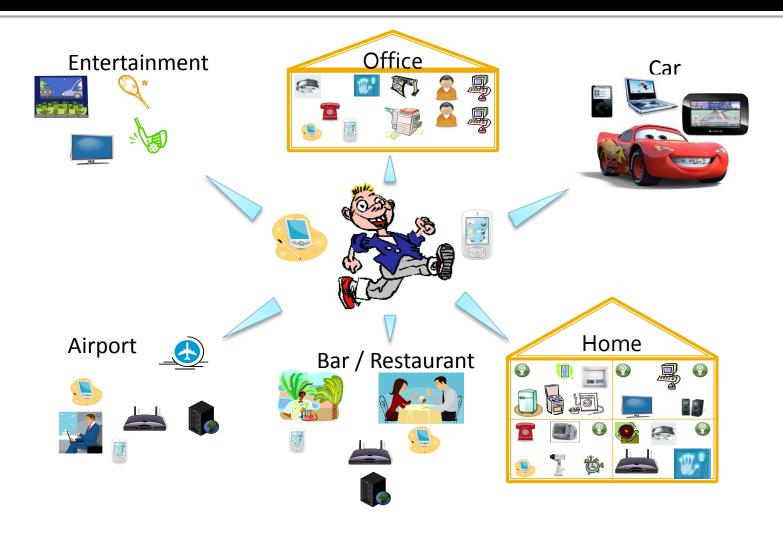
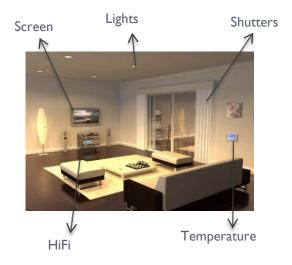
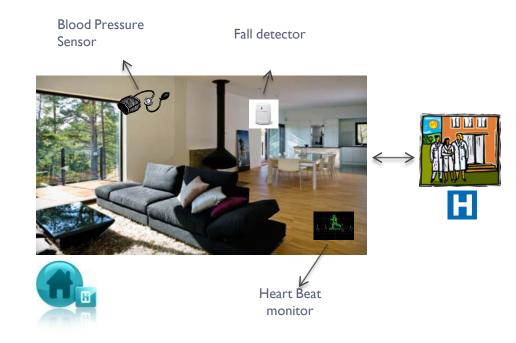
Models@Run.Time to support adaptation in Future Internet Services

Johann Bourcier Associate Professor University of Rennes 1 Johann.Bourcier@irisa.fr


Speaker Bio 1/2

- PhD in Computer Science from Grenoble University France (2005 – 2008)
 - Auto-Home: A Framework for Autonomic Pervasive Applications
- Postdoc in Imperial College London
 - Self-adaptation in pervasive and embedded systems
- Associate Professor in University of Rennes 1 (2010 – current)
 - Models@runtime and self-adaptation for Future Internet Sevices


Speaker Bio 2/2


- Projects involvement
 - Past
 - EU ITEA ANSO
 - Autonomic network for SOHO
 - EUOSAMi
 - Open Source for Ambient Intelligence
 - EU FP7 Diva project
 - Models@Run.Time
 - Current
 - EU ITN Relate
 - Cloud Computing
 - ANR (French) INFRA-JVM
 - A dedicated JVM for Pervasive environment
 - Upcoming very soon
 - EU FET Diversify
 - Investigating the impact of software diversity on system resilience

Context

Application domains

A Borader view

Johann Bourcier

Software Intensive Systems

Autonomic Computing
Cloud Computing
PaaS, SaaS, IoS, IoT...

Comparison

IDEAL WORLD

- Seamless integration with our daily environment
- Context dependent behavior
- Seamless and secured access to personal data
- Global interconnection

CURRENT STATE OF THE ART

- No real standard
- "Integration" for devices from one vendor
- Closed Business model
- Possibility to access some of your data
- No global interconnection

Environment Properties

- Extremely Open
- Extremely Dynamic
- Extremely Unpredictable
- Extremely Sensitive

Scientific Challenges

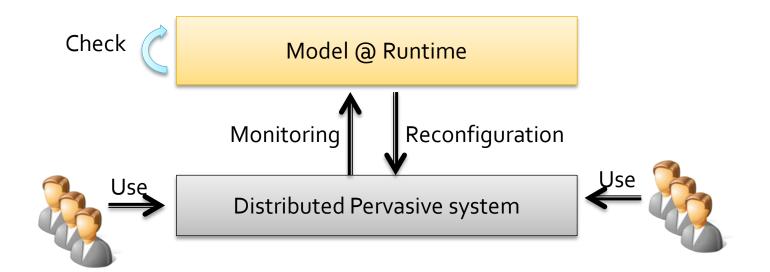
- Distribution
- Heterogeneity
- Dynamism
- Multi-provider
- Evolution
- Ease of use
- Privacy
- Safety
- Security

