
Peter R. Pietzuch
prp@doc.ic.ac.uk

Data Stream Processing
in the Cloud

Evangelia Kalyvianaki

joint work with Raul Castro Fernandez, Marco Fiscato,
Matteo Migliavacca and Peter Pietzuch

Large-Scale Distributed Systems Group

http://lsds.doc.ic.ac.uk

Doctoral School Day in Cloud Computing, Université catholique de Louvain – November 2012

Department of Computing

ekalyv@imperial.ac.uk

The Data Deluge

• Big data
–  150 Exabytes (billion GBs) in 2005 à 1200 Exabytes in 2010
–  real-time big data analytics in UK £25 billions à £216 billions in 2012-17

 Many new sources of data become available
–  Sensors, mobile devices
–  Web feeds, social networking
–  Cameras
–  Scientific instruments

• E How can we make sense of all data ?
–  Most data is not interesting
–  New data supersedes old data
–  Challenge is not only storage but also querying

2

Real Time Traffic Monitoring

3

•  Instrumenting country’s transportation infrastructure

Time-EACM
(Cambridge)

–  Many parties interested in data
•  Road authorities
•  Traffic planners
•  Commuters

–  High-level queries
•  “What is the best time/route for

my commute from London to
Cambridge at 7-8am?”

Web/Social Feed Mining

4

Social Cascade
Detection

• Detection and reaction to social cascades

Astronomic Data Processing

5

• Analysing transient cosmic events: γ-ray bursts

•  Large Synoptic Survey
Telescope (LSST)

–  Generates 1.28
Petabytes per year

6

Global Sensor Applications: EarthScope

• Using sensors to understand geological evolution
–  Many sources: seismometers, GPS stations, …

http://www.earthscope.org

E How do you process all this data?

Traditional Databases

• Database Management System (DBMS):
•  Data relatively static but queries dynamic

7

DBMS

Data

Queries Results

Index

–  Persistent relations
•  Radom access
•  Low update rate
• Unbounded disk storage

–  One-time queries
•  Finite query result
• Queries exploit (static) indices

Data Stream Processing System

• SPSs: Queries static but data dynamic
•  Data represented as time-dependant data stream

8

SPS

Queries

Stream Results

Working
Storage

–  Transient streams
•  Sequential access
•  Potentially high rate
•  Bounded main memory

–  Continuous queries
•  Time-dependant res. stream
•  Indexing?

E Process data streams on the fly without storage

Data Stream Processing

9

E Process tuple streams on-the-fly by operators:

Distributed Stream Processing Systems

This talk is about ...

• Data Stream Processing in the Cloud

• Scalable and Fault-tolerance Stream Processing in the Cloud
–  Increasing workload rates
–  Stateful operators

•  Fair Stream Processing in Federated SPSs under Overload
–  Tuple shedding user-feedback metric
–  Fair tuple shedding under overload

10

• Scalable and Fault-tolerant Stream

• Processing in the Cloud

11

Stream Processing in the Cloud

• Clouds provide virtually infinite pools of resources
–  Fast and cheap access to new machines for operators

•  In a utility-based pricing model:

–  Needlessly over-provisioning system is expense
–  Using too few resources leads to poor performance

12

E How do you use the optimal number of resources?

Challenges in Cloud-Based Stream Processing

• Intra-query parallelism
–  Provisioning for workload peaks unnecessarily conservative

• Failure resilience
–  Active fault-tolerance requires 2x resources
–  Passive fault-tolerance leads to

long recovery times

13

0%"

20%"

40%"

60%"

80%"

100%"

09/07" 09/08" 09/09" 09/10" 09/11" 09/12" 09/13"

U
til

is
at

io
n E  Dynamic scale out:

increase resources
when peaks appear

E  Hybrid fault-tolerance:
low resource overhead
with fast recovery

Date

E  both mechanisms must support stateful operators

Co
ur

te
sy

 o
f

M
SR

C

Operator State Management

Operator state:
–  A summary of past tuples’ processing, e.g. max result
–  It cannot be lost, or stream results are affected

On scale out:
–  Partition operator state correctly, maintaining consistency

• On failure recovery:
–  Restore state of failed operator
–  Define primitives for state management and build other mechanisms on

top of them

14

E  Make operator state an external entity that can be managed by
the stream processing system

State Management

• What is state in stream processing system?

