
The Essence of Scalability

March 6, 2024

Peter Van Roy
ICTEAM Institute

Université catholique de Louvain

1

Overview
� Context
◦ ΔQSD paradigm for system design
◦ Collaboration with PNSol Ltd

� System design for scalability
◦ What is scalability?
◦ Two great frauds in system design
◦ A simple system model

� Designing for overload
◦ Temporary overload
◦ Permanent overload

� Beyond inductive reasoning
� Conclusions

2

Context

3

Background
� My background (www.info.ucl.ac.be/~pvr/pldc.html)
◦ I am a computer scientist who is interested in programming

languages and distributed computing. Both of these topics
are stepping stones to the main problem that interests me,
namely how to design and understand large systems.

� PNSol (www.pnsol.com)
◦ Predictable Network Solutions Ltd (PNSol) specializes in

system performance of large-scale distributed systems
◦ This talk is dedicated to the people at PNSol, in particular

Neil Davies and Peter Thompson, who have spent their
lives slaving behind NDAs to make sure that the Internet
infrastructure keeps working

4

http://www.info.ucl.ac.be/~pvr/pldc.html
http://www.pnsol.com/

ΔQSD paradigm
� This talk is based on the ΔQSD paradigm for system design
◦ It has been developed over 30 years by a small group of people

around Predictable Network Solutions Ltd.
◦ It is widely used and has been validated in large industrial projects,

with large cumulative savings in project costs
◦ This talk is part of a collaborative project to make ΔQSD available

to the wider system design community

� ΔQSD targets systems with many independent users where
performance and reliability are important
◦ ΔQSD targets systems with large flows of data items that are

subject to unexpected overload situations
◦ Examples are large-scale communications networks, large-scale

client/servers, cloud analytics platforms, distributed sensor
networks, and cryptocurrency platforms

◦ ΔQSD is a stochastic and compositional approach for system
design that can predict performance (latency and throughput) and
feasibility at high system load during the design pcoess

5

System design for
scalability

6

What is scalability?
� A system is scalable if it is able to handle growing amounts of work

in an acceptable manner
◦ Desired system properties (such as performance and reliability) are

“acceptable” functions of the system size n

� One way to achieve scalability is to add resources to the system in
an appropriate manner to achieve the desired properties as the
amount of work grows
◦ Aggregate performance can increase by using parallel computing
◦ Reliability can remain high by using redundancy

� Achieving scalability becomes more difficult as scale increases
◦ The system must be able to handle increasing stress
◦ New and unexpected problems appear at large scales
◦ As the Internet grows, scalability continues to be an important issue

7

Exponential growth of ICT
infrastructure

� Exponential growth of ICT (Information and Communications Technology)
infrastructure, starting with the Internet, is the motor for scalability

� The Internet has been growing exponentially since its conception in 1970
� Nowadays, the main growth is concentrated at the edge

David Bol,
RISC-V (Paris),
Oct. 1-3, 2019

8

To boldly go where no system has
gone before…
� Scalable systems must support parallel execution for performance

and redundancy for fault tolerance
◦ These are necessary conditions, but they are not sufficient
◦ A scalable system, simply because it is scalable, will often be pushed

to the edge, beyond its capacity to do work
� Scalable systems must therefore support overload
◦ Handling overload is essential, yet it is rarely discussed
◦ We will see that there are two fundamentally different kinds of

overload: temporary overload and permanent overload
� How can we design for overload?
◦ The two main tools, induction and probability, lose most of their power
◦ We must use principles that are independent of induction
◦ Experience shows that when a system goes beyond what has been

done before, new problems and new behaviors appear

9

The two great frauds

10

� There are two great frauds that must be exposed!

� Systems obey inductive reasoning – false!
◦ Past experience is a bad guide for future systems,

especially if the future system is going beyond the past one
⇒ Black swans

� Systems obey probability distributions – false!
◦ Probability distributions are introduced to simplify analysis,

but they often do not exist in reality
◦ Assuming that a probability distribution exists is a very strong

assumption (frequency limit exists) and is very probably wrong
⇒ Dijkstra’s demon

Two great frauds in system design

11

Dijkstra’s demon
� Dijkstra’s demon continues to haunt computer systems
◦ Unlike Maxwell’s demon, it cannot be exorcised

� Consider the guarded command (generalized if statement):

 if B1 → S1 [] B2 → S2 [] B3 → S3 [] . . . [] Bn → Sn fi

� Each guard Bi is a boolean condition and Si is a statement
◦ Select any true guard and execute its statement
◦ This is a nondeterministic choice!