"Eternal" system

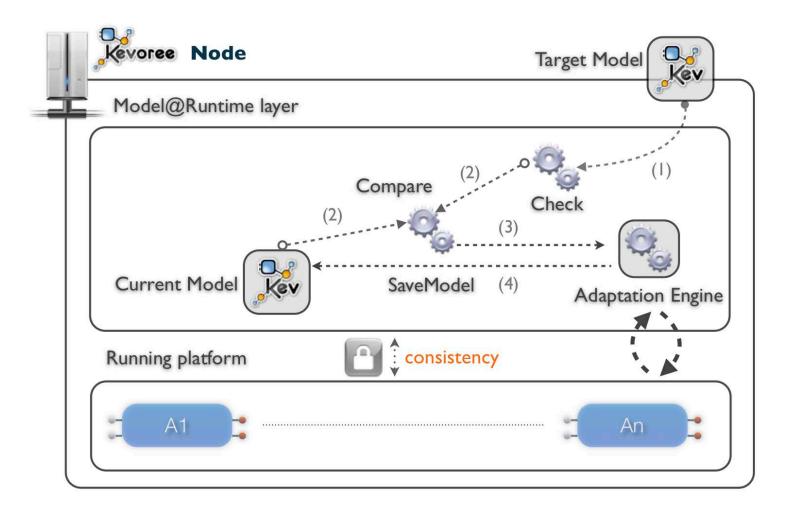
- Dynamically adaptive systems (DAS) <=> ability to make their behaviors and/or functionalities evolve at runtime.
- Typically used for applications where it's hard/impossible to anticipate needs at design time <=> Continuous design
- Necessity to define a manipulation granularity

=> common approach : component based development

"Eternal" systems need continuous adaptations


- Once reserved for critical systems, DAS approaches are now used for more humble systems, for several reasons
 - High availability
 - Cloud, web servers, 4 monitoring sensors network, etc ... need the famous 99,99% uptime
- Time to market and hyper agility
 - Agile methods <-> release often / continuously improve the design

Need to adapt SE method from the V cycle to continuous delivery ...


 We need to provide an abstraction to manipulate and compose dissemination strategies

Models@Run.Time

- Based on the idea of reusing MDE techniques at runtime
- Provide an abstraction to reason about and manipulate systems at runtime.

Models@Run.Time

Models@Run.Time for distributed systems

- 1. Model of the distributed systems
- 2. Take decision locally
- 3. Apply reconfiguration locally
- 4. Disseminate reconfiguration

The Kevoree Project

http://kevoree.org

Model@Runtime for DDAS

MDE@Runtime

- Shared model representation for distributed nodes
- Offline & online operation, compute@Model level, apply @Runtime

Component-based

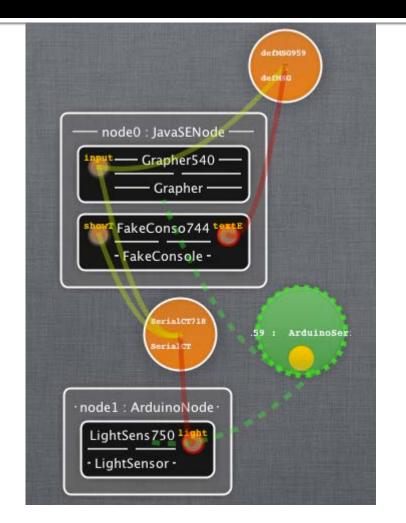
- Communication semantics between component in channel
- Heterogeneity management with NodeType
 - Java Node, Dalvik Node, Arduino Node
 - Cloud Node (Jails/*BSD, JCloud, mini-cloud, EC2)

Kevoree Concepts

ComponentType

 Encapsulate domain features

ChannelType

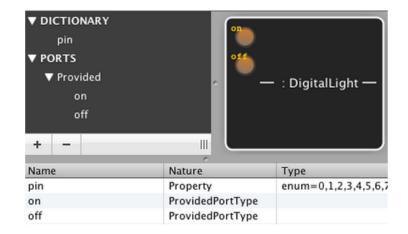

 Encapsulate communication semantics

GroupType

 Encapsulate model@runtime dissemination semantics

NodeType

 Encapsulate adaptation semantics



Kevoree tools

Design your code

0

@ComponentType @Provides({ @ProvidedPort(name = "on"), @ProvidedPort(name = "off"), }) public class DigitalLight extends AbstractArduinoComponent { //hard code goes here ... }

