error ,while opening, the i2C bus~n")
104 grisp_led:flash(l, red, 500),

105 error;

106 I2Cbus ->

107 persistent_term:put (i2c, I2Cbus),

108 ok

109 end.

110
111| calibrate () ->

112 grisp_led:flash(1l, green, 500),

113 io:format (" [ROBOT] Calibrating... Do not move,the pmod_nav'!'~n"
),

114 N = 500,

115 Y_List = [pmod_nav:read(acc, [out_y_gl) || _ <- lists:seq(l, N
)1,

116 Gy0 = lists:sum([Y || [Y] <- Y_Listl]) / N,

117 io:format (" [ROBOT] Done,calibrating~n"),

118 grisp_led:flash(l, green, 500),

119 persistent_term:put(gy0, GyO).

120
121| calibrate2 () ->

122 N=500,

123 Gyro_data = [ pmod_nav:read(acc, [out_x_g, out_y_g, out_z_gl)
124 [| _ <- lists:seq(l, N) 1,

125

126 G_x_List = [ X || [X,_,_]1 <- Gyro_data ],

127 G_y_List = [ Y Il [_,Y,_] <- Gyro_data 1],

128 G_z List = [ Z || [_,_,Z] <- Gyro_data 1],
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AngVel_data = [pmod_nav:read(mag, [out_x_m, out_y_m, out_z_m])
[l _ <- lists:seq(1l, N)I],

M _x_List =
M_y_List =
M_z List =

[ [X,_,_] <- AngVel_data ],
[l [_,Y,_1 <- AngVel_data 1],
[

[_,_,Z] <- AngVel_data 1],

e B M|
N < >

Acc_data = [ pmod_nav:read(acc, [out_x_x1, out_y_xl, out_z_xl
1) Il _ <- lists:seq(1l, N) 1],

[X,_ ,_] <- Acc_data ],

Accc_x_List |l
[l [_,Y,_1 <- Acc_data 1],
|

Accc_y_List
Accc_z_List

[_,_)Z] <- ACC_data ],

|
—, /e
N < >

[GxO_pos, GyO_pos, GzO_pos] = [lists:sum(List) / N || List <-
[G_x_List, G_y_List, G_z_List]l],

[MxO, MyO, MzO] = [lists:sum(List) / N || List <- [M_x_List,
M_y_List, M_z_List]l],

[AccxO, Accy0, AcczO0] = [lists:sum(List) / N || List <- [
Accc_x_List, Accc_y_List, Accc_z_List]],

io:format (" [KALMAN_MEASURE]_ Donegcalibrating~n"),

persistent_term:put(gyro_init, {GxO_pos, GyO_pos, GzO_pos}),
persistent_term:put (mag_init, {Mx0O, MyO, Mz0}),
persistent_term:put (acc_init, {AccxO, Accy0, AcczO0}).

init_kalman() ->
Initiating kalman constants
= mat:matrix([[3.0, 0.0], [0, 3.0e-611),
= mat:matrix([[3.0e-5, 0.0], [0.0, 10.011),
h = fun (_) -> mat:matrix([[1, 0],[0, 111)
end ,
persistent_term:put(kalman_constant, {R, Q, Jh}),

o O T s

/ Initial State and Covariance matrices
X0 = mat:matrix ([[0], [0]11),

PO = mat:matrix([[0.1, 0], [0, 0.111),
{X0, PO}.

kalman_angle (Dt, Ax, Az, Gy, X0, PO) ->
Gy0 = persistent_term:get(gy0),
{R, Q, Jh} = persistent_term:get(kalman_constant),

F = fun (X) -> [Th, W] = mat:to_array(X),

mat :matrix ([[Th+Dt*W],[W]])
end ,
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Jf = fun (_) -> mat:matrix([[1, Dt]l,[0, 111)
end,
H = fun (X) -> [Th, W] = mat:to_array(X),
mat:matrix ([[Th]l,[W]1])
end,
Z = mat:matrix([[math:atan(Az / (-Ax))],
11D,
{X1, P1} = hera_kalman:extended_filter ({X0, PO}, {F,
Jh}’ Q’ R" Z),
[Th_Kalman, _W_Kalman] = mat:to_array(X1),
Angle = Th_Kalman * 7RAD_TO_DEG,
[Angle, {X1, P13}].
get_robot_state (Robot_State) -> J {Robot_state, Robot_Up,

Arm_ready, Angle}
case Robot_State of

{rest, _, true, _, _%}
{rest, _, _, _, _} -—>
{raising, true, _, _,
{raising, _, false,
{raising, _, _, _, _}
{stand_up, _, false,

{stand_up, false, _,
{stand_up, _, _,
{wait_for_extend, _,
{prepare_arms, _, _,
{prepare_arms, _,
{prepare_arms, false,
{prepare_arms, _, _,
{free_fall, _, _, _,

>

-> raising;
rest;
_} -> stand_up;
_, _}Y -> soft_fall;
-> raising;
_, _} -> wait_for_extend;
_, } -> rest;

_} -> stand_up;

_s _s _} -> prepare_arms;

true, _} -> free_fall;
true, _, _} -> stand_up;

., _, _} -> rest;

_, _}Y -> prepare_arms;

Angle} ->

case abs(Angle) >10 of

true -> wait_for_retract;
->free_fall
end ;

{wait_for_retract, _, _, _, _} -> soft_fall;
{soft_fall, _, _, true, _} -> rest;
{soft_fall, _, true, _, _} -> raising;
{soft_fall, _, _, _, _} -> soft_fall

end.

get_output_state(State, Angle) ->
Move_direction = get_movement_direction(Angle),

4 Output bits =
Move_direction,
case State of

[Power,
o, 0,

Freeze,

Extend, Robot_Up_Bzt,

0]
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227

264

rest ->

get_byte ([0, O, O, O, Move_direction, O,
raising ->

get_byte([1, O, 1, O, Move_direction, O,
stand_up ->

get_byte([1, 0, 0, 1, Move_direction, O,
wait_for_extend ->

get_byte([1, O, 1, 1, Move_direction, O,
prepare_arms ->

get_byte([1, O, 1, 1, Move_direction, O,
free_fall ->

get_byte([1, 1, 1, 1, Move_direction, O,
wait_for_retract ->

get_byte([1, O, O, O, Move_direction, O,
soft_fall ->

get_byte([1, O, O, O, Move_direction, O,

end.

is_robot_up (Angle, Robot_Up) ->
if
Robot_Up and (abs(Angle) > 20) ->
false;
not Robot_Up and (abs(Angle) < 18) ->
true;
true ->
Robot _Up
end.

get_movement_direction (Angle) ->

if
Angle > 0.0 ->
1;
true ->
0
end.

get_byte(List) ->
(A, B, C, D, E, F, G, H] = List,
A*128 + B*64 + Cx32 + D*x16 + E*x8 + F*4 + G*2 + H.

i2c_read () ->
JReceive I2C and conversion
I2Cbus = persistent_term:get(i2c),

01);
01);
01);
01);
01);
01);
01);

01)

[<<SL1,S8L2,SR1,SR2,CtrlByte>>] = grisp_i2c:transfer (I2Cbus, [{

read, 16#40, 1, 53}]1),

[Speed_L,Speed_R] = hera_com:decode_half_float ([<<SL1, SL2>>,

<<SR1, SR2>>]),
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265 Speed = (Speed_L + Speed_R)/2,
266 {Speed, CtrlBytel.

267
268| 12c_write (Acc, Turn_V_Ref_New, Output_Byte) ->

269 I2Cbus = persistent_term:get(i2c),
270 [HF1, HF2] = hera_com:encode_half_float ([Acc, Turn_V_Ref_New])
271 grisp_i2c:transfer (I2Cbus, [{write, 16#40, 1, [HF1, HF2, <<

Output_Byte>>11}]).
272
273
274
275| speed_ref (Forward, Backward) ->

276 if

277 Forward ->

278 Adv_V_Goal = 7ADV_V_MAX;
279 Backward ->

280 Adv_V_Goal = - 7ADV_V_MAX;
281 true ->

282 Adv_V_Goal = 0.0

283 end,

284 Adv_V_Goal.

285
286| turn_ref (Left, Right) ->

287 if

288 Right ->

289 Turn_V_Goal = 7TURN_V_MAX;
290 Left ->

291 Turn_V_Goal = - 7TURN_V_MAX;
292 true ->

293 Turn_V_Goal = 0.0

294 end,

295 Turn_V_Goal.

296
297| frequency_computation(Dt, N, Freq, Mean_Freq) ->

298 if

299 N == 100 ->

300 N_New = 0,

301 Freq_New = O,

302 Mean_Freq_New = Freq;

303 true ->

304 N_New = N+1,

305 Freq_New = ((Freq*N)+(1/Dt))/(N+1),
306 Mean_Freq_New = Mean_Freq
307 end,

308 {N_New, Freq_New, Mean_Freq_New}.

309
310 smooth_frequency (T_End, T1)->
311 T2 = erlang:system_time()/1.0e6,
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Freq_Goal = persistent_term:get(freq_goal),
Delay_Goal = 1.0/Freq_Goal * 1000.0,

if
T2-T_End < Delay_Goal ->
timer:sleep (Delay_Goal-(T2-T1));
true ->
ok
end.

F.4 Control_engine module

-module (control_engine).
-export ([controller/3]).

-define (ADV_V_MAX, 30.0).
-define (ADV_ACCEL, 75.0).