–  Need to externalise processing state of operators 15

A

C

B

Processing state Routing state Buffer state

State Management Primitives

16

Takes snapshot of state and makes it
externally available

E  Restore

E  Backup

A

B

E  Checkpoint

E  Partition

Moves copy of state from one
operator to another

Splits state in a semantically correct
fashion for parallel processing

State Management in Action, SEEP

17

EC2 stats

fault
detector

scale out
coordinator

deployment manager

query manager

queries

bottleneck detector
scaling policyVM pool

faults

UB+C
coordinator

1

2

1. Dynamic Scale Out: Detect bottleneck, remove by adding
 new parallelised operator

2. Failure Recovery: Detect failure, replace with new operator

Dynamic Scale Out: Detecting bottlenecks

CPU
utilisation

report

35%

85%

30%

Logical infrastructure
view

35% 85% 30%

Bottleneck

Bottleneck
detector

The VM Pool: Adding operators

• Problem: Allocating new VMs takes minutes...

19

Bottleneck
detector

Monitoring
information

Cloud
provider

VM1 VM2 Virtual Machine Pool

Decision to scale-out

Bottleneck detected

Select pre-provisioned VM
(order of secs)

Provision VM from cloud
(order of mins)

VM3

Add new VM to pool

VM2

VM3 (dynamic pool size)

Scaling Out Stateful Operators

20

A

A

Periodically, stateful operators checkpoint and back up
state to designated upstream backup node

AA

A

For scale out, backup node already has state
of operator to be parallelised

B

New operator

A

B

A

B

E  Checkpoint

E  Backup

E  Partition

E  Restore

Finally, upstream operators replay unprocessed
tuples to update checkpointed state

State Partitioning

• Processing state modeled as (key, value) dictionary

• State partitioned according to key k of tuples
–  Same key used to partition incoming streams

• Tuples will be routed to correct operator
–  x is splitting key that partitions state

B

0-50

50-100

stream 0-100 stream 0-50

stream 50-100

21

K1-V1
K2-V2
K3-V3
 …
Kn-Vn

A

A

Passive Fault-Tolerance Model

• Recreate operator state by replaying tuples after failure
–  Send acknowledgements upstream for tuples processed downstream

• May result in long recovery times due to large buffers
–  System is reprocessing streams after failure è inefficient

Upstream
Backup

22

ACKs

data

Upstream Backup + Checkpointing

23

A

A

A

New instance

• Benefit from state management primitives
–  Use periodically backed up state on upstream node to recover faster

A

A

State is restored and unprocessed tuples are replayed from buffer

SEEP Evaluation

24

E  SEEP scales out to increasing workload in the
 Linear Road Benchmark

• THEMIS: Max-min Fairness in Federated

• Stream Processing under Overload

25

Federated Stream Processing System

26

E  We cannot scale out to additional resources
E  Permanent resource, skewed overload conditions
E  Tuple shedding

Tuple Load Shedding à discard data!

27

Query:
Which are the two rooms with the highest temperatures, every 5 minutes?

E  Reduces resource footprint
E  Useful only when feedback is provided to user
E  Shedding is controlled for fair processing among queries

Source Information Content (SIC) metric

28

E  SIC metric provides feedback on loss of source tuples
E  SIC is query-independent

Unfair Processing in Federated SPSs

29

E  Random shedding à a wide spread in processing quality

–  3 nodes, 100 top-5 queries
–  Traces from 40 PlanetLab nodes
–  “Select the 5 nodes with the

highest free CPU and at least
500MB of MEM every second”

–  Skewed query deployment

Fair Stream Processing in Federated-SPSs

30

 G1: Query-independent processing metric à SIC

• G2: Stream processing fairness à max-min SIC
–  Some queries are less/more overloaded than others

 Max-min SIC Fairness:
 The ordering of queries is max-min SIC fair if and if only an
 increase in the SIC value of a query must be at the expense
 of the decrease of the SIC value of an already smaller query.

• G3: Decentralised fairness à sites are autonomous

Max-min Decentralised Fairness Challenges

31

assume (node a) << (node b)

Research question:
how can we balance shedding so to maximise SIC values on (node a) queries?

