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The Data Deluge 

• Big data 
–  150 Exabytes (billion GBs) in 2005 à 1200 Exabytes in 2010 
–  real-time big data analytics in UK £25 billions à £216 billions in 2012-17 

  Many new sources of data become available 
–  Sensors, mobile devices 
–  Web feeds, social networking 
–  Cameras 
–  Scientific instruments 

• E How can we make sense of all data ? 
–  Most data is not interesting 
–  New data supersedes old data 
–  Challenge is not only storage but also querying 
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Real Time Traffic Monitoring 

3 

•  Instrumenting country’s transportation infrastructure 

Time-EACM 
(Cambridge) 

–  Many parties interested in data 
•  Road authorities 
•  Traffic planners 
•  Commuters 

–  High-level queries 
•  “What is the best time/route for 

my commute from London to 
Cambridge at 7-8am?” 



Web/Social Feed Mining 
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Social Cascade 
Detection 

• Detection and reaction to social cascades 



Astronomic Data Processing 
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• Analysing transient cosmic events: γ-ray bursts 

•  Large Synoptic Survey 
Telescope (LSST) 

–  Generates 1.28 
Petabytes per year 
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Global Sensor Applications: EarthScope 

• Using sensors to understand geological evolution 
–  Many sources: seismometers, GPS stations, … 

http://www.earthscope.org 

E  How do you process all this data? 



Traditional Databases 

• Database Management System (DBMS):  
•  Data relatively static but queries dynamic 

7 

DBMS 

Data 

Queries Results 

Index 

–  Persistent relations 
•  Radom access 
•  Low update rate 
• Unbounded disk storage 

–  One-time queries 
•  Finite query result 
• Queries exploit (static) indices 



Data Stream Processing System 

• SPSs: Queries static but data dynamic 
•  Data represented as time-dependant data stream 
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SPS 

Queries 

Stream Results 

Working 
Storage 

–  Transient streams 
•  Sequential access 
•  Potentially high rate 
•  Bounded main memory 

–  Continuous queries 
•  Time-dependant res. stream 
•  Indexing? 

E Process data streams on the fly without storage 



Data Stream Processing 
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E Process tuple streams on-the-fly by operators:  

Distributed Stream Processing Systems  



This talk is about ... 

• Data Stream Processing in the Cloud  

• Scalable and Fault-tolerance Stream Processing in the Cloud 
–  Increasing workload rates 
–  Stateful operators 

•  Fair Stream Processing in Federated SPSs under Overload 
–  Tuple shedding user-feedback metric 
–  Fair tuple shedding under overload 
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• Scalable and Fault-tolerant Stream  

• Processing in the Cloud 
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Stream Processing in the Cloud 

• Clouds provide virtually infinite pools of resources 
–  Fast and cheap access to new machines for operators 

•  In a utility-based pricing model: 

–  Needlessly over-provisioning system is expense 
–  Using too few resources leads to poor performance 
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E How do you use the optimal number of resources? 



Challenges in Cloud-Based Stream Processing 

• Intra-query parallelism 
–  Provisioning for workload peaks unnecessarily conservative 

• Failure resilience 
–  Active fault-tolerance requires 2x resources 
–  Passive fault-tolerance leads to  

long recovery times 
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Operator State Management 

Operator state:  
–  A summary of past tuples’ processing, e.g. max result 
–  It cannot be lost, or stream results are affected 

On scale out: 
–  Partition operator state correctly, maintaining consistency 

• On failure recovery: 
–  Restore state of failed operator 
–  Define primitives for state management and build other mechanisms on 

top of them 
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E  Make operator state an external entity that can be managed by 
the stream processing system 



State Management 

• What is state in stream processing system? 

–  Need to externalise processing state of operators 15 
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State Management Primitives 
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Takes snapshot of state and makes it  
externally available 

E  Restore 

E  Backup 
 
 
 
 

 
 
 
 

 
 
 
 

 
 
 
 

A
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E  Checkpoint 

E  Partition 

Moves copy of state from one  
operator to another 

Splits state in a semantically correct  
fashion for parallel processing 



State Management in Action, SEEP 

17 

EC2 stats

fault
detector

scale out
coordinator

deployment manager

query manager

queries

bottleneck detector
scaling policyVM pool

faults

UB+C
coordinator

1 
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1. Dynamic Scale Out: Detect bottleneck, remove by adding  
     new parallelised operator 

2. Failure Recovery: Detect failure, replace with new operator 



Dynamic Scale Out: Detecting bottlenecks 

CPU 
utilisation 

report 

35% 

85% 

30% 

Logical infrastructure  
view 

35% 85% 30% 

Bottleneck 

Bottleneck 
detector 



The VM Pool: Adding operators 

• Problem: Allocating new VMs takes minutes... 

