
Available at: http://hdl.handle.net/2078.1/thesis:48907 [Downloaded 2024/08/19 at 10:29:03]

"Dynamic balancing in the real world with GRiSP"

Goens, François ; Ponsard, Cédric

ABSTRACT

Unstable systems are present in many engineering domains, such as industrial plants, energy production,
aeronautics, transportation and medical. Such systems are really challenging to control in order to achieve
specific missions, such as controlling complex chemical processes, putting a satellite into orbit, restarting a
human heart, or even deploying legged or self-balancing robots. It has been, and still is, at the heart of many
innovations. The objective of this master thesis is to control an unstable system using a GRiSP board. This
compact circuit board features a wide range of ports and connectivity while running under Erlang, a multi-
paradigm language that offers a number of features of great interest in the world of control. This master
thesis builds on top of the Hera framework developed over several past master theses to enable the use
of Kalman filter-based sensor fusion, a very powerful tool for measurement enhancement. As a concrete,
yet representative and generalisable use case, a real-world unstable system was selected and built: the
two-wheeled self-balancing robot. After designing such a device to be compatible with GRiSP, a control
strategy was established to make it dynamically balanced. The software was then created and optimised to
accommodate this theoretical control loop and the various associated sub-components. A Kalman filter, fed
by multiple sensors, was implemented, along with a simpler complementary filter, allowing for performance
comparison. Additional features that make this robot stand out are its lifting mechanism and the possibility
of ...

CITE THIS VERSION

Goens, François ; Ponsard, Cédric. Dynamic balancing in the real world with GRiSP. Ecole polytechnique
de Louvain, Université catholique de Louvain, 2024. Prom. : Van Roy, Peter. http://hdl.handle.net/2078.1/
thesis:48907

Le répertoire DIAL.mem est destiné à l'archivage
et à la diffusion des mémoires rédigés par les
étudiants de l'UCLouvain. Toute utilisation de ce
document à des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage à
respecter les droits d'auteur liés à ce document,
notamment le droit à l'intégrité de l'oeuvre et le
droit à la paternité. La politique complète de droit
d'auteur est disponible sur la page Copyright
policy

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is
available at Copyright policy

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

École polytechnique de Louvain

Dynamic balancing in the real
world with GRiSP

Two-wheeled self-balancing robot with Hera

Authors: François GOENS, Cédric PONSARD
Supervisor: Peter VAN ROY
Readers: Benoît HERMAN, Peer STRITZINGER
Academic year 2023–2024
Master [120] in Electro-mechanical Engineering

Abstract

Unstable systems are present in many engineering domains, such as industrial plants,
energy production, aeronautics, transportation and medical. Such systems are really
challenging to control in order to achieve specific missions, such as controlling complex
chemical processes, putting a satellite into orbit, restarting a human heart, or even
deploying legged or self-balancing robots. It has been, and still is, at the heart of many
innovations.

The objective of this master thesis is to control an unstable system using a GRiSP
board. This compact circuit board features a wide range of ports and connectivity
while running under Erlang, a multi-paradigm language that offers a number of features
of great interest in the world of control. This master thesis builds on top of the Hera
framework developed over several past master theses to enable the use of Kalman
filter-based sensor fusion, a very powerful tool for measurement enhancement.

As a concrete, yet representative and generalisable use case, a real-world unstable
system was selected and built: the two-wheeled self-balancing robot. After designing
such a device to be compatible with GRiSP, a control strategy was established to make
it dynamically balanced. The software was then created and optimised to accommodate
this theoretical control loop and the various associated sub-components. A Kalman
filter, fed by multiple sensors, was implemented, along with a simpler complementary
filter, allowing for performance comparison. Additional features that make this robot
stand out are its lifting mechanism and the possibility of being remotely controlled.
This system is multilevel with two levels: an outer executive loop deciding how the
robot moves around, and an inner stability loop ensuring stability.

This results in the creation of a totally autonomous robot capable of positioning itself in
its balancing state. This system is very powerful and reliable. It is able to move agilely
while withstanding most external disturbances that were experimentally characterised
and compared with other solutions. The whole architecture supports the development
of similar systems in various fields, such as robotics, automation or IoT, through the
reuse and adaptation of parts like the outer state machine loop or the inner control loop.
It is also well documented and comes with a set of development and debugging tools.

i

Acknowledgements

Many people helped us to achieve this master thesis and without them it would probably
not have been possible, so we would like to thank them, in particular:

Our families and friends for their unconditional support throughout our studies and
particularly during the completion of our master thesis.

Nicolas Isenguerre for his collaboration on the common part of our master thesis.
As well as the other students in the workspace, such as Zoé, Pauline, Marion
and Camille, for their advice and support, as well as for the good times we had
together.

Peter Van Roy, our supervisor, for his enthusiasm, interest and invaluable advice
throughout the master thesis.

Peer Stritzinger and his team, who provided technical support on GRiSP and
Erlang. Their advice and their vision of the future of our work helped to guide us
in the realisation of our project.

All the members of the CREDEM platform, in particular Simon De Jaeger who
helped us with the prototyping of our system.

Gianluca Bianchin and Guillaume Fontaine for giving us access to the linear
automation course lab to carry out experiments.

Vanessa Maons for taking care of our administrative files and providing us access
to an openspace, the cleaning team for keeping this space clean throughout the
year.

More generally, we would like to thank the education provided by the EPL, most
of whose course have been useful during the realisation of this master thesis. As well as
to all people directly or indirectly linked to the realization of this work.

ii

AI use disclaimer

No LLM or generative AI was employed in this master thesis, with the exception of the
graphical interface in Python for command display.

Translation and grammar correcting tools using non-generative AI, namely DeepL and
QuillBot, were used to improve the level of English of the text.

iii

Acronyms

AWGN Additive White Gaussian Noise

BIBO Bounded-Input Bounded-Output

CAD Computer-Aided Design

CG Center of Gravity

DIY Do It Yourself

DoF Degree of Freedom

ESC Electronic Stability Control

ETS Erlang Term Storage

FDM Fused Deposition Modelling

FSM Finite-State Machine

GPIO General Purpose Input Output

I2C Inter-Integrated Circuit

IIR Infinite Impulse Response

IMU Inertial Measurement Unit

IoT Internet of Things

JTAG Joint Test Action Group

LQR Linear-quadratic regulator

NIF Native Implemented Function

OLED Organic Light-Emitting Diode

OS Operating System

OTP Open Telecom Platform

PID Proportional-Integral-Derivative

Pmod Peripheral module

ROS Robot Operating System

ROSiE Robot Operating System in Erlang

RTEMS Real-Time Executive for Multi-
processor Systems

SPI Serial Peripheral Interface

UART Universal Asynchronous Receiver-
Transmitter

iv

Contents

Introduction 1

1 Background 4
1.1 GRiSP board . 4
1.2 Erlang programming language . 5
1.3 Hera framework . 6
1.4 Self balancing devices . 7
1.5 Two-wheeled self-balancing devices . 8
1.6 Control strategies . 8
1.7 Filters . 9

1.7.1 Complementary filter . 9
1.7.2 Kalman filter . 10
1.7.3 High-pass filter . 12

I Design 13

2 Overall design 14
2.1 Objectives specification . 14

2.1.1 Application selection . 14
2.1.2 Objectives and constraints . 15

2.2 Overall system diagram . 15

3 Physical device 18
3.1 Device design . 18

3.1.1 Actuation . 18
3.1.2 Electrical design . 19
3.1.3 Mechanical design - two wheeled robot with lifting mechanism . 21

3.2 Physical modelling . 25
3.2.1 Hypotheses . 26
3.2.2 Frame representation . 26
3.2.3 Movement equations . 27

4 Preprocessing 28
4.1 Complementary filter . 28
4.2 Kalman filter . 29

4.2.1 Simple model . 29
4.2.2 Advanced “digital twin” model 30

v

CONTENTS

4.2.3 Overall system with Kalman filter 32
4.3 Preprocessing filters comparison . 32

5 Controller 34
5.1 PID controller . 34
5.2 Stability engine conception . 35

5.2.1 Controller for any reference angle 35
5.2.2 Controller with equilibrium point reference 35
5.2.3 Finding the equilibrium point 35
5.2.4 Equilibrium angle controller . 36

5.3 Enhanced stability engine . 37
5.3.1 Advance speed profile . 37
5.3.2 Rotation speed profile . 38

5.4 Controller block representation . 38

6 Motor drivers 39
6.1 Wheel speed computation . 39

6.1.1 Acceleration integration . 39
6.1.2 Rotation control . 39
6.1.3 Left and right wheel speed . 40

6.2 Logical command operator . 40
6.3 Motor drivers block representation . 41

7 Executive controller 42
7.1 Finite State Machine Framework . 42
7.2 Robot’s Finite State Machine . 43

II Implementation 44

8 Software architecture 45
8.1 GRiSP software architecture . 46

8.1.1 GRiSP application process: balancing_robot 46
8.1.2 Hera process: hera_interface 47
8.1.3 Robot process: main_loop . 47
8.1.4 PID controller processes: PID_speed and PID_stability . . 51

8.2 ESP32 software architecture . 52
8.2.1 LoRa communication loop . 52
8.2.2 I2C communication . 52
8.2.3 Motor engine . 53

9 Problems and optimisations 54
9.1 Available GRiSP optimizations . 55
9.2 GRiSP GPIO frequency . 55
9.3 Motor actuation . 55
9.4 Hera measure latency . 56
9.5 Bus communication latency . 57
9.6 Sensor operating mode . 58
9.7 CPU load during data recording . 58

vi

CONTENTS

III Evaluation 61

10 Characterisation 62
10.1 Reference case . 63
10.2 Behavioural study . 64

10.2.1 Straight movement . 64
10.2.2 Rotation movement . 65
10.2.3 Raise up and lie back down . 66
10.2.4 Emergency stop . 66
10.2.5 Frontal impulse . 68
10.2.6 Moment of inertia increase . 69
10.2.7 Slope . 70
10.2.8 Offset loading . 71

10.3 Limitations . 71
10.3.1 Speed command . 72
10.3.2 Start angle . 72
10.3.3 Motor voltage . 72
10.3.4 Frequency . 72
10.3.5 Slope . 73
10.3.6 Sensor noise . 73

11 Discussion 75

Conclusions and future work 77

Bibliography 83

IV Appendices 84

A Developed device 85

B Technical specifications 86

C PCBs 87

D Physical model development 89

E Software flags 92

F Maximal delay computation 94

G GRiSP GPIO Frequency 95

H Experimentation setup 97

I Code 99
I.1 GRiSP code . 99

I.1.1 balancing_robot app . 99
I.1.2 balancing_robot supervisor . 99

vii

CONTENTS

I.1.3 balancing_robot . 100
I.1.4 main_loop . 100
I.1.5 stability_engine . 107

I.2 Robot ESP32 code . 108
I.2.1 ESP32_main . 108
I.2.2 ESP32_motor_engine . 111

I.3 Emergency stop ESP32 code . 116
I.4 User interface . 117

viii

Introduction

Context
Instabilities are phenomena encountered in many situations, whether in everyday life or
in more specific cases. Often, instability is synonymous with insecurity, as it refers to
the absence of predictability and control. These instabilities can take many forms: a
car on an extremely slippery road, a plane in a stall, a nuclear reaction... Fortunately,
humans have learned to master these instabilities and put them to good use in many
areas. Cars are equipped with Electronic Stability Control (ESC) systems, aircraft are
equipped with stall warning systems, nuclear fission is harnessed by control rods, etc.
Although humans themselves are unstable by nature, they are capable of balancing
dynamically on their own two feet, using their various senses. It is a concept that is not
unique to humans: many high-tech objects are equipped with dynamic self-balancing
systems, from boat stabilizers to anti-seismic systems in skyscrapers, and even small
personal transportation devices such as gyropods and electric unicycles.

These instabilities are handled by control systems, their purpose is to set the actions that
must be applied to the system to stabilise it. However, in most cases, such controllers
need to know the current state of the system: as mentioned above, human beings must
use their senses to maintain equilibrium. From a technological point of view, sensors are
used but their practical use is often limited by a number of factors such as measurement
frequency, accuracy and noise. The “garbage in, garbage out” principle also applies
to control systems, so it is essential to have low-noise measurements at the controller
input.

Filters are commonly employed to improve sensor measurements. A further concept
for achieving noise reduction is sensor fusion, it involves combining data from different
sensors. For example, a human being not only uses his inner ear for balance, he also
uses his vision, proprioception and sense of touch.

Sensor fusion is what is offered by Hera, an Erlang framework designed for the Internet
of Thing (IoT) on the GRiSP circuit board. Hera is based on the Kalman filter, a very
special tool that combines sensors dynamically using a predictive model.

Objective
The main objective of this master thesis is to create a library for controlling an unstable
system using Hera functionalities (see Section 1.3). In addition, the creation of an
unstable system serves as a proof of concept for an autonomous robotic system using

1

CONTENTS

GRiSP (see Section 1.1) and real time sensor fusion with Hera. A more precise description
of the objectives is given in Section 2.1.2. It involves the selection of a concrete yet
representative and generic enough application case: a two-wheeled self-balancing system.

Previous developments
The Erlang programming language, in the context of IoT, is a highly suitable language
for creating distributed systems. Its fault-tolerancy and its ability to manage hotcode
loading is particularly useful for systems that must be running continuously.

Using this programming language, a framework has been created, the Hera platform,
with the purpose of developing IoT devices functionalities. It is an open-source state-
of-the-art fault-tolerant platform. Hera has been developed to be used on a GRiSP
board, an IoT platform with Pmod GPIO ports and an Erlang-based software platform
developed by Stritzinger GmbH.

The Hera platform enables sensor fusion by providing Kalman filtering which reduces
noise on the measures collected by a set of sensors. This is critical in a real-time
application where noise can have a high impact on the system. Hera also provides
support for communication between multiple GRiSP boards which makes it a good
candidate for constructing an IoT network.

Contributions
The targeted objectives are reached thanks to a large number of contributions made
throughout this master thesis. These contributions include :

• The design and prototyping of a two-wheeled robot with a lifting system enabling
to raise the robot after a fall, allowing it to return to a state of self-balance by its
own efforts.

• The design and implementation of a software stability engine to keep the robot in
balance.

• Implementation of a multilevel system with an executive loop supervising a
stability loop1.

• The use of a Kalman filter and complementary filter in such a system to improve
the measurements made by the sensors.

• The implementation of a stepper motor driver specific to this application, but
general enough to be adapted to other applications.

• The implementation of a half-precision float representation of decimal values for
faster communications.

• Remote control for robot displacement and emergency stop system via LoRa
communication.

• A wide range of tests to determine the behaviour and limits of the system
1This follows the Erlang philosophy, but applied to hardware.

2

CONTENTS

All these contributions have made it possible to prove that both the hardware (GRiSP)
and software (Erlang and Hera) tools used are powerful enough to run such a real time
system. The designed robot provides a good basis for use in many future applications.
For example, by adding actuators so that it can interact with the world around it, or
by having several of these robots communicating to carry out a common task.

A short video of the robot executing different movements can be found at this url:
https://youtu.be/-GYXGzXmlVE. All the code developed for the robot can be found
in this GitHub repository: https://github.com/FrancoisGgg/balancing_robot.

Roadmap
This master thesis begins by explaining the context to understand the subject. Once
the context has been established, the various tools developed previously and used in
this mater thesis are detailed.

The rest of the content is then divided into three different parts:

• Part I explains the general design of the project. Firstly, by clearly redefining
the objectives to be achieved. This part then moves on to the physical design of
the robot, in Chapter 3, before explaining the design of the four main parts of
the robot in the four chapters, Chapter 4, 5, 6 and 7, that follow: preprocessing,
controller, motor driver and executive controller.

• Part II deals with the robot’s software. This part begins with Chapter 8, which
describes the software implementation of the robot components covered in chapters
4 to 7. Then all the problems that led to software optimisation are highlighted in
Chapter 9.

• In the last part, Part III, the robot is pushed to its limits to evaluate its behaviour
and to be characterised in different situations detailed in Chapter 10. The results
are also discussed and compared with other similar work in Chapter 11.

This master thesis ends on the conclusion and possible future work, describing the
avenues to be explored for future projects in which the robot can make a contribution.

Some documents, such as the source code, but also more detailed mathematical devel-
opments can be found in the appendices or in the bibliography at the end of this master
thesis in Part IV.

3

https://youtu.be/-GYXGzXmlVE
https://github.com/FrancoisGgg/balancing_robot

Chapter 1

Background

Throughout this master thesis, a variety of theoretical and technological concepts are
used. In this section, a number of relevant projects, researches and tools developed
previously are presented.

1.1 GRiSP board
GRiSP boards are circuit boards .

The GRiSP board [1], shown in Figure 1.1, is a compact circuit board developed by
Stritzinger GmbH[2], with plenty of different ports. This board can be programmed in
the Erlang programming language. It offers plenty of possibilities regarding the subject
of IoT. It has been designed to be a prototyping tool. Two types of GRiSP boards exist:
the GRiSP-Base board and the GRiSP 2 board. The GRiSP 2 board is the second
generation of GRiSP boards. In addition to its multitude of ports such as Pmod [3], it
can also communicate via Wi-Fi.

Figure 1.1: GRiSP 2 circuit board, modified pictures from [1].

4

CHAPTER 1. BACKGROUND

RTEMS

RTEMS is an operating system OS used in embedded devices such as in the medical
industry, for space flights and for networking [4]. It stands for Real-Time Executive for
Multiprocessor Systems (RTEMS). Running Erlang on RTEMS allows for very little
latency between something happening in the real world and the reaction to this change
in Erlang. This Operating System (OS) allows to run an Erlang shell on the GRiSP
and to run programs written in Erlang.

Pmod sensors

The GRiSP 2 board has six different Digilent Pmod compatible connectors, like the one
shown in Figure 1.2. Pmods are small circuit boards allowing to extend the capabilities
of embedded systems. It can give access to new ports like microSD or VGA. It can
implement communication modules like Wi-Fi or Bluetooth. Another option is to have
input and output devices like a joystick or an Organic Light-Emitting Diode (OLED)
screen and it also gives access to many different sensors like a gyroscope or a colour
sensor.

Figure 1.2: Digilent Pmod NAV sensor [5].

1.2 Erlang programming language
Erlang/OTP1 is a multiparadigm programming language designed for building scalable
distributed systems [6]. Erlang is a fault-tolerant language based on lightweight processes.
This means that it allows some parts of the system to crash while keeping the rest of
the system running. Furthermore, it allows the system to restart its crashed processes
with the use of supervisors. These are processes with the only purpose of restarting
crashed processes. This is where the tagline of Erlang comes from: "Let it crash".

Another useful feature of Erlang is called hotcode loading. This allows to update the
code of a system without shutting it down. This is particularly important for systems
that must be highly available.

The last major advantage of Erlang resides in its handling of concurrency. As Erlang is
designed with this potential issue in mind it allows to run easily thousands of individual
processes on the same core without having to care about concurrency issues.

Erlang is a high-level real-time language, which makes programming easier but is not
optimal for calculation performance. To solve this problem, Erlang allows the use of
native implemented functions (NIFs). NIFs are functions written in the C language but

1Open Telecom Platform (OTP)

5

CHAPTER 1. BACKGROUND

that can be called in an Erlang program. This allows to speed up the program, which
is critical in a real-time application.

Finally Erlang runs on a virtual machine called BEAM with compilation to a specific
bytecode.

1.3 Hera framework
The Hera platform is an Erlang framework allowing sensor fusion with multiple sensors
and GRiSP boards with asynchronous measurements. This framework was developed
and improved by several previous master theses [7]–[10]. Sensor fusion inside Hera is
made possible by the use of a Kalman filter. This filter is detailed in Section 1.7.

Hera has a simple supervision tree composed of two different supervisors and three
different kinds of processes. As shown in 1.3, these are: hera_sup which super-
vises hera_data and hera_com and hera_measure_sup which supervises every
hera_measure procedure. To keep it simple, hera_data is used to handle the storage
of data and hera_com makes the communication of data between the different GRiSP
boards and from and to each GRiSP board itself. The only files that a user of Hera
must provide are the measurement files that extend hera_measure.

hera_sup

hera_com hera_data

hera_measure_sup

hera_measure 1
...

hera_measure 2

Figure 1.3: Hera supervision tree.

This framework is the only one available on GRiSP. Other more well-known and more
general frameworks existed on the market before this one. Here are a few examples:

• The Thymio robot with its VPL framework for educational purposes [11].

• The ROS framework2 offers many tools to develop the software part of a robot
[12]. A version of ROS has been developed to run in the Erlang language. This
framework is called ROSiE for ROS in Erlang [13].

• The Orocos, standing for Open Robot Control Software, framework is a set of
libraries written in C++ with the aim of developing advanced machine and robot
control [14].

Other examples are the RT-middleware, Robot Framework and MoveIt frameworks
[15]–[17].

2Robot Operating System

6

CHAPTER 1. BACKGROUND

1.4 Self balancing devices
The concept of dynamic balancing is widely used in control theory, and more specifically
in the field of robotics. There are a multitude of applications requiring dynamic balance
control. For example:

• Aerospace systems: the general stability of airplanes is designed to be naturally
stable thanks to their aerodynamic characteristics, but this is not the case for
rockets, where a notion of stability control is required. This applies mainly to fin
control, thrust vectoring, etc. The control of such vehicles is very complex as there
are at least 3 unstable degrees of freedom (DoF) : pitch, roll and yaw. Furthermore,
such a controller should be compliant with the evolution of aerodynamic behaviour
during the flight. More accessible flying systems, such as unmanned aerial vehicles,
also require stabilisation control while being autonomous.

• Mobile robotics: the two-wheeled self-balancing robot is a well know inverted-
pendulum system and is is used in many applications such as the self-balancing
scooters by Segway for people transportation [18]. The I-bot [19] or Kim-e [20]
wheelchair enables people with reduced mobility to move around thanks to a
self-balancing system, while allowing them to be positioned at the same height as
standing people. As for payload transport, there’s evoBOT [21] by Fraunhofer or
Handle [22] developed by Boston dynamics. All these applications have the major
advantage of being compact. It’s this compactness that makes them unstable,
as it is very difficult to keep the center of gravity above the very small area of
contact with the ground, then requiring balancing control on their one unstable
DoF.

• There are many other types of robots requiring dynamic balancing, but they have
no real application. The ball-moving platform system, the reaction wheel balancer,
the actuated double pendulum and the mobile base balancer are well-known study
cases but don’t have many applications.

A picture of the Handle robot made by Boston Dynamics is shown Figure 1.4.

Figure 1.4: Handle robot of Boston Dynamics.

Two-wheeled self-balancing robots are very popular. They are easy to manufacture and
are affordable. Many kits supplying this type of systems are available on the market.

7

CHAPTER 1. BACKGROUND

1.5 Two-wheeled self-balancing devices
As said previously, these robots are very popular and widespread. Literature research
focused on robots / prototypes built for research and educational purposes, in order to
have a coherent basis for comparison with the system designed for this master thesis.
Such robots exist under very different shapes and forms and can be constructed in many
different ways. The differences are expressed on various points: the type of hardware,
the type of actuator used, but also the type of controller or even the type of filter used in
preprocessing. They also have common points such as the use of Inertial measurement
unit(IMU) senors in order to compute the leaning angle.

Robots based on the same type of computing hardware often share similar characteristics.
They have therefore been grouped into 3 categories:

• Programmable control boards: These boards are easy to use if having some
bases in programming. Once the program has been written, the boards must be
flashed so that they can run the code. The best-known examples of these boards
are the Arduinos control boards. There are other lesser-known boards of this type,
such as the Pololu Balboa 32U4, the NI myRIO-1900 and the OpenCR boards.
Several examples of robots with these boards have been built, as described in
[23]–[30].

• LEGO Mindstorm: These boards can be programmed with scratch or a scratch-
like language. This makes the LEGO Mindstorm [31] one of the easiest ways of
constructing a robot without having any programming knowledge. It is a plug-
and-play system, which means that every component can simply be connected
and will work without any effort. A robot using the Mindstorm is sold as a kit.
This robot is the Gyroboy from LEGO [32], [33].

• Small embedded computer: These boards allow to take much more complete
applications and have much better performances due to the fact that they are
computers. An exemples of these boards is the RaspberryPi. A robot using this
board can be found in the ADRC robot[34]. The swarm robot[30] uses a nvidia
jetson agx computer.

Through literature, it has been noticed that almost all of them require the intervention
of a human to place the device in its balancing state, which means that they are not
very autonomous.

1.6 Control strategies
The controller play a key role in the design of a two-wheeled self-balancing robot. It is
the brains of the loop computing the actuation required to stabilize the robot.

• Proportional-Integral-derivative controllers (PID) are very popular and
easy to use. Many control architectures use PID controllers as a building block.
A more advanced technique based on the PID is the fuzzy PID controller. In
the case of this master thesis, the use of PID controllers is at the heart of the
stabilization algorithm, as explained in Section 5.2.

• Linear-quadratic regulator (LQR) [35, p. 25] Linear-quadratic regulators are

8

CHAPTER 1. BACKGROUND

also frequently used to control self-balancing devices. It’s a calculation method for
determining the different parameters of a state regulator based on the minimization
of a performance criterion.

• Neural network can also be used to control this type of robot. These neural
networks have a highly abstract operating logic, and are not directly encoded as
they are. A period of training is required to find a set of parameters called weights
that describe the neural network. The system must therefore also be modeled
numerically in order to be able to train the network in a virtual environment. In
addition, it is necessary to design an evaluation function so that the algorithm
generating the neural network can identify good and bad behaviour.

1.7 Filters
This section describes different filters that can be used to combine sensors in order
to enhance the data measured by the sensors. As will be explained in more detail in
Chapter 4, the sensors used are the accelerometer and the gyroscope. The following
explanations on the different filters will thus be limited to the scope of these two sensors.

1.7.1 Complementary filter
The complementary filter [36] combines different signals carrying the same information
but affected with different types of noise. The combination is done by summing
each signal after passing through individual filters F (s) as depicted in Figure 1.5.
Complementary means that those filters are designed in a way that the sum of their
transfer function is 1 [37]: ∑

Fk(s) = 1 (1.1)

Figure 1.5: Complementary filter architecture: the filter results of a sum of multiple
signals affected by other filters, inspired from [37].

The noise on the accelerometer and on the gyroscope are not alike. The accelerometer
has a tendency to have high frequency noise while the gyroscope has low frequency
noise. This is due to the fact that the accelerometer is strongly affected by vibrations.
The gyroscope, on the other hand, works as an integrator which makes it vulnerable to
constant value errors, or in other words, low frequency noise.