� What can we assume about the selection – fairness? No!
 “The most effective way out is to assume the UM [Unbounded
 Machine] not equipped with an unbiased coin, but with a totally
 erratic daemon”
 – A discipline of programming (Edsger Dijkstra, 1976)

� Do not use probability to prove correctness
◦ All paths must be verified, even extremely rare ones
◦ Be very wary about using probability!

� It can sometimes be used when combining independent events
12

Black swans
� Systems are designed by relying on induction
◦ However, induction often has a built-in limit and fails beyond it
◦ Year 2000 Bug: it was “far away” but it arrived (I was there!)
◦ Dinosaurs and banks: “too big to fail” but they fail

� In computer systems this is both ubiquitous and hidden
◦ All systems have finite resource limits (memory, speed) that are

far away in “normal usage” but reached when system is stressed
◦ Typically, the system will fail in exactly the case where it is

needed most (“Red Wedding” situation)

� Black swan: an unexpected event that is obvious in hindsight
◦ Large systems must be designed to survive unexpected events
◦ See The Black Swan (Nassim Nicholas Taleb, 2010)

� We will see how to design systems to survive black swans

13

System model

14

A simple system model
� For this talk we will define a simple system model
◦ A model simple enough to analyze easily and complex

enough to correspond to reality
◦ We have used many system models in the past, but for

this talk a simple model gives the correct intuition

� A system is a component from queueing theory
◦ We assume input consists of many independent tasks,

which allows us to use probability theory for the analysis

� Note that ΔQSD uses a more general model
◦ Outcome diagram: a directed graph that gives causal

relationships between a system’s basic operations
� Outcome diagrams allow precise computation of system feasibility and

performance at high load conditions including when there is coupling
(dependencies or shared resources), but we do not need that precision

� If you want to understand more, we recommend looking at ΔQSD

15

A system as a component

� We will model our system as a simple component
◦ The component has a buffer (queue) and a server

� A typical component has four parameters of interest
Offered load a : arrival rate of messages (tasks)
Buffer size k : number of messages stored inside
Delay d : time delay between input and output message
Failure rate f : percentage of messages dropped

� Delay and failure are function of load and buffer size
16

C
buffer size

(input)

delay & failure
(outputs)

min mout
offered load

(input)

Inputs

Outputs

A component as M/M/1/K queue

� We model a component as an M/M/1/K queue
◦ M: arriving messages have Exponential distribution with rate λ
◦ M: service time has Exponential distribution with rate μ
◦ 1: one message can be served at a time
◦ K: total buffer size is k (buffer size = queue size k-1 + server size 1)

� Offered load a = λ/μ (arrival rate / service rate, normalized arrival rate)
� The two knobs we control are offered load a and buffer size k
◦ When the buffer is full, new arrivals are dropped (failure)

17

Queue (size k-1 max) Server (size 1 max)

Arrival rate λ,
time τ=1/λ

Service time s,
Service rate μ, E[s] = 1/μ,
Ns messages in steady state ≤ 1

Queue time q,
Nq messages in steady state

Temporary overload

18

Designing for overload
� Your system is designed for a maximum load
◦ As a prudent designer, you overdimension the system
◦ This does not solve the problem of overload!
◦ There will always be overload, so you must design for it!

� In fact, if you overdimension, the problem can be worse since
users will assume the system is much more capable than it is

� The question is then: how to design your system
to be predictable when overload happens

� There are two cases that can occur:
◦ Temporary overloads: system must react in a reasonable

way (discussed in this section)
◦ Permanent (long-lasting or repeated) overloads: this is a

timescale issue and must be handed to the next level
(discussed in the next section)

19

Capacity races
� Your system suffers from temporary overloads
◦ Solve it by increasing system capacity, a no-brainer, right?
◦ Some big companies, who will remain unnamed, solve it by multiplying

capacity by 2. With k levels of management, this gives a factor of 2k
overdimensioning. This does not solve the problem, but it may push its
occurrence beyond where one can identify who is responsible.