-define (TURN_V_MAX, 80.0).
-define (TURN_ACCEL, 400.0).

controller ({Dt, Angle, Speed}, {Adv_V_Goal, Adv_V_Ref}, {
Turn_V_Goal, Turn_V_Ref}) ->
{Pid_Speed, Pid_Stability} = persistent_term:get(controllers),

ZSaturate advance acceleration
if
Adv_V_Goal > 0.0 ->
Adv_V_Ref_New = hera_pid_controller:saturation/(
Adv_V_Ref+7ADV_ACCEL*Dt, 7ADV_V_MAX);
Adv_V_Goal < 0.0 ->
Adv_V_Ref_New = hera_pid_controller:saturation(
Adv_V_Ref - 7ADV_ACCEL*Dt, 7ADV_V_MAX);
true ->
if
Adv_V_Ref > 0.5 ->
Adv_V_Ref_New = hera_pid_controller:saturation
(Adv_V_Ref - 7ADV_ACCEL*Dt, 7ADV_V_MAX);
Adv_V_Ref < -0.5 ->
Adv_V_Ref_New = hera_pid_controller:saturation
(Adv_V_Ref+7?ADV_ACCEL*Dt, 7ADV_V_MAX);
true ->
Adv_V_Ref_New = 0.0
end
end,
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ASaturate turning acceleration

if

Turn_V_Goal > 0.0 ->
Turn_V_Ref_New = hera_pid_controller:saturation/(

Turn_V_Ref+?TURN_ACCEL*Dt, ?TURN_V_MAX);

Turn_V_Goal < 0.0 ->
Turn_V_Ref_New = hera_pid_controller:saturation/(

true ->
if

end
end ,

#Speed PI

Pid_Speed !
Pid_Speed !
receive {_,

Turn_V_Ref- ?TURN_ACCEL*Dt, ?TURN_V_MAX);

Turn_V_Ref > 0.5 ->
Turn_V_Ref_New = hera_pid_controller:
saturation(Turn_V_Ref- 7?TURN_ACCEL*Dt, 7
TURN_V_MAX) ;
Turn_V_Ref < -0.5 ->
Turn_V_Ref_New = hera_pid_controller:
saturation(Turn_V_Ref+?TURN_ACCEL*Dt, 7
TURN_V_MAX) ;
true ->
Turn_V_Ref_New = 0.0

{self (), {set_point, Adv_V_Ref_New}},
{self (), {input, Speed}},
{control, Target_angle}} -> ok end,

4Stability PD
Pid_Stability ! {self (), {set_point, Target_anglel}},
Pid_Stability ! {self (), {input, Anglel}},

receive {_,

{Acc, Adv_V

{control, Acc}} -> ok end,

_Ref _New, Turn_V_Ref_Newl}.
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Appendix G

User Controller Software

G.1 Run bash script

#!/bin/bash
#Created with the help of ChatGPT

MAX_TRIES=10
COUNT=0

DEVICE_IP=$%$(ip route get 1.1.1.1 | awk
=="grc") print $(i+1)}’)

BROADCAST_IP=$(ip -o -f inet addr show
print $6}’ | head -n1)

while [ $COUNT -1t $MAX_TRIES 1; do
if [ $# -eq 1 1; then
FILENAME="$1"

>{for(i=1;i<=NF;i++) if ($i

awk ’/scope global/ {

python3 Controller.py "$DEVICE_IP" "$BROADCAST_IP" "

$FILENAME"
fi

if [ $# -1t 1 ]; then

python3 Controller.py "$DEVICE_IP" "$BROADCAST_IP"

fi

EXIT_CODE=$7?
if [ $EXIT_CODE -eq O ]; then

echo "Controller.pyexited successfully."

exit O
else
COUNT=$ ((COUNT + 1))

echo "Controller.py,failed,(attempt $COUNT/$MAX_TRIES) .

n

Retryingin,0.5s...
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sleep 0.5
fi
done

echo "Controller.py,failed_ $MAX_TRIES_ times._ Exiting."
exit 1

G.2 Pygame Controller

import pygame

import pygame_gui

import sys

import numpy as np

import serial

from Server import Server

from components.Room import Room
from components.Robot import Robot
from pathlib import Path

import time

class User_interface:

# App General State
RESIZE = 3.5 # Resizing factor for the rooms

running = True # True until quit command received
image_dict = {} # Contains all the images object
rect_dict = {} # Contains all the images rect

# Pop Up

in_popup = False # True 4f there’s an active popup

active_popup = Nomne # Actual pop-up object
UI_elements = {} # Elements of the current popup
temp_origin = None # Used to keep track of the origin button

in a popup

# Robot controll
x = 0 # Robot command
string = "" # String to be printed on screen

# App Room state

room_grid = ((0,0),(0,0)) # Building grid (from top left to
bottom right)

rooms = [] # List of defined rooms

sensor = [] # List of defined sensors
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# Predefined trajectory

trajectory = [] # List of predefined commands

trajectory_idx = 0 # Command index

current_action = "" # Name of the current command

action_start_time = 0 # Time at the start of the trajectory

action_duration = 0 # Total time duration of the command

is_trajectory_started = False # Set to true when the
trajectory begins

timer = 0 # Keeps track of the time since started

# Robot UI
robot = None # Robot object

# Robot state

message = 0 #Message to send to the robot
run = True

stand = False

kalman = True

release_space = True

release_enter = True

release_t = True

release_tab = True

# Saved Files
saved_files = []

def __init__(self, IP, BRD_IP, trajectory):

pygame.init ()

self .ser = serial.Serial(port="/dev/ttyACMO", baudrate
=115200)

info = pygame.display.Info ()

self .WIDTH, self.HEIGHT = info.current_w, info.current_h

self.screen = pygame.display.set_mode ((self.WIDTH, self.
HEIGHT), pygame.RESIZABLE)
pygame .display.set_caption("Robot ,Controller")

self .manager = pygame_gui.UIManager ((self.WIDTH, self.
HEIGHT))

self.clock = pygame.time.Clock()

self.clock.tick (200)

self .server = Server (IP, BRD_IP)
self .defined_trajectory(trajectory)

self.load_figures ()
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def load_figures(self): # Loads all the images that will

appear on screen

arrow_img = pygame.image.load(’./img/arrow.png’)

arrow_img = pygame.transform.scale(arrow_img, (arrow_img.
get_width() // 4, arrow_img.get_height() // 4))

circle_img = pygame.image.load(’./img/point.png’)

circle_img = pygame.transform.scale(circle_img, (
circle_img.get_width() // 2, circle_img.get_height () //
2))

stop_img = pygame.image.load(’./img/Stop_sign.png’)
stop_img = pygame.transform.scale(stop_img, (stop_img.
get_width() // 10, stop_img.get_height() // 10))

robot = pygame.image.load(’./img/Robot.png’)
robot = pygame.transform.scale(robot, (robot.get_width()
//6, robot.get_height()//6))

plus_img = pygame.image.load(’./img/plus.png’)
plus_img = pygame.transform.scale(plus_img, (plus_img.
get_width () // 5, plus_img.get_height () // 5))

minus_img = pygame.image.load(’./img/minus.png’)
minus_img = pygame.transform.scale(minus_img, (minus_img.
get_width() // 5, minus_img.get_height() // 5))

start_img = pygame.image.load(’./img/button_start.png’)
start_img pygame.transform.scale(start_img, (start_img.
get_width (), start_img.get_height()))

start_img_pressed = pygame.image.load(’./img/start_pressed
.png’)
start_img_pressed = pygame.transform.scale(

start_img_pressed, (start_img_pressed.get_width(),
start_img_pressed.get_height ()))

save_img = pygame.image.load(’./img/button_save.png’)
save_img = pygame.transform.scale(save_img, (save_img.
get_width (), save_img.get_height ()))

load_img = pygame.image.load(’./img/button_load.png’)
load_img = pygame.transform.scale(load_img, (load_img.
get_width (), load_img.get_height()))

place_robot = pygame.image.load(’./img/button_place_robot.
png’)

place_robot = pygame.transform.scale(place_robot, (
place_robot.get_width(), place_robot.get_height()))
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114
115
116

117
118
119

120
121
122
123
124
125
126
127
128
129

131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152

154
155
156
157

159
160

zoom_in = pygame.image.load(’./img/zoom_in.png’)

zoom_in = pygame.transform.scale(zoom_in,

get_width()//8,

(zoom_in.
zoom_in.get_height () //8))

zoom_out = pygame.image.load(’./img/zoom_out.png’)

zoom_out =

pygame .transform.scale (zoom_out,

(zoom_out.

get_width () //8,

zoom_out.get_height ()//8))

self.image_dict["arrow"] =

self.image_dict["circle"] =
self.image_dict["stop"] = s
self.image_dict["plus_L_0"]
self.image_dict["minus"] =
self.image_dict["start"] =
self.image_dict["save"] = s
self.image_dict["load"] = 1
self.
self.image_dict["start_pres
self.image_dict["zoom_in"
self.image_dict["zoom_out"]
self.image_dict["robot"] =

def event_handler (self):

arrow_img
circle_img
top_img

= plus_img
minus_img
start_img
ave_img
oad_img

image_dict["place_robot"] = place_robot

sed"] = start_img_pressed
= zoom_in

= zoom_out

robot

for event in
if event

self.
time.

self

if event

self.

if event

self.

pygame .event.get ():

.type == pygame.QUIT:

server .send ("Exit", "brd")

sleep (0.25)

.running = False

.type == pygame.MOUSEBUTTONDOWN:
event_click (event)

.type == pygame_gui.UI_BUTTON_PRESSED:

event_interact_popup (event)

self .manager .process_events (event)

def event_click(self, event):
if self.in_popup:

return

for room in range(len(self.rooms)):

for Side in [IILII IIRII IITII IIBH]:
name = "plus_" + side + "_" + str(room)
if self.is_click_image (name, event)
self.in_popup = True
self.temp_origin = name

self.create_choice_popup ()
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161
162
163
164
165
166
167
168

170
171

172

174

175
176

178
179
180
181
182
183
184
185
186
187
188
189

191
192
193
194
195

196

197

198

199

201
202

for corner imn ["TL", "TR", "BL", "BR"]:

name = "plus_" + corner + "_" + str(room)
if self.is_click_image (name, event)
self.in_popup = True
self.temp_origin = name

self.create_sensor_popup ()

room_obj = self.rooms[room]
room_rect = pygame.Rect (0, 0O, room_obj.width, room_obj
.height)
room_rect.center = room_obj.pos
if len(self.rooms) == 0 and self.is_click_image("plus_L_O"
, event):
self .in_popup = True
self .temp_origin = "plus_L_O"

self.create_room_popup ()

elif self.is_click_image("start", event)
self .server.send_config()
time.sleep (2)
self .is_trajectory_started = True
self.timer = pygame.time.get_ticks () /1000

elif self.is_click_image("place_robot", event):
self .in_popup = True
self.create_robot_popup ()

def event_interact_popup(self, event):
if event.ui_element == self.UI_elements.get("Room_Submit")

width = self.UI_elements.get("Width").get_text ()
height = self.UI_elements.get("Height").get_text ()

if width != "" and height != "":
try
screen_width, screen_height = self.
compute_screen_size (float (width), float(
height))
side = self.temp_origin [5]
x, y = self.compute_pos_room(screen_width,

screen_height , side, len(self.rooms))

room = Room(screen_width, screen_height, x, vy,
len(self.rooms))

self.add_sides (room)

self .rooms.append(room)

self .get_new_grid ()
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203
204
205