All the sensors indirectly measure the same quantity but are all affected by a different
noise. In the case of an accelerometer and a gyroscope, the complementary does a great
job of filtering these different types of noises due to its way of segmenting the frequency

9

CHAPTER 1. BACKGROUND

domain. As can be seen in Figure 1.6, for two sensors, the complementary filter allows
to filter the whole frequency domain while still keeping every frequency of the signal
intact, by combining both sensors.

Figure 1.6: Complementary filter transfer function: the angle measured by the ac-
celerometer is affected by a low-pass filter and the one measured by the gyroscope is
affected by a high-pass filter, inspired from [37].

1.7.2 Kalman filter
The Kalman filter [35, p. 41] is a highly intelligent filter linked to a mathematical model
that predicts the evolution of the measured state. This enables filtering out sensor
noise with great precision while remaining highly reactive. It is based on confidence
levels between the predicted state and the various sensor observations. One of its
great strengths is its ability to adapt, in real time, the confidence levels of its sensors
according to the accuracy of their measurements. It is therefore a great tool for sensor
fusion, which explains why it is part of the Hera framework [38].

The Kalman filter is executed in two steps at each iteration: the prediction and the
update [39]. Each iteration of this filter evaluates a vector and a matrix [40]:

• x the vector that represents the state of the system.
• P the covariance matrix of the error on the state x. More intuitively, P represents

the expected inaccuracy of the computed state vector. It is then used to measure
the confidence level on the estimation of the state x.

The prediction phase predicts what the next state of the system will be based only on
the physical model of the system and on the command given to the system.

x̂k = Fkxk−1

P̂k = FkPk−1FT
k + Qk

The update phase takes both the measurement and the prediction into account to
generate a better estimation of the state x and the confidence on the estimation P.

Kk = P̂kHT
k .(HkP̂kHT

k + Rk)−1

xk = x̂k + Kk.(zk − Hkx̂k)

Pk = (I − KkHk).P̂k

10

CHAPTER 1. BACKGROUND

Variance
calculation

Gain
calculation

Update

-

+

+

+

Prediction
Error

calculation

Figure 1.7: Bloc diagram of the Kalman filter
showing the computation of the variances and
the gain and their role in the update part of the
filter.

Figure 1.8: Gaussian combination in
Kalman filtering. The prediction and
the update phase as well as the result
of the product of the Gaussians.

• F, State transition model: the matrix representing the evolution model of the
system. It describes the evolution of the state based on a mathematical model of
its natural behaviour.

• Q: the covariance matrix describing the evolution of the noise from the prediction.
It represents the noise that should be added to P after the prediction due to the
inaccuracies of the mathematical model.

• R: the covariance matrix describing the evolution of the noise from the sensors.
It represents the noise or the inaccuracies of the measurements.

• H, Observation model: the matrix mapping the state of the system to the
measurement of the sensors. It describes what the sensor should measure knowing
the predicted state of the system.

• z: the vector representing the measurements of the sensors.
• K: the calculated matrix representing the Kalman gain. It’s where magic happens.

The Kalman gain takes into account the confidence on the sensor and confidence
in the prediction to know how to combine them in order to lower the variance of
P after the update.

A block diagram Figure 1.7 allows to better understand the links between the different
parts of the Kalman filter.

One of the concepts that makes the kalman filter so powerful is the product of two
Gaussian curves: the result is a new Gaussian curve with a lower variance, or in other
words, less noise. This is a real asset for sensor fusion. An example is shown in Figure 1.8.

The extended Kalman filter is a variant of the Kalman filter. It allows the use of
nonlinear equations for the predictive model and the observation model. The associated
Jacobians must therefore be specified.

11

CHAPTER 1. BACKGROUND

1.7.3 High-pass filter
Some devices, like the Pololu Balboa bot [28], use only the data from gyroscope
integration to calculate its angle, passing it through a high-pass filter. This ensures
that the average angle is zero. Otherwise, the robot would fall.

Such filter can be very easily implemented with a digital filter used, known as the
infinite impulse response (IIR) filter. It’s implementation is very simple:

θn = k ×
(

θn−1 +
∫ tn

tn−1
θ̇gyrodt

)
(1.2)

To set the cut-off frequency fc, the factor k ∈ [0; 1] must be determined. Starting from
the time constant equation for this filter [41]:

τ = k · ∆tloop

1 − k

⇔k = τ

τ + ∆tloop

(1.3)

⇔k =
1

2π·fc

1
2·πfc

+ 1
floop

⇔k = 1
1 + 2π fc

floop

(1.4)

This system is very simple but is very quickly limited in terms of performance. However,
it also simplifies controllers because it ensures that the stabilisation angle is 0°3.

3Controllers that use an absolute angle need a part reserved for calculating the stabilisation angle.
This is something more complex, but it also makes them more robust.

12

Part I

Design

13

Chapter 2

Overall design

The aim of this chapter is to present the direction followed during this master thesis
by precisely defining the objectives to be achieved, as well as presenting the overall
structure on which the system has been built.

2.1 Objectives specification
The purpose of this master thesis is to develop a library that allows dynamic stabilisation
of real-life objects through the use of actuators. This section describes the type of
application that was decided to explore, the objectives pursued and the constraints
imposed on the implementation of such a system.

2.1.1 Application selection
As seen in the background chapter, Chapter 1, dynamic control of unstable systems
is a very large domain with lots of different applications and control strategies. The
choice of a two-wheeled self-balancing robot as an application for this master thesis is a
good choice for multiple reasons:

• Generic: a two-wheeled robot is an application of inverted pendulum balancing.
The dynamic of such a system is very similar to that of other unstable devices,
making the stabilisation library versatile for other applications.

• Scalable: mechanically, a two-wheeled robot is a simple system that keeps the
same dynamic behaviour when scaled up or down. This allows the stabilisation
library to be directly usable in other applications with different sizes and weights
by adjusting some parameters.

• Real-life application in IoT: Hera is a long-term project that aims to develop a
new generation of robust IoT networks. In the IoT, such robots can have many
different applications. Examples include payload transport in industry, assistance
with various domestic tasks, remote monitoring, people transportation, etc.

• Mobile robotics: the two-wheeled robots are devices able to move freely in their
environment. This opens a new research domain for GriSP, Hera, and the Erlang
community.

14

CHAPTER 2. OVERALL DESIGN

• Ease of prototyping and use: the two-wheeled robot is a well-known concept that
can easily be prototyped at low cost.

2.1.2 Objectives and constraints
The main objective of this master thesis is to develop a stability engine running on the
GRiSP and that can easily be implemented on different devices. This very general and
abstract task comes along with other more precise objectives:

• Create a device using the stability engine. The chosen type of device are inverted-
pendulum like devices. More precisely, a two-wheeled self-balancing robot. Just
like systems running under Erlang, the device should be able to recover from a
crash without human intervention.

• Use Hera as an interface on the whole system for IoT purposes.

• Integrate the Kalman filter in the control algorithm. To efficiently use the Kalman
filter, multiple sensors must be used on the device to make use of sensor fusion.

• Characterise the performance of the GRiSP board and Hera in a real-time appli-
cation

The detailed technical specifications are provided in Appendix B

2.2 Overall system diagram
The first step, in order to correctly implement the system on the basis of the set
objectives, is to create a draft of the overall system. It is built from several intercon-
nected blocks, each with a specific purpose within the control loops, as seen in Figure 2.1.

User inputs

State estimation
Preprocessing Controller

stability engine

Sensors data
Physical Device

Actuators inputs

Commands
Motor drivers

FlagsExecutive controller

Stabilisation loop

Executive loop

Figure 2.1: Simple system diagram: the stability control loop is nested within the high-
level control loop. Numerous blocks, each with a specific function, are interconnected
in order to make the system work as intended.

15

CHAPTER 2. OVERALL DESIGN

First of all, there are two loop levels, with a loop controlling the other 1 :

• The stability loop: this is a low-level loop whose function is to stabilise the
robot when placed in its operating zone.

• The executive loop: this loop is used to manage all the events modifying the
robot’s state, like entering safety mode or lifting the robot up.

Each loop consists of several subsystems interacting with each other:

• The physical system: the body of the robot itself, with all its mechanical
components and electronics having their own specific behaviour. Explanations on
the design of the physical system are given in Chapter 3.

• The preprocessing: its purpose is to estimate the state of the physical device
on the basis of noisy data from multiple sensors. Explanations on the design of
the preprocessing are given in Chapter 4.

• The controller: its purpose is to compute the actuation commands needed
to reach the desired state based on the estimated state from the preprocessing.
Explanations on the design of the controller are given in Chapter 5.

• The motor drivers: their purpose is to translate the controllers’ commands into
relevant actuation signals. Explanations on the design of the physical system are
given in Chapter 6.

• The user inputs: the set of control signals generated by the user, who may be a
human via a remote control system or a higher-level system.

• The high-level controller: its purpose is to make high-level decisions to modify
the system’s mode of operation. Explanations on the design of the physical system
are given in Chapter 7.

The complete and detailed diagram shown in Figure 2.2 is the result of the whole design
process. The design and function of each of these blocks is explained hereunder in the
following chapters.

The creation of such a system is an iterative process in which modifications and
improvements are made step by step. These successive modifications impact both the
internal workings of individual blocks and their interactions with other blocks.

1This architecture coincides perfectly with erlang’s philosophy, where processes called supervisors
monitor and restore other processes. In this system, the executive loop is like a supervisor and the
stability engine is like a process.

16

CHAPTER 2. OVERALL DESIGN

Preprocessing
Chap.4

PI PD
+

-

+

Controller - stability engine
Chap. 5

Physical device
Chap. 3

Motor drivers
Chap. 6

+

+ +

k
-

-

Kalman filter

or

Complementary
filter

User inputs

Executive controller Chap. 7

Logical
commands

operator

Legend
Analog \ continuous dataflow

Logical \ discrete dataflow

Signal select wire

Stability loop component

High level loop component

Figure 2.2: Detailed global system diagram, allowing to see the internal working of each
block, their inputs and their outputs.

17

Chapter 3

Physical device

This chapter focuses on the design and open-loop behaviour of a two-wheeled self-
balancing robot. The design part, Section 3.1, presents the different technological
choices made from an electronic and mechanical point of view in order to make this
system controllable. The physical modelling part, Section 3.2, explains the system’s
natural tendency to instability through mathematical developments.

3.1 Device design
The aim of this section is to describe the design process followed and the technological
choices that were made in order to obtain a system that meets the objectives.

The whole system has been designed by following a set of technical specifications which
are referenced in Appendix B. The most important points are :

• Balancing with a two-wheel drive train.

• Putting itself into self-balancing from a rest/post crash position.

• Embed the GRiSP 2 as the main controller.

These requirements lead to the need for three actuators. Two actuators will take care
of the drive train. A differential configuration is the most adapted to be able to move
backwards and forwards but also to rotate. The third actuator is used for getting up
from a rest position.

In the following subsections, the electronic and mechanical design is presented. However,
a common basis for these two sections concerning actuation technology choice must
first be established.

3.1.1 Actuation
The robot must be equipped with several actuators to convert electrical signals into move-
ments. In order to design the electrical and mechanical parts of the robot appropriately,
it is essential to know which actuator technology will be used.

For reasons of cost and simplicity, it is preferable to use only one type of motor
technology in the robot, and preferably the same model of actuators. Here’s a list of

18

CHAPTER 3. PHYSICAL DEVICE

the different types of electric motors:

• Induction and synchronous motor: useful for high-power applications, but
requires a highly advanced control and additional installation for speed and
position control. Not suitable for our application

• DC motor: motor corresponding to the expected dimensions of the robot, but
coupled to a gearbox that brings backlash, which could be very annoying for
our application, where the motors will often change direction and therefore pass
through the backlash zone. In addition, an encoder system must be installed to
provide feedback control on their speed or position.

• Servo motor: some types of servos, such as dynamixel, are not limited in their
travel, are easy to control, but are often limited by their speed, are rather noisy
and also suffer from backlash. In addition, servo motors adapted to our use would
have a significant cost.

• BLDC motor: brushless DC motors have the advantage of being very quiet
and can be mounted without a gearbox, so there’s no backlash, but they require
highly advanced control strategies such as vector control, and very specific drivers
that can be expensive. This type of motor constantly consumes energy, even at a
standstill.

• Stepper motor: Stepper motors are fairly compact and can be easily controlled
in open-loop, but require drivers. Both motors and drivers are easy to find on the
market. As with BLDCs, stepper technology consumes energy at rest. Moreover,
they are easy to upgrade, as most of them use the same mounting system.

Given the constraints of the project, the stepper motor is the most suitable technology
for the robot. It is easy to control, has a good torque/speed ratio for this application,
is easy to install and is relatively inexpensive.

The NEMA 17 serie stepper motor is a great candidate for the project. It is a widely
used motor in the 3D printing industry, where the speed and torque requirements are
similar to those of the robot.

3.1.2 Electrical design
The electrical design was carried out in two steps:

1. The logic part: all the components and their means of communication are selected
to meet expectations.

2. The power-supply part: takes care of supplying the various components with the
right voltage and the necessary current flow.

Logical circuit design

The starting point of the electrical logic design is the GRiSP 2 board, as it should
remain the central element of the robot. Another thing already known is that the robot
will use stepper motors. At a number of three (two for the wheels and one for the lifting
system), those motors are each controlled by a stepper driver.

19

CHAPTER 3. PHYSICAL DEVICE

Based on a GPIO frequency benchmark test of the GRiSP 2 board, it was clear that the
board could not supply a high-frequency signal for the stepper driver control through
its GPIOs with the actual firmware. The solution was to use a microcontroller between
the GRiSP 2 and the stepper drivers.

The choice of the sensor is straightforward, as the GRiSP supports the Pmod NAV
sensor, which provides accelerometers and gyroscope measurements.

In case of emergency, remote control via the emergency stop button is used to stop
the robot. It’s the most suitable option, as the robot may flip over and the button
may be difficult to reach if installed directly on the robot. For this purpose, a LoRa
communication technology was chosen for its range and reliability.

Components description

Here is a brief description of the components depicted depicted in Figure 3.1:

• GRiSP 2 is the main controller of the system. Its purpose is to compute the
high-level controls as well as the low-level commands sent to the Lilygo LoRa32
through I2C.

• TMC2208 stepper motor driver makes almost no noise compared to cheaper
drivers. The driver has three logical input pins:

– En (enable): when this pin is set to high, the motor is enabled. The motor
can no longer spin freely.

– Step: at each rising egde, the motor takes one step.

– Dir (direction): this pin allows the motor to change the spinning direction.

The four output pins going to the motor are M1A, M1B, M2A and M2B and
correspond to the motor inductances. This driver allows micro-stepping, which
provides more precise position control. Finally, the torque of the motor can be
modified with a potentiometer adjusting the current going through the stepper’s
inductances.

• Lilygo LoRa32 is an ESP32-based circuit board. It embeds multiple useful
features, such as I2C communication and an SPI LoRa emitter-receiver. Its
purpose is to directly interact with the steppers, receive LoRa commands and
behave as an I2C slave with the GRiSP.

• Pmod NAV. This Digilent Pmod communicates through SPI and has multiple
sensors, such as an accelerometer and a gyroscope.

• Stepper driver interface PCB1 is especially designed for this master thesis in
order to easily connect three TMC2208 stepper drivers to a GRiSP 2 or a Lilygo
LoRa32. It features:

– Eight logical inputs: one step and one direction signal for each motor, one
enable signal for the driver in the middle and one for the remaining drivers
together.

1Printed circuit board (PCB)

20

CHAPTER 3. PHYSICAL DEVICE

– Logical supply voltage, ranging from 3V to 5V.

– Motor power supply input voltage that can go up to 36V.

The enable ports of the first and last stepper drivers have been connected together
as they will be connected to the motors used for the differential wheel system and
are therefore enabled at the same time. This reduces the number of ports by one,
allowing it to be connected entirely to a double-row GPIO Pmod for eventual
future use.

Robot power supply design

Within this circuit, two supply networks are required:

• A 5V supply for powering the logic elements.

• A supply of 12V or less is needed to power the motors.

By using a 12V LiFePO4 battery, which is the safest type of lithium-based battery,
these two networks can be supplied using buck converter regulators. Boost converters
should be avoided as they can induce noise on bus communications.

Emergency switch

As the robot is naturally unstable, it was decided to install a remote emergency stop
button instead of putting it directly on the robot. This emergency stop button does
not meet industry standards, but for low power levels, such a system is not mandatory.

This remote switch is made out of an emergency button and a Lilygo LoRa32. The
switch can communicate with the user via universal serial bus (USB) to retrieve user
inputs. It can communicate these inputs via LoRa to the robot.

Overall electrical circuit

Figure 3.1 shows all the connections between the selected components. The upper part
of the figure shows the robot with all its components while the lower part shows the
remote emergency button.

3.1.3 Mechanical design - two wheeled robot with lifting mech-
anism

The mechanical design is divided into several parts, which must fit together:

• The drive train: the entire wheel drive system in differential configuration.

• The lifting system: its purpose is to raise the robot up in order for it to get into
dynamic balancing.

• Electronic components.

• The chassis: the main structure that holds everything together.

21

CHAPTER 3. PHYSICAL DEVICE

14V

GND

14V 3200mAH
LiFePO4 battery

Slave Slave

Master Slave

ESP32
pico

OLED
screen

5V

GND

Master

GRiSP 2

LoRa
module

Pmod NAV

Lilygo LoRa32

7.5V

GND TMC2208
stepper
driver

TMC2208
stepper
driver

TMC2208
stepper
driver

Stepper
A

Stepper
B

Stepper
C

3.3VGnd

Master Slave

Master Slave

ESP32
pico

OLED
screen

LoRa
module

Lilygo LoRa32

Computer

SD
card

Emergency
switch

PCB-Stepper driver interface

Legend
Power supply

SPI bus

I²C bus

USB (UART + 5V)

GPIO communication

LoRa communication

Buzzer piezo

7.5V Buck
converter

5V Buck
converter

7
Figure 3.1: Electrical diagram, the power lines and the communication between the
components are represented.

Drive train

The drive train is composed of two stepper motors sharing the same virtual axis each
having one wheel on their shaft. The wheels are 70mm in diameter and made out of
steel with a rubber tire to provide a good grip on the ground. Those wheels are locked
on the stepper shaft with the use of a pressure screw.

The two stepper motors are mounted on their own right-angle bracket to be attached
to the chassis.

Lifting mechanism

The lifting system is engineered with two aspects in mind: it must be compact and be
able to raise the robot up to 80° with respect to the ground.

The designed mechanism is made up of three moving parts: a straight bevel pinion
connected to the motor shaft and two curved racks, which are segments of a bevel gear,
as shown in Figure 3.3. The 90° bevel gear allows the motor to be positioned below

22

CHAPTER 3. PHYSICAL DEVICE

Produit d'éducation SOLIDWORKS. A titre éducatif uniquement.

Figure 3.2: Drive train with two stepper motors, two wheels and two brackets.

the mechanism, leaving space above and on the right and left sides.

Produit d'éducation SOLIDWORKS. A titre éducatif uniquement.

(a) Retracted lifting mechanism.
Produit d'éducation SOLIDWORKS. A titre éducatif uniquement.

(b) Extended lifting mechanism.

Figure 3.3: Lifting mechanism with bevel gear, both arms extend in opposite directions
to raise the robot up.

In order to maintain good gear contact, slots have been designed into the casing to
guide the sliding of the lifting arms, as shown in Figure 3.4.

Produit d'éducation SOLIDWORKS. A titre éducatif uniquement.

(a) Casing around the lifting mechanism.

Produit d'éducation SOLIDWORKS. A titre éducatif uniquement.

(b) Lifting mechanism with one arm removed
allowing to see the slots used to guide the arms.

Figure 3.4: Lifting mechanism with its casing.

One of the main design constraints was to keep the contact area permanently tangent

23

CHAPTER 3. PHYSICAL DEVICE

to the wheel circumference. This implies having the rotation axis of the arms collinear
with the axis of rotation of the wheels. For simplicity, the two arms simultaneously
extend and retract, as shown in Figure 3.5.

80°
Extended

angle

35°
Rest

 angle

45°
Travel
angle

Figure 3.5: Lifting process: on the left, the robot is down with the arms retracted. In
the middle, the arms are extended and the robot is still resting on them. On the right,
the arms are retracted and the robot is dynamically balancing.

At rest with its arms retracted, the robot is at an angle of 35° with respect to the
ground. The arms have a travel angle of 45° . When fully extended, the arms hold the
robot at an angle of 80° . Figure 3.5 shows the different steps of the lifting process.

All of those pieces have a very specific geometry. Plastic Fused Deposition Modeling
(FDM) 3D printing is a great prototyping option to produce these pieces due to its
simplicity, speed and affordability.

This highly innovative system, which keeps the lifting arms tangent to the ground,
comes with a problem: the robot can slip during lifting. If the wheel motors are blocked
during lifting, the wheels will rotate with the body, causing it the body to move. To
avoid this slipping effect, a counter-rotation must be applied to the wheels: the angular
speed of the wheels must be equal and opposite to the angular rate of the lift.

Electronic components

Electronic components can take up a lot of space and need to be distributed appropriately.
It is important to keep the power and logic parts of the system separate to avoid induced
voltages in system communications, which can cause errors in communication signals.

Chassis

The chassis holds all the components together and must be robust enough to withstand
the various shocks. It is during the design of the chassis that the distribution of mass is
considered. In the context of a self-balancing robot, this aspect is very important. The
robot’s center of gravity (CG) must be high enough to have slower time constants, and
the weight distribution between the left and right wheels must be similar enough to
have similar grip and wear on the two wheels.

24

CHAPTER 3. PHYSICAL DEVICE

The robot is designed with five different levels, as shown in Figure 3.6 to be able to fit
all the mechanical and electronic components mentioned above.

Each level has its own components and use:

• Level 0: the drive train, fixed to the chassis by the right angle bracket, and the
lifting system actuator.

• Level 1: made up of three parts, the voltage converters, the lifting mechanism
and the motor controllers.

• Level 2: space reserved for cable management.

• Level 3: used to attach two GRiSP 2 boards, their Pmods and the battery with a
3D-printed support.

• Level 4: platform for additional payload.

Figure 3.6: Chassis layout in five different levels.

Laser-cut wooden boards are used to separate the floors. To secure the various compo-
nents, vertical wooden panels are placed between the horizontal boards using a mortise
and tenon system. This system enables rapid assembly, but only holds together if put
into compression. To secure the assembly, vertical screws operating in tension apply
compression to the mortise and tenon joints, holding all the assembly together.

3.2 Physical modelling
To understand the behaviour of the system, to know how to properly control and
enhance the Kalman filter, it’s important to develop a mathematical representation of
the system. The purpose of this model is to describe the relationship between the input
and output of the physical system based on a set of hypotheses.

25

CHAPTER 3. PHYSICAL DEVICE

3.2.1 Hypotheses
The following hypotheses are assumed for the development of the physical model:

• The robot is a rigid body.

• The mass of the wheels is negligible.

• The slip of the wheels is negligible.

• The effect of the torque of the wheels on the robot is negligible.

• The movement, speed and acceleration of the robot due to a change of the chassis
angle is negligible.

• There are only two external forces applied to the robot: the weight and the
reaction force of the ground, including the friction force.

3.2.2 Frame representation
All the quantities used in the development of the model are defined in Figure 3.7.

Figure 3.7: Reference scheme of the bodies and the different quantities for developing
the physical model of the system.

This model uses two different reference frames:

• Î is attached to the robot and is defined by X̂3 and by X̂1. X̂3 is aligned to
the axis passing through the CG and wheel center. X̂1 is perpendicular to the
previous axis and pointing to the front of the robot.

26

CHAPTER 3. PHYSICAL DEVICE

• The reference frame of the ground is defined by Î1 and Î3. Î1 is parallel to the
ground. Î3 is perpendicular to the ground and pointing upward.

All the variables are shown in Table 3.1.

θ The angle of the robot relative to the vertical axis in [rad]

θ̇ The angular speed of the robot in [rad/s]

θ̈ The angular acceleration of the robot in [rad/s2]

x The position of the robot in [m]

ax = ẍ the acceleration of the robot in the x-axis in [m/s2]

F⃗ The contact force of the ground on the robot in [N]

Table 3.1: List of variables used in the model.

Finally, some constants are used in the model. These are described in Table 3.2.

h The distance between the CG and the axis of rotation in [m]

m The mass of the robot in [kg]

J The moment of inertia of the robot in [kg.m2]

g The gravitational acceleration in [m/s2]

Table 3.2: List of constants used in the model.

3.2.3 Movement equations
The full development using Newton-Euler equations is provided in Appendix D. It
results in the following formula:

(h + J

mh
)θ̈ = g sin(θ) − ẍ cos(θ) (3.1)

According to the previously stated hypotheses, the effect of the motors is manifested
through ẍ. Equation (3.1) shows that the lateral acceleration induces an angular
acceleration θ̈.

27

Chapter 4

Preprocessing

The preprocessing unit is used to clean and interpret the data collected by the sensors.
In this application, the preprocessing uses the inertial measurement unit (IMU) sensors’
data, which are the accelerations from the accelerometer and the angular rate from the
gyroscope, to output an estimation of the pitch angle (θ). In most cases, the raw data
obtained from the sensors is not directly usable for two main reasons:

• The data obtained from sensors is affected by interference and noise, which can
be more or less significant depending on the type of sensor and its surrounding
environment. For this reason, the data is subjected to a filtration process.

• The data measured by the sensor, for example, accelerations, can only be indirectly
linked to a quantity describing the system, for example, the angle. An intermediate
transformation is thus required in order to contribute, either partially or entirely,
to the calculation of the quantity of interest.

The following sections will present two distinct preprocessing strategies:

• The complementary filter in Section 4.1.

• The Kalman filter in Section 4.2.

Both strategies support sensor fusion, a process which combines data from multiple
sensors to enhance the measurements.

4.1 Complementary filter
As explained in Section 1.7, the complementary filter is a combination of several
measurements affected by specific cutoff frequency filters in order to be efficient on
every frequencies.