� Surprise! This does not solve the problem.
◦ When system capacity increases, users become more demanding.

Users who never used video suddenly decide to use video. There is
a large pent-up reservoir of demand.

◦ It is like drug addiction. Increasing dosage gives temporary relief but
does not solve the problem.
� It actually makes the problem worse in the long term

� So what is the solution?
◦ The solution is to design for temporary overload
◦ How is it done?

20

Design for temporary overload
� Three key design rules:

1. When overloaded, the system may
behave badly but it must never break

� When the overload goes away,
the system goes back to normal

� The system should be “ballistic”:
be predictable (albeit bad) in open loop

2. When overloaded, the system must provide
some guaranteed minimum functionality

� For example, high priority packets will pass
3. When overloaded, the system is still

accessible to management
� There is a management interface where the

behavior is observable and controllable

21

Effect of temporary overload
� Low load (a<0.8)
◦ Component has enough power to service all messages
◦ An underloaded component behaves very well

� High load (a≥0.8)
◦ Component is overloaded and will drop some messages
◦ When a ≈ 1 (starts around 0.8) things quickly get worse!
◦ When a ≫ 1, failure rate tends to 100%, delay increases to k

� Switchover occurs between a=0.5 and a=1
◦ As load increases beyond 0.5, the system quickly gets very bad
◦ A temporary overload gives a long-lasting increase in delay
◦ Why is that?

22

Long-lasting increase in delay

� Measured downstream packet delays for mobile telephony
� We see that temporary overload causes buffers to fill up quickly
◦ But emptying the buffer is much slower because of service time

� Large buffer size worsens the problem
23

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 590 591 592 593 594 595 596 597 598 599 600

Ob
se

rve
d D

ela
y B

etw
ee

n E
nd

 P
oin

ts
(s)

Experiment Run Time (s)

C->B delay

Buffer fills quickly Buffer empties slowly

Mobile communication network
downstream packet flow from ISP
control point to local control point

Industrial case study from PNSol
Diagnostic of large telecom network

Tweaking load and buffer size
� The two main knobs we control are a and k
� Changing offered load a
◦ When a approaches 1, the exponential distribution of interarrival

times causes “bunches” of tasks to arrive which causes more and
more temporary overloads, increasing both failure and delay

◦ Decreasing a is the only way to reduce both failure and delay
◦ During normal operation, a should be well below 1

� Changing buffer size k
◦ Buffer size affects the trade-off of failure rate versus delay
◦ Small buffer: increases failure rate and reduces delay

� Typical scenarios: interactive video, gaming

◦ Large buffer: reduces failure rate and increases delay
� Typical scenarios: file download, data transmission

24

Jumping off a cliff (1)
� Let’s take a closer look at what happens on overload
◦ Main question: can we predict what will happen?
◦ Let us look closer at our trusty M/M/1/K queue

� Maximum fluctuations happen at the cliff edge
◦ Applied load a is normalized to 1 (offered load = service time)
◦ Fluctuations highest when a ≈ 1
◦ System will be wild at the cliff boundary

� Strangely, the system is more stable when massively
overloaded than when slightly overloaded
◦ When a≫1, system has stable behavior
◦ Output is constant (1), packet loss (a–1) is decided at entry

25

Jumping off a cliff (2)

26

Low load (a<<1): stable system
• Superposition principle holds, no loss
• Packet latency is low and predictable Critical load (0.5<a<2): large fluctuations

• Packet latency is unpredictable
• However, if a<1 loss rate remains low 1/(k+1)

High load (a>>1): stable system
• Behavior independent of applied load
• High loss rate (a-1)/a, constant output
• Packet latency is high and predictable,

packet loss decision made at entry

Theoretical analysis

� We show cumulative distribution function (CDF) of system delay
� Theoretical analysis based on M/M/1/K queue
◦ Offered load a (normalized to 1), buffer size k, service time s 27

delay
ks

0

1

0

(1-a)⋅ak → 0
as load
decreases

delay
ks

0

1

0

delay
ks

0

1

0

1/(k+1)