1

2 3

4

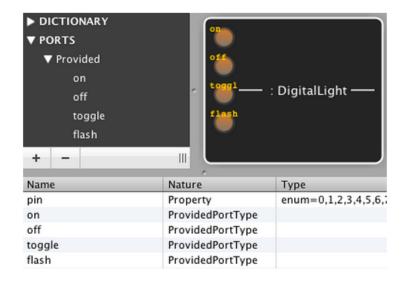
5

6

7

8

9

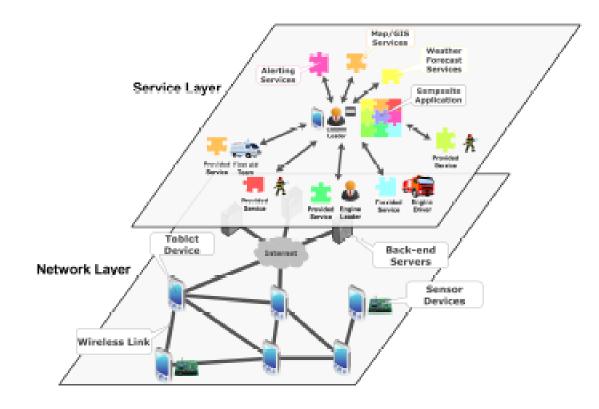

Kevoree tools

Code your design

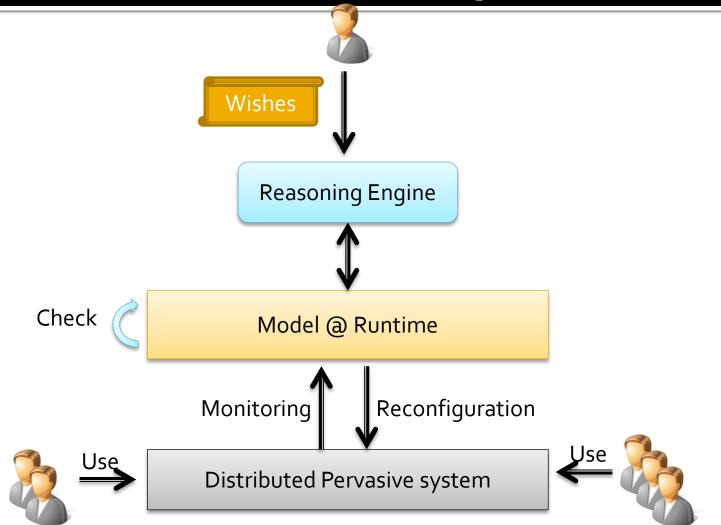
1	@ComponentType
2	<pre>@Provides({</pre>
3	<pre>@ProvidedPort(name = "on"),</pre>
4	<pre>@ProvidedPort(name = "off"),</pre>
5	<pre>@ProvidedPort(name = "toggle"),</pre>
6	<pre>@ProvidedPort(name = "flash")</pre>
7	})
8	public class DigitalLight
9	extends AbstractArduinoComponent {
	//hard code goes here
10	}
11	

Kevoree Usage

Model@Runtime platform for distributed dynamic adaptive system



- From low power nodes...
 - Arduino
- ... to Clouds
 - EC2 etc.
- DAUM platform
 - Tactical Information System
 - for civil security
 - Sensors on firefighters, tablets, cloud...



Define a tactical on-field operating system for firefighters

On going work – Self-adaptation for Cloud / IoT / Pervasive systems

Very simple Demonstration

References

- F. Fouquet, O. Barais, N. Plouzeau, J-M. Jézéquel, B. Morin and F. Fleurey. -- A Dynamic Component Model for Cyber Physical Systems. -- In CBSE: 15th International ACM SIGSOFT Symposium on Component Based Software Engineering. Bertinoro, Italy, June 2012.
- Fouquet, Francois and Daubert, Erwan and Plouzeau, Noel and Barais, Olivier and Bourcier, Johann and Jezequel, Jean-Marc -- Dissemination of reconfiguration policies on mesh networks
- E. Daubert, F. Fouquet, O. Barais, G. Nain, G. Sunyé, J-M. Jézéquel, J-L. Pazat and B. Morin. -- A models@runtime framework for designing and managing Service-Based Applications. -- In ICSE Workshop on European Sofware Services and Systems Research - Research and Challenges (S-Cube). Zurich, Switzerland, May 2012.
- Nain, Grégory, Fouquet, François, Morin, Brice, Barais, Olivier and Jézéquel, Jean-Marc (2010) Integrating IoT and IoS with a Component-Based approach. In Proceedings of the 36th EUROMICRO Conference on Software Engineering and Advanced Applications (SEAA 2010). Lille, France.
- André, Francoise, Daubert, Erwan, Nain Grégory, Morin, Brice and Barais, Olivier (2010) F4Plan: An Approach to build Efficient Adaptation Plans. In MobiQuitous.
- Brice Morin, Olivier Barais, Grégory Nain, Jean-Marc Jézéquel: Taming Dynamically Adaptive Systems using models and aspects. ICSE 2009: 122-132
- Brice Morin, Ölivier Barais, Jean-Marc Jézéquel, Franck Fleurey, Arnor Solberg:s Models@Run.time to Support Dynamic Adaptation. IEEE Computer 42(10): 44-51 (2009)