207
208
209

210
211
212

213
214
215
216
217
218
219

220

221
222
223

224
225
226
227
228
229
230

231
232

234
235
236

237
238
239
240

241
242

TLx, TLy = room.compute_pos ("TR")
BRx, BRy = room.compute_pos ("BL")
TLpos = self.get_real_pos(TLx, TLy)
BRpos = self.get_real_pos(BRx, BRy)
self .server.add_edges (BRpos, TLpos)
except
print (" [ERROR]: Problem with width and height
uvalues™")
self.close_popup ()
self.temp_origin = None
elif event.ui_element == self.UI_elements.get("Save_Submit
||):
filename = self.UI_elements.get("Filename").get_text ()
self.create_save_file(filename)
self.close_popup ()
elif event.ui_element == self.UI_elements.get("Sensor"):
self.close_popup ()
self.create_sensor_popup ()
elif event.ui_element == self.UI_elements.get ("
SensH_Submit"):
height = self.UI_elements.get("Sens_height").get_text
O

height = float (height)
self.server.update_sens_height (self.temp_origin,
height)

self.close_popup ()
self .temp_origin = None

elif event.ui_element == self.UI_elements.get("Room"):
self.close_popup ()
self.create_room_popup ()

elif event.ui_element == self.UI_elements.get ("
Submit_robot_pos"):
Robot_x = self.UI_elements.get("Robot_x").get_text ()
Robot_y self .UI_elements.get ("Robot_y").get_text ()
Robot_angle = self.UI_elements.get("Robot_angle").

get_text ()

try

self.server.update_robot ((float (Robot_x),float (
Robot_y)), int(Robot_angle))

self .robot = self.server.robot

self .robot.confirmed = True

except:
print ("[CONTROLLER] ,Error with,the_ robot placement

"
self.close_popup ()
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243
244
245
246

247
248
249

251
252
253
254

256
257
258

260
261
262
263
264

265

266
267
268
269
270
271
272
273
274

276
277
278
279

281
282

283
284

285

#Check sensor choice

sensors = self.server.get_sensors ()
for id in sensors:
if event.ui_element == self.UI_elements.get("Sensory

choice " + str(id)):

self.close_popup ()

splitted_origin = self.temp_origin.split("_")
room = int(splitted_origin[2])

side = splitted_origin[1]
room = self.rooms[room]
ix, iy = room.compute_pos(side)

X, y = self.get_real_pos(ix, iy)

self.create_sensor_height_popup ()

self .server.update_sens(id, side, room.room_num, X
, YD

self .draw_sensor ()

self.temp_origin = id

#F1le loader choice
for filename in self.saved_files:

if event.ui_element == self.UI_elements.get("SavedFile
" + filename[:-4])
self .rooms = SaveParser.parse(filename, self.

HEIGHT, self.RESIZE)
self.close_popup ()

self.in_popup = False

def check_keys_movement (self, keys):
if keys[pygame.K_SPACE]:
if self.release_space:
self .release_space = False
if self.message < 10000000:
self .run = True
else:
self .run = False
self .is_trajectory_started = False
self.current_action = ""
self.action_duration = 0
self.trajectory_idx = 0
elif keys[pygame.K_z] or keys[pygame.K_UP] or self.

current_action == "front":
self.x += -1

elif keys[pygame.K_s] or keys[pygame.K_DOWN] or self.
current_action == "back":

self.x += 1
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286

287

289
290
291
292
293
294
295
296

298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314

315

316
317
318
319
320
321
322
323
324

325
326
327
328
329
330

def

def

def

def

def

elif keys[pygame.K_ql] or keys[pygame.K_LEFT] or self.
current_action == "left":
self.x += 1j

elif keys[pygame.K_d] or keys[pygame.K_RIGHT] or self.
current_action == "right":
self.x += -1j

elif keys[pygame.K_ESCAPE]:
self .running = False

else:
self .release_space = True

check_keys_kalman(self, keys):
if keys[pygame.K_k]:

self .kalman = True
elif keys[pygame.K_c]:
self .kalman = False

elif keys[pygame.K_TAB]:
if self.release_tab:

self .kalman = not self.kalman
self.release_tab = False
else:
self.release_tab = True

check_test (self, keys):
if keys[pygame.K_t] and self.release_t:
self.test, self.release_t = True, False
else:
self.test, self.release_t = False, True

check_standing (self, keys):
if keys[pygame.K_RETURN] or self.current_action == "stand"

if self.release_enter:
self.stand = not self.stand
self .release_enter = False
else:
self.release_enter = True

update_screen_size (self):

self .WIDTH, self.HEIGHT = self.screen.get_size()

self .manager.set_window_resolution((self.WIDTH, self.
HEIGHT))

draw_move_ctrl (self):
if self .message < 10000000:

self .draw_image ("stop", self.WIDTH //2, 100)
elif abs(self.x) == O0:

self .draw_image("circle", self.WIDTH //2, 100)
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331
332
333

334

335
336
337
338
339
340

341
342
343
344

345
346
347
348
349
350
351
352
353
354

355
356
357
358
359
360
361
362
363
364
365
366
367

368
369
370
371
372

def

def

def

def

def

else:
angle = np.angle(-1*self.x, deg=True)

rotated_arrow = pygame.transform.rotate(self.
image_dict.get("arrow"), angle)
rotated_rect = rotated_arrow.get_rect(center = (self.

WIDTH//2, 100))
self.screen.blit(rotated_arrow, rotated_rect.topleft)

draw_string(self):
font = pygame.font.Font(None, 36)
self .string += "DOWN_\n" if not self.stand else "UP,\n"

self .string += "Kalman_,filter\n" if self.kalman else "
Complementary,filter\n"
self.string += "Running\n" if self.run else "Stopped\n"
self.string += "Message:," + str(self.message) + "\n"
if self.is_trajectory_started
self.string += "Timer,:," + str(round((pygame.time.
get_ticks()/1000) - self.timer, 1))
else
self .string += "Timer:, 0"

for i, line in enumerate(self.string.split("\n")):
text = font.render(line, True, (0, 128, 0))
self.screen.blit(text, (10, 10 + i * 30))

draw_add_room(self):
if len(self.rooms) == O0:
self .draw_image ("plus_L_0", self.WIDTH//2, self.HEIGHT
//2)

draw_image (self, name, x, y, angle=0):

image = self.image_dict.get (name)

image = pygame.transform.rotate(image, 360-angle)
image_rect = image.get_rect(center = (x, y))

self .screen.blit(image, image_rect)

self .rect_dict [name] = image_rect

draw_room (self, room):
room_rect = pygame.Rect(0, O, room.width, room.height)
room_rect.center = (room.pos[0], room.pos[1])

pygame .draw.rect (self.screen, (0, 0, 0), room_rect, width
=10)
self .draw_room_sides (room)

draw_room_sides (self, room):

for side in ["L”, "R", "T", IIBII]:
if type(room.sides[side]) != Room:
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373

374

375
376
377
378
379

380

381
382
383
384
385
386

387
388
389
390

391

392
393
394
395
396
397
398
399
400
401
402
403
404

406

407

409
410

def

def

def

def

self.load_image (room.room_num, room.sides[side],

side)
self .draw_image (room.sides[side].type + "_" + side
+ " " 4+ str(room.room_num), room.sides[side].
pos[0], room.sides[side].pos[1])
else:
X, y = room.compute_pos(side)
self .draw_door(x, y)
for corner im ["TL", "TR", "BL", "BR"]:
self.load_image (room.room_num, room.corners[corner],
corner)
self .draw_image (room.corners [corner].type + "_" +
corner + "_" + str(room.room_num), room.corners|[

corner].pos [0], room.corners[corner].pos[1])

draw_sensor (self):
if self.temp_origin[7] =="_":
room_origin = int(self.temp_origin[8])
side_origin = self.temp_origin[5:7]
self .sensor.append(self.rooms [room_origin].corners[
side_origin])
else
room_origin = int(self.temp_origin([7])
side_origin self.temp_origin [5]
self.sensor.append(self.rooms[room_origin].sides|[
side_origin])
self .rooms [room_origin] .modify_side(side_origin, "./img/
sensor .png", "sensor"

draw_door (self, x, y):

width, height = self.compute_screen_size (0.3, 0.3)
door_rect = pygame.Rect(0, O, width, height)
door_rect.center = (x, y)

pygame .draw.rect (self.screen, (255, 255, 255), door_rect)

draw_grid(self):
RED = (255, 0, 0)

pointl = (self.room_grid[0][0], self.room_grid([1][0])
point2 = (self.room_grid[0][1], self.room_grid([1][0])
point3 = (self.room_grid[0][1], self.room_grid[1][1])

pygame .draw.line (self.screen, RED, pointl, point2, width
=10)

pygame .draw.line(self.screen, RED, point2, point3, width
=10)

draw_buttons (self):
if self.is_trajectory_started
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411 self .draw_image ("start_pressed", self.WIDTH-200, 100)

412 else

413 self .draw_image("start", self.WIDTH-200, 100)

414 if len(self.rooms) > O0:

415 self .draw_image("place_robot", self.WIDTH-450, 100)

416

417 def draw_robot (self):

418 if self.robot != None and self.robot.confirmed:

419 x, y = self.get_screen_pos (self.robot.real_pos[0],
self .robot.real_pos[1])

420 self .draw_image ("robot", x, y, self.robot.angle)

421

422 def create_choice_popup(self):

423 button_width = self .WIDTH // 2 - self.WIDTH // 20

424 button_height = min(self.HEIGHT // 20, 60)

425 popup_width = self.WIDTH // 2

426 popup_height = self.HEIGHT // 3

427 margin_left = (self.WIDTH - button_width)//20

428 margin = 20

429

430 # Center the popup on the screen

431 popup_rect = pygame.Rect(

432 (self .WIDTH - popup_width) // 2,

433 (self .HEIGHT - popup_height) // 2,

434 popup_width,

435 popup_height

436 )