In this application, the filter is the result of averaging two terms with the use of two
weights k and 1 − k:

θcf = k · θgyr + (1 − k) · θacc (4.1)

28

CHAPTER 4. PREPROCESSING

• θacc is the angle measured by the accelerometer based on the gravity vector. In
this application, it is computed with ax and az, the x and z-axis accelerations
measured by the sensor:

θacc = arctan
(

az

−ax

)

• θgyr is computed from the previous angle, θcf,n−1, incremented by the integration
of the angular velocity, θ̇gyr and measured by the gyroscope on the sampling time:

θgyr = θcf,n−1 +
∫ ∆t

0
θ̇gyrdt

There is therefore a low-pass effect on the angle measured by the accelerometer, which
gets rid of the significant noise induced by the robot movements. On the other hand,
there is a high-pass filter effect on the gyroscope measurement, which avoids the DC
error that accumulates during integration. In this case, the cut-off frequency was selected
to be 0.127 Hz, i.e. a rate = 1.25rad/s. This enables the low-pass part to average the
accelerometric measurements over a fairly long period, and keeps the high-pass part
very dynamic. To compute k the equation (1.4) applies

The complementary filter is widely used in IMU measurements. It is directly provided
by Digilent on the Pmod NAV product page [5]. It is also used in many do it yourself
(DIY) self-balancing applications, such as [42]. But in both cases the frequency is fixed
and therefore it doesn’t automatically compute the k factor from the loop frequency of
the system.

4.2 Kalman filter
The Kalman filter, as explained in Section 1.7.2, is a very powerful tool that enables
adaptive sensor fusion. In other words, it is capable of modifying its interest in one
sensor or another by continuously comparing them with a physical model. In this
context, it is particularly useful, as data from several Pmod NAV sensors must be
interpreted in the best possible way for the controller to work at its best.

4.2.1 Simple model
The Kalman filter makes predictions based on a mathematical model. This model can
be very basic, allowing few calculations, or very complex, which can affect performances
but makes better estimates.

In this very simple model, most of the physics of the robot is ignored. The remaining
equations are the integration of angular speed to find the angle (4.2) as well as Newton’s
first law applied to rotating objects without external forces (4.3):

θ =
∫

θ̇dt ⇒ θk = θk−1 + θ̇k−1 · ∆t (4.2)

θ̇k ≈ θ̇k−1 (4.3)

The state vector and the state transition matrix are defined as:

29

CHAPTER 4. PREPROCESSING

x =
[
θ

θ̇

]
; F =

[
1 ∆t
0 1

]
(4.4)

The measure vector, which is in fact identical to the one used for the complementary
filter. The observation matrix is simple as x and z are similar:

z =
[
θacc

θ̇gyr

]
; H =

[
1 0
0 1

]
(4.5)

The covariance matrix of the additional noise for measurement and for prediction is
based on the sensor datasheet and from rules of thumb and empirically tuned.

Q =
[
3.0e−5 0

0 1.0e1

]
; R =

[
3.0e0 0

0 3.0e−6

]
(4.6)

The order of magnitude of the values of the matrix Q, describing the evolution of variance
on the prediction model, shows that there is a lot of confidence in the integration part,
thanks to the low variance defined by Q[1, 1], and little confidence in the part linked to
Newton’s first law, due to the high variance of Q[2, 2].

Regarding the matrix R, describing the evolution of the variance of the measurements,
R[1, 1] shows that there is little confidence in the angle values coming from accelerometer
measurements, which is expected as it is a very noisy measure. On the other hand, the
order of magnitude of R[2, 2] shows that there is greater confidence in gyroscope data,
which is known to be quite precise [5].

4.2.2 Advanced “digital twin” model
The model described below is much more precise, taking more phenomena into account
than the simple model. The predictive model is directly derived from the equations
describing robot behaviour detailed in Appendix D.

A digital twin is a model of the physics of a system running in real time. It is used in
many advanced control systems to map all the state parameters of the system. The
development of a partial digital twin as a model for the Kalman filter is described below.
It is called a partial as it does not map the entire robot behaviour, but a part of it. It
focuses on the θ related state variable and the wheel acceleration command input u.
As the equations are not linear, the extended Kalman filter must be used.

The state vector remains the same as the one from the simple model:

x =
[
θ

θ̇

]
(4.7)

The state transition model and its Jacobian is obtained from the physical model equation
discretisation:

f =
[

θk + θ̇k∆t

θ̇k +
(

g
h+J/mh

sin(θ) − u
h+J/mh

cos(θ)
)

∆t

]
(4.8)

30

CHAPTER 4. PREPROCESSING

Jf = ∂f

∂x

∣∣∣∣∣
x,u

=
[

1 ∆t(
g

h+J/mh
cos(θ) + u

h+J/mh
sin(θ)

)
∆t 1

]
(4.9)

Regarding the measure vector, it remains the same:

z =
[
θacc

θ̇gyr

]
(4.10)

The observation model also remains the same as x maps to z in the same way as in the
simple model:

h = x̂ ; Jh =
[
1 0
0 1

]
(4.11)

In the previous models, a computed angle from the accelerometer data, ax and az, is
used as an input for the Kalman filter. To enhance this advanced model, the acceleration
measurements are directly provided as sensor input. This captures a wider range of
physical phenomena than just gravity, as the system is constantly moving.

The observation model should be rebuilt to map the accelerometer inputs. The acceler-
ation of any point on the robot’s vertical axis, X̂3, is a combination of four different
phenomena, still referring to Figure 3.7:

• Lateral acceleration: ẍÎ1 = u cos(θ)X̂1 + u sin(θ)X̂3

• Angular acceleration effect: θ̈rX̂1 =
(

g
h+J/mh

sin(θ) − u
h+J/mh

cos(θ)
)

rX̂1

• Centripetal acceleration effect: −θ̇2rX̂3

• Gravitational acceleration: −gÎ3 = g sin(θ)X̂1 − g cos(θ)X̂3

The total acceleration perceived by the sensor axis is the sum of the preceding effects:

âx = u cos(θ)︸ ︷︷ ︸
lateral acc.

+
(

g

h + J/mh
sin(θ) − u

h + J/mh
cos(θ)

)
r︸ ︷︷ ︸

angular acc.

+ g sin(θ)︸ ︷︷ ︸
gravity acc.

(4.12)

âz = u sin(θ)︸ ︷︷ ︸
lateral acc.

+ −θ̇2r︸ ︷︷ ︸
centripetal acc.

− g cos(θ)︸ ︷︷ ︸
gravity acc.

(4.13)

The observation model can be written as:

h =

âx

âz

ω̂y

 =

u cos(θ) +
(

g
h+J/mh

sin(θ) − u
h+J/mh

cos(θ)
)

r + g sin(θ)
u sin(θ) − θ̇2r − g cos(θ)

θ̇

 (4.14)

The Jacobian of the measurement model is:

31

CHAPTER 4. PREPROCESSING

Jh = ∂h

∂x

∣∣∣∣∣
x,u

=

−u sin(θ) +
(

g
h+J/mh

cos(θ) + u
h+J/mh

sin(θ)
)

r + g cos(θ) 0
u cos(θ) + g sin(θ) −2θ̇r

0 1

 (4.15)

Since the simple model surpasses all expectations, see Part III, it was not felt necessary
to integrate this more advanced model in order to spend more time optimizing other
blocks. However, a detailed discussion on the choice of covariance evolution matrices is
given below.

The matrix Q, describing the evolution of the variance of prediction, is expected to be
much smaller than the one of the simple model. The same would apply to the matrix R,
especially for variances related to the accelerometer data. However, even if the model
predicts the robot’s behaviour perfectly, the matrix Q must still retain a certain level of
variance in order to adapt to unpredictable variations. In other words, the prediction
model is a deterministic system that cannot predict the arrival of disturbances occurring
in the real world, which means that a level of uncertainty remains.

4.2.3 Overall system with Kalman filter
The schematic representation of the overall system using the Kalman filter for its
preprocessing is shown in Figure 4.1

4.3 Preprocessing filters comparison
Kalman and complementary filters are very different but are used in the same way.
Below is a comparison of the two filters to understand their differences. :

• Complexity: the mathematical computations required to deploy such filters and
the difficulty of implementation are very different. The complementary filter
is very easy to instantiate, and few parameters are required to make it work
properly. The Kalaman filter, on the other hand, requires a special physical
model to be designed and multiple covariance matrices to be chosen. Furthermore,
implementation requires matrix computation.

• Noise processing: these two filters deal with noise in different ways. On the one
hand, Kalman is very flexible and is able to favor one sensor or the other on the
basis of its prediction. On the other hand, the complementary filter does not
adapt its way of working according to observations. In the particular case of this
application, the Kalman filter behaves in a way like a complementary filter, but
is able to adapt its cut-off frequency dynamically.

32

CHAPTER 4. PREPROCESSING

PI PD
+

-

+

Controller - stability engine

Physical device Motor drivers

+

+ +

k
-

User inputs

Executive controller

Logical
commands

operator

Legend
Analog \ continuous dataflow

Logical \ discrete dataflow

Signal select wire

Stability loop component

High level loop component

Preprocessing

-

+

+

+

Kalman filter
-

Figure 4.1: Overall system representation using a Kalman filter. It shows the computa-
tion of an absolute angle from the accelerometer data outside the Kalman filter, as it is
used as one of its inputs. The wheel speed measure is not filtered at all.

33

Chapter 5

Controller

The purpose of the controller is to modify the state of a system in order to align it
with a reference input. The aim of the controller in this case is to stabilise a system
that is by its nature unstable. When the controller uses a measurement of the system
to generate its output, it is said to be a feedback controller or closed-loop controller.
Controllers that do not use an observation on the system to make a control are called
feed-forward controllers or open-loop controllers.

5.1 PID controller
PID controllers are widespread feedback control systems. In this application, such
controllers are used as fundamental building blocks for system control, as described in
Section 5.2.

These controllers generate their output command on the basis of an error, the difference
between a reference value and a measurement of the controlled variable.

e = xref − xmes

The aim of such a controller is to make this error tend towards 0, thanks to the
contributions of three terms contributing to the output u:

• Proportional: the contribution is proportional by a factor Kp to the error.

• Integral: the contribution proportional by a factor Ki to the integral error.

• Derivative: the contribution is proportional by a factor Kd to the derivative of
the error.

u = Kp · e + Ki ·
∫ t

0
e dt + Kd · de

dt

It is usual to add a limiter on the integral term, also known as anti-windup, in order to
avoid too much overshoot when big set point variations occurs and when the command
output saturates.

34

CHAPTER 5. CONTROLLER

The transfer function of such a controller is expressed as:
U

E
= Kp + Ki

s
+ Kp · s

This means that with such a controller, the pole1 of a system can be moved around in
a smart way through the choice of the Kp, Ki and Kd terms.

5.2 Stability engine conception
Designing a control system is not a trivial task. Especially when the system being
controlled is not a stable bounded-input bounded-output (BIBO) system, which is
the case with the self-balancing robot. In order to design the stability engine, it was
essential to correctly define the inputs and outputs of the control system and to identify
the various phenomena involved.

5.2.1 Controller for any reference angle
The designed controller allows the robot to reach any given reference angle by producing
accelerations at the wheels’ motors. A simple PD controller is sufficient for this. This
controller is represented in Figure 5.1.

PD Controller

Wheels'
acceleration

Angle
errorReference

angle

+

Measured
 angle

-

Figure 5.1: PD control system with the error computed from a reference angle set by
the user and the measured angle, and return a command for the wheels’ accelerations.

5.2.2 Controller with equilibrium point reference
This first control system has a major problem: if the angle imposed is not precisely
the angle of equilibrium, a small force will appear. This would result in the need of
a constant acceleration. This is not suitable for the hardware, as the motors would
saturate in speed quite quickly. Furthermore, the robot would be in constant motion,
which is very annoying for this type of application.

The solution is therefore to impose the reference angle as the angle of equilibrium. This
evolution of the controller is shown in Figure 5.2.

5.2.3 Finding the equilibrium point
The angle of equilibrium is not straightforward to find. It is defined as the pitch angle
at which all the forces acting on the robot cancel each other out. There are several
ways to find it:

1In control theory, the poles of a state space representation is used to show the stable or unstable
behaviour of a system and the way it oscillates.

35

CHAPTER 5. CONTROLLER

PD Controller

Wheels'
acceleration

Angle
errorEquilibrium

angle

+

Measured
 angle

-

Figure 5.2: PD control system with the error computed from the equilibrium angle and
the measured angle and return a command for the wheels’ acceleration.

• Calculating the balance point: based on the robot’s computer-aided design
(CAD), the robot’s theoretical balance angle can be calculated. The problem is
that this measurement is not exact, and there will be a small variance with the
actual value. This will inevitably imply constant acceleration.

• Measuring the equilibrium point: this can be done by turning the robot
upside down, and it will naturally stabilize at its stable equilibrium point. By
adding 180° to this measurement, the unstable equilibrium point is obtained.
The measurement can be made directly by the robot’s sensor. However, certain
problems can still be identified:

– Components could move when the robot is turned upside down, falsifying
the measurement.

– The equilibrium point is set as a constant, but in reality it may vary over
the robot’s use. If the robot is used to transport goods, its center of mass
will vary depending on the payload, and so will its equilibrium point. It
could also vary depending on the external environment. For example, if the
robot is positioned on a slope, its point of contact on the wheel changes. As
the ground’s reaction force is applied to it, the point of equilibrium is also
modified.

This method is therefore not suitable for practical use either.

• Continuously updating the equilibrium point: the control system detects
by itself when the robot moves away from its equilibrium zone, and evolves its
equilibrium point accordingly. This strategy, when implemented correctly, is
the most robust, as it allows the robot’s behaviour to be adapted to multiple
disturbances affecting its equilibrium point.

The most advantageous strategy is the third one. It is represented in Figure 5.3.

5.2.4 Equilibrium angle controller
A specific controller can be dedicated to dynamically compute the angle of balance.
Its output is therefore the angle of equilibrium, although the choice of input is more
complex. For this application, the wheels’ speed as inputs has been adopted:

• Speed is a good indicator of the robot’s equilibrium: when the robot starts moving
at high speed in one direction, it is highly likely that the angle of equilibrium is
on the other side of the robot.

36

CHAPTER 5. CONTROLLER

Real time equilibrium
angle evaluator PD Controller

Wheels'
acceleration

Angle
error+

Equilibrium
angle +

Measured
 angle

-

Figure 5.3: PD control with the error computed from equilibrium angle and the measured
angle and return a command for the wheels’ acceleration. The equilibrium angle is
continuously updated.

• Speed control is perfect for making the robot move with the desired speed, as the
user could wish. It also prevents the robot from going beyond the speed limits of
what the hardware is able to deliver.

To do it a PI controller is used as shown in Figure 5.4 .

PI Controller PD Controller

Wheels'
acceleration

Angle
error+

Equilibrium
angle +

Measured
 angle

-

Speed
error+

Reference
speed +

Measured
speed

-

Figure 5.4: PD control for stabilisation with the error computed from the equilibrium
angle and the measured angle and return a command for the wheels’ acceleration. The
equilibrium angle is previously computed from a PI controller, which takes a reference
speed and the measured speed as input.

In this way, the proportional term has an effect on the speed limit. The I term is linked
to the integral of the speed and therefore to a notion linked to distance. In this way,
stabilization takes place over the distance. The result is a behaviour similar to that of
a marble settling at the bottom of a bowl. A limiter on the I term has been installed to
prevent the robot from tilting too much when translated manually. The proportional
term P is linked to speed, and is used to tilt the robot in the right way to obtain the
desired speed.

5.3 Enhanced stability engine

5.3.1 Advance speed profile
To avoid disturbing the system too abruptly, the speed reference is incremented progres-
sively on the basis of a trapezoidal profile. This means that the speed evolves from an
initial speed to a final speed based on a constant acceleration during the transition. This
avoids oscillations in the robot due to the way the controllers operate when changing
the reference speed. The trapezoidal speed profile is represented in Figure 5.5.

There are also other profiles that could be used, such as 5th degree interpolation, which
allows the acceleration, and therefore the forces, to be continuous during the transient
speed period.

37

CHAPTER 5. CONTROLLER

sp
ee

d
time

speed command
speed reference

Figure 5.5: Trapezoidal profile for speed reference transition.

5.3.2 Rotation speed profile
Even if there is no direct link between turning speed and stability, a similar speed
profile can be applied for rotation speed control.

Such a trapezoidal speed profile will produce fewer sharp movements and therefore
induce less noise on the measurements and avoid wheel slip.

5.4 Controller block representation
The controller used in the theoretical representation of the overall system is composed
of the stability engine in itself and the trapezoidal speed profile limiters. This block is
represented in Figure 5.6:

PI PD
+

-

+

Controller - stability engine

-

Figure 5.6: The schematic representation of the controller block. The PI and PD
sub-controllers are represented with their respective error calculation. The two speed
profiles are shown in the upper left corner, in order to compute vref and ϕ̇ref .

38

Chapter 6

Motor drivers

The purpose of the motor drivers is to generate commands that can be interpreted by
the actuators on the basis of commands generated by the controller.

There are two types of commands used to control the robot:

• Wheels acceleration awheels.

• Turning speed of the robot ϕ̇.

On the other hand the physical device needs two inputs:

• The left wheel speed vleft.

• The right wheel speed vright.

Therefore, the two commands should be combined in a way that the two inputs of the
motors operate the command as expected. In addition, a logic controller system must
be added to comply with the specific commands of the high-level controller.

6.1 Wheel speed computation
In this section, the computation of motors inputs based on acceleration and rotation
components will be described.

6.1.1 Acceleration integration
To make the robot follow a given acceleration by providing the speed, a continuous
integration is required:

vadvance =
∫

awheelsdt

6.1.2 Rotation control
To make the robot turn, a speed difference between the wheels is required. To link the
turning speed (°/s) with the differential wheel speed (cm/s), the following equation has
to be used:

39

CHAPTER 6. MOTOR DRIVERS

ϕ̇ = vdiff
L

2 · 180
π

(6.1)

⇔ vdiff = ϕ
2
L

π

180 (6.2)

6.1.3 Left and right wheel speed
The formula for the left and right speeds is just a simple addition or difference of the
advance and differential terms.

vleft = vadvance − vdiff (6.3)
vright = vadvance + vdiff (6.4)

With vadvance the instantaneous speed from the acceleration command to balance the
robot. The differential speed concept is well represented in Figure 6.1.

L

Figure 6.1: Top view of the robot while a differential speed is applied to the wheels in
order to perform a turn.

6.2 Logical command operator
The purpose of the logical command operator is to control the behaviour of the driver
according to the flags given by the high-level logic. It is used to:

• Control the speed/position of the lifting arms.

• Deactivate the motors in the event of an emergency stop or at rest.

• Impose a speed on the wheels, this is useful for two reasons:

– Induce a free fall by setting the speed to 0.

– Operating a counter-rotation when the lifting mechanism is in action, either
in a raising or a lowering sequence. This allows to not move the wheel-ground
contact point during these sequences. To achieve that, the wheels’ angular
velocity should match the lifting angle rate.

It also provides feedback to the high-level controller on the lifting arms position.

40

CHAPTER 6. MOTOR DRIVERS

6.3 Motor drivers block representation
The theoretical implementation of the motor drivers block is represented in Figure 6.2.

Motor drivers

+

+ +

k
-

Logical
commands

operator

Figure 6.2: The schematic representation of the driver block. The acceleration is
integrated in order to get the advance speed, which is then provided to the sum blocks
in providing the left and right speeds. The logical command operator imposes speeds
to the wheels and controls the lifting mechanism.

41

Chapter 7

Executive controller

The purpose of the executive controller is to switch between several different operating
states according to requirements from the application domain. There are several ways of
implementing such a high-level controller, such as a series of logic functions or a finite-
state machine (FSM). The FSM was chosen for its ease of creation, implementation,
understanding, extension and reuse. In this self-balancing use case, it is mainly used to
execute the initial lifting and final lowering sequences but the proposed framework is
able to capture any kind of finite state machine and associate events from the designed
system to trigger transitions. This section start by describing the FSM framework
before illustrating the FSM of the self-balancing robot.

7.1 Finite State Machine Framework
The FSM is a simple directed graph connecting states and transitions which can easily
be represented graphically in modelling languages such as UML as pictured in Figure
7.1. They do not allow sub-states inside a state.

• States are used defined and identified by a labelling name. A specific state is
the initial state in which the system is at startup. A possible final state can
capture the system at shutdown. When up and running, control system transition
between different operating modes (possibly nominal or degraded). The states
are completely connected by transitions with at least one incoming and outgoing
transition except possibly for the initial and final state.

• Transitions enable to move from a state to a connected state. They are specified
by a set of logical rules (or guards) that must be met depending of the actual
state. In our framework, those rules are based on a set of flags of different natures:

– user inputs: a specific command to move the robot in some direction

– sensor input: some key condition detected in the environment (robot is
falling)

– actuator feedback: giving information about progress or completion of some
action (e.g. arm extension) A more precise description of the flag mechanism
is given in Chapter 8.1.

42

CHAPTER 7. EXECUTIVE CONTROLLER

7.2 Robot’s Finite State Machine
In the case of this self balancing robot, the different operating states are:

• Rest/emergency: motors are disabled , they have no holding current.

• Raising: the robot is lifted using its lifting mechanism.

• Stand up: dynamic balancing state, the lifting mechanism retracts.

• The lowering sequence takes place in three parts:

1. Prepare arms: the robot is still in dynamic balancing and extends its lifting
mechanism.

2. Free fall: the robot sets the motors’ speeds to 0 in order to fall into the
extended lifting mechanism.

3. Soft fall: the robot retracts its lifting mechanism.

Those states are connected as shown in Figure 7.1:

Get_Up
Rest

Robot_Up

! Get_Up

Raising

! Get_Up

! Robot_Up

Stand up

Arm_Ready

Get_Up

Soft fall
! Robot_Up

Free fall
Arm_Ready

Get_Up

! Robot_Up

Prepare arms

Figure 7.1: Bloc diagram of the FSM representing the state of the robot with each
transition.

The transitions are associated with flags of the following kinds:

• User inputs such as Get_Up or !Get_Up (get down). All user flags are listed in
AppendixE

• Angle trigger: Robot_Up will allow to detect the robot is up and know when to
start the dynamic balancing or when to start retracting the lifting mechanism
during the lowering sequence.

• Motor driver feedback: Arm_Ready enables to know when the lifting arms are
fully extended or retracted.

All details relating to the implementation of the FSM are given in Section 8.1

43

Part II

Implementation

44

Chapter 8

Software architecture

This section describes how the different blocks have been implemented on the various
electronic boards, explaining their software architectures. The blocks of the overall
system detailed in Part I are highlighted with different colours in Figure 8.1 to show on
which board they run (GRiSP or ESP32).

Preprocessing

PI PD
+

-

+

Controller - stability engine

Physical device Motor drivers

+

+ +

k
-

-

Kalman filter

or

Complementary
filter

User inputs

Executive controller

Logical
commands

operator

Legend
Analog \ continuous dataflow

Logical \ discrete dataflow

Signal select wire

Stability loop component

High level loop component

GRiSP implementation

ESP32 implementation

Pmod NAV

Figure 8.1: Global system with highlighted tasks assigned to GRiSP and ESP32. Most
tasks are assigned to GRiSP. The parts relating to interaction with the motors, i.e.
drivers and speed measurement, are dedicated to the ESP32 only. User input is shared
between these two boards, as user data is received by LoRa on ESP32 and directly
transferred to GRiSP via I2C.

Figure 8.2 shows the overall software architecture, resulting from the various opti-

45

CHAPTER 8. SOFTWARE ARCHITECTURE

Core 1 Core 2

hera_interface main_loopbalancing_robot PID_speed

PID_stability

GRiSP

ESP32

I²C communication

Pmod
NAV

SPI communication

Figure 8.2: Overall software architecture.

misations (see Chapter 9). Communications between processes, between cores and
between electronic boards are also detailed. The aim of this chapter is to link the overall
theoretical system (as shown in Figure 8.1) to the software architecture.

8.1 GRiSP software architecture
The GRiSP runs on Erlang. Programming with this language is very particular,
as Erlang favors the construction of multiple processes. An Erlang process can be
considered as a very light thread, i.e. a piece of code that runs autonomously, "living"
simultaneously among other processes. Processes can interact with each other by
sending messages. They can also spawn new processes.

From this point of view, a process becomes the ideal tool for hosting a control loop,
where running independently and at an adapted frequency is a key factor.

As seen in Figure 8.3, the software part of the robot running on GRiSP is composed of
four different processes:

• The GRiSP application with the process of balancing_robot.

• Hera with the process hera_interface.

• The robot with the process main_loop.

• The PID controllers with the processes PID_speed and PID_stability.

8.1.1 GRiSP application process: balancing_robot
This process is the first to be launched after the the GRiSP has booted up. Once
balancing_robot has been spawned, it calls its start/2 function. Which initialises
the supervisors, the Pmod NAV and the Numerl library. It also spawns the second
process, which is hera_interface.

46

CHAPTER 8. SOFTWARE ARCHITECTURE

spawn()
balancing_robot hera_interface

Interface with the
robot

Logging

spawn()
main_loop

Sensor
measurements

ESP32 input

Preprocessing

Stability engine

Motor command
output to ESP32

Data acquisition

spawn()
PID_speed

PID_stability

FSM

GRiSP application Hera Robot PID controller

Legend
Process communication

Process spawning
Sequential execution

hera_com

hera_data

Figure 8.3: Process architecture running on GRiSP.

8.1.2 Hera process: hera_interface
This second process is a hub used to communicate between Hera and the robot process.
It allows to keep the functionalities of Hera while letting the main_loop process run
by itself. This choice is an optimisation detailed in Section 9.7. It uses the behaviour
of hera_measure which has two callback functions that must be implemented: an
initialisation function and a looping function [7] [43].

• Initialisation: This function creates the main_loop process and saves its
process ID to be able to communicate with it. It also initialises a function to start
the loop, as required by hera_measure.

• Loop: This function has two tasks: retrieving data from the robot and logging the
values when asked to. The first task is done by using the process ID of main_loop
and sending messages to it. Any query made by the user can be implemented in
main_loop. The second task is also done by exchanging messages. To better
fit the demands of the project, modified functions for logging are used instead of
using the ones implemented in Hera. At each new logging sequence, a new file is
created with the logged values.

8.1.3 Robot process: main_loop
This process hosts the loop responsible for the self balancing. As the previous process,
it is divided into two parts: the initialisation part and the looping part. The loop
executes many different tasks detailed hereafter.

• Initialisation: an Erlang term storage (ETS) table, used to store and retrieve
data inside a process, is initialized to allow dynamic modification of specific

47

CHAPTER 8. SOFTWARE ARCHITECTURE

parameters. This is very useful for testing purposes. The gyroscope is calibrated
to get rid of its DC offset, ensuring accuracy of measurement. This is followed
by the launch of the I2C communication and the initialisation of the Kalman
filter. Finally the two last processes for the PID controllers are spawned and their
process IDs are saved for communication between the robot and the controllers.