(a-1)/a →1

Delay small, tends to 0
(failure tends to 0)

s

s

s

Delay large, tends to k
(failure tends to 1)

Low load
(a<1)

At the edge
(a=1)

High load
(a>1)

failure rate

failure rate

failure rate

as load
increases

Delay can have any value from 0 to k
(delay fluctuates wildly)

Throughput-latency diagram
� We show the behavior of a

well-designed system under
overload conditions
◦ You can compare this to the CDF

delay functions of the previous slide

� We graph system performance
as function of offered load
(normalized to 1)
◦ At low load, the system has linear

behavior (tasks are independent, i.e.
superposition principle holds)

◦ At medium load, the system starts
behaving nonlinearly (resource
conflicts, increased fluctuations)

◦ At high load, the system spends time
rejecting tasks, which causes
performance to decrease for
accepted tasks (see graph), however
they have stable behavior.

28

Throughput

Latency

1

2

4

0.5
0.25 0.35

0.71

1.42

2.83

Low load

High load

Medium load

Example: AXD301 ATM switch

� The AXD 301 is a general-purpose high-performance ATM switch from Ericsson
� Throughput drops linearly when overloaded
◦ 95% throughput at 150% load, descending to 40% throughput at 1000% sustained load

� AXD 301 release 3.2 has 1MLOC Erlang, 900KLOC C/C++, 13KLOC Java
◦ Erlang/OTP at that time had 240KLOC Erlang, 460KLOC C/C++, 15KLOC Java

From Ulf Wiger, Four-fold Increase
in Productivity and Quality, 2001.

29

Permanent overload

30

Permanent overload
� If your system suffers overload too often (repeated or long-

lasting), we say that it has a permanent overload
◦ Permanent overload is generally handled by adding resources to

the system, but this is never a permanent solution!
� Multilevel system
◦ Permanent overload is always possible, so there must be active

mechanisms outside the system: a hierarchy of independent
observers where each observer manages the hazards that are
not managed at a lower level

◦ The bottom level is the base system that we saw before
◦ Each new level of hazard will have its own timescale

� “Mitigate or propagate”
◦ It is important to know when to hand over control to a higher level

� Erlang supports this design approach
◦ But it is difficult to keep the levels truly independent

31

Original system

� Our starting point is a system that satisfies a QTA
◦ The QTA (Quantitative Timeliness Agreement) specifies what the

base system does and its limits
◦ In the previous section we saw how this system behaves under

temporary overload
� Under temporary overload, the QTA may no longer be satisfied
◦ The system no longer provides its contractual service to its users
◦ Is the temporary overload actually a permanent overload?

� Multilevel design targets this situation
32

Original system
(satisfies QTA)

Lowest level in multilevel system

� The original system becomes the lowest level in a multilevel system
◦ To assume its new role, it must satisfy several new properties

� Management ability:
◦ For breach detection, it must be extended with real-time observation points
◦ For resuming operation, it must be extended with reconfiguration and restart

� QTA1 properties: (used to minimize breaches)
◦ When System 1 is overloaded, it may behave badly but it should not “break”, i.e., if the

overload disappears the system recovers
◦ When System 1 is overloaded, it provides a guaranteed minimum functionality
◦ These properties are only possible if System 1 is not physically damaged; in the

contrary situation control passes directly to a higher level
33

System 1
(satisfies QTA1)

Breach
detection

Resume
operation

QTA1 obeys two rules

Multilevel system

� During normal operation, System 1
does the work
◦ The other systems monitor this but

normally do not intervene
◦ Upon QTA1 breach, System 2 is notified

� System 2 has several options:
◦ Take over from System 1, temporarily

or permanently
◦ Reconfigure System 1 and then

resume it
◦ Replace System 1 by another system

and then resume it
� If System 2 cannot fix the problem

then QTA2 is breached
◦ System 3 is notified and handles the

problem at a higher level

34

System 1 (base system)
(satisfies QTA1)

System 3
(satisfies QTA3)

System 2
(satisfies QTA2)

… …More levels (if needed)

QTA1
breach

QTA2
breach

Resume

Resume

Levels must be independent

� Leonid Rogozov was a Soviet surgeon in Antarctica (1960-61)
◦ He developed appendicitis during his stay and, since he was the only surgeon, did

his own appendectomy. He was awake and performed local anesthesia of the
abdominal wall. He used a mirror to observe his insides and instructed assistants (a
driver and a meteorologist) to provide instruments. Despite general weakness and
nausea, the operation was complete in two hours. He resumed duties in two weeks.