437

438 popup_window = pygame_gui.elements.UIWindow (

439 rect=popup_rect,

440 manager=self.manager,

441 window_display_title=’Add  Component’

442 )

443

444 self .active_popup = popup_window

445

446 current_y = margin

447

448 header_label = pygame_gui.elements.UILabel(

449

450 relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),

451 text="Do,you,Want ,to,add a Room 0or a;,sensor 7",

452 manager=self .manager,

453 container=popup_window

454 )

455 current_y += button_height + margin

456

457 self .UI_elements["Sensor"] = pygame_gui.elements.UIButton(
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458

459

461
462
463
464

466
467

468

470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496

498
499
500
501
502

503

def

relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),

text="Sensor",

manager=self .manager,

container=popup_window

current_y += button_height + margin

self .UI_elements["Room"] = pygame_gui.elements.UIButton (

relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),

text="Room",

manager=self .manager,

container=popup_window

create_room_popup(self):

# Calculate sizes for buttons and popup dimensions
button_width = self.WIDTH // 2 - self.WIDTH // 20
button_height = min(self.HEIGHT // 20, 60)
popup_width = self.WIDTH // 2

popup_height = self.HEIGHT // 2

margin_left = (self.WIDTH - button_width)//20
margin = 20

# Center the popup on the screen
popup_rect = pygame.Rect(
(self .WIDTH - popup_width) // 2,
(self .HEIGHT - popup_height) // 2,
popup_width,
popup_height

popup_window = pygame_gui.elements.UIWindow(
rect=popup_rect,
manager=self .manager,
window_display_title=’Room_ ,Creation’

)
self .active_popup = popup_window
current_y = margin

header_label = pygame_gui.elements.UILabel(

relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),

text="Enter the_ room_ size:",
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511
512
513
514
515
516
517

518

534

542

manager=self .manager,
container=popup_window
)

current_y += button_height + margin

width_label = pygame_gui.elements.UILabel (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Width,(m):",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

self .UI_elements["Width"] = pygame_gui.elements.
UITextEntryLine (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
manager=self .manager,
container=popup_window

current_y += button_height + margin

height_label = pygame_gui.elements.UILabel(
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Height (m):",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

self .UI_elements["Height"] = pygame_gui.elements.
UITextEntryLine (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
manager=self .manager,
container=popup_window

current_y += int(1.75 * button_height) + margin

self .UI_elements ["Room_Submit"] = pygame_gui.elements.
UIButton (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Submit",
manager=self .manager,
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545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583

584
585
586
587
588
589
590
591

def

container=popup_window

self .manager.draw_ui(self.screen)
pygame .display.update ()

create_sensor_popup (self):

# Calculate sizes for buttons and popup dimensions
button_width = self.WIDTH // 2 - self.WIDTH // 20
button_height = min(self.HEIGHT // 20, 60)
popup_width = self.WIDTH // 2

popup_height = self.HEIGHT // 2

margin_left = (self.WIDTH - button_width)//20
margin = 20

# Retrieve sensors Ids
sensors = self.server.get_sensors ()

# Center the popup on the screen
popup_rect = pygame.Rect(
(self .WIDTH - popup_width) // 2,
(self .HEIGHT - popup_height) // 2,
popup_width,
popup_height

popup_window = pygame_gui.elements.UIWindow (
rect=popup_rect,
manager=self .manager,
window_display_title=’Sensor Choice’

)
self.active_popup = popup_window
current_y = margin

header_label = pygame_gui.elements.UILabel(

relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Choose a sensor:",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin
for Id in sensors

self .UI _elements["Sensor_ choice " + str(Id)] =
pygame_gui.elements.UIButton(
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592

617

627

633

634
635
636
637

def

relative_rect=pygame.Rect (margin_left, current_y,

button_width, button_height),
text=str (Id),
manager=self .manager,
container=popup_window

current_y += button_height + margin

self .manager.draw_ui(self.screen)
pygame .display.update ()

create_sensor_height_popup(self):

# Calculate sizes for buttons and popup dimensions
button_width = self.WIDTH // 2 - self.WIDTH // 20
button_height = min(self.HEIGHT // 20, 60)
popup_width = self.WIDTH // 2

popup_height = self.HEIGHT // 5

margin_left = (self.WIDTH - button_width)//20
margin = 20

# Center the popup on the screen
popup_rect = pygame.Rect(
(self .WIDTH - popup_width) // 2,
(self .HEIGHT - popup_height) // 2,
popup_width,
popup_height

popup_window = pygame_gui.elements.UIWindow(
rect=popup_rect,
manager=self .manager,
window_display_title=’Sensor Height’

)
self.active_popup = popup_window
current_y = margin

header_label = pygame_gui.elements.UILabel(

relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="At what heightis_ the sensor (count to,they
center of  ,the sonar):",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

179




638
639 self .UI_elements["Sens_height"] = pygame_gui.elements.
UITextEntryLine (

640 relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),

641 manager=self .manager,

642 container=popup_window

643 )

644 current_y += button_height + margin

645

646 self .Ul _elements["SensH_Submit"] = pygame_gui.elements.

UIButton (

647 relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),

648 text="Submit",

649 manager=self .manager,

650 container=popup_window

651 )

652

653 self .manager.draw_ui(self.screen)

654 pygame .display.update ()

655

656 def create_robot_popup(self):

657 # Calculate sizes for buttons and popup dimensions

658 button_width = self.WIDTH // 2 - self.WIDTH // 20

659 button_height = min(self.HEIGHT // 20, 60)

660 popup_width = self.WIDTH // 2

661 popup_height = self.HEIGHT

662 margin_left = (self.WIDTH - button_width)//20

663 margin = 20

664

665 # Center the popup on the screen

666 popup_rect = pygame.Rect(

667 (self .WIDTH - popup_width) // 2,

668 (self .HEIGHT - popup_height) // 2,

669 popup_width,

670 popup_height

671 )

672

673 popup_window = pygame_gui.elements.UIWindow(

674 rect=popup_rect,

675 manager=self .manager,

676 window_display_title=’Placethe robot,?’

677 )

678

679 self.active_popup = popup_window

680

681 current_y = margin

682
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683
684
685

686
687
688
689
690
691
692
693

694
695
696
697
698
699
700

701

702
703
704
705
706
707
708

710
711
712
713
714
715

716

717
718
719
720
721
722
723

header_label = pygame_gui.elements.UILabel(

relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Where do,youywant ,to,place,the robot,?",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

width_label = pygame_gui.elements.UILabel (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Width,(m):",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

self .UI_elements ["Robot_x"] = pygame_gui.elements.
UITextEntryLine (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

width_label = pygame_gui.elements.UILabel (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Height (m):",
manager=self .manager,
container=popup_window
)

current_y += button_height + margin

self .UI_elements ["Robot_y"] = pygame_gui.elements.
UITextEntryLine (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
manager=self .manager,
container=popup_window

current_y += button_height + margin

width_label = pygame_gui.elements.UILabel(
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relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Angle, ( ):",
manager=self.manager,
container=popup_window
)

current_y += button_height + margin

self .UI _elements["Robot_angle"] = pygame_gui.elements.
UITextEntryLine (
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
manager=self .manager,
container=popup_window

current_y += button_height + 2*margin

self .UI_elements ["Submit_robot_pos"] = pygame_gui.elements
.UIButton/(
relative_rect=pygame.Rect (margin_left, current_y,
button_width, button_height),
text="Validate",
manager=self .manager,
container=popup_window

self .manager.draw_ui (self.screen)
pygame .display.update ()

serial_comm(self):

data = self.run << 7 | self.kalman << 6 | self.test << 5 |
self.stand << 4 | (self.x.real == 1) << 3 | (self.x.
real == -1) << 2 | (
self .x.imag == 1) << 1 | (self.x.imag == -1)

self.ser.write(bytes ([datal))

Content = self.ser.readline()
Content = Content.decode().replace("\r\n", "")
self .message = int(Content)

defined_trajectory(self, file):

if file != None:
with open("./trajectories/" + file + ".txt") as file:
lines = file.readlines ()
for line in lines:
action, duration = line.split(",: ")

self .trajectory.append((action, duration))
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766 else:

767 self .trajectory = None

768

769 def is_click_image(self, name, event):

770 return self.rect_dict.get(name) != None and self.rect_dict

.get (name) .collidepoint (event.pos)
771

772 def load_image(self, room_num, object, side):
773 img = pygame.image.load(object.img)
774 img = pygame.transform.scale(img, (img.get_width() // 5,

img.get_height () // 5))
775

776 name = object.type + "_" + side + "_" + str(room_num)

777 self.image_dict [name] = img

778

779 def compute_pos_room(self, adapted_height, adapted_width, side
, room_num) :

780 X, y = self.rect_dict[self.temp_origin].center [0], self.

rect_dict[self.temp_origin].center [1]

781 if room_num == 0

782 return x, y

783 else

784 match side

785 case "L":

786 return (x - adapted_width//2), y

787 case "R":

788 return (x + adapted_width//2), y

789 case "T":

790 return x, (y + adapted_height//2)

791 case "B":

792 return x, (y - adapted_height//2)

793

794 def compute_screen_size (self, width, height):

795 return int(width * (self.HEIGHT//self.RESIZE)), int(height

* (self .HEIGHT//self .RESIZE))
796

797 def close_popup(self):

798 self .active_popup.kill ()

799 self .active_popup = None

800

801 def add_sides(self, room):

802 sides = ["L", "R", "T", "B"]

803 corners = ["TL", "TR", "BL", "BR"]
804 room_origin = int(self.temp_origin([7])
805 side_origin = self.temp_origin [5]
806

807 if len(self.rooms) !=0:

808 if side_origin == "L":

