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Typical Cloud Applications (according to AWS)

I Application Hosting
I Backup and Storage
I Content Delivery
I E-Commerce
I High Performance Computing
I Media Hosting
I On-Demand Workforce
I Search Engines
I Web Hosting
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Applications running at Amazon Web Services

Sample: 50 applications from the
AWS Customer App Catalog.
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Many Cloud applications are alike

I Web servers
I Application servers
I Database servers
I High-performance frameworks (MapReduce, MPI, Workflows)
I . . . and a few percents of miscellaneous programs

Cloud application developers often rebuild
the same types of frameworks again and again and again. . .
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Can the Cloud help support common types of
applications?

I Infrastructure-as-a-Service provides basic computing resources
I Absolute flexibility: you can build anything you want
I But it can be very complex and time consuming

I Deployment
I Software upgrades
I Fault-tolerance
I Performance monitoring
I Resource provisioning
I Dynamic reconfiguration orchestration
I etc.

I Platform-as-a-Service provides high-level services
I Each PaaS service targets a specific family of applications
I Provide a simple deployment environment for applications
I Provide high-level guarantees for applications using these services
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What is ConPaaS ?

ConPaaS is an open-source runtime environment for hosting applications in
Cloud environments.

I Broad range of functionalities
I Application servers, databases, high-performance computing,

miscellaneous

I Fully integrated
I Applications can compose any set of services together

I Easy to use but also very powerful
I Simple Web GUI + powerful command-line tool
I Services are highly customizable

I Cutting-edge SLA enforcement technologies
I Elasticity and resource provisioning techniques to guarantee

performance at the lowest possible cost

I Support for deployment on multiple-clouds
I OpenNebula, AmazonEC2, OpenStack (soon)
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ConPaaS hosting Cloud Applications

I Fully support for the following services:
I Web servers — static content and dynamic web applications (PhP,

JSP)
I MapReduce — for data-intensive computing
I TaskFarming — for scientific applications
I Databases (SQL and NoSQL) — for everybody
I More services coming: CDN, functional testing, XtreemFS, etc.

I BUT: You can easily build your own ConPaaS service.
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ConPaaS Applications
A ConPaaS application is defined as a composition of multiple service
instances

I For example: web hosting service + MySQL database + logging
service (to store access logs)

PHP service

(using 1 or more

machine instances)

Logging service

(using 1 or more

machine instances)

End user

SQL data service

(using 1 or more

machine instances)
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Architecture of a ConPaaS service

I A ConPaaS service is implemented as one or more virtual machine
instances dedicated to a single user

I Single-tenant: each VM belongs to a single user
I No VM sharing between services (even for the same user)

I ConPaaS services are elastic: we can grow/shrink their capacity at
runtime with no service disruption

I Horizontal provisioning: add/remove virtual machines

I ConPaaS services will support dynamic resource provisioning:
automatic capacity adjustment to support performance guarantees at
minimum cost
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ConPaaS Organization
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I Each manager VM contains a manager process
I Each agent VM contains an agent process
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Lifecycle of a ConPaaS service
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Elastic Cloud Applications
– Web applications
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The varying capacity problem

 0

 200

 400

 600

 800

 1000

 1200

 1400

Mon
09/17/07

Wed
09/19/07

Fri
09/21/07

Sun
09/23/07

Tue
09/25/07

Thu
09/27/07

Sat
09/29/07

Mon
10/01/07

Wed
10/03/07

R
e
q
u
e
s
t
s
/
s
e
c
o
n
d

Time

13



The varying capacity problem

 0

 200

 400

 600

 800

 1000

 1200

 1400

Mon
09/17/07

Wed
09/19/07

Fri
09/21/07

Sun
09/23/07

Tue
09/25/07

Thu
09/27/07

Sat
09/29/07

Mon
10/01/07

Wed
10/03/07

R
e
q
u
e
s
t
s
/
s
e
c
o
n
d

Time

Static provisioning

13
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Dynamic resource provisioning

Response time

Time

SLO

14



Dynamic resource provisioning

Response time

Time

SLO

14



Dynamic resource provisioning
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Dynamic resource provisioning
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Provisioning in a multi-service Web application
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Provisioning in a multi-service Web application
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Provisioning in a multi-service Web application

When the application needs more capacity,
where should I place extra resources?
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Classical solutions
I Threshold rules-based resource provisioning systems

I Impose an SLO to each service individually
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Classical solutions

I Threshold rules-based resource provisioning systems
I Impose an SLO to each service individually
I Scaling decisions are based on the actual workload burst
I Examples: RightScale, OpenShift, Auto Scaling Amazon, etc ...

I Advantages
Each service can be scaled in isolation
Easily interpreted by non specialists

I Disadvantages
Only system-level performance constraints (CPU usage and Resp. time)
Easy target to temporal bursty variations in the workload
VM performance heterogeneity
Overall performance is suboptimal: SLO for backend services

20



ConPaaS: Auto-scaling System
I Profiling-based resource provisioning system

I Extend the threshold rules-based system using profiling techniques
I VM performance profiling

I Impose an SLO to the front-end service only

I Scaling decisions are based on the most recent workload history

I Advantages
Services collaborate to maintain the SLO at min. cost
VM performance heterogeneity
Application-specific performance constraints
Avoid flash crowds and slashdot effects

I Disadvantages
Best-effort in terms of SLA fulfillment
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VM performance profiling

Purpose: To estimate the application response time that a certain VM will
provide under a given workload.

Online profiling:
I Idea: while the application is in use, we direct a number of specified

request workloads to the tested VMs and measure the response time
I Usage:

I to dynamically adjust the load balancing weights of the provisioned
VM’s

I to refine the conditions for scaling out/back

I Implementation: through a customized web load balancer
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VM performance profiling

Purpose: To estimate the application response time that a certain VM will
provide under a given workload.

Offline profiling:
I Idea: to gather information about VM instances to have an initial

assessment of their throughput.
I Usage:

I to select the suitable set of VMs for an initial configuration
I to define the flexible threshold ranges for each VM’s instance

I Implementation: through training
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Preliminary Experimental Results
Purpose: Compare the behavioral pattern between the threshold-based and
profiling-based ( using the PhP web hosting service)

I Application: Wikipedia services - Mediawiki
I English Wikipedia articles data (approx. 20Gb)

I Monitoring:
I Ganglia (http://ganglia.sourceforge.net/)
I Modules to monitor web-specific metrics

I Testing: Wikibench, a Wikipedia-based benchmark
I Real access traces

I Enviroment: Amazon Elastic Cloud Compute
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SLA Fulfillment (only PhP requests)
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Resource Consumption

 0

 1

 2

 3

 4

 5

 6

 7

 0  200  400  600  800  1000  1200  1400

N
u

m
. 

M
a

c
h

in
e

s

Time (min)

Num. Machine Usage per Time

Threshold-based prov.
Profiling-based prov.

26



Conclusion
I ConPaaS is a platform-as-a-service environment

I Designed to facilitate elastic application hosting in the cloud
I Auto scaling system: Trade-off between SLA fulfillment and resource

consumption
I Designed to be easily extensible

I ConPaaS addresses two major classes of applications:
I Web applications
I Scientific applications
I Combinations of both

I ONGOING WORK:
I Online profiling when adding/removing VMs
I Offline profiling to establish flexible threshold ranges
I Vertical scaling (up/down)
I Cost-aware resource provisioning

www.conpaas.eu
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The ConPaaS Front-End
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