� Needless to say this is not recommended!
◦ The system that treats the fault must not be the same as the faulty system
◦ Ideally, independence must be complete. The best existing system for this is Erlang.

35

Leonid Rogozov lying down talking to
his friend Yuri Vereschagin at
Novolazarevskaya Station
– BBC World Service, 5 May 2015

Erlang’s practical realization
� Erlang/OTP is a development platform for robust networked

applications that largely supports the multilevel approach
� Primitive concepts and operations
◦ Fine-grain concurrency
◦ Processes share no state (mostly independent)
◦ Processes are fail-fast (do not repair themselves)
◦ Process crashes send notifications (fault detection)
◦ Modules can have two code versions (for hot code update)

� High-level libraries
◦ Hot code update for applications that must never go down
◦ Supervisor trees for fault handling (but not fully independent!)
◦ Behaviors (libraries) simplify application development
◦ Support for graceful degradation on overload

36

Supermarket example

� To illustrate the approach we design a supermarket
◦ Customers enter the supermarket, collect their merchandise,

and queue up at an open cash register
� QTA1 = “less than 5 customers are in line”
◦ What happens when there are too many customers in a line?
◦ What do the next levels look like?

37

Entrance

Exit

Cash registers

Supermarket Queue

Supermarket multilevel system

� Three levels of operation
◦ QTA1: normal operation of the

supermarket with customers
coming and going

◦ QTA2: local reconfiguration of the
supermarket recovers QTA1

◦ QTA3: global reconfiguration of
supermarket chain recovers QTA2;
new resources are allocated here

� Each level “escalates” the
solution
◦ Each level happens at a different

timescale
� Fire alarm is an emergency

solution with low probability

38

QTA1
“longest line < 5 customers”

⇋
QTA1
breach

QTA1
breach

Add cashier

Open self-service

Open bar

Set off fire alarm!

Resume

QTA2
“QTA1 violations less
than 50% of the time”

QTA2
breach

Resume

QTA2
breach

Om

Study
group

⇋
New store
…

…

…

QTA3
“QTA2 violations
are being solved”

Supermarket

Human respiratory system

� The human respiratory
system is a multilevel system
◦ Designed and debugged by

billions of years of evolution
◦ This diagram summarizes a

precise medical description
(Wikipedia entry “Drowning”)

� Conscious control is a
powerful problem solver but
it must be used correctly
◦ Breathing reflex can be controlled

without conscious attention to
details of muscle movement

◦ Falling unconscious provides
protection against instability

� Each level has its own
timescale

39

Breathing
apparatus

Fail-safe

Conscious
control

Other levels (long-term
planning, society)

• Trigger breathing reflex
when CO2 reaches threshold

• Trigger laryngospasm when
obstruction in airways (quick
temporary action)

• Fall unconscious when
O2 falls to threshold

• This reestablishes the
breathing reflex

• Override breathing reflex
to plan lifesaving actions

• Holding your breath will
lead either to breath-hold
threshold or O2 threshold

Mitigate or propagate?
� Operation of each level
◦ Each level has its own QTA
◦ QTA breach detection activates the next level

� When does operation move to the next level?
◦ Each level is designed to mitigate by default. The three

system rules make this possible. But if this becomes too
complex (for example, because of interactions between the
mitigation strategies), then propagate to the next level.
◦ A second criterion is the timescale: propagate if solving the

problem requires a different timescale (for example, it
needs reconfiguration or elasticity, or a human in the loop)

40

Breach detection

� Base system does continuous measurement of QTA1 divergence
◦ Quantified hazard, by comparison of QTA1 and delivered operations

� When the divergence goes above a critical value, the violation
flips and a message is sent to the next level

� Hysteresis is used to avoid oscillations at the boundary
◦ This can happen when the divergence measure is noisy

41

QTA1 divergence measure
(raw time function)

QTA1 violation
(true or false)

false

true

violation

divergence

divergence
increases

divergence
decreases

Correlations

Base system
Guaranteed minimum functionality

Level 3
System reconfigure (hours to days)