809 sides.remove ("R")
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room.add_room("R", self.rooms[room_origin])
elif side_origin == "R":
sides.remove ("L")
room.add_room("L", self.rooms[room_origin])
elif side_origin == "T":
sides.remove ("B")
room.add_room("B", self.rooms[room_origin])
elif side_origin == "B":
sides.remove ("T")
room.add_room("T", self.rooms[room_origin])
self .rooms [room_origin].add_room(side_origin, room)
for side in sides:
room.modify_side(side, "./img/plus.png", "plus")
for corner in corners:
room.modify_side (corner, "./img/plus.png", "plus")

get_new_grid(self):

leftmost_room = None
rightmost_room = None
upmost_room = None

downmost_room = None

x_min = self.WIDTH+1
x_max = 0
y_min = self . HEIGHT+1
y_max = 0

for room in self.rooms:

if room.pos[0] < x_min:

room.pos [0]
leftmost_room = room

if room.pos[0] > x_max:
x_max = room.pos [0]
rightmost_room = room

X_min =

if room.pos[1] < y_min:
y_min = room.pos[1]
upmost_room = room

if room.pos[1] > y_max:
y_max = room.pos[1]
downmost_room = room

leftmost_room.width//2
+= rightmost_room.width//2

X_min -=
X_max

y_min -= upmost_room.height//2
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y_max += downmost_room.height//2
self .room_grid = ((x_min, x_max), (y_min, y_max))

def get_real_pos(self, x, y):
grid_x = round((x - self.room_grid[0][0])/(self.HEIGHT/
self .RESIZE), 2)
grid_y = round((y - self.room_grid[1][0])/(self.HEIGHT/
self.RESIZE), 2)

return grid_x, grid_y

def get_screen_pos(self, grid_x, grid_y):
x = self.room_grid[0][0] + grid_x * (self.HEIGHT / self.
RESIZE)
y = self.room_grid[1][0] + grid_y * (self.HEIGHT / self.
RESIZE)
return x, y

def check_trajectory(self):
if self.is_trajectory_started:

if self.trajectory != None
current_time = pygame.time.get_ticks () /
1000.0

if self.action_start_time + self.

action_duration <= current_time and len(

self .trajectory) >= self.trajectory_idx +1:

self.current_action = self.trajectoryl[self
.trajectory_idx][0]

self.action_duration = float(self.
trajectory[self.trajectory_idx][1])

self.action_start_time = pygame.time.
get_ticks() / 1000.0

self .trajectory_idx += 1

def main_loop (self):
while self.running:
self.event_handler ()
self .update_screen_size ()

keys = pygame.key.get_pressed ()
self.x = 0
self .string =

nn
if not self.in_popup:
self.check_keys_movement (keys)

self.check_keys_kalman (keys)
self.check_test (keys)
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898 self .check_standing (keys)

899

900 self .screen.fil1 ((255, 255, 255))

901

902 for room in self.rooms:

903 self .draw_room(room)

904

905 self.draw_move_ctrl ()

906 self.draw_buttons ()

907 self.draw_add_room ()

908 self .draw_string ()

909 self.draw_robot ()

910 #self.draw_grid ()

911

912 self.check_trajectory ()

913

914 self .manager .update(self.clock.tick(60)/1000)

915 self .manager.draw_ui(self.screen)

916 pygame .display.flip ()

917

918 try:

919 self.serial_comm ()

920 except:

921 print (" [CONTROLLER] Error_,with LoRa, Communication"
)

922

923 # Qutt

924 pygame .quit ()

925 sys.exit ()

926

927| if _ _name__ == ’_ _main__"’:

928 if len(sys.argv) == 3:

929 ui = User_interface(sys.argv[1l], sys.argv[2], None)

930 else

931 ui = User_interface(sys.argv[1l], sys.argv[2], sys.argv[3])

932 ui.main_loop ()
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G.3 Components: Robot

class Robot:

real_pos = (0,0)
angle = O

room = -1

ip = "1

port = 0

def _ _init__(self):

self.confirmed = False
def update_adress(self, ip: str, port: int) -> None:
self.ip = ip
self .port = port
def update_pos(self, x:float, y: float, angle: int, room: int)

-> None:
print (" [ROBOT] isyaty," + str((x, y)) + ", withg,ang,angle of
" + str(angle) + "_in_room," + str(room))

self.real_pos = (x, y)
self .angle = angle
self .room = room

G4

Components: Room

from components.Side import Side

class Room:
def __init__(self, width, height, x, y, room_num):
self.width = width
self .height = height
self.pos = (x,y)
self.sides = {
"L":None,
"R" :None,
"T":None,
"B":None
}
self.corners = {
"TL" :None,
"TR" : None,
"BL" :None,
"BR" :None
}
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self.room_num = room_num

modify_side(self, side, img, img_type):
X, y = self.compute_pos(side)
if side in self.sides.keys()
self .sides[side] = Side(x, y, img, img_type)
else
self.corners[side] = Side(x, y, img, img_type)

compute_pos (self, side):
match side

case "L":
side_x, side_y = self.pos[0] - self.width//2, self
.pos [1]
case "R":
side_x, side_y = self.pos[0] + self.width//2, self
.pos [1]
case "T":
side_x, side_y = self.pos[0], self.pos[1] + self.
height//2
case "B":
side_x, side_y = self.pos[0], self.pos[1] - self.
height//2
case "TL":

side_x, side_y self .pos [0] - self.width//2, self
.pos[1] + self.height//2
case "TR":
side_x, side_y = self.pos[0] + self.width//2, self
.pos[1] + self.height//2
case "BL":
side_x, side_y = self.pos[0] - self.width//2, self
.pos[1] - self.height//2
case "BR":
side_x, side_y = self.pos[0] + self.width//2, self
.pos[1] - self.height//2

return side_x, side_y

add_room(self, side, room):
self.sides[side] = room

update_size (self, resize, new_resize, height):

self .width, self.height = help_fun.compute_current_size (
self .width, self.height, height, height, resize,
new_resize)

for side im ["L", "R", "T", "B"]:
x, y = self.compute_pos(side)
self .sides[side].pos = (x,y)
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def compute_current_size (self,
past_resize,

current_height,
new_width,
past_resize)),
new_width,
current_resize))
current_resize))
return new_width,

new_height =

new_height =

new_height

width,
current_resize):

int (width / (past_height//

int (height / (past_height//past_resize))
int (new_width * (current_height//
int (new_height * (current_height//

height,

G.5 Components: Sensor
class Sensor
def __init__(self, IP, Port, ID):
self .ip = IP
self .port = Port
self.id = ID
self.room = -1
self . .x = -1
self.y = -1
self .height = 0
self.angle = 0
self.distance = -1
def set_angle(self, side):
match side:
case "L":
self.angle = 0
case "TL":
self .angle = 45
case "T":
self.angle = 90
case "TR":
self.angle = 135
case "R":
self .angle = 180
case "BR":
self.angle = 225
case "B":
self.angle = 270
case "BL":
self .angle = 315
def update_pos(self, room, x_corner, y_corner):

self.room = room
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match self.angle:
case O:
X X_corner
y = y_corner
case 45:
x = round(x_corner + 0.12, 2)
y = round(y_corner - 0.16, 2)

case 90:
X = X_corner
y = y_cormner
case 135:
x = round(x_corner - 0.16, 2)
y = round(y_corner - 0.12, 2)
case 180:
X = X_corner
y = y_cormner
case 225:
x = round(x_corner - 0.16, 2)
y = round(y_cormner + 0.12, 2)
case 270:
X = X_corner
y = y_cormner
case 315:
x = round(x_corner + 0.16, 2)
y = round(y_corner + 0.12, 2)
self.x = x
self.y =y
print ("[SENSOR_" + str(self.id) + "] isgat,(" + str(self.x
) + ",u" + str(self.y) + ")yin, room number " + str(self

.room) + "_withjanangle of," + str(self.angle))

update_data(self, distance):
self.distance = distance

update_height (self, height):

print (" [SENSOR_" + str(self.id) + "]_,isyaty" + str(height)
+"m,from_ the ground")

self .height = height
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G.6

Components: Side

class Side:

def

__init__(self, x, y, img, img_type):
self.pos = (x,y)

self.img = img

self .type = img_type

G.7

CSV__saver

import
import
import
import
import
import
import

csv

threading

datetime

time

matplotlib.pyplot as plt
pandas as pd

numpy as np

class CSV_saver:

def

def

def

__init__(self):

plt.switch_backend (’Agg’)

date = datetime.datetime.now()

self.clock_updater_instantiated = False

self .sonar_pos_instantiated = False

self.sonar_dist_instantiated = False

self .kalman_pos_instantiated = False

self .timestamp = str(date.year) + "_" + str(date.month) +
"_" + str(date.day) + "_" + str(date.hour) + "_" + str(

date.minute)

save_clock(self, num, clock):
threading.Thread (target=self.csv_update_clock, args=(num,
clock), daemon=True).start ()

csv_update_clock(self, num, clock):
tmstp = datetime.datetime.now () .timestamp ()
with open("./data/clock_tick_" + self.timestamp + ".csv'",
"a") as csv_file:
fieldnames = ["timestamp", "num", "clock"]
csv_writer = csv.DictWriter(csv_file, fieldnames=
fieldnames)
row = {

"timestamp": tmstp,
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"num": num,
"clock": clock

}
csv_writer.writerow(row)
def save_robot_pos_sonar (self, x, y, angle, room):
threading.Thread (target=self.csv_update_pos_sonar, args=(x

,y,angle ,room), daemon=True).start ()

def csv_update_pos_sonar (self, x, y, angle, room):

tmstp = datetime.datetime.now () .timestamp ()
if not self.sonar_pos_instantiated:
self .sonar_pos_timestamp = tmstp
self . sonar_pos_instantiated = True
with open("./data/sonar_pos_" + self.timestamp + ".csv", "
a") as csv_file:
fieldnames = ["timestamp", "x", "y", "angle", "room"]
csv_writer = csv.DictWriter(csv_file, fieldnames=
fieldnames)
row = {
"timestamp": tmstp - self.sonar_pos_timestamp,
"x": ox,
"y,
"angle": angle,
"room": room
}

csv_writer.writerow(row)

def save_robot_pos_kalman(self, x, y, angle, room) :
threading.Thread (target=self.csv_update_pos_kalman, args=(
X,y,angle,room), daemon=True).start ()

def csv_update_pos_kalman(self, x, y, angle, room):
tmstp = datetime.datetime.now () .timestamp ()
if not self.kalman_pos_instantiated:
self .kalman_pos_timestamp = tmstp
self .kalman_pos_instantiated = True

n n

with open("./data/kalman_pos_ .csv",

"a") as csv_file:

+ self.timestamp +

fieldnames = ["timestamp", "x", "y", "angle", "room"

csv_writer = csv.DictWriter(csv_file, fieldnames=
fieldnames)

row = {
"timestamp": tmstp - self.kalman_pos_timestamp,
"X”: X,
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llle: y’
"angle": angle,
"room": room