• Loop: The loop is composed of a set of sequential functions:

1) Sensors measurements Three values are measured by the Pmod NAV at
each loop: the angular velocity with respect to the y-axis of the Pmod NAV and
the acceleration in the x-axis and z-axis of the Pmod NAV.

2) I2C input Five bytes are received from the ESP32 through I2C. The four
first bytes represent two half-float values for the rotation speed of the left and
right wheels of the robot. The last byte is made of eight flags, each represented
by one bit. This is shown in Table 8.1.

1 2 3 4 5
Speed left Speed right Input

flags

Table 8.1: Bytes received via I2C from ESP32.

The variable vmes shown on the global diagrams corresponds to the average of the
left and right speed measurements. This average value could have been calculated
directly and sent from the ESP32, saving two bytes in the transfer, but for future
position calculation purposes it was considered worthwhile to supply both velocity
values. Regarding last byte, the eight bits are detailed in Table 8.2

1 2 3 4 5 6 7 8
Arm_Ready Switch Test Get_Up Forward Backward Left Right

Table 8.2: Bit decomposition of the I2C input flags byte.

Bit number one is the feedback flag from the lifting mechanism, the seven remaining
bits are users commands. Switch is used to switch from the Kalman (1) filter
to the complementary filter (0). When Test is set to 1, data recording starts.
Get_Up is an instruction used to switch between the self-balancing (1) and the
resting position (0). The four last bytes are direction commands.

3) Preprocessing This task takes care of the computation of the angle of the
robot as explained in Chapter 4. At each iteration, it first computes the angle
as seen from the accelerometer data. It is then used to feed the Kalman filter as
well as the complementary filter.

1 %Angle based directly on the sensors
2 Angle_Accelerometer = math:atan(Az / (-Ax))*?RAD_TO_DEG,
3
4 %Kalman filter computation
5 {X1, P1} = kalman_angle(Dt, Ax, Az, Gy, Gy0, X0, P0),

48

CHAPTER 8. SOFTWARE ARCHITECTURE

6 [Th_Kalman, _W_Kalman] = mat:to_array(X1),
7 Angle_Kalman = Th_Kalman*?RAD_TO_DEG,
8
9 %Complementary angle computation

10 K = 1.25/(1.25+(1.0/Mean_Freq)),
11 {Angle_Complem_New, Angle_Rate_New} = complem_angle({Dt, Ax, Az, Gy, Gy0, K, Angle_Complem,

Angle_Rate}),
12
13 %Select angle between kalman or complementary
14 Angle = select_angle(Switch, Angle_Kalman, Angle_Complem),

Finally, it selects which angle should be used in the control loop between Kalman
and complementary based on the Switch input flag mentioned above.

4) Stability engine As explained in Chapter 5, its purpose is to compute the
required acceleration to balance the robot in real-time, based on the measured angle
and the robot’s speed. To do this, a first communication with the PID_speed
process is established in order to get the reference angle. This value is then
communicated to the PID_stability process to retrieve the acceleration required
for stability.

The stability engine also computes trapezoidal speed profiles for both the reference
advance speed, given to PID_speed, and the reference rotation speed, given
directly to the motor drivers.

5) Executive control FSM The implementation of the FSM is shown in Figure
7.1, which repeats the basics explained in Chapter 7, and specifies the set of
trigger flags for state changes.

All the transitions are triggered based on three different flags: Get_Up, Arm_Ready
and Robot_Up. These flags are detailed in Table 8.3. The first two flags are
inputs from the ESP32 as mentioned above, and are provided by the user. The
last flag depends on the measured angle. To avoid problems around the switching
point of the value of Robot_Up, a Schmidt trigger has been implemented. This
means that the trigger to set the flag to 0 is higher than the trigger to set the
flag to 1.

Flag Value of 1 Value of 0
Get_Up The robot must get up. The robot must get

down.
Arm_Ready The arm of the robot

is either fully extend or
fully retracted.

The arm of the robot is
in a transition phase.

Robot_Up The angle of the robot
is smaller than 18°.

The angle of the robot
is greater than 20°.

Table 8.3: State flags of the robot.

Each state returns output flags that are later interpreted by the ESP32. These
different output flags are: Power, Freeze, Extend and Robot_Up_Bit, F_B as
detailed in Table 8.4

49

CHAPTER 8. SOFTWARE ARCHITECTURE

Flag Value of 1 Value of 0
Power The motors must be turned on The motors must be turned off
Freeze The motors must be in holding

state
No action on the motors

Retract The arm must be in the ex-
tended state

The arm must be in the re-
tracted state

Robot_Up_Bit The robot is in dynamic balanc-
ing

The robot is resting on the lift-
ing arms

F_B The robot is tilted forward:
Angle > 0◦

The robot is tilted backward:
Angle ≤ 0◦

Table 8.4: Output flags.

The three first flags, Power, Freeze and Retract, are command flags that are
interpreted by the logical command operator of the motor drivers (see Section
6.2). The two remaining flags are indicator flags also used by the logical com-
mand operator. Their purpose is related to the wheels’ counter-rotation during
lifting/lowering sequences (see Section 3.1.3).

– The F_B flag is used to know in which direction it is required to turn the
wheels, as it depends on the leaning side of the robot.

– The Robot_Up_Bit indicates when the robot is in dynamic balancing. This
is used in order to stop the wheels’ counter-rotation after lifting up.

6) I2C output to ESP32 Five bytes are sent through I2C to the ESP32.
As seen in Table 8.5. The first four bytes represent two half-float values: the
acceleration command of the motors and their differential speed command. Both
are computed in the stability engine. The last byte represents the four output
flags explained in Table 8.4. These flags are written on the five leftmost bits of
this byte, as seen in Table 8.6.

1 2 3 4 5
Acceleration Differential speed Output flags

Table 8.5: Bytes transmitted to ESP32 via I2C.

1 2 3 4 5 6 7 8
Power Freeze Retract Robot_Up_Bit F_B

Table 8.6: Bit decomposition of the I2C output flags byte.

7) Data acquisition The last task executed, before returning to the beginning
of the loop, is the communication with the Hera interface. The outgoing data is
useful for logging, or any other application required by the user outside the scope
of this master thesis. This is done by sending a message at the start, and one at
the end, of a logging sequence. During the logging sequence, messages with data
are sent to the interface. In the interface, the data is retrieved and written into a
file for later use.

50

CHAPTER 8. SOFTWARE ARCHITECTURE

matching case «input»

Message handler
"blocking receive"

pid_controller

Message

pid_controller_iteration

Errors computation

Command computation

Send command

Master process

PID Command
other cases

PID controller process

Legend
Sequential execution

Process communication

Figure 8.4: PID controller process architecture: the pid_controller waits until a
master process sends the "input" message to get back the resulting command through the
pid_controller_iteration function. Other cases could also be used to transmit data
to modify parameters, in theses cases no command is expected, then pid_controller
loop back on itself.

8.1.4 PID controller processes: PID_speed and PID_stability
The PID controller has been implemented in such a way that it can be instantiated by
several processes running completely independently. Its architecture is shown in Figure
8.4 and more detailed below:

Each process running the PID controller starts with an initialization function and
continues with a looping function:

• Initialization: all the internal parameters are initialized, and the loop is started.

• Loop: this takes place in two stages, via two functions: pid_controller and
pid_controller_iteration.

– pid_controller works like a big mailbox. It waits to receive a message from
a master process. Once the message has been received, it interprets it and
decides either to call pid_controller_iteration to calculate a control command
or to modify internal variables based on the message received. The Table 8.7
lists all the commands that can be interpreted by this function.

– pid_controller_iteration is the calculation part of the process, where propor-
tional, integral and derivative errors are calculated. Based on these values,
the command is computed taking into account the effect of the limiters. The
command is sent to the process master, and the function ends by calling
pid_controller again, closing the loop.

51

CHAPTER 8. SOFTWARE ARCHITECTURE

Atom matching case Description Next called function
exit Terminate the process None
kp Modify the Kp parameter pid_controller
ki Modify the Ki parameter pid_controller
kd Modify the Kd parameter pid_controller

limit Set a new value on the output
command value limiter1 pid_controller

intlimit Set a new value to the integral
error limiter1 pid_controller

setpoint Set a new setpoint pid_controller

input
Provide a new input value in
order to compute the resulting
PID command

pid_controller_iteration

reset Set the integral error to 0 pid_controller

Table 8.7: Atom cases matching logic inside the pid_controller function.

8.2 ESP32 software architecture
The code running on the ESP32pico CPU is written in ino and C++, and runs on two
cores [44]. It is made out of three parts:

• LoRa communication through SPI, to receive messages from the user.

• I2C communication, to receive commands from the GRiSP and send back measures
and user inputs. The ESP32 behaves as a slave.

• Motor engine, to generate the signals required to run the motors from the GRiSP
inputs.

The code overview running on ESP32 is shown in Figure 8.5.

8.2.1 LoRa communication loop
This is the main loop of the ESP32 core 1. Its purpose is to constantly retrieve the
user inputs transmitted over LoRa. This is done by communicating with the embedded
LoRa module via SPI. Each message is sent twice and compared to reduce the risk of
message corruption. Some flags sent by the user, such as the emergency stop command
or the test trigger, can be directly interpreted by the LoRa event handler module. Two
libraries are used to implement this module: <SPI.h> [45] and <LoRa.h> [46].

8.2.2 I2C communication
The ESP32 acts as a slave on the I2C. On an incoming request from the master, it
must interrupt its execution sequence to process that requests coming from the GRiSP.
These interruptions are instantiated in core 1 and therefore only affect this core.

There are two types of interruptions:
1A non-positive value deactivates the limiter.

52

CHAPTER 8. SOFTWARE ARCHITECTURE

User inputs
SPI Lora read

Emergency
stop

LoRa event handler Output signals
generator

Speeds

 Speeds Calculator

Core 1 Core 2

I²C send request
interrupt Measure Encode and send

data to GRiSP

I²C receive interrupt Read and decode
GRiSP data

Accelerations
and displacement

GRiSP event handler

Interrupts

Legend
Execution flow Data flow

LoRa
communication

loop

I²C
communication

Motor
engine

Figure 8.5: Bloc diagram of the code structure running on the ESP32.

• Send request: when the master wants to read information from the slave. In this
case, user input flags, feedback flags and speed measurements are involved.

• Receive: the master transfers a series of data to the slave, in this case acceleration
and command flags.

The <Wire.h> [47] library is used to implement this module.

8.2.3 Motor engine
The Motor engine generates a set of signals for each motor. They consists of two parts:

• signal generator: generates signals at the right frequency to control the step inputs.
It is also responsible for controlling the direction signal and the enable signal used
to activate/deactivate the motor.

• speed calculator: this block performs all calculations related to motor speeds
(integration of acceleration, application of differential speed, moving the lifting
arms). To obtain the desired speed for each motor it requires to calculates the
frequencies of the step signal of each motor :

fstep = v

2π × r︸ ︷︷ ︸
Speed to rev per second

× #steps per turn × #microsteps︸ ︷︷ ︸
Total number of microsteps per rev

(8.1)

53

Chapter 9

Problems and optimisations

The system as described in its final version throughout this master thesis is, among
other things, the result of multiple optimisations and problem solving. Some of these
optimisations are crucial for achieving dynamic balancing, while others have contributed
to improving the system’s performance. In this section, these optimisations and their
effects are presented. They are summarised as hatched areas in Figure 9.1 representing
the overall software architecture.

Core 1 Core 2

hera_interface main_loopbalancing_robot PID_speed

PID_stability

GRiSP

ESP32

I²C communication

Legend

Pmod
NAV

Motor actuation
optimisation

Hera latency
optimisation

I²C delay
optimisation

Sensor operating
mode optimisation

Data recording
optimisation

SPI communication

Figure 9.1: Diagram of the overall software architecture. The parts suffering from
problems and corrected by optimisation are hatched.

The objective of these optimisations is always the same: increase the update fre-
quency of the stability loop. However, evaluating the performance of each opti-
misation on the basis of frequency gain is not a good metric. Indeed, comparing two
successive optimisations on the basis of their frequency gain does not make it possible
to determine which one is the most efficient. This can be seen in the example shown

54

CHAPTER 9. PROBLEMS AND OPTIMISATIONS

in Figure 9.2. Instead of the frequency, the gain over the period of the loop
should be used in order to keep a comparable basis for all the optimisations.

Initial
frequency : 50Hz
period : 20ms

1st optimisation
frequency : 67Hz
period : 15ms

2nd optimisation
frequency : 100Hz
period : 10ms

Figure 9.2: Example of successive optimisation resulting in different frequency gains.
The spared time period, ∆T , is the same but the frequency, ∆f , gain is different.

Another key factor to take into account when optimising is the delay. The
delay corresponds to the end-to-end time between the measurement and the application
of the resulting command to the actuators. When using a system with serial processes
communicating with each other, as is very easily done in Erlang, it is possible to
have a high update frequency but relatively long end-to-end delays. To ensure good
controlability, when a measurement is taken, this new information must pass as quickly
as possible through all the successive loops to reach the actuator in the form of a
command.

9.1 Available GRiSP optimizations
There are already a few optimisations provided by the GRiSP :

• The upgrade from GRiSP to GRiSP 2 offers huge performance gains.

• The use of the Numerl library, offering a set of NIFs to speed up matrix computa-
tions [9].

9.2 GRiSP GPIO frequency
Problem statement: at the beginning of the design period, it was considered to
directly feed the stepper driver cards via signals generated by the GRiSP GPIOs. As
shown in Appendix G, the Erlang functions available under GRiSP are not able to
generate proper signals at the required frequencies. Using fstep formula of Subsection
8.2.3 results in a velocity of 2910 steps per second, thus a frequency of 2.9 kHz which is
too high.

Solution: to overcome the problem of the speed of actuation of the motors, another
circuit board than the GRiSP has been used. The circuit board used is an ESP32. This
circuit board has a maximum GPIO switching frequency of 122 kHz. which is more
than enough to control the motors.

9.3 Motor actuation
Problem statement: in early versions of the code running on the ESP32, lots of
vibration was generated by the motors, to the point where some nuts and screws became
loose. This problem is caused by fluctuations in frequency generation within the ESP32.
After investigation, it was determined that the main cause lay in the fact that the

55

CHAPTER 9. PROBLEMS AND OPTIMISATIONS

implementation of the communication part and the engine were running on the same
core. Hence, during each I2C communication interrupt, it was not possible to generate
the proper signal required to make the motors spin as expected. A similar problem can
occur with LoRa communication.

Solution: to counter this problem in subsequent versions of the code, motor signal
generation is assigned to a second core entirely dedicated to it.

Problem statement: another source of fluctuation in frequency generation has also
been identified: the use of serial print. These are very useful for debugging but have a
harmful effect on the code execution on both cores at the same time. Using a serial
print on one core affect the generation of GPIO signals on the other core. This should
then be avoided at all costs when attempting to generate a signal to control stepper
motors.

Solution: by placing the motor engine on the 2nd core and banning the use of serial
prints, the motors run very smoothly, as explained in 8.2

9.4 Hera measure latency
Problem statement: Initially only one hera_measure process executed all the
tasks of the main_loop process explained in Chapter 8. This is the easiest way of
implementation but it doesn’t make use of the potential of Hera and Erlang. To fully
use this potential, the measurement task was separated from the other tasks and moved
to an additional hera_measure process. Communication between these two processes
are provided by hera_com and hera_data. This is how Hera is expected to be used.
The purpose of doing this is to avoid the whole system from crashing due to Pmod
NAV crashes.

This way of setting up the Hera files led to poor robot performance. This was due
to the delay between the starting point of a measurement in the Pmod NAV and the
arrival of this measure in the Kalman filter. In between these two actions, different
tasks are executed, like sending the data through hera_com to the hera_measure
process with the Kalman filter, receiving the input from the ESP32 through I2C etc.
Every little task takes some time to execute, which adds up to the total delay. The
problem with an excessive delay is the reactivity of the motors to the falling motion of
the robot. A delay that is too high will prevent the motors from reacting fast enough
for the robot to stay in equilibrium.

Let’s sum up the different delays that have to be taken into account:

• t1: The time for the Pmod NAV to make the measurement.
• t2: The time for the Pmod NAV to send the measurement to the GRiSP board.
• t3: The time for the first hera_measure process to make its calculations.
• t4: The time for hera_com.erl to send the values to the second. hera_measure

process
• t5: The time to make the angle computation of the kalman filter in the second

hera_measure process.

56

CHAPTER 9. PROBLEMS AND OPTIMISATIONS

The delays t1 and t2 are not easily measurable but are negligible with respect to the
rest of the delays. The total delay of the measure from the Pmod NAV to the Kalman
filter is approximately 20.34 ms. By looking at each delay individually, one delay stands
out. The delay for the communication between both hera_measure processes through
hera_com takes approximately 15.19 ms. This represents almost 75% of the total delay.

The maximal delay that has been empirically observed, by simulation, to lead to a
marginal stability, is approximately 20 ms. The said simulation is detailed in Appendix
F. This limit makes it impossible to use the communication between Hera processes in
the application of stabilising a falling object like the robot of this master thesis.

Solution: fall back to initial design with a single measure process. Using Hera
and Erlang to their potential would have been useful, but it is not possible in such
an application. Nevertheless, this does not mean that Hera cannot be used at all, as
explained in Chapter 8.

9.5 Bus communication latency
Problem statement: one of the tasks of the main_loop process is to exchange data
with the ESP32 through I2C. This type of communication can be quite slow as its
throughput is limited by its clock frequency of 100 kHz. This means that the maximum
throughput of the I2C bus is 12.5 kB/s. The delay of sending 1 byte is thus 0.08 ms.

Each iteration of the loop transfers a particular amount of data between GRiSP and
ESP32, two transfers occurs :

• from ESP32 to GRiSP, the payload consist of : left speed (float) + right speed
(float) + input flags

• from GRiSP to ESP32 the payload consist of : acceleration (float) + differential
speed (float) + output flags

For each communication, the slave address must also be specified during transfer.

With the double precision float as used in Erlang, each float is 8 bytes wide, the flags
and address being 1 byte wide each. Each transfer is therefore 18 bytes long and takes
delay of 1.44 ms. this result in a total of 36 bytes at each iteration and thus a delay of
2.88 ms.This is a huge delay for such a system.

Solution: in order to make the optimal use of the limited bandwidth, the amount of
bytes sent can greatly be reduced by trading off some bytes in exchange for a lower
precision. The type of floats sent has been reduce to the half-precision floats[48]. This
allows to send 2 bytes per float instead of 8 bytes for double-precision floats. Reducing
the total amount of bytes sent to a total of 2 × 6 bytes which result in a total delay of
0.96 ms. This optimisation reduces transit times by a factor of 3, as shown in Figure 9.3

Double-precision floats are written on 64 bits: 1 sign bit, 11 exponent bits and 52
mantissa bits. In comparison, half-floats are written on 16 bits: 1 sign bit, 5 exponent
bits and 10 mantissa bits[49]. There is a trade-off between the amount of bytes storing
the information and the precision and range of possible values. Using half-floats reduces
the amount of bytes sent, but it also reduces the precision of the values and the range of

57

CHAPTER 9. PROBLEMS AND OPTIMISATIONS

Double-precision float Half-precision float
0

2

4

6

8

10

12

14

16

18

Nu
m

be
r o

f b
yt

es

Bytes transfered by I²C
Float 1
Float 2
Flags
I²C slave address

0.00

0.16

0.32

0.48

0.64

0.80

0.96

1.12

1.28

1.44

Tr
an

sf
er

t d
el

ay
 [m

s]

Figure 9.3: Number of bytes transferred via I2C at each communications. before and
after using half float representation.

possible values sent. As a general formula depending on n, values between 2n and 2(n+1)

have a precision of 2(n−10). This is more than enough in case of this master thesis.

9.6 Sensor operating mode
One of the main bottlenecks that has been solved late in the timeline of the project is
the configuration of the Pmod NAV. The default operating mode of the Pmod NAV is
to take measures at a rate of 59.5 Hz. When data is read from the Pmod NAV at a
faster rate, it returns the same value as if it had made the same measurement. This
sort of puts a boundary on the frequency of the whole system. To solve this problem,
the Pmod NAV was configured at 238 Hz which is higher than the maximal frequency
of the robot process.

Between two sampling times, the Pmod NAV averages the data before returning this
average. This acts as a low-pass filter by averaging out the high frequencies. Reducing
the noise before the Kalman filter reduces its performance. Even if the robot would
have been able to stay somewhat in equilibrium, increasing the Pmod NAV sample
frequency was necessary both reasons.

9.7 CPU load during data recording
Problem statement: in order to evaluate the system and study its performance
and limitations, a number of tests were carried out (see Part III). A range of data
should then be collected during these tests. However, it is essential that these tests
represent the reality as accurately as possible: they cannot have any impact on the
robot’s operation. In addition, for test analysis, it is essential to collect as much data
as possible. The sampling frequency should be as high as possible, ideally the same as
main_loop.

Initially, the test method had no impact on the robot’s performance because its sam-
pling rate was very low. The initial architecture consists of hera_interface sending a

58

CHAPTER 9. PROBLEMS AND OPTIMISATIONS

data request to main_loop at each of its loops and writing directly on receipt. This
made the frequency of hera_interface drop to about 60 Hz. The data request fre-
quency dropped to the same amount, which led to a lot of data lost as shown in Figure 9.4

main_loop

Fast loop

hera_interface

Slow loop

SD

data
request

write sample
during test

Send 1 sample after
each request

Low
throughput

Figure 9.4: Log records before optimisation, the sampling is as fast as hera_interface
frequency.

The solution to collect data at higher frequency without losing data was to buffer and
send a packet of samples from main_loop instead of a single sample. These packets
contain all the data from previous cycles not yet collected by hera_interface. The
frequency drop due to the file writes cannot be fixed without using a second GRiSP
that would take care of that task. After implementing this method, a large amount of
data was generated as expected.

However, this led to a new problem: writing such a large amount of data in real
time placed an additional load on the GRiSP CPU, causing the frequency of all the
processes to drop. This is shown in Figure 9.5

main_loop

Slow loop

hera_interface

Slow loop

SD

data
request

write pakets
during test

Hight througput slowing down
 the loop during test

Send pakets after
each request

Figure 9.5: Log records after first optimisation, the sampling is as fast as main_loop
frequency which is slow down due to data writing.

To solve this second problem, it is decided to write the data after the logging
sequence. To achieve this, the data is stored in an array in main_loop during the
logging sequence. At the end of this sequence, the array containing all the data is sent
to hera_interface which then writes everything in a file. This is shown in Figure 9.6

59

CHAPTER 9. PROBLEMS AND OPTIMISATIONS

main_loop

Fast loop

hera_interface

Slow loop

SD

data
request

Send everything
after test

write after
test

Figure 9.6: Log records after second optimisation, the sampling is as fast as main_loop
frequency with lower frequency drop.

This second optimisation comes with its own problems: appending new data to a large
array and writing all the data at once. These two problems cause a frequency drop
from 200 Hz to about 140 Hz during almost 30 seconds. This frequency drop is small
enough for the robot to be able to stay in equilibrium during this time span and does
not longer affect the logging period.

60

Part III

Evaluation

61

Chapter 10

Characterisation

The system as a whole is expected to behave in a well-defined way when faced with
stimuli. This chapter presents a study of the robot’s behaviour based on experimental
measurements under normal operating conditions and explore the system’s limitations.

Two different types of causes can have an impact on the robot’s behaviour, either an
internal command (from the user) or an external disturbance (from the environment):

• Internal command:

– Move forward/backward.

– Turn at a certain angular speed.

– Raise up and lie back down.

– Emergency stop.

• External disturbance:

– Frontal impulse.

– Additive mass, with and without offset.

– Inclined surface.

The tilt angle values used to explain the robot’s behaviour come directly from the
measurements made by the filters. No external angle measurement tools were used as
absolute reference, so the measurements could be biased because the angles are seen
from different filters, which could produce different values for the same angle measured.
For example, they could have filtered out angle spikes that may actually occur and thus
not perfectly represent the real situation.

Each test is described in Section 10.2. It is preceded by a first reference test in a-self-
balancing position without any stimuli applied. By characterising the robot’s limitations,
it is possible to determine the system’s operating zone. This is done in Section 10.3.
Throughout this chapter, the Kalman and complementary filters are compared.

62

CHAPTER 10. CHARACTERISATION

10.1 Reference case
The preliminary tests show how the robot behaves while in dynamic equilibrium
without being subjected to any intentional disturbance. This is useful to see the order
of magnitude of multiple parameters under the best possible conditions, a flat and
smooth surface with no external forces, in order to have a great comparative basis for
the other tests.

0 2 4 6 8 10 12 14
Time [s]

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20
Pi

tc
h

an
gl

e
[°

]

Kalman angle
Complementary angle

Figure 10.1: Evolution of the angle of the robot while in a stable upright position.

Figure 10.1 depicts two tests capturing the “natural evolution” of the robot’s angle
when it is not subjected to disturbances. The first is carried out using Kalman filter
and the second with data from the complementary filter.

The first point to note is the order of magnitude: oscillations are less than 0.1° which
is extremely low. It is very difficult for any observer to even see a slight angle and
displacement variation. This shows the robot’s perfect mastery of stability and attests
to the great work of the sensors, filters and control system.

Closer observation reveals that the complementary filter is slightly more subject to
oscillations than the Kalman filter. The use of a Fourier transform allows us to better
observe this phenomenon by associating an amplitude to each frequency on the same
test samples. The results of the Fourier transform are shown in Figure 10.2. It clearly
shows that the frequency content of the test with the Kalman filter is much lower than
with the complementary filter.

In both cases, a low frequency peak is observed. One at 1.664 Hz for Kalman and one
at 1.398 Hz for the complementary. That is the system’s natural frequency.

Finally, a last spike is observed around 30 Hz. This is due to the rigidity of the chassis.

63

CHAPTER 10. CHARACTERISATION

100 101 102
0.000

0.002

0.004

0.006

0.008

0.010

0.012

0.014

Am
pl

itu
de

 [°
]

Kalman filter

100 101 102

Complementary filter

Frequency [Hz]

Figure 10.2: Fourier transform of the two signals in Figure 10.1.

10.2 Behavioural study

10.2.1 Straight movement
This test shows the robot’s transition from rest to the speed desired by the user, which
is 30 cm⁄s in this case. It also shows the importance of using trapezoidal speed profiles.

