
UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

Software-Defined Systems for Network-Aware

Service Composition and Workflow Placement

Pradeeban Kathiravelu

Supervisor: Doctor Lúıs Manuel Antunes Veiga
Co-Supervisor: Doctor Peter Van Roy

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

2019

UNIVERSIDADE DE LISBOA

INSTITUTO SUPERIOR TÉCNICO

UNIVERSITÉ CATHOLIQUE DE LOUVAIN

Software-Defined Systems for Network-Aware

Service Composition and Workflow Placement

Pradeeban Kathiravelu

Supervisor: Doctor Lúıs Manuel Antunes Veiga
Co-Supervisor: Doctor Peter Van Roy

Thesis approved in public session to obtain the PhD Degree in
Information Systems and Computer Engineering

Jury final classification: Pass with Distinction

Jury

Chairperson: Doctor Joaquim Armando Pires Jorge, Instituto Superior Técnico, Universidade de Lisboa
Members of the Commitee:

Doctor Elhadj Benkhelifa, School of Computing and Digital Technologies, Staffordshire University, UK
Doctor John Javid Taheri, Faculty of Health, Science and Technology, Karlstad University, Sweden
Doctor Lúıs Manuel Antunes Veiga, Instituto Superior Técnico, Universidade de Lisboa
Doctor Fernando Henrique Côrte-Real Mira da Silva, Instituto Superior Técnico, Universidade de Lisboa

Funding Institutions
European Commission

Fundação para a Ciência e a Tecnologia
INESC-ID

2019

Abstract

Composing complex workflows efficiently from diverse services on the Internet requires com-

munication and coordination across heterogeneous execution environments, ranging from data

centers and clouds to the edge managed by different infrastructure providers. Through complete

virtualization of network and its services, network softwarization provides efficient management

of network architecture. This dissertation exploits the flexibility and management benefits of

the network softwarization to solve the problems of service composition and workflow place-

ment at Internet scale. We present two main contributions: first, a set of extensions to network

softwarization to simplify and enhance application development and deployment, and second,

a scalable architecture to compose service chains in wide area networks. Finally, we evaluate

these contributions in the context of big data applications. We thus intend to mitigate the chal-

lenges concerning resource management and interoperability of heterogeneous infrastructures,

to efficiently compose and schedule various service workflows at Internet scale, while sharing the

network and the computing resources among several users.

Network Softwarization revolutionizes the network landscape in various stages, from build-

ing, incrementally deploying, and maintaining the environment. Software-Defined Networking

(SDN) and Network Functions Virtualization (NFV) are two core tenets of network softwariza-

tion. SDN offers a logically centralized control plane by abstracting away the control of the net-

work devices in the data plane. NFV virtualizes dedicated hardware middleboxes and deploys

them on top of servers and data centers as network functions. Despite its growing application,

network softwarization has not been fully exploited for effectively composing service workflows of

multiple users sharing third-party network infrastructures and services. To this end, we propose

our contributions to extend network softwarization for network-aware service composition and

workflow placement in heterogeneous infrastructures.

First, we separate network from infrastructure by exploiting network softwarization to move

out of data centers toward the edge seamlessly, and from simulations to actual deployments, with

little or no additional development effort. We extend SDN in cloud and data center environ-

ments to unify various phases of development, by uniformly managing the executions of the

network applications from an extended SDN controller, regardless of the execution environment

and phase. We thus deploy the workloads seamlessly across the phases, from simulations and

emulations to physical deployment environments. We further extend this work to support multi-

ple Service Level Agreements (SLAs) across diverse network flows in data centers, by selectively

enforcing redundancy on the network flows. Thus, we aim for Quality of Service (QoS) and ef-

ficient resource provisioning, while adhering to user policies. Finally, we design a cloud-assisted

overlay network, as a latency-aware virtual connectivity provider. Consequently, we propose

cost-efficient data transfers and workflow executions at Internet scale.

i

Second, we propose a scalable architecture to compose service chains in wide area networks

efficiently. We exploit SDN and Message-Oriented Middleware (MOM) for a logically centralized

composition and execution of service workflows. We thus propose a Software-Defined Service

Composition (SDSC) framework for web service compositions, Network Service Chains (NSCs),

and a network-aware execution of data services. We further present Software-Defined Systems

(SDS) consisting of virtual network allocation strategies for multi-tenant service executions in

large-scale networks comprised of multiple domains.

Finally, we investigate how our proposed SDS can operate efficiently for real-world appli-

cation scenarios of heterogeneous infrastructures. While traditionally web services are built

following standards and best practices such as Web Services Description Language (WSDL),

network services and data services offered by different service providers often fall short in pro-

viding common Application Programming Interfaces (APIs), thus resulting in vendor lock-in.

We look into facilitating interoperability across service implementations and deployments, to

enable seamless workflow executions and service migrations. We propose big data applications

and smart environments such as Cyber-Physical Systems (CPS) and the Internet of Things (IoT)

as our two application scenarios. We thus build CPS and big data applications as composable

service chains, offering them an interoperable execution.

Our research contributions highlight that network softwarization can be used to build and

deploy network applications with minimal repetitive effort, from initial design and development

stages to production. Evaluations on the proposed SDS demonstrate performance and economic

benefits to service composition and workflow placement at various scales, from data centers to

the Internet. By managing and leveraging redundancy in the network flows and network paths,

our SDS prototypes ensure that SLAs are met in the critical network flows of multi-tenant

systems. Furthermore, our SDS framework reduces Internet latency by up to 30%, yet in an

economic approach. Finally, we elaborate the broader applicability of our proposed SDS by

extending it to CPS and big data applications.

Keywords — Network Softwarization, Software-Defined Networking (SDN), Software-

Defined Systems (SDS), Network Functions Virtualization (NFV), Service-Oriented Architecture

(SOA).

ii

Resumo

Compor e escalonar fluxos de trabalho na escala da Internet requer a comunicação e coor-

denação entre vários serviços em ambientes de execução heterogéneos - de centros de dados e

nuvens computacionais aos ambientes de borda operados por vários provedores de infraestru-

tura. A softwarização em redes permite a gestão mais eficiente do sistema, afinando o seu

controlo e melhorando a capacidade de reutilização dos serviços de rede, por meio de uma

virtualização completa da rede e seus serviços. Esta dissertação explora os benef́ıcios de flexi-

bilidade e gerenciamento do softwarização em redes para resolver os problemas de composição

de serviço e posicionamento de fluxo de trabalho na escala da Internet. Nós apresentamos duas

contribuições principais: primeiro, um conjunto de extensões para softwarização em redes para

simplificar e aprimorar o desenvolvimento e a implantação de aplicativos e, segundo, uma ar-

quitetura escalonável para compor cadeias de serviço em redes de longa distância. Por fim,

avaliamos essas contribuições no contexto de aplicativos de big data. Assim, nós pretende-

mos atenuar os desafios relacionados ao gerenciamento de recursos e à interoperabilidade de

infraestruturas heterogêneas para compor e agendar com eficiência vários fluxos de trabalho de

serviços em escala de Internet ao mesmo tempo em que compartilhamos a rede e os recursos de

computação entre vários usuários.

A softwarização em redes revoluciona o cenário da rede em vários aspectos, incluindo sua

criação, implantação incremental e manutenção do ambiente. Redes definidas por software

(SDN) e virtualização de funções de rede (NFV) são dois dos prinćıpios centrais da softwarização

em redes. SDN oferece um plano de controlo logicamente centralizado, abstraindo o controle dos

dispositivos de rede no plano de dados. NFV virtualiza middleboxes dedicados e os implementa

em servidores e centros de dados como funções de rede. Apesar de sua crescente aplicação, a

softwarização em redes não foi explorada para a composição do serviço e a execução do fluxo de

trabalho de vários usuários que consomem infraestruturas e serviços de rede de terceiros. Para

este fim, nós propomos três contribuições principais, ampliando e aproveitando a softwarização

em redes para fluxos de trabalho de composição de serviços em infraestruturas heterogêneas.

Primeiro, nós estendemos SDN em ambientes de nuvem e centros de dados para unificar

várias fases de desenvolvimento e implantar as cargas de trabalho de forma transparente, de

simulações e emulações, a ambientes f́ısicos de implantação. Além disso, nós estendemos este

trabalho para oferecer suporte a vários acordos de ńıvel de serviço (SLAs) em diversos fluxos

de rede nos centros de dados, aplicando seletivamente a redundância nos fluxos de rede. Assim,

nós visamos a Qualidade de Serviço (QoS) e o provisionamento eficiente de recursos, ao mesmo

tempo em que aderimos às poĺıticas dos utilizadores. Por fim, nós projetamos uma rede de

sobreposta assistida por nuvem, como um provedor de conectividade virtual com ciente da

latência. Consequentemente, nós propomos transferências de dados económicas na escala da

iii

Internet, separando a rede da infraestrutura.

Em segundo lugar, nós propomos uma arquitetura escalonável para compor cadeias de

serviço em rede de longa distância com eficiência. Nós estendemos SDN e Middleware Orientado

a Mensagens (MOM) para composição e execução de fluxo de trabalho de serviços logicamente

centralizados. Assim, nós propomos uma estrutura Composição de Serviços Definidos por Soft-

ware (SDSC) para composições de serviço web, cadeia de serviços de rede (NSCs) e uma execução

de serviços de dados que cientes da rede. Além disso, nós apresentamos Sistemas Definidos por

Software (SDS), que consistem em estratégias de alocação de rede virtual para execuções de

serviços multilocatários em redes de grande escala, compostas de vários domı́nios.

Em terceiro lugar, nós investigamos como a nossa arquitetura SDS pode operar com

eficiência para cenários de aplicações reais de infraestruturas heterogêneas. Embora tradicional-

mente os serviços na web sejam criados seguindo padrões e práticas recomendadas, como WSDL

(Web Services Description Language), serviços de rede e serviços de dados oferecidos por difer-

entes provedores de serviços geralmente ficam aquém do fornecimento de interoperável interfaces

de programação de aplicativos (APIs), geralmente resultando em bloqueio do fornecedor. Nós

procuramos facilitar a interoperabilidade entre implementações e implantações de serviços para

permitir migrações cont́ınuas. Nós propomos arcabouços para grandes volumes de dados e am-

bientes inteligentes, como sistemas ciber-f́ısicos (CPS) e Internet das coisas (IoT), como nossos

dois cenários de aplicativos. Assim, nós constrúımos CPS e aplicativos de big data como cadeias

de serviços compostos, oferecendo-lhes uma execução interoperável.

Nossas contribuições à pesquisa destacam que a softwarização em redes pode ser usada para

construir e implantar aplicativos de rede com esforço repetitivo mı́nimo, desde os estágios iniciais

de projeto e desenvolvimento até a produção. As avaliações sobre a SDS proposta demonstram

benef́ıcios econômicos e de desempenho para a composição do serviço e o posicionamento do

fluxo de trabalho em várias escalas, dos data centers à Internet. Ao gerenciar e aproveitar a

redundância nos fluxos de rede e caminhos de rede, nossos protótipos SDS garantem que os

SLAs sejam atendidos nos fluxos de rede cŕıticos dos sistemas de multilocatário. Além disso,

nossa estrutura de SDS reduz a latência da Internet em até 30%, ainda que em uma abor-

dagem econômica. Por fim, nós elaboramos a aplicabilidade mais ampla do nosso SDS proposto

estendendo-o ao CPS e aos aplicativos de big data.

Palavras Chave — Softwarização em Redes, Redes Definida por Software (SDN), Sistemas

Definidos por Software (SDS), Virtualização de Funções de Rede (NFV), Arquitetura Orientada

a Serviços (SOA).

iv

Résumé

La composition efficace de flux de travail complexes à partir de divers services sur In-

ternet nécessite une communication et une coordination dans des environnements d’exécution

hétérogènes, allant des centres de données et des clouds à la périphérie, gérés par différents

fournisseurs d’infrastructure. Grâce à la virtualisation complète du réseau et de ses services, la

logiciellisation du réseau permet une gestion efficace de l’architecture du réseau. Cette thèse

exploite les avantages de flexibilité et de gestion de la logiciellisation du réseau pour résoudre les

problèmes de composition de services et de placement de flux de travail à l’échelle Internet. Nous

présentons deux contributions principales: d’une part, un ensemble d’extensions de la logicielli-

sation du réseau pour simplifier et améliorer le développement et le déploiement d’applications,

et, d’autre part, une architecture évolutive permettant de composer des châınes de services dans

des réseaux étendus. Enfin, nous évaluons ces contributions dans le contexte des applications

mégadonnées. Nous mitigeons ainsi les problèmes de gestion des ressources et d’interopérabilité

d’infrastructures hétérogènes afin de composer et de planifier efficacement divers flux de travail

de service à l’échelle Internet, tout en partageant le réseau et les ressources informatiques entre

plusieurs utilisateurs.

La technologie de logiciellisation du réseau révolutionne le paysage réseau à différentes

étapes, de la création au déploiement progressif, en passant par la maintenance de

l’environnement. Le réseau défini par logiciel (SDN) et la virtualisation des fonctions de réseau

(NFV) sont deux principes fondamentaux de la gestion de réseau. SDN offre un plan de contrôle

centralisé de manière logique en soustrayant le contrôle des périphériques réseau dans le plan de

données. NFV virtualise le matériel intergiciel dédié et le déploie en tant que fonctions réseau

sur des serveurs et des centres de données. En dépit de son adoption, la logiciellisation du réseau

n’a pas été pleinement exploitée pour la composition efficace des flux de travail de service de

plusieurs utilisateurs partageant des infrastructures et des services réseau tiers. À cette fin, nous

proposons nos contributions pour étendre le logiciellisation du réseau pour la composition de

services réseau et le placement de flux de travail dans des infrastructures hétérogènes.

Premièrement, nous séparons le réseau de l’infrastructure en exploitant la logiciellisation du

réseau pour passer des centres de données vers le bord de manière transparente, et des simula-

tions aux déploiements réels, avec peu ou pas d’effort de développement supplémentaire. Nous

étendons SDN dans les environnements de cloud et de centres de données pour unifier différentes

phases de développement, en gérant de manière uniforme les exécutions des applications réseau

à partir d’un contrôleur SDN étendu, quels que soient l’environnement et la phase d’exécution.

Nous déployons ainsi les charges de travail de manière transparente au cours des phases, des

simulations et émulations aux environnements de déploiement physiques. Nous étendons encore

ce travail pour prendre en charge plusieurs accords de niveau de service (SLA) sur différents flux

v

de réseau dans des centres de données, en appliquant de manière sélective la redondance sur les

flux de réseau. Ainsi, nous visons une qualité de service (QoS) et un provisionnement efficace

des ressources, tout en respectant les politiques de l’utilisateur. Enfin, nous concevons un réseau

de superposition assisté par le cloud, en tant que fournisseur de connectivité virtuelle prenant

en compte le temps de latence. En conséquence, nous proposons des transferts de données et

des exécutions de flux de travail rentables à l’échelle Internet.

Deuxièmement, nous proposons une architecture évolutive pour composer efficacement les

châınes de services dans les réseaux étendus. Nous exploitons SDN et intergiciel à messages

(MOM) pour une composition et une exécution logiquement centralisées des flux de travail

de service. Nous proposons donc un cadre de composition de service défini par logiciel (SDSC)

pour les compositions de services Web, des châınes de services réseau (NSC) et une exécution des

services de données adaptée au réseau. Nous présentons en outre des systèmes définis par logiciel

(SDS) constitués de stratégies d’allocation de réseau virtuel pour les exécutions de services à

locataires multiples dans des réseaux à grande échelle comprenant plusieurs domaines.

Enfin, nous étudions comment notre SDS proposée peut fonctionner efficacement pour des

scénarios d’applications réelles d’infrastructures hétérogènes. Alors que les services Web sont

généralement construits conformément aux normes et aux meilleures pratiques telles que le lan-

gage WSDL (Web Services Description Language), les services réseau et les services de données

proposés par différents fournisseurs de services ne permettent pas toujours de fournir des in-

terfaces de programmation d’application (API) communes, ce qui a pour effet de verrouiller

les fournisseurs. Nous cherchons à faciliter l’interopérabilité entre les implémentations et les

déploiements de services, afin de permettre des exécutions et des migrations de services trans-

parentes. Nous proposons des applications mégadonnées et des environnements intelligents tels

que système cyber-physique (CPS) et l’Internet des objets (IoT) comme nos deux scénarios

d’application. Nous construisons ainsi des applications CPS et mégadonnées sous forme de

châınes de services composables, en leur offrant une exécution interopérable.

Nos contributions de recherche soulignent que le logiciellisation du réseau peut être utilisée

pour créer et déployer des applications réseau avec un minimum d’efforts répétitifs, des étapes

de conception et de développement initiales à la production. Les évaluations des SDS proposés

démontrent les performances et les avantages économiques liés au placement de services et de

flux de travail à différentes échelles, des centres de données à Internet. En gérant et en exploitant

la redondance des flux et des chemins réseau, nos prototypes SDS garantissent que les accords

de niveau de service sont établis dans les flux réseau critiques des systèmes multi-locataires.

De plus, notre cadre SDS réduit la latence d’Internet jusqu’à 30%, tout en restant économique.

Enfin, nous développons l’applicabilité plus large de la SDD en l’étendant aux applications CPS

et mégadonnées.

Mots Clés — Logiciellisation du réseau, Réseau défini par logiciel (SDN), Systèmes définis

par logiciel (SDS), Virtualisation des fonctions réseau (NFV), Architecture orientée services

(SOA).

vi

List of Publications

Thesis Contributions

The work and results presented in this dissertation are partially described in the following

publications.

Journals:

(J1) Kathiravelu, P., Van Roy, P., & Veiga, L. Composing Network Service Chains at the

Edge: A Resilient and Adaptive Software-Defined Approach. In Transactions on Emerging

Telecommunications Technologies (ETT). (JCR IF: 1.535, Q2). pp. 1 – 22. Aug. 2018.

Wiley. https://doi.org/10.1002/ett.3489

(J2) Kathiravelu, P., Van Roy, P., & Veiga, L. SD-CPS: Software-Defined Cyber-Physical

Systems. Taming the Challenges of CPS with Workflows at the Edge. In Cluster Com-

puting – The Journal of Networks Software Tools and Applications. (JCR IF: 2.040,

Q2). pp. 1 – 17. Nov. 2018. Springer. https://link.springer.com/article/10.

1007%2Fs10586-018-2874-8

(J3) Kathiravelu, P., Sharma, A., Galhardas, H., Van Roy, P., & Veiga, L. On-Demand

Big Data Integration: A Hybrid ETL Approach for Reproducible Scientific Research. In

Distributed and Parallel Databases (DAPD). (JCR IF: 1.179, Q2). pp. 273 – 295. May

2019. Springer. https://doi.org/10.1007/s10619-018-7248-y

(J4) Kathiravelu, P., Van Roy, P., & Veiga, L. Interoperable and Network-Aware Service

Workflows for Big Data Executions at Internet Scale. In Concurrency and Computation:

Practice and Experience (CCPE). (JCR IF: 1.114, Q2). pp. 1 – 18. Feb. 2019. Wiley.

https://doi.org/10.1002/cpe.5212.

Book Chapters:

(B1) Kathiravelu, P. & Veiga, L. SDN helps other Vs in Big Data. Chapter of Big Data and

Software Defined Networks. pp. 253 – 273. Mar. 2018. IET. ISBN: 978-1-78561-304-3.

https://www.theiet.org/resources/books/computing/bigdata.cfm

(B2) Cardellini, V., Grbac, T.G., Kassler, A., Kathiravelu, P., Lo Presti, F., Marotta, A.,

Nardelli, M. & Veiga, L. Integrating SDN and NFV with QoS-aware service composition.

Chapter of Autonomous Control for a Reliable Internet of Services: Methods, Models,

Approaches, Techniques, Algorithms, and Tools. pp. 212 – 240. May 2018. Springer.

https://link.springer.com/chapter/10.1007/978-3-319-90415-3_9

vii

https://doi.org/10.1002/ett.3489
https://link.springer.com/article/10.1007%2Fs10586-018-2874-8
https://link.springer.com/article/10.1007%2Fs10586-018-2874-8
https://doi.org/10.1007/s10619-018-7248-y
https://doi.org/10.1002/cpe.5212
https://www.theiet.org/resources/books/computing/bigdata.cfm
https://link.springer.com/chapter/10.1007/978-3-319-90415-3_9

Conferences:

(C1) Kathiravelu, P., Chiesa, M., Marcos, P., Canini, M., Veiga, L. Moving Bits with a Fleet

of Shared Virtual Routers. In Networking 2018. (CORE Rank A). pp. 370 – 378. May

2018 (Acceptance Rate: 24%). IFIP.

(C2) Kathiravelu, P., Grbac, T.G., & Veiga, L. Building Blocks of Mayan: Componentizing the

eScience Workflows Through Software-Defined Service Composition. In 23rd International

Conference on Web Services (ICWS 2016) (Awarded a travel grant). (CORE Rank

A). pp. 372 – 379. June 2016. IEEE. https://doi.org/10.1109/ICWS.2016.55

(C3) Kathiravelu, P. & Veiga, L. Software-Defined Simulations for Continuous Development

of Cloud and Data Center Networks. In 24th International Conference on Cooperative

Information Systems (CoopIS 2016). (CORE Rank A). On the Move to Meaningful

Internet Systems: OTM 2016 Conferences, pp. 3 – 23. Oct. 2016. Springer. https:

//dx.doi.org/10.1007/978-3-319-48472-3_1

(C4) Kathiravelu, P., Galhardas, H., & Veiga, L. ∂u∂u Multi-Tenanted Framework: Dis-

tributed Near Duplicate Detection for Big Data. In 23rd International Conference on

Cooperative Information Systems (CoopIS 2015). (CORE Rank A). On the Move to

Meaningful Internet Systems: OTM 2015 Conferences, pp. 237 – 256. Oct. 2015. Springer.

https://doi.org/10.1007/978-3-319-26148-5_14

(C5) Kathiravelu, P., Van Roy, P., & Veiga, L. Software-Defined Data Services: Interopera-

ble and Network-Aware Big Data Executions. In The Fifth International Conference on

Software Defined Systems (SDS 2018). Best Paper Award. pp. 145 – 152. Apr. 2018.

IEEE. https://doi.org/10.1109/SDS.2018.8370436

(C6) Kathiravelu, P. & Veiga, L. SD-CPS: Taming the Challenges of Cyber-Physical Systems

with a Software-Defined Approach. In The Fourth International Conference on Software

Defined Systems (SDS 2017). pp. 6 – 13. May 2017. IEEE. https://doi.org/10.1109/

SDS.2017.7939133

Symposia and Workshops:

(W1) Kathiravelu, P. & Veiga, L. CHIEF: Controller Farm for Clouds of Software-Defined

Community Networks. In 3rd International Symposium on Software Defined Systems

(SDS 2016). pp. 1 – 6. Apr. 2016. IEEE. https://doi.org/10.1109/IC2EW.2016.8

(W2) Kathiravelu, P., Chen, Y., Sharma, A., Galhardas, H., Van Roy, P., & Veiga, L. On-

Demand Service-Based Big Data Integration: Optimized for Research Collaboration. In

Third International Workshop on Data Management and Analytics for Medicine and

Healthcare (DMAH 2017), co-located with 43rd International Conference on Very Large

Data Bases (VLDB 2017). pp. 9 – 28. Sep. 2017. LNCS. https://link.springer.com/

chapter/10.1007/978-3-319-67186-4_2

viii

https://doi.org/10.1109/ICWS.2016.55
https://dx.doi.org/10.1007/978-3-319-48472-3_1
https://dx.doi.org/10.1007/978-3-319-48472-3_1
https://doi.org/10.1007/978-3-319-26148-5_14
https://doi.org/10.1109/SDS.2018.8370436
https://doi.org/10.1109/SDS.2017.7939133
https://doi.org/10.1109/SDS.2017.7939133
https://doi.org/10.1109/IC2EW.2016.8
https://link.springer.com/chapter/10.1007/978-3-319-67186-4_2
https://link.springer.com/chapter/10.1007/978-3-319-67186-4_2

(W3) Kathiravelu, P. & Veiga, L. Selective Redundancy in Network-as-a-Service: Differ-

entiated QoS in Multi-tenant Clouds. In On the Move to Meaningful Internet Sys-

tems: OTM 2016 Workshops. On the Move to Meaningful Internet Systems. pp. 87

– 97. Oct. 2016. Springer, Cham. https://link.springer.com/chapter/10.1007/

978-3-319-55961-2_9

(W4) Kathiravelu, P. & Sharma, A. A Dynamic Data Warehousing Platform for Creating

and Accessing Biomedical Data Lakes. In Second International Workshop on Data Man-

agement and Analytics for Medicine and Healthcare (DMAH 2016), co-located with 42nd

International Conference on Very Large Data Bases (VLDB 2016). pp. 101 – 120. Sep.

2016. LNCS. https://link.springer.com/chapter/10.1007/978-3-319-57741-8_7

(W5) Kathiravelu, P. Software-Defined Networking-Based Enhancements to Data Quality and

QoS in Multi-Tenanted Data Center Clouds. In International Conference on Cloud Engi-

neering (IC2E 2016) Doctoral Symposium (Awarded a travel grant). pp. 201 – 203.

Apr. 2016. IEEE. https://doi.org/10.1109/IC2EW.2016.19

(W6) Kathiravelu, P., Sharifi, L., & Veiga, L. Cassowary: Middleware Platform for Context-

Aware Smart Buildings with Software-Defined Sensor Networks. In 2nd Workshop on

Middleware for Context-Aware Applications in the IoT (M4IOT 2015), co-located with

ACM/USENIX/IFIP Middleware 2015. pp. 1 – 6. Dec. 2015. ACM. https://doi.org/

10.1145/2836127.2836132

(W7) Kathiravelu, P. & Veiga, L. An Expressive Simulator for Dynamic Network Flows. In

2nd IEEE International Workshop on Software Defined Systems (SDS 2015) in conjunction

with the IEEE International Conference on Cloud Engineering (IC2E 2015). pp. 311 –

316. Mar. 2015. IEEE. https://doi.org/10.1109/IC2E.2015.43

Short Papers:

(S1) Kathiravelu, P. & Veiga, L. SDN Middlebox Architecture for Resilient Transfers. In

15th International Symposium on Integrated Network Management (IM 2017). (CORE

Rank A). pp. 560 – 563. May 2017. IFIP/IEEE. https://doi.org/10.23919/INM.

2017.7987329

(S2) Kathiravelu, P. & Veiga, L. SENDIM for Incremental Development of Cloud Networks:

Simulation, Emulation & Deployment Integration Middleware. In International Conference

on Cloud Engineering (IC2E 2016). pp. 143 – 146. Apr. 2016. IEEE. https://doi.org/

10.1109/IC2E.2016.22

ix

https://link.springer.com/chapter/10.1007/978-3-319-55961-2_9
https://link.springer.com/chapter/10.1007/978-3-319-55961-2_9
https://link.springer.com/chapter/10.1007/978-3-319-57741-8_7
https://doi.org/10.1109/IC2EW.2016.19
https://doi.org/10.1145/2836127.2836132
https://doi.org/10.1145/2836127.2836132
https://doi.org/10.1109/IC2E.2015.43
https://doi.org/10.23919/INM.2017.7987329
https://doi.org/10.23919/INM.2017.7987329
https://doi.org/10.1109/IC2E.2016.22
https://doi.org/10.1109/IC2E.2016.22

Other Contributions

Books:

The following books partly present the network softwarization frameworks exploited in this

dissertation from a software engineering point of view with sample codes.

(A1) Kathiravelu, P. & Sarker, M.O.F. Python Network Programming Cookbook, Second

Edition. ISBN: 978-1-78646-399-9. Aug. 2017. Packt. https://www.packtpub.com/

networking-and-servers/python-network-programming-cookbook-second-edition.

(A2) Ratan, A., Chou, E., Kathiravelu, P., & Sarker, M.O.F. Python Network Pro-

gramming: Conquer all your networking challenges with the powerful Python lan-

guage. ISBN: 978-1788835466. Jan. 2019. Packt. https://www.amazon.com/

Python-Network-Programming-networking-challenges/dp/1788835468.

The following publications present the research collaborations partly resulted from this

dissertation.

Conferences:

(C7) Marcos, P., Chiesa, M., Muller, L., Kathiravelu, P., Dietzel, C., Canini, M., & Barcellos,

M. Dynam-IX: a Dynamic Interconnection eXchange. In The 14th International Confer-

ence on emerging Networking EXperiments and Technologies (CoNEXT 2018). (CORE

Rank A). Dec. 2018. ACM (Acceptance Rate: 17.2%).

(C8) Caixinha, D., Kathiravelu, P. & Veiga, L. ViTeNA: An SDN-Based Virtual Network

Embedding Algorithm for Multi-Tenant Data Centers. In 15th International Symposium

on Network Computing and Applications (NCA 2016). (CORE Rank A). pp. 140 –

147. Oct. 2016. IEEE. https://doi.org/10.1109/NCA.2016.7778608

Posters and Extended Abstracts:

(P1) Marcos, P., Chiesa, M., Muller, L., Kathiravelu, P., Dietzel, C., Canini, M., & Barcellos,

M. Dynam-IX: A Dynamic Interconnection eXchange. In SIGCOMM 2018 (CORE Rank

A*). Aug. 2018. ACM.

(P2) Kathiravelu, P. & Sharma, A. SPREAD – System for Sharing and Publishing Research

Data. In Society for Imaging Informatics in Medicine Annual Meeting (SIIM 2016). June

2016. https://c.ymcdn.com/sites/siim.org/resource/resmgr/siim2016abstracts/

Research_Kathiravelu.pdf

(P3) Kathiravelu, P. & Sharma, A. Near Duplicate Detection for Medical Data Warehouse

Construction. In AMIA 2016 Joint Summits on Translational Science. Mar. 2016.

x

https://www.packtpub.com/networking-and-servers/python-network-programming-cookbook-second-edition
https://www.packtpub.com/networking-and-servers/python-network-programming-cookbook-second-edition
https://www.amazon.com/Python-Network-Programming-networking-challenges/dp/1788835468
https://www.amazon.com/Python-Network-Programming-networking-challenges/dp/1788835468
https://doi.org/10.1109/NCA.2016.7778608
https://c.ymcdn.com/sites/siim.org/resource/resmgr/siim2016abstracts/Research_Kathiravelu.pdf
https://c.ymcdn.com/sites/siim.org/resource/resmgr/siim2016abstracts/Research_Kathiravelu.pdf

(P4) Kathiravelu, P., Kazerouni, A., & Sharma, A. Data Café – A Platform For Creating

Biomedical Data Lakes. In AMIA 2016 Joint Summits on Translational Science. Mar.

2016.

National Conferences and Workshops:

(N1) Kathiravelu, P., Grbac, T.G, & Veiga, L. A FIRM Approach to Software-Defined Service

Composition. In MIPRO 2016 - 39th International Convention on Telecommunications &

Information (CTI). pp. 634 – 639. May 2016. https://doi.org/10.1109/MIPRO.2016.

7522206

(N2) Kathiravelu, P. & Sharma, A. MEDIator: A Data Sharing Synchronization Platform for

Heterogeneous Medical Image Archives. In Workshop on Connected Health at Big Data

Era (BigCHat’15), co-located with 21st SIGKDD Conference on Knowledge Discovery

and Data Mining (KDD 2015). Aug. 2015. ACM. https://doi.org/10.13140/RG.2.1.

3709.4248

xi

https://doi.org/10.1109/MIPRO.2016.7522206
https://doi.org/10.1109/MIPRO.2016.7522206
https://doi.org/10.13140/RG.2.1.3709.4248
https://doi.org/10.13140/RG.2.1.3709.4248

Acknowledgments

My Ph.D. life was an intercontinental one, spanning the globe. I express my gratitude

to several individuals who contributed to the timely completion of my doctoral dissertation. I

attribute the success of my research work to the expertise and leadership of my Ph.D. supervisors.

I like to share my sincere gratitude with my supervisor, Prof. Lúıs Manuel Antunes Veiga (IST),

for his continuous support and guidance throughout my MSc and Ph.D. His enthusiasm and

optimism have been a significant motivation for me during my six years at IST. I like to thank

my co-supervisor, Prof. Peter Van Roy (UCLouvain) for his guidance. His vision and blue hat

thinking were fundamental in strengthening my thesis and pointing me in the right direction.

I would like to thank Prof. Ashish Sharma (Emory) for being my mentor and sharing

his immense knowledge of distributed systems and their applications for biomedical big data

research. It has always been a pleasure to work with him at Emory and learn several aspects

of research from his expertise. I am thankful to Prof. Helena Galhardas (IST) – Every time I

had a chance to work with her, she always gave her full support and ensured that she shared

her knowledge promptly. I thank Prof. Marco Canini (KAUST) for sharing his wisdom in

network softwarization and hosting me at KAUST. I like to thank Prof. Tihana Galinac Grbac

(URijeka) for hosting me in Rijeka graciously and offering me exclusive access to an SDN research

lab throughout my stay. Our fruitful discussions helped me shape my early Ph.D. research.