}
csv_writer.writerow(row)

save_distance_sonar (self, name, distance):
threading.Thread (target=self.csv_update_distance_sonar,
args=(name, distance), daemon=True).start ()

csv_update_distance_sonar (self, name, distance):
tmstp = datetime.datetime.now().timestamp ()

with open("./data/sonar_dist_"
timestamp + ".csv", "a") as csv_file:

+ name + "_" + self.

fieldnames = ["timestamp", "dist"]
csv_writer = csv.DictWriter(csv_file, fieldnames=
fieldnames)
row = {
"timestamp": tmstp,
"dist": distance
}

csv_writer.writerow(row)

print_plots (self):
try
self.create_dist_plots ()
self.create_pos_kalman_plots ()
except:
print ("[CSV_SAVER] Error: something went_ wrong,
printing,the plots")

create_dist_plots(self):

df _clock = pd.read_csv(f"./data/clock_tick_{self.timestamp
}.csv", header=None, names=["timestamp", "num", "clock"

ID)
dfl1 = pd.read_csv(f"./data/sonar_dist_sensor_1_{self.
timestampl}.csv",header=None, names=["timestamp", "dist"

Iy
df2 = pd.read_csv(f"./data/sonar_dist_sensor_2_{self.
timestampl}.csv",header=None, names=["timestamp", "dist"

D
t0 = df_clock["timestamp"].iloc [0]

df _clock["timestamp"] -= t0
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dfi["timestamp"] -= tO
df2["timestamp"] -= tO

xt = df _clock["timestamp"]

x1 = dfi["timestamp"]

yl = dfi["dist"].astype(float) .round (4)
x2 = df2["timestamp"]

y2 = df2["dist"].astype(float) .round (4)

fig, ax = plt.subplots(figsize=(20, 10))
ax.plot(xl, y1, label="Measured distancesensor 1",

linewidth=1, marker=’.’)
ax.plot(x2, y2, label="Measured, distancesensor 2",
linewidth=1, marker=’.’)

ax.set_ylim ([0, 150])

ax.set_yticks(np.arange (0, 100, step=10))

ymin, ymax = ax.get_ylim()

ax.vlines(xt, ymin, ymax, linewidth=0.25, label="Clocky
tick", colors="red")

ax.set_title("Sonar_ Distance_ Measurements_ with_ ,Clock_ Ticks
Il)

ax.set_xlabel ("Time (s)")

ax.set_ylabel ("Ground distance (cm)")

ax.legend ()
ax.grid(True)

plt.savefig(f"./plots/dist_kalman_{self.timestampl}.png")

create_pos_kalman_plots(self):

pos_data = pd.read_csv(f"./data/kalman_pos_{self.timestamp
}.csv", header=None, names=["timestamp", "x", "y", "
angle", "room"])

x = pos_datal[’timestamp’]

x_pos = pos_datal[’x’].astype(float)

y_pos = pos_datal’y’].astype(float)

fig, (axl, ax2) = plt.subplots(2, 1, figsize=(20, 10),
constrained_layout=True)

axl.plot(x, x_pos, label=’Positiongon,x_axis’, linewidth
=2, marker=’.’)

axl.set_title(’Variation of the position of the robot over
Lutime?)

axl.set_ylabel (’Position_xaxis’)

axl.set_ylim([0,1])
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axl.legend ()
axl.grid(True)

ax2.plot (x, y_pos, label=’Positionyonyy_axis’, linewidth
=2, marker=’.")

ax2.set_xlabel (’Time’)

ax2.set_ylabel (’Position, Y axis’)

ax2.set_ylim ([0,1])

ax2.legend ()

ax2.grid(True)

plt.savefig(f’./plots/pos_kalman_{self.timestampl}.png’)

G.8 Server

import socket

import threading

from components.Sensor import Sensor

from components.Robot import Robot

from helping_package.csv_saver import CSV_saver
import time

class Server:

PORT = 5000
buffer = []
sensors = {}
room_edges = []
started = False

def __init__(self, IP, BRD_IP):

self .HOST = IP

self .BRD_IP = BRD_IP

self .robot = Robot ()

self .rcvServer = threading.Thread(target=self.rcv_server,
daemon=True)

self .rcvServer.start ()

self .pinger = threading.Thread(target=self.ping_server,
daemon=True)

self .pinger.start ()

self.csv_saver = CSV_saver ()
def ping_server(self): # Broadcasts a ping message every 3

seconds unttl the system ts started
while not self.started
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time.sleep (3)

message = "ping, :yservery, " + self.HOST + ",,, " + str
(self .PORT)

self .send (message, "brd")

def rcv_server(self): # Processes the messages received from
the different devices
with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as
server_socket:
server_socket.bind ((self .HOST, self.PORT))
print (£" [SERVER]  Listening,,for UDP_ packets on_ {self.
HOST}:{self.PORT}")

while True:
data, addr = server_socket.recvfrom(1024)
try
data = data.decode ()
data_split = data.split(",")

if data_split [0] == "Hello": # Received from a
device when it has discovered the sever
self .handle_hello(data_split, addr)

elif data_split [0] == "Robot_pos": # Received

from devices at each iteration of the
kalman measure (only saves robot wupdate)
self .update_robot_pos_kalman(data, addr)
elif data_split[0] == "Robot_sonar_pos": #
Recetved from devices at each iteration of
the kalman measure (only saves robot update
)
self .update_robot_pos_sonar (data, addr)
elif data_split[0] == "Ack": # Received from
devices after each configuration message
self .handle_ack (data)

elif data_split[0] == "Distance":
self.csv_saver.save_distance_sonar (

data_split[2], data_split[1])

elif data_split[0] == "Clock":
self.csv_saver.save_clock(data_split[1],

data_split [2])

else : # Default case
print (" [SERVER]  received strange data,: "
+ data)
except
pass

def handle_hello(self, data, addr):
# Processes the hello message recetved, creates new sensor
in the case of a sensor, updates robot otherwise
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# O@param data : the decoded data received (String)
# @param addr : the Ip address and Port assoctated with
the received message (List)

id = datal[1]
if id == "robot":
print (" [SERVER]  Received hello,from Robot on,(" + addr
[0l + ", " + str(addr[1]) + ")")
self .robot.update_adress (addr [0], addr[1])
self.send("Ack,_ server", "uni", "robot")
else
id = int (id)
self .sensors[id] = Sensor (addr [0], addr[1], id)
print (" [SERVER] ,Received hello from_ sensor_" + str(id)
+ "Lon, (" + str(addr[0]) + ",," + str(addr[1]) + "
)"

self .send("Ack,, server", "

uni", id)

def update_robot_pos_sonar(self, data, addr):
# Updates the robot position based on the message recetved
# @param data : the decoded data received (String)
# @param addr : the Ip address and Port assoctated with
the received message (List)

data_split = data.strip().split(",")
if addr [0] == self.robot.ip:
self.csv_saver.save_robot_pos_sonar(float(data_split
[1]1), float(data_split[2]), float(data_split[3]),
int (data_split [4]))

def update_robot_pos_kalman(self, data, addr):
# Updates the robot position based on the message recetved
# @param data : the decoded data received (String)
# @param addr : the Ip address and Port assoctated with
the received message (List)

data_split = data.strip().split(",")
if addr [0] == self.robot.ip:
self.csv_saver.save_robot_pos_kalman(float(data_split
[2]), float(data_split[3]), float(data_split[4]),
int (data_split [5]))
self .robot.update_pos(float (data_split[2]), float(
data_split [3]), float(data_split[4]), int(
data_split [5]))

def handle_ack(self, data):

# Processes the ack message, updates the ack list
# @param data : the decoded data received (String)
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def

def

data_split = data.split(",")
config_message = data_split[1]
id = data_split[2]

origin = data_split [3]

if origimn != "robot'":
if config_message == "Pos":
self .ack_pos.get(id) [int (origin)-1] = True
elif config_message == "Room_info":
self.ack_rooms.get(int(id)) [int(origin)-1] = True
elif config_message == "Add_Link":

self.ack_propag.get("sensor_"+origin) [int(id.split
("_")[1]1)-1]1 = True

else
self.ack_devices.get (id) [int(origin)-1] = True
else
if config_message == "Pos":
self .ack_pos.get(id) [len(self.sensors.keys())] =
True
elif config _message == "Room_info":
self.ack_rooms.get (int(id)) [len(self.sensors.keys
())] = True
else
self .ack_devices.get(id) [len(self.sensors.keys())]
= True

print (" [SERVER] ,Received Ack, " + config_message + " for, "
+ id + ",from," + origin)

send (self, message, type, id=None):

# Creates a sending server thread of the specified type
and passes arguments

# @param message: the message to be sent (String)

# O@param type: the way the message has to be sent, can be
"brd" for broadcast and "uni" for unicast (String)

# @param td: the identifier of the device to update (
String, Integer, None)

if message == "Exit'":
self.csv_saver.print_plots ()

if type == "brd":
threading.Thread (target=self.brd_server, args=(message
,), daemon=True).start ()
elif type == "uni
threading.Thread (target=self.uni_server, args=(message
, id), daemon=True) .start ()

brd_server (self, message):
# Sends a broadcast message
# @param message: the message to be sent (String)
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with socket.socket(socket.AF_INET, socket.SOCK_DGRAM) as
srv_socket:
srv_socket.setsockopt (socket.SOL_SOCKET, socket.
SO_BROADCAST, 1)

port = 9000
srv_socket.sendto(message.encode (), (self.BRD_IP, port
))
if message[:4] != "ping":
print (£" [SERVER]  Broadcasted to,({self .BRD_IP}, {
port}) : {messagel}")

def uni_server(self, message, id):
# Sends a unicast message to the specified device
# @param message: the message to be sent (String)
# @param id: the identifier of the device to update (
String, Integer)

with socket.socket (socket.AF_INET, socket.SOCK_DGRAM) as
srv_socket:
if id == "robot":
ip = self.robot.ip
port = self.robot.port
srv_socket.sendto(message.encode (), (ip, port))
print (" [SERVER] Sent to,Roboton, (" + str(ip) + ",
u" + str(port) + "),:," + str(message))
else
sensor = self.sensors.get(id)
ip = sensor.ip
port = sensor.port
srv_socket.sendto (message.encode (), (ip, port))
print (" [SERVER] Sent to," + str(semsor.id) + " on,
(" + str(ip) + ",u " + str(port) + "), :u" + str(
message))

def send_config(self): # Creates a worker_send_config thread
threading.Thread (target=self.worker_send_config, daemon=
True) .start ()

def worker_send_config(self): # Sends the whole config to all
the devices to setup the system
self.started = True
self .ack_devices = {}
self.ack_propag = {}
self.ack_pos = {}
self.ack_rooms = {}

for sensor in self.sensors.values ()
sensor_config_ok = self.send_sensor_infos (sensor)
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if sensor_config_ok:

room_config_ok = self.send_rooms_infos ()
else:

room_config_ok = False

if room_config_ok:
self.send_robot_info ()

time.sleep (1)

self.started = True
for i in range (4):
message = "Start," + self.HOST

self .send (message, "brd")
time.sleep (0.5)

else
self.send ("Exit", "brd")

def send_sensor_infos(self, sensor):