0 2 4 6 8 10 12 14
8

4

0

4

8

Pi
tc

h
an

gl
e

[°
]

0 2 4 6 8 10 12 14
Time [s]

10
0

10
20
30
40
50

Ve
lo

cit
y

[c
m

/s
]

Robot speed
Reference speed

Figure 10.3: Evolution of the angle and
velocity of the robot when going forward
with a trapezoidal velocity profile.

0 2 4 6 8 10 12 14
8

4

0

4

8

Pi
tc

h
an

gl
e

[°
]

0 2 4 6 8 10 12 14
Time [s]

10
0

10
20
30
40
50

Ve
lo

cit
y

[c
m

/s
]

Robot speed
Reference speed

Figure 10.4: Evolution of the angle and
velocity of the robot when going forward
with an instantaneous velocity profile.

A first observation is the large variation in angle and speed after applying a new
command. This is due to the need for acceleration in order to change speed. As
demonstrated in Section 3.2, acceleration implies a force impacting the robot’s angle.

Immediately after a speed change command, it can be observed that the wheels’ speed
is opposite to the direction of the desired speed. This behaviour allows the robot to
angle itself in the right direction in order to be able to accelerate without falling.

It is clearly visible that the stabilization angle, once the robot is moving at 30 cm⁄s,
is slightly greater than 0. This indicates the presence of additional forces when the

64

CHAPTER 10. CHARACTERISATION

robot is moving at constant speed compared to when at rest. These forces have several
origins: wheel-ground friction, motor shaft friction and air friction.

Another observation at a non-null constant speed reference is that the variation of
the angle is greater than the one measured at a null velocity. This can be caused by
irregularities of the wheel and the ground, but might also be due to the set of forces
described above.

The use of the trapezoidal speed profile has a very positive impact: the comparison
of Figures 10.3 and 10.4 shows that without the trapeze, there is a peak angle of 8°,
whereas it is 5° degrees with the trapeze.

The speed profile also has a filtering effect on potential glitches coming from the user’s
speed command. These glitches have several origins, but the main one is due to signals
induced in the communication with LoRa and I2C. Their effect can be seen in dotted
red on Figure 10.4. The test with the trapeze was also affected by such glitches on the
command speed but it did not impact the reference speed thanks to this filtering effect.

10.2.2 Rotation movement
This test was carried out in normal conditions, with only a rotation command applied 1
second after the start of the test and deactivated 12 seconds later.

0 2 4 6 8 10 12 14
Time [s]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Pi
tc

h
an

gl
e

[°
]

Trapezoidal evolution
Instantaneous evolution
Turning region

Figure 10.5: Graph showing the angle of the robot when the robot is turning left.

It can be seen that the angle of inclination is affected by this change, with much greater
fluctuations than when the robot is not rotating. These fluctuations are probably due
to the hypothesis of being able to decouple the robot’s rotation from its stabilization,
which is therefore not entirely accurate. Robot rotation also induces new phenomena:
the gyroscopic effect, the centripetal force and the Coriolis effect. As a result, the robot
no longer operates under the same conditions, and the controller is no longer as well
adapted as it would be for normal conditions without rotation speed.

However, although the fluctuation is greater than in normal conditions, it remains
acceptable for this application and does not place the robot in a zone of vulnerability.

Slight differences can be seen in the application of a trapezoidal profile with lower
trapezoidal fluctuations. However, these differences are barely noticeable and probably
depend more on slightly different test conditions.

65

CHAPTER 10. CHARACTERISATION

10.2.3 Raise up and lie back down
This test shows the robot’s behaviour in the various operating phases described in
Chapter 7.

0 2 4 6 8 10 12 14
Time [s]

60

40

20

0

20

40

60

Pi
tc

h
an

gl
e

[°
]

Rest

Raising Stand up Prepare
arms

Soft fall

Free fall

Figure 10.6: Evolution of the robot’s angle when getting up and going back down.

In this test, the robot rises on one side (-60°) and gets down on the other (+60°). Each
phase has its own specific behaviour:

• [0.0; 1.0[Rest phase: the robot lies on one of the retracted arms of the lifting
mechanism.

• [1.0 : 2.61[Raising phase: characterized by the robot leaning on the lifting
mechanism. The angle evolution is very linear since the angular velocity is directly
that of the lifting mechanism, which is constant.

• [2.61; 11.02[Stand up phase: starting at an angle of -15° to the vertical, the robot
gradually stabilizes until it finds its equilibrium point while retracting its lifting
mechanism.

• [11.02; 12.75[Prepare arms phase: the robot extends its lifting mechanism, in-
ducing small and barely visible vibrations caused by the lifting mechanism’s
deployment.

• [12.75; 13.26[Free fall phase: the body is subject only to gravity due to the
motors’ speed set to 0.

• [13.26; 15] Soft fall phase, the robot is gradually lowered. Its linear behaviour
is the same as during the raising phase.

10.2.4 Emergency stop
This test shows how the robot behaves when it is suddenly stopped, i.e. when the
wheels are free to spin, with the emergency button hit after 1 second.

66

CHAPTER 10. CHARACTERISATION

0 2 4 6 8 10 12 14
Time [s]

0

20

40

60

80

Pi
tc

h
an

gl
e

[°
]

Figure 10.7: Evolution of the pitch an-
gle as seen from the Kalman filter after
emergency stop.

0 2 4 6 8 10 12 14
Time [s]

0

20

40

60

80

Pi
tc

h
an

gl
e

[°
]

Figure 10.8: Evolution of the pitch an-
gle computed from the accelerometer
data after emergency stop.

The graph shows a very strange behaviour:

1. The angle is 0°.

2. The angle rises from 0° to 50° quite rapidly.

3. The angle decreases from 50° to 35°.

4. The angle returns from 45° to 60°.

This is not at all what can be seen during the test: the falling robot bounces by a
few degrees due to the collision at around 60° and is directly at rest at 60° less than 2
seconds after the start of the fall. This strange behaviour of the angle measurement
results from a combination of two phenomena:

• The gyroscope saturation.

• The effect of the Kalman filter as implemented.

During the fall, the angular velocity exceeded the maximum velocity measurable by
the gyroscope of 245 °/s [5]. So even when the system kept accelerating, the gyroscope
kept reporting that the rotation speed was the speed at which it saturated.

The Kalman filter, which had a high degree of confidence in the gyroscope (due to
its low noise), decided to continue considering its data. The Kalman filter therefore
assumed that the body was falling at saturation speed, which indeed was lower than
the actual speed. Kalman naturally underestimated the angle after saturation. This is
why the 2 second spike corresponding to collision is at 50° and not 60° as observed in
reality. Figure 10.8 shows a behaviour closer to reality. The data of the accelerometer
doesn’t make much sense during the fall, but once the robot is still, the accelerometer
stabilises almost directly at the right angle.

Collision induces a rebound, during which the angular rate falls back below the saturation
value of the gyroscope and can therefore be well interpreted by Kalman, although it
is still screwed by believing it bounced at 50° instead of 60°. The filter estimates the
bounce angle at 35° while in reality it is more like 45°. It is only at rest that the effect

67

CHAPTER 10. CHARACTERISATION

of the accelerometer measurement starts to be taken into account, which explains the
slow transition to 60°.

The complementary filter suffers exactly from the same problem. However, more
advanced implementations of the Kalman filter can avoid this phenomenon by doing:

• Prediction enhancement: use of a complete physical model of the robot, not just
an integration model, in order for the robot to take the control input into account
so that it could know more accurately how the robot will behave.

• Saturation detection: when the gyroscope is saturated, the system should either
exclude it directly from the data or dramatically increase its variance (in order to
decrease the confidence) in the R matrix.

• Operating mode selection: it consists in changing the operating mode of the sensor
to measure higher rates once the saturation speed has passed. Therefore, the
associated variance values in the Kalman filter should be adapted.

10.2.5 Frontal impulse
The aim of this test is to introduce a disturbance similar to an impulse acting on the
robot’s body and to observe its behaviour according to the type of filter used. To make
the test repeatable, a significant acceleration of 40 cm/s2 was applied to the wheels
during the interval [0.5; 0.8[as shown in Figure 10.9.

0 2 4 6 8 10 12 14
Time [s]

12.5

10.0

7.5

5.0

2.5

0.0

2.5

5.0

7.5

Pi
tc

h
an

gl
e

[°
]

Kalman angle
Complementary angle

Figure 10.9: Evolution of the robot’s angle when reacting to a frontal impulse.

To reject this perturbation, the system must face two effects:

• The angle of inclination, measured at around 13°. The gravitational force has
more effect than at stability.

• The angular velocity: the system must counteract the rotational kinetic energy
that the body contains.

The results are clear: the disturbance is well rejected and the system returns to its
equilibrium position in a very short time of about 3 seconds. However, the system

68

CHAPTER 10. CHARACTERISATION

reacts strongly after the disturbance, leading to an overshoot. This overshoot is quickly
damped.

There is very little difference in the behaviour of the system depending on the choice of
filter. The small visible differences are probably due more to environmental variability
than to the effects of the filters. This means that the measurement bias pointed at the
start of this chapter would have a very limited impact when facing large variations, as
observed in this test where the measurements follow each other very closely.

10.2.6 Moment of inertia increase
This test aims to observe how the robot’s behaviour is affected when its moment of
inertia increases, possibly due to carrying a payload. A picture of the test setup can be
found in Appendix H.

0 2 4 6 8 10 12 14
Time [s]

0.10

0.05

0.00

0.05

0.10

0.15

Pi
tc

h
an

gl
e

[°
]

Base moment of inertia
Increased moment of inertia

Figure 10.10: Graph showing the evolution of the pitch angle during dynamic balancing.

The experiment indicates that with an increased moment of inertia, the system’s
performance around its equilibrium point deteriorates: the oscillations become larger
and slower compared to the initial state.

100 101 102
0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Am
pl

itu
de

 [°
]

Base moment of inertia

100 101 102

Increased moment of inertia

Frequency [Hz]

Figure 10.11: Fourier transform of the two signals in Figure 10.10.

69

CHAPTER 10. CHARACTERISATION

Frequency analysis further confirms these findings, showing a significant increase in
frequency content, particularly at low frequencies.

The main reason for these differences is that the increased inertia alters the time
constants of the system. As the controller parameters remain unchanged between tests,
the controller is less capable of adapting to this new scenario.

Another phenomenon observed during testing was the rigidity of the chassis. When
tested without any load, the robot barely flexed when moving. But with some added
weight to the top of the robot, flexion of the chassis during balancing is visible. This is
due to a lack of stiffness of the chassis itself and bad fixation points. This probably
contributed to the development of oscillations.

10.2.7 Slope
This test shows how the robot behaves when placed on an inclined surface. The
inclined surface implies a displacement of the wheel-ground contact point, impacting
the stabilization angle. It is possible to calculate the robot’s stabilization angle based
on knowledge of the center of gravity, wheel radius and slope angle.

Figure 10.12: Self-balancing robot at
equilibrium on a slope.

Figure 10.13: Triangle between contact
point, wheel center and center of gravity
to determine balancing angle.

Based on the triangle shown in Figure 10.13, the stabilisation angle θref is calculated
using the sine relationship:

r · sin(α) = h · sin(θref) ⇔ θref = arcsin
(

r sin(α)
h

)
(10.1)

The experiment was carried out by positioning the robot on an inclined plane directly
facing the slope. The plane was gradually tilted to establish several equilibrium points.
The results are shown in Figure 10.14. It reflects the expected result which is linear
over the tested slope range with a factor r/h at first order. The gap below 5 degree is
probably related to higher adherence.

These results show and confirm the ability of the robot to adapt its position and
movement to its environment.

70

CHAPTER 10. CHARACTERISATION

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0
Ground tilting angle [°]

0

2

4

6

8

10

Ro
bo

t e
qu

ilib
riu

m
 p

itc
h

an
gl

e
[°

]

Figure 10.14: Graph showing the equilibrium angle of the robot on a slope.

10.2.8 Offset loading
This test shows how the robot reacts when an asymmetrical load with respect to the
robot is added. The purpose of this test is to show that the robot can easily adapt its
angle of balance to any type of load it has to carry. A picture of the test setup can be
found in Appendix H.

0 10 20 30 40 50 60 70
Horizontal distance between center of masses [mm]

8

7

6

5

4

3

2

Ro
bo

t e
qu

ilib
riu

m
 p

itc
h

an
gl

e
[°

]

Figure 10.15: Graph showing the equilibrium angle of the robot with an offset mass.

The graph shows the value of the robot’s equilibrium angle for a mass that is progressively
shifted to the front of the robot. This graph confirms what was expected: the controller
can adapt the equilibrium angle dynamically without any additional external actions
required.

10.3 Limitations
The aim of this section is to study the limits of the system. There are many factors
limiting the stability of the device. Their characterisation is split into two categories:

71

CHAPTER 10. CHARACTERISATION

• Internal limitations refers to parameters that are directly part of the control
loop. This includes: speed command, start angle, motor voltage and processing
frequency.

• External limitations refers to a series of parameters that are part of the external
environment in which the system evolves such as slope and noise.

10.3.1 Speed command
The aim of this test is to measure the maximum feed speed that the robot can achieve
while remaining stable. In standard settings, the robot moves at a speed of 30 cm/s. It
was realized on the basis of successive tests in which the control speed was progressively
increased.

The maximum speed reached is 60 cm/s and is due to an electromagnetic stall between
the stepper’s rotor and stator. Increasing the current sent to the motors would allow
higher speeds to be reached but would cause the drivers to overheat.

However, from a speed of 40 cm/s onwards, it is possible to put the robot into resonance
by making it move forward and backward, leading to the fall of the device. This effect
can be compensated for by adjusting the slope of the trapezoidal profile.

10.3.2 Start angle
The robot has been designed to lift up to 10° from the vertical with its lifting mechanism
as explained in 3.1.3, in order to switch to self-balancing by itself. The aim of this
test is to determine the start angle from which the robot is capable of getting into
self-balancing.

After the test sequence, a maximum angle of 27° was found, beyond which the torque
produced by the motors to provide the required acceleration was insufficient. This led
to an electromagnetic stall of the rotor.

10.3.3 Motor voltage
Motor voltage allows current to flow through the motor windings. The selected voltage
must be able to overcome two simultaneous phenomena:

• The back electromotive force (emf) linked to rotation speed.

• The joule effect due to winding resistance.

Voltage is easily adjusted on the buck converter by means of a potentiometer. The test
was carried out by progressively lowering the voltage while the robot was in dynamic
balancing. The robot held its balance without any problems until the end of the test.
The test finished at 4.5 V as the voltage was not lowered below this value, corresponding
to the lower limit of the stepper driver’s operating range.

10.3.4 Frequency
The system’s frequency is a critical constant that has been the subject of numerous
optimizations detailed in Section 9. A low update frequency implies an unresponsive

72

CHAPTER 10. CHARACTERISATION

system and therefore compromises dynamic balancing.

Initially, the control loop operated at 200 Hz. In order to conduct the tests, it had to be
slowed down. An artificial delay was therefore implemented to act as a loop frequency
controller. Of course, this function is only capable of adding delay and thus lowering
the frequency.

Robot tests have shown that the robot remains very stable between 100 Hz and 200 Hz.
Between 100 Hz and 75 Hz, the system is still stable but feels less reactive to the user
when playing with it. At lower frequencies, from 75 Hz to 55 Hz, the system becomes
marginally stable, with large-amplitude oscillations. Under these conditions, the robot
remains upright but is no longer able to withstand disturbances. Below 55 Hz, the
robot is totally unstable and no longer able to maintain its equilibrium. The behaviour
of the robot in standstill condition1 at various frequencies, is shown in Figure 10.16.

0 2 4 6 8 10 12 14
Time [s]

2

1

0

1

2

Pi
tc

h
an

gl
e

[°
]

55 Hz
75 Hz
200 Hz

Figure 10.16: Graph showing the evolution of the angle of the robot at different update
frequencies for the main loop.

10.3.5 Slope
This test is directly related to the test performed in Section 10.3.5, and is used to assess
the angle of the maximum slope at which the robot can hold its balance.

At a gradient of 6°, the robot would start to roll in the direction of the gradient while
maintaining its balance. After investigation, it was determined that this behaviour was
due to the effect of the limiter on the speed controller’s integral error. The slope was
increased up to a limit of 20°, this time the cause being the limit of adhesion of the
robot’s wheels.

10.3.6 Sensor noise
This test consists of injecting noise into the sensors to see the limits of the filters used.
The noise was added in a numerical way as Additive White Gaussian noise (AWGN) to

1These tests must have been performed on a table, which is not as stiff as the floor, so the observed
behaviour may be slightly different.

73

CHAPTER 10. CHARACTERISATION

ensure the same effect on all frequencies. The test was carried out in two phases: noise
injection on the accelerometer only and then on the gyroscope only.

Figure 10.17 shows the filter output angle measurement based on artificially noisy
accelerometer data. With an enormous AWGN of 10 g standard deviation, the robot is
still able to keep its balance, although with greater difficulty. This results in a standard
output angle variation of 1.703° for the Kalman filter and 3.159° for the angle coming
from the complementary filter. The Kalman filter, even in its simplest implementation,
outperforms the angle measured by the complementary filter. By increasing the variance
of the accelerometer’s AWGN to near infinite values, the robot was still in equilibrium
with both filters. This is due to the fact that the Kalman filter understands that the
accelerometer is not reliable so it relies only on the gyroscope. On the other hand, the
complementary filter acts as a low-pass filter on the accelerometer, so it filters out all
that rapidly varying noise, as explained in Section 1.7.

On the other hand, the AWGN on the gyroscope measurements has a much greater
impact. Tests have shown that the noise limit is in the region of σgyro = 32°/s for
both filters. Beyond this value, the system moves from a marginally stable state to an
unstable state. At this ultimate σgyro, the standard deviations of the filters are similar,
with 2.217° for Kalman and 2.412° for the complementary, i.e. two orders of magnitude
above the variations of the reference case as explained in Section 10.1. This test is
shown in Figure 10.18.

0 2 4 6 8 10
Time [s]

7.5

5.0

2.5

0.0

2.5

5.0

7.5

10.0

Pi
tc

h
an

gl
e

[°
]

Kalman angle
Complementary angle

Figure 10.17: Measured angle as seen
from the Kalman filter and the comple-
mentary filter. The additive noise on
both accelerometer axes has a σ2

acc =
100, i.e. a standard deviation of σacc =
10g.

0 2 4 6 8 10
Time [s]

4

2

0

2

4

6

Pi
tc

h
an

gl
e

[°
]

Kalman angle
Complementary angle

Figure 10.18: Measured angle as seen
from the Kalman filter and the comple-
mentary filter. The additive noise on
the gyroscope has a σ2

gyro = 1000, i.e. a
standard deviation of σgyro = 31.62°/s.

74

Chapter 11

Discussion

This chapter discusses the system’s performance, with the aim of linking it to design
choices and establishing comparisons with similar control systems developed by others.
An identification of critical points of the design is also covered.

All the tests carried out in the previous chapter led to an analysis of the robot’s
behaviour under a wide range of conditions. In terms of performance, the robot is
very stable and smooth. Its movements are barely noticeable to the naked eye when in
dynamic balancing mode. The system also performs well in terms of command response
and resilience to disturbance. The system’s ability to find a new equilibrium point
outperforms expectations and demonstrates the importance of having a control system
to calculate the equilibrium point as explained in Chapter 5.

The results found in Chapter 4 show to importance of sensor fusion. This is also
confirmed by the fact that most of the robots mentioned in Chapter 1 use sensor fusion
to improve the measurements. Visually, the Kalman filter performs better than the
complementary filter. This is confirmed by the results obtained in 10. The Kalman
filter can still be improved much more, as explained in the future work section.

Compared with the educational robots tested in this master thesis, the LEGO
robot [33] and the Pololu Balboa robot [28], the GRiSP robot, developed in this master
thesis, has a much smoother feel with less vibrations. It also has a much
larger stability zone, capable of withstanding a wide range of disturbances.
In terms of control, it is also faster and more responsive. These differences
can be explained by hardware disparities: such as motor power, the use or absence
of encoders, natural frequency, computing power, etc. Another difference may be due
to the software and architecture of filters and controllers. The device in this master
thesis uses high-performance filters such as the Kalman filter. In the other robots, the
filters used are more elementary, but for educational robots this makes sense, as these
filters are much simpler to understand and modify than the Kalman filter. The major
parameter impacting stability is the loop update frequency. The Pololu Balboa robot
being a smaller robot and, therefore, having a higher natural frequency, should also
have a higher control loop frequency. In reality, it runs at a frequency of 100 Hz, which
is quite low. Comparing this to the 200 Hz obtained after optimization in this master
thesis explains why the performance of the GRiSP robot are much better.

75

CHAPTER 11. DISCUSSION

The GRiSP robot developed in this master thesis has a feature that most
other robots do not: a lifting system. This system is very robust and can be
partially adapted to the environment in which the robot is located. The Pololu Balboa
robot also has a way of getting up that is simpler than the GRiSP robot, but it is
not as robust. Its means of getting up is simply to make a very quick back and forth
movement when the robot is in a resting position. The advantage of the GRiSP robot
regarding this feature, is that its lifting system adapts to inclined planes unlike the
Pololu Balboa robot.

In addition to the operating limitations documented in Section 10.3, there
are a few known problems with the robot, which can lead to undesirable be-
haviour or reduced performance. These can create a certain amount of uncertainty
when using the robot and would require further work. such problems are:

• Lack of supervisors: most parts of the code, except for Hera, are not covered by
supervisors. This lack can lead to the following problems:

– Pmod NAV crashes: this problem occurs approximately one time out of
ten when the robot is launched. It completely shuts down the program and
requires the robot to be restarted manually.

– Process crashes: only the hera_interface process is supervised through
Hera. Every other process, all described in Chapter 8, is not supervised and
could cause the whole robot to stop working.

– ESP32 crashes: the ESP32 could also crash which would imply an error in
the robot due to I2C. This problem could be solved in GRiSP by detecting
that the I2C has an error and sending a signal to the restet pin of the ESP32.
This would avoid having to manually restart the robot.

• Unsecured LoRa communication. At the moment, any other device could send
data via LoRa. This means that anyone could take control of the robot. Security
was of course not the scope of the work and a specific security analysis should be
considered to address it.

• Performance drops: instantaneous drops in performance are observed at fairly
regular and frequent intervals. These can lead the robot to fall if these spikes
appear when the robot is operating at lower frequencies.

• Motors speed limitation: as explained in Section 10.3, if the motors are requested
to turn to a speed that is too high, the motors stall and stop turning.

• Pmod NAV positioning: the Pmod NAV is rather loose in the Pmod connector.
This leads to a variable DC-bias added to the angle. This bias changes at each
collision of the robot. This problem could be solved by calibrating the DC-bias
each time the robot is down.

76

Conclusion and future work

The initial objectives of this project, detailed in the introduction and Section 2.1.2 was
to develop a stability engine running on the GRiSP and that can be easily implemented
on different devices. This has been achieved through the following specific sub-objectives
which have been fully documented in this document.

• Creating of a two-wheeled self-balancing robot. Just like systems running under
Erlang, the device is able to recover from a crash without human intervention.

• Successful use of Hera as an interface on the whole system for IoT purposes.

• Integration of a Kalman filter in the control algorithm to make sensor fusion
multiple sensors for noise reduction.

• Characterisation of the performance of the GRiSP board and Hera in a real-time
application

In addition to these initial objectives, other subsidiary objectives were identified and
achieved as they contributed to the main objectives, improved performance or enabled
the work to be reused. These are summarised below:

• The design of a two-wheeled robot with a lifting system to to be 100% autonomous

• The design and implementation of a stability engine to balance the device.

• Implementation of a multilevel system with an executive loop to monitor the
stability loop.

• Use and comparison of 2 sensor fusion strategies: Kalman filter and complementary
filter

• The implementation of a stepper motor driver for ESP32.

• The implementation of a half-precision float for faster I2C communications.

• Remote control for robot displacement and emergency stop system via LoRa
communication.

• A wide range of tests to establish the system’s behaviour and limits.

The process followed is of course more complex than the main design, implementation
and characterisation steps reported here. Before the robot was able too keep its balance,
a number of problems prevented stability. One major problem, linked to Pmod NAV,
was capping the robot’s frequency to a value of 60 Hz, which is too low for robust
stability. In the quest for robot stability, many other problems were corrected and

77

CHAPTER 11. DISCUSSION

optimised with the aim of achieving stability. It was only when the Pmod NAV problem
was fully identified and corrected that the robot held its balance robustly. Fixing all the
other problems beforehand meant that once the last problem had been solved, the robot
was immediately very robust, because all the other sources of slowdown had already
been corrected.

All these optimisations and developments, in addition to the basic objectives, have
resulted in a very complete and finished project. The robot’s performance exceeded
all expectations. The result was a very stable system, resistant to disturbance,
responding easily to commands and totally autonomous.

One of the most important features of this project is its modifiability
and modularity. This means the project has strong foundations for being
extended in many different ways. From its improvement to its deployment in
industry or education, many improvements can be considered to give the robot more
purposes. Here is an non exhaustive list of such work:

• Include other topics of mobile robotics: Depending on the application in
which the robot is used, some sensors like a temperature sensor or an humidity
sensor could be added. Some applications might require the robot to interact
with its surroundings. To do that, the robot could have an end effector like a
gripper or a piston to move things around.

Adding new sensors like a GPS sensor or an ultra wideband sensor can make it
possible to have new features like position control of the robot. Having a good
estimation of the position of the robot allows to make the robot follow a trajectory.
Adding proximity or distance sensors like a LiDAR sensor or an IR sensor allow
to implement obstacle avoidance by having a vision of the surroundings of the
robot. To avoid the obstacles, different algorithms exist to find a clear trajectory
like potential field and A-star.

For better performances of the robot, multiple sensors can be added and integrated
to the sensor fusion in the Kalman filter. These sensors could be placed in different
spots on the robot to have data of the whole robot. Another improvement on the
Kalman filter is to make a digital twin of the robot for the physical model, as
explained in Section 4.2. This would enable the Kalman filter to have an accurate
estimation of the state of the robot in any position.

• Multiplexer for the SPI port: One idea that has been explored but not yet
fully implemented is to be able to multiplex the SPI port with 12 pins on the
GRiSP so that three different Pmods can be connected. A circuitboard has been
designed for this but has not yet been tested. The modifications to the code have
not yet been made either. This addition to the GRiSP may be useful if several
Pmods using SPI are to be used with a single GRiSP board. For the moment, the
solution would be to use a GRiSP card for each additional sensor, which would
incur unnecessary costs and delays.