I extend my thanks to Prof. Marco Chiesa (KTH), Ed Warnicke (Cisco), Prof. Olivier

Bonaventure (UCLouvain), and Prof. Etienne Riviere (UCLouvain) for their support. I also

recall the continuous guidance I received as an undergraduate from Vishaka Nanayakkara (Uo-

Moratuwa), who encouraged and motivated me to pursue higher studies.

I thank the Software-Defined Systems (SDS) community and the Services Society for their

feedback and support on my research. I also appreciate the industry for their help - specifically,

RIPE NCC for offering me an Atlas Probe, Amazon Web Services (AWS) and Voxility for their

insights, and Packt for publishing my books on network programming. An Erasmus Mundus

experience will not be possible without the ground support of the international students’ office of

the participating universities. I would like to thank NMCI at IST – specifically Ana Barbosa, for

being there always for the students. I also thank Paula Barrancos (INESC-ID) and ICTEAM

administrative staff: Vanessa Maons (UCLouvain) and Sophie Renard (UCLouvain) for their

continuous assistance.

Thanks to European Master in Distributed Computing (EMDC) and Erasmus Mundus

Joint Doctorate in Distributed Computing (EMJD-DC) double-degree programs, I met many

wonderful people in Lisboa and throughout Europe. I am thankful for all those vivid memories.

I also made friends with several colleagues during my stay at IST, UCLouvain, Emory, KAUST,

xii

and URijeka, with whom I shared many productive discussions and exciting moments. I thank

every one of them, especially, Dr. Sergio Esteves (IST), Xiao Chen (Dell EMC), Daniel Porto

(IST), Miguel Coimbra (IST), Prof. Leila Sharifi (Urmia), Pedro Marcos (UFRGS), Dr. Mennan

Selimi (Cambridge), Dr. Denis Weerasiri (Amazon), Saminda Wijeratne (Georgia Tech), and

Dr. Richard Gil Martinez (Elastic).

I thank my family for their encouragement and emotional support: my mother, Selvathie

Kathiravelu, for her kindness and motivation, and the memories of my father, Kanapathipillai

Kathiravelu. I finally thank my wife Gu Juejing for her love, care, and sacrifices. Her enthusiasm

and courage made this journey a beautiful one.

∗ ∗ ∗

This work was supported in part by the Erasmus Mundus Joint Doctorate in Distributed

Computing (EMJD-DC) funded by the Education, Audiovisual and Culture Executive Agency

(EACEA) of the European Commission under the FPA 2012-0030. This work was also partially

funded by national funds through Fundação para a Ciência e a Tecnologia (FCT) with references

UID/CEC/50021/2013 and PTDC/EEI-SCR/6945/2014, the LightKone H2020 project under

Grant Agreement 732505 from the European Commission, the ENDEAVOUR H2020 project

under Grant Agreement 644960 from the European Commission, and the COST action 1304

Autonomous Control for a Reliable Internet of Services (ACROSS). This work was also supported

by the funds from KAUST, Emory University, Google Summer of Code (GSoC) 2014 - 2016,

and the Linux Foundation’s OpenDaylight Project.

xiii

Contents

Abstract i

List of Publications vii

Contents xiv

List of Figures xx

List of Tables xxiii

List of Algorithms xxiv

List of Acronyms xxv

I Thesis Overview 1

1 Introduction 2

1.1 Context . 2

1.2 Challenges of network softwarization . 4

1.3 Thesis Aim and Objectives . 6

1.3.1 Problem Formulation . 7

1.4 Research Questions . 8

1.5 Thesis Contributions . 10

1.5.1 Unified SDS Framework . 11

1.5.2 Individual Contributions . 13

1.6 Thesis Roadmap . 16

xiv

2 Background and Related Work 18

2.1 Network Softwarization . 18

2.1.1 Software-Defined Networking (SDN) and Software-Defined Systems (SDS) 18

2.1.2 Network Modeling . 20

2.1.3 Decoupling Networking from the Infrastructure 22

2.1.4 Network Flow Scheduling . 24

2.2 Service Composition Workflows in Wide Area Networks 25

2.2.1 Service-Oriented Architecture (SOA) . 25

2.2.2 SDS for Service Compositions . 26

2.2.3 Network Service Chaining (NSC) . 27

2.2.4 SDS for CPS and IoT . 29

2.3 SDS for Big Data . 30

2.3.1 Software-Defined Data Services (SDDS) 31

2.3.2 Interoperability in Data Services . 32

2.3.3 Network-Aware Big Data Workflows . 33

2.4 Discussion . 34

II Network Softwarization 37

3 Incremental Development of Cloud Networks 38

3.1 SENDIM : Software-Defined Cloud Deployments 40

3.2 SENDIM Algorithms . 43

3.3 Implementation . 45

3.4 Evaluation . 47

3.4.1 Simulations with SENDIM . 47

3.4.2 Incremental Updates and State-Aware Executions 48

3.4.3 Seamless Migrations Across Development and Deployment Dimensions . . 51

3.5 Conclusion . 54

xv

4 Cloud-Assisted Networks as a Connectivity Provider 55

4.1 Cloud-Assisted Networks: A Market Analysis . 56

4.1.1 Cloud Instances . 57

4.1.2 Cloud Data Transfer . 59

4.2 Towards NetUber Deployments . 60

4.2.1 Economical Point-to-Point Connectivity 61

4.2.2 Higher Performance Point-to-Point Interconnection 62

4.2.3 A Provider of Network Services . 63

4.3 Economic Models for Cloud-Assisted Connectivity 64

4.4 Evaluation . 67

4.4.1 Economical Alternative to Connectivity Providers 68

4.4.2 Higher Performance Point-to-Point Interconnection 69

4.4.3 Qualitative Assessment . 73

4.5 Conclusion . 74

5 SDN Middlebox Architecture for Resilient Transfers 75

5.1 SMART Approaches for Critical Network Flows 76

5.1.1 SMART Alternative Approaches . 76

5.1.2 Clone Destination . 77

5.1.3 SMART Architecture . 79

5.2 SMART Algorithms . 80

5.3 Implementation . 83

5.4 Evaluation . 84

5.5 Conclusion . 87

III Service-Oriented Architecture 88

6 Software-Defined Service-Compositions 89

6.1 SDSC Model for Service Composition Workflows 90

6.2 Solution Architecture . 93

6.2.1 Mayan Controller Farm . 93

xvi

6.2.2 Context-Aware Service Compositions with Mayan 94

6.2.3 Initializing the Mayan Framework . 96

6.2.4 Scheduling Service Composition Workflows 98

6.2.5 Layered Architecture of Mayan . 99

6.3 Implementation . 100

6.4 Evaluation . 101

6.4.1 Mayan Controller Performance . 101

6.4.2 Speedup of Service Compositions with Mayan 103

6.5 Conclusion . 104

7 Network Service Chain Orchestration at the Edge 106

7.1 Edge VNF Orchestration with Resilience and Agility 107

7.1.1 NSC at the Edge: Graph Representation 108

7.1.2 NSC at the Edge: MILP Models . 110

7.2 Évora Algorithms . 112

7.2.1 Évora Global Environment . 112

7.2.2 NSC Execution Paths at the Edge . 114

7.2.3 Resilient and Adaptive Scheduling of the NSCs 116

7.3 Implementation . 117

7.4 Evaluation . 119

7.4.1 Problem Size and Scalability of Évora . 119

7.4.2 Efficient VNF Allocation at the Edge . 121

7.5 Conclusion . 125

8 Software-Defined Cyber-Physical Systems 126

8.1 MANETs and VANETs: A Case for SD-CPS . 127

8.2 Solution Architecture . 128

8.2.1 SD-CPS Coordination . 129

8.2.2 Resource Allocation . 131

8.3 SD-CPS Controller . 133

8.4 Evaluation . 135

xvii

8.4.1 CPS Execution Modeling . 135

8.4.2 Resource Allocation Efficiency . 136

8.5 Conclusion . 138

IV Data Services 139

9 On-Demand Big Data Integration 140

9.1 Motivation . 142

9.2 Óbidos: An On-Demand Big Data Integration Platform 143

9.2.1 Hybrid ETL Process . 144

9.2.2 Human-in-the-Loop ETL Process . 146

9.2.3 Data Sharing Process . 148

9.3 Implementation . 149

9.3.1 Data Structures . 149

9.3.2 Service-based APIs . 151

9.3.3 Óbidos Software Components . 151

9.4 Evaluation . 152

9.4.1 Performance of Integrating and Loading Data 153

9.4.2 Performance of Querying the Integrated Data Repository 154

9.4.3 Sharing Efficiency of Medical Research Data 156

9.5 Conclusion . 157

10 Interoperable and Network-Aware Big Data Workflows 158

10.1 An SDDS Model at Internet Scale . 160

10.2 Solution Architecture . 161

10.3 Prototype Implementation . 162

10.4 Evaluation . 164

10.4.1 Discussion . 166

10.5 Conclusion . 168

xviii

V Closure 169

11 Final Remarks 170

11.1 Future Work . 171

Bibliography 174

xix

List of Figures

1.1 Multitenancy and the Tenant Users of a Cloud Environment 5

1.2 Thesis Contributions . 14

1.3 Thesis Overview . 17

3.1 Separation of the Application Logic From the Execution Environment 41

3.2 SENDIM Middleware and Applications . 42

3.3 SENDIM Architecture and Deployments . 46

3.4 Simulating a random routing across a data center network 49

3.5 Time taken for Simulation Executions . 50

3.6 Migrating a Simulation to Emulation . 51

3.7 Network Construction with Mininet and SENDIM Simulation Sandbox 52

3.8 Comparative Qualitative Assessment with Configuration Management Systems . 54

4.1 Linux r4.8xlarge Spot Instance Price in Frankfurt and Sydney, April - June 2017 58

4.2 Data Transfer Cost for AWS . 60

4.3 NetUber Deployment with a Single Cloud Provider 61

4.4 Deployment Across Multiple Cloud Providers . 62

4.5 Monthly Fee for 10 GbE Flat Connectivity . 68

4.6 Throughput of NetUber with ISP-based cloud connect 70

4.7 Latency (RTT) variations of NetUber and the ISP-based Internet paths 72

5.1 Subflows and Alternative Execution Paths . 78

5.2 Application and Network Views of a Cloud Deployment 79

5.3 SMART Architecture . 80

5.4 SMART Deployment and Execution . 83

5.5 Adaptive Clone/Replicate: SMART Enhancements vs. Base Algorithm 85

xx

6.1 A sample representation of multiple alternative workflow executions. 91

6.2 Parallel Execution Alternatives of a Service Composition Workflow 93

6.3 Inter-Domain Service Compositions with Mayan Controller Farm 95

6.4 Three-Dimensional View of Mayan: Hosts, Network Topology, and Services . . . 99

6.5 Mayan stand-alone controller performance in processing messages in parallel . . 102

6.6 Success rate of the controller vs. number of messages processed in parallel 103

6.7 Speedup of distributed data cleaning and consolidation workflow 104

7.1 A User-Defined NSC Among the Edge Nodes . 109

7.2 An Évora deployment: Edge Nodes and the User Device 118

7.3 Representation of the service graph from the node graph 119

7.4 Évora policies with two attributes of equal weight. 122

7.5 Évora policies considering three attributes with prominence to one of the three

attributes. The radius of the circles represents the cost. 123

7.6 Évora policies considering three attributes with prominence to two or all of the

three attributes. The radius of the circles represents the cost. 124

8.1 CPS Design and Development with SD-CPS Approach 130

8.2 SD-CPS Controller Architecture . 133

8.3 Network Layer - Higher Level View . 134

8.4 Properties of the nodes (normalized) . 135

8.5 Resource requirements (normalized) of the services 136

8.6 Service deployment over the nodes . 137

8.7 Parallel execution of 1 million workflows with SD-CPS 137

9.1 Óbidos Architecture . 144

9.2 Narrowing down the search space with user-defined replicasets 146

9.3 Data Sharing with Óbidos . 148

9.4 Data Structures of the Replicaset Holder . 150

9.5 Evaluated DICOM Imaging Collections (Sorted by Total Volume) 153

9.6 Data load time . 154

9.7 Load time from the remote data sources . 155

xxi

9.8 Query completion time for the integrated data repository 155

9.9 Volume of data shared in Óbidos use cases vs. in regular binary data sharing . . 156

10.1 A Sample Mayan-DS Deployment . 162

10.2 A Three-Dimensional View of the Mayan-DS Implementation 163

10.3 Ping times of Mayan-DS against the Public Internet-based Connectivity 166

xxii

List of Tables

3.1 Steps of the Executed Simulation: T(n) vs. T (ns) & T (nc) 49

4.1 Ping Times (ms): Regular Internet vs. NetUber 71

5.1 Time and Bandwidth Overhead . 77

7.1 Notation of the Évora Representation . 108

7.2 Performance and Scalability of Évora Orchestrator Algorithms 120

8.1 Notation of the SD-CPS Representation . 131

10.1 The Simulated Mayan-DS Deployment Environment (with modeled latency in ms)164

10.2 Ping Times (ms) between two nodes: Regular Internet vs. Mayan-DS 165

xxiii

List of Algorithms

1 SENDIM Application Initialization . 44

2 Iterative and Incremental Development . 45

3 SMART Enhancer Route . 81

4 Marking the Breakpoint . 82

5 Initialize the Mayan Framework . 97

6 Context-Aware Scheduling of a Web Service . 98

7 Orchestrating the Environment . 113

8 Finding NSCs at the Edge . 115

9 Scheduling an NSC at the Edge . 117

10 Óbidos Human-in-the-Loop Incremental ETL . 147

11 Data Sharing via a Replicaset . 149

xxiv

List of Acronyms

Acronym Description Page

5GEx 5th Generation Exchange 30

AAA Authentication, Authorization, and Account-

ing

20

ABA Affinity-based Approach 28

AD-SAL API-Driven Service Abstraction Layer 20

AMI Amazon Machine Image 61

AMQP Advanced Message Queuing Protocol 26

API Application Programming Interface 5

AWS Amazon Web Services 23

BGP Border Gateway Protocol 62

BOS Building Operating System 29

CapEx Capital Expenditures 4

CDM Copy Data Management 31

CDN Content Delivery Network 3

CG Column Generation 28

CLI Command Line Interface 61

CPE Customer Premises Equipment 28

CPS Cyber-Physical System 2

CRUD Create, Retrieve, Update, and Delete 151

DaaS Data-as-a-Service 30

DC Data Center 2

DDoS Distributed Denial of Service 63

DICOM Digital Imaging and Communications in

Medicine

142

DO Domain Orchestrator 30

DOM Document Object Model 46

DSL Domain Specific Language 42

ebXML Electronic Business XML 32

EC2 Elastic Compute Cloud 57

xxv

Acronym Description Page

ECMP Equal-Cost Multi-Path 81

ESB Enterprise Service Bus 32

ETL Extract, Transform, and Load 16

FHIR Fast Healthcare Interoperability Resources 32

ForCES Forwarding and Control Element Separation 18

FTTH Fiber to the home 72

GbE Gigabit Ethernet 55

GCP Google Cloud Platform 23

HDFS Hadoop Distributed File System 100

HL7 Health Level Seven International 32

I2V Infrastructure-to-Vehicle 135

IDS Intrusion Detection System 80

IIoT Industrial Internet of Things 30

ILP Integer Linear Programming 28

IMDG In-Memory Data Grid 40

IoT Internet of Things 3

ISP Internet Service Provider 9

IXP Internet eXchange Point 34

JDBC Java Database Connectivity 152

LSO Lifecycle Service Orchestration 28

MANET Mobile Ad-hoc Network 29

MAS Multi-Agent Systems 29

MD-SAL Model-Driven Service Abstraction Layer 20

MdO Multi-Domain Orchestrator 30

MEC Mobile and Edge Computing 27

MILP Mixed Integer Linear Programming 28

MINA Multinetwork INformation Architecture 30

MIP Mixed Integer Programming 33

MOM Message-Oriented Middleware 7

MPI Message Passing Interface 21

MPLS Multiprotocol Label Switching 9

MPTCP Multipath Transmission Control Protocol 25

MQTT Message Queuing Telemetry Transport 27

NaaS Network-as-a-Service 14

xxvi

Acronym Description Page

NAT Network Address Translation 83

NETCONF Network Configuration Protocol 45

NFV Network Functions Virtualization 3

NGSON Next Generation Service Overlay Network 27

NSC Network Service Chain 15

NSO Network Service Orchestration 28

OGSA-DAI Open Grid Services Architecture - Data Ac-

cess and Integration

33

OLIA Opportunistic Linked Increases Algorithm 25

ONOS Open Network Operating System 19

OO Overarching Orchestrator 30

OpEx Operational Expenditures 4

PDQ Preemptive Distributed Quick 24

PE Provider Edge 28

PoP Point of Presence 55

QoE Quality of Experience 10

QoS Quality of Service 3

REST Representational State Transfer 5

ROA Resource-Oriented Architecture 26

RPC Remote Procedure Call 20

RTT Round-Trip Time 70

S3 Simple Storage Service 59

SaaS Software-as-a-Service 23

SAL Service Abstraction Layer 20

SD-CPS Software-Defined Cyber-Physical Systems 15

SD-WAN Software-Defined Wide Area Network 4

SDB Software-Defined Building 29

SDCD Software-Defined Cloud Deployment 14

SDDC Software-Defined Data Center 4

SDDS Software-Defined Data Services 16

SDE Software-Defined Environment 29

SDIA Software-Defined Internet Architecture 22

SDIIoT Software Defined Industrial Internet of

Things

30

SDIoT Software Defined Internet of Things 30

SDN Software-Defined Networking 3

SDS Software-Defined System 2

xxvii

Acronym Description Page

SDSC Software-Defined Service Composition 15

SEED Standard for the Exchange of Earthquake

Data

142

SFC Service Function Chaining 27

SLA Service Level Agreement 6

SLO Service Level Objective 6

SOA Service-Oriented Architecture 5

SSD Solid-State Drive 19

STOMP Simple / Streaming Text Oriented Message

Protocol

27

TCIA The Cancer Imaging Archive 103

TCP Transmission Control Protocol 25

TOSCA OASIS Topology and Orchestration Specifica-

tion for Cloud Applications

124

UDDI Universal Description, Discovery, and Inte-

gration

26

URI Uniform Resource Identifier 95

V2I Vehicle-to-Infrastructure 135

V2V Vehicle-to-Vehicle 135

VANET Vehicular Ad-hoc Network 29

VCE Vienna Cloud Environment 33

VM Virtual Machine 8

VNE Virtual Network Embedding 28

VNF Virtual Network Function 3

VNFaaS VNF-as-a-Service 28

WADL Web Application Description Language 5

WAN Wide Area Network 3

WSDL Web Services Description Language 5

XML Extensible Markup Language 42

XMPP Extensible Messaging and Presence Protocol 27

YAML YAML Ain’t Markup Language 100

YANG Yet Another Next Generation 20

xxviii

IThesis Overview

1Introduction

Composing user workflows seamlessly from heterogeneous third-party services is a challeng-

ing problem due to the volume of service providers and the diversity of services [182]. Research

and enterprises have proposed Network softwarization [4, 346] and Software-Defined Systems

(SDS) [92, 85, 258], to enhance the interoperability and flexibility of large-scale networks and

systems. Network softwarization enables complete virtualization of the network, to facilitate dy-

namic formation, efficient configuration, incremental deployment, and seamless migration of net-

work architectures through software constructs [224]. SDS refers to a wide range of frameworks

that adopt or extend network softwarization for heterogeneous systems, where an execution en-

vironment is separated into i) a data plane consisting of devices and ii) a centralized control

plane that centrally manages actions and policies on the data plane devices in a unified man-

ner [164]. Regardless of these promising developments, existing SDS and network softwarization

frameworks do not adequately support service composition and workflow placement in multi-

domain networks consisting of multiple tenants. This dissertation proposes SDS frameworks for

network-aware service composition and workflow placement at Internet scale. We first extend

network softwarization to facilitate seamless deployment and migration of services and scaling

them across diverse network environments. We then present an SDS architecture and optimiza-

tion algorithms for efficient service composition and workflow placement across heterogeneous

execution environments in wide area networks. Finally, we propose network-aware execution of

big data applications and Cyber-Physical Systems (CPS), exploiting our SDS frameworks and

contributions to network softwarization.

1.1 Context

Service composition and workflow placement at Internet scale should extend and exploit the

network management capabilities for efficient resource sharing across several user workflows that

consume the services. Services are getting pervasive on the Internet, with several third-party

network, cloud, and service providers offering resources to the end users. A sophisticated user

workflow often invokes several services from multiple providers [3]. However, execution environ-

ments managed by third-party providers lack interoperability among them, thus preventing the

users from exploiting resources and services from various providers to compose their workflows.

While network softwarization has made promising improvements to network management [127],

it limits its focus mainly to data center (DC) networks. Currently, the potential for extending

network softwarization for service composition and workflow placement at Internet scale remains

mostly unexplored. To reap the benefits of network softwarization for Internet services, we need

a “bridge” between the network management capabilities of network softwarization, and the

CHAPTER 1. INTRODUCTION 3

service composition and workflow scheduling handled at the application level by the service

providers.

The prevalent demand for high data rate and low latency of the Internet applications has

driven more infrastructure and service providers to distribute their resources closer to the end

users [52]. Latency-sensitive Internet applications [305] such as high-frequency trading [189],

online gaming [78], remote surgery [26], eScience workflows [319], and the Internet of Things

(IoT) [95, 365, 334] have a high demand for a quick response. These Internet applications are

reaching geographically diverse locations, far from the tier-1 cities that typically host cloud data

centers. With the need for low latency [7], these Internet applications perform better when they

are deployed and served from the edge [305], compared to cloud regions that are typically farther

to the users than the edge providers. The demand for a locality-aware execution is met with

an increasing number of edge providers to serve the large and geographically-distributed user

base [335]. Subsequently, cloud providers are also opening up more regions [366] to offer better

Quality of Service (QoS) to the geographically distributed users.

Increasing volume and variety of the providers, yet with lack of interoperability among their

interfaces [102], makes composing service workflows abiding by the user policies a hard problem.

The growth of service and infrastructure providers increases the potentials for efficient service

composition and workflow placement. Despite the growing number of service providers, users

still cannot seamlessly choose services from multiple providers to compose their workflows, due

to the incompatibility between the service providers. The ever-increasing volume and variety of

services in the edge as well as the IoT devices, often consist of little to no interoperable interfaces.

Coupled with these challenges of heterogeneity and interoperability of the service providers, the

diverse policies and demands of the users that consume these services make an optimal resource

allocation across these platforms for service workflows a complex research challenge.

Software-Defined Networking (SDN) [231] and Network Functions Virtualization

(NFV) [148] are two key enablers of network softwarization. Through its unified view and

control of the data plane devices, SDN facilitates programmability and management capabilities

to the network. SDN separates the control of the data plane devices into a logically unified

network controller. Thus, it facilitates a global awareness of the network data plane devices.

SDN enables efficient control of the network, typically within a cloud or a data center, but

also extended to Wide Area Network (WAN) scenarios such as Content Delivery Networks

(CDNs) [351]. On the other hand, NFV virtualizes various network services and deploys them

on servers as Virtual Network Functions (VNFs) [36] instead of having them as individual hard-

ware middleboxes [341]. Software middleboxes are cheaper to acquire and easier to manage from

a global controller, compared to hardware middleboxes. These traits have indeed facilitated the

adoption of network softwarization by several service and network providers [122].

We need a network softwarization architecture, extending SDN for Internet services, to

manage the involved multiple heterogeneous infrastructures and users efficiently. While SDN

offers network-awareness through the unified view of its controller, it typically limits its scope to

a data center. Consequently, several challenges in separating a large-scale network environment

consisting of multiple domains from its infrastructure remain unaddressed.

Software-Defined Systems (SDS): SDS are a set of network softwarization frameworks and

CHAPTER 1. INTRODUCTION 4

approaches inspired by the centralized logical control offered by the SDN. SDS intends to bring

the programmability and control of SDN to heterogeneous systems, built atop various network

environments. We posit that a network softwarization architecture should be developed as an

SDS for network-aware service composition and workflow placement to extend and expand the

scope of SDN for heterogeneous service workflows.

A complete SDS architecture should be built to efficiently share resources from the diverse

providers for the service composition and execution of several user workflows. As a complete

softwarization of the network systems is beyond the scope of classic SDN, recently, more and

more SDS have been built, including Software-Defined Storage [323], Software-Defined Data

Center (SDDC) [13], Software-Defined Radio [178], and Software-Defined Wide Area Networks

(SD-WAN) [238]. These SDS approaches build and manage storage, data centers, and wide

area networks via a software control plane that has control over the entire system. Some SDS

extend and leverage SDN as their core, while others merely follow a software-defined approach

inspired by SDN. Regardless of these promising developments, existing SDS frameworks still

focus on a single provider, by virtue of having a unified global view of the system. Multi-domain

wide area networks, such as inter-cloud [143] and edge environments, require collaboration and

coordination among several providers, each managing their network domain – potentially with

an SDN controller. Therefore, additional research and implementation are necessary to make an

SDS approach for service compositions at Internet scale, considering the diversity of the services

that compose the user workflows.

1.2 Challenges of network softwarization

We posit that a network softwarization framework, with a focus on the end user devices and

client applications, can offer the users more control over the network and their applications in

a multi-tenant environment. We observe that to fully reap the benefits of the pervasive edge

nodes and network softwarization, we should bring the control of the resource allocation and

executions back to the users, despite sharing the resources from multiple providers across several

geo-distributed tenants.

Network softwarization has yielded positive outcomes concerning the performance and man-

agement of the network architectures while minimizing the capital and operational expenditures

(CapEx and OpEx) of the enterprises [56]. Two major technological factors drive the preference

for network softwarization: i) performance and flexibility achieved by separating the network

infrastructure from the network service execution [168], and ii) the ability to control the net-

work flows based on the user preferences from the application plane, for a high QoS [318]. SDN

controllers are, in practice, software applications developed in high-level languages, such as Java

or Python. Therefore they can be extended and invoked from the application layer. They,

on the other hand, control and manage the network data plane devices. Thus, the controllers

are capable of providing cross-layer optimizations to the network systems, by receiving status

updates from the network plane, while adhering to the policies specified from the application

plane. NFV replaces expensive proprietary hardware middleboxes with VNFs that are cheaper

CHAPTER 1. INTRODUCTION 5

to acquire and maintain [36]. Thus, network softwarization has achieved popularity due to its

technological and economic advantages.

Multitenancy: The users have limited control in resource allocation for their workflows com-

posed of several third-party services. The cloud environments consist of users from several

organizations. We call these sets of users the tenants of the systems. Multitenancy [124], the

ability to support several tenants with shared resources, is a core pillar of cloud computing.

It advocates sharing of the underlying infrastructure and platform among several third-party

organizations, i.e., the tenants of the environment. A tenant typically consists of a set of users

controlled by a single administrator account of the organization. Each tenant receives its own

‘slice’ of the cloud resources without sacrificing the privacy and isolation of data and execution

belonging to each tenant, as illustrated by Figure 1.1. However, multitenancy comes with the

cost of limited control and flexibility to the end users – the resources are entirely managed

and provisioned by the provider, often oblivious of the sophisticated end user policies. Each

cloud environment is maintained by its provider, as a network domain independent and often

incompatible with other cloud environments. The current cloud and services ecosystems have

essentially lead to vendor lock-in, by hindering seamless service migrations across the providers.

Subsequently, the users have limited capabilities to consider all the available service instances

in multi-domain environments consisting of several cloud and edge providers.

Tenant-2

Tenant-1 Tenant-3

Tenant-nOrganization-2

Users (org-2)

Organization-1

Users (org-1)

Organization-3

Users (org-3)

Organization-n

Users (org-n)
Resources - Cloud

Provider-1

Resources Allocated
to Tenant-n

Resources - Cloud
Provider-m

Resources - Cloud
Provider-2

Domain-1: Cloud Provider-1

Figure 1.1: Multitenancy and the Tenant Users of a Cloud Environment

SOA Standards: Service-Oriented Architecture (SOA) is a design paradigm that distributes

the applications as a client-server architecture, following commonly accepted standards and

protocols. The service provider hosts the web services server, consisting of one or more web

applications or web services that accept concurrent queries from several (often, geo-distributed)

users with clients for the respective web services and applications [248]. Cloud providers have

widely adopted SOA due to its support for a distributed user base [209]. Web services are de-

veloped following standards and descriptive languages such as the Web Application Description

Language (WADL) [145] and Web services description language (WSDL) [76] as well as pro-

tocols such as the Representational State Transfer (REST) [270] and SOAP (formerly, Simple

Object Access Protocol) [57]. SOA description languages such as WSDL and WADL support

defining the functionality of the web services in a unified manner [76]. These protocols mandate

standardized Application Programming Interfaces (APIs) to access and update the underlying

CHAPTER 1. INTRODUCTION 6

data.

Service Composition: Despite the standardization efforts on services fostered by the web ser-

vice protocols, service composition across multiple providers remains an open challenge. Work-

flows are composed by chaining the service outcomes, by using the output of a service invocation

as the input for another service [11]. In practice, there have been limited coordination across the

cloud and network providers. Therefore inter-cloud service workflow execution, where a tenant

workflow is composed of service executions at various cloud provider environments, remains a

complex undertaking.

Resource Allocation: Sharing of computing and network resources across several tenants

makes cloud resource allocation a hard problem to solve. Recently, networks are adopting

the concept of multitenancy and network softwarization to share the bandwidth across the

tenants [304]. Even though recent advancements on network softwarization indeed attempt to

enhance the interoperability and management of the network architectures [217], they limit their

focus to the providers, rather than the tenants. Network tenants have their distinct policies as

well as preferences for their applications’ network flows. Some applications have a higher priority

than the others, having more demanding Service Level Objectives (SLOs). Moreover, system-

wide policies should be respected while also supporting the policies of the several tenant users,

abiding by the Service Level Agreements (SLAs). These constraints make efficiently sharing

network resources among several tenants a challenging problem, more so as the tenants have

their preferences and policies for their cloud applications and services.

1.3 Thesis Aim and Objectives

This dissertation exploits network softwarization to solve the problems of service composi-

tion and workflow placement at Internet scale. Numerous providers offer service implementations

with different QoS guarantees and SLAs. Services are inclusive of several variants such as web

services, network services, and data services. Service description standards and protocols focus

on interoperability across service interfaces, to provision resources and scheduling workflows

spanning various service providers. Nevertheless, in practice, standardization of the interfaces

remains mostly limited. On the other hand, the cloud and edge environments consist of several

tenants and multiple users belonging to each tenant organization, each with their own set of

policies, priorities, and SLOs [180]. Consequently, current workflow placement approaches are

limited in terms of feasibility, scalability, and optimality in efficiently provisioning resources for

user workflows spanning various infrastructure and service providers across the Internet. The di-

versity of services and their users make an optimal service composition and workflow placement,

for a tenant user consuming several third-party services, a complex research problem [190].

We identify several challenges that should be addressed to be able to build SDS for network-

aware service composition and workflow placement. We then formulate our research questions

that arise from those challenges. The thesis objective is to find solutions for the identified

research challenges in service composition and workflow placement, by extending and leveraging

network softwarization. Thus, we propose a set of contributions to address the identified research

CHAPTER 1. INTRODUCTION 7

problem and solve the associated research questions.

1.3.1 Problem Formulation

First, we should extend the scope of network softwarization beyond its current focus that

is typically limited to network deployments rather than an end-to-end development and deploy-

ment of network environments. In practice, building a network environment consists of several

steps, starting with modeling the algorithms and architectures and finally deploying them in

production. Network emulators such as Mininet [196] leverage SDN to efficiently emulate a

network architecture that can seamlessly be migrated into a physical deployment environment.

Nevertheless, the scope of such emulators are limited to data center networks, and it is often

infeasible to emulate cloud and edge environments due to resource constraints. In contrast,

network and cloud simulators are capable of modeling complex systems, but they are typically

incompatible with physical deployments. Hence, seamless migration of a network from simula-

tion to physical deployment is practically impossible. Therefore, currently, network deployments

incur repeated efforts between early development (such as models, simulations, emulations, and

prototypes) and production, with limited incremental development and deployment capabilities.

Consequently, current network softwarization landscape, despite its benefits, has a limited scope

– typically restricted to production, and not covering the early development efforts.