# Sends all the informations about a sensor to all the
devices

# @param sensor: the actual sensor from which we draw the
info (Sensor)

# Q@return a ack boolean <f the informations of this sensor
where successfully delivered to everyone, false
otherwise

# Init ack status

self.ack_devices["sensor_" + str(semsor.id)] = [False for
i in range(len(self.sensors.keys()) + 1)]

self.ack_devices["robot"] = [False for i in range(len(self
.sensors.keys()) + 1)]

self .ack_propag["sensor_"+str(sensor.id)] = [True for i in
range (len(self.sensors.keys())+1)]

self.ack_pos["sensor_" + str(sensor.id)] = [False for i in
range (len(self.sensors.keys()) + 1)]

self .ack_pos["robot"] = [False for i in range(len(self.

sensors.keys()) + 1)]
self.set_unknown_devices (sensor)

if sensor.x != -1
ack = False
LIMIT = 0
while (not ack) and (LIMIT < 10):
message = "Add_Device,:sensor_" + str(sensor.id)

+ ",,," + semsor.ip + ", " + str(semnsor.port)
for i in range(len(self.ack_devices["sensor_"+str(

sensor.id)]) -1):
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osensor = self.ack_devices["sensor_"+str(
sensor.id)][i]

if not osensor
self .send(message, "uni", i+1)

if not self.ack_devices["sensor_ "+str(sensor.id)][
len(self.sensors.keys())]:
self.send (message, "uni", "robot")
time.sleep (0.25)
message = "Posy" uiu" o+ str(
sensor.x) + ", " + str(semsor.y) + ", ," + str
(sensor.height) + ", " + str(sensor.angle) + "
Lu,u" + str(sensor.room)
for i in range(len(self.ack_pos["sensor_"+str(
sensor.id)]) -1):
osensor = self.ack_pos["sensor_"+str(sensor.id
Y1[1i]
if not osensor
self.send (message, "uni", i+1)

+ str(sensor.id) + "

if not self.ack_pos["sensor_"+str(sensor.id)][len(
self .sensors.keys())]:
self.send (message, "uni", "robot")

time.sleep (0.25)

#Propag config

for i in range(len(self.ack_propagl["sensor_" + str
(sensor.id)])-1):
is_acked = self.ack_propag["sensor_"+str(
sensor.id)][i]
osensor = self.sensors[i+1]
if not is_acked
message = "Add_Linky:,sensor_" + str(

osensor.id)+","+ osensor.ip + "," + str
(osensor.port)

self.send(message, "uni"

sensor.id)

time.sleep (0.25)

ack = self.check_ack("sensor_" + str(sensor.id), "
sensor"

LIMIT += 1

return ack
def send_robot_info(self): # Sends all the informations about
the robot to all the devices

if self.robot.ip != "0":
ack = False
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250 LIMIT = O

251 while (not ack) and (LIMIT < 10):

252 message = "Add_Devicey:yroboty,y" + self.robot.ip
+ ",,," + str(self.robot.port)

253 self .send(message, "brd")

254 time.sleep (0.5)

255 message = "Init_posy:," + str(self.robot.real_pos
[01) + ",,u" + str(self.robot.real_pos[1]) + ",
,u" + str(self.robot.angle) + ", " + str(self.
robot.room)

256 self.send (message, "brd")

257

258 ack = self.check_ack("robot", "sensor")

259 LIMIT +=1

260

261 def send_rooms_infos(self):

262

263 for room_idx in range(len(self.room_edges)):

264 self.ack_rooms[room_idx] = [False for i in range(len(

self .sensors.keys ())+1)]

265 ack = False

266

267 LIMIT = O

268 while (not ack) and (LIMIT < 10):

269 message = "Room_info," + str(room_idx)

270 message += "," + str(self.room_edges[room_idx
100l ol

271 message += "," + str(self.room_edges[room_idx
1001011

272 message += "," + str(self.room_edges[room_idx
1011001

273 message += "," + str(self.room_edges[room_idx
101101

274 self.send (message, "brd")

275 time.sleep (0.5)

276

277 ack = self.check_ack(room_idx, "room"

278 LIMIT += 1

279

280 if not ack:

281 return False

282 return True

283

284 def check_ack(self, id, type):

285 # Checks that all devices have acknowledged all the

informations about the current device

286 # @return True <f all devices acked, False otherwise

287

288 if type == "sensor":
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def

def

def

for i in range(len(self.sensors.keys())+1):
if not self.ack_devices.get(id) [i]:
return False
if not self.ack_pos.get(id) [i]:
return False
if id != "robot" and not self.ack_propag.get(id) [i
1:
return False
return True
elif type == "room":
for i in range(len(self.sensors.keys())+1):
if not self.ack_rooms.get(id) [i]:
return False
return True

set_unknown_devices (self, sensor):
for i in range(len(self.sensors.keys())):
sensor2 = self.sensors[i+1]
if (sensor2.room!=sensor.room):
self.ack_devices["sensor_"+str(sensor.id)][i] =

True
self.ack_pos["sensor_"+str(sensor.id)][i] = True
if (sensor2.room == sensor.room-1) or (sensor2.room ==

sensor.room+1) :
self.ack_propagl["sensor_"+str(sensor.id)][i] =
False

print (f"for sensor_{sensor.id}_ propag:,{self.ack_propagl"
sensor_"+str(sensor.id)]1}")

print (f"for_ sensor_{sensor.id} devices:_ {self.ack_devices|[
"sensor_"+str(sensor.id)]}")

print (f"for_ sensor_{sensor.id}_ pos: {self.ack_pos["sensor_
"+str (sensor.id)1}")

get_sensors (self):
# @return all the known sensors tds

return self.sensors.keys ()

update_sens(self, id, side, room, x, y):

# Updates the position of a semsor inm a Toom

# @param id: the id of the sensor (Integer)

# @param side: the side or corner in which the sensor has
been placed (String)

# @param rToom: the room in which the sensor has been
placed (Integer)

# @param z: the z-axts posttion of the sensor in the grid

(float)
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def

def

def

def

def

def

# @param y: the y-azis position of the sensor in the grid

(float)

sens = self.sensors.get(id)
sens.set_angle (side)
sens .update_pos (room, x, y)

update_sens_height (self, id, height):

# update the hetght of the sensor

# @param id: the <id of the sensor to modify (Integer)
# @param height: the height of the sensor (Float)

self .sensors.get (id) .update_height (height)
update_robot (self, real_pos, angle):

# Updates the robot position
# @param real_pos: the position of the robot on the grid (

Tuple)

# @param angle: the angle of the robot (0 <= Integer <=
360)

# @param room: the room in which the robot is placed (
Integer)

self .robot.update_pos(real_pos[0], real_pos[1l], angle,
self.determine_robot_room(real_pos[0], real_pos[1]))

add_edges (self, TLpos, BRpos):
self .room_edges.append ((TLpos, BRpos))

determine_robot_room(self, x, y):
for room_idx in range(len(self.room_edges)):
if self.is_in_x_range(x, room_idx) and self.
is_in_y_range(y, room_idx):
return room_idx
return -1

is_in_x_range(self, x, room_idx):
return x > self.room_edges[room_idx][0][0] and x < self.
room_edges [room_idx] [1] [0]

is_in_y_range (self, y, room_idx):
return y > self.room_edges[room_idx][0][1] and y < self.
room_edges [room_idx] [1][1]

G.8.1

Runner script
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#1/bin/bash
#Created with the help of ChatGPT

MAX_TRIES=10
COUNT=0

DEVICE_IP=$(ip route get 1.1.1.1 | awk ’{for(i=1;i<=NF;i++)_ ,if ($i
=="grc"),print ;$(i+1)}’)

BROADCAST_IP=$(ip -o -f inet addr show | awk ’/scopeyglobal/,{
print,$6}’ | head -n1)

while [ $COUNT -1t $MAX_TRIES ]; do
if [ $# -eq 1 ], then
FILENAME="$1"
python3 Controller.py "$DEVICE_IP" "$BROADCAST_IP" "
$FILENAME"
fi

if [ $# -1t 1 ]; then
python3 Controller.py "$DEVICE_IP" "$BROADCAST_IP"
fi

EXIT_CODE=$7

if [ $EXIT_CODE -eq O ]; then
echo "Controller.py_exited successfully."
exit O

else
COUNT=$ ((COUNT + 1))
echo "Controller.py,failed,(attempt $COUNT/$MAX_TRIES) .

