
Héctor Fernández and G. Pierre
Vrije Universiteit Amsterdam

Cloud Computing Day, November 20th 2012

contrail is co-funded by the EC
7th Framework Programme
under Grant Agreement nr.

2574381

Typical Cloud Applications (according to AWS)

I Application Hosting
I Backup and Storage
I Content Delivery
I E-Commerce
I High Performance Computing
I Media Hosting
I On-Demand Workforce
I Search Engines
I Web Hosting

1

Applications running at Amazon Web Services

Sample: 50 applications from the
AWS Customer App Catalog.

2

Many Cloud applications are alike

I Web servers
I Application servers
I Database servers
I High-performance frameworks (MapReduce, MPI, Workflows)
I . . . and a few percents of miscellaneous programs

Cloud application developers often rebuild
the same types of frameworks again and again and again. . .

3

Can the Cloud help support common types of
applications?

I Infrastructure-as-a-Service provides basic computing resources
I Absolute flexibility: you can build anything you want
I But it can be very complex and time consuming

I Deployment
I Software upgrades
I Fault-tolerance
I Performance monitoring
I Resource provisioning
I Dynamic reconfiguration orchestration
I etc.

I Platform-as-a-Service provides high-level services
I Each PaaS service targets a specific family of applications
I Provide a simple deployment environment for applications
I Provide high-level guarantees for applications using these services

4

What is ConPaaS ?

ConPaaS is an open-source runtime environment for hosting applications in
Cloud environments.

I Broad range of functionalities
I Application servers, databases, high-performance computing,

miscellaneous

I Fully integrated
I Applications can compose any set of services together

I Easy to use but also very powerful
I Simple Web GUI + powerful command-line tool
I Services are highly customizable

I Cutting-edge SLA enforcement technologies
I Elasticity and resource provisioning techniques to guarantee

performance at the lowest possible cost

I Support for deployment on multiple-clouds
I OpenNebula, AmazonEC2, OpenStack (soon)

5

ConPaaS hosting Cloud Applications

I Fully support for the following services:
I Web servers — static content and dynamic web applications (PhP,

JSP)
I MapReduce — for data-intensive computing
I TaskFarming — for scientific applications
I Databases (SQL and NoSQL) — for everybody
I More services coming: CDN, functional testing, XtreemFS, etc.

I BUT: You can easily build your own ConPaaS service.

6

ConPaaS Applications
A ConPaaS application is defined as a composition of multiple service
instances

I For example: web hosting service + MySQL database + logging
service (to store access logs)

PHP service

(using 1 or more

machine instances)

Logging service

(using 1 or more

machine instances)

End user

SQL data service

(using 1 or more

machine instances)

7

Architecture of a ConPaaS service

I A ConPaaS service is implemented as one or more virtual machine
instances dedicated to a single user

I Single-tenant: each VM belongs to a single user
I No VM sharing between services (even for the same user)

I ConPaaS services are elastic: we can grow/shrink their capacity at
runtime with no service disruption

I Horizontal provisioning: add/remove virtual machines

I ConPaaS services will support dynamic resource provisioning:
automatic capacity adjustment to support performance guarantees at
minimum cost

8

ConPaaS Organization

Load
Balancer

PHP servers
(dynamic
pages)

Web servers
(static pages)

PHP service
Manager

Load
Balancer

MySQL
slaves

MySQL
master

MySQL service
Manager

Front-
end

Logic

Front-
end
GUI

End users

Service
admin

PHP
service

MySQL
service

Control plane Data plane

Virtual machine

Management traffic

Application trafic

Legend

9

ConPaaS Organization

Load
Balancer

PHP servers
(dynamic
pages)

Web servers
(static pages)

PHP service
Manager

Load
Balancer

MySQL
slaves

MySQL
master

MySQL service
Manager

Front-
end

Logic

Front-
end
GUI

End users

Service
admin

PHP
service

MySQL
service

Control plane Data plane

Virtual machine

Management traffic

Application trafic

Legend

I Each manager VM contains a manager process
I Each agent VM contains an agent process

10

Lifecycle of a ConPaaS service

11

Elastic Cloud Applications
– Web applications

12

The varying capacity problem

 0

 200

 400

 600

 800

 1000

 1200

 1400

Mon
09/17/07

Wed
09/19/07

Fri
09/21/07

Sun
09/23/07

Tue
09/25/07

Thu
09/27/07

Sat
09/29/07

Mon
10/01/07

Wed
10/03/07

R
e
q
u
e
s
t
s
/
s
e
c
o
n
d

Time

13

The varying capacity problem

 0

 200

 400

 600

 800

 1000

 1200

 1400

Mon
09/17/07

Wed
09/19/07

Fri
09/21/07

Sun
09/23/07

Tue
09/25/07

Thu
09/27/07

Sat
09/29/07

Mon
10/01/07

Wed
10/03/07

R
e
q
u
e
s
t
s
/
s
e
c
o
n
d

Time

Static provisioning

13

The varying capacity problem

 0

 200

 400

 600

 800

 1000

 1200

 1400

Mon
09/17/07

Wed
09/19/07

Fri
09/21/07

Sun
09/23/07

Tue
09/25/07

Thu
09/27/07

Sat
09/29/07

Mon
10/01/07

Wed
10/03/07

R
e
q
u
e
s
t
s
/
s
e
c
o
n
d

Time

Dynamic provisioning

13

Dynamic resource provisioning

Response time

Time

SLO

14

Dynamic resource provisioning

Response time

Time

SLO

14

Dynamic resource provisioning

resource
Add new

Response time

Time

SLO

14

Dynamic resource provisioning

resource
Add new

decreases
Traffic

Response time

Time

SLO

14

Dynamic resource provisioning

resource
Add new

decreases
Traffic

Release resource

without violating

the SLO

Response time

Time

SLO

14

Provisioning in a multi-service Web application

15

Provisioning in a multi-service Web application

16

Provisioning in a multi-service Web application

When the application needs more capacity,
where should I place extra resources?