Second, we need to complement classic SDN with more widespread light-weight SOA such

as Message-Oriented Middleware (MOM) [87] protocols, to achieve interoperability and coordi-

nation across service executions at Internet scale. While SDN improves the configurability of

the networks, heterogeneous devices and executions on the Internet do not typically support

SDN protocols. Furthermore, as a network protocol, the scope of SDN is limited to control

of network data plane devices, usually belonging to a single domain such as a data center.

Existing approaches that exploit application layer protocols to manage the networks together

with SDN [276] are still limited in scalability and interoperability, with little support to diverse

application scenarios such as IoT and big data workflows. SOA offers scalable distributed execu-

tions across wide area multi-domain networks, supporting a vast range of devices and services.

We should extend SDN with SOA to facilitate efficient management of heterogeneous services,

rather than just the network infrastructure.

Third, we should identify the potential and feasibilities for coordination and management of

an entire wide area network of multi-domain environments such as the edge and multi-clouds. A

global view of the whole network achieved by SDN is advantageous in managing and controlling

the environments that are operated by a single entity, such as a data center or a cloud provider.

While extending SDN for wide area networks has previously been proposed in frameworks such as

SD-WAN [238], they limit their focus primarily to network services offered by a single provider.

On the other hand, edge and inter-cloud environments consist of several network providers

offering diverse services to multiple tenants. Consequently, a global view and control of the

entire network are currently infeasible in such multi-domain environments, due to technological

as well as administrative and management challenges in making coordination and collaboration

across multiple providers. We need to devise an SDS that offers management and coordination

CHAPTER 1. INTRODUCTION 8

capabilities for multi-domain environments without sacrificing the independence of each domain.

Fourth, we need to identify whether network softwarization can be leveraged to offer an

economical alternative to existing network connectivity providers, as an overlay network that

provides seamless network service execution and data transfer, independent of the underlying

network infrastructure. The economic aspects drive the move towards network softwarization

at Internet scale. We can create overlay networks that span the globe on top of cloud Vir-

tual Machines (VMs), by leveraging the cloud providers that have a global presence. Such an

overlay network supported by cloud VMs as its infrastructure is known as a Cloud-Assisted Net-

work [131]. However, network softwarization approaches such as cloud-assisted networks have

not been studied adequately for their potential benefits concerning monetary cost and perfor-

mance. We must ensure that the proposed SDS offers better performance and bandwidth for

service workflows while incurring same or lower costs.

Thus, in this work, we extend and apply the concept of network softwarization to manage and

leverage the services to compose scientific and enterprise workflows and place them in a network-

aware manner, in heterogeneous infrastructures. We aim to leverage network softwarization to

efficiently control heterogeneous environments, ranging from data centers, clouds, and edge, and

manage the development lifecycle of these systems, spanning simulation to deployment phases.

Consequently, we propose efficient SDS frameworks to address the identified research challenges,

in achieving these goals.

1.4 Research Questions

We first identify whether an SDS approach will be feasible and effective in offering network-

aware service composition and workflow placement. We then look into the specifics on how

to efficiently build such an approach, and how does it perform compared to the existing ap-

proaches. Our research questions, listed below, are driven by several factors, to support the

service providers and tenants, concerning interoperability, modeling, performance, monetary

cost, and enhanced control and management capabilities. Among the identified research ques-

tions, Q3 defines the core of the thesis. Q1 and Q2 facilitate us to reach Q3. Q4 and Q5 are the

follow-ups of Q3.

Q1: Can we seamlessly scale and migrate network applications through net-

work softwarization at various stages of development, from simulation to physical

deployment?

Typically, deployment management frameworks [125] deploy and migrate actual algorithms

across various physical deployments. However, during the early development phase, network

architectures and algorithms are developed with different realizations such as simulations and

emulations, before the actual physical deployment. We seek to address the challenge of network

workload migrations in two-dimensions, concerning scale as well as the development phase.

First, our approach should scale the network algorithms and workflows seamlessly along with the

infrastructure, from enterprise and cloud data centers to the edge environments. Such a scaling

ensures that networks can be deployed across various environments, with minimal challenges of

CHAPTER 1. INTRODUCTION 9

scale. Second, it should support a migration with little manual and repeated development efforts,

from simulations to deployments. Such a migration enables faster end-to-end development and

deployment process. Network emulators such as Mininet indeed support a seamless migration

between the emulations and physical deployments, by leveraging their native integration with

the SDN controllers [96]. However, current network simulators still lack integration with the

SDN controllers. Hence, currently it is impossible to manage a simulated network through

a centralized controller efficiently, or realistically model the controller algorithms and SDN

architectures without having the resources for a one-to-one emulation. We assess whether it is

feasible to separate the infrastructure from the execution through network softwarization, and

consequently achieve seamless deployments and migrations across the two-dimensions.

Q2: Can such network softwarization offer economic and performance benefits

to the end users, through its separation of the network from its infrastructure?

Even if we establish the feasibility for network softwarization approaches for several network

architectures, their adoption largely depends on the benefits that they can offer to the end users.

To this end, we look into approaches such as cloud-assisted networks, and when they can be

economically and technologically sustainable. Hence, we seek to answer two primary questions in

a use case scenario of leveraging a cloud-assisted network as an alternative connectivity provider.

First, when would such an approach be cheaper than existing alternative connectivity providers,

including transit providers, Internet Service Providers (ISPs), and Multiprotocol Label Switching

(MPLS) [93] network providers? Second, we need to look into the technological aspects: would

a software-defined approach be able to provide higher performance or additional features such

as enhanced control of the network application executions to the user? It is necessary to study

the performance benefits of a cloud-assisted network compared to the alternatives for such an

approach to be technically and economically viable and beneficial. Furthermore, we should

exploit opportunities that may arise from a separation of the network from the infrastructure.

For instance, the viability of a network provider built over multiple cloud offerings and that does

not own any fixed or dedicated resources, and the potential to easily manipulate the network

flows based on the user policies exploiting the flexibility of network softwarization.

Q3: Can we efficiently chain services from several edge and cloud providers

for tenant workflow compositions, by federating SDN deployments of the providers

using SOA?

A complex workflow typically depends on several services and therefore requires chaining of

the service outcomes. The flexibility of NFV enables the end users to compose service workflows

optimally by leveraging several third-party edge VNFs. However, in practice, seamless workflow

executions across multi-domain environments require communication and collaboration between

the execution environments of multiple providers. While SDN manages a single domain such

as cloud and data center networks, we need to federate the SDN deployments across these

environments to enable tenant workflows spanning multiple domains. On the other hand, tenants

need to schedule their services in a network-aware manner, abiding by their policies, for the high

overall performance of their service workflows. Thus, the tenants should have increased direct

control of their workflow executions with the ability to exploit multiple providers for their service

instances and choose the best fit for their service compositions. We seek to federate various SDN

CHAPTER 1. INTRODUCTION 10

environments with SOA to enable a seamless execution across wide area multi-domain networks

and efficiently schedule the service workflows from the decentralized user devices, ranging from

servers to smart mobile devices.

Q4: Can we enhance the interoperability of diverse and distributed real-world

applications, by following SOA extended with network softwarization?

Various execution scenarios, including big data applications and smart environments such as

the CPS and the IoT, typically have limited standardization and interoperability across different

implementations. Big data workflows and smart devices consist of diverse storage media and

APIs, managing heterogeneous data formats. Nevertheless, their execution is confined to their

platforms as their interfaces offer limited interoperability beyond their own framework. The

incompatible interfaces prevent users from choosing multiple providers freely for their workload

executions and migrate seamlessly across the providers. In contrast, web services are developed

for a distributed and interoperable execution. Therefore, an increasing number of big data

workflows are composed of data services (also known as big services or big data services) [357],

web service implementations that access and process big data in a standardized and decentralized

approach. Similarly, compositionality demands in CPS [251] can be met with an SOA approach,

by adopting a client-server web services architecture and distributing the user workload as

service executions. Given this state of affairs, we aim to understand how to leverage SOA and

network softwarization to provide interoperability among the executions of diverse distributed

applications and heterogeneous services.

Q5: Can we improve the performance, modularity, and reusability of big data

applications, by leveraging network softwarization and SOA?

Big data applications should consider network proximity to minimize communication over-

head during the distributed execution of their data-intensive workflows. Standard web service

executions are agnostic to the network characteristics beyond data centers. However, the need

for a network-aware execution is more prominent in data services than the traditional web ser-

vices due to the communication overhead caused by moving large volumes of data across the data

storage and execution nodes. Therefore, building big data applications with network-agnostic

data service workflows is inefficient. We seek to find whether we can build complex big data

applications as service workflows by exploiting SOA while leveraging network softwarization for

latency-awareness and Quality of Experience (QoE) in the workflow execution. We first aim at

enhancing the modularity and reusability of the big data executions by exposing them as data

service workflows. Ultimately, we aim at increasing the performance of the big data executions

in multi-domain wide area networks such as the Internet, by building an SDS framework for

data service execution.

1.5 Thesis Contributions

This dissertation proposes a unified SDS framework that extends network softwarization to

address several research challenges of multi-domain networks that hinder a network-aware service

composition and tenant workflow placement at Internet scale. Our unified SDS framework

CHAPTER 1. INTRODUCTION 11

consists of several interdependent components, each focusing on one or two of the identified

research questions.

1.5.1 Unified SDS Framework

Our proposed unified SDS framework aims to mitigate the challenges in composing and

placing diverse service workflows across heterogeneous multi-domain environments consisting of

networks managed by multiple providers, by extending and leveraging network softwarization

to wide area networks shared by several tenants. Network softwarization promises significant

enhancements on how service workflows are composed and placed, from the perspectives of both

networking and application layers. We see this dissertation as the first exploration and extension

of network softwarization at Internet scale with various tenants and several independent network,

infrastructure, cloud, and service providers.

As the core enabler and prerequisite of our framework, we first must ensure interoperabil-

ity across the diverse execution environments as well as the variety of tenant workloads, for

seamless scheduling and migration of service workflows. The services composing the workflows

should be interoperable, to execute service workflows spanning multi-domain networks managed

by multiple providers, with minimal repetitive development and manual deployment efforts from

the network application developers. Therefore, we propose a cloud network development and

deployment approach that unifies the network application execution - across not only the de-

ployment environments but also the development stages. We see this as the first step in enabling

interoperability from the tenant application itself. By facilitating service execution migrations

across early development stages such as simulations and emulations, we highlight the feasibility

of execution migration across the environments that typically lack interoperability.

The current cloud ecosystem consists of mostly disconnected networks with little interaction

and coordination across the infrastructure and service providers at the cloud and the edge. The

ability to compose a workflow spanning multiple providers is limited not only by the technological

challenges but also by the business vision and the enterprise policies of the providers. Our SDS

framework separates the network from the infrastructure, to counter the dependence of the

network service workflows on the providers. It facilitates an independent third-party cloud user

to consume resources from multiple cloud providers seamlessly. Consequently, it lets the cloud

user be an alternative connectivity provider that offers an overlay network to the end users. This

approach enhances the interoperability of the cloud infrastructure further, while also providing

performance enhancements to the tenant cloud applications with the inter-cloud architecture.

Moreover, the current services ecosystem gives limited flexibility to the tenants who share

the network for their services placement and execution. This limited flexibility and control

given to the tenants prevent them from leveraging multiple service providers at the cloud and

the edge for a single workflow, even when the tenants possess the ability to develop and de-

ploy network applications seamlessly across various execution environments. Even the current

network softwarization approaches such as classic SDN give a limited capability for the tenant

applications to pass their preferences and policies to the network level. This state of affairs limits

the tenants from efficiently ensuring SLOs at the network level, more so when the network is

CHAPTER 1. INTRODUCTION 12

managed by a third-party and shared by several other tenants. Our SDS framework extends

network softwarization to enable efficient use of middleboxes to tag the network flows from the

applications with user-specified information such as the SLOs, policies, and priority levels for

their network flows. It thus provides better flexibility and control for the tenant workflows, and

offering differentiated QoS and service level guarantees based on the tenant demands.

Our SDS framework further enriches the services ecosystem with its core contributions,

while having the aforementioned interoperability enhancements in place as a prerequisite and

foundation for network-aware service composition and workflow placement across the multi-

domain networks. As our core contribution, we then extend SDN beyond data centers, with

MOM. By using messages for inter-domain coordination, rather than static dedicated network

links, the extended SDN architecture ensures not to introduce hierarchies among the networks,

or compromise their security. Using a MOM approach facilitates multi-domain control via

dedicated network connections as well as the public Internet with protected access, thus further

aiming to enhance the performance, scalability, and extensibility of the multi-domain service

workflow compositions and migrations. Our framework thus enables composing workflows on

services deployed on multiple network domains and migrates the execution based on the load

on the service instances.

While our enhancements enable composing network service chains, consuming the services

deployed on multiple edge and cloud providers, we must compose these chains adhering to

the user policies and SLOs. Remarkably, service chains have additional constraints compared

to the stand-alone service instance selection and execution. Our SDS framework consists of

optimization algorithms to ensure that the service instances are chosen while adhering to both

user policies and resource availabilities at the nodes. It uses both the network-level statistics

facilitated by the SDN architecture extended with MOM, as well as the service-level statistics

from the web services engines. It further exploits graph-based algorithms and formulates MILP

to solve the network service chain placement as an optimization problem for multi-domain inter-

cloud and edge environments.

We finally look into the practical use cases of our contributions. Our proposed enhancements

to the services ecosystem with network softwarization provide a first-step towards interoperable

network-aware service composition workflows at the Internet scale. We demonstrate CPS and

big data workflows as the two use cases of our proposed SDS framework. In the case of CPS,

we expose the CPS as composable microservice chains and thus enabling the use of our SDS

framework to execute them efficiently at the edge. For big data workflows, first, we propose an

approach that allows service-based access and processing across heterogeneous big data environ-

ments. Big data consists of a large volume of data and a variety of data types from diverse data

sources. Our proposed unified data service approach to big data enables exposing big data work-

flows as composable data service chains. Consequently, our SDS framework facilitates big data

workflows spanning multiple providers, the same way it supports the scheduling and execution

of multi-domain workflows of web services, network services, and microservices of CPS.

Our research contributions aim at addressing the identified challenges from three fronts

- namely, networking, services, and big data. Our unified SDS framework exploits network

softwarization, SOA, and data services, respectively, to tackle the challenges in these fronts. We

CHAPTER 1. INTRODUCTION 13

thus propose a set of SDS components, as part of our proposed unified SDS framework. Each

of the SDS components individually addresses a particular limitation on these three fronts to

enable service compositions from third-party service providers for user workflows adhering to the

tenant policies and SLOs, while not owning the infrastructure and sharing the resources with

several other tenants of the service or infrastructure provider. Our SDS components function

individually on their own to address their specific research problem, and also as part of the

unified framework towards the global goal of the unified SDS framework. Our contributions

collectively aim to optimize user workflow placement in a scalable and network-aware manner

in various scales.

Our contributions fit under three primary parts – network softwarization, SOA, and data

services. Each of the parts builds upon the previous ones. First, we research the challenges

and opportunities of network softwarization in data centers and clouds, regarding performance

and QoS. We thus build frameworks that exploit the benefits of network softwarization for

technological and economic enhancements of the end user application execution. Second, as

the core of the thesis, we propose our SDS framework for network-aware service compositions

and workflow placements. We exploit our findings from the network softwarization research and

extend them with SOA. Third, we present interoperable big data services as an extended use

case of our research contributions on SOA. We finally extend our research findings on network

softwarization for network-aware execution of big data workflows with SOA.

1.5.2 Individual Contributions

This dissertation develops and presents several individual research contributions as part

of the proposed unified SDS framework for service composition and workflow placement in

multi-domain networks. Each of the research questions identified in Section 1.4 is addressed

through one or more contributions, whereas each contribution focuses on one or two research

questions. Each contribution is composed of research work presented in our journal papers (J),

book chapters (B), conference papers (C), symposium and workshop papers (W), and short

papers (S). A complete list of publications is presented at the beginning of this document,

identifying each contribution by a respective index [J1 – J4, B1 – B2, C1 –C6, W1 – W7, and

S1 – S2]. Figure 1.2 presents the major thesis contributions against the respective research

questions that they attempt to address along with the scale of their execution environment. It

further illustrates the relationships among the individual contributions in addressing the research

questions.

Our contributions solve our identified research questions in heterogeneous execution envi-

ronments of an increasing scale: i) intra-domain (inside data centers and cloud data centers),

ii) multi-domain (across multiple cloud providers and multiple data centers), iii) edge, and iv)

the Internet. SENDIM aims at solving Q1 in cloud data centers. SMART solves Q2 in data

centers. NetUber solves Q1 and Q2 inside a single cloud provider as well as across multiple cloud

environments. Mayan and Évora solve Q3 in multi-domain and edge environments respectively.

SD-CPS solves Q3 and Q4 in edge environments. Óbidos solves Q4 and Q5 inside and between

data centers. Mayan-DS solves Q4 and Q5 at Internet scale.

CHAPTER 1. INTRODUCTION 14

Intra-
Domain

Multi-
Domain

Edge

Internet

Scale

Q1 Q2 Q3 Q4 Q5
Research
Question

SENDIM
SMART

NetUber
Mayan

Óbidos

Évora SD-CPS

Mayan-DS

as a cloud-assisted overlay network provider for

da
ta

 s
er

vi
ce

s
fo

r

as a modeling framework for

 resilience algorithms for

as the base SDS framework for

workflow placement
 algorithms for

Seamless
Development &

Deployment

Economic &
Performance

Benefits

Service Chains
Architecture &
Optimization

Interoperability
Across Diverse
Environments

Application of
 Contributions to

Big Data

Figure 1.2: Thesis Contributions

Our latter contributions leverage our previous contributions as their core. Mayan functions

as the core SDS framework for our latter contributions, Évora, SD-CPS , and Mayan-DS . Fur-

thermore, SD-CPS exploits SENDIM as its modeling framework, SMART for its resilience, and

Évora for its workflow placement. Mayan-DS exploits Óbidos as its data services and NetUber

as its cloud-assisted overlay network provider. Below, we summarize the thesis contributions,

identified by the research questions that they aim to answer along with their target execution

environments.

(I) Network Softwarization

Q1 (cloud data centers): SENDIM [C3, W7, S2], a Software-Defined Cloud Deployment

(SDCD) framework that extends network softwarization to separate tenant workloads in

the clouds and data centers from their deployment environment. SENDIM offers an in-

tegrated and more encompassing modeling approach consisting of seamless simulations,

emulations, and physical deployments to network application development. Instead of

limiting its focus to physical deployments, SENDIM exploits network softwarization to

bridge the gap between these various stages of the development procedure. It further pro-

vides unified deployment and migration capabilities across these various realizations of the

modeled algorithms and architectures.

Q1 & Q2 (clouds): NetUber [C1], a virtual connectivity provider without any fixed infrastruc-

ture. First, we study whether a cloud-assisted network built on several cloud instances can

be a viable solution to realize an on-demand virtual Network-as-a-Service (NaaS) provider.

We then propose NetUber as a dynamic connectivity provider that can be built entirely

on cloud spot instances (i.e., cheap but volatile cloud VMs offered by cloud providers that

can be shut down by the cloud provider with short notice when the resources are scarce for

CHAPTER 1. INTRODUCTION 15

the cloud provider) by third-party users. NetUber builds a dynamic overlay over the cloud

resources and offers it to the end users as an economical or high-performance alternative

to ISPs and enterprise connectivity providers.

Q2 (data centers): SMART [W3, S1], cross-layer optimizations that leverage SDN and software

middleboxes to offer various levels of QoS to multi-tenant network flows. SMART tags

the network flows with contextual information such as tenant policies from the user ap-

plications and reads them from the controller. SMART then exploits the tags to provide

QoS at the network level abiding by the respective user preferences. SMART further im-

poses redundancy selectively to ensure resilience for critical tenant network flows. It thus

supports user policies efficiently while sharing the network among multiple tenants.

(II) Service Oriented Architecture

Q3 (inter-domain): Mayan [C2, W1, B2], a Software-Defined Service Composition (SDSC)

framework that extends SDN with MOM for network-aware service compositions in multi-

domain wide area networks. Mayan aims to make complex workflows as compositions of

web services decoupled across multi-domain network environments, with its SOA imple-

mentation. At the same time, it uses an extended SDN architecture to make the service

compositions and workflow placements network-aware. Mayan further enables communi-

cation between the service endpoints on the Internet via various communication channels

facilitated by the interoperable web service APIs. It expresses network applications as

composable service workflows and seamlessly places and migrates them across the net-

works. Thus, Mayan brings the configurability and programmability of SDN to service

compositions beyond the data center scale.

Q3 (edge): Évora [J1] algorithms that enable users to compose Network Service Chains (NSCs)

by chaining several third-party edge VNFs efficiently. Évora aims at bringing the control

of the NSCs back to the end users, despite sharing the infrastructure with several other

tenant users. It composes NSCs by choosing the VNFs adhering to the user policies,

in edge environments consisting of multiple network domains. It ensures efficient stateful

executions by scheduling the subsequent service workflow invocations from the same user to

the same VNF instances. In the case of service unavailability, Évora also ensures seamless

migration of the workflow execution to the next best service composition of VNF instances,

together with the current state and outcome of the workflow execution. Thus, extending

the Mayan architecture for NSCs, Évora proposes optimal VNF allocation algorithms for

the NSC execution at the edge.

Q3 & Q4 (edge): Software-Defined Cyber-Physical Systems (SD-CPS) [J2, C6, W6] that coor-

dinate each CPS execution step, performed by a microservice [246], through an extended

controller deployment. SD-CPS extends the Mayan architecture for smart execution envi-

ronments such as the IoT and CPS. It exploits Évora for agile and resilient CPS workflow

placement and execution at the edge. Each light-weight microservice of SD-CPS performs

a simple single action, optionally holding its own data store to cache the outcomes of

the microservice execution. By creating, placing, deploying, migrating, and managing the

CPS computing processes as service workflows at the edge, SD-CPS orchestrates the entire

CHAPTER 1. INTRODUCTION 16

CPS lifecycle effectively and efficiently. Thus SD-CPS addresses the general challenges of

CPS, concerning modeling, development, performance, management, communication and

coordination, scalability, and fault-tolerance, through its SDS architecture.

(III) Data Services

Q4 & Q5 (inter-data center): Óbidos [J3, C4, W2, W4], a hybrid ETL (Extract, Transform

and Load) approach for scientific data integration that incorporates human-in-the-loop for

selective data integration driven by the user queries and sharing of integrated data between

users. Óbidos enables user-driven data services in a multi-tenant big data execution envi-

ronment. Óbidos outperforms both the eager ETL [330] and lazy ETL [183] approaches,

for scientific research data integration and sharing, through its selective loading of data

and metadata, while storing the integrated data in a scalable integrated data repository.

Q4 & Q5 (Internet): Mayan-DS [J4, C5, B1], a Software-Defined Data Services (SDDS) frame-

work that optimally schedules the data services at Internet scale, considering the locality

of data and execution as well as the several alternative network paths. Mayan-DS extends

Mayan for an adaptive network-aware execution of data services and big data applica-

tions such as Óbidos. It provides interoperability for big data executions by representing

them as composable data service workflows. It further exploits SDN for a latency-aware

execution of data service workflows, at various scales – from data centers to the Internet.

Based on how each of our contributions fits towards achieving the overall thesis vision,

we group them into three categories – as the core, prerequisites, and the applications of the

contributions. First, Mayan and Évora constitute the core of the thesis. Second, SENDIM ,

NetUber , SMART , and Óbidos provide us with the early work that facilitates us to build our

core contributions on top of them. Third, SD-CPS and Mayan-DS apply our contributions to

real-world scenarios such as CPS and big data applications. As such, SD-CPS and Mayan-DS

leave us with avenues for future work in research and implementation. Among the early works,

Óbidos offers a sample SOA implementation to big data with real-world data, thus allowing

evaluations on big data required for our work on SDDS and our future deployment of Mayan-

DS . The rest of our early work provides the foundation of networking and SDN for the core of

the thesis.

1.6 Thesis Roadmap

This document is organized as the following parts, as depicted by Figure 1.3. We discuss

the background and related work in Chapter 2. Part II presents our network softwarization

research to design QoS-aware platforms for building and deploying multi-tenant workloads from

data centers to cloud environments. Part III presents our SOA research to compose and execute

diverse multi-tenant workloads as service composition workflows. Consisting of our core contri-

butions, Part III exploits our contributions from Part II on network softwarization to service

composition and workflow placement in multi-domain wide area networks and their applications

such as CPS. Part IV elaborates our data services research to compose and deploy network-aware

CHAPTER 1. INTRODUCTION 17

big data workflows at Internet scale. It serves as an extension and a use case study of Parts II

and III, with a focus on big data.

Part II: Network Softwarization

Part III: Service-Oriented Architecture

Part IV: Data Services

Ch 3 / SENDIM [C3, W7, S2]

Part I. Overview

Ch 4 / NetUber [C1]

Ch 5 / SMART [W3, S1]

Ch 6 / Mayan [C2, W1, B2]

Ch 8 / SD-CPS [J2, C6, W6]

Ch 7 / Évora [J1]

Ch 9 / Óbidos [J3, C4, W2, W4]

Ch 10 / Mayan-DS [J4, C5, B1]

Ch 1 / Introduction Ch 2 / Background and Related Work

Part V. Closure

Ch 11 / Final Remarks

Figure 1.3: Thesis Overview

In Part II, Chapter 3 and Chapter 4 present our research for seamless and flexible deploy-

ments of network applications by decoupling the networks from the underlying infrastructure.

Chapter 3 presents SENDIM [C3, W7, S2], an SDS for modeling and placing workflows at data

centers. Chapter 4 proposes NetUber [C1], an economical connectivity provider built as a cloud

overlay. Chapter 5 describes SMART [W3, S1], a software middlebox architecture that lever-

ages network softwarization to tag and prioritize network flows in a data center environment,

by selectively enforcing redundancy.

In Part III, Chapter 6 presents Mayan [C2, W1, B2], an SDSC framework to compose and

execute service composition workflows efficiently in wide area networks by leveraging SDN and

web services engines. Chapter 7 presents Évora [J1] algorithms to choose the best-fit VNFs to

compose NSCs at the edge, abiding by the user policies. Chapter 8 presents SD-CPS [J2, C6,

W6], an SDS framework that combines and exploits the previous contributions of the thesis for

CPS.

In Part IV, Chapter 9 describes Óbidos [J3, C4, W2, W4], a multi-tenant big data integration

framework for on-demand human-in-the-loop data integration. Chapter 10 presents Mayan-

DS [J4, C5, B1], network-aware workflow scheduling at Internet scale for data services. Finally,

in Part V, Chapter 11 concludes this document with an overall summary of our research findings

and future work.

2Background and Related

Work

As the scale and complexity of the systems are growing larger and larger, programmability

of the networks is researched intensively [66]. SDN increases the reusability of the network

algorithms, by providing a logically centralized control plane separated from the data plane that

forwards the data [231]. In this chapter, we will look into the background and related work, on

network softwarization and service chaining in the data center, cloud, and edge environments,

and SDS for IoT, CPS, and big data.

2.1 Network Softwarization

First, we look into the related work on network softwarization, specifically on network

modeling and deployment, decoupling networking from the infrastructure, and network flow

scheduling in data centers with the recent advancements on network softwarization.

2.1.1 Software-Defined Networking (SDN) and Software-Defined Systems

(SDS)

SDN research aims at increasing network management capabilities in heterogeneous environ-

ments, ranging from network emulations to data centers and clouds [46]. SDN can be leveraged

to handle network flow load balancing [149, 348] and policy enforcement [280] effectively. While

previous works highlight the network management capabilities of SDN, further research is neces-

sary to centrally orchestrate the computing, networking, and storage resources for heterogeneous

network environments.

Enterprise SDN controllers have APIs that support interaction between their components

and external entities. These APIs are categorized into northbound, southbound, eastbound,

and westbound, based on who/what they typically communicate with. The southbound API

lets the controller communicate with the SDN switches, by implementing the SDN protocols such

as OpenFlow [232] and the Forwarding and Control Element Separation (ForCES) [108]. The

northbound API is the user-facing API that enables the users and their network services and ap-

plications to interact with the controller. It usually implements the REST and MOM protocols.

The eastbound and westbound APIs are the APIs for administration (i.e., the configuration of

the controller and the network) and inter-domain control (controller-controller communications)

traffic. The controller APIs facilitate communication and coordination inside and outside an

SDN network. These APIs support the control of the data plane devices efficiently, while also

enabling extensions to the controller for additional functionalities.

CHAPTER 2. BACKGROUND AND RELATED WORK 19

Several distributed and pervasive systems exploit OSGi (formerly known as the Open Ser-

vices Gateway initiative) [259] for their modular and extensible architecture [286]. OSGi frame-

works support componentization of platforms and architectures, where a user can develop and

deploy new features and extensions as interactive OSGi bundles into an existing OSGi frame-

work dynamically and incrementally. An OSGi framework integrates seamlessly with project

management and dependency management platforms such as Apache Maven [242]. OpenDay-

light [233] and the Open Network Operating System (ONOS) [47], two popular SDN controllers

managed by the Linux Foundation, leverage Apache Karaf [250] as their core OSGi framework.

The modular architecture facilitated by OSGi enables efficient configuration and extensions of

the controllers. Thus, they achieve interoperability and extensibility, providing network orches-

tration and service management.

Distributed controller architectures such as FlowVisor [304] and Hyperflow [325] offer scal-

ability to the controller to manage larger networks without causing overhead to the network

control plane. FlowVisor expands the OpenFlow controller to be able to run parallel inde-

pendent experiments. Hyperflow proposes a distributed control plane for OpenFlow. These

distributed controller architectures provide a centralized logical view while reducing the poten-

tial bottlenecks caused by a physically centralized architecture [204].

As classic SDN is limited in scale and scope, several SDS have been built, by extending

SDN. SDS data plane consists of multiple (often, dumb) devices or components, which can

be viewed and controlled by a logically centralized control plane. Software-Defined Data Cen-

ter (SDDC) extends virtualization, SDN, Software-Defined Storage [323], and middleboxes to

have programmable data centers with a better QoS. Software-Defined Flash proposes a hybrid

Software-Defined storage consisting of software storage as well as a solid-state drive (SSD) as a

large-scale Internet storage system [260]. Extending SDN beyond data centers, SD-WAN [163]

offers a centralized control to manage and orchestrate a wide area network, a much larger scale

of networks compared to the traditional data center networks. SDS provides the management

capabilities of the conventional centralized systems, while not compromising the scalability and

performance of the distributed systems, offering the best of both worlds.

The current SD-WAN offerings focus on a given enterprise, rather than the end users consum-

ing several enterprise offerings. SD-WAN transfers data between geographically distributed data

centers using MPLS, Long-Term Evolution (LTE), or broadband. Leveraging multi-wavelength

networks, SD-WAN achieves higher throughput and lower latency [163]. Approaches such as

MPLS and SD-WAN enable volatile data to be handled well within the SLAs [30] and time

limits in a WAN. There are several enterprise offerings of SDDCs such as Big Switch [303],

Microsoft [239], and Plexxi [229]. Nuage [253] offers SDDC as well as SD-WAN. However, pri-

marily all these efforts focus on the enterprises, and there is a limited control to the end users in

achieving SLAs and QoS in the network level, based on their own policies. We posit that with

the raising offerings and the complex applications of the end users, SDS frameworks should give

more prominence to the end users, to offer their executions better QoS and flexibility in wide

area networks, while not sacrificing scalability.

CHAPTER 2. BACKGROUND AND RELATED WORK 20

OpenDaylight

The modular architecture and industrial support of OpenDaylight have enabled several

SDS to be built leveraging OpenDaylight. OpenDaylight consists of a Service Abstraction Layer

(SAL) mechanism to interact and integrate with the other entities (i.e., devices, applications,

and other controllers) in the network environment. It has a static API-Driven Service Abstrac-

tion Layer (AD-SAL) with dedicated REST API for each plugin and a dynamic Model-Driven

Service Abstraction Layer (MD-SAL) with a common REST API. MD-SAL, the current de-

fault mechanism of OpenDaylight for its SAL, offers a seamless deployment and installation of

additional features, further enabling efficient use of OpenDaylight’s modular architecture. The

southbound API that connects the controller to the devices is modular, with implementations

to standard protocols such as OpenFlow as well as proprietary interfaces. The northbound API

that connects the controller to the applications is intent-based, thus enabling to extend and

expose the controller capabilities to the applications and architectures deployed on top of the

controller. MD-SAL represents both the southbound devices as well as the northbound appli-

cations as models, i.e., objects developed in YANG (Yet Another Next Generation) [50] data

modeling language.