Retrying,in ,0.5s..."

sleep 0.5

fi

done

echo "Controller.py,failed, $MAX_TRIES_ times. Exiting."
exit 1
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Appendix H

LilyGo Software

H.1 LilyGo Robot software

#include <SPI.h>
#include <LoRa.h>
#include <Arduino.h>
#include <Wire.h>
#include <WiFi.h>

#include "motor_engine.h"

#define BAND 433E6

#define CONFIG_MOSI 27
#define CONFIG_MISO 19
#define CONFIG_CLK 5
#define CONFIG_NSS 18
#define CONFIG_RST 23
#define CONFIG_DIOO 26

#define SDCARD_MOSI 15
#define SDCARD_MISO 2
#define SDCARD_SCLK 14
#define SDCARD_CS 13

#define I2C_SLAVE_ADDR 0x40

// trapezoidal speed command parametter for turning,
GRiSP for this part

#define max_turn_speed 80

#define turn_acc 400

const char* ssid = "RobotNet";
const char* password = "ouil23456";
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WiFiServer server (80);

float I2C_command[2] = {0.0, 0.0}; // value received from GRiSP
{wheels acceleration , turn speed}

float freq_lim [13] =
{300,200,175,150,125,100,90,80,70,60,50,40,30};

int size_test_freq = sizeof(freq_lim)/sizeof (freq_lim[0]);

int index_1lim = O0;

// time mesure variable
unsigned long t_GRiSP;
unsigned long t_LORA;
unsigned long t_test;
unsigned long t_ESP;

// freq and period variable
float dt_GRiSP = 10;

float freq_GRiSP = 200;
float dt_ESP = O0;

// control byte received

byte cmd = 0; // received from LoRa communication and transfered
to GRiSP

byte GRiSP_flags = 0; // Received from GRiSP

//control flag
bool new_cmd =false;
bool test = false;

bool disturb = false;
bool ext_end = true;

void setup() A
Serial.begin(115200) ;
setup_wifi();
setup_LoRa () ;
setup_I2C_slave () ;
setup_motor () ;

// time init
t_GRiSP = millis ();

t_LORA = t_GRiSP;
t_ESP = t_GRiSP;
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76| }
77
78
79| void loop () {

80 unsigned long new_t_ESP = millis();

si| dt_ESP = (new_t _ESP - t_ESP) / 1000.0;
s2f t_ESP = new_t ESP;

83 LoRa_receiver () ;

84 Event_handle () ;

85| delay(1);

86| }

87
ss| void setup_wifi (){

89 Serial.println (" [ROBOT]_ RobotAP_ setting upy...");
90 WiFi.softAP(ssid, password, 1, false, 8);

91
92 IPAddress IP = WiFi.softAPIP();

93 Serial.print (" [ROBOT]_ AP, IP_address :,");
94 Serial.println (IP);

95 server .begin() ;
96 Serial.println (" [ROBOT] _ RobotAP ready, !");
o7| }

98
99| void setup_LoRa (){

100 Serial .println (" [ROBOT]_ LoRaysetting upy...");

101 SPI.begin (CONFIG_CLK, CONFIG_MISO, CONFIG_MOSI, CONFIG_NSS);
102 LoRa.setPins (CONFIG_NSS, CONFIG_RST, CONFIG_DIOO);

103 if (!LoRa.begin(BAND)) {

104 Serial.println (" [ROBOT], Starting LoRa,failed!");
105 while (1);

106 }

107 Serial.println (" [ROBOT] LoRa Ready!");

108 }

109
110/ void setup_I2C_slave (){

111 // I2C Slave init, work with IRQ so no need to incorporate into
the main loop

112 Wire.begin(I2C_SLAVE_ADDR);

113 Wire.onReceive (GRiSP_receiver) ;

114 Wire.onRequest (GRiSP_sender) ;

115] }

116

117/ void setup_motor (){

118 // motor init, works on core n 2
119 engine_init ();

120 delay (1000) ;

121 set_speed (0, 0);

122 set_acceleration (0, 0);
123| }
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124

125 void GRiSP_receiver (int howMany) {

126 if ChowMany == 5){ // check if the packet match the expected

lenght

127 unsigned long new_t_GRiSP = millis();

128 dt_GRiSP = (new_t GRiSP - t_GRiSP) / 1000.0;

129 freq_GRiSP = freq_GRiSP * 0.99 + 1.0 / dt_GRiSP * 0.01;

130 t _GRiSP = new_t_GRiSP;

131

132 byte A;

133 byte B;

134 if (Wire.available()) {

135

136 // read and decode the wheel acceleration

137 A = Wire.read () ;

138 B = Wire.read() ;

139 I2C_command [0] = decoder (A, B);

140

141 // read and decode the differential turn speed

142 A = Wire.read () ;

143 B = Wire.read() ;

144 I2C_command [1] = decoder (A, B);

145

146 // read the flags

147 GRiSP_flags = Wire.read();

148 T

149

150 //set acceleration

151 if (!disturb && bitRead (GRiSP_flags, 4) && !'bitRead (GRiSP_flags
, 6))1

152 set_acceleration(I2C_command [0], I2C_command[0]) ;

153 }

154

155 // Free fall, null wheel speed

156 if (bitRead (GRiSP_flags, 6)){

157 set_acceleration (0, 0);

158 set_speed (0, 0);

159 }

160

161 // extension/retraction of the rising system

162 if (bitRead (GRiSP_flags, 5)){

163 ext_end = stand(-48,30.0);

164 } else {

165 ext_end = stand (0,30.0);

166 }

167

168 // wheel counter rotation activation and direction selection
during rise

169 int stand_speed_dir = O0;
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170 if ('bitRead (GRiSP_flags, 4)){ // if down

171 stand_speed_dir = (bitRead (GRiSP_flags, 3)) 7 -1 : 1;
172 i

173 raise_dir (stand_speed_dir); // -1 back, O null, 1 front
174 }

175
176 // Empty the stack

177 while (Wire.available (D)) {
178 Wire.read () ;

179 }

180| }

181
182| void GRiSP_sender () {

183 byte v[5];

184 float* speeds = get_speed();
185 encoder (v, speeds[0]);

186 encoder (v+2, speeds[2]);

187
188 // control byte send to GRiSP witth : finsish extension/
retraction flag and the command inputs

189 v[4] = (cmd & 127) | (is_ready () * 128);

190
191 //send

192 Wire.write((byte*) v, sizeof(v));
193| }

194
195 double decoder (byte X, byte Y) {
196 // decode half float to double
197
198 byte A = (X & 192);

99| if ((A & 64) == 0) A = A | 63; // fill the missing exponnent
bytes with the right value

2000 byte B = ((X << 2) & 252) | ((Y >> 6) & 3);

201 byte C = ((Y << 2) & 252);

202
203 byte vals[] = { 0x00, 0x00, 0x00, 0x00, 0x00, C, B, A };
204 double d = O0;

205 memcpy (&d, vals, 8);

206
207 return d;
208| }

210 void encoder (byte* res, double X){
211 // encode double to half float
212 byte vals[8];

213 memcpy (vals, &X,8);

214 byte A vals [7];

215 byte B = vals[6];

216 byte C vals [5];

210




217
218 res [0]
219 res [1]
220

(A&192) | ((B>>2) &63) ;
((B<<6)&192) | ((C>>2)&63) ;

221 return ;
202| }

223
224/ void LoRa_receiver (){

225 // receiption of LoRa packets
226 if (LoRa.parsePacket()) {

227 if (LoRa.available () >=2){
228 byte cmdl = LoRa.read();
229 byte cmd2 = LoRa.read();
230 if (cmdl == cmd2){

231 cmd = cmdl;

232 new_cmd = true;

233 }

234 Serial.println(cmdl);

235 Serial.println(cmd2);

236 }

237 while (LoRa.available()){
238 LoRa.read () ;

239 }

240 }

241| }

242
243 void Event_handle (){
244
245 //emergency stop

246 emergency (!bitRead(cmd, 7) || !bitRead (GRiSP_flags, 7));
247 if (!bitRead(cmd, 7) || !bitRead (GRiSP_flags, 7)){

248 set_acceleration (0, 0);

249 set_speed (0, 0);

250 }

251

252

253 // start test procedure

254 if (bitRead(cmd, 5)){

255 test = true;

256 t_test = millis ();

257 }

258 if (test){

259 //start the disturbance 500ms to let the record start
260 if(millis()> t_test + 500){

261 //disturb = true;

262 //set_acceleration (40, 40);

263 }

264 // the disturbance is only applied between t=500 and t=800
265 if(millis()> t_test + 800){
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disturb = false;
test = false;

}
set_turn(I2C_command [1]) ;

new_cmd =false;

H.2 LilyGo User software

#include <SPI.h>
#include <LoRa.h>
#include <Wire.h>

#define Pin 15
#define Buzz 13

#define LORA_PERIOD 433
#define BAND 433E6

#define CONFIG_MOSI 27
#define CONFIG_MISO 19
#define CONFIG_CLK 5
#define CONFIG_NSS 18
#define CONFIG_RST 23
#define CONFIG_DIOO 26

unsigned long t ;
int state = 0;

int prevstate = O0;
byte cmd;

void setup ()
{
// init serial
Serial.begin (115200) ;
while (!Serial);
// init LoRa
SPI.begin (CONFIG_CLK, CONFIG_MISO, CONFIG_MOSI, CONFIG_NSS);
LoRa.setPins (CONFIG_NSS, CONFIG_RST, CONFIG_DIOO);
if (!'LoRa.begin(BAND)) {
Serial.println("Starting, LoRa, failed!");
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35 while (1);
36 }

37
38 //init Pin

39 pinMode (Pin, OUTPUT);

40 pinMode (Pin, INPUT_PULLUP);
41 pinMode (Buzz, 0OUTPUT);

42 digitalWrite (Buzz, LOW);

43
44 prevstate = esp_sleep_get_wakeup_cause () !=ESP_SLEEP_WAKEUP_TIMER
&& 'digitalRead (Pin);

45 t = millis ();

16| }

47
48| int count = O0;
49
50| //main loop

51| void loop () {

52 Keyboard_input () ;
53 LoRA_sender () ;

54| }

56| void LoRA_sender () {
58 state = LOW;

60 if (state==HIGH) {
61 cmd = cmd & 127;
62 }

64 LoRa.beginPacket () ;

65 // send two packet for redundancy
66 LoRa.write(cmd) ;

67 LoRa.write(cmd) ;

68 LoRa.endPacket () ;

69 Serial.println(cmd, BIN);

70
71

72 //buzzer logic

73 if (state == HIGH && prevstate == LOW){
74 digitalWrite (Buzz, HIGH);

75 delay (100) ;

76 digitalWrite (Buzz, LOW);

77 }

78

79

80 if (state == LOW && prevstate == HIGH)({
81 digitalWrite (Buzz, HIGH);

82 delay (100) ;
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83
84
85
86
87
88
89
90
91
92
93
94
95
96
97

digitalWrite (Buzz, LOW);
}

prevstate = state;

3

void Keyboard_input (){
if (Serial.available() > 0) {
cmd = Serial.read();

3

while (Serial.available()){
Serial.read();

3
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