Max-min Decentralised Fairness Solution

32

Solution insights:
–  Each node solves a max-min problem for its running queries
–  Each node is updated on the result SIC value of its queries

 à nodes take informed local decisions for global fairness
–  Each node always sheds the least SIC tuples

 à save on resources
–  Solve a small problem at-a-time and iterate with feedback

THEMIS Evaluation

33

E  THEMIS max-min fairness is always better than random

–  18 nodes, 2,000 fragments
–  Mix workload: cov, top-5,avg

Conclusions

34

• Data Stream Processing is efficient in the Cloud
–  New challenges emerge from Cloud scalability

•  Scale out and fault-tolerance have to be integrated

–  New problems arise because of distribution
•  Fairness in overload management requires feedback of processing

•  Future work -> Cloud is there but does not come cheap
–  Large-scale management
–  Competing requirements from multi-tenancy deployment
–  Unknown changing workloads
–  Pay-as-you-go model, is this the best?
–  Minimise the cost for users, maximise Cloud providers’ revenue
–  Novel architectural designs for data-centre management

• Thank you! ekalyv@imperial.ac.uk

Experimental Evaluation

• Goals
–  Correlation of SIC metric with result correctness
–  Effectiveness of the max-min fairness algorithm
–  Scalability of the fairness algorithm
–  Overhead of our shedder implementation

• Prototype system: THEMIS
–  Implemented in Java

• Workload
–  Aggregate workload (max, count, avg)
–  Complex workload (top-5, avg-all, covariance)
–  Synthetic data (uniform, Gaussian, exponential)
–  PlanetLab data (CPU and memory usags, 1month, 40 nodes)

• Deployment on local and Emulab (18 nodes) test-beds

35

THEMIS Evaluation

36

max query top-5 query

THEMIS Evaluation

37

Experimental Evaluation
• Goals

–  Investigate effectiveness of scale out mechanism
–  Recovery time after failure using UBC
–  Overhead of state management

• Prototype system: Scalable and Elastic Event Processing (SEEP)
–  Implemented in Java; Storm-like data flow model

• Sample queries + workload
–  Linear Road Benchmark (LRB) to evaluate scale out [VLDB’04]

•  Provides an increasing stream workload over time for given load factor
•  Query with 8 operators; SLA: results < 5 secs

–  Windowed word count query to evaluate fault tolerance
•  Induce failure to observe performance impact

• Deployment on Amazon AWS EC2
–  Sources and sinks on high-memory double extra large instances
–  Operators on small instances

38

Scale Out: LRB Workload

39

















    





















































    











































Scales to load factor L=350
with 60 VMs on Amazon EC2
-  Automated query parallelisation

L=512 highest report result [VLDB’12]

-  Hand-crafted query on dedicated
cluster

Scale out leads to latency peaks,
but remains within LRB SLA

UB+C: Recovery Time

40

















  




















State backed up every
5 seconds in UB+C

Source Replay:
Upstream Backup with tuples

replayed by source only

E  UB+C achieves faster recovery, especially for fast stream rates

Tradeoff of Checkpointing Interval

41

E  Shorter checkpointing interval leads to faster recovery times
But also incurs more overhead, impacting tuple processing latency

Related Work

• Scalable stream processing systems
–  Twitter Storm, Yahoo S4, Nokia Dempsey

Exploit operator parallelism mainly for stateless queries
–  ParaSplit operator [VLDB’12]

Partition stream for intra-query parallelism

• Support for elasticity
–  StreamCloud [TPDS’12]

Dynamic scale out/in for subset of relational stream operators
–  Esc [ICCC’11]

 Dynamic support for stateless scale out

• Resource-efficient fault tolerance models
–  Active Replication at (almost) no cost [SRDS’11]

 Use under-utilized machines to run operator replicas
–  Discretized Streams [HotCloud’12]

 Data is checkpointed and recovered in parallel in event of failure
 42

Future Work

• Support for full elasticity
–  Add dynamic scale in mechanism
–  Bottlenecks easier to detect than spare capacity

• Cost-aware policies for elasticity
–  Performance/cost tradeoff
–  How to achieve user-provided SLAs

• High-level query languages
–  Integrated support for processing stream & historic data
–  Programming models

43

Distributed DSPS

• Interconnect multiple DSPSs with network
–  Better scalability, handles geographically distributed stream sources

• Interconnect on LAN or Internet?
–  Different assumptions about time and failure models

44

Scientific
instruments

Webfeeds

Embedded
sensors Wireless

sensor
networks

Traffic
monitors

Mobile
sensing
devices

Queries

RFID
tags

Body
sensor
networks

Queries

Twitter Storm & Yahoo S4

• Yahoo! S4 (http://incubator.apache.org/s4/)

–  Java framework for implementing stream processing applications
–  Hides stream “plumbing” from developers
–  Uses Zookeeper for coordination

• Twitter Storm (https://github.com/nathanmarz/storm)

–  Focus on fault-tolerance: acknowledgement of processed tuples
–  Spouts produce data; bolts process data
–  Different mechanisms for stream partitioning and bolt parallelisation

• This is just the beginning... lots of open challenges...

45