Internally, OpenDaylight handles the models in an approach compatible with MOM. A SAL

model is either a producer or a consumer, based on their role in the interaction, regardless of

whether the data comes from the devices or the applications. This unified representation of de-

vices and applications enables integrated processing of them within the SAL. MD-SAL exposes

OpenDaylight’s internal data, composed of the data tree, Remote Procedure Calls (RPCs) [314],

and notifications through the controller APIs. A producer writes data to the data tree and im-

plements relevant APIs, whereas a consumer reads from the data tree leveraging the API. The

producer generates notifications for any of its events in the controller. The controller receives

relevant notifications based on its interests. The consumer then issues an RPC to retrieve the

data from the provider. MD-SAL APIs are asynchronous, unlike AD-SAL that offers both syn-

chronous and asynchronous APIs. However, MD-SAL APIs return a Future object, which can

be blocked until the execution completion, to emulate the synchronous behavior. OpenDay-

light’s flexible policy management enables efficient network service execution in multi-tenant

environments. OpenDaylight automatically and securely discovers the devices and controllers

through its Authentication, Authorization, and Accounting (AAA) framework. It further enables

chaining of services and protocols, thus allowing us to implement VNFs and NSC orchestration

capabilities on top of the controller, with less development effort compared to the other SDN

controllers.

2.1.2 Network Modeling

Currently, network modeling frameworks such as simulators and emulators have limited

compatibility across each other. Compatibility between the emulators and controllers facilitate

smooth migrations between emulated environments and physical environments [96]. Neverthe-

less, network modeling framework APIs are incompatible among each other, due to lack of

standardization across the network modeling frameworks. Furthermore, unlike the emulators,

CHAPTER 2. BACKGROUND AND RELATED WORK 21

network simulators lack native integration with the controllers. Therefore, additional effort is

necessary to unify and enable seamless execution across the diverse modeling frameworks.

Network emulators can emulate cloud networks that can be managed by an SDN controller,

with minimal configuration efforts. Mininet emulations closely resemble physical networks, by

emulating the Open vSwitch [275] virtual switch developed for hardware virtualization environ-

ments. Servers emulated by Mininet can also execute or invoke the processes and applications

installed in the host machine, and hence can be configured to provide emulation of an entire

cloud system inside a single computer [196]. Maxinet distributes the Mininet execution to a

computer cluster for a single SDN emulation [350]. Therefore, it succeeds in mitigating the

challenges of scalability and resource scarcity in a Mininet emulation.

Simulators are typically used when the considered system is too complicated to emulate

within the given time with the available resources, or in earlier stages of development when a

simulation is adequate. SimGrid simulates the networks in network flow level, where simulators

such as GTNetS simulate at packet level [332]. NS-2 is a widely used network simulation

tool [70], that was later extended as NS-3. Leveraging the Message Passing Interface (MPI),

NS-3 provides a distributed simulation of networks [70], which can also be introduced into a

live network, offering emulation capabilities to some extent [118]. Frameworks with the ability

to both simulate and emulate the cloud networks, such as NS-3 and EmuSim [62], fall short in

simulating controller algorithms without re-writing them. Hence, they do not offer a seamless

migration to physical network deployments from simulations or emulations.

Current SDN controllers lack the simulation capabilities or an efficient simulator integration

unlike their seamless integration with emulators. SDN controllers are not optimized for quick

modeling or prototyping without involving an external modeling framework such as an emulator.

Even the controllers with an extensible modular architecture, such as OpenDaylight and ONOS,

do not natively support cloud simulation. The other SDN controllers such as Beacon [115], Mae-

stro [61], POX [186], and Floodlight [123], also do not offer simulations or modeling capabilities.

To provide seamless modeling capabilities, we posit that the controller southbound APIs should

be extended to connect to simulators, by carefully simulating the OpenFlow switches.

A network simulator should be efficient at the same time should easily integrate or interact

with the SDN controllers, to truly replace emulators at the early stages of SDN design. By mim-

icking the behavior of the network emulators, while not emulating the network, a simulated net-

work can also be managed by an SDN controller. CloudSimSDN [310] extends CloudSim [63] for

the simulation of software-defined cloud and data center networks. Nevertheless, CloudSimSDN

or the other existing cloud or network simulators do not simulate the SDN southbound to con-

trol the simulated network via the controller. Therefore, they do not resolve the limitations in

migrating simulations to emulations during the continuous SDN developments.

An approach to support automatic migration across various realizations such as simulations

and emulations requires an extension beyond the current configuration management tools. Con-

figuration management tools such as Chef [320], CFEngine [59], and Puppet [216] automate and

manage the configurations of the servers and VMs in cloud-scale deployments [313]. However,

these tools are entirely oblivious to the code that they deploy as they target the system ad-

ministrators and cover mostly the deployment stage. Therefore, it is still impossible for them

CHAPTER 2. BACKGROUND AND RELATED WORK 22

to identify the early development phases and configure and deploy the applications in a unified

manner.

Existing modeling frameworks do not adequately separate the application logic such as load

balancing, application scheduling, and policy control in SDN, from the descriptions of the sys-

tem that is simulated or emulated such as the properties of the data center and parameters of

the network. Hence, the potential reuse of the application logic across simulation and emulation

environments is prevented. Integrating simulation, emulation, and deployments among hetero-

geneous systems has been proposed and researched to mitigate the administration overhead, in

systems such as sensor networks [133]. However, an integrated framework to enable incremen-

tal development and deployment of SDN applications, as well as migration between different

physical deployments, is still lacking.

Further research is necessary to build a network modeling framework that can integrate

and leverage SDN controllers for its operation, while still being able to operate as a compact

stand-alone network simulator. Modeling frameworks should be optimized to function in a more

unified manner, as much as possible, to reduce repeated development efforts and learning curves.

Nevertheless, we observe that modifying or extending the APIs of the current network simulators

for interoperability and integration with an SDN controller indeed requires considerable effort.

Therefore, we propose that a modeling framework compatible with the SDN paradigm, and that

can simulate SDN networks with seamless integration with the controllers, needs to be developed.

We posit that such a unified approach should manage the entire development process, from

visualization, simulation, emulation, to physical deployments, to increase the productivity by

minimizing the installation hell imposed due to the manual migration across multiple platforms.

2.1.3 Decoupling Networking from the Infrastructure

The desire for flexibility in interconnections by network operators has led to an increasing

interest in decoupling the network from its underlying infrastructure. The massive amount of

content shared on the Internet, coupled with the bandwidth requirements to provide high QoE

for latency-sensitive applications such as online gaming and video conferencing, has resulted in

ever-increasing bandwidth demand. Consequently, cloud-assisted networks have been recently

proposed, to increase performance, flexibility, latency-awareness, and reliability of wide area

networks [150]. Cloud-assisted networks leverage cloud resources to compose large-scale overlay

networks. This approach is appealing because cloud platforms generally guarantee high levels

of availability through various levels of SLAs [41].

The research proposes virtual connectivity providers that do not control the infrastruc-

ture [121, 360, 60]. Software-Defined Internet Architecture (SDIA) [284] decouples the architec-

ture of the Internet from the infrastructure, by modifying the way interdomain tasks operate,

through SDN and MPLS. Jingling [132] separates the network functions outside the network

towards external Feature Providers. Cabo decouples ISPs into infrastructure providers and ser-

vice providers, with concurrent networks that run multiple virtual routers atop each physical

router, thus virtualizing links between any two virtual nodes [121]. Slicing the home networks

can enable various service providers to reduce the costs and overhead associated with deploy-

CHAPTER 2. BACKGROUND AND RELATED WORK 23

ment and management, by sharing a common infrastructure [360]. A trusted third party such as

Google Fi [137] can function as a virtual ISP by exploiting the resources of multiple ISPs [370].

CloudDirect [79] offers auxiliary services such as backup and disaster recovery atop cloud offer-

ings. These research efforts have shown promising outcomes by decoupling networking from the

infrastructure.

There have been industrial efforts, aiming at a fast direct interconnection between two

endpoints, without relying on traditional connectivity providers in the region. PacketDirect [262]

is an SDN-based platform that reduces the time to set up interconnections. MPLS providers

such as iTel [172] connect multi-location decentralized offices with a private layer-2 network,

a unified connection to the whole organization. These providers differ from the traditional

MPLS networks that merely provide connectivity between two endpoints, thus still requiring

Ethernet connections for each office. Furthermore, Megaport [235] and Console Connect [84]

provide scalable point-to-point connectivity to cloud and network providers. Nevertheless, these

enterprises focus on offering end-to-end connectivity for enterprises, rather than end users.

Several new service providers are starting to offer cloud-based networks as an alternative

to traditional connectivity providers such as ISPs. Primary cloud providers such as Amazon

have built their own global backbone network [287]. Therefore, they do not rely on the transit

providers for their data transfer. These cloud networks are well provisioned and maintained,

which makes them better than the Internet paths regarding loss rate and jitter [151]. Based

on these observations, companies such as Teridion [321] and Cloudflare [80] offer cloud-assisted

networks for Software-as-a-Service (SaaS) providers as a premium service for a higher price com-

pared to using standard Internet-based connectivity. Voxility [338] leverages its vast distributed

infrastructure to provide network services and end-to-end interconnection, cheaper than the

transit providers with more flexible agreement options for short-term and small-scale intercon-

nections.

Spot instances (also known as preemptible instances or low-priority VMs), which are cheaper

but volatile cloud instances, have been exploited in the research for economical cloud architec-

tures. Cloud providers such as Amazon Web Services (AWS) and Google Cloud Platform (GCP)

have been auctioning underutilized computing resources in their marketplace as spot instances

for a much lower price, compared to their on-demand instances, while offering the same re-

sources and capabilities as their on-demand counterparts. Cloud platforms typically consist of

a spot market, where the cloud provider sells their spot instances. The spot markets generally

have idle and affordable resources in multiple regions. Bidding in the spot markets of multiple

regions can minimize the costs of CPU-intensive workloads, increasing the availability of the

Internet services [155]. Cloud brokerage services have been built on spot instances with schedul-

ing and reservation mechanisms, to minimize computing costs for jobs with a strict deadline, up

to 57% [359]. Cost efficiency and performance of in-memory caches have been improved in the

cloud, by deploying in spot instances while exploiting burstable instances for a backup [344]. But

the scope of those research work is limited to computing. Consequently, there has been limited

research efforts on utilizing cloud spot instances and a cloud-assisted network for economical

network connectivity, data transfer, and network resources.

Various approaches have been proposed, to reap the economic benefits, while addressing

CHAPTER 2. BACKGROUND AND RELATED WORK 24

the technical challenges inherent to the volatile nature of spot instances. Spot instances can

be suddenly interrupted with a notification period of up to two minutes. Applications that

can tolerate the volatile nature of the spot instances can use them as an economical alternative

to the on-demand ones. A third party or a broker leveraging resources from multiple cloud

providers, and reselling them in a vertical market, has been found to be beneficial for both

the broker as well as the cloud providers [219]. Dynamic bidding policies are developed to

support deadline-constrained jobs in spot instances [363]. Temporal multiplexing of burstable

instances (to have a constant higher availability of CPU cycles) and spatial multiplexing of spot

instances (to have reliable connectivity with redundancy in the path) can be performed inside

a single AWS region with minimal overhead [128]. However, no comprehensive study has been

conducted to realistically determine the feasibility of a virtual ISP that leverages the resources

of spot instances, as a regular cloud user.

2.1.4 Network Flow Scheduling

Network flows must be scheduled considering several parameters such as policies and QoE.

Several algorithms and approaches have been proposed for an efficient network flow scheduling,

by offering deadline-awareness and congestion control. Nevertheless, the existing network flow

scheduling approaches limit their focus mostly to a single provider such as a data center or a

cloud network. They should be extended to consider SLAs and QoS guarantees in multi-tenant

environments such as the cloud and multi-domain environments such as the edge, consisting of

several service providers and users.

There have been research efforts on network protocols to enhance the fairness, congestion

control, and QoS of the critical network flows. D3 is a congestion control protocol that provides

a deadline-aware alternative to TCP for data centers [354]. Preemptive Distributed Quick

(PDQ) [162] is designed to complete flows quickly and meet the deadlines in a fair manner by

following a few pre-defined procedures, enhancing the flow completion time offered by TCP.

ProgNET [315] leverages the Web Services Agreement specification (WS-Agreement) [23] and

SDN for SLA-aware cloud networks. Dynamically rerouting the network flows to optimize the

bandwidth consumption has been proposed in the previous work [9]. QJump [142] is a Linux

Traffic Control module that allows critical latency-sensitive applications to jump the queues

in the presence of packets of lower priority levels, focusing on a shorter flow completion time.

pFabric [15] finds that the increase in the flow completion time of short flows is due to the waiting

for long flows to complete. It focuses on optimizing the flow completion time for latency-sensitive

short flows, practically ranging up to a few 10s of milliseconds. FastPass leverages a centralized

arbiter to find the ideal time to determine when the packets should be transmitted and through

which path [272].

Several network protocols exploit flowlets to propose new network flow scheduling ap-

proaches or enhancements to existing base protocols. Flowlets (also known as subflows) are

defined as bursts or chunks of packets of a flow, which are separated in time from each other

by an interval or a gap [181]. Partitioning of flows into flowlets enables routing the flowlets

efficiently in multiple alternative routes. Conga offers congestion-aware load balancing for data

CHAPTER 2. BACKGROUND AND RELATED WORK 25

center networks through flowlet switching [14]. Multipath TCP (MPTCP) extends the Trans-

mission Control Protocol (TCP) to use the available multiple paths between the origin and

destination nodes to send a network flow [40]. MPTCP uses subflows in transferring data be-

tween the nodes using the multiple paths in a network and recomposes the original flow at the

destination from the subflows. While MPTCP increases the bandwidth utilization of the net-

work and its efficiency, MPTCP can be unfair towards the TCP clients in the network [187].

Opportunistic Linked Increases Algorithm (OLIA) is proposed as an enhancement to the fairness

of MPTCP, making it fair and pareto-optimal [187]. These approaches enhance the resilience

and fairness in network flow scheduling.

Redundancy is often exploited at higher levels across the network stack for reliable networks.

It is argued that redundancy can be used more pervasively, to reduce latency in critical network

flows and applications [339]. Advancement in network traffic monitoring [44], SDN [247], and

middleboxes [341] makes it possible to leverage redundancy of flows at a lower network level.

We posit that redundancy should be exploited in both network packets as well as the network

routes to ensure that the flows with higher priority are scheduled on time.

2.2 Service Composition Workflows in Wide Area Networks

Next, we look into the related works on service compositions in the cloud and edge environ-

ments. We will look into the research on SDN and SDS for service compositions, and then look

into how smart environments such as CPS and IoT leverage SDS to control and manage their

execution.

2.2.1 Service-Oriented Architecture (SOA)

eScience workflows are often computation-intensive and require either a large pool of re-

sources or a long time to complete their execution. Due to the distributed nature of the sensors,

complex enterprise services such as weather forecast and disaster prediction frameworks [207]

and extraterrestrial activity monitoring systems [21] are traditionally deployed on clusters of

servers across the globe. Several computing nodes, typically executing web services or web

applications, are invoked to compose such a workflow on the web. Many systems consume

simplistic public services and APIs and extend the service invocation outcomes to produce a

complex service composition. Mission critical workflows of eScience consist of redundancy in

links and alternative implementations and deployments of web services and web applications, to

handle failures, congestion, and overload in their computing nodes.

Web services are developed and deployed in middleware systems collectively known as web

services engines such as Axis2 [271] and CXF [34]. Web services engines are capable of converting

WSDL into high-level programming languages such as Java and C. This feature supports quickly

developing web services following a standard API and format. Furthermore, the web services

engines contain service health statistics including information on how many requests a service

deployment executed, and how many are on the fly. Service composition workflows typically

CHAPTER 2. BACKGROUND AND RELATED WORK 26

exploit this information for the timely execution of each of the services that compose them.

Thus, web services engines enable developing and deploying service compositions with minimal

custom code developments and system admin efforts [139].

Web services registry is another middleware in the services ecosystem, which stores and man-

ages the service endpoints in a centralized manner. Web services registry provides management

and governance capabilities to web services, by maintaining a list of service endpoints and de-

scriptions. It enables listing the Internet services efficiently for the users to discover and consume

them. System administrators usually can retrieve the list of multiple web service deployments

from a web services registry, and monitor the health of the service compositions, through the

web services engines that host the services. Many specifications have defined and standardized

the web services registry. Universal Description, Discovery, and Integration (UDDI) [86] offers

a standardized directory structure as a registry of web services description. Distributed and

effective web services registries are built to minimize the load on the registry, to avoid registry

being a single point of failure. Ad-UDDI is a distributed web services registry, with an active

monitoring mechanism [109]. Web services registries are a crucial aspect of service composition,

by allowing the services to be discovered to compose the service workflows.

Recently, more and more services of the service composition workflows are built with frame-

works other than the web services engines. While SOA has been at the forefront of the service

composition [266], it is not uncommon to develop business processes and service compositions

through other architectural paradigms such as Resource-Oriented Architecture (ROA) [358]. So-

lutions based on parallel and distributed frameworks such as MapReduce [97] and Dryad [171]

can be more efficient and scalable at each service level, in replacing traditional service compo-

sitions. Top-k automatic service composition [98] exploits MapReduce [97] to compose parallel

and efficient service compositions for large-scale service sets. Current web services engines and

registries should be extended to consider this growing services ecosystem effectively.

2.2.2 SDS for Service Compositions

Network-aware service execution can improve the performance of the service composition

workflows in a wide area network, in addition to interoperability offered by the web service

standards [190]. The web services engines operate at the application layer and are typically

oblivious to the network status. We propose that integrating SDN into the services ecosystem will

enable network-aware service compositions, by offering a better perspective on the underlying

network of the service instances to the web service middleware. Heterogeneous environments

such as IPv6-enabled pervasive devices [317] and networks of wireless sensors and actuators use

MOM protocol implementations for their communication and collaboration [167, 82]. Therefore,

extending SDN with MOM increases the applicability and scalability of SDN beyond a data

center. Thus, we posit that an SDS built by extending SDN for inter-domain networks with

MOM will help to manage the service composition workflows in wide area networks efficiently.

MOM protocols and brokers continue to be a crucial aspect of the SOA ecosystem. MOM

protocols are proposed as a communication channel for the enterprise middleware architec-

tures [220]. Advanced Message Queuing Protocol (AMQP) [336], Message Queuing Telemetry

CHAPTER 2. BACKGROUND AND RELATED WORK 27

Transport (MQTT) [35], Simple / Streaming Text Oriented Message Protocol (STOMP) [317],

OpenWire, and Extensible Messaging and Presence Protocol (XMPP) [292] are the common

MOM protocols, implemented by the MOM brokers such as Apache ActiveMQ [309] and Apache

QPid [27]. The MOM brokers allow messaging publishers to publish messages while letting the

subscribers subscribe and listen to their interested subset of information published by the pub-

lishers.

Network softwarization facilitates context-awareness and traffic engineering capabilities in

service compositions while enhancing service management and deployment [264]. The Next

Generation Service Overlay Network (NGSON) specification offers context-aware service com-

positions by leveraging network softwarization [176]. Research efforts focus on efficient resource

utilization as well as enabling pervasive services [208] motivated by the standardization effort

of NGSON. Previous work has proposed data-aware and network-aware workflow scheduling in

data centers and clouds [227]. However, they mostly narrow their focus to a given domain man-

aged by a single vendor. Palantir [362] leverages SDN to optimize MapReduce performance with

network proximity data, further highlighting the performance benefits of network softwarization

in diverse application scenarios.

2.2.3 Network Service Chaining (NSC)

NSC (also known as SFC, Service Function Chaining) is a chain of network operations

or middlebox actions created in a programmable and configurable manner [146], enabled by

SDN [296] and NFV [369]. We can consider NSCs as a special case of service compositions,

where each service in the composition is a VNF. While VNF APIs need to be compatible

and interoperable with each other [288], the entire service workflow should be carried out in

a network-aware manner for a high-performant NSC. The VNFs should be placed strategically

to minimize communication overheads and the number of hops between the service instances

during the execution of an NSC workflow. Each VNF in an NSC has its specific requirements,

constraints, and objectives. Due to the various number of network services each NSC is composed

of, challenges inherent to the VNF placement multiply in NSC scenarios [42]. Traditionally, NSCs

have had a few services serially chained. However, the need for service migrations and mobility

in the Mobile and Edge Computing (MEC) environments has given rise to network services as

VNFs and microservices. This rising number of VNF offerings has further increased the scale

and complexity in composing the NSCs [42].

Composing and scheduling NSC abiding by the user goals at multi-tenant edge and cloud

environments is a challenging problem. The system and user goals can be complementary or even

contradictory to one another. For example, one user’s requirement for latency-aware execution

may lead to a higher energy cost for the network, whereas the system might have a preference for

low energy consumption. Ideally, a user should be able to construct her NSCs using VNFs from

various providers to satisfy her own goals and policies. The research proposes VNF placement

in distributed edge data centers considering various such heuristics [194]. However, seamless

migrations and interoperability among the edge VNF providers significantly lack in the current

enterprise services landscape. The previous research [36] mostly looks at the NSC scheduling as

CHAPTER 2. BACKGROUND AND RELATED WORK 28

an optimization problem from the perspective of a VNF provider and often limits its focus to a

single provider environment. However, NSC at the edge has more dimensions than data centers

and clouds, as edge environments consist of several nodes of different scales and numerous

services, from multiple domains. Therefore, there are many open research challenges remain

unaddressed, in supporting user preferences and policies efficiently for a user who consumes

VNF resources from several third-party service providers to compose her NSC.

Network softwarization has enabled a fine-grained automated control of network services.

It brings down the time to develop an NSC from the scale of hours or a few days down to

the range of seconds or minutes [29]. Furthermore, leveraging network softwarization, system

administrators may configure the networks to adhere to a specific set of policies, such as energy

and carbon efficiency [226]. Light-weight container-based frameworks have been proposed for

service provisioning with minimal service migration time [119].

Several solutions have been proposed for context-aware execution of applications at the

edge, with focus on bandwidth, latency, and jitter [257]. NetFATE [214] offers a VNF-as-a-

Service (VNFaaS), virtualizing network services of both Customer Premises Equipment (CPE)

devices and Provider Edge (PE) nodes. Though NetFATE can be extended to support NSCs, it

focuses on a network provider offering the VNFs, rather than facilitating user-defined NSC over

third-party edge VNFs. The existing research limits its focus to the service providers. An NSC

user has more constraints that are currently beyond her limit. Workflow scheduling approaches

should be extended to consider the user policies and constraints in composing and placing the

NSCs.

NSC orchestration frameworks focus on end-to-end management of the NSC lifecycle, con-

sisting of several VNFs. Initiatives such as Network Service Orchestration (NSO) [58] and

Lifecycle Service Orchestration (LSO) [234] aim at addressing the shortcoming in resource or-

chestration for workflows in the network environments. They unify the network services through

standardization, to improve the interoperability of the services. ESCAPE is a scalable architec-

ture for NSC orchestration, which leverages Mininet, ClickOS [228] virtualized software middle-

box platform, NetConf configuration protocol [113], and POX, to support VNF implementation,

traffic steering, and Virtual Network Embedding (VNE) [291]. OpenDaylight extends its con-

troller to offer SFC as an incubation project. UNIFY programmatic framework performs NSCs

in a data center environment based on OpenStack [300] and OpenDaylight through joint virtu-

alization and control [111]. It presents an NSC control plane to integrate various VNF execution

environments, supporting dynamic VNF creation and orchestration in cloud networks [311].

NSCs have been optimally provisioned across the selected VNF instances using Integer Lin-

ear Programming (ILP) [166] and Mixed Integer Linear Programming (MILP) models [327].

Using a Column Generation (CG) decomposition [100] along with an ILP, previous research

minimizes the bandwidth consumption in the data center networks of NSCs [166]. This research

has been extended concerning geographically distributed cloud environments to have minimal

inter-cloud traffic and response time. An Affinity-based Approach (ABA) minimizes the total

delays and resource cost in NSCs, solving the complex resource allocation problem faster than

ILP in the distributed cloud environment [49]. Nevertheless, resource allocation for NSC con-

tinues to be a hard problem due to the ever-increasing service instances as well as the users in

CHAPTER 2. BACKGROUND AND RELATED WORK 29

the edge and inter-cloud environments.

2.2.4 SDS for CPS and IoT

CPS and IoT are two broad categories of systems that often implement the Multi-Agent

Systems (MAS) paradigm [64]. While they both consist of autonomous agents making smart

decisions, CPS focuses more on the integration and interaction of physical and cyber elements.

On the other hand, IoT focuses on the connectivity of several pervasive entities. Therefore,

while IoT offers a vision of the Internet, things, and semantics for smart devices, CPS looks at

networking and interoperability of cyber and physical entities, incorporating human-in-the-loop.

Large-scale industrial systems have been adopting CPS to replace their traditional stand-alone

physical systems.

A CPS comprises numerous sensors or sensor-based devices that collect different types of

data from various access points and autonomous systems with frequent communication among

them [200]. Smart homes [245], Smart grids [184], smart cities [144, 261], Mobile Ad-hoc Net-

works (MANETs) [222], and Vehicular Ad-hoc Networks (VANETs) [361] are a few systems that

are currently built as CPS. The complexity of CPS increases due to both the volume and variety

of its components. The edge offers a compromise on bandwidth usage and resource availabil-

ity between on-device or on-premise computation and computation in the cloud. Thus, several

CPS, including smart campus [213] and connected cars [223], utilize the computing resources

in the edge nodes as surrogates for the workload execution from their resource-constrained de-

vices [269].

The state-of-the-art indicates the potential to leverage network softwarization to manage

CPS environments more effectively. SDN has been proposed to improve the resilience of multi-

networks in CPS [282], secure the CPS networks through SDN-assisted emulations [25], enhance

the resilience of CPS [106], and manage the critical CPS communications [244]. These research

efforts highlight the potential of SDN and how its global network awareness and controllability

can be extended to model and manage CPS. However, currently, there is insufficient research on

network softwarization that aims at mitigating the challenges of CPS regarding the management

and control of its resource-constrained heterogeneous devices.

Several SDS frameworks have been built to manage physical environments such as smart

buildings. Software-Defined Environment (SDE) [104, 205] consists of an SDN controller and

physical and virtual SDN switches as its core, where the control of computing, network, and

storage is built atop a virtualized network. By leveraging NFV [43], middlebox actions typically

handled by hardware middleboxes such as firewalls and load balancers are replaced by relevant

software components in an SDE. Software-Defined Building (SDB) [94] envisions a Building

Operating System (BOS) that functions as a sandbox environment for heterogeneous device

firmware to run as applications atop it. The BOS spans multiple buildings in a campus, rather

than confining itself to a single building. The scale of SDB and SDE can be increased through

collaboration and coordination of the controllers of the buildings or environments, to cater

for CPS. However, the increased dynamics, diversity, and mobility of CPS compared to the

environments controlled by SDB and SDE hinder adopting them for CPS.

CHAPTER 2. BACKGROUND AND RELATED WORK 30

An orchestrator hierarchy, consisting of an Overarching Orchestrator (OO) and a set of

Domain Orchestrators (DOs), has been proposed, to control multiple domains and services.

Each DO controls a specific technological domain by coordinating with the respective controller.

The OO sits atop multiple domains, orchestrating the DOs while ensuring end-to-end service

orchestration in SDN and cloud environments [51]. The 5G Exchange (5GEx) builds upon SDN

and NFV for a Multi-domain Orchestrator (MdO) that spans multiple domains, technologies,

and operators, for an automated and high-performance network service provisioning [301]. SD-

CPS [126] is an architecture with a hierarchy of multi-domain SDN controllers for CPS, similar

to MdO. Both the SDCPS and MdO approaches require a hierarchy of SDN controllers, which

is not common in practice due to the existence of several service providers with business poli-

cies that prevent them from sharing the network flow statistics and their control through a

centralized global controller owned by a single third-party entity.

Albatross [203] is a membership service that addresses the uncertainty of distributed sys-

tems. Albatross tends to be ten times more efficient than the previous membership services by

exploiting the standard interface offered by SDN to monitor and configure network elements.

It addresses common network failures, while avoiding interfering with working processes and

machines, and maintaining a quick response time and high overall availability. The challenges

such as split-brain scenarios and violations in availability and consistency that are addressed

by Albatross are relevant for CPS too. However, CPS has its peculiar challenges uncommon in

a typical distributed system, starting from building the CPS to operating the CPS, due to its

diverse nature in implementation and devices. Moreover, even though Albatross aims to address

the uncertainty and difficulties in ensuring reachability and stability of distributed systems, it

narrows itself to data centers equipped with SDN, leaving wide area networks as future work.

Software Defined Internet of Things (SDIoT) [174] is an SDS for IoT devices that handles the

security [91], storage [92], and network aspects in a software-defined approach. SDIoT proposes

an IoT controller that operates as an orchestrator between the Data-as-a-Service (DaaS) layer

consisting of end user applications, and the physical layer consisting of the database pool and

sensor networks. Software-Defined Industrial Internet of Things (SDIIoT) [342] extends SDIoT

to Industrial Internet of Things (IIoT) [175], to offer more flexible and scalable networks. Various

research and enterprise use cases are proposed and built, including SDIoT for smart urban

sensing [211], and end-to-end service network orchestration [333]. Multinetwork INformation

Architecture (MINA) self-observing and adaptive middleware [283] has been extended with a

layered SDN controller to implement a controller architecture for IoT [281]. While sharing

similarities with IoT, CPS addresses a broader set of problems with more focus on ground issues

on interoperability and interactions between cyber and physical dimensions. Hence, an SDS

approach for CPS needs to address more demands and constraints inherent to CPS.

2.3 SDS for Big Data

Finally, we look into the data services and big data workflows that lead us towards SDS for

big data applications.

CHAPTER 2. BACKGROUND AND RELATED WORK 31

2.3.1 Software-Defined Data Services (SDDS)

SDN has been extended for networks beyond data centers, and to manage big data workflows.

The research findings on leveraging SDN for service compositions [264] are not optimized for big

data workflows, as they focus more on the standard web services. However, enterprises such as

IBM [89], NEXION Networks [249], Catalogic [72], SAP [294] and Oracle [255] provide network-

aware data services as part of their middleware frameworks, by bringing a software-defined

approach to data services. These SDS frameworks for data services are collectively known as

SDDS. SDDS is typically a data service execution model to schedule the big data workflows in

a centralized and unified manner while abstracting the execution of data services away from the

data storage. SDDS relies on the ability to express big data applications as composable data

service workflows and to control them with an extended SDS architecture. Thus, SDDS brings

the benefits of SDN to data services execution.

The SDN controller is capable of managing network flows, including flows with a large

volume of data (known as elephant flows [88]). The controller in an enterprise data center is

often a physically distributed cluster of high-performance servers, albeit being logically central-

ized [103]. Furthermore, despite the volume, scale, and variety of the data flow, the controller

is communicated only for the control flows. Data flows of the data services are transmitted

entirely at the data plane consisting of the switches and servers, as in any regular network flows,

without frequently invoking the controller. Therefore, the controller manages network flows of

big data efficiently [153] without causing a bottleneck or becoming a single point of failure due

to resource scarcity.

Several enterprise SDDS offerings focus on a single data service or a set of data services.

Portworx open source SDDS framework follows a container-based approach for dev-ops [277], by

exploiting Kubernetes [48], Mesos [159], and Docker [237] swarms. RedHat SDDS offers storage

orchestration enabled by full lifecycle management consisting of provisioning, installing, con-

figuring, tuning, and monitoring the data [328]. PrimaryIO APA is an SDDS storage solution

with a higher performance achieved through virtualization and intelligent caching [141, 278].

HPE SDDS aims to offer scalable, secure, and highly available virtualized storage solution [302].

Commvault SDDS mitigates vendor lock-in through its service-based data access and Software-

Defined Storage [236]. It further offers backup, archival, and recovery, with performance, scala-

bility, and agility [83]. Thus, Commvault aims at offering performance regardless of the physical

location of the data in the data center. Other enterprise offerings include SDDS-based big

data storage solutions such as PureStorage [279], and Software-Defined Copy Data Manage-

ment (CDM) frameworks such as IBM Spectrum [169] and Catalogic ECX [72] that centrally

orchestrate how data is copied and shared among the users of various data sources.

Despite the recent surge in the enterprise offerings, current SDDS frameworks have several

limitations for generalized large-scale big data executions. First, they have a limited focus.

They focus only on one or just a few specific data services rather than providing a generic

data services framework. Many SDDS offerings limit their attention to storage, or a Software-

Defined Storage [92, 69], rather than focusing on service execution. Second, they focus entirely

on a single-domain network such as their cloud or data centers, rather than SDDS executions

CHAPTER 2. BACKGROUND AND RELATED WORK 32

at Internet scale. Third, they also lack interoperability between execution frameworks or across

multi-domain wide area networks, due to their closed vendor-specific implementation. The

executions are limited to the data centers and are confined to a single big data application due

to the interoperability constraints. Fourth, they do not leverage the existing research efforts

on SDS and SD-WAN to offer network-aware service workflows efficiently. These limitations

highlight the need for a comprehensive network-aware and interoperable SDDS framework at

Internet scale.