Level 2
Task reconfigure (seconds)

Level 4
System modification (up to years)

Problems due to internal correlations
(unexpected interactions between subsystems)
(planned system upgrade at midnight)

Problems due to external correlations
(extreme user behavior or environment)
(natural catastrophe overloads phone system)

The most serious performance hazards are correlations: unexpected
interactions between different parts of the system and its environment

42

Probabilistic assumptions break
down (independent exponential
distributions cannot be added)

Actions at each timescale
� Base system is designed to obey two rules:

1. When overloaded, the system may behave badly but it must never
break (“weather the storm”)

� If the load fluctuation is temporary, this may be sufficient

2. When overloaded, the system must provide some guaranteed
minimum functionality (for example, high priority packets will pass)

� Task level: change behavior of primitive tasks (seconds)
◦ Drop nonessential traffic; stop admitting new tasks; kick out tasks

already in progress
� Configuration level: reconfigure the system (up to days)
◦ Depending on timescale: admission control, cold standbys, data

center elasticity, software rejuvenation, put human in the loop
� Modification level: permanent system change (days to years)
◦ One month: add new equipment
◦ One year: system redesign, build new data center
◦ Longer than one year: fire, forest, flood, nuclear accident, Carrington event,

asteroid impact, supervolcano eruption

43

Beyond inductive reasoning
(some poetic reflections)

44

Beyond inductive reasoning
� At each new scale, new phenomena appear …

 Sam Spade: “Ten thousand? We were talking about a lot more money than this.”
Kasper Gutman: “Yes, sir, we were, but this is genuine coin of the realm. With a
dollar of this, you can buy ten dollars of talk.”

 – The Maltese Falcon (Dashiell Hammett, 1941)

� This seems to be a basic law of nature in all areas
◦ We see this every day in any kind of system that can get big
◦ Science and engineering are continually confronted with it

� Computing systems are the most complex man-made systems

45

� This amazing sight was
never seen by humans until
spaceflight was invented

� But it has always existed!
◦ Nature introduces new

ideas at each new scale:
new beauty, new science

◦ Natural intelligence and
natural creativity far outstrip
all human activity

◦ It is our destiny to strive to
understand nature

� Goethe explains it well…

46

Alps viewed from space

… imagine a green plant shooting up
from its root, thrusting forth strong green
leaves from the sides of its sturdy stem,
and at last terminating in a flower. The
flower is unexpected and startling, but
come it must – nay, the whole foliage has
existed only for the sake of that flower,
and would be worthless without it.

– from “Conversations of Goethe with Johann
 Peter Eckermann” (1930 translation)

Goethe’s flower

47

Explaining Goethe’s flower
� A scalable system is always moving toward something new
◦ A well-designed system will enter terra incognita and experience

new problems and new behaviors
� It may jump off a cliff, travel to the moon, or make a flower

◦ Our goal is to make sure it behaves reasonably!
� We do not know exactly what it will do, but we can reduce the chance

that something bad happens

� System designers are like gardeners planting a flower
◦ We cannot know how the flower will grow, but we can maximize

the chance of a good outcome
� A large rose bush needs to be fertilized and trimmed as it grows

◦ A rose bush can become enormously large
� Thousands of roses on one plant, beautiful!
� Fragile stems become thick wooden trunks

48

Conclusions

49

Conclusions
� Scalability is a multifaceted problem
◦ Achieving it is much more than just adding resources
◦ Achieving it becomes more difficult as scale increases

� Traditional techniques (induction, probability) lose their power
� New, unexpected phenomena appear at each new scale

◦ ICT infrastructure is still growing exponentially, requiring scalability
� Temporary overload
◦ We give three design principles for temporary overload
◦ Based on a simple system model, we show what can be expected

� Permanent overload
◦ The system consists of a hierarchy of independent observers, where

each level handles hazards that cannot be handled at a lower one
◦ Each level has its own timescale
◦ External correlations are the most difficult to handle

� Collaboration with PNSol
◦ This work is part of the dissemination of ΔQSD
◦ I am giving a tutorial on ΔQSD at ICPE 2024, London, May 7, 2024

50