19 

Bottleneck 
detector 

Monitoring 
information 

Cloud  
provider 

VM1 VM2 Virtual Machine Pool 

Decision to scale-out 

Bottleneck detected 

Select pre-provisioned VM 
(order of secs) 

Provision VM from cloud 
(order of mins) 

VM3 

Add new VM to pool 

VM2 

VM3 (dynamic pool size) 



Scaling Out Stateful Operators 
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A

Periodically, stateful operators checkpoint and back up  
state to designated upstream backup node 

AA

A

For scale out, backup node already has state 
of operator to be parallelised 
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New operator 

A

B 

A
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E  Checkpoint 

E  Backup 

E  Partition 

E  Restore 

Finally, upstream operators replay unprocessed 
tuples to update checkpointed state 



State Partitioning 

• Processing state modeled as (key, value) dictionary 

• State partitioned according to key k of tuples 
–  Same key used to partition incoming streams 

• Tuples will be routed to correct operator 
–  x is splitting key that partitions state 

B 

0-50 

50-100 

stream 0-100 stream 0-50 

stream 50-100 
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Passive Fault-Tolerance Model 

• Recreate operator state by replaying tuples after failure 
–  Send acknowledgements upstream for tuples processed downstream 

 

 

• May result in long recovery times due to large buffers 
–  System is reprocessing streams after failure è inefficient 

Upstream 
Backup 
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ACKs 

data 



Upstream Backup + Checkpointing 
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New instance 

• Benefit from state management primitives 
–  Use periodically backed up state on upstream node to recover faster 

A

A

State is restored and unprocessed tuples are replayed from buffer 



SEEP Evaluation 
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E  SEEP scales out to increasing workload in the  
     Linear Road Benchmark 



• THEMIS: Max-min Fairness in Federated  

• Stream Processing under Overload 
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Federated Stream Processing System 
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E  We cannot scale out to additional resources  
E  Permanent resource, skewed overload conditions 
E  Tuple shedding 



Tuple Load Shedding à discard data! 
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Query:  
Which are the two rooms with the highest temperatures, every 5 minutes? 

E  Reduces resource footprint 
E  Useful only when feedback is provided to user 
E  Shedding is controlled for fair processing among queries 



Source Information Content (SIC) metric 
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E  SIC metric provides feedback on loss of source tuples 
E  SIC is query-independent 



Unfair Processing in Federated SPSs 
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E  Random shedding à a wide spread in processing quality  

–  3 nodes, 100 top-5 queries 
–  Traces from 40 PlanetLab nodes 
–  “Select the 5 nodes with the 

highest free CPU and at least 
500MB of MEM every second” 

–  Skewed query deployment 



Fair Stream Processing in Federated-SPSs 
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  G1: Query-independent processing metric à SIC 

• G2: Stream processing fairness à max-min SIC  
–  Some queries are less/more overloaded than others 

    Max-min SIC Fairness: 
 The ordering of queries is max-min SIC fair if and if only an 
 increase  in the SIC value of a query must be at the expense  
 of the decrease of the SIC value of an already smaller query. 

• G3: Decentralised fairness à sites are autonomous 



Max-min Decentralised Fairness Challenges 
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assume (node a) << (node b) 
 
Research question:  
how can we balance shedding so to maximise SIC values on (node a) queries? 
 