2.3.2 Interoperability in Data Services

Interoperability is a significant challenge concerning data access and integration across het-

erogeneous data sources. Extracting and transforming data from web sources must consider

various data storage and access interfaces. Data storage formats and access interfaces have been

standardized across multiple research fields, to facilitate seamless access to heterogeneous data

sources. For example, Health Level Seven International (HL7) Fast Healthcare Interoperability

Resources (FHIR) [161] is a standard for consistent data exchange between healthcare appli-

cations. Enterprise Service Bus (ESB) [73] are middleware frameworks that facilitate commu-

nication between various enterprise APIs and SOA platforms, mitigating their incompatibility.

There have been proposals to exploit ESB and SOA for big data systems [256]. However, a

majority of data sources fail to adhere to these standards, resulting in a significant lacking of

interoperability between the data sources [179]. Consequently, data integration across various

scientific web data sources is challenging, and typically not effective and efficient without human

involvement.

Data services offer the best of both worlds from web services and big data frameworks to

the execution of big data workflows in wide area networks. While web services are developed

following standards and descriptive languages such as WSDL as well as protocols such as REST

and SOAP, big data execution frameworks lack such practices and protocols. Data services offer

service-based APIs to big data storage and execution frameworks and provide a standardized,

interoperable execution model across various frameworks. A data service can be a simple web

service that processes big data or a composition of several data services each performing simple

data executions such as data access, integration, transformation, and updates. Their interop-

erable APIs facilitate composable data service chains, where the output of one or more data

services is fed as the input for one or more data services. This potential for service compositions

supports extensible and reusable big data workflows, bringing the advantages of SOA to big

data.

Current web services registries lack network-awareness at Internet scale and are not opti-

mized for data services. Data services and web services are developed and deployed indepen-

dently at several locations that are neither directly connected nor centralized. Finding the ser-

vice deployments and chaining their execution outcomes for a large-scale workflow is impossible

without prior knowledge of their existence and access mechanisms. Web services registries [326]

such as UDDI and Electronic Business XML (ebXML) [105] are developed to identify and store

the web services engines and service instances to enable easy discovery of the service endpoints.

CHAPTER 2. BACKGROUND AND RELATED WORK 33

However, their focus is limited to service discovery. Therefore, we cannot entirely rely on them

to find the service instances to compose data service workflows in a latency-aware manner.

Data service frameworks enable efficient data access, integration, and sharing of heteroge-

neous big data. OGSA-DAI (Open Grid Services Architecture - Data Access and Integration) [24]

facilitates federation and management of various data sources through its web service interface.

The Vienna Cloud Environment (VCE) [53] offers service-based data integration of clinical trials

and consolidates data from distributed sources. VCE offers data services to query individual

data sources and to provide an integrated schema atop the individual datasets. EUDAT [197]

is a platform to store, share, and access multidisciplinary scientific research data. EUDAT

hosts a service-based data access feature B2FIND [352], and a sharing feature B2SHARE [28].

These frameworks significantly enhance the interoperability of big data storage and executions

through their service-based approach. Given the potential of SDN and its extension to control

multi-domain wide area networks [276], we posit that big data workflows can execute in a decen-

tralized and distributed environment spanning data centers, by extending and leveraging SDN

for managing the decentralized data services.

2.3.3 Network-Aware Big Data Workflows

Although several research efforts provide network-aware service compositions in wide area

networks [190], their application to big data workflows is significantly lacking. Vivaldi [90]

leverages network coordinates in estimating latency between two endpoints. While Vivaldi and

similar approaches have been used to predict latency in service composition workflows at Internet

scale, their use in a multi-domain network consisting of several independent networks is mostly

limited. Models based on game theory have been proposed to understand dynamic service

placements in geo-distributed cloud environments comprised of multiple service providers [368].

Similarly, significant research efforts have been made to identify an optimal service and data

placement in wide area networks that are shared by several users, considering the dynamic

availability of the resources [254]. Previous work has proposed storage efficiency through efficient

data placement, to minimize data migration [356]. NetMIP considers network properties and

resource consumptions in the cloud network nodes for service compositions, rather than merely

addressing the QoS of the services as a static property [349]. It presents optimization problems

to maximize the QoS utility value while minimizing network resource consumption. NetMIP

poses the optimization problems as Mixed Integer Programming (MIP) problems that can be

resolved by commercial and research MIP solvers such as Gurobi. Nevertheless, NetMIP and

similar research projects limit their focus to typical computation-intensive service composition

workflows and do not cater for data-intensive workflows in multi-domain networks.

Researchers propose solutions such as middlebox-based aggregation, efficient computation

of aggregation, and allowing queries to reroute the data flows without impacting the existing

queries, to support network-aware big data processing [289]. Fine-tuning the data placement

in the distributed data stores inside and beyond data centers have attracted a considerable re-

search interest [265]. DIANA offers network-aware scheduling for data-intensive workloads in

grid environments [230]. DIANA is more efficient than pulling data to the execution node in

CHAPTER 2. BACKGROUND AND RELATED WORK 34

computation-intensive workloads or pushing the execution to the data in data-intensive work-

loads, in a network-agnostic manner. However, unlike the grid and cloud environments, inter-

cloud and edge environments are managed by multiple providers. Big data workflow execution

across services spanning such multi-vendor multi-domain environments need to consider addi-

tional parameters such as the possible interconnection between the network domains and the

high-latency network links (typically, the public Internet routes) that connect the domains.

Recent developments in SDN and SD-WAN [173] have opened up the potential for network-

aware service compositions in heterogeneous network environments. While geographical prox-

imity is one deciding factor in picking the service composition for the workflows, the existence

of dedicated connectivity between two geographically distributed servers also plays a decisive

role in finding the best instances. For example, cloud providers such as AWS offer Cloud Direct

Connect services between the server of a user and the data centers of a cloud region, typically the

nearest to the user server. Similarly, MPLS [93] providers connect the enterprise users to their

remote servers with high bandwidth, without having to go through the public Internet, which

is typically slow and thus hinders the performance of the organizational workflows between the

distributed locations. These options have increased the potential for latency-aware big data

workflows at inter-cloud and edge environments.

Direct connect services that offer the Internet fast paths [193] are getting more mainstream

for data-intensive workflows. Cloud providers such as AWS leverage their backbone to route their

entire data traffic, without relying on external Internet paths or other connectivity providers,

in most of the cloud regions. While such networks are readily available for each provider,

currently they are not shared across the providers or third-party users. Even though ISPs and

Internet eXchange Points (IXPs) [5] are more equipped with the potential to alter the network

paths across the autonomous systems and differentiate the network flows, social aspects of the

Internet and net neutrality regulations prevent them from implementing these research avenues

globally, without hindering a large segment of the existing end users. A more user-centric

approach in composing network-aware big data workflows would solve these challenges in offering

a differentiated QoS [295] and SLA guarantees, without having to alter the Internet ecosystem

significantly.

2.4 Discussion

The management capabilities offered by SDN can be extended to the cloud and edge envi-

ronments, as demonstrated by SDS frameworks. An SDN controller is a software developed in

a high-level language that is capable of controlling the underlying network. Thus, it opens up

opportunities for cross-layer optimizations and more fine-grain control of the underlying network

from the user applications. Recently, SDN has been extended for wide area networks and used

for use cases other than network management and traffic engineering, such as latency-aware ex-

ecution of big data applications. Therefore, we posit that workflow scheduling at Internet scale

can be optimized in terms of performance, management, and user policy awareness by extending

and exploiting SDN.

CHAPTER 2. BACKGROUND AND RELATED WORK 35

Edge data centers offer the benefits of proximity typical for the on-premise deployments,

while still providing the separation of infrastructure from the applications of the user as in

a cloud platform [305]. On-premise deployment of VNFs offers bandwidth-efficient execution

for interactive I/O bound applications. Nevertheless, configuring all the VNFs in-house is not

feasible for everyone due to the deployment and maintenance costs as well as the resource

limitations. For example, thin IoT clients do not have the resources to host their VNFs in them

due to resource scarcity. Therefore, several edge providers [2, 340, 110] have started to offer

numerous network services (such as captcha verification [10] and firewalls [1]) in addition to the

infrastructure, close to the end users. This increasing reach of edge environments has created a

demand for better control of multi-domain environments.

Constructing workflows in a multi-domain environment faces several challenges, including

aspects of data management and secured interoperable access across the service instances. Ser-

vice composition workflows require chaining of services spanning multiple data centers and nodes

of various scale, offered by different providers from numerous network domains, with the need to

abide by the user policies. Each service in a workflow has its specific requirements, constraints,

and objectives. The volume and variety of services, coupled with these various constraints, make

service composition and workflow placement at Internet scale a multidimensional optimization

problem that has not been studied well yet.

SDN should be extended with MOM and web services registries for context-aware service

compositions at Internet scale, to consider multiple network and service providers. While SDN

offers a global view of the network in a data center environment, such a unified view of a

wide area network may not even be feasible to achieve for a single central controller due to the

organizational policies and challenges in scalability. An inter-domain controller deployment with

multiple controllers is necessary to cater for this scale and segregation of the network, without

assuming the presence of a central authoritative entity in the multi-domain wide area network.

Thus, we posit that SDN controllers of different domains should have a limited level of access to

the controllers from other domains/vendors to support communication and coordination across

various service providers. MOM supports such protected access to internal data belonging to

the data plane devices controlled by one another, based on a subscription-based configuration

rather than a static topology. SDN controllers are necessarily software applications that handle

the events and notifications from the data plane devices. Therefore, they can be extended to

communicate through MOM messages between one another. Furthermore, we should extend

and exploit web services registries together with the controller deployment for service discovery

and service composition in a QoS-aware manner, to reap the performance and flexibility benefits

of the several service instances.

Currently, big data frameworks have much larger throughput than the SDN controllers to

cater to the volume of the data that they process. Research and enterprises have proposed

extending big data frameworks with SDN approaches. To enable managing big data with SDN,

we should identify the differences and challenges among the big data workflows and the SDN

control flows. Real-time big data streaming engines boost millions of messages/s. For example,

Apache Gearpump [130] reports throughput of 18 million messages/s with an 8 ms latency on a

4-node cluster. However, such scale and concurrency of data is typical for data plane, and not

CHAPTER 2. BACKGROUND AND RELATED WORK 36

for the SDN controller as the network control plane handles only for the first packet of the first

flow. Moreover, end-to-end control of the network service workflows is a more involved process

than big data streaming, thus impeding the controller throughput. However, we foresee that

a more involved SDN-based management framework for big data flows will require enhanced

controller architectures to handle the demands of big data.

In this document, we propose SDS frameworks for service composition and workflow place-

ment at various scales of networks, by extending SDN to address the challenges that are not yet

addressed in the state-of-the-art. Specifically, we research and build SDS for i) an integrated

modeling and deployment of cloud networks, ii) decoupling the network connectivity from their

underlying infrastructure, iii) exploiting SDN and middleboxes for resilience in critical network

flows, iv) architecture and algorithms for composing service chains in wide area networks abiding

by the user policies, v) enhancing the interoperability of diverse CPS applications by expressing

them as service workflows, supported by network softwarization, and vi) big data executions

with network-awareness and minimal data movements, via an SDDS approach. We first propose

our network softwarization approach in a data center environment, then extend our SDS to the

cloud and edge environments, and finally present its use cases in CPS and big data executions at

Internet scale. The following chapters elaborate in detail our contributions on these domains.

IINetwork Softwarization

3Incremental Development

of Cloud Networks

Cloud networks and architectures are tested over simulation, emulation, and physical de-

ployment environments, as the required accuracy and precision differ across various stages of

development. Many network algorithms are tested for their functionality and efficiency in a

simulation environment, before deploying them on the actual physical execution environment.

While a simulator can effectively estimate some parameters of the evaluated network architec-

ture, an emulator or a physical test environment will reveal more accurate insights. On the other

hand, network emulators often create several separate processes on their host machine to repre-

sent the emulated system comprised of network switches and hosts more precisely, resulting in

high resource consumption, thus hindering the emulation of enterprise networks in research test

environments with limited resources. These factors highlight the necessity for both simulations

and emulations to coexist for continuous development of network applications.

Current network simulators do not support seamlessly migrating a workload from simulation

to emulation or vice versa, thus resulting in repetitive developments of simulations and emula-

tions followed by manual deployments. Network emulations are compatible with cloud and data

center networks, thanks to their native integration with SDN controllers. Thus, the emulators

provide a more realistic resemblance to the physical network deployments. As Mininet emu-

lates the virtual switches and flows, the emulated network can be dynamically monitored and

managed through an SDN controller connected with the emulator. However, existing network

simulators lack such integration with the SDN controllers, thus preventing a seamless migration

across the simulators and emulators. Furthermore, in software development and testing process,

automation and management tools focus on either deployment aspects or early development

stages. The configuration management tools automate the deployment across different infras-

tructures, reducing the manual efforts of DevOps [313]. However, they focus only on product

deployment aspects and do not manage the early design and development configuration efforts.

On the other hand, the modeling frameworks that focus on initial prototyping lack automa-

tion capabilities. Therefore, currently, repeated development and manual deployment efforts are

inevitable across simulations and emulations.

Incompatible interfaces of the modeling frameworks limit the use of modeling frameworks

despite their availability. Modeling frameworks such as simulators and emulators are developed

independently, typically by different communities. They often consist of incompatible APIs and

different development language and syntax. Therefore, porting simulations to emulations or

physical environments of varying system properties is a tedious undertaking. Such migration

also requires extensive code changes to the user algorithm or even a rewrite of the majority

of the code, with a manual redeployment over the environments. Since learning and using the

simulators and emulators require a considerable investment of time, developers are often forced

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 39

to choose one over other, rather than choosing the best option for a given development phase.

Research efforts are looking into minimizing the development efforts needed in modeling

and migrating the simulations and emulations. EmuSim is an integrated cloud simulation and

emulation environment [62], offering evaluation at different granularity and accuracy. However,

unlike Mininet, EmuSim emulations cannot seamlessly be ported into enterprise cloud networks,

and cannot be used to evaluate the production-ready algorithms in a physical deployment.

We propose that a simulator that abstracts away the architecture and policies from the network

topology and implementations by following the paradigm of network softwarization would resolve

this shortcoming in the modeling of cloud networks.

This chapter presents SENDIM 1, a Simulation, Emulation, aNd Deployment Integration

Middleware for cloud networks. SENDIM manages the development and deployment of algo-

rithms and architectures the entire length from visualization, simulation, emulation, to physical

deployments. SENDIM coordinates heterogeneous cloud network systems and manages their

deployments, by extending the principles of SDN. SENDIM offers a unified modeling and man-

agement process for building, analyzing, and migrating efficient cloud network architectures with

different topologies, design dimensions, and deployment environments. SENDIM abstracts con-

figurations and logic away from the application to provide seamless migration across multiple

environments and different realizations, such as simulations and emulations. SENDIM pro-

vides a Software-Defined Cloud Deployment (SDCD), by automating deployments and

migrations across different platforms and infrastructures. We foresee a shorter time to deliver

as SENDIM minimizes the development overhead caused by incompatible APIs, programming

languages, and granularity among the simulators and emulators, as well as the administrative

overheads caused by the deployment migration.

SENDIM consists of an efficient simulator for continuous development of cloud and data

center networks. In addition to providing a separation of concerns to the simulations, SENDIM

leverages the logically unified storage space in the control plane to store the status of the ongoing

simulations dynamically. The state of the simulations can be leveraged to pause and resume long-

running simulation workflows or execute a large complex cloud network simulation consisting of

various smaller simulation tasks. As the simulated network system is separated from the network

application logic, the simulated application logic can be seamlessly scaled or migrated. SENDIM

is efficient in a continuous simulation of cloud networks through its incremental development

and deployment. It offers smooth scaling with problem size and the host environment. It further

supports a seamless migration of simulation to emulation through its integration with the SDN

controller. Evaluations on the SENDIM prototype highlight its scalability with network size.

This chapter is composed of the contents of the publications: [C3, W7, S2].

1Sendim is a northeastern Portuguese town close to the Spanish border, where the rare Mirandese language is
widely spoken.

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 40

3.1 SENDIM : Software-Defined Cloud Deployments

An SDCD framework requires a unified control plane, where simulations and emulations,

as well as migrations among them, are configured by control plane software, rather than by an

entirely manual process. In this section, we will look into SENDIM and how it provides SDCD.

SENDIM Simulation Sandbox is a simulator designed focusing on the SDN integration

and interoperability with the emulators. Network emulators possess compatible and interopera-

ble executions with the physical deployments. Therefore, the major challenge in an end-to-end

development and deployment process relies on bringing the network simulations closer to the

emulations. The current simulators do not possess the capability to integrate with the SDN

controllers in an approach compatible with emulators and physical networks. We built the

simulation sandbox from scratch for SENDIM as its core module, rather than extending or

integrating an existing simulator, due to the limitations of interoperability with the network

emulators in the current network simulators.

The simulation sandbox splits the conventional simulation logic into: i) The cloud or data

center network system, simulated in the SENDIM simulation sandbox; and ii) The application

plane deployed directly on top of the controller environment northbound, which invariably ex-

ecutes in simulation, emulation, or a physical deployment. Various network scenarios such as

load balancing, network resource allocation and sharing, and bandwidth throttling, can hence

be implemented and deployed into the controller as extensions while the execution network en-

vironment is simulated in the simulation sandbox. The separated and unified application logic

in the controller instances allows reuse of code across simulation, emulation, and physical envi-

ronments while facilitating the changes in the scale and simulated system without changing the

underlying logic that has been simulated.

Emulators are unable to model and execute larger networks due to resource limitations. On

the other hand, SDN support and integration with the controllers is typically limited in the

existing simulation environments. The SENDIM simulation sandbox brings the best of both

worlds into the cloud network simulations, including the SDN awareness and seamless integration

of emulators, as well as the minimal resource demands of the simulators.

The simulation sandbox executes the application logic on the simulated system, offering

measures to represent the system properties such as the processing power of the servers and

the bandwidth of the network. While emulated networks perform an actual execution of the

algorithms over virtual switches and hosts, the SENDIM simulation sandbox simulates the

execution by representing the networked system using relevant Java objects, rather than actually

executing the application across switches and hosts. Hence, SENDIM can simulate and visualize

a network of hundred thousands of nodes from the controller in a similar manner to the emulated

networks.

The state of the simulation is stored and distributed in an In-Memory Data Grid

(IMDG) [129], as the simulation progresses in the simulation sandbox. In a complex simu-

lation workflow with multiple discrete steps, when the simulation halts, the simulation sandbox

stores the state of the simulation in a distributed map in the IMDG cluster. Hence, when the

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 41

simulation resumes, it reads from the map and starts from where the simulation previously

stopped. Storing of the simulation state in an IMDG cluster also offers breakpoints to recover a

simulation when a failure occurs amid the execution. As the simulation workload increases, more

data grid nodes are spawned adaptively, increasing the number of IMDG instances in the sim-

ulation cluster. SENDIM also leverages the information of state, when available, to determine

the necessity to scale itself in the IMDG cluster to accommodate more complex simulations. For

example, a simulation that is in its final stages may not require additional instances, and hence,

no new SENDIM instances will be spawned in the cluster. Thus, SENDIM aims to reuse of

simulation elements in building up a larger and more complex system, while adaptively scaling

to accommodate complex simulations.

Figure 3.1 illustrates the SENDIM workflow, indicating both the physical and simulated

entities in a single diagram. The SENDIM Descriptors define the data plane consisting of either

i) simulated virtual nodes and links or ii) physical, virtual, or emulated data plane devices. The

application plane contains the algorithms to be executed or simulated in the network environ-

ment as functional execution blocks. The algorithms can be streamed to each other to represent

a series of procedures or services as a workflow such as an NSC.

Application Plane: Algorithms (Executed/Simulated)

Control Plane: SDN Controller + SENDIM Extensions

Controller SENDIM Controller
Extensions

SENDIM

Descriptors

Application
Logic

Descriptors

Simulation Sandbox

(Simulated) Data Plane:
Cloud Network System

Application
Logic

Data Plane - Physical Network

Data Plane:
Cloud Network System

sim
ula

tes

Figure 3.1: Separation of the Application Logic From the Execution Environment

The control plane consists of the SDN controller as well as the SENDIM controller exten-

sions. The controller extensions ensure that the applications can be executed on the simulated

data plane similar to a physical or an emulated data plane. The simulated data plane assumes

a passive role, while the control plane ensures that the simulations in the application plane are

executed on the data plane. The connectivity between the controller and the simulator mimics

the communication and integration of an emulator with an SDN controller.

Anatomy of a SENDIM Application: SENDIM separates a simulation into the core

application logic and the system architecture to be simulated, to facilitate the continuous de-

velopment of cloud networks, including the simulation phase. Following a component-based

software engineering approach [158], SENDIM lets the user define the application logic (such as

the load balancing or resource allocation algorithms) as Java bundles and deploy them into the

SDN controller.

SENDIM develops each component of the execution as a separate function, to support

chaining and reusing the simple simulations into complex ones. It thus represents a complex

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 42

simulation as a function of functions, consisting of simulation blocks s and their respective list

of input parameters p. Equation 3.1 illustrates a simulation S consisting of the simulation

function s3 which takes as its input the outputs of the several simulations, including s1 and

s2. s1 and s2 respectively have the inputs of p1 and p2. s1 and s2 are independent and can

run in parallel, while s3 must wait for the completion of their execution as it depends on their

execution outcome.

S =< s3, (< s1,p1 >,< s2,p2 >, ..) > (3.1)

Figure 3.2 shows the anatomy of a SENDIM application. A network application is composed

of the application logic as well as the Descriptors in SENDIM . SENDIM represents and

models the cloud network systems through its Domain Specific Language (DSL) defined in XML

(Extensible Markup Language). Cloud systems and deployments are expressed in descriptors,

the XML configuration files created abiding by the SENDIM DSL. The descriptors define the

syntax for expressing the application parameters and deployment details that can be separated

from the applications. The relevant parsers parse the descriptors in the SENDIM middleware.

Similar to the physical or emulated SDN networks, data is transferred across the simulated data

plane entities, with control flows between the simulated data plane and the SDN controller.

SENDIM Controller

SENDIM Applications SENDIM Middleware

Descriptors

Application
Logic

System
Descriptor

Deployment
Descriptor

Simulation
Environment
Simulation

Environment
Simulation

Environment
Simulated System

Simulation
Sandbox

System Parser

Deployment
Parser

SDN Controller

SENDIM Controller Extensions

Application Changesets1Application ChangesetsApplication Changesets

Figure 3.2: SENDIM Middleware and Applications

The Descriptors consist of a Deployment Descriptor and a System Descriptor. The

deployment descriptor defines the system the application should be deployed on, including the

physical or emulation environments as well as the controller endpoint. The system descriptor

defines the system to be simulated (such that the application logic can be executed on top of

it) in the simulation sandbox in case of simulations. SENDIM provides expressiveness to simu-

lation developments from the initial design, by letting the users compose systems with different

topologies and nodes and flows in the network, by defining them in the system descriptors. The

system descriptors define the system’s static properties and dynamic properties. Static proper-

ties define the nodes and links composing the network, as well as the properties of these nodes

and links. Dynamic properties are the properties that change frequently, such as the flows on the

network and their properties. A basic definition of a switch is shown below with the neighbors

defined.

<node id=”s1 ” type=”switch”>

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 43

< l i n k id=”s2”></l ink>
< l i n k id=”s5”></l ink>

</node>

The granularity of the network flows can be set to flow, packet, or an intermediate level

where the flows are composed of several subflows and time intervals between them. A basic flow

definition is shown below, along with various policies for the flow.

<f low id=”F1”>
<o r i g i n>h2</o r i g i n>
<de s t ina t i on>h5</de s t i na t i on>
<i n t e n t type=’decrement ’><energy p r i o r i t y =’2’></energy></intent>
<i n t e n t type=’ increment ’><throughput p r i o r i t y =’1’></energy></intent>

</flow>

SENDIM deploys the incremental developments of the application logic into the SDN con-

troller as Application Changesets. The application changesets are supported by the modular

architecture of the controllers, natively supporting an incremental development. Frequent code

changes are minimized as only changing the configuration files is sufficient to change the deploy-

ment or the dynamic properties of the system, and code changes are necessary only when the

application logic is changed.

3.2 SENDIM Algorithms

SENDIM consists of two major operations: the initialization of an application, and the

incremental updates.

System Initialization: Each application has an Initiator workflow which deploys the initial

version of the application into the controller and optionally simulate or emulate the system in

the specified environment. It is also possible to deploy and execute the application into multiple

environments at once using SENDIM deployers. The entire application is deployed into the

controller for the initial or first deployment of the algorithm. Subsequent iterative deployments

only need to deploy the changesets. Algorithm 1 presents the pseudocode of the application ini-

tializer workflow. The background color in the algorithms presented in this document represents

the nature of the execution. Red represents conditions, blue represents data manipulations, and

green represents the other computing executions.

The algorithm accepts as input, the descriptors, the controller endpoint, and application

bundle references. Initially, the execution realization (i.e., a simulation, an emulation, or a phys-

ical deployment) and the endpoint of the deployment are identified by parsing the deployment

descriptor (line 2). Then the application bundles are deployed into the controller instance (line

3). If the deployment environment is identified as a physical network, the network application

is executed in the deployment environment (line 4 - 7). While the network flows are executed as

they are in physical deployments, emulations and simulations first need to construct the virtual

networked systems before executing the network flows on them. If the execution is a simulation,

the simulation sandbox is built from the system descriptors (line 9). The application is then

executed in the network environment simulated in the simulation sandbox (line 10 - 12). In

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 44

Algorithm 1 SENDIM Application Initialization

1: procedure Deploy(deplDescriptor, sysDescriptor, controller, appBundles)

2: realization ← parse(deplDescriptor)

3: deploy(controller, appBundles)

4: if (realization.env.isPhysical()) then

5: while (TRUE) do

6: execute(realization.env)

7: end while
8: else if (realization.env.isSimulation()) then

9: simulationSandbox ← construct(realization.env, sysDescriptor)

10: while (TRUE) do

11: execute(simulationSandbox)

12: end while
13: else if (realization.env.isEmulation()) then

14: emulator ← realization.env

15: descriptor ← convert(emulator, sysDescriptor)

16: construct(emulator, descriptor)

17: while (TRUE) do

18: execute(emulator)

19: end while
20: end if
21: for all (appID ∈ controller.getAllExecutionIDs()) do

. Clear all the distributed objects of the executions in the controller

22: clearDistributedObjects(appID)

23: end for
24: end procedure

the case of emulations (line 13), first, the emulator endpoint is identified from the deployment

descriptors (line 14). In the case of the emulations, the system descriptors are converted to have

the script for the respective emulator (line 15), whereas the simulations execute natively inside

SENDIM , based on the system descriptor. Once the emulation environment is configured based

on the descriptors (line 16), the application is executed in the specified emulator environment

such as Mininet (line 17 - 19). Finally, when the controller terminates, all the executions that

are either started at the time of initialization or later should be stopped. Therefore, all the

relevant distributed objects are cleared when the execution terminates (line 21 - 23).

Incremental Development: SENDIM creates the revisions or updates to the applications

as changesets and updated bundles, which can be deployed in the application hosted in the

respective environment. As development progresses, the changesets are deployed in the controller

environment and application is thus tested incrementally. Algorithm 2 presents the subsequent

deployments of an application that has already been initialized or deployed in the controller.

A unique identifier appID is created and stored for each of the application that is part of

a workflow. appBundles.getOne().getID() retrieves the ID appID (line 2) of a bundle from the

appBundles. The appID is unique and the same for all the bundles that are part of a single

application workflow. Thus, appID identifies the workflow from the bundles, by getting the ID

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 45

Algorithm 2 Iterative and Incremental Development

1: procedure Upgrade(deplDescriptor, sysDescriptor, controller, appBundles)

2: appID ← appBundles.getOne().getID()

3: stopExecution(appID)

4: clearDistributedObjects(appID)

5: getAndUpdateState(appID)

6: changeSets ← constructChangeSets(appBundles) . Deploy the ∆, i.e., only the incremental changes

7: deploy(deplDescriptor, sysDescriptor, controller, changeSets)

8: end procedure

of any random bundle from the given application workflow. The execution is generally halted

when the application is redeployed. If the application is the only execution on the system, and

the controller does not manage any other systems simultaneously, the controller can be simply

restarted during this. However, in an environment with multiple simulations or executions

and multiple networking systems, upgrades occur in a tenant-aware manner. Here, only the

upgraded application is paused using stopExecution() (line 3) and resumed by clearing only the

distributed objects and state associated with the application using clearDistributedObjects() (line

4). getAndUpdateState() in line 5, gets and updates the state of the execution block to enable

state-aware executions. Changesets of the application since its last deployment are computed

and built, using constructChangeSets() (line 6). Finally, the application changesets are deployed

into the environment consists of the controller and the physical or virtual network, using deploy()

in line 7. SENDIM thus provides a hot deployment [170] with minimal downtime.

3.3 Implementation

We developed SENDIM as an OSGi bundle to seamlessly integrate with the OSGi-based

frameworks such as OpenDaylight controller, and dynamically deploy the algorithms built on top

of SENDIM into OSGi-based controllers as bundles without changing their code. We leveraged

OpenDaylight Beryllium as the default controller due to the modular architecture of OpenDay-

light. SENDIM uses the OpenDaylight interfaces and programming constructs to connect with

OpenDaylight as a simulation component that can utilize the control functionality of Open-

Daylight. SENDIM uses Oracle Java 1.8.0 as the development language, Apache Karaf 3.0.3

as the OSGi runtime, Mininet 2.2.1 as the default emulator, and Apache Maven 3.1.1 to build

the application logic. SENDIM simulation sandbox integrates and interacts with the OpenDay-

light controller through the OpenDaylight southbound interfaces to programmatically simulate

Open vSwitch OF13 switches. We implemented OpenDaylight MD-SAL extensions to deploy

the applications as OSGi bundles and execute them over the simulated network. We defined the

higher-level northbound abstraction of SENDIM applications that are deployed in or integrated

to OpenDaylight through YANG [50] data modeling language for the Network Configuration

Protocol (NETCONF) [298]. SENDIM leverages an IMDG cluster of Infinispan 7.2.0 [225] for

a state-aware distributed adaptive scaling of its simulations.

Figure 3.3 illustrates the SENDIM architecture and a higher level deployment view, along

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 46

with the cross-platform deployment migrations. The SENDIM interfaces include northbound

and southbound APIs. The northbound APIs communicate with the applications and algorithms

deployed on top of SENDIM , whereas the southbound APIs interact with the SDN controller

southbound protocols such as OpenFlow. SENDIM connects with the emulators and controllers

respectively through the Converters and the controller extensions. The Emulator Converters

automatically translate the descriptors comprised of the topologies and flows defined in SENDIM

DSL into the relevant emulator scripts if the user indicates an emulator as the execution en-

vironment for her applications. For example, the SENDIM Mininet Converter converts the

SENDIM DSL into Python scripts for Mininet emulations, and the Mininet instance identified

by the deployment descriptor emulates the network and the algorithms.

Controller
Integrator

Northbound API

OpenDaylight

SE
N

D
IM

 M
id

dl
ew

ar
e

Pl
at

fo
rm

Mininet

Ethernet
Switches

Emulated
Environment

Physical Deployment

Application Plane: Cloud Network Application Logic

Ethernet
Switches

Ethernet
Switches

Network Emulators
 SDN
Controllers

D
ep

lo
yi

ng
 to

 E
m

ul
at

ed
 o

r P
hy

si
ca

l S
ys

te
m

Data Flow

System
Parser

Deployment
Parser

Simulation Sandbox

Software-Defined Systems

Control Flow

System
Descriptor

Deployment
Descriptor

Descriptors D
ep

lo
yi

ng
 to

 S
im

ul
at

ed

Sy
st

em

SENDIM DSL

Parser

Controller Extensions

Storage Data
center

Emulator
Converter

Southbound API

M
ig

ra
tio

n
fr

om
 E

m
ul

at
ed

to
 P

hy
si

ca
l

N
et

w
or

k

M
ig

ra
tio

n
fr

om
 S

im
ul

at
ed

 to

Em
ul

at
ed

 a
nd

Ph

ys
ic

al
 N

et
w

or
ks

Figure 3.3: SENDIM Architecture and Deployments

SENDIM controller extensions enable interaction between the controller and the simulation

sandbox, and thus facilitate the simulation of the SDN data plane. The simulation sandbox

simulates the system and executes the algorithm on the simulated system when the deployment

descriptor indicates a simulation environment as the deployment platform. The simulation

sandbox can operate as a stand-alone simulator or an OpenDaylight module deployed as an

OSGi bundle into the Apache Karaf container of OpenDaylight. An SDN controller can manage

the simulated SDN system via its southbound API. The simulation sandbox is kept light-weight

with an easily extensible API to model networks that are too complex or resource-heavy for

an emulator. SENDIM consists of Document Object Model (DOM) [345] parsers which parse

system and deployment information from the respective descriptor, provided as XML files.

SENDIM consists of an easy upgrade and revert feature for itself as well as the algorithms

deployed on top of it. OSGi enables versioning of the plugins. Therefore, when a user deploys

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 47

updated bundles as changesets into the core controller runtime of SENDIM , SENDIM will

upgrade itself as well as the deployed user algorithms to the new version upon the restart of the

framework, without removing or altering the existing bundles. A remote file copying approach

deploys the changesets into the remote hosts securely. SENDIM uses shell scripts with remote

calls to invoke or restart the remote execution and to invoke the automation tools and packet

installers. Upgrades based on deployed changesets enable the deployed system to be quickly

reverted to a previous version, by removing the malfunctioning changesets or later versions of

the bundles from the repository. This checkpointing feature [191] enables a quick revert to the

previously known stable working state, should critical test cases fail.

3.4 Evaluation

We evaluated SENDIM for its modeling and migration capabilities using a cluster configured

with up to 6 servers, each with Intel R© CoreTM i7-4700MQ CPU @ 2.40GHz × 8 processor, 8 GB

memory, and Ubuntu 14.04 LTS 64 bit operating system. We benchmarked SENDIM against

CloudSim for its simulation time as independent simulations as well as incremental updates,

while ensuring its accuracy in simulating simple network tasks such as routing algorithms, cloud

resource allocation, and network load balancing. We then evaluated the effectiveness of SENDIM

in migrating the executions between simulations to emulations and vice versa. We repeated each

experiment 6 times and considered the average time.

3.4.1 Simulations with SENDIM

First, we benchmarked the scalability of SENDIM with the size of the simulated problem

and the number of servers that host the simulator for a distributed simulation. We simulated

random routing of network flows in a data center of small-world datacenter topology [306] with

a varying number of nodes (i.e., switches and hosts). We maintained the links across the data

center for each of the node to be proportional to the number of nodes in the data center. The

modeled networks consist of a varying average degree, the average of the number of links per

each node, up to 100. We first benchmarked the simulation time of SENDIM in a single node,

against CloudSim [63], as CloudSim has been extended as CloudSimSDN to simulate SDN [310].

We then deployed SENDIM as a clustered simulation environment over 5 different servers and

the controller in another server to benchmark the distributed execution. We compared the

distributed execution time of SENDIM simulations against Cloud2Sim [185], the distributed

execution for CloudSim, deployed on 5 servers.

We denote the simulations by an integer index, n ∈ Z+. The executions in CloudSim

represent the time consumed by CloudSim as a single entity. On the other hand, the SENDIM

simulation involves executing i) the controller with the SENDIM controller extensions and, ii)

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 48

the SENDIM simulation sandbox.

T (n) =⇒
{

The time taken by CloudSim to execute n.

T (nc) =⇒

{The maximum time taken by the relevant controller instance to exe-

cute the controller workflows to simulate the system algorithms iden-

tical to that performed by CloudSim in execution n.

T (ns) =⇒
{

The maximum time taken by the simulation sandbox instance to sim-

ulate the data plane of system n.

(3.2)

Since the controller and the simulation sandbox execute in parallel, the time taken for

SENDIM to complete any simulation execution is defined as T’(n) = max(T (nc), T (ns)). T’(n)

depends on the component (either the simulation sandbox or the controller) that takes longer to

complete the simulation task. In case of distributed Cloud2Sim executions, T(n) also considers

the maximum time taken by the instances, hence considering the last instance to complete the

execution, which is often the master of the simulation cluster. We benchmarked CloudSim

and SENDIM simulation sandbox in a single as well as multiple instances of the simulator by

comparing T(n) and T’(n).

Figure 3.4 indicates the time taken by SENDIM and CloudSim to complete the simula-

tion, highlighting the performance and horizontal scalability of SENDIM for large simulations.

While CloudSim outperformed SENDIM for smaller scale simulations, SENDIM outperformed

CloudSim for networks with more than 1000 nodes. The exact number of nodes where SENDIM

starts to outperform CloudSim depends on the nature of each simulation. However, we observed

that SENDIM simulated larger simulations better when its performance benefits become more

pronounced compared to its initial overhead. While both SENDIM and CloudSim scaled out

reasonably well, the performance degraded with distributed execution in CloudSim/Cloud2Sim

for smaller simulations. We attribute this performance loss to the increase in communication

and coordination overheads. SENDIM distributed execution did not have such overheads, as it

distributes the workload adaptively, leveraging the controller’s network awareness. Additional

instances were involved in the SENDIM simulation only when the load was high. Therefore,

SENDIM avoided performance losses caused by premature scale-outs. Even for larger simula-

tions, SENDIM showed higher vertical (scaling up for larger workloads) and horizontal (scaling

out to multiple execution servers) scalability, compared to CloudSim.

3.4.2 Incremental Updates and State-Aware Executions

We then evaluated the efficiency of SENDIM in its support for incremental development.

We benchmarked SENDIM simulation sandbox against CloudSim in a series of simulations

composed of incremental updates. We simulated a slightly modified ping-all function across the

networks consisting of random and uniform links among the switches. The simulation itself is

smaller in scale since we have already established the efficiency of simulating larger simulations

with SENDIM in Section 3.4.1.

Table 3.1 describes the stages of our execution. Executions 1c and 1s represent the initial-

ization of the controller environment and SENDIM simulation sandbox respectively, along with

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 49

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0.01 0.1 1 10 100

T
im

e/
s

x 1000 Nodes

SENDIM
CloudSim

SENDIM on 5 Servers
Cloud2Sim on 5 Servers

Figure 3.4: Simulating a random routing across a data center network

Table 3.1: Steps of the Executed Simulation: T(n) vs. T (ns) & T (nc)

CloudSim vs. Description of the Execution
SENDIM (Sandbox & Controller)

1 vs. 1s & 1c Initialization of the environment
2 vs. 2s & 2c Initial application deployment in the environment
3 vs. 3s & 3c Updated algorithm on the same simulated system
4 vs. 4s & 4c Updated algorithm on the same simulated system
5 vs. 5s & 5c Reverting the algorithm to a previous state
6 vs. 6s & 6c Changing the simulated system with the same algorithm

the first simulation, identical to the CloudSim simulation 1. Execution 2c indicates the initial

deployment of a subsequent simulation logic in the controller, whereas execution 2s indicates the

respective deployment of the simulated system into the simulation sandbox. Execution 3c and

4c represent updates to the application logic deployed in the controller, with no change in the

system simulated in the simulation sandbox. Execution 5c indicates a revert to the execution 2

by removing the changesets that were deployed in executions 3c and 4c. During executions 3, 4,

and 5, the simulated system is not changed while the changesets are dynamically deployed into

or removed from the controller. Therefore, there was no time measured for 3s, 4s, and 5s as

the system was already simulated into the simulation sandbox even before the algorithm starts

its execution in the controller. Execution 6s indicates the change in the simulated environment,

while not changing the simulation logic in the controller. As the controller did not have to

execute the algorithm again in this case, 6c does not consume additional time. We observed the

time consumed by CloudSim and the SENDIM counterparts to perform the execution steps.

Figure 3.5 indicates a breakdown of the execution times.

SENDIM executions are not uniform, as SENDIM stores the states from the previous

simulations and leverages that information in the subsequent simulations. CloudSim does not

store the states of previous simulations as a continuous simulation workflow. Therefore, all

six CloudSim executions are similar, discrete, and independent from each other, resulting in a

constant simulation time across all the six simulation executions considered. Execution 1c, which

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 50

Figure 3.5: Time taken for Simulation Executions

represents the initialization of the controller environment takes more time than the CloudSim

simulation execution 1, as the initialization time of the control plane solely depends on the

SDN controller. We observe that the time consumed by the SENDIM simulation sandbox itself

is equal to CloudSim as during execution 1s, though it communicates and coordinates with

the controller, and performs a complete simulation of the network system. The time taken to

complete the simulation was around 50% of the execution time of simulation 2 in CloudSim.

Subsequent executions 3c and 4c consume lower time in SENDIM . On the other hand, unaware

of this contextual information, executions 3 and 4 consume as much as the time of execution 1

or 2 in CloudSim, giving a competitive advantage to SENDIM . Since execution 5c is just a mere

revert, it consumed even lesser time. Nevertheless, execution 5 is again a fresh simulation of

the entire network for CloudSim, as it does not offer breakpoint and revert features. Execution

6s still takes less time than CloudSim. Its simulation time is equal to 2s, whereas 6c does not

consume additional time as there was no change in the controller algorithms in this step.

Our observations highlight that overall, SENDIM consumes up to less than 50% of the

time compared to CloudSim for continuous modeling of cloud networks. In our chosen case

of continuous modeling of cloud networks with incremental development and reverts, SENDIM

easily outperforms CloudSim due to its optimized design for modeling incremental and test-

driven cloud network developments and parallel execution of the simulation environment and

the controller that executes the network algorithm on the simulated system. We note that the

exact performance enhancement would indeed depend on the nature of the simulation.

We found that the overhead in the development time of SENDIM simulations is well justified

by the time saved in the continuous updates in the simulated systems. The overhead caused

by distributing the simulations to the controller and the simulation sandbox can be considered

negligible, except for the initial start-up time. Furthermore, the state-aware simulations enabled

linear scalability for SENDIM simulation sandbox against the size of the computer cluster and

the problem scale.

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 51

3.4.3 Seamless Migrations Across Development and Deployment Dimensions

Finally, we evaluated the efficiency of SENDIM in performing migrations between simula-

tions and emulations, and vice versa.

Simulation to Emulation Migrations: We evaluated the performance of the simulation

to emulation migrations by manually invoking the SENDIM Mininet converter. We modeled

networks with a varying number of nodes consisting of a range of average degree for the switches,

with a random routing of network flows across the nodes. We expressed the flows and the network

properties as a system descriptor, which is the core of the simulation scripts written following

the SENDIM DSL. We then converted the simulation scripts into Mininet emulation scripts

using the Mininet converter. We observed the total execution time to migrate an application

from simulation to emulation, by converting the system descriptor scripts, initiating Mininet

with the network consisting of nodes, links, their properties, and network flows as specified in

the descriptor, and start the Mininet emulation of the network routing execution. Figure 3.6

illustrates the total execution time for the migrations, against a varying number of nodes and

average degree.

Figure 3.6: Migrating a Simulation to Emulation

The migration time increases with the number of nodes and the average degree of the

modeled network. Time taken for the migration increases with the number of nodes, as the

converter has to read, parse, and convert the system descriptor into Mininet scripts. There was

an increase in time with the rise in the average node degree, which is more visible in larger

networks with more nodes. The number of links and the alternative routing paths increase with

the increasing average degree. Therefore, the Mininet converter has to convert more lines of

SENDIM simulation script into the Mininet script, with the increasing average degree which is

more prominent as the number of nodes also increased. SENDIM was able to handle 10,000

nodes within a few seconds. It successfully migrated larger complex networks of 100,000 nodes,

albeit with an above-linear increase in the time taken. This increase was due to the memory

and processing required for parsing the descriptor files as large as 26 MB, and writing Mininet

scripts that are up to 18 MB in size for 100,000 nodes with up to 100 links per node.

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 52

Emulation to Simulation Migrations: Then, we assessed the ability of SENDIM in au-

tomatically migrating the emulations to simulations when the resource requirements for the

modeled problem space exceeds the available resources. We configured SENDIM to execute

a random routing algorithm first as a Mininet emulation that later transforms itself into a

SENDIM simulation as the resources become scarce with the increasing problem size. We

benchmarked this configuration with the execution time with pure Mininet emulations and a

complete simulation with SENDIM simulation sandbox without such automatic migrations.

Figure 3.7 shows the time taken for Mininet to emulate the network, the SENDIM simulation

sandbox to simulate it, and SENDIM configured to resort to simulations when the emulations

take more than a minute. The simulation sandbox constructed the system with nodes and

links within a few seconds even for large systems with up to 100,000 nodes. On the other

hand, Mininet consumed up to 300 seconds even for a network of 1800 nodes and links. Hence,

SENDIM simulation sandbox showed a 100-fold performance increase when compared to Mininet

in visualizing the network. When increasing the network size further up to 1900, Mininet failed

to create the links, though it successfully emulated the nodes. For networks beyond the size of

8000, Mininet fails with an OSError when attempting to construct the nodes. When emulating

a network of 1800 nodes with Mininet, Network Manager consumed as high as 99.6% of CPU

during the links construction phase. Furthermore, we observed that the Open vSwitch daemon

(ovs-vswitchd) consumed up to 100% of the CPU during the final stages of the emulation.

However, simulation of the same network with SENDIM consumed only up to 6% of CPU.

Figure 3.7: Network Construction with Mininet and SENDIM Simulation Sandbox

The results highlighted how SENDIM could offer the best of both worlds by invoking the

emulator at small scales and then resort to its simulation sandbox to simulate larger networks

when the resources are scarce to emulate. By transitioning seamlessly across both realizations,

SENDIM offers the accuracy for finer problem spaces by emulating when resources are sufficient

and simulating for larger networks with limited resources. The observed accuracy in simulating

the network with the SENDIM simulation sandbox highlights the potential of using it at the

early stages of the development and a seamless migration from simulations to emulations by

either increasing the computing resources at the latter stages of development or by reducing

scale of the simulated system (i.e. by reducing the problem size). The seamless migration with

minimal efforts is made possible since the code to be executed in the controller remains the same,

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 53

and the SENDIM system descriptors can be easily ported to Mininet scripts with no manual

code conversion or rewrite.

We believe the incremental development and deployment supported by SENDIM is a first

step in bringing interoperability to simulations and emulations, which remain primarily incom-

patible across frameworks. SDN already facilitates bringing the emulations close to the physical

developments by making the emulations deployment-ready in the actual execution environments.

Leveraging an SDCD approach to make all the simulations and emulations interoperable is a

substantial implementation challenge. However, the evaluations on SENDIM highlight that

by developing and exploiting an SDN-based middleware framework for cloud network simu-

lations, such migrations can become a reality. While SENDIM enables seamless migrations

between Mininet emulations and its simulations, such migrations are limited to Mininet. Mi-

grating SENDIM DSL into other emulator scripts can be achieved by implementing the relevant

Emulator Converter in SENDIM . However, it is a significant engineering task to enable such

migrations across existing several emulators and simulators, and that is beyond the scope of

SENDIM .

Execution and Deployment Migrations Across the Environments: Configuration man-

agement systems offer automation for managing on-site and public cloud deployments with

varying configurations and orchestrate multiple products hosted on them. Figure 3.8 highlights

the potential for extending such configuration management beyond the current scope of such

systems, by comparing the seamless deployment capabilities of SENDIM with the popular con-

figuration management systems, Puppet and Chef. Transitions across both dimensions indicate,

the migrations across different deployment environments for the same development dimension

(in horizontal arrows), and migrations across different development dimensions in the same

deployment environment (in vertical arrows). The vertical sets showed on transitions across

both dimensions indicate the functionality offered by SENDIM , Chef, and Puppet, respectively,

highlighting when SENDIM outperforms the others.

Configuration management systems function on migrating application executions across dif-

ferent deployment environments of the same development dimension, providing a varying degree

of support for each development dimension. Emulations and physical deployments can effectively

be handled and managed by the configuration management systems to migrate across different

deployment environments. However, they are not efficient in managing simulations. Migra-

tion across different development dimensions is beyond the scope of the current configuration

management systems. SENDIM offers complete support for migration across both dimensions

– migrating across different deployment environments for the same development dimension,

or migrating across different development dimensions over the same deployment environment.

SENDIM manages an entire matrix of development and deployment dimensions, with extension

points to deployment systems such as Docker. Hence, it provides seamless migration across more

environments.

Puppet and Chef do not leverage the programmability offered by SDS. They also do not

cover the management across the development dimension, unlike SENDIM . Both SENDIM and

Puppet provide an easy-to-use declarative language as DSL, where Chef uses a Ruby-based

DSL. SENDIM is the first step towards interoperability across various dimensions. As such, we

CHAPTER 3. INCREMENTAL DEVELOPMENT OF CLOUD NETWORKS 54

Development ProductionStaging

Simulation

Emulation

Physical
Environment

Supported Features

Fully Supported: ✓✓

Supported to Some Extent: ✓

Not Supported: x

Design

Testing

Deployment Dimension Migrations

D
ev

el
op

m
en

t D
im

en
si

on
 M

ig
ra

tio
ns

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
x
x

✓✓
✓
✓

✓✓
✓
✓

✓✓
✓
✓

✓✓
✓✓
✓✓

✓✓
✓✓
✓✓

✓✓
✓✓
✓✓

✓✓
✓✓
✓✓

✓✓
✓✓
✓✓

✓✓
✓✓
✓✓

SENDIM
Chef

Puppet

Figure 3.8: Comparative Qualitative Assessment with Configuration Management Systems

don’t see it as a complete alternative to configuration management and automation systems such

as Chef and Puppet. However, SDCD highlights the potential for extending the configuration

management systems for complete automation throughout the development and deployment

phases. We also foresee such approaches enhancing the migration capabilities in inter-cloud

environments.

3.5 Conclusion

An SDCD approach provides quantifiable improvements concerning interoperability, scal-

ability, and performance in cloud networks, by bringing the unified management of SDN con-

trollers to the early stages of cloud network development. SDCD enables product deployments

and updates to be coordinated and managed from a central location efficiently with less manual

efforts. We built SENDIM as an SDCD framework to facilitate incremental modeling of cloud

networks, state-aware simulations, and simulations of complex workflows such as NSC. SENDIM

enables seamless deployment and migration through loose coupling of the deployed application

from their execution environments and development realizations. The reduced repeated coding

and increased management capabilities justify the additional effort of separating the application

logic from the implementation. Preliminary assessments elaborated the seamless deployment

and enhanced migration capabilities of SENDIM as well as the efficiency of the SENDIM simu-

lation sandbox in operating as either a stand-alone network simulator or a distributed simulator

integrated with an SDN controller.

4Cloud-Assisted Networks

as a Connectivity Provider

Network connectivity providers have been proposing novel approaches for cheaper and low-

latency end-to-end connectivity. The mobile and edge computing paradigms have resulted in

an increasing demand for dynamic short-term connectivity. Network connectivity providers

such as transit providers currently offer bandwidth with minimum commitment, as low as 10

Mbps [81]. However, contracts shorter than one month are still uncommon, thus preventing

the users from promptly interconnecting without committing to a long-term service agreement.

To rectify this limitation, companies such as Epsilon [114] and PacketFabric [263] are working

towards making bandwidth a tradeable utility, steering up dynamic interconnections among

their users. However, these companies limit their focus primarily to the enterprise use and are

not aligned to provide cheaper and high-performant connectivity to the end users. This state

of affairs highlights the need for affordable alternative connectivity providers on a global scale,

with short-term commitments. Such alternatives should consider two major factors, namely,

technological performance as well as economic benefits.

First, the Internet applications operate with real-time constraints on latency and a need for

stable bandwidth. Therefore, the proximity of these service deployments to an end user plays

a significant role in the user’s QoE. Cloud platforms are opening up more regions, availability

zones, and Points of Presence (PoP) [31], to better serve the web applications with heavy band-

width demands. Distributed cloud data centers [188] distribute or replicate the computation and

data across multiple geographical regions near to the users. These distributed and decentral-

ized architectures are getting more mainstream, as a compromise between the centralized cloud

and independent on-premise deployments. Thus, an alternative connectivity provider should

consider this changing network ecosystem of end users and service providers.

Second, the Internet consists of a large pricing disparity, including a different rate of price

decline over the years, between the core Internet regions and the remote regions. The steady

decline of IP transit prices in the past two decades has helped fuel the growth of traffic demands

in the Internet ecosystem. Despite the decreasing unit price, bandwidth costs remain significant

due to the ever-increasing scale and reach of the Internet. Furthermore, the oligopoly of a few

connectivity providers and a substantial dependence on expensive long-haul links to the US

or EU for international connectivity, have caused a higher price for IP transit in the remote

Internet regions [55]. For instance, prices for 10 Gbps Ethernet (GbE) bandwidth remain up to

20 times more expensive in São Paulo and Sydney, compared to EU and USA. This disparity

is even more pronounced in remote regions such as Central Asia and Sub-Saharan Africa. For

example, as of 2014, while the transit cost per Mbps per month was 0.94$ in the US [252], it

was 15$ in Kazakhstan and 347$ in Uzbekistan [218]. Even though the average IP transit prices

at major Internet hubs have fallen by an annual 61% during the past two decades, this decline

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 56

has been much less pronounced elsewhere [252]. This variation in pricing plays a significant role

in determining the success of an alternative connectivity provider in any region.

Cloud-assisted networks offload network functionality to cloud platforms, ultimately leading

to more flexible and highly composable NSCs. As a network softwarization approach, cloud-

assisted networks separate the network from the cloud infrastructure, offering network connec-

tivity as an overlay provider. A cloud-assisted network leverages the cloud VMs to host the

virtual routers and the underlying cloud network infrastructure for its data transfer. Despite

the prevalence of cloud-assisted networks, their use as a connectivity provider for end user data

transfers and the economic viability of such usage are not well studied. We argue that the feasi-

bility of cloud-assisted network solutions deserves a broader study, considering the flexibility of

network softwarization as well as the performance and monetary benefits it brings into network

connectivity.

In this chapter, we study the technological and economic viability of a cloud-assisted network

and propose NetUber as an efficient architecture to realize an alternative connectivity provider

built atop a cloud-assisted network. NetUber consists of a broker that i) purchases spot VMs from

the cloud providers, and ii) creates an overlay network over the multiple spot VMs to function

as a large-scale inter-region connectivity provider to the end users who would buy connectivity

directly from NetUber . Thus, NetUber operates as an on-demand virtual connectivity provider

running atop several spot VMs configured as virtual routers. By leveraging the memory and CPU

of the acquired spot instances, we further envision a deployment of auxiliary network services

such as compression-as-a-service [147] and encryption-as-a-service [152], offering an optional

compressed or encrypted data transfer between the regions.

Our primary contributions are: i) an economic model to exploit spot markets for direct

secured connectivity between pairs of endpoints, and ii) an inter-cloud approach that leverages

spot VMs in building a reliable virtual connectivity provider. When compared to traditional

flat-price connectivity providers, our extensive evaluation shows that i) NetUber best suits the

needs of small dynamic monthly transfers up to at least 50 TB and ii) NetUber cuts Internet

latencies up to a factor of 30%. We see our contributions as a first step towards a more system-

atic understanding of the next-generation overlay interconnection networks driven by network

softwarization efforts.

This chapter is composed of the contents of the publication: [C1].

4.1 Cloud-Assisted Networks: A Market Analysis

In this section, we look at the economic and technological perspectives towards building

NetUber as a cloud-assisted network overlay and present our observations on cloud pricing

trends that helped us in making the design decisions.

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 57

4.1.1 Cloud Instances

Large-scale dynamic cloud overlays require many cloud instances and a billing model that

charges overlay operators only for their actual usage of cloud resources. The cost of acquiring

and maintaining several on-demand instances remains a concern for overlay operators, despite

the decreasing cloud instance pricing [39] and improved pricing models such as the per-second

billing1 offered by the cloud providers. We performed a brief analysis on the quoted prices

for monthly contracts from ISPs and on-demand cloud instances to find whether it is feasible

to build a cloud-assisted overlay network with the same SLOs as the ISPs using on-demand

instances. We observe that it is more expensive to maintain such an overlay with on-demand

instances compared to the ISP pricing. We should bring the cost of cloud instances and cloud

data transfer down to ensure that an alternative connectivity provider built atop several cloud

instances remain economically profitable while offering the same SLAs as the classic connectivity

providers such as ISPs.

Spot instances: spot instances are spare computing resources, identical to their on-demand

counterparts, which are offered by the large cloud providers at a much lower price but can

suddenly be interrupted by the cloud provider with a short notification. Cloud providers ad-

vertise significant cost savings with their spot instances while providing the same performance

guarantees offered by the on-demand instances. Amazon estimates that using its EC2 (Elastic

Compute Cloud) spot instances can save up to 90% compared to its on-demand pricing [17].

Similarly, GCP preemptible instances [136] provide a flat rate of 80% of savings, and Microsoft

Azure low-priority instances [299] are expected to offer the same, compared to their respective

on-demand offerings.

Reserved instances: Cheaper cloud instances with a time commitment such as the reserved

instances are unsuitable for dynamic overlays, as they limit the elasticity of the overlay. Reserved

instances refer to the cloud instances that are leased for an extended period such as 1 - 3

years, for a discounted price. Reserved instances often offer savings similar to that of spot

instances – for example, 82% savings in Azure. However, due to the dynamic nature of the

network demand, the mandatory long-term commitment makes the reserved instances unfit for

the cloud-assisted network use cases, unlike the spot instances. EC2 spot instances are also

available with predefined duration from one to six hours, 30 - 50% cheaper than the on-demand

instances, making them less volatile and more reliable [17]. However, such instances force the

overlay provider to commit to those instances for at least an hour, to reap the benefit of their

less volatility with the increased price compared to the regular spot instances. Therefore, such

instances are unfavorable due to the unpredictability of the end user demand for more bandwidth

from the overlay provider for their data transfers.

Regions and Availability zones: Cloud providers have a global presence with several regions

and availability zones to maintain proximity to the user and offer fault tolerance to their cloud

infrastructure. Cloud data centers are present in several geographical locations that are known

as cloud regions. Each region has multiple availability zones. An availability zone consists of

1AWS, GCP, and Azure started their move to per-second billing from their per-hour and per-minute billings,
starting from October 2017 onwards.

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 58

data centers that are physically isolated from the other availability zones in the region, yet

connected through low-latency links internal to the cloud region network. Availability zones

provide resilience and fault-tolerance to the cloud regions.

Spot instance price fluctuations: Price fluctuations of EC2 spot market are inevitable and

are more vigorous for a few instance types in some availability zones at specific time frames.

Even identical spot instances of different availability zones, inside the same region, often have

different prices at times. In contrast, GCP preemptible instances have a fixed pricing scheme

unlike the dynamic pricing of EC2 spot instances. We monitored the availability, performance,

and price fluctuations of EC2 spot instances over a time frame of three months (April - June

2017). Throughout our experiments, Linux r4.8xlarge spot instances remained the cheapest, yet

memory-optimized EC2 instances with 10 GbE network interface. Each of these R4 instances

consists of 32 virtual CPUs and 244 GB of memory. They offer 10 Gbps bandwidth inside an

AWS placement group (a logical grouping of EC2 instances inside an availability zone, configured

by the cloud user to function as a cluster). Network transfers outside a placement group are

limited to 5 Gbps [20].

Figure 4.1 depicts the price fluctuations among the Linux r4.8xlarge instances of the avail-

ability zones of Frankfurt and Sydney regions during the three months. We observed up to

89% of savings with r4.8xlarge spot instances in Sydney, Frankfurt, and North Virginia regions.

The spot price for Frankfurt remained relatively low and stable across all the availability zones.

However, the spot price even exceeded the on-demand price in Sydney for availability zone 2b at

times, while the other two availability zones remained cheaper for the spot instances. Instances

of the zones eu-central-1c and ap-southeast-2c had a relatively steady and cheap price.

Figure 4.1: Linux r4.8xlarge Spot Instance Price in Frankfurt and Sydney, April - June 2017

We observe that by leveraging multiple availability zones in each region, a stable overlay

could be operated using the cheapest spot instances over time, without opting for on-demand

instances or instances with a predefined duration. While it is straightforward to opt for in-

stances from the availability zones that have remained cheaper recently with a stable price,

price increases and fluctuations in the future are unpredictable. Hence, while some spot in-

stances belonging to a particular availability zone are being terminated, spot instances may

be spawned in the other availability zones of the same region. Approaches such as EC2 Spot

Fleet [19] enable the cloud users to spawn and manage multiple spot instances in a unified

manner adhering to user specifications in target capacity and cost threshold. These approaches

mitigate the challenges of scale and complexity in managing a large number of spot instances

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 59

at once. This dynamic nature of the cloud-assisted network poses the questions and challenges

including, how the current active instances in each region is maintained effectively from a central

location such as an Amazon S3 (Simple Storage Service) bucket and how the inter-region traffic

should be re-adjusted to route to the current active instances.

4.1.2 Cloud Data Transfer

Inter-region cloud data transfer prices remain relatively high as there is no “spot data

transfer” that provides cheaper data transfer with a volatile bandwidth. Around 20% and 25%

of price reductions have been reported in 2010 [37] and 2014 [38] respectively, for data transfer

out from the EC2 instances. Despite the price reductions, the data transfer prices still remain

significant for large volumes of inter-region data transfer.

While it is typical for small enterprises and home users to connect to the cloud servers

through the public Internet, a dedicated connection or co-locating with a cloud PoP is rec-

ommended for large-scale data transfers to provide adequate throughput and cost efficiency.

Depending on a third-party connectivity provider such as ISPs to connect to the cloud server

limits the scale of data transfer. For example, typically ISPs offer up to 1 TB per month for

home users abiding by the data rate promised in the SLA. Using private direct connections,

cloud data transfers avoid the bottleneck caused by the Internet-based connectivity between the

user data centers and cloud servers. The virtual network overlay users must have an existing

connection to the cloud provider or set it up directly with the cloud provider or its partners. The

cloud user pays the installation cost and the monthly pay-per-use operational costs, to the cloud

provider. The Direct Connects are not more expensive than the alternative direct/end-to-end

connect options with the same throughput.

Cloud providers have varying pricing for their data transfers based on the origin and desti-

nation of the data transfer. Currently, cloud providers such as AWS and GCP do not charge for

incoming data transfers, regardless of the origin – from the other regions as well as the Internet.

They charge for outgoing data transfers, which differs based on the destination: the Internet,

a server connected by the cloud Direct Connect, another region, another availability zone in

the same region, or a cloud instance of the same availability zones. Data transfers outside the

cloud network and long distance data transfers cost more than the short distance data transfers.

For example, data transfers between regions cost more compared to the transfers between the

availability zones of the same region. Typically, cloud providers do not charge for outgoing data

transfers to another cloud instance of the same availability zone. AWS charges the inter-region

data transfers independent of the destination region, with a few exceptions for nearest regions

such as cheaper transfer between the US East regions – North Virginia and Ohio. On the other

hand, GCP clusters the regions into four groups (worldwide, Asia, China, and Australia) and

charge based on the group of destination region.

Cloud region price disparity: Figure 4.2 illustrates the variation of pricing among the AWS

regions to transfer a unit of data (1 TB), for transfers up to 10 TB. Larger transfers become

cheaper per unit, with the price reaching almost half when the total volume reaches 500 TB. For

example, the unit cost decreased from 92.16$/TB to 51.20$/TB for transfers out from regions 1

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 60

- 8 (Canada and EU-based regions, and US-based regions except for GovCloud) to the Internet.

The cloud data transfer options such as Direct Connect are cheaper than sending data from the

cloud to an end user server directly through the Internet. The discrepancy in pricing among

the regions is visible (which is comparable to the IP transit price disparity); regions 1 - 9 (US,

Canada, and EU) remain much cheaper than the others.

 0

 50

 100

 150

 200

 250

 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

C
o
st

($
)

p
e

r
T
B

AWS Region
AWS Region → Internet

AWS Region → Another AWS Region
AWS Region → Amazon Direct Connect

Amazon Direct Connect/Internet → AWS Region

Figure 4.2: Data Transfer Cost for AWS

We observe that currently, the data transfer pricing models from the cloud providers are

not supportive of a more comprehensive adoption of an Internet scale cloud-assisted network

and making such overlay network a reality requires additional research effort. First, there

is no differentiated pricing model based on the current local time or demand for bandwidth.

Second, cloud providers charge for data transfers by the volume of data transferred, rather than

by the data rate, unlike transit providers or ISPs. Regardless of the throughput, the cloud

user pays the same amount based on the volume of data transferred. Therefore, there is no

incentive for the cloud users to opt for a slower data rate even when their application is delay-

tolerant. Furthermore, not considering the cloud overlay network scenario, cloud providers

discourage long-distance inter-region data transfer to counter communication delays that are

typically caused by a poor SaaS design. Based on our observations and subsequent analysis on

the cloud data transfer offerings and the availability of cheaper spot VMs, we deduce that the

data transfer will contribute with the most significant share to the expenses for the Internet

scale overlays deployed over multiple regions. We posit that a cloud-assisted network should

take additional measures such as data compression and minimizing data transfer path lengths

to operate as a cost-efficient alternative connectivity provider.