• Reduce the amount of hardware: Currently different circuit boards are used
in the robot. The only purpose of having the ESP32 is for its frequency to control
the motors. This increases the complexity of the robot and makes it less robust
against crashes. A good improvement would be to have all the functionality on

78

CHAPTER 11. DISCUSSION

only one circuit board, the GRiSP. To achieve this, a Pmod driver for the stepper
motors must be used to interface the motors directly with the GRiSP board.

• Include ROSiE to the software: As explained in Chapter 1, there are many
frameworks for robotics other than Hera. One of these frameworks could be
adapted to the robot. It is the ROSiE framework. Based on the existing ROS
framework, ROSiE could provide a range of features that Hera does not have.

• Communicating robots: With the robot’s IoT and communication capabilities,
a network of these robots can be created, all communicating with each other.
These robots could then perform a common task by all working together, including
considering resilience issues to compensate robots failing to achieve specific tasks
due to internal (breakdown) or external causes like obstacle or deliberate attacks.

79

Bibliography

[1] D. P. P. S. GmbH, GRiSP. [Online]. Available: https://www.grisp.org/ (visited
on 08/18/2024).

[2] D. P. P. S. GmbH, Stritzinger.com — Home page. [Online]. Available: https:
//www.stritzinger.com/ (visited on 08/18/2024).

[3] Digilent Inc., Digilent Pmod™ Interface Specification, Oct. 2020. [Online]. Avail-
able: https://digilent.com/reference/pmod/start.

[4] RTEMS Project, RTEMS Real-Time Operating System, https://www.rtems.
org/, Accessed: 2024-08-18, 2024.

[5] Digilent Inc., Pmod nav, Accessed: 2024-08-17, 2024. [Online]. Available: https:
//digilent.com/reference/pmod/pmodnav/start.

[6] J. Armstrong, “Erlang—a survey of the language and its industrial applications,”
in Proc. INAP, vol. 96, 1996, pp. 16–18.

[7] N. Guillaume and B. Julien, “Sensor fusion at the extreme edge of an internet
of things network,” Ecole polytechnique de Louvain, Université catholique de
Louvain, 2020, Van Roy, Peter, Prom.

[8] K. Sébastien and V. Vincent, “The hera framework for fault-tolerant sensor fusion
on an internet of things network with application to inertial navigation and
tracking,” Ecole polytechnique de Louvain, Université catholique de Louvain,
2021, Van Roy, Peter, Prom.

[9] L. Tanguy, “Numerl : Efficient vector and matrix computation for erlang,” Ecole
polytechnique de Louvain, Université catholique de Louvain, 2022, Van Roy, Peter,
Prom.

[10] N. Lucas, “Low-cost high-speed sensor fusion with grisp and hera,” Ecole poly-
technique de Louvain, Université catholique de Louvain, 2023, Van Roy, Peter,
Prom.

[11] Thymio Team, Thymio robot official website, Accessed: 2024-08-17, 2024. [Online].
Available: https://www.thymio.org/.

[12] M. Quigley, K. Conley, B. Gerkey, et al., “Ros: An open-source robot operating
system,” in Proceedings of the IEEE International Conference on Robotics and
Automation (ICRA), Accessed: 2024-08-17, vol. 3, IEEE, 2009, pp. 5–10. [Online].
Available: https://www.ros.org/.

[13] R. project, https://github.com/rosie-project, 2022.
[14] Orocos Project, Orocos: Open robot control software, Accessed: 2024-08-17, 2024.

[Online]. Available: https://orocos.org/.

80

https://www.grisp.org/
https://www.stritzinger.com/
https://www.stritzinger.com/
https://digilent.com/reference/pmod/start
https://www.rtems.org/
https://www.rtems.org/
https://digilent.com/reference/pmod/pmodnav/start
https://digilent.com/reference/pmod/pmodnav/start
https://www.thymio.org/
https://www.ros.org/
https://github.com/rosie-project
https://orocos.org/

BIBLIOGRAPHY

[15] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku, and W.-K. Yoon, “Rt-middleware:
Distributed component middleware for rt (robot technology),” in 2005 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2005, pp. 3933–3938.
doi: 10.1109/IROS.2005.1545521.

[16] Robot Framework Foundation, Robot framework, Accessed: 2024-08-17, 2024.
[Online]. Available: https://robotframework.org/.

[17] MoveIt Development Team, Moveit: The motion planning framework for ros,
Accessed: 2024-08-17, 2024. [Online]. Available: http://moveit.ros.org/.

[18] S. Inc., About us - segway official store, https://store.segway.com/about-us,
Accessed: 2024-08-14, 2023.

[19] MeetiBOT, Meet ibot - your personal mobility device, https://meetibot.com/,
Accessed: 2024-08-14, 2023.

[20] C. Robotics, Chronus robotics - kim-e, the self-balancing personal mobility robot,
https://chronusrobotics.com/, Accessed: 2024-08-14, 2024.

[21] F. I. for Material Flow and L. (IML), Evobot - the evolution of autonomous
mobile robotic systems, https://www.iml.fraunhofer.de/en/fields_of_
activity/material- flow- systems/iot- and- embedded- systems/evobot.
html, Accessed: 2024-08-14, 2024.

[22] RobotsGuide, Handle robot, Accessed: 2024-08-17, 2024. [Online]. Available: https:
//robotsguide.com/robots/handle.

[23] O. M. Mohamed Gad, S. Z. M. Saleh, M. A. Bulbul, and S. Khadraoui, “Design
and control of two wheeled self balancing robot (twsbr),” in 2022 Advances in
Science and Engineering Technology International Conferences (ASET), 2022,
pp. 1–6. doi: 10.1109/ASET53988.2022.9735004.

[24] W. Vega, J. D. Garcia, K. Mollan, et al., “Conceptual mechatronics design and
prototyping of autonomous inverted pendulum-system applied on two-wheeled
mobile robot,” in 2023 Third International Conference on Advances in Electrical,
Computing, Communication and Sustainable Technologies (ICAECT), 2023, pp. 1–
6. doi: 10.1109/ICAECT57570.2023.10118071.

[25] S. Kim and K. Yeom, “Development of a hand-fan-shaped arm and a model
predictive controller for leg crossing, walking, and one-legged balancing of a
wheeled-bipedal jumping robot,” Machines, vol. 12, no. 5, 2024, issn: 2075-1702.
doi: 10.3390/machines12050284. [Online]. Available: https://www.mdpi.com/
2075-1702/12/5/284.

[26] C.-C. Tsai, W.-T. Hsu, F.-C. Tai, and S.-C. Chen, “Adaptive motion control of a
terrain-adaptive self-balancing leg-wheeled mobile robot over rough terrain,” in
2022 International Automatic Control Conference (CACS), 2022, pp. 1–6. doi:
10.1109/CACS55319.2022.9969857.

[27] N. Hasanah et al., “Adaptive motion control of two-wheeled robot based on comple-
mentarity filter and fuzzy logic controller,” International Journal of Robotics and
Automation, vol. 9, no. 1, pp. 53–60, 2020. doi: 10.11591/ijres.v9.i1.pp53-60.
[Online]. Available: https://ijres.iaescore.com/index.php/IJRES/article/
view/20676/pdf.

81

https://doi.org/10.1109/IROS.2005.1545521
https://robotframework.org/
http://moveit.ros.org/
https://store.segway.com/about-us
https://meetibot.com/
https://chronusrobotics.com/
https://www.iml.fraunhofer.de/en/fields_of_activity/material-flow-systems/iot-and-embedded-systems/evobot.html
https://www.iml.fraunhofer.de/en/fields_of_activity/material-flow-systems/iot-and-embedded-systems/evobot.html
https://www.iml.fraunhofer.de/en/fields_of_activity/material-flow-systems/iot-and-embedded-systems/evobot.html
https://robotsguide.com/robots/handle
https://robotsguide.com/robots/handle
https://doi.org/10.1109/ASET53988.2022.9735004
https://doi.org/10.1109/ICAECT57570.2023.10118071
https://doi.org/10.3390/machines12050284
https://www.mdpi.com/2075-1702/12/5/284
https://www.mdpi.com/2075-1702/12/5/284
https://doi.org/10.1109/CACS55319.2022.9969857
https://doi.org/10.11591/ijres.v9.i1.pp53-60
https://ijres.iaescore.com/index.php/IJRES/article/view/20676/pdf
https://ijres.iaescore.com/index.php/IJRES/article/view/20676/pdf

BIBLIOGRAPHY

[28] P. Corporation, Balboa 32u4 balancing robot, https : / / www . pololu . com /
product/3575, Accessed: 2024-08-14, 2024.

[29] M. Han, K. Kim, D. Y. Kim, and J. Lee, “Implementation of unicycle segway using
unscented kalman filter in lqr control,” in 2013 10th International Conference
on Ubiquitous Robots and Ambient Intelligence (URAI), 2013, pp. 695–698. doi:
10.1109/URAI.2013.6677427.

[30] A. Petrovsky, I. Kalinov, P. Karpyshev, D. Tsetserukou, A. Ivanov, and A. Golkar,
“The two-wheeled robotic swarm concept for mars exploration,” Acta Astronautica,
vol. 194, pp. 1–8, 2022, issn: 0094-5765. doi: https://doi.org/10.1016/j.
actaastro.2022.01.025. [Online]. Available: https://www.sciencedirect.
com/science/article/pii/S0094576522000340.

[31] STMicroelectronics, Hardware developer kit, Accessed: 2024-08-17, 2016. [On-
line]. Available: https://www.mikrocontroller.net/attachment/338591/
hardware_developer_kit.pdf.

[32] LEGO Education, Ev3 program description: Gyroboy, Accessed: 2024-08-17, 2015.
[Online]. Available: https : / / assets . education . lego . com / v3 / assets /
blt293eea581807678a / blt6442d49d724f3570 / 5f8803d01c5db60f7d0ae38e /
ev3-program-description-gyroboy.pdf?locale=en-us.

[33] T. H. Hughes, G. H. Willetts, and J. A. Kryczka, “Lqg controller for the lego
mindstorms ev3 gyroboy segway robot,” IFAC-PapersOnLine, vol. 53, no. 2,
pp. 17 282–17 287, 2020, 21st IFAC World Congress, issn: 2405-8963. doi: https:
//doi.org/10.1016/j.ifacol.2020.12.1811. [Online]. Available: https:
//www.sciencedirect.com/science/article/pii/S2405896320324216.

[34] G. A. Muñoz-Hernandez, J. Díaz-Téllez, J. Estevez-Carreon, and R. S. García-
Ramírez, “Adrc attitude controller based on ros for a two-wheeled self-balancing
mobile robot,” IEEE Access, vol. 11, pp. 94 636–94 646, 2023. doi: 10.1109/
ACCESS.2023.3308948.

[35] R. Weber, Optimization and control, 2010.
[36] M. N. Öz, S. Budak, E. Kurnaz, and A. Durdu, “Orientation Determination in

IMU Sensor with Complementary Filter,” Turkish Journal of Forecasting, vol. 06,
no. 1, pp. 34–39, Aug. 2022, issn: 2618-6594. doi: 10.34110/forecasting.
1126184. [Online]. Available: http://dergipark.org.tr/en/doi/10.34110/
forecasting.1126184 (visited on 08/18/2024).

[37] M. Salwa and I. Krzysztofik, “Application of filters to improve flight stability
of rotary unmanned aerial objects,” Sensors, vol. 22, p. 1677, Feb. 2022. doi:
10.3390/s22041677.

[38] S. Kalbusch, V. Verpoten, and P. Van Roy, “The Hera framework for fault-tolerant
sensor fusion with Erlang and GRiSP on an IoT network,” en, in Proceedings of
the 20th ACM SIGPLAN International Workshop on Erlang, Virtual Republic of
Korea: ACM, Aug. 2021, pp. 15–27, isbn: 9781450386128. doi: 10.1145/3471871.
3472962. [Online]. Available: https://dl.acm.org/doi/10.1145/3471871.
3472962 (visited on 08/13/2024).

[39] R. Renaud, Lecture notes in robot modelling and control lelme2732, 2022.

82

https://www.pololu.com/product/3575
https://www.pololu.com/product/3575
https://doi.org/10.1109/URAI.2013.6677427
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.01.025
https://doi.org/https://doi.org/10.1016/j.actaastro.2022.01.025
https://www.sciencedirect.com/science/article/pii/S0094576522000340
https://www.sciencedirect.com/science/article/pii/S0094576522000340
https://www.mikrocontroller.net/attachment/338591/hardware_developer_kit.pdf
https://www.mikrocontroller.net/attachment/338591/hardware_developer_kit.pdf
https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt6442d49d724f3570/5f8803d01c5db60f7d0ae38e/ev3-program-description-gyroboy.pdf?locale=en-us
https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt6442d49d724f3570/5f8803d01c5db60f7d0ae38e/ev3-program-description-gyroboy.pdf?locale=en-us
https://assets.education.lego.com/v3/assets/blt293eea581807678a/blt6442d49d724f3570/5f8803d01c5db60f7d0ae38e/ev3-program-description-gyroboy.pdf?locale=en-us
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1811
https://doi.org/https://doi.org/10.1016/j.ifacol.2020.12.1811
https://www.sciencedirect.com/science/article/pii/S2405896320324216
https://www.sciencedirect.com/science/article/pii/S2405896320324216
https://doi.org/10.1109/ACCESS.2023.3308948
https://doi.org/10.1109/ACCESS.2023.3308948
https://doi.org/10.34110/forecasting.1126184
https://doi.org/10.34110/forecasting.1126184
http://dergipark.org.tr/en/doi/10.34110/forecasting.1126184
http://dergipark.org.tr/en/doi/10.34110/forecasting.1126184
https://doi.org/10.3390/s22041677
https://doi.org/10.1145/3471871.3472962
https://doi.org/10.1145/3471871.3472962
https://dl.acm.org/doi/10.1145/3471871.3472962
https://dl.acm.org/doi/10.1145/3471871.3472962

BIBLIOGRAPHY

[40] Wikipedia, Filtre de kalman, https://fr.wikipedia.org/w/index.php?title=
Filtre_de_Kalman&oldid=216332692, [accessed January-2024], 2024.

[41] Wikipedia, Low-pass filter — Wikipedia, the free encyclopedia, [accessed May-
2024], 2024. [Online]. Available: https://en.wikipedia.org/w/index.php?
title=Low-pass_filter&oldid=1234242174.

[42] A. Arhutich, Balancingwii, https://github.com/mahowik/BalancingWii, 2020.
[43] B. Benavides. “‘erlang behaviors’. erlang battleground.” (), [Online]. Available:

https://medium.com/erlang-battleground/erlang-behaviors-4348e89351ff.
[accessed 14-08-2024].

[44] Espressif, Esp32 pico series datasheet, 2023. [Online]. Available: https://www.
espressif.com/sites/default/files/documentation/esp32-pico_series_
datasheet_en.pdfs.

[45] Arduino contributors, Spi.h library, [accessed November-2023], 2023. [Online].
Available: https://www.arduino.cc/reference/en/language/functions/
communication/spi/.

[46] S. Mistry, Wire.h library, [accessed November-2023], 2023. [Online]. Available:
https://github.com/sandeepmistry/arduino-LoRa.

[47] Arduino contributors, Wire.h library, [accessed November-2023], 2023. [Online].
Available: https://www.arduino.cc/reference/en/language/functions/
communication/wire/.

[48] “Ieee standard for floating-point arithmetic,” IEEE Std 754-2019 (Revision of
IEEE 754-2008), pp. 1–84, 2019. doi: 10.1109/IEEESTD.2019.8766229.

[49] Wikipedia contributors, Half-precision floating-point format — Wikipedia, the
free encyclopedia, [Accessed : 11-05-2024], 2024. [Online]. Available: https://
en.wikipedia.org/w/index.php?title=Half-precision_floating-point_
format&oldid=1235367421.

[50] J.-C. Samin, G. Campion, and P. Maes, FSAB 1202 Exercices de Mécanique, Feb.
2008.

83

https://fr.wikipedia.org/w/index.php?title=Filtre_de_Kalman&oldid=216332692
https://fr.wikipedia.org/w/index.php?title=Filtre_de_Kalman&oldid=216332692
https://en.wikipedia.org/w/index.php?title=Low-pass_filter&oldid=1234242174
https://en.wikipedia.org/w/index.php?title=Low-pass_filter&oldid=1234242174
https://github.com/mahowik/BalancingWii
https://medium.com/erlang-battleground/erlang-behaviors-4348e89351ff
https://www.espressif.com/sites/default/files/documentation/esp32-pico_series_datasheet_en.pdfs
https://www.espressif.com/sites/default/files/documentation/esp32-pico_series_datasheet_en.pdfs
https://www.espressif.com/sites/default/files/documentation/esp32-pico_series_datasheet_en.pdfs
https://www.arduino.cc/reference/en/language/functions/communication/spi/
https://www.arduino.cc/reference/en/language/functions/communication/spi/
https://github.com/sandeepmistry/arduino-LoRa
https://www.arduino.cc/reference/en/language/functions/communication/wire/
https://www.arduino.cc/reference/en/language/functions/communication/wire/
https://doi.org/10.1109/IEEESTD.2019.8766229
https://en.wikipedia.org/w/index.php?title=Half-precision_floating-point_format&oldid=1235367421
https://en.wikipedia.org/w/index.php?title=Half-precision_floating-point_format&oldid=1235367421
https://en.wikipedia.org/w/index.php?title=Half-precision_floating-point_format&oldid=1235367421

Part IV

Appendices

84

Appendix A

Developed device

The following figures provide an overview of what the robot looks like.

Figure A.1: Screenshot of the complete
SolidWorks model of the robot.

Figure A.2: Picture of the robot while
in equilibrium.

85

Appendix B

Technical specifications

A set of criteria based on use, manufacture and safety are taken into account to define
the technical specifications as shown on TableB.1.

Functions
F1 Device to test a dynamic balancing algorithm using Hera on GRiSP
F2 Usage for further research in IoT with GRiSP
Functional Requirements
FR1.1 Mechanically unstable device
FR1.2 Use of actuation to stabilize the device
FR1.3 Self-rising/recovery from fall
FR1.4 Autonomous : no need for external supply
Constraints
C1 Usage of GRiSP 2 board
C2 Easy to prototype and replicate
C3 Safe to use
Constraints Requirements
CR1.1 Supply of 5V for GRiSP
CR1.2 Limited type and number of communication bus
CR2.1 Usage of “on the shelf” pieces, 3D printing, Laser cutting and Custom PCB
CR3.1 Emergency stop
CR3.2 Voltages lower than 20V
CR3.3 Non-flammable batteries
CR3.4 Weigh less than 5Kg

Table B.1: Specifications of the self-balancing robot, F : Function , FR : Functional
Requirement, C : Constraint, CR : Constraint Requirement.

86

Appendix C

PCBs

Two PCBs have been created:

• Stepper driver interface: enables all the stepper drivers to be mounted on the
same board, the power circuit to be routed and the connections for the controller
to be brought together.

• PMOD NAV-SPI interface: allows the IMUs of 3 Pmod NAVs to be used on the
same Pmod SPI extended port, sacrificing certain other Pmod NAV functions.

Figure C.1: Electrical diagram of Stepper driver
interface with Kicad.

Figure C.2: Electrical diagram of
PMOD NAV-SPI interface with
Kicad.

87

APPENDIX C. PCBS

Figure C.3: Routing PCBs in Kicad.
Figure C.4: PCBs manufactured by
JLC PCB.

88

Appendix D

Physical model development

This appendix details all the calculations providing a physical model of the robot. The
Newton-Euler method has been chosen for this purpose. This development was inspired
by the one developed in [50, p. 60]

This model use all the reference presented in the main text and used in Figure D.1

Figure D.1: Reference scheme of the bodies and the different quantities for developing
the physical model of the system

To apply the Newton-Euler equations, it is required to compute different quantities
such as the position vector, the angular momentum, the external forces and the moment
of the forces applied to the robot.

1. Expression of the CG-position vector R⃗ and it’s derivatives. The CG-position
vector is the result of the addition of two other vectors:

89

APPENDIX D. PHYSICAL MODEL DEVELOPMENT

• xÎ1 the position of the wheels of the robot relative to the Î reference frame

• hX̂3 the position of CG of the robot relative to the center of the wheels thus
relative belong to X̂3

Thus the position vector is written as:

R⃗ = xÎ1 + hX̂3

The derivatives ˙⃗
R and ¨⃗

R are found from the vector derivative of a mobile basis
formula: ˙⃗u = ˚⃗u + ω⃗ × u⃗

˙⃗
R = ẋÎ1 + hθ̇X̂1

¨⃗
R = ẍÎ1 + hθ̈X̂1 + hθ̇2X̂3 (D.1)

2. Expression of the angular moment relative to the CG H⃗G of the robot and it’s
derivative ˙⃗

HG:

H⃗G = Jθ̇X̂2

˙⃗
HG = Jθ̈X̂2 (D.2)

3. External forces calculation:

• The weight of the robot : mg⃗ = −mgÎ3

• The contact force F⃗c in the Î reference frame :F⃗r = −Fc,1Î1 − Fc,3Î3

The total force applied to the robot is the sum of the weight and the contact
force:

F⃗ = mg⃗ + F⃗r

= −mgÎ3 − Fc,1Î1 − Fc,3Î3 (D.3)

4. Expression of the moment of the forces applied to the robot CG:

L⃗G = −hX̂3 × F⃗r

= h(Fc,1 cos(θ) − Fc,3 sin(θ))X̂2 (D.4)

Those equations are injected in the Newton-Euler formulas to find the movement
equations of the robot.

1. Newton : m
¨⃗
R = F⃗ provide the following equations (after projection on the Î1 and

Î3 axis) :

m(ẍ + hθ̈ cos(θ) − hθ̇2 sin(θ)) = −Fc,1 (D.5)
m(−hθ̈ sin(θ) + θ̇2 cos(θ)) = −Fc,3 + mg (D.6)

90

APPENDIX D. PHYSICAL MODEL DEVELOPMENT

2. Euler : ˙⃗
HG = L⃗G provide the following equation :

Jθ̈ = h(Fc,1 cos(θ) − Fc,3 sin(θ))

⇔J

h
θ̈ = Fc,1 cos(θ) − Fc,3 sin(θ) (D.7)

By multiplying D.5 by cos(θ), D.6 by sin(θ) and summing them with D.7, Fc,1 and Fc,3
cancel out and the following equation is obtained :

mẍ cos(θ) + (mhθ̈ + J

h
θ̈) = mg sin(θ)

⇔ẍ cos(θ) + (h + J

mh
)θ̈ = g sin(θ) (D.8)

91

Appendix E

Software flags

In the following tabular, Table E.1, the interpretation for the input flags, received from
the ESP32, is explained for both true and false values.

Flag Value of 1 Value of 0

Arm_Ready The arm of the robot is either
fully extend or fully retracted

The arm of the robot is in a tran-
sition phase

Switch The angle of the Kalman filter
must be used for the stability

The complementary filter must
be used instead

Test Start of a logging sequence Otherwise

Get_Up The robot must get up The robot must get down

Forward The robot must go forward No command to go forward

Backward The robot must go backward No command to go backwards

Left The robot must turn left No command to turn left

Right The robot must turn right No command to turn right

Table E.1: Flags description.

92

APPENDIX E. SOFTWARE FLAGS

A synthesis of all of the state flags and the output flags for the FSM is given in Table E.2.
The state flags are represented in an array as [Get_Up, Arm_Ready, Robot_Up] and
the output flags are represented in an array as [Power, Freeze, Extend, Robot_Up_Bit].
The flag F_B is not represented because it could have any value in any state.

State State flags Output flags

Rest [0, 1, 0] [0, 0, 0, 0]

Raising [1, 0, 0] [1, 0, 1, 0]

Stand up [1, 1, 1] [1, 0, 0, 1]

Prepare arms [0, 0, 1] [1, 0, 1, 1]

Free fall [0, 1, 1] [1, 1, 1, 1]

Soft fall [0, 0, 0] [1, 0, 0, 0]

Table E.2: State flags and output flags in each state.

93

Appendix F

Maximal delay computation

A simulation has been done to characterise the delay that can be acceptable between
the measurement by the sensors and the actuation. The resulting graph, shown in
Figure F.2, displays the behaviour of the simulated angle of the robot for different
delays. The angle enter a marginal stability around 20 ms and 30 ms of delay. To be
safe the upper limit of 20 ms of delay can be imposed to have a small safety factor.

Figure F.1: Simulink model for simulating delays in the system.

Figure F.2: Graph obtained with simulation in Figure F.1.

94

Appendix G

GRiSP GPIO Frequency

This appendix presents the generation of high-frequency signals at the GRISP GPIO
outputs. This signal is generated independently on its own process, with a fixed
frequency of 1 kHz. Figure G.1 shows the test setup with which figure G.2 was taken.
The signal tap shows that there are various interruptions in the generation of the signal,
making it unusable for stepper control. It’s a signal that’s reputed to be periodic but
that isn’t.

Figure G.1: GRiSP GPIO frequency measurement setup, the oscilloscope taking the
measurements is on the left and the GRiSP fixed to the robot is on the right.

95

APPENDIX G. GRISP GPIO FREQUENCY

Figure G.2: GPIO tap signal coming from the GRiSP, with interruptions during several
periods occurring. The image colours have been inverted to improve visibility.

96

Appendix H

Experimentation setup

The three following pictures are pictures of the test setup of respectively the mass offset,
the slope and the inertia increase tests.

Figure H.1: Picture of the robot during the offset mass test.

97

APPENDIX H. EXPERIMENTATION SETUP

Figure H.2: Picture of the robot during the slope test.

Figure H.3: Picture of the robot during the increased inertia test.

98

Appendix I

Code

This appendix contains all the code needed to operate the system, in four main sections:

• GRiSP code

• Lilygo LoRa32 code on the robot side

• Lilygo LoRa32 code on the emergency stop side

• Python user interface code

The latest version of the code can be found on our two GitHub repositories:

– Modified Hera: https://github.com/FrancoisGgg/hera

– Robot: https://github.com/FrancoisGgg/balancing_robot

I.1 GRiSP code

I.1.1 balancing_robot app
1 {application, balancing_robot, [
2 {description, "GRiSP application for dynamic balancing of a moving robot"},
3 {vsn, "0.1.0"},
4 {registered, []},
5 {mod, {balancing_robot, []}},
6 {applications, [
7 kernel,
8 stdlib,
9 grisp

10]},
11 {env,[]},
12 {modules, []},
13
14 {licenses, ["Apache 2.0"]},
15 {links, []}
16]}.