Max-min Decentralised Fairness Solution 
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Solution insights: 
–  Each node solves a max-min problem for its running queries 
–  Each node is updated on the result SIC value of its queries 

  à nodes take informed local decisions for global fairness 
–  Each node always sheds the least SIC tuples 

  à save on resources 
–  Solve a small problem at-a-time and iterate with feedback 
 
 

  



THEMIS Evaluation 
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E  THEMIS  max-min fairness is always better than random 

–  18 nodes, 2,000 fragments 
–  Mix workload: cov, top-5,avg 



Conclusions 
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• Data Stream Processing is efficient in the Cloud 
–  New challenges emerge from Cloud scalability 

•  Scale out and fault-tolerance have to be integrated 

–  New problems arise because of distribution 
•  Fairness in overload management requires feedback of processing  

•  Future work -> Cloud is there but does not come cheap 
–  Large-scale management 
–  Competing requirements from multi-tenancy deployment 
–  Unknown changing workloads 
–  Pay-as-you-go model, is this the best? 
–  Minimise the cost for users, maximise Cloud providers’ revenue 
–  Novel architectural designs for data-centre management 

• Thank you! ekalyv@imperial.ac.uk 



Experimental Evaluation 

• Goals 
–  Correlation of SIC metric with result correctness 
–  Effectiveness of the max-min fairness algorithm 
–  Scalability of the fairness algorithm 
–  Overhead of our shedder implementation 

• Prototype system: THEMIS 
–  Implemented in Java 

• Workload 
–  Aggregate workload (max, count, avg) 
–  Complex workload (top-5, avg-all, covariance)  
–  Synthetic data (uniform, Gaussian, exponential) 
–  PlanetLab data (CPU and memory usags, 1month, 40 nodes) 

• Deployment on local and Emulab (18 nodes) test-beds 
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THEMIS Evaluation 
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max query top-5 query 



THEMIS Evaluation 

37 



Experimental Evaluation 
• Goals 

–  Investigate effectiveness of scale out mechanism 
–  Recovery time after failure using UBC 
–  Overhead of state management 

• Prototype system: Scalable and Elastic Event Processing (SEEP) 
–  Implemented in Java; Storm-like data flow model 

• Sample queries + workload 
–  Linear Road Benchmark (LRB) to evaluate scale out [VLDB’04] 

•  Provides an increasing stream workload over time for given load factor 
•  Query with 8 operators; SLA: results < 5 secs  

–  Windowed word count query to evaluate fault tolerance 
•  Induce failure to observe performance impact 

• Deployment on Amazon AWS EC2 
–  Sources and sinks on high-memory double extra large instances 
–  Operators on small instances 
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Scale Out: LRB Workload 
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but remains within LRB SLA 



UB+C: Recovery Time 
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State backed up every 
5 seconds in UB+C 

Source Replay:  
Upstream Backup with tuples 

replayed by source only 

E  UB+C achieves faster recovery, especially for fast stream rates 



Tradeoff of Checkpointing Interval 
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E  Shorter checkpointing interval leads to faster recovery times 
But also incurs more overhead, impacting tuple processing latency 



Related Work 

• Scalable stream processing systems 
–  Twitter Storm, Yahoo S4, Nokia Dempsey 

Exploit operator parallelism mainly for stateless queries 
–  ParaSplit operator [VLDB’12] 

Partition stream for intra-query parallelism 

• Support for elasticity 
–  StreamCloud [TPDS’12] 

Dynamic scale out/in for subset of relational stream operators 
–  Esc [ICCC’11] 

    Dynamic support for stateless scale out 

• Resource-efficient fault tolerance models 
–  Active Replication at (almost) no cost  [SRDS’11] 

    Use under-utilized machines to run operator replicas 
–  Discretized Streams [HotCloud’12] 

    Data is checkpointed and recovered in parallel in event of failure 
 42 



Future Work 

• Support for full elasticity 
–  Add dynamic scale in mechanism 
–  Bottlenecks easier to detect than spare capacity 

• Cost-aware policies for elasticity 
–  Performance/cost tradeoff 
–  How to achieve user-provided SLAs 

• High-level query languages 
–  Integrated support for processing stream & historic data 
–  Programming models 

43 



Distributed DSPS 

• Interconnect multiple DSPSs with network 
–  Better scalability, handles geographically distributed stream sources 

 

• Interconnect on LAN or Internet? 
–  Different assumptions about time and failure models 
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Twitter Storm & Yahoo S4 

• Yahoo! S4 (http://incubator.apache.org/s4/) 

–  Java framework for implementing stream processing applications 
–  Hides stream “plumbing” from developers 
–  Uses Zookeeper for coordination 

• Twitter Storm (https://github.com/nathanmarz/storm) 

–  Focus on fault-tolerance: acknowledgement of processed tuples 
–  Spouts produce data; bolts process data 
–  Different mechanisms for stream partitioning and bolt parallelisation 

• This is just the beginning... lots of open challenges... 
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