4.2 Towards NetUber Deployments

In this section, we will look into the deployment architecture of three primary use cases

of NetUber : i) a cheaper point-to-point connectivity between two regions for data transfers,

ii) a premium connectivity between multi-cloud regions (i.e., cloud regions from two different

providers) [274] for end users for faster data transfer and better SaaS performance, and iii) a

connectivity provider with additional network services.

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 61

4.2.1 Economical Point-to-Point Connectivity

NetUber leverages spot instances to offer short-term or small-scale direct access between two

geographically separated endpoints, as an economical alternative to enterprise MPLS networks.

NetUber has no dedicated servers. It consists of several ‘brokers,’ simple cloud clients (i.e.,

such as AWS Command Line Interface (CLI) applications that request and maintain cloud

instances. NetUber brokers, as well as the other NetUber instances that function as virtual

routers, are hosted on a set of spot instances per region. NetUber leverages the cloud monitors

such as AWS alarms to ensure that each region has at least one broker instance that is active

and not scheduled for termination. For a stable overlay, NetUber needs some instances that

function as virtual routers in each region, based on the bandwidth demand and the number of

active instances at any given time. Since cloud providers bill their instances per second, at any

moment, the broker purchases and maintains instances from the availability zone that has the

cheapest among the available high-performance memory-optimized cloud instances in a region.

It terminates the expensive instances at the earliest.

Each virtual router can dynamically connect to the virtual routers of certain spot instances

of another region through the overlay, based on the users’ connectivity or data transfer requests.

NetUber uses simple network routing policies in its overlay to transfer data to the VMs of

other regions that function as virtual routers. It is possible to use an Amazon Machine Image

(AMI) to instantiate an enterprise cloud router in each spot instance of NetUber . Although such

enterprise cloud routers efficiently route the data between the endpoints in the cloud network,

these software routers are expensive to acquire and maintain over time. NetUber avoids the use

of such virtual routers, to remain economically feasible. The routing policies of NetUber spot

instances are primitive, due to the limited knowledge and control available to the cloud users

regarding the underlying cloud backbone network. With the awareness of the cloud provider

network, we can improve the inter-region routing efficiency of NetUber .

Consider a scenario where an end user chooses to send data from her server so to the

destination server sd. These servers are in the cloud provider regions ro and rd respectively

and are connected to the cloud provider through a dedicated connection such as Amazon Direct

Connect. Figure 4.3 illustrates a representation of a sample NetUber deployment that offers

a direct connection between so and sd. NetUber is composed of many spot VMs in multiple

regions, connected through the overlay network of virtual routers.

Spot Market: Cloud Provider - 1

Origin
Server: so

Destination
Server: sd

Region - ro Region - rd

Broker
Instance

Broker
Instance

Spot
VMs

Figure 4.3: NetUber Deployment with a Single Cloud Provider

NetUber aims to maximize the effective data rate from its cloud instances, with minimal

underutilization. NetUber shares the instances across users for multiple data transfers – at

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 62

the same time, or at different time intervals, based on the data rate required for the transfer.

The broker instances monitor the resource utilization of the current VMs purchased in the spot

market. A spot fleet defines how a group of spot instances should be spawned. Therefore, spot

fleets are capable of spawning and managing multiple spot instances at once. The NetUber

brokers alter the spot fleet policies to bid for more instances, when the existing VMs are not

sufficient (measured with a margin, to avoid performance degradation) to address the demand

for connectivity and when the price for the spot instances are profitable to NetUber . Hence,

the broker instances acquire spot instances based on the current spot instance pricing, the

bandwidth demand from the end users, and the spot fleet policies. The technical challenges

include, i) initializing a newly spawned instance to operate as a virtual router in a short time,

and ii) ensuring that the instances can be connected and identified through an overlay, other

than their physical address, as spot instances remain volatile. The broker retrieves the list of

spot instances in each region through the AWS CLI and EC2 APIs.

4.2.2 Higher Performance Point-to-Point Interconnection

NetUber aims to increase flexibility and control in choosing the shortest Internet paths. On

the intra-domain traffic, an ISP can seek the shortest path as it controls the network. Since

the Border Gateway Protocol (BGP) [329] decisions are mainly policy-oriented, Internet-based

connections that typically rely on BGP may not result in the selection of the best or the shortest

path. With the cloud instances, NetUber can choose to intelligently route the traffic towards

the VMs in the specific regions, minimizing the number of hops and path length.

Currently, a few cities and geographical regions host the cloud regions for multiple providers.

For example, North Virginia, Mumbai, London, São Paulo, Tokyo, and Singapore host both

AWS [18] and GCP [135] regions. Ohio, North Carolina, Seoul, Canada central, and Ireland

are AWS regions but not GCP regions; Iowa, Belgium, South Carolina, and Taiwan are GCP

regions that are not AWS regions. Figure 4.4 elaborates this scenario with the cloud provider p

having presence in regions ro and ri, and the provider p+ 1 with presence in regions ri and rd.

None of the providers are present in both ro and rd, while both providers are present in ri.

VM Instances: Cloud Provider - p+1

 VM Instances: Cloud Provider - p

so

sd

Region - ro Region - rd
Region - ri

Figure 4.4: Deployment Across Multiple Cloud Providers

NetUber functions as a mediator between the two cloud providers to enable data transfer

from ro → rd by interconnecting between the cloud providers in ri. The inter-cloud interconnec-

tion at ri incurs minimal latency thanks to the proximity of the multi-cloud servers, which may

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 63

even share the same co-location facilities or potentially be interconnected via a direct connection

between the servers of the cloud providers. For example, AWS Direct Connect can offer a direct

interconnection between a pair of AWS and GCP instances in ri. Even the Internet-based con-

nectivity between the cloud providers in the same region imposes minimal overhead due to the

proximity of the cloud servers. Therefore, NetUber provides a higher performance point-to-point

connectivity for the end users for data transfers to a geographically remote region, instead of

connecting directly through an ISP.

NetUber needs to consider operational differences between the cloud providers for stable

execution. For example, currently, an EC2 instance will be terminated by AWS when the current

spot price exceeds the bid, with a 2-minute notice. GCP provides a 30-second notification, and

Azure has proposed to offer the same. An EC2 spot instance is terminated either by the user

or by AWS when the current spot price exceeds the user bid price or when the spot resource

pool in an availability zone is overutilized. GCP terminates every spot instance 24 hours after

it was started, as well as when there are inadequate resources in the spot markets to support

the spot instances. NetUber avoids shutting down instances on its own for the sake of stability,

except for terminating the additional instances after sustaining a significant spike in bandwidth

demand.

A SaaS provider can use NetUber , instead of having geo-replicated deployments in multiple

cloud regions which can be technically more challenging and more expensive. Besides, when

state laws or organizational policies prohibit replicating data outside a given region, NetUber

can be leveraged for data access with minimal data movement, yet with minimal redundancy.

Furthermore, NetUber supports low-latency SaaS execution in more regions beyond those sup-

ported by any single cloud provider. For example, SaaS applications hosted in the region rd
can be accessed by an end user in ro through NetUber more reliably than through the public

Internet. Thus, a SaaS provider can exploit NetUber to create a point of presence in multiple

regions while hosting the application in just a single region. Hence, NetUber can be a potential

cost-efficient and high-performant alternative to geo-replicated solutions.

4.2.3 A Provider of Network Services

Hosting VNFs and SaaS on top of an overlay such as NetUber is straightforward as these

applications directly consume the cloud resources. VNFs such as packet scrubbers, transcoder,

firewalls, load balancers, and proxies, can be hosted in the spot VMs of NetUber as SaaS to

perform middlebox actions to alter the data flow transferred atop the overlay. For example,

forwarded data can be encrypted or compressed at an instance before the inter-region transfer,

if prompted by the user, as additional services. Encryption enhances the privacy of the data

transferred, while compression allows an economic transfer, with minimal latency as data can be

compressed in-memory in the spot instances. We can host caching services in NetUber instances

to optimize or limit WAN traffic. NetUber can also be used for content distribution or mitigation

of Distributed Denial of Service (DDoS) attacks on the end user networks.

The choice of specific cloud instances depends on the offerings and cost model of each cloud

provider. As of now, AWS Direct Connect offers maximum flat connectivity of 10 Gbps. AWS

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 64

recommends its memory-optimized R4 instances for in-network computations and stable net-

work bandwidth. There are memory-optimized instances with either 10 GbE (i.e., cr1.8xlarge,

r3.8xlarge, r4.8xlarge, r5.12xlarge, r5d.12xlarge, x1.16xlarge, and x1e.16xlarge) or 25 GbE in-

stances (i.e., r4.16xlarge, r5.24xlarge, r5d.24xlarge, x1.32xlarge, and x1e.32xlarge). The 10 GbE

instances can utilize their port speed completely with the maximum data rate of 10 Gbps offered

by the AWS Direct Connect. On the other hand, currently, it is impossible to entirely utilize

the ingress port of 25 GbE instances with a single AWS Direct Connect, as the current port

speed is limited to 10 Gbps for the Direct Connect. NetUber finds the cheapest among the spot

instances for a unit end-to-end (from an origin user server to a remote destination server) data

transfer, as configured in the broker policies. It avoids selecting cheaper instances that offer

slower end-to-end connectivity and consequently cost more to achieve the same data rate.

The memory-optimized 10 GbE and 25 GbE spot instances are ideal for computation-

intensive network functions, as opposed to smaller unstable spot instances, due to their stable

network with a promised data rate. As we observed over a period of 3 months, NetUber continued

to leverage R4 instances of 10 GbE, primarily r4.8xlarge instances, among the given complete

list of 10 GbE and 25 GbE memory-optimized instances. These optimized r4.8xlarge instances

have sufficient memory (244 GB memory each) and CPU resources. Thus, with a relatively

stable memory, computing, and networking resources across the regions, NetUber can be used

as a framework for third-party network services on a cloud platform. The routing policies of

NetUber spot instances are primitive, due to the limited knowledge and control available to the

cloud users regarding the underlying cloud backbone network. With the awareness of the cloud

provider network, we can improve the inter-region routing efficiency of NetUber .

4.3 Economic Models for Cloud-Assisted Connectivity

Cloud providers list their VM prices at an hourly rate though they charge per second.

NetUber follows the same pricing scheme since it acquires the cloud instances that are the core

of its infrastructure on a per-second basis. Since the connectivity providers list their charges

per-month, we assume one month as the total time in our models, for a fair comparison.

Data Transfer Cost: Equation 4.1 presents λo,d, the end-to-end unit data transfer cost from

so to sd using a single cloud provider. Currently, cloud providers do not charge for incoming

data from the Internet or another region. The NetUber end users incur a cost, Do and Dd,

to connect their servers so and sd to the cloud provider. For example, AWS Direct Connect

charges the end user per used port-hours, at an hourly rate. λro,rd and λrd,sd refer to the unit

data transfer cost between the cloud regions (ro and rd) and between the rd and sd.

λo,d = Do + λro,rd + λrd,sd +Dd (4.1)

Equation 4.2 extends Equation 4.1 to compute the cost incurred in a multi-cloud scenario

involving two cloud providers, as depicted by Figure 4.4. ∀p, p + 1 ∈ P ⊂ Z+, λ(p) denotes the

unit data transfer cost by the cloud provider p. The instance of the cloud provider p+1 in ri is

just an external server connected through the public Internet (ISP-based) or a dedicated direct

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 65

connectivity as far as the cloud provider p is concerned, whereas it functions as the origin cloud

server from the perspective of the cloud provider p+1. Thus, the cost associated with the cloud

provider p is denoted by λ
(p)
ro,ri + λ

(p)
ri,si , whereas the cost associated with the cloud provider p+1

is denoted by λ
(p+1)
ri,rd +λ

(p+1)
rd,sd . ∀p, p+1 ∈ P , D

(p|p+1)
i denotes the cost of interconnection between

the NetUber spot instances of cloud providers p and p+ 1 at the region i. D
(p)
o and D

(p+1)
d are

typically paid directly by the end user to the cloud provider, as such direct connects are set up

directly by the end user. However, D
(p|p+1)
i is paid by NetUber to one of the two providers who

manages the direct connection from their instances to the other provider’s instances at i. We

leave addressing the challenges associated with creating and maintaining such direct connects

between the spot instances of multiple cloud providers as a future work.

λ
(p,p+1)
o,d = D(p)

o + λ(p)
ro,ri + λ(p)

ri,si +D
(p|p+1)
i + λ(p+1)

ri,rd
+ λ(p+1)

rd,sd
+D

(p+1)
d (4.2)

Equation 4.3 generalizes Equation 4.2 for the scenario of NetUber exploiting multiple cloud

providers for a single data transfer. When there is no overlap between the regions of the origin

and destination cloud providers, p, p + n ∈ P , NetUber require data transfer through several

intermediate cloud providers. However, we observe that currently the number of cloud providers

and their regions are limited and are mostly overlapping across the providers and as such, this

scenario remains mostly futuristic. Here, roz, rdz, sdz depict the origin region, destination region,

and destination external server, from the perspective of z ∈ P .

∀z ∈ [p, p+n] ⊂ P : λ
(p,p+n)
o,d = D(p)

o +

p+n∑
z=p

(
λ(z)
roz ,rdz

+λ(z)
rdz ,sdz

)
+

p+n−1∑
z=p

(
D

(z|z+1)
i

)
+D

(p+n)
d (4.3)

Total Cost: We formulate the total cost C from all the providers for NetUber data transfer,

in Equation 4.4. C consists of the cost associated with acquiring the spot VMs and the cost of

data transfer. cp,r,v,t defines the cost for a spot instance from the cloud provider from a region

at a given time interval between t0 and tf . Since the spot price continues to fluctuate, the cost

to acquire the required number of spot VMs (v ∈ V) in each of the regions (r ∈ R) is calculated

as a time integral over their execution time, and summed for all the instances from each region

of all the cloud providers. The data transfer cost is billed by the cloud provider per the volume

of data transferred. Therefore, it is calculated by a time integral of data rate bt through a cloud

path to its completion. Since λo,d denotes the unit data transfer cost involving all the cloud

paths, we calculate the total data transfer cost from the first NetUber instance that receives the

user traffic, ∀v ∈ Vro , for each region of all the cloud providers.

C =
∑
p∈P

∑
r∈R

[∑
v∈V

∫ tf

t0

cp,r,v,tdt+
∑
v∈Vro

∫ tf

t0

(λo,dbt)dt

]
(4.4)

Effective Data Rate: We observed that the data rate of the inter-region data transfers bt is

proportional to the network interface (β) of the instance. β is 10 Gbps or 25 Gbps in the 10

GbE and 25 GbE instances used by NetUber , respectively. However, it is impossible to reach the

full network interface capacity in the inter-region data transfer. Cloud data transfers between

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 66

regions have a degradation from the promised network interface. We define the degradation in

the data rate of inter-region data transfer as a ratio of the network interface of the pair of VM

instances, χt ∈ (0, 1). The actual data rate bt = β × (1− χt).

Data compression at the source can significantly reduce the costs, given that cloud providers

do not charge for the incoming data. Many cloud compression tools, general purpose or optimized

for specific file formats, make lossless compressions feasible at the time of the cloud transmis-

sion [355]. By compressing the data before the inter-region transfer, we can significantly increase

throughput or the actual data transferred per unit time. We define a compression ratio, γt as

the percentage of size reduction from compression without incurring data loss. γt and χt vary

with time, unpredictable to NetUber . Equation 4.5 illustrates the effective data rate b.

b =
bt

1− γt
=
β × (1− χt)

(1− γt)
;χt, γt ∈ (0, 1) (4.5)

NetUber Cost Model: NetUber proposes to charge its end users based on their requested

bandwidth (b), the length of the bandwidth usage (τ), and a direct unit (per time unit, per unit

data rate) cost (Λo,d) to acquire the instances and data transfer from the cloud provider. cp̄,ri
defines the cost of acquiring intermediate instances (from the cloud region i) from any provider

z for the cloud transfers involving multiple providers. This cost will be 0 if NetUber overlay is

built with just one cloud provider (|P̄ | = 1), as there will be no inter-cloud data transfers that

require an intermediate cloud instance as a mediator across the cloud providers. β defines the

network interface of the instance. To find the instance cost per unit data rate, we divide the

cost of instances by the capacity of their network interface. Thus, Equation 4.6 defines the total

cost per unit data rate.

Λo,d = β−1 ×
(
cpo,ro + cpd,rd +

∑
|P̄ |≥2

cp̄,ri

)
+ λo,d (4.6)

NetUber defines the charge (typically billed per second and charged monthly) for its end

user u ∈ U as a cost function f , as illustrated by Equation 4.7. The total cost for NetUber

consists of the cost of acquiring spot instances and the data transfer costs. The cost function is

defined dynamically, such that the total income of NetUber from its end users in the specified

time frame for their connectivity demands remains higher than its total cost. This cost scheme

ensures that the NetUber meets its monthly profit margin of ε.

∃ε > 0 :
∑
u∈U

f(τ, b,Λo,d)− C > ε (4.7)

Both technological and economic aspects have shaped NetUber design decisions and how

NetUber purchases the spot instances. Various approaches have been proposed, to reap the

economic benefits, while addressing the technical challenges inherent to the volatile nature of

spot instances. NetUber exploits the differentiated pricing of various availability zones for a

relatively stable overlay. While NetUber bids in multiple regions to acquire VMs in geograph-

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 67

ically distributed locations to host the virtual routers, it cannot use migrations between VMs

in different regions for cost efficiency, as it will, in turn, increase the bandwidth consumptions

and the number of hops. We see NetUber as the first complete research to propose a practical

approach that separates the network from the infrastructure to function as a virtual connectiv-

ity provider. NetUber lets a third-party cloud user create an inter-cloud architecture to offer

connectivity to end users, ensuring the economic and technical feasibilities.

4.4 Evaluation

In this section, we aim to answer two questions: i) when is NetUber more cost-efficient

than connectivity providers?, and ii) how does the performance of NetUber compare to using

ISP-based public Internet paths? We deployed a prototype of NetUber on AWS to evaluate its

long-term performance and stability, and to answer the identified questions. We configured the

policies to choose the memory-optimized cloud instances that are the cheapest per second and

data rate. We executed our experiments continuously for a period of 3 months (April - June

2017) to find the monthly costs, mean performance indicators (such as throughput and latency),

or the variations (such as jitter), appropriately.

Prototype development and deployment: We performed an initial assessment on sev-

eral pairs of origin and destination regions to choose and maintain the necessary spot instances

for a stable NetUber overlay. NetUber policies chose r4.8xlarge spot instances (each with 10

GbE network interface) as the primary instances across all the AWS regions that we evalu-

ated throughout the 3 months. A single TCP connection between the instances of any two

regions reached around 50 Mbps. With parallel connections, NetUber achieved 1.2 Gbps of

maximum stable inter-region bandwidth between the pair of 10 GbE instances functioning as

virtual routers. We confirmed that the obtained maximum bandwidth was independent of the

origin and the destination regions2. Therefore, we deployed the NetUber prototype on at least

9 pairs of r4.8xlarge spot instances to achieve 10 Gbps bandwidth between two regions. We

evaluated the other instance types such as r3.8xlarge and confirmed that no instances offered a

lower degradation χt than the r4.8xlarge instances, hence justifying the choice of r4.8xlarge.

Infeasibility of using smaller or on-demand instances: We considered smaller spot in-

stances and on-demand instances as potential alternatives to the R4 spot instances that NetUber

primarily uses. The smaller instances such as C3 have a moderate network. We found two is-

sues with these moderate network instances: i) we need to acquire a lot of them, which is more

complicated to maintain due to the need for a substantial number of parallel connections, and

ii) they are very unstable. We noted that with the cost of acquiring the 10 GbE instances,

we could have around 2 - 4 Gbps, yet unpredictable, inter-region bandwidth with numerous

moderate-network spot instances. The R4 instances r4.8xlarge and r4.16xlarge have 10 GbE

2We repeated the same experiments after 16 months from our original evaluation reported in this section, with
the same instance types of 10 GbE. As of 2018 October, with up to 128 parallel connections, we achieved up to
4.8 Gbps between remote cloud regions and 441 Mbps between our servers and remote cloud regions. We believe
that the cloud paths will continue to improve with time, thus making NetUber more competitive.

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 68

and 25 GbE interfaces, respectively. However, unlike these 10 Gigabit and 25 Gigabit memory-

optimized instances, the other instances (low, moderate, high, up to 5 Gigabit, and up to 10

Gigabit network instances) offered no promised guarantees for the bandwidth.

We were able to obtain the R4 spot instances promptly while having to wait for up to one

hour to acquire a large number of moderate network instances required to meet our bandwidth

demand. The r4.8xlarge instances of NetUber stayed alive throughout the experiments that

lasted up to 3 months, while smaller instances shut down intermittently. Thus, it was possible

to have a stable overlay over the 10 GbE and 25 GbE memory-optimized spot instances, whereas

it was not feasible over the smaller ones. Our evaluations confirmed that there was no difference

in the quality of paths (concerning throughput, latency, loss rate, and jitter) between the on-

demand and spot instances of the same instance type. Thus, we observed that using smaller

on-demand instances provide worse data rate or a much higher cost than using the 10 GbE spot

instances. Therefore, we could not favor the on-demand instances for the stability that they

supposedly offer, compared to the spot instances. We indeed note that if the spot price reaches

the on-demand price or more, NetUber can choose to spawn on-demand instances for its overlay

network. However, we estimate that such a situation would be economically disadvantageous

to NetUber as it would incur higher monetary costs in acquiring and maintaining the cloud

instances, even though it is technically a trivial task to achieve.

4.4.1 Economical Alternative to Connectivity Providers

To evaluate the cost efficiency of NetUber for its end users, we compare the data transfer

cost of NetUber from Frankfurt to Sydney, against the offerings of 2 connectivity providers in

the EU/US regions, identified as CP-1 and CP-2 in Figure 4.5. Due to cost restrictions, our

extensive study on the actual economic cost only covers this pair of EC2 regions. However,

based on the past approximate spot instance pricing details we gathered, we believe that our

findings are applicable for any pair of regions. We also consider a compressed data transfer with

NetUber in the evaluations, accounting for a potential compression-as-a-service deployment in

the spot instances. We report the cost of the instances as the average price during the period.

 0

 2000

 4000

 6000

 8000

 0 50 100 150 200 250

C
o
st

 (
$
)

Transferred Data (TB)

NetUber
NetUber (75% Compr.)

CP-2

CP-1 (Basic)
CP-1 (Premium)

Figure 4.5: Monthly Fee for 10 GbE Flat Connectivity

We obtained price quotes of the connectivity providers CP-1 and CP-2 via private email

queries. CP-1 is an infrastructure provider with an extensive, geographically-distributed infras-

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 69

tructure that offers connectivity as an alternative to transit providers. It provides two options:

a basic scheme to connect to regular networks choosing the cheapest paths, and a more expen-

sive scheme to connect to premium networks and large IXPs for better throughput and shortest

routes. CP-2 is a transit provider. As these quotations are not public (as typically transit

providers do not publicly list the prices), we must refrain from disclosing the providers. NetUber

cost includes the costs of acquiring spot instances, data transfer costs, and the AWS Direct

Connect cost for a continuous data transfer of the given volume.

Figure 4.5 depicts the minimum price of NetUber as the cost charged by EC2 for the spot

instances and the data transfer, considering regular (γt = 0; χt = 0.88) and compressed (γt
= 0.75; χt = 0.88) data transfers. Up to 75% of lossless compression has been reported in

compressing real-time streaming data [147]. We demonstrate a similar (0.75) or higher γt with

in-memory compression at ro. With these values, b = bt / (1 - 0.75) = β · (0.12) / (0.25) =

0.48 · β = 4.8 Gbps, from Equation 4.5. Here, bt = 0.12 is derived from the observation that

1.2 Gbps was received from the 10 GbE R4 instances. The inter-region data transfer achieves

only 0.12 · β (or 0.48 · β with compression). AWS Direct Connect offers a stable port speed,

which can be as high as a constant value of 10 Gbps. Thus, AWS Direct Connect reaches the

data rate of β, since β = 10 Gbps for our desired r4.8xlarge instances.

Up to 3164.0625 TB/month (10 Gbps = 10/8 · 3600 · 24 · 30 GB/month) of data can be

transferred between a pair of instances with 10 GbE interface. For volumes of data transfers up

to at least 50 TB, NetUber always offered a competitive price (compared to the benchmarked

connectivity providers) and remained globally profitable. When 75% compression is assumed,

NetUber was still cheaper up to 200 TB. By leveraging the availability of abundant memory in

the memory-optimized instances (such as the R4 instances that NetUber primarily uses), we can

employ enhancements profitable to NetUber or execute additional VNFs as value-added services

on the data traffic.

4.4.2 Higher Performance Point-to-Point Interconnection

NetUber is not always cheaper. But can it perform better when it is equally or more

expensive than using the standard Internet-based connectivity? We benchmark the throughput,

latency, and jitter of NetUber in various cases, against exclusively using the Internet-paths.

Throughput: We measured the throughput of NetUber against that of using the public

Internet access provided by the ISPs, in transferring data between two distant servers so and

sd. so is a server close to the cloud region ro. It is connected to the Internet via an ISP. sd is a

cloud server in the region rd. We first measured the throughput of data flows between so and

sd directly via the public Internet (T (so, sd)I). Then we measured of throughput of NetUber ,

(T ′(so, sd)), via the NetUber cloud overlay between ro and rd. We connected so to ro via the

public Internet (thus with a throughput of T (so, ro)I). Throughput of NetUber is limited by

max(T (so, ro)I , T (ro, rd)C). Here, T (ro, rd)C) refers to the data rate of NetUber overlay between

the cloud regions.

Figure 4.6a illustrates the achieved throughput in sending data from our server in Atlanta

to cloud servers in various regions, first directly via the ISP-based connectivity, and then via

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 70

NetUber . In the case of NetUber , we first send the data to a specific cloud region (typically the

one that is proximate to the origin server) such that we achieve the highest data rate from our

origin server to the cloud overlay. Then, NetUber forwards the data via the cloud overlay to

the cloud server in the destination region. We observed North Virginia to offer the highest data

rate in our experiment, as it provided 256 Mbps when connected to our server via the ISP. We

note the geographical proximity of our server to North Virginia region as a potential influencing

factor in providing the high throughput. Since the cloud overlay offered 1.2 Gbps, the path

between the origin server and the origin cloud region remains the bottleneck in the NetUber

data transfer.

 0

 50

 100

 150

 200

 250

 300

 2 4 6 8 10 12 14

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Cloud Region

ISP-based Connectivity
NetUber

(a) Atlanta to Various Cloud Regions

 0

 50

 100

 150

 200

 250

 300

 350

 1 2 3 4 5 6

T
h
ro

u
g
h
p
u
t

(M
b
p
s)

Data Transfer Index

ISP-based Connectivity
NetUber (Selective)

(b) Selectively Using NetUber Cloud Overlay

Figure 4.6: Throughput of NetUber with ISP-based cloud connect

We observe that connecting the cloud servers from far regions via the ISP offered lower

throughput. ISP and NetUber provide the same throughput when ro = rd, i.e., the destination

server is in the closest region to the origin server (as can be seen by the cloud region 15 in

Figure 4.6a which refers to North Virginia). By routing the data traffic via the high-performing

path consisting of Atlanta → North Virginia, we exploit NetUber to offer a higher end-to-end

data rate compared to ISP. Furthermore, NetUber exploits the cloud path as well as the faster

connectivity to the nearest cloud region to provide a uniform data rate to the cloud servers,

regardless of their regions.

We then configured the NetUber deployment to send data between two geo-distributed

endpoints, selectively leveraging the cloud overlay for part of the route. Figure 4.6b illustrates

that such selective use of NetUber led to a better or equal throughput to using ISP for the

data transfer entirely. The data transfer exploited the overlay only when routing through the

overlay provided a better throughput, while resorting to entirely using the ISP-based public

Internet paths when no cloud region was proximate to the origin or destination to offer better

performance. Therefore, we note that one can even use NetUber selectively, such that only

the transfers with a cloud region en route (such as the presence of a cloud region close to the

origin or the destination) would go through the NetUber overlay to achieve better latency and

throughput whereas the other data transfers resort to their default connectivity provider.

Latency: We benchmarked NetUber along with ISPs for faster Internet routes, against using

just an ISP. We compare the Round-Trip Time (RTT) latency (i.e., ping time) between two

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 71

Table 4.1: Ping Times (ms): Regular Internet vs. NetUber

Origin → Destination Direct NetUber (via) Improvement

Vladivostok, RUS → São Paulo, BRA 362.72 307.08 (Tokyo) 15.34%

Hobart, Tasmania, AUS → Mumbai, IND 347.22 248.41 (Sydney) 28.46%

Seoul, KOR → São Paulo, BRA 321.72 299.31 (Seoul) 6.97%

Tashkent, UZB → Singapore, SGP 351.61 258.57 (Mumbai) 26.46%

Nairobi, KEN → Tokyo, JPN 403.87 386.37 (Mumbai) 4.33%

Frankfurt, DEU → Tokyo, JPN 296.87 237.34 (Frankfurt) 20.05%

Thuwal, SAU → Tokyo, JPN 346.01 324.30 (Frankfurt) 6.27%

Prague, CZE → São Paulo, BRA 224.90 221.40 (Frankfurt) 1.56%

Nuuk, GRL → Sydney, AUS 415.02 352.46 (Canada) 15.07%

Fairbanks, AK, USA → Mumbai, IND 441.57 435.64 (Canada) 1.34%

São Paulo, BRA → Paris, FRA 239.45 210.72 (São Paulo) 12.00%

Tacuarembó, URY → Montreal, CAN 203.42 186.01 (São Paulo) 8.56%

endpoints that connect through NetUber against the latency using Internet-based connectivity

of ISPs. For the geographically distributed servers, we used RIPE ATLAS Probes [33] as well

as our physical servers, all connected to the Internet via an ISP. We sent pings between the

server endpoints, first through the ISP, and then via NetUber by entering the overlay through

the nearest AWS region. We repeated the evaluations ten times and listed the average ping

times (in milliseconds) in Table 4.1, along with the AWS region that the ping is routed through

for NetUber , as well as the improvement when using NetUber . In all the cases, we observe that

going through NetUber overlay offered better latency (up to 30% improvement) than directly

connecting through the ISP, as long as a cloud region exists relatively near to the origin server,

en route to the destination.

Jitter: Finally, we benchmarked the jitter of NetUber against that of the ISP-based internet

connectivity by observing the variations in latency. We modeled data transfer from Atlanta to

Sydney, Tokyo, Mumbai, and Seoul, via the cloud region of North Virginia. North Virginia was

chosen based on our previous observation of the highest data rate. We considered two scenarios

of NetUber in connecting our server in Atlanta to the cloud servers. First, via the ISP-based

connectivity, and then via a dedicated link (such as the AWS Direct Connect) that we modeled.

Figure 4.7 shows the latency variations as observed during intervals of 5 hours (measured over

different periods in a day), for the data flow between the 4 pairs of origin and destination.

We observe that NetUber offers minimal latency and jitter across all the destination cloud

regions. On the other hand, when using the ISP-based public Internet paths entirely, the jitter

significantly relies on the time of the experiment as well as the destination. The cloud paths

were more stable than the Internet paths, with minimal latency and jitter. However, we observe

a higher jitter and latency (even though still lower than using the public Internet paths entirely)

when we configured NetUber with ISP rather than a dedicated link between the origin server

and the cloud overlay. This observation indicates that the connection between the origin to the

nearest cloud server via the ISP contributes more to the jitter when using NetUber without a

direct connect. Even when NetUber demonstrated a high jitter due to the variation in cloud

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 72

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

La
te

n
cy

(m
s)

Timestamp(minute)
ISP-based/Public Internet Path

NetUber via Public Internet Path
NetUber via a Direct Connect

(a) Atlanta to Sydney

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

La
te

n
cy

(m
s)

Timestamp(minute)
ISP-based/Public Internet Path

NetUber via Public Internet Path
NetUber via a Direct Connect

(b) Atlanta to Tokyo

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

La
te

n
cy

(m
s)

Timestamp(minute)
ISP-based/Public Internet Path

NetUber via Public Internet Path
NetUber via a Direct Connect

(c) Atlanta to Mumbai

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 50 100 150 200 250 300

La
te

n
cy

(m
s)

Timestamp(minute)
ISP-based/Public Internet Path

NetUber via Public Internet Path
NetUber via a Direct Connect

(d) Atlanta to Seoul

Figure 4.7: Latency (RTT) variations of NetUber and the ISP-based Internet paths

overlay network as shown by the data transfer between North Virginia and Tokyo (Figure 4.7b),

using public ISP to connect the origin and destination led to an even larger jitter.