I.1.2 balancing_robot supervisor
1 % @private
2 % @doc balancing_robot top level supervisor.
3 -module(balancing_robot_sup).
4

99

https://github.com/FrancoisGgg/hera
https://github.com/FrancoisGgg/balancing_robot

APPENDIX I. CODE

5 -behavior(supervisor).
6
7 % API
8 -export([start_link/0]).
9

10 % Callbacks
11 -export([init/1]).
12
13 %--- API ---
14
15 start_link() -> supervisor:start_link({local, ?MODULE}, ?MODULE, []).
16
17 %--- Callbacks ---
18
19 init([]) -> {ok, { {one_for_all, 0, 1}, []} }.

I.1.3 balancing_robot
1 -module(balancing_robot).
2
3 -behavior(application).
4
5 -export([start_robot/0]).
6 -export([start/2, stop/1]).
7
8 %%
9 %% API

10 %%
11
12 start_robot() ->
13 timer:sleep(5000), %Waiting for setup of GRiSP application before launching the robot
14 hera:start_measure(hera_interface, []),
15 ok.
16
17 %%
18 %% Callbacks
19 %%
20
21 start(_Type, _Args) ->
22 {ok, Supervisor} = balancing_robot_sup:start_link(),
23 grisp_led:color(1, {1, 0, 1}),
24 grisp_led:color(2, {1, 0, 1}),
25 _ = grisp:add_device(spi2, pmod_nav),
26 pmod_nav:config(acc, #{odr_g => {hz,238}}),
27 numerl:init(),
28 Pid = spawn(balancing_robot, start_robot, []),
29 {ok, Supervisor}.
30
31 stop(_State) -> ok.

I.1.4 main_loop
1 -module(main_loop).
2
3 -export([robot_init/1, modify_frequency/1]).
4
5 -define(RAD_TO_DEG, 180.0/math:pi()).
6 -define(DEG_TO_RAD, math:pi()/180.0).
7
8 %Advance constant
9 -define(ADV_V_MAX, 30.0).

10
11 %Turning constant
12 -define(TURN_V_MAX, 80.0).
13
14 %Angle at which robot is considered "down"
15 -define(MAX_ANGLE, 25.0).
16

100

APPENDIX I. CODE

17 %Coefficient for the complementary filter
18 -define(COEF_FILTER, 0.667).
19
20 %Duration of a logging sequence
21 -define(LOG_DURATION, 15000).
22
23
24 %%
25 %% Robot
26 %%
27
28 robot_init(Hera_pid) ->
29
30 process_flag(priority, max),
31
32 %Starting timestamp
33 T0 = erlang:system_time()/1.0e6,
34
35 %Table for global variables
36 ets:new(variables, [set, public, named_table]),
37 ets:insert(variables, {"Freq_Goal", 300.0}),
38
39 %Calibration
40 io:format("[Robot] Calibrating... Do not move the pmod_nav!~n"),
41 grisp_led:color(1, {1, 0, 0}),
42 grisp_led:color(2, {1, 0, 0}),
43 [_Gx0,Gy0,_Gz0] = calibrate(),
44 io:format("[Robot] Done calibrating~n"),
45
46 %Kalman matrices
47 X0 = mat:matrix([[0], [0]]),
48 P0 = mat:matrix([[0.1, 0], [0, 0.1]]),
49
50 %I2C bus
51 I2Cbus = grisp_i2c:open(i2c1),
52
53 %PIDs initialisation
54 Pid_Speed = spawn(pid_controller, pid_init, [-0.12, -0.07, 0.0, -1, 60.0, 0.0]),
55 Pid_Stability = spawn(pid_controller, pid_init, [17.0, 0.0, 4.0, -1, -1, 0.0]),
56 io:format("[Robot] Pid of the speed controller: ~p.~n", [Pid_Speed]),
57 io:format("[Robot] Pid of the stability controller: ~p.~n", [Pid_Stability]),
58 io:format("[Robot] Starting movement of the robot.~n"),
59
60 %Call main loop
61 robot_main(T0, Hera_pid, {rest, false}, {T0, X0, P0}, I2Cbus, {0, T0, []}, {Gy0, 0.0, 0.0}, {

Pid_Speed, Pid_Stability}, {0.0, 0.0}, {0, 0, 200.0, T0}).
62
63 robot_main(Start_Time, Hera_pid, {Robot_State, Robot_Up}, {T0, X0, P0}, I2Cbus, {Logging, Log_End,

Log_List}, {Gy0, Angle_Complem, Angle_Rate}, {Pid_Speed, Pid_Stability}, {Adv_V_Ref, Turn_V_Ref}, {
N, Freq, Mean_Freq, T_End}) ->

64
65 %Delta time of loop
66 T1 = erlang:system_time()/1.0e6, %[ms]
67 Dt = (T1- T0)/1000.0, %[s]
68
69 %%%%%%%%%%%%%%%%%%%%%%%%%
70 %%% Input from Sensor %%%
71 %%%%%%%%%%%%%%%%%%%%%%%%%
72
73 %Read data
74 [Gy,Ax,Az] = pmod_nav:read(acc, [out_y_g, out_x_xl, out_z_xl], #{g_unit => dps}),
75
76 %%%%%%%%%%%%%%%%%%%%%%%%
77 %%% Input from ESP32 %%%
78 %%%%%%%%%%%%%%%%%%%%%%%%
79
80 %Receive I2C and conversion
81 [<<SL1,SL2,SR1,SR2,CtrlByte>>] = grisp_i2c:transfer(I2Cbus, [{read, 16#40, 1, 5}]),
82 [Speed_L,Speed_R] = hera_com:decode_half_float([<<SL1, SL2>>, <<SR1, SR2>>]),
83 Speed = (Speed_L + Speed_R)/2,
84
85 %Retrieve flags from ESP32
86 [Arm_Ready, Switch, Test, Get_Up, Forward, Backward, Left, Right] = hera_com:get_bits(CtrlByte),

101

APPENDIX I. CODE

87
88 %%%%%%%%%%%%%%%%%%%%%
89 %%% Command Logic %%%
90 %%%%%%%%%%%%%%%%%%%%%
91
92 %Set advance speed from flags
93 Adv_V_Goal = speed_ref(Forward, Backward),
94
95 %Set turning speed from flags
96 Turn_V_Goal = turn_ref(Left, Right),
97
98 %%%%%%%%%%%%%%%%%%%%%%%%%%
99 %%% Angle Computations %%%

100 %%%%%%%%%%%%%%%%%%%%%%%%%%
101
102 %Angle based directly on the sensors
103 Angle_Accelerometer = math:atan(Az / (-Ax))*?RAD_TO_DEG,
104
105 %Kalman filter computation
106 {X1, P1} = kalman_angle(Dt, Ax, Az, Gy, Gy0, X0, P0),
107 [Th_Kalman, _W_Kalman] = mat:to_array(X1),
108 Angle_Kalman = Th_Kalman*?RAD_TO_DEG,
109
110 %Complementary angle computation
111 K = 1.25/(1.25+(1.0/Mean_Freq)),
112 {Angle_Complem_New, Angle_Rate_New} = complem_angle({Dt, Ax, Az, Gy, Gy0, K, Angle_Complem,

Angle_Rate}),
113
114 %Select angle between kalman or complementary
115 Angle = select_angle(Switch, Angle_Kalman, Angle_Complem),
116
117
118 %%%%%%%%%%%%%%%%%%
119 %%% Controller %%%
120 %%%%%%%%%%%%%%%%%%
121
122 %Takes as input:
123 % -Measures
124 % -Process IDs of the two PID controllers
125 % -Advance and turning velocity to reach and loopback velocity of trapezoidal profile
126 {Acc, Adv_V_Ref_New, Turn_V_Ref_New} = stability_engine:controller({Dt, Angle, Speed}, {Pid_Speed,

Pid_Stability}, {Adv_V_Goal, Adv_V_Ref}, {Turn_V_Goal, Turn_V_Ref}),
127 %Gives as output:
128 % -Acceleration of the motors -> sent to ESP32
129 % -Loopback V_Ref for advance
130 % -Loopback V_Ref for turning -> sent to ESP32
131
132 %%%%%%%%%%%%%%%%%%%%%%%
133 %%% Output to ESP32 %%%
134 %%%%%%%%%%%%%%%%%%%%%%%
135
136 %State of the robot
137 if
138 Robot_Up and (abs(Angle) > 20) ->
139 Robot_Up_New = false;
140 not Robot_Up and (abs(Angle) < 18) ->
141 Robot_Up_New = true;
142 true ->
143 Robot_Up_New = Robot_Up
144 end,
145 if
146 Angle > 0.0 ->
147 F_B = 1;
148 true ->
149 F_B = 0
150 end,
151
152 %State change
153 case Robot_State of
154 rest ->
155 if
156 Get_Up -> Next_Robot_State = raising;
157 true -> Next_Robot_State = rest

102

APPENDIX I. CODE

158 end;
159 raising ->
160 if
161 Robot_Up -> Next_Robot_State = stand_up;
162 not Get_Up -> Next_Robot_State = soft_fall;
163 true -> Next_Robot_State = raising
164 end;
165 stand_up ->
166 if
167 not Get_Up -> Next_Robot_State = wait_for_extend;
168 not Robot_Up -> Next_Robot_State = rest;
169 true -> Next_Robot_State = stand_up
170 end;
171 wait_for_extend -> %Buffer state while Next_Robot_State switches state
172 Next_Robot_State = prepare_arms;
173 prepare_arms ->
174 if
175 Arm_Ready -> Next_Robot_State = free_fall;
176 Get_Up -> Next_Robot_State = stand_up;
177 not Robot_Up -> Next_Robot_State = rest;
178 true -> Next_Robot_State = prepare_arms
179 end;
180 free_fall ->
181 if
182 abs(Angle) > 10 -> Next_Robot_State = wait_for_retract;
183 true -> Next_Robot_State = free_fall
184 end;
185 wait_for_retract -> %Buffer state while Next_Robot_State switches state
186 Next_Robot_State = soft_fall;
187 soft_fall ->
188 if
189 Arm_Ready -> Next_Robot_State = rest;
190 Get_Up -> Next_Robot_State = raising;
191 true -> Next_Robot_State = soft_fall
192 end
193 end,
194
195 %State output
196 case Next_Robot_State of
197 rest ->
198 Power = 0,
199 Freeze = 0,
200 Extend = 0,
201 Robot_Up_Bit = 0;
202 raising ->
203 Power = 1,
204 Freeze = 0,
205 Extend = 1,
206 Robot_Up_Bit = 0;
207 stand_up ->
208 Power = 1,
209 Freeze = 0,
210 Extend = 0,
211 Robot_Up_Bit = 1;
212 wait_for_extend ->
213 Power = 1,
214 Freeze = 0,
215 Extend = 1,
216 Robot_Up_Bit = 1;
217 prepare_arms ->
218 Power = 1,
219 Freeze = 0,
220 Extend = 1,
221 Robot_Up_Bit = 1;
222 free_fall ->
223 Power = 1,
224 Freeze = 1,
225 Extend = 1,
226 Robot_Up_Bit = 1;
227 wait_for_retract ->
228 Power = 1,
229 Freeze = 0,
230 Extend = 0,

103

APPENDIX I. CODE

231 Robot_Up_Bit = 0;
232 soft_fall ->
233 Power = 1,
234 Freeze = 0,
235 Extend = 0,
236 Robot_Up_Bit = 0
237 end,
238
239 %Send output to ESP32
240 Output_Byte = get_byte([Power, Freeze, Extend, Robot_Up_Bit, F_B, 0, 0, 0]),
241 [HF1, HF2] = hera_com:encode_half_float([Acc, Turn_V_Ref_New]),
242 grisp_i2c:transfer(I2Cbus, [{write, 16#40, 1, [HF1, HF2, <<Output_Byte>>]}]),
243
244 %%%%%%%%%%%%%%%%%%%%%%%%
245 %%% Testing Features %%%
246 %%%%%%%%%%%%%%%%%%%%%%%%
247
248 %Frequency computation
249 {N_New, Freq_New, Mean_Freq_New} = frequency_computation(Dt, N, Freq, Mean_Freq),
250
251 %Logging
252 if
253 Test ->
254 Log_End_New = erlang:system_time()/1.0e6 + ?LOG_DURATION;
255 true ->
256 Log_End_New = Log_End
257 end,
258 Logging_New = erlang:system_time()/1.0e6 < Log_End_New,
259
260 %LED flickering while logging
261 if
262 Logging_New ->
263 if
264 N rem 9 < 4 ->
265 grisp_led:color(1, {1, 1, 0}),
266 grisp_led:color(2, {1, 1, 0});
267 true->
268 grisp_led:color(1, {0, 0, 0}),
269 grisp_led:color(2, {0, 0, 0})
270 end;
271 true ->
272 ok
273 end,
274
275 %Check for start or end of logging sequence
276 if
277 not Logging and Logging_New ->
278 Hera_pid ! {self(), start_log};
279 Logging and not Logging_New ->
280 grisp_led:color(1, {1, 1, 0}),
281 grisp_led:color(2, {1, 1, 0}),
282 Hera_pid ! {self(), stop_log};
283 true ->
284 ok
285 end,
286
287 %Send values to ESP32 if asked, else stack up values in list
288 receive
289 {From, log_values} ->
290 From ! {self(), log, Log_List},
291 Log_List_New = []
292 after 0 ->
293 if
294 Logging_New ->
295 % Log_List_New = lists:append(Log_List, [[T1-Start_Time, 1/Dt, Gy, Acc, CtrlByte,

Angle_Accelerometer, Angle_Kalman, Angle_Complem, Adv_V_Ref, Switch]]);
296 Log_List_New = [[T1-Start_Time, 1/Dt, Gy, Acc, CtrlByte, -Angle_Accelerometer, -

Angle_Kalman, -Angle_Complem, Adv_V_Ref, Switch, Adv_V_Ref_New, Turn_V_Ref_New, Speed] | Log_List];
297 true ->
298 Log_List_New = Log_List
299 end
300 end,
301

104

APPENDIX I. CODE

302 %Communication with Hera (more messages can be implemented by the user)
303 receive
304 {From1, get_all_data} -> From1 ! {self(), data, [T1-Start_Time, 1/Dt, Gy, Acc, CtrlByte, -

Angle_Accelerometer, -Angle_Kalman, -Angle_Complem, Adv_V_Ref, Switch, Adv_V_Ref_New,
Turn_V_Ref_New, Speed]};

305 {From1, freq} -> From1 ! {self(), 1/Dt};
306 {From2, acc} -> From2 ! {self(), Acc};
307 {_, Msg} -> io:format("[Robot] Message [~p] not recognized. ~nPossible querries are: [

get_all_data, freq, acc]. ~nMore querries can be added.", [Msg])
308 after 0 ->
309 ok
310 end,
311
312
313 %Imposed maximum frequency
314 T2 = erlang:system_time()/1.0e6,
315 [{_,Freq_Goal}] = ets:lookup(variables, "Freq_Goal"),
316 Delay_Goal = 1.0/Freq_Goal * 1000.0,
317 if
318 T2-T_End < Delay_Goal ->
319 wait(Delay_Goal-(T2-T1));
320 true ->
321 ok
322 end,
323 T_End_New = erlang:system_time()/1.0e6,
324
325 %Loop back with updated state
326 robot_main(Start_Time, Hera_pid, {Next_Robot_State, Robot_Up_New}, {T1, X1, P1}, I2Cbus, {

Logging_New, Log_End_New, Log_List_New}, {Gy0, Angle_Complem_New, Angle_Rate_New}, {Pid_Speed,
Pid_Stability}, {Adv_V_Ref_New, Turn_V_Ref_New}, {N_New, Freq_New, Mean_Freq_New, T_End_New}).

327
328
329 %%
330 %% Internal functions
331 %%
332
333 calibrate() ->
334 N = 500,
335 Data = [list_to_tuple(pmod_nav:read(acc, [out_x_g, out_y_g, out_z_g])) || _ <- lists:seq(1,N)],
336 {X, Y, Z} = lists:unzip3(Data),
337 [lists:sum(X)/N, lists:sum(Y)/N, lists:sum(Z)/N]. %[Gx0, Gy0, Gz0]
338
339 kalman_angle(Dt, Ax, Az, Gy, Gy0, X0, P0) ->
340 R = mat:matrix([[3.0, 0.0], [0, 3.0e-6]]),
341 Q = mat:matrix([[3.0e-5, 0.0], [0.0, 10.0]]),
342 F = fun (X) -> [Th, W] = mat:to_array(X),
343 mat:matrix([[Th+Dt*W],
344 [W]])
345 end,
346 Jf = fun (X) -> [_Th, _W] = mat:to_array(X),
347 mat:matrix([[1, Dt],
348 [0, 1]])
349 end,
350 H = fun (X) -> [Th, W] = mat:to_array(X),
351 mat:matrix([[Th],
352 [W]])
353 end,
354 Jh = fun (X) -> [_Th, _W] = mat:to_array(X),
355 mat:matrix([[1, 0],
356 [0, 1]])
357 end,
358 Z = mat:matrix([[math:atan(Az / (-Ax))], [(Gy-Gy0)*?DEG_TO_RAD]]),
359 kalman:ekf({X0, P0}, {F, Jf}, {H, Jh}, Q, R, Z).
360
361 complem_angle({Dt, Ax, Az, Gy, Gy0, K, Angle_Complem, Angle_Rate}) ->
362
363 Angle_Rate_New = (Gy - Gy0) * ?COEF_FILTER + Angle_Rate * (1 - ?COEF_FILTER),
364
365 %Angle increment computed from gyroscope
366 Delta_Gyr = Angle_Rate_New * Dt,
367
368 %Absolute angle computed form accelerometer
369 Angle_Acc = math:atan(Az / (-Ax)) * 180 / math:pi(),

105

APPENDIX I. CODE

370
371 %Complementary filter combining gyroscope and accelerometer
372 Angle_Complem_New = (Angle_Complem + Delta_Gyr) * K + Angle_Acc * (1 - K),
373
374 {Angle_Complem_New, Angle_Rate_New}.
375
376 select_angle(Switch, Angle_Kalman, Angle_Complem) ->
377 if
378 Switch ->
379 Angle = Angle_Kalman;
380 true ->
381 Angle = Angle_Complem
382 end,
383 Angle.
384
385 speed_ref(Forward, Backward) ->
386 if
387 Forward ->
388 Adv_V_Goal = ?ADV_V_MAX;
389 Backward ->
390 Adv_V_Goal = - ?ADV_V_MAX;
391 true ->
392 Adv_V_Goal = 0.0
393 end,
394 Adv_V_Goal.
395
396 turn_ref(Left, Right) ->
397 if
398 Right ->
399 Turn_V_Goal = ?TURN_V_MAX;
400 Left ->
401 Turn_V_Goal = - ?TURN_V_MAX;
402 true ->
403 Turn_V_Goal = 0.0
404 end,
405 Turn_V_Goal.
406
407
408 frequency_computation(Dt, N, Freq, Mean_Freq) ->
409 if
410 N == 100 ->
411 N_New = 0,
412 Freq_New = 0,
413 Mean_Freq_New = Freq;
414 true ->
415 N_New = N+1,
416 Freq_New = ((Freq*N)+(1/Dt))/(N+1),
417 Mean_Freq_New = Mean_Freq
418 end,
419 {N_New, Freq_New, Mean_Freq_New}.
420
421 wait(T) ->
422 Tnow = erlang:system_time()/1.0e6,
423 wait_help(Tnow,Tnow+T).
424 wait_help(Tnow, Tend) when Tnow >= Tend -> ok;
425 wait_help(_, Tend) ->
426 Tnow = erlang:system_time()/1.0e6,
427 wait_help(Tnow,Tend).
428
429 %Transforms a list of 8 bits into a byte
430 get_byte(List) ->
431 [A, B, C, D, E, F, G, H] = List,
432 A*128 + B*64 + C*32 + D*16 + E*8 + F*4 + G*2 + H.
433
434
435 %%
436 %% Global variables
437 %%
438
439 modify_frequency(Freq) ->
440 ets:insert(variables, {"Freq_Goal", Freq}),
441 ok.

106

APPENDIX I. CODE

I.1.5 stability_engine
1 -module(stability_engine).
2
3 -export([controller/4]).
4
5 -define(ADV_V_MAX, 30.0).
6 -define(ADV_ACCEL, 75.0).
7
8 -define(TURN_V_MAX, 80.0).
9 -define(TURN_ACCEL, 400.0).

10
11
12 %V_ref_new must be looped to V_ref
13 controller({Dt, Angle, Speed}, {Pid_Speed, Pid_Stability}, {Adv_V_Goal, Adv_V_Ref}, {Turn_V_Goal,

Turn_V_Ref}) ->
14
15 %Saturate advance acceleration
16 if
17 Adv_V_Goal > 0.0 ->
18 Adv_V_Ref_New = pid_controller:saturation(Adv_V_Ref+?ADV_ACCEL*Dt, ?ADV_V_MAX);
19 Adv_V_Goal < 0.0 ->
20 Adv_V_Ref_New = pid_controller:saturation(Adv_V_Ref- ?ADV_ACCEL*Dt, ?ADV_V_MAX);
21 true ->
22 if
23 Adv_V_Ref > 0.5 ->
24 Adv_V_Ref_New = pid_controller:saturation(Adv_V_Ref- ?ADV_ACCEL*Dt, ?ADV_V_MAX);
25 Adv_V_Ref < -0.5 ->
26 Adv_V_Ref_New = pid_controller:saturation(Adv_V_Ref+?ADV_ACCEL*Dt, ?ADV_V_MAX);
27 true ->
28 Adv_V_Ref_New = 0.0
29 end
30 end,
31 % Adv_V_Ref_New = Adv_V_Goal,
32
33 %Saturate turning acceleration
34 if
35 Turn_V_Goal > 0.0 ->
36 Turn_V_Ref_New = pid_controller:saturation(Turn_V_Ref+?TURN_ACCEL*Dt, ?TURN_V_MAX);
37 Turn_V_Goal < 0.0 ->
38 Turn_V_Ref_New = pid_controller:saturation(Turn_V_Ref- ?TURN_ACCEL*Dt, ?TURN_V_MAX);
39 true ->
40 if
41 Turn_V_Ref > 0.5 ->
42 Turn_V_Ref_New = pid_controller:saturation(Turn_V_Ref- ?TURN_ACCEL*Dt, ?TURN_V_MAX);

43 Turn_V_Ref < -0.5 ->
44 Turn_V_Ref_New = pid_controller:saturation(Turn_V_Ref+?TURN_ACCEL*Dt, ?TURN_V_MAX);
45 true ->
46 Turn_V_Ref_New = 0.0
47 end
48 end,
49 % Turn_V_Ref_New = Turn_V_Goal,
50
51 %Speed PI
52 Pid_Speed ! {self(), {set_point, Adv_V_Ref_New}},
53 Pid_Speed ! {self(), {input, Speed}},
54 receive {_, {control, Target_angle}} -> ok end,
55
56 %TODO: send Target_angle to log
57
58 % io:format("~p~n",[Target_angle]),
59
60 %Stability PD
61 Pid_Stability ! {self(), {set_point, Target_angle}},
62 Pid_Stability ! {self(), {input, Angle}},
63 receive {_, {control, Acc}} -> ok end,
64
65 {Acc, Adv_V_Ref_New, Turn_V_Ref_New}.