17

Classical solutions
I Threshold rules-based resource provisioning systems

I Impose an SLO to each service individually

18

Classical solutions

I Threshold rules-based resource provisioning systems
I Impose an SLO to each service individually
I Scaling decisions are based on the actual workload burst

19

Classical solutions

I Threshold rules-based resource provisioning systems
I Impose an SLO to each service individually
I Scaling decisions are based on the actual workload burst

19

Classical solutions

I Threshold rules-based resource provisioning systems
I Impose an SLO to each service individually
I Scaling decisions are based on the actual workload burst

19

Classical solutions

I Threshold rules-based resource provisioning systems
I Impose an SLO to each service individually
I Scaling decisions are based on the actual workload burst

19

Classical solutions

I Threshold rules-based resource provisioning systems
I Impose an SLO to each service individually
I Scaling decisions are based on the actual workload burst
I Examples: RightScale, OpenShift, Auto Scaling Amazon, etc ...

I Advantages
Each service can be scaled in isolation
Easily interpreted by non specialists

I Disadvantages
Only system-level performance constraints (CPU usage and Resp. time)
Easy target to temporal bursty variations in the workload
VM performance heterogeneity
Overall performance is suboptimal: SLO for backend services

20

ConPaaS: Auto-scaling System
I Profiling-based resource provisioning system

I Extend the threshold rules-based system using profiling techniques
I VM performance profiling

I Impose an SLO to the front-end service only

I Scaling decisions are based on the most recent workload history

I Advantages
Services collaborate to maintain the SLO at min. cost
VM performance heterogeneity
Application-specific performance constraints
Avoid flash crowds and slashdot effects

I Disadvantages
Best-effort in terms of SLA fulfillment

21

VM performance profiling

Purpose: To estimate the application response time that a certain VM will
provide under a given workload.

Online profiling:
I Idea: while the application is in use, we direct a number of specified

request workloads to the tested VMs and measure the response time
I Usage:

I to dynamically adjust the load balancing weights of the provisioned
VM’s

I to refine the conditions for scaling out/back

I Implementation: through a customized web load balancer

22

VM performance profiling

Purpose: To estimate the application response time that a certain VM will
provide under a given workload.

Offline profiling:
I Idea: to gather information about VM instances to have an initial

assessment of their throughput.
I Usage:

I to select the suitable set of VMs for an initial configuration
I to define the flexible threshold ranges for each VM’s instance

I Implementation: through training

23

Preliminary Experimental Results
Purpose: Compare the behavioral pattern between the threshold-based and
profiling-based (using the PhP web hosting service)

I Application: Wikipedia services - Mediawiki
I English Wikipedia articles data (approx. 20Gb)

I Monitoring:
I Ganglia (http://ganglia.sourceforge.net/)
I Modules to monitor web-specific metrics

I Testing: Wikibench, a Wikipedia-based benchmark
I Real access traces

I Enviroment: Amazon Elastic Cloud Compute

 200

 300

 400

 500

 600

 700

 800

 0 200 400 600 800 1000 1200 1400

N
u

m
.

P
h

P
 R

e
q

u
e

s
ts

Time (min)

Trace PhP Requests per Minute

Trace PhP Requests per Minute

24

SLA Fulfillment (only PhP requests)

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400

R
e

s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (min)

Avg. PhP Response Time

App. SLA
Backend SLA

Avg. Timeout PhP Request

Threshold rules-based

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600 800 1000 1200 1400
R

e
s
p

o
n

s
e

 T
im

e
 (

m
s
)

Time (min)

Avg. PhP Response Time

App. SLA
Backend SLA

Avg. Timeout PhP Request

Profiling-based

25

Resource Consumption

 0

 1

 2

 3

 4

 5

 6

 7

 0 200 400 600 800 1000 1200 1400

N
u

m
.

M
a

c
h

in
e

s

Time (min)

Num. Machine Usage per Time

Threshold-based prov.
Profiling-based prov.

26

Conclusion
I ConPaaS is a platform-as-a-service environment

I Designed to facilitate elastic application hosting in the cloud
I Auto scaling system: Trade-off between SLA fulfillment and resource

consumption
I Designed to be easily extensible

I ConPaaS addresses two major classes of applications:
I Web applications
I Scientific applications
I Combinations of both

I ONGOING WORK:
I Online profiling when adding/removing VMs
I Offline profiling to establish flexible threshold ranges
I Vertical scaling (up/down)
I Cost-aware resource provisioning

www.conpaas.eu
27

www.conpaas.eu

contrail is co-funded by the
EC 7th Framework Programme

Funded under: FP7 (Seventh Framework Programme)
Area: Internet of Services, Software & Virtualization
(ICT-2009.1.2)
Project reference: FP7-IST-257438
Total cost: 11.29 million euro
EU contribution: 8.3 million euro
Execution: From 2010-10-01 till 2013-09-30
Duration: 36 months
Contract type: Collaborative project (generic)

28

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

The ConPaaS Front-End

29

	Introduction
	ConPaaS organization
	Performance control