Loss rate: Our pings indicated that the cloud paths of NetUber did not contribute to packet

loss, and showed a positive impact on minimizing the packet losses. We observed a loss rate of

1.33% when data was transferred from Atlanta to Sydney via the public Internet paths, and 1%

when NetUber was used in conjunction with the ISP to connect the origin server to the cloud

region. However, NetUber with direct connect incurred 0% loss. All the other regions had a 0%

loss rate in all 3 cases.

The results indicate that even without dedicated connections to the cloud provider, an ISP

user can resort to NetUber for several reasons. First, NetUber still offers better latency, jitter,

loss rate, and throughput for data transfer. Furthermore, it can offer better access to SaaS hosted

in a far cloud region, compared to directly connecting through the user’s ISP. However, NetUber

demonstrates an even better performance when a dedicated connection such as Amazon Direct

Connect connects the servers to the overlay. Similarly, NetUber can also be used in conjunction

with Fiber to the home (FTTH) [307], and community-based initiatives [32] for faster Internet

routes.

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 73

4.4.3 Qualitative Assessment

We note that the results presented depend on the regions and the cloud provider. Although

we observed a stable network with the R4 spot instances over three months, we note that

this depends on the market and demand of the spot instances, with significant dependence on

how the spot markets will evolve in the future, concerning pricing and policies from the cloud

provider. Similarly, the evaluations on performance such as latency, throughput, jitter, and loss

rate depend on how the Internet paths behave as well as the performance of the cloud backbone

network, over time. Our extensive evaluations are indeed limited to three cloud regions due to

the limited cloud credits (i.e., the monetary cost to spend on the cloud resources) that were

available to us. However, based on the historical data of cloud pricing, we note that the results

can be generalized for any pair of cloud regions.

Virtual connectivity providers that do not control the infrastructure have been proposed,

with an approach similar to that of NetUber [121, 360, 60]. NetUber focuses on leveraging

the cheap spot instances, and thus offers an economical approach to deploy on a large scale.

Software-Defined Internet Architecture (SDIA) [284] and NetUber share the goal of connecting

endpoints on the Internet regardless of the underlying infrastructure. However, NetUber focuses

on network virtualization and does not alter how the underlying physical network works. Con-

sequently, NetUber can be deployed on existing cloud providers without any modifications to

the cloud networks. While Jingling [132] delegates network functions to third parties, NetUber

virtualizes the entire network with virtual routers running atop spot VMs, by a third party

broker. Both NetUber and Jingling do not have control over the exact physical location of the

system. Thus, specifying policies of the end users and identification of the cloud instances should

be done through the service layer instead of the physical address. Moreover, cloud resources

of NetUber can be leveraged for more than just connectivity, including network services such

as caching, content distribution to multiple local subscribers, and data analytics over wide-area

networks [337].

It will be a test of time to note how long a cloud-assisted network such as NetUber continue

to be a competitive connectivity provider, technically and economically. We note the potential

for the cloud provider themselves to operate such a cloud-assisted network overlay, thus limiting

the market potential for a third-party overlay network provider such as NetUber . The inter-cloud

architecture remains a more convincing use case for a third-party connectivity provider, which we

leave as future work for deployment and evaluation across two or more cloud providers. An inter-

cloud architecture would require cloud direct connects between the VMs of the cloud providers in

multiple overlapping regions of the cloud providers. Consequently, this would need NetUber to

purchase the cloud direct connect from one cloud provider from each pair of cloud providers that

interconnect with each other in each region. We also leave Internet measurements across all the

countries and the impact of NetUber on those regions as future work. Cloud direct connects to

such remote regions would be challenging and impossible without a cross-country collaboration

that spans the Internet. However, that would make a complete case for the challenges and

opportunities for cloud-assisted networks as a connectivity provider.

CHAPTER 4. CLOUD-ASSISTED NETWORKS AS A CONNECTIVITY PROVIDER 74

4.5 Conclusion

Connectivity providers limit their agreements regarding minimum duration and scale, pre-

venting end users with short-term (in the scales of minutes, as opposed to months), or low

bandwidth requirements. We built NetUber as a cloud-assisted overlay that offers end-to-end

short-term connectivity in smaller-scales to address this shortcoming. NetUber runs atop spot

instances purchased from cloud providers for a low price. In this chapter, we built a case on

why a virtual connectivity provider without any fixed resources may not just be technologically

feasible, but also be economically sustainable. We presented case studies with NetUber as i)

an economical alternative to connectivity providers for data transfers up to 50 TB, ii) a higher

performance alternative to ISPs for inter-region data transfer, and iii) a provider for network

services. We observe the enhancements concerning throughput, latency, jitter, and loss rate in

comparison to ISPs and cheaper data transfer for small decentralized enterprises.

Our analysis of the spot instance prices indicates that the cost for a cloud-assisted over-

lay network depends on several factors, including geographical locations of the endpoints and

current demand for the cloud instances in the region. The exact instance types to choose for

a stable network and competitive pricing heavily depends on the time. As time passes by, the

cloud providers may change their instance types, pricing schemes, or the policies regarding spot

instances. While these changes may positively or negatively affect the feasibility to operate

NetUber profitably, we highlight that currently, it is a possibility considering both monetary

cost and performance. Furthermore, we observe that after 16 months since our original analysis

presented in this chapter, the cloud inter-region bandwidth has improved, thus making NetUber

even more competitive. We believe that the network softwarization achieved in the global-scale

through the use of spot instances can provide innovations in the network industry, and may

even attract cloud providers to offer their connectivity solutions given that they currently have

a large unified global network presence.

5
SDN Middlebox

Architecture for Resilient

Transfers

Cloud providers share their infrastructure among various tenants, yet often with a separate

virtual execution environment for each of their tenants. The network flows belonging to the

tenant executions can be of different priorities based on the nature of their respective application.

Cloud providers should ideally pass the tenant policies to the network control plane to ensure

that the network flow scheduling approaches align with the application layer policies of each

tenant for enhanced control of their network flows. Specifically, cloud data centers should

schedule the critical tenant workflows on time adhering to the tenant policies, despite congestion

in the network nodes or links. However, traditionally, networks are managed at each layer

independently, from the physical layer to the application layer. Cross-layer optimization across

the cloud and data center environments are essential to guarantee SLAs and QoS to the various

tenant processes at the network level.

Networking research on SDN and middleboxes has shown the potential to propagate

application-level policies to the cloud network. Software and hardware middleboxes offer addi-

tional capabilities to the network rather than merely forwarding or routing the packets of the

network flows [71]. FlowTags [120] software middlebox provides the ability to tag the flows

from the application layer. It enables seamless integration of other middleboxes into an SDN

network, by ensuring that the tags in the network flow packets can remain unaltered despite the

presence of various middleboxes in the network. Thus, we posit that software middleboxes such

as FlowTags can be used in parallel with the SDN controller to translate the tenant policies and

requirements into network flow rules, persist them in the network flow across the data plane

devices en route as tags, and interpret them for the routing decisions. However, leveraging the

collective potential of SDN and middleboxes for complete SLA-aware multi-tenant networks,

incurring minimal overhead, remains an open research challenge.

This chapter proposes SMART , an SDN Middlebox Architecture for Resilient Transfer

of critical network flows in multi-tenant cloud networks. SMART focuses on exploiting the

global knowledge and control of the data plane devices readily available to the SDN controller

to cater to the requirements of the tenant applications. SMART aims to offer a resilient transfer

for critical flows, based on tenant preferences received at the network layer from the processes

or applications executing on the servers. By employing a selective redundancy in a controlled

manner, SMART guarantees timely end-to-end delivery and QoS for critical tenant application

flows.

SMART middlebox architecture lets the tenant applications tag their critical flows (i.e.,

flows with a higher priority) with policies and SLOs. Intermediate nodes, which are typically

switches in the flow path, read and interpret the tags as tenant network policies consisting

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 76

of thresholds such as maximum permissible time for flow completion and user-defined QoS

parameters for the other properties at the origin node. SMART further defines soft-thresholds

at a fraction of the respective threshold. The controller receives a notification when a critical

network flow violates a soft-threshold, typically caused by congestion in the network flow path.

Subsequently, SMART diverts the packets from a subflow of the flow in an alternative route to

the destination, or clones and routes the subflow in an alternative route along with the original

flow. Thus, SMART mitigates the impact of network congestions on critical flows, and thus

reduces the SLA violations.

SMART opens a research question on how network-level enhancements such as diverting

or cloning the flows can be beneficial for the application requirements and attempts to answer

it by benchmarking against the traditional network routing in the cloud and data centers that

are agnostic to the tenant application policies. Our evaluations highlight that the overhead

imposed by SMART concerning redundancy and processing of network flows are negligible as

SMART only manipulates the network flows of higher priority, a relatively small fraction in a

data center network. Moreover, only the first packet of the first offending flow is forwarded to

the SDN controller to alter the routing tables, per the OpenFlow protocol. We thus observe

that SMART ensures SLA in the critical network flows through its selective redundancy and the

ability to pass the application-level policies to the network-level through SDN and middleboxes,

with minimal overhead.

This chapter is composed of the contents of the publications: [W3, S1].

5.1 SMART Approaches for Critical Network Flows

SMART identifies congestion through a perceived delay in flow completion time. It picks an

intermediate node in the flow path as the breakpoint node to execute the proposed approaches.

Further, in the network flow, SMART identifies a particular packet as the breakpoint packet.

Finally, it creates a subflow starting from the breakpoint packet until the end of the flow.

5.1.1 SMART Alternative Approaches

SMART consists of three alternative approaches.

1. Diverting Approach: The diverting approach routes the subflows of a few selected

critical flows in an alternative path to the destination when it expects an SLA violation due

to a congested node or link in the original route. It diverts the subflow in single or multiple

alternative paths excluding the original path. Choosing several routes in the diverting approach

will be useful for higher priority critical flows when no specific alternative route can be considered

the best alternative. As the preferred alternative routes may be longer or suboptimal than the

original route, and as there is a need to reconstruct the flow, there is a potential time overhead

or delay. The diverting approach will not incur duplicate packets if it diverts the subflow in just

one alternative direction. However, diverting to multiple alternative paths will have duplicate

packets similar to the following two approaches.

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 77

Table 5.1: Time and Bandwidth Overhead

Approach with n number of Duplicate Packets Potential
diverts/clones of critical flow packets as a function of n Time Overhead

Divert(n) (n− 1) * (0, 100]% Possible
Clone(n) n * (0, 100)% No/Negligible

Replicate(n) n * 100% No/Negligible

2. Cloning Approach: SMART employs the cloning approach for critical flows with a

higher priority, by cloning the flows selectively, rather than merely diverting them. The cloning

approach duplicates the subflow following the breakpoint and routes it in single or multiple

alternative routes. It leaves the original flow to continue unmodified in its route while cloning

and routing subflows in an alternative route towards the destination. The updated rule in the

breakpoint node ensures sending the packets in the original route as well as an alternative route.

As the original flow is left to continue in its original route unmodified, cloning approach does

not have a time overhead, yet there is bandwidth overhead.

3. Replicating Approach: In the cloning and diverting approaches, the controller clones

or diverts the packets that follow the breakpoint packet, by changing the routing rules for the

packets of the critical flows in the breakpoint node. The replicating approach, on the other

hand, replicates the entire violating flow from the origin to the destination in single or multiple

alternative routes. Cloning and replicating are further enhancements to the diverting approach,

as the original route could end up being the better choice if the congested links or nodes recover

during the transmission. Similar to the cloning approach, the replicating approach also does

not have a time overhead. Replicating entire flows imposes, however, 100% of duplicate packets

until the routing is complete. We can consider the replicating approach as a special case of the

cloning approach, which clones the entire flow instead of a subflow starting from a breakpoint.

We can also configure the replicating approach to drop the original flow, as in the diverting

approach. However, that may introduce a time overhead while reducing the duplicate packets.

Table 5.1 summarizes the potential overhead for the critical flows in completion time and

bandwidth usage. We measure the time overhead as a delay that may happen in the flow

completion compared to the unmodified flow. Here n refers to the number of times the packets

are cloned, diverted, or replicated. We can adaptively use the three approaches in conjunction,

rather than defining them statically to be mutually exclusive. An adaptive/clone approach

would invoke the cloning procedure for the subflow when a flow meets a soft-threshold, and

then replicate all the subsequent flows of the same path and route them towards an alternative

path(s) until the network path recovers from the congestion. This adaptive approach mitigates

the overhead and technological challenges of branching and merging the flows, while also reducing

the inherent overhead of using the replicating approach as the sole enhancement.

5.1.2 Clone Destination

When the network encounters congestion in certain paths used by the critical flows, SMART

decides the exact destination to recompose the subflows based on the characteristics of the

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 78

congestion. SMART recomposes the flows at either the destination of the original flow or the

next node following the identified congested network path. In a large data center with a few

nodes identified to be contributing to the congestion, the cloned or diverted subflow can be

routed towards the node that immediately follows the congested link or node, to avoid routing

in a sub-optimal path when the congestion affects just one or a few of the nodes in the original

route. The decision to recompose the flow at the earliest possible node also minimizes redundant

packets by early recomposing of the original flow. If there are no such nodes or links identified

to be contributing to the congestion, or if the network topology does not support an efficient

data flow to the next node, SMART routes the cloned or diverted subflow towards the original

destination in an alternative route.

Figure 5.1 illustrates a network with data flow between two nodes such as servers or smart

devices, with multiple potential paths connecting them. In a data center network, these nodes

are hosts or servers, while the intermediate nodes are traditionally switches that connect the

underlying network. However, due to the heterogeneous nature of CPS and MEC environments,

origin or destination can be smart mobile devices/terminals or virtual execution spaces in the

controller, while intermediate or destination nodes can be surrogate nodes such as edge nodes or

switches in a data center. With the dynamic traffic of network flows, a few services or network

nodes and links may become congested. SMART identifies the congested, malfunctioning, or

malicious nodes and links (highlighted as unhealthy in Figure 5.1) through its controller, by

monitoring the responsiveness of the nodes.

Origin

D
es

tin
at

io
n

 Case 2 : Sending the subflow
 to an intermediate node

Case 1: Sending the subflow
 to the destination node

Original Flow

Links and Nodes

- Healthy

- Unhealthy

Figure 5.1: Subflows and Alternative Execution Paths

For mission-critical CPS such as ICU medical monitoring systems, the critical services should

execute correctly and timely. In such workflows, when an intermediate node fails or becomes

slow, the controller can enforce redundancy selectively in the data flows to ensure correctness

and end-to-end delivery. SMART alters the paths of critical flows towards a healthy alternative

dynamically when the current path fails. It creates subflows by diverting or cloning parts of

the flows and sends them towards the clone destination. It then reconstructs the flow from the

subflows at the clone destination. The clone destination can be as same as the original destination

of the flow, or an intermediate node in the flow path. In case 1 identified in Figure 5.1, the clone

destination is the same as the original destination of the flow. While this scenario may lead to a

higher level of redundancy due to the presence of duplicate or replicated subflows, it avoids the

need to manipulate the network flows at the intermediate nodes. However, case 2 has a clone

destination that differs from the original. Here SMART sends the cloned subflow towards an

intermediate node (on the original path connecting the origin and destination), in an alternative

path, and recomposes the flow afterward. The case 2 minimizes unnecessary redundancy when

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 79

it is possible to recompose the flow at an intermediate node. When such a recomposition of

flows (i.e., making flows reconverge) is impossible or inefficient at an intermediate node due to

the technical difficulties, or due to the nature of the congestion or network failure itself, SMART

recomposes the flow eventually, when it reaches the destination node, as in the case 1.

5.1.3 SMART Architecture

Figure 5.2 depicts the cross-layer deployment of SMART . In the application layer, the

ecosystem consists of tenant applications and application processes. Applications can be of

various priorities - some of them more critical and time-sensitive than the others. SMART

forwards the information on priorities to the underlying network as policies, along with the

control flow, by extending and leveraging the SDN controller. The deployment consists of

switches, servers hosting the tenant applications, and the middleboxes in the network layer. In

the network layer, data flows across the tenant processes are present as packets and flows.

Network
Host /
ServerSDN

Switch

Tenant Application

Multi-Tenant
Cloud

Policies QoS

Middlebox

Application
Processes

network
flows

Figure 5.2: Application and Network Views of a Cloud Deployment

SMART exploits the monitoring capabilities offered by SDN, while extending the comple-

mentary features provided by middleboxes to include the information on SLA parameters, in

the form of tags attached to the packets of critical flows. SMART adopts the FlowTags software

middlebox to tag the flows with minimal overhead, as no other existing SDN-based approach

enables per-flow custom policy enforcement in a network with the presence of software and hard-

ware middleboxes. The FlowTagger deployed on the nodes tag the packets of the critical flows

at the origin node, whereas the FlowTagger at the nodes en route destination reads the tags.

The SMART architecture includes the soft-thresholds at a fraction of the thresholds (i.e.,

hard-thresholds) as SLA parameters. Upon meeting a soft-threshold, based on the policy and

the length and the priority level of the flow, either the flow is replicated and rerouted from its

origin to the destination in an alternative route, or it is cloned or diverted from a breakpoint

node. Critical flows can be all the flows of a given user, all the flows originating at a given

node, or a set of flows following a policy defined by the tenant at the application layer. With

a little redundancy, SMART attempts to meet the deadlines of the critical flows, by mitigating

the potential SLA violation caused by congested nodes in the initial route.

Figure 5.3 depicts the higher level architecture of SMART . We extended OpenDaylight as

the base SDN controller. We adapted FlowTags as a software middlebox inside each node of

the data plane as well as a FlowTags controller. The SMART middlebox, consisting of the

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 80

FlowTagger, resides inside the nodes that are the origins of the flows. FlowTagger reads and

writes tags to the packets.

SMART SDN Data Plane

FlowTags
Controller

OpenDaylight
Controller

Rules
Manager Enhancer

Node2

FlowTagger

SMART Control Plane

...
Node1

FlowTagger

Noden

FlowTagger

trigger()
Tags

updates

Control Flows

Figure 5.3: SMART Architecture

FlowTagger and Rules Manager are SMART components that are developed as

FlowTags-capable software middleboxes. While in a typical FlowTags deployment an exist-

ing middlebox such as an Intrusion Detection System (IDS) is extended to read and write the

tags, these SMART components perform no network function other than handling the tags and

communicating with the FlowTags controller by invoking its API to generate or consume the

tags in a unified manner, as presented by the FlowTags architecture [120]. SMART tags also

include the current timestamp to track the time consumed in routing so far which can be used to

estimate other optional information such as estimated monetary cost and energy consumption.

The FlowTags controller parses the tags from the packets forwarded to the controller. Poli-

cies, thresholds, and business rules are read and stored into the SMART controller from the

configuration files, as defined in the network by system administrators or the tenants. Rules

Manager gets and parses the rules from the tags, and triggers the SMART Enhancer ac-

cording to the defined policies. SMART Enhancer consists of the enhancement algorithms that

would wrap the base routing algorithms to enhance them. We designed the FlowTags controller,

SMART Enhancer, and the rules manager as extensions to the OpenDaylight SDN controller.

Along with the other rules set by the SDN controller, the custom user-defined tags in the

packets read from FlowTagger are interpreted as policies, which the packets should respect.

Upon a violation of the policies in any of the nodes, the first packet of the violating flow is

sent to the SMART controller and triggers it. The controller sets a breakpoint in the flow on

the packet that triggered the controller and the location node of the packet when the violation

occurred. The breakpoint node or packet can also be chosen algorithmically from the application

layer.

5.2 SMART Algorithms

The SMART Enhancer consists of algorithms to mark the breakpoint and enforce its en-

hancements on the critical network flows. Algorithm 3 describes the SMARTRoute, the pro-

cedure of the SMART Enhancer. For the ease of expression, the rest of this section assumes

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 81

the cloning approach to be the default, while inherently referring to both cloning and diverting

approaches.

Algorithm 3 SMART Enhancer Route

1: procedure SMARTRoute(flow, origin, dest)
2: repeat

3: BaseRoutingAlgorithm(flow, origin, dest)

4: if (flow.policies.isThresholdMet()) then

5: cloneOrigin ← markBreakPoint(flow, origin, dest)

6: cloneDest ← findCloneDest(flow, flow.status)

7: clonedFlow ← cloneFlow(flow, cloneOrigin, cloneDest)

8: flow.status.update(cloneDest, cloneOrigin)

9: end if
10: until (flow.allReceived(cloneDest) ∨ flow.allReceived(dest))

11: mergeFlows(flow, clonedFlow)

12: end procedure

The BaseRoutingAlgorithm (line 3) refers to any underlying routing algorithm such as

Dijkstra’s shortest path algorithm or Equal-Cost Multi-Path (ECMP) algorithm, which is to be

enhanced by SMART . SMARTRoute routes the flows from the origin to the destination entirely

using the BaseRoutingAlgorithm unless a critical flow meets a soft-threshold. The thresholds

can be system-wide policies, such as minimal throughput and latency, in the network system

and individual flow level. A skyline approach [54] is assumed in the presence of conflicting

tenant-specific, flow-specific, or system-wide policies, to find a compromise considering all the

requirements. The line 4 checks for the violation of soft-thresholds by the critical network flows

to invoke the SMART enhancements on the flow.

The markBreakPoint() (line 5) chooses the clone origin consisting of a node and a packet as

the breakpoint node and packet respectively. The findCloneDest() (line 6) decides the clone des-

tination based on the flow and its status consisting of information potentially related to the policy

violation. The cloneFlow() (line 7) clones or diverts the subflow, starting from the breakpoint

packet to the rest of the flow with the breakpoint node as the origin. The flow.status.update()

(line 8) updates the controller with the current status of the flow as the middlebox architecture

reads the tags. The flow status consists of the information crucial for the reconstruction of the

original flow at the flow destination, such as the sequence number and the original parent flow.

Flow Reconstruction: The flow reconstruction phase waits until all the packets necessary

to recompose the original flow arrive at the clone destination or the final destination (line 9).

Once the minimum packets (i.e., a copy of each packet composing the original flow) required

to reconstruct the flow reach the clone destination, the mergeFlows() (line 10) reconstructs the

original flow. If the clone destination is different from the original destination, the recomposed

flow continues in its original route towards the destination. SMART leverages the sequence

numbers and the status indicating the parent flow from the flow packets in reconstructing the

flow. Once SMART has reconstructed the original flow at the clone destination, it drops the

duplicate packets on the fly.

The cloning approach minimizes the extent of the necessity to reconstruct the flow. If all

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 82

the packets from the original flow arrive before the packets from the clone, SMART drops the

cloned packets en route. For the diverting approach, and the cloning approach if the packets of

the cloned flows arrived earlier, SMART will reconstruct the flow by merging the packets from

the diverted or cloned subflow to the packets of the original flow that have already reached the

clone destination.

The following critical flows of the same route may be replicated and rerouted, or diverted

at the origin, in an alternative route. Thus, while a fraction of the initial short flows may still

violate SLAs due to the time overhead imposed by the cloning and recomposing of the flows,

following flows will be able to avoid the offending path altogether. When flows created by

SMART replicate the entire flows, the clone destination considers only the first of the flows to

arrive. As the replicating approach resends the whole flow from the origin to the destination in

one or more alternative routes, the necessity for recomposing and flow manipulation is avoided,

albeit with more redundancy.

SMART Breakpoint: Breakpoint is a pointer to the node and the flow where SMART

clones the subflow. The controller chooses the breakpoint dynamically and writes rules on the

breakpoint nodes to divert or clone the upcoming packets of the critical flows. Information

on breakpoints is not stored statically in the flows or the controller beyond the time frame of

subflow construction. Algorithm 4 elaborates the procedure of choosing the breakpoint node

and packet.

Algorithm 4 Marking the Breakpoint

1: procedure markBreakPoint(flow, origin, dest, policies, links)

2: for all (link ∈ flow.route) do

3: if (policies.isThresholdMet()) then

4: breakPoint.node ← current.node

5: breakPoint.packet ← current.packet

6: Return breakPoint
7: end if
8: end for
9: breakPoint ← flow.estimate(policies.breakPolicy)

10: Return breakPoint
11: end procedure

First, the algorithm checks for each link in the flow route (line 2), whether a soft-threshold

is met (line 2 - 3). If a specific node or a link is estimated to be responsible for the policy

violation, the algorithm marks the node as the breakpoint node (line 4) and the current packet

as the breakpoint packet (line 5). Then the algorithm returns the breakpoint (line 6). If no

specific malfunctioning link or node identified, the delay is due to either i) network congestion

across multiple nodes and links or ii) the flows being much larger than the typical flows in the

data center and hence taking longer to complete the routing. In these cases, the breakpoints

depend on policies. Therefore, if the algorithm did not identify any breakpoint in a specific link,

it performs an estimation for a breakpoint from its knowledge of the network (line 9), and finally

returns the breakpoint (line 10).

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 83

5.3 Implementation

We prototyped SMART by extending the OpenDaylight SDN controller with a FlowTags

controller deployment to make the priority tags readable by the SDN controller. Originally

a POX extension, we redesigned the FlowTags controller as an OSGi bundle to deploy in the

Apache Karaf container of OpenDaylight, due to the extensible modular architecture of Open-

Daylight. We built a simple software middlebox to tag the flows and then to read and interpret

the tags from the control plane, rather than developing a complete reimplementation of Flow-

Tags for OpenDaylight. We developed the controller extensions as independent OSGi bundles

and deployed them alongside the controller core bundles. We emulated the data plane consisting

of the nodes and middleboxes with Mininet through Python scripts.

Figure 5.4 depicts the SMART deployment, separated into a i) control plane consisting of

the FlowTags-capable SDN controller and SMART components, and a ii) data plane consisting

of the nodes - servers/hosts and OpenFlow-capable switches. The switches construct the network

by connecting each other as well as the servers where the flows originate. We deployed FlowTags

controller, Rules Manager, and the Enhancer in the Karaf container as OpenDaylight bundles.

We developed the SMART control plane modules using Oracle Java 1.8. We implemented

network flow routing algorithms commonly used in data center and cloud networks, such as the

shortest path algorithm. SMART applies its algorithmic improvements on top of these base

algorithms.

Control Plane

Rules Manager
FlowTags-capable

Middlebox

Rules Manager
FlowTags-capable

Middlebox

FlowTags-Capable ControllerFlowTags-Capable Controller

Data Plane

FlowTags
Controller OpenDaylight

Controller

Rules Manager
FlowTags-capable

Middlebox

SMART
Enhancer

Host1: Origin Server

FlowTagger

1. Tag G
eneration

 Q
uery

2. Tag G
eneration

Q
uery Response

4. Packet-in Message

OpenFlow Switch1

5. Modify flow entry message

8. Trigger

9. Tag Consumption Query
10. Tag Consumption

11. Forward Algorithm Input

12. Update Controller
Data Tree

7. Packet-in Message

13. Modify flow entry message
Tenant
Applications

SMART
Enhancer
SMART

Enhancer

Hostdest: Destination3. Data Packet 6. Data Packet

FlowTags-Capable Controller

Figure 5.4: SMART Deployment and Execution

FlowTagger is a generator/writer of the tags, similar to the FlowTags-capable middleboxes

for Network Address Translation (NAT). We deployed the FlowTagger in each of the hosts. It

tags the packets of a selected subset of flows, defined as the critical flows according to the

tenant applications, leaving the other flows unmodified. Thus SMART initializes the entire

SMART enhancement workflow only on the critical flows as identified from the application layer.

Following the packet processing walkthrough for tag generation, FlowTagger initially sends the

tag generation query to the FlowTags controller and receives the tag generation query response.

FlowTagger modifies the packet headers accordingly, and the data packets continue in the original

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 84

flow path through the switches. Switches in the flow path communicate with the OpenDaylight

controller through the OpenFlow API. The switches send a packet-in message to the controller,

and in turn, the switches receive the modify flow entry message from the controller. The data

flows through the intermediate nodes/switches. Later, at a policy violation, as identified from

the tagged packets of the critical flows, an OpenFlow message invokes the controller, further

triggering the Rules Manager in the control plane.

Rules Manager is a consumer of tags, similar to the FlowTags-capable firewalls that read

and interpret the tags. As SDN sends only the first packets of the violating flows to the controller,

the control plane becomes the ideal location to retrieve the tags from the controller and read them

by the Rules Manager, rather than having the Rules Manager as an additional middlebox in the

data plane. Rules Manager sends the tag consumption query and receives the tag consumption

response from the FlowTags API. It further forwards the contextual information of the packets

of the flow in question to the SMART Enhancer, which is responsible for computing the routing

decisions and propagating them to the SDN controller. Thus, the SMART Enhancer updates the

OpenDaylight’s data tree, the data structure storing distributed objects inside the controller.

Accordingly, the controller updates the flow tables based on the Enhancer output to divert,

clone, or replicate the relevant subflows or flows.

5.4 Evaluation

In this section, we aim to assess the efficiency of SMART in offering SLA-awareness, abiding

by tenant-specified thresholds. We focus on flow completion time as the threshold.

Evaluation Environment: We emulated a data center network with around 1000 nodes,

on a cluster with 6 identical nodes (Intel R© CoreTM i7-2600K CPU @ 3.40GHz processor and

12 GB memory), with Mininet. We used leaf-spine topology [14] as it offers multiple potential

alternative paths between the pairs of nodes. Since leaf-spine topology of typical data centers has

precisely two-hops, we extended it with longer path lengths. We emulated network flows across

the network topology and congestion across specific links, identifying a few as critical while

having the rest as regular flows. We then assess how SMART can omit the underperforming

paths for the critical flows, to avoid SLA violations that would happen in the base routing

approach.

Flow Completion Time: SMART deploys its approaches when it can incur a positive en-

hancement in flow completion time for the critical network flows as illustrated by Equation 5.1.

∃ε > 0 : ∆T = T o − {Tdet + Tupdate + Td + T ′} > ε. (5.1)

Here, ∆T - Enhancement in flow completion time for a critical network flow.

T o - Estimated flow completion time, if the flow continues in the original congested path.

Tdet - Time taken to detect and report soft-threshold violation to the controller.

Tupdate - Time taken to update the flow table rules in switches.

Td - Time overhead at destination to recompose the flow.

T ′ - Minimum flow completion time with the cloned/diverted subflow in an alternative path.

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 85

The distributed extended OpenDaylight controller deployment of SMART was quick to de-

tect and update the policy violations. Subflows still respect the ordering of packets with sequence

numbers and flow IDs interpreted by SMART at the clone destination. Hence, reconstruction

of the original flow at the destination is straightforward, dropping the duplicate packets. We

estimate Tdet, Tupdate, and Td to be on the scale of milliseconds, which can be safely ignored

from Equation 5.1 for long-running flows.

We configured SMART to have an adaptive clone approach, cloning of subflows followed

by replicating the entire subsequent flows. For flows that take less than 1 second to complete

routing, subflows of the violating flow, as well as the following critical flows in the same route,

are cloned at the breakpoint, if they enhance the flow completion time of critical flows by a

positive value upon meeting a soft-threshold. Otherwise, instead of cloning the violating flow, the

SMART prototype replicates all the following critical flows at the origin and route the replicated

flows towards the destination in an alternative path. Thus, this adaptive approach minimizes

redundancy and overheads in recomposing the flows, while ensuring that the following critical

flows will abide by the SLA, even if the first few flows may have violated the SLA. Replicating

the critical flows at the origin also avoids the potential overhead SMART may impose by cloning

in breakpoint for shorter mission-critical flows.

We benchmarked the flow completion time of the base routing approaches against the

SMART enhancements over those base approaches for the critical flows. Figure 5.5a plots the

flow completion time with shortest-path against the SMART enhancement. Each hollow square

in the plot indicates a network flow, while the filled ones indicate 10 flows. We observe that there

was no SLA violation with SMART enhancements for the critical tenant flows, while several of

them violated the SLA with the base shortest-path algorithm in the presence of congestion.

We then repeated the experiment with ECMP as the base routing algorithm in place of

shortest-path. Figure 5.5b shows the time taken to route the critical tenant flows with and

without SMART enhancements. SMART improved the performance by cloning the critical

flows in an alternative route readily available in ECMP, and replicated the following critical

flows of the same congested path in the new route. We observed that in both cases, SMART

ensured not to exceed the SLA limits for the critical flows, even when the base approach violates

the SLA limit indicated as a hard-threshold in the tenant network policies.

 0

 200

 400

 600

 0 2000 4000 6000 8000S
M

A
R

T
 R

o
u

ti
n

g
 T

im
e
 (

m
s)

Shortest Path Routing Time (ms)

Soft Threshold SLA Limit

(a) Shortest-Path

 0

 200

 400

 600

 0 100 200 300 400 500 600 700 800 900S
M

A
R

T
 R

o
u

ti
n

g
 T

im
e

 (
m

s)

ECMP Routing Time (ms)

Soft Threshold SLA Limit

(