107

APPENDIX I. CODE

I.2 Robot ESP32 code

I.2.1 ESP32_main
1 #include <SPI.h>
2 #include <LoRa.h>
3 #include <Arduino.h>
4 #include <Wire.h>
5
6 #include "motor_engine.h"
7
8 #define BAND 868E6
9 #define CONFIG_MOSI 27

10 #define CONFIG_MISO 19
11 #define CONFIG_CLK 5
12 #define CONFIG_NSS 18
13 #define CONFIG_RST 23
14 #define CONFIG_DIO0 26
15
16 #define SDCARD_MOSI 15
17 #define SDCARD_MISO 2
18 #define SDCARD_SCLK 14
19 #define SDCARD_CS 13
20
21 #define I2C_SLAVE_ADDR 0x40
22
23
24 float I2C_command[2] = {0.0, 0.0}; // value received from GRiSP : {wheels acceleration , turn speed}
25
26 float freq_lim [13] = {300,200,175,150,125,100,90,80,70,60,50,40,30};
27 int size_test_freq = sizeof(freq_lim)/sizeof(freq_lim[0]);
28 int index_lim = 0;
29
30 // time mesure variable
31 unsigned long t_GRiSP;
32 unsigned long t_LORA;
33 unsigned long t_test;
34 unsigned long t_ESP;
35
36 // freq and period variable
37 float dt_GRiSP = 10;
38 float freq_GRiSP = 200;
39 float dt_ESP = 0;
40
41 // control byte received
42 byte cmd = 0; // received from LoRa communication and transfered to GRiSP
43 byte GRiSP_flags = 0; // Received from GRiSP
44
45 //control flag
46 bool new_cmd =false;
47 bool test = false;
48 bool disturb = false;
49 bool ext_end = true;
50
51
52
53 void setup() {
54 Serial.begin(115200);
55 // SPI - LoRa init
56 SPI.begin(CONFIG_CLK, CONFIG_MISO, CONFIG_MOSI, CONFIG_NSS);
57 LoRa.setPins(CONFIG_NSS, CONFIG_RST, CONFIG_DIO0);
58 if (!LoRa.begin(BAND)) {
59 Serial.println("Starting LoRa failed!");
60 while (1);
61 }
62
63 // I2C Slave init, work with IRQ so no need to incorporate into the main loop
64 Wire.begin(I2C_SLAVE_ADDR);
65 Wire.onReceive(GRiSP_receiver);
66 Wire.onRequest(GRiSP_sender);
67
68 // motor init, works on core n2

108

APPENDIX I. CODE

69 engine_init();
70 delay(1000);
71 set_speed(0, 0);
72 set_acceleration(0, 0);
73
74 // time init
75 t_GRiSP = millis();
76 t_LORA = t_GRiSP;
77 t_ESP = t_GRiSP;
78 }
79
80
81 void loop() {
82 unsigned long new_t_ESP = millis();
83 dt_ESP = (new_t_ESP - t_ESP) / 1000.0;
84 t_ESP = new_t_ESP;
85 LoRa_receiver();
86 Event_handle();
87 delay(1);
88 }
89
90
91
92 void GRiSP_receiver(int howMany) {
93 if(howMany == 5){ // check if the packet match the expected lenght
94 unsigned long new_t_GRiSP = millis();
95 dt_GRiSP = (new_t_GRiSP - t_GRiSP) / 1000.0;
96 freq_GRiSP = freq_GRiSP * 0.99 + 1.0 / dt_GRiSP * 0.01;
97 t_GRiSP = new_t_GRiSP;
98
99 byte A;

100 byte B;
101 if (Wire.available()) {
102
103 // read and decode the wheel acceleration
104 A = Wire.read();
105 B = Wire.read();
106 I2C_command[0] = decoder(A, B);
107
108 // read and decode the differential turn speed
109 A = Wire.read();
110 B = Wire.read();
111 I2C_command[1] = decoder(A, B);
112
113 // read the flags
114 GRiSP_flags = Wire.read();
115 }
116
117 //set acceleration
118 if(!disturb && bitRead(GRiSP_flags, 4) && !bitRead(GRiSP_flags, 6)){
119 set_acceleration(I2C_command[0], I2C_command[0]);
120 }
121
122 // Free fall, null wheel speed
123 if(bitRead(GRiSP_flags, 6)){
124 set_acceleration(0, 0);
125 set_speed(0, 0);
126 }
127
128 // extension/retraction of the rising system
129 if(bitRead(GRiSP_flags, 5)){
130 ext_end = stand(-48,30.0);
131 } else {
132 ext_end = stand(0,30.0);
133 }
134
135 // wheel counter rotation activation and direction selection during rise
136 int stand_speed_dir = 0;
137 if(!bitRead(GRiSP_flags, 4)){ // if down
138 stand_speed_dir = (bitRead(GRiSP_flags, 3)) ? -1 : 1;
139 }
140 raise_dir(stand_speed_dir); // -1 back, 0 null, 1 front
141 }

109

APPENDIX I. CODE

142
143 // Empty the stack
144 while(Wire.available()){
145 Wire.read();
146 }
147 }
148
149 void GRiSP_sender()
150 {
151 byte v[5];
152 float* speeds = get_speed();
153 encoder(v, speeds[0]);
154 encoder(v+2, speeds[2]);
155
156 // control byte send to GRiSP witth : finsish extension/retraction flag and the command inputs
157 v[4] = (cmd & 127) | (is_ready() * 128);
158
159 //send
160 Wire.write((byte*) v, sizeof(v));
161 }
162
163 double decoder(byte X, byte Y) {
164 // decode half float to double
165
166 byte A = (X & 192);
167 if ((A & 64) == 0) A = A | 63; // fill the missing exponnent bytes with the right value
168 byte B = ((X << 2) & 252) | ((Y >> 6) & 3);
169 byte C = ((Y << 2) & 252);
170
171 byte vals[] = { 0x00, 0x00, 0x00, 0x00, 0x00, C, B, A };
172 double d = 0;
173 memcpy(&d, vals, 8);
174
175 return d;
176 }
177
178 void encoder(byte* res, double X){
179 // encode double to half float
180 byte vals[8];
181 memcpy(vals, &X,8);
182 byte A = vals[7];
183 byte B = vals[6];
184 byte C = vals[5];
185
186 res[0] = (A&192)|((B>>2)&63);
187 res[1] = ((B<<6)&192)|((C>>2)&63);
188
189 return ;
190 }
191
192 void LoRa_receiver(){
193 // receiption of LoRa packets
194 if (LoRa.parsePacket()) {
195 if(LoRa.available()>=2){
196 byte cmd1 = LoRa.read();
197 byte cmd2 = LoRa.read();
198 if(cmd1 == cmd2){
199 cmd = cmd1;
200 new_cmd = true;
201 }
202 }
203 while (LoRa.available()){
204 LoRa.read();
205 }
206 }
207 }
208
209 void Event_handle(){
210
211 //emergency stop
212 emergency(!bitRead(cmd, 7) || !bitRead(GRiSP_flags, 7));
213 if (!bitRead(cmd, 7) || !bitRead(GRiSP_flags, 7)){
214 set_acceleration(0, 0);

110

APPENDIX I. CODE

215 set_speed(0, 0);
216 }
217
218
219 // start test procedure
220 if(bitRead(cmd, 5)){
221 test = true;
222 t_test = millis();
223 }
224 if(test){
225 //start the disturbance 500ms to let the record start
226 if(millis()> t_test + 500){
227 //disturb = true;
228 //set_acceleration(40, 40);
229 }
230 // the disturbance is only applied between t=500 and t=800
231 if(millis()> t_test + 800){
232 disturb = false;
233 test = false;
234 }
235 }
236
237 set_turn(I2C_command[1]);
238
239 new_cmd =false;
240 }

I.2.2 ESP32_motor_engine
1 #pragma once
2
3 #include <Arduino.h>
4
5 #define sgn(x) ((x) < 0 ? -1 : ((x) > 0 ? 1 : 0))
6
7
8 #define MOTOR_AC_EN_PIN 14
9 #define MOTOR_A_STEP_PIN 12

10 #define MOTOR_A_DIR_PIN 13
11 #define MOTOR_B_EN_PIN 15
12 #define MOTOR_B_STEP_PIN 2
13 #define MOTOR_B_DIR_PIN 0
14 #define MOTOR_C_STEP_PIN 4
15 #define MOTOR_C_DIR_PIN 25
16
17 #define v_max 100 // speed max, in cm/s
18 #define microsteps 16
19 #define steps 400
20 #define diameter 7 // cm
21 #define lever_ratio 0.09090909090909090909090909090909 // 12/132
22 #define lenght_btw_wheels 18.5 // cm
23
24
25
26 void engine_init();
27
28 void Motor_engine(void *);
29
30 void engine_update(unsigned long dt_loop);
31
32 void set_speed(float,float);
33
34 void set_angular_speed(float,float);
35
36 void set_acceleration(float,float);
37
38 void set_angular_acceleration(float,float);
39
40 float* get_speed();
41
42 float* get_dist();

111

APPENDIX I. CODE

43
44 void reset_dist();
45
46 void set_turn(float);
47
48 void emergency(bool);
49
50 bool stand(float,float);
51
52 void raise_dir(int);
53
54 bool is_ready();

1 #include "motor_engine.h"
2 TaskHandle_t Motor_engine_task;
3
4 int long total_stepA = 0;
5 int long total_stepB = 0;
6 int long total_stepC = 0;
7
8 //motor dir
9 int dirA = 0;

10 int dirB = 0;
11 int dirC = 0;
12
13 //motor dt
14 int dt_MA = 0;
15 int dt_MB = 0;
16 int dt_MC = 0;
17
18 //motor avance speed, rot/s
19 float v_MA = 0;
20 float v_MB = 0;
21 float v_MC = 0;
22
23 // wheel counter rotation speed during rise, rot/sec
24 float v_MA_rise = 0;
25 float v_MC_rise= 0;
26 int wheel_raise_dir = 0;
27
28 // Total wheel speed
29 float v_tot_A = 0;
30 float v_tot_B = 0;
31 float v_tot_C = 0;
32
33 float v_diff =0.0;
34
35 //motor accelerations, only applied on motor avance speed, rot/s
36 float a_MA = 0;
37 float a_MB = 0;
38 float a_MC = 0;
39
40 //motor dist
41 float total_dist_A = 0;
42 float total_dist_B = 0;
43 float total_dist_C = 0;
44
45 //motor freq
46 double f_MA = 0;
47 double f_MB = 0;
48 double f_MC = 0;
49
50 //Rise system parameters
51 int target_step = 0;
52 float Speed_stand =0;
53
54 float v_max_ang = v_max /(PI * diameter);
55
56 void engine_init() {
57
58 pinMode(MOTOR_AC_EN_PIN, OUTPUT);
59 pinMode(MOTOR_B_EN_PIN, OUTPUT);

112

APPENDIX I. CODE

60 digitalWrite(MOTOR_AC_EN_PIN, LOW);
61 digitalWrite(MOTOR_B_EN_PIN, LOW);
62
63 pinMode(MOTOR_A_STEP_PIN, OUTPUT);
64 pinMode(MOTOR_B_STEP_PIN, OUTPUT);
65 pinMode(MOTOR_C_STEP_PIN, OUTPUT);
66 digitalWrite(MOTOR_A_STEP_PIN, LOW);
67 digitalWrite(MOTOR_B_STEP_PIN, LOW);
68 digitalWrite(MOTOR_C_STEP_PIN, LOW);
69
70 pinMode(MOTOR_A_DIR_PIN, OUTPUT);
71 pinMode(MOTOR_B_DIR_PIN, OUTPUT);
72 pinMode(MOTOR_C_DIR_PIN, OUTPUT);
73 digitalWrite(MOTOR_A_DIR_PIN, LOW);
74 digitalWrite(MOTOR_B_DIR_PIN, LOW);
75 digitalWrite(MOTOR_C_DIR_PIN, HIGH);
76
77
78 xTaskCreatePinnedToCore(
79 Motor_engine, /* Task function. */
80 "Motor_engine", /* name of task. */
81 10000, /* Stack size of task */
82 (void*)NULL, /* parameter of the task */
83 1, /* priority of the task */
84 &Motor_engine_task, /* Task handle to keep track of created task */
85 1); /* pin task to core 1 */
86 }
87
88
89 void Motor_engine(void* Parameters) {
90 //setup
91 Serial.print("Motor Engine running on core ");
92 Serial.println(xPortGetCoreID());
93
94
95 unsigned long t_MA = 0;
96 unsigned long t_MB = 0;
97 unsigned long t_MC = 0;
98
99 unsigned long t_motor = micros();

100 unsigned long dt_motor;
101 unsigned long new_t_motor;
102
103 //loop
104 while (true) {
105
106 //time calculation
107 new_t_motor = micros();
108 dt_motor = new_t_motor - t_motor;
109 t_motor = new_t_motor;
110 t_MA += dt_motor;
111 t_MB += dt_motor;
112 t_MC += dt_motor;
113
114
115 // incrementation of the stepper motors
116 if (dirA != 0 && t_MA > dt_MA) {
117 digitalWrite(MOTOR_A_STEP_PIN, HIGH);
118 total_stepA += dirA;
119 t_MA = 0;
120 } else {
121 digitalWrite(MOTOR_A_STEP_PIN, LOW);
122 }
123
124 if (dirB != 0 && t_MB > dt_MB) {
125 digitalWrite(MOTOR_B_STEP_PIN, HIGH);
126 total_stepB += dirB;
127 t_MB = 0;
128 } else {
129 digitalWrite(MOTOR_B_STEP_PIN, LOW);
130 }
131
132 if (dirC != 0 && t_MC > dt_MC) {

113

APPENDIX I. CODE

133 digitalWrite(MOTOR_C_STEP_PIN, HIGH);
134 total_stepC += dirC;
135 t_MC = 0;
136 } else {
137 digitalWrite(MOTOR_C_STEP_PIN, LOW);
138 }
139
140 engine_update(dt_motor); // uptate each motor step period
141 }
142 }
143
144
145
146 void set_speed(float vA, float vC) {
147 v_MA = vA/(PI * diameter);
148 v_MC = vC/(PI * diameter);
149 }
150
151 void set_angular_speed(float vA, float vC) {
152 v_MA = vA;
153 v_MC = vC;
154 }
155
156 void set_acceleration(float aA, float aC) {
157 a_MA = aA/(PI * diameter);
158 a_MC = aC/(PI * diameter);
159 }
160
161 void set_angular_acceleration(float aA, float aC) {
162 a_MA = aA;
163 a_MC = aC;
164 }
165
166 float list_speed[3] = { 0.0, 0.0, 0.0 };
167 float* get_speed() {
168 list_speed[0] = v_tot_A*(PI * diameter);
169 list_speed[1] = v_tot_B * lever_ratio;
170 list_speed[2] = v_tot_C*(PI * diameter);
171 return list_speed;
172 }
173
174 float list_dist[3] = { 0.0, 0.0, 0.0 };
175 float* get_dist() {
176 list_dist[0] = total_stepA * 1.0 / (steps * microsteps) * diameter * PI;
177 list_dist[1] = total_stepB * 1.0 / (steps * microsteps) * lever_ratio;
178 list_dist[2] = total_stepC * 1.0 / (steps * microsteps) * diameter * PI;
179 return list_dist;
180 }
181
182 //low speed loop
183 void engine_update(unsigned long dt_loop) {
184
185 //acceleration calculation of motor A with limit to +/- vmax
186 v_MA += a_MA * dt_loop * 1e-6 ;
187 if (v_MA > v_max_ang) {
188 v_MA = v_max_ang;
189 } else if (v_MA < -v_max_ang) {
190 v_MA = -v_max_ang;
191 }
192
193 //displacement calculation of motor B to set the extension/retraction speed
194 //and the wheel counter rotation
195 if (total_stepB > target_step){
196 v_MB = Speed_stand / lever_ratio;
197 v_MA_rise = Speed_stand * wheel_raise_dir;
198 v_MC_rise = Speed_stand * wheel_raise_dir;
199 } else if (total_stepB < target_step){
200 v_MB = -Speed_stand / lever_ratio;
201 v_MA_rise = -Speed_stand * wheel_raise_dir;
202 v_MC_rise = -Speed_stand * wheel_raise_dir;
203 } else {
204 v_MB = 0;
205 v_MA_rise = 0;

114

APPENDIX I. CODE

206 v_MC_rise = 0;
207 }
208
209 //acceleration calculation of motor A with limit to +/- vmax
210 v_MC += a_MC * dt_loop * 1e-6;
211 if (v_MC > v_max_ang) {
212 v_MC = v_max_ang;
213 } else if (v_MC < -v_max_ang) {
214 v_MC = -v_max_ang;
215 }
216
217 //total speeds
218 v_tot_A = v_MA + v_diff + v_MA_rise;
219 v_tot_B = v_MB;
220 v_tot_C = v_MC - v_diff + v_MC_rise;
221
222
223 //compute freq from speed
224 f_MA = v_tot_A * steps * microsteps;
225 f_MB = v_tot_B * steps * microsteps;
226 f_MC = v_tot_C * steps * microsteps;
227
228 //compute the increment period from freq and set the direction
229 if (f_MA < 0) {
230 dt_MA = 1e6 / abs(f_MA);
231 digitalWrite(MOTOR_A_DIR_PIN, LOW);
232 dirA = 1;
233 } else if (f_MA > 0) {
234 dt_MA = 1e6 / abs(f_MA);
235 digitalWrite(MOTOR_A_DIR_PIN, HIGH);
236 dirA = -1;
237 } else {
238 dirA = 0;
239 }
240
241
242 if (f_MB > 0) {
243 dt_MB = 1e6 / abs(f_MB);
244 digitalWrite(MOTOR_B_DIR_PIN, LOW);
245 dirB = -1;
246 } else if (f_MB < 0) {
247 dt_MB = 1e6 / abs(f_MB);
248 digitalWrite(MOTOR_B_DIR_PIN, HIGH);
249 dirB = 1;
250 } else {
251 dirB = 0;
252 }
253
254 if (f_MC > 0) {
255 dt_MC = 1e6 / abs(f_MC);
256 digitalWrite(MOTOR_C_DIR_PIN, LOW);
257 dirC = -1;
258 } else if (f_MC < 0) {
259 dt_MC = 1e6 / abs(f_MC);
260 digitalWrite(MOTOR_C_DIR_PIN, HIGH);
261 dirC = 1;
262 } else {
263 dirC = 0;
264 }
265 }
266
267 void reset_dist() { //reset function
268 total_stepA = 0;
269 total_stepB = 0;
270 total_stepC = 0;
271 }
272
273 void set_turn(float angular_speed){ // apply a differential speed on the wheel to turn
274 v_diff = (lenght_btw_wheels*PI*angular_speed / (180.0*2))/(PI * diameter) ;
275 }
276
277 void emergency(bool stop){ //shut off the power
278 if(stop){

115

APPENDIX I. CODE

279 digitalWrite(MOTOR_AC_EN_PIN, HIGH);
280 digitalWrite(MOTOR_B_EN_PIN, HIGH);
281 }else{
282 digitalWrite(MOTOR_AC_EN_PIN, LOW);
283 digitalWrite(MOTOR_B_EN_PIN, LOW);
284 }
285 }
286
287 bool stand(float angle, float speed){
288 target_step = angle/ (360 * lever_ratio) * steps * microsteps;
289 Speed_stand = speed*1.0/360.0 ; // go from deg/s to rot/s
290 return total_stepB == target_step;
291 }
292
293 void raise_dir(int dir){ // Use to specify the wheel counter rotation direction during raise/fall
294 wheel_raise_dir = dir;
295 }
296
297 bool is_ready(){
298 return total_stepB == target_step;
299 }

I.3 Emergency stop ESP32 code
1 #include <SPI.h>
2 #include <LoRa.h>
3 #include <Wire.h>
4
5
6 #define Pin 15
7 #define Buzz 13
8
9 #define LORA_PERIOD 868

10 #define BAND 868E6
11
12
13 #define CONFIG_MOSI 27
14 #define CONFIG_MISO 19
15 #define CONFIG_CLK 5
16 #define CONFIG_NSS 18
17 #define CONFIG_RST 23
18 #define CONFIG_DIO0 26
19
20
21
22 unsigned long t ;
23 int state = 0;
24 int prevstate = 0;
25 byte cmd;
26
27 void setup()
28 {
29 // init serial
30 Serial.begin(115200);
31 while (!Serial);
32
33
34 // init LoRa
35 SPI.begin(CONFIG_CLK, CONFIG_MISO, CONFIG_MOSI, CONFIG_NSS);
36 LoRa.setPins(CONFIG_NSS, CONFIG_RST, CONFIG_DIO0);
37 if (!LoRa.begin(BAND)) {
38 Serial.println("Starting LoRa failed!");
39 while (1);
40 }
41
42 //init Pin
43 pinMode(Pin, OUTPUT);
44 pinMode(Pin, INPUT_PULLUP);
45 pinMode(Buzz, OUTPUT);
46 digitalWrite(Buzz, LOW);

116

APPENDIX I. CODE

47
48 prevstate = esp_sleep_get_wakeup_cause()!=ESP_SLEEP_WAKEUP_TIMER && !digitalRead(Pin);
49 t = millis();
50 }
51
52 int count = 0;
53
54 //main loop
55 void loop(){
56 Keyboard_input();
57 LoRA_sender();
58 }
59
60 void LoRA_sender(){
61
62 state = digitalRead(Pin);
63
64 if(state==HIGH){
65 cmd = cmd & 127;
66 }
67
68 LoRa.beginPacket();
69 // send two packet for redundancy
70 LoRa.write(cmd);
71 LoRa.write(cmd);
72 LoRa.endPacket();
73 Serial.println(cmd, BIN);
74
75
76 //buzzer logic
77 if(state == HIGH && prevstate == LOW){
78 digitalWrite(Buzz, HIGH);
79 delay(100);
80 digitalWrite(Buzz, LOW);
81 }
82
83
84 if(state == LOW && prevstate == HIGH){
85 digitalWrite(Buzz, HIGH);
86 delay(100);
87 digitalWrite(Buzz, LOW);
88 }
89 prevstate = state;
90 }
91
92
93 void Keyboard_input(){
94 if (Serial.available() > 0) {
95 cmd = Serial.read();
96 }
97
98 while(Serial.available()){
99 Serial.read();

100 }
101 }

I.4 User interface
1 import pygame
2 import sys
3 import numpy as np
4 import serial
5 import time
6
7
8 #Pygame init
9 pygame.init()

10 ser = serial.Serial(port="COM4", baudrate=115200)
11 width, height = 800, 600
12 screen = pygame.display.set_mode((width, height), pygame.RESIZABLE)

117

APPENDIX I. CODE

13 pygame.display.set_caption("Rotation de la flche")
14
15 # Colors
16 white = (255, 255, 255)
17
18 #load figures
19 arrow_img = pygame.image.load(’arrow.png’)
20 arrow_img = pygame.transform.scale(arrow_img, (arrow_img.get_width() // 2, arrow_img.get_height() // 2)

)
21 arrow_rect = arrow_img.get_rect(center=(width // 2, height // 2))
22 circle_img = pygame.image.load(’point.png’)
23 circle_img = pygame.transform.scale(circle_img, (circle_img.get_width() // 2, circle_img.get_height()

// 2))
24 stop_img = pygame.image.load(’Stop_sign.png’)
25 stop_img = pygame.transform.scale(stop_img, (stop_img.get_width() // 5, stop_img.get_height() // 5))
26
27 font = pygame.font.Font(None, 36)
28
29
30
31 #state variables
32 running = True
33 message = 0
34 run = True
35 stand = False
36 kalman = True
37 release_space = True
38 release_enter = True
39 release_t = True
40 release_tab = True
41
42
43 test_time = 0
44
45 # main loop
46 while running:
47 for event in pygame.event.get():
48 if event.type == pygame.QUIT:
49 running = False
50 #get window size
51 width, height = screen.get_size()
52 arrow_rect = arrow_img.get_rect(center=(width // 2, height // 2))
53
54 #Get the keys pressed
55 keys = pygame.key.get_pressed()
56 x = 0
57 string = ""
58
59 if keys[pygame.K_z] or keys[pygame.K_UP]:
60 x += 1
61 if keys[pygame.K_s] or keys[pygame.K_DOWN]:
62 x += -1
63 if keys[pygame.K_q] or keys[pygame.K_LEFT]:
64 x += 1j
65 if keys[pygame.K_d] or keys[pygame.K_RIGHT]:
66 x += -1j
67 if keys[pygame.K_ESCAPE]:
68 running = False
69 if keys[pygame.K_SPACE]:
70 if release_space:
71 release_space = False
72 if message < 10000000:
73 run = True
74 else:
75 run = False
76 else:
77 release_space = True
78
79 if keys[pygame.K_TAB]:
80 if release_tab:
81 release_tab = False
82 kalman = not kalman
83 else:

118

APPENDIX I. CODE

84 release_tab = True
85
86 if keys[pygame.K_k]:
87 kalman = True
88
89 if keys[pygame.K_c]:
90 kalman = False
91
92 if kalman :
93 string += "Kalman filter\n"
94 else:
95 string += "Complementary filter\n"
96
97 test = False
98 if keys[pygame.K_t]:
99 if release_t:

100 release_t = False
101 test = True
102 else:
103 release_t = True
104
105 if keys[pygame.K_RETURN]:
106 if release_enter:
107 release_enter = False
108 stand = not stand
109 else:
110 release_enter = True
111
112 if not stand:
113 string += "DOWN \n"
114 else:
115 string += "UP \n"
116
117
118 if test:
119 test_time = time.time()
120
121 #if (1<= time.time()-test_time < 10) : stand=True
122 #if (10<= time.time()-test_time < 25) : stand=False
123
124
125 # Clear the screen
126 screen.fill(white)
127
128 # Draw the arrow
129 if message < 10000000:
130 screen.blit(stop_img, stop_img.get_rect(center=arrow_rect.center))
131 elif abs(x) == 0:
132 screen.blit(circle_img, circle_img.get_rect(center=arrow_rect.center))
133 else:
134 angle = np.angle(x, deg=True)
135 rotated_arrow = pygame.transform.rotate(arrow_img, angle)
136 rotated_rect = rotated_arrow.get_rect(center=arrow_rect.center)
137 screen.blit(rotated_arrow, rotated_rect.topleft)
138
139 # Draw the text
140
141 if run:
142 string += "Running\n"
143 else:
144 string += "Stopped\n"
145
146 string += "Message: " + str(message) + "\n"
147
148 for i, line in enumerate(string.split("\n")):
149 text = font.render(line, True, (0, 128, 0))
150 screen.blit(text, (10, 10 + i * 30))
151
152
153
154
155 pygame.display.flip()
156

119

APPENDIX I. CODE

157 # Limit the frame rate
158 pygame.time.Clock().tick(200)
159
160 data = run << 7 | kalman << 6 | test << 5 | stand << 4 | (x.real == 1) << 3 | (x.real == -1) << 2 |

(
161 x.imag == 1) << 1 | (x.imag == -1)
162 ser.write(bytes([data]))
163 # print data as binary
164 # print(bin(data))
165
166 # read data until \n is received
167 Content = ser.readline()
168 # remove the \r and \n from the string
169 Content = Content.decode().replace("\r\n", "")
170 # print(Content)
171 message = int(Content)
172 print(message)
173
174 # Quit
175 pygame.quit()
176 sys.exit()

120

UNIVERSITÉ CATHOLIQUE DE LOUVAIN
École polytechnique de Louvain
Rue Archimède, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Introduction
	Background
	GRiSP board
	Erlang programming language
	Hera framework
	Self balancing devices
	Two-wheeled self-balancing devices
	Control strategies
	Filters
	Complementary filter
	Kalman filter
	High-pass filter

	I Design
	Overall design
	Objectives specification
	Application selection
	Objectives and constraints

	Overall system diagram

	Physical device
	Device design
	Actuation
	Electrical design
	Mechanical design - two wheeled robot with lifting mechanism

	Physical modelling
	Hypotheses
	Frame representation
	Movement equations

	Preprocessing
	Complementary filter
	Kalman filter
	Simple model
	Advanced ``digital twin'' model
	Overall system with Kalman filter

	Preprocessing filters comparison

	Controller
	PID controller
	Stability engine conception
	Controller for any reference angle
	Controller with equilibrium point reference
	Finding the equilibrium point
	Equilibrium angle controller

	Enhanced stability engine
	Advance speed profile
	Rotation speed profile

	Controller block representation

	Motor drivers
	Wheel speed computation
	Acceleration integration
	Rotation control
	Left and right wheel speed

	Logical command operator
	Motor drivers block representation

	Executive controller
	Finite State Machine Framework
	Robot's Finite State Machine

	II Implementation
	Software architecture
	GRiSP software architecture
	GRiSP application process: balancing_robot
	Hera process: hera_interface
	Robot process: main_loop
	PID controller processes: PID_speed and PID_stability

	ESP32 software architecture
	LoRa communication loop
	I2C communication
	Motor engine

	Problems and optimisations
	Available GRiSP optimizations
	GRiSP GPIO frequency
	Motor actuation
	Hera measure latency
	Bus communication latency
	Sensor operating mode
	CPU load during data recording

	III Evaluation
	Characterisation
	Reference case
	Behavioural study
	Straight movement
	Rotation movement
	Raise up and lie back down
	Emergency stop
	Frontal impulse
	Moment of inertia increase
	Slope
	Offset loading

	Limitations
	Speed command
	Start angle
	Motor voltage
	Frequency
	Slope
	Sensor noise

	Discussion
	Conclusions and future work
	Bibliography

	IV Appendices
	Developed device
	Technical specifications
	PCBs
	Physical model development
	Software flags
	Maximal delay computation
	GRiSP GPIO Frequency
	Experimentation setup
	Code
	GRiSP code
	balancing_robot app
	balancing_robot supervisor
	balancing_robot
	main_loop
	stability_engine

	Robot ESP32 code
	ESP32_main
	ESP32_motor_engine

	Emergency stop ESP32 code
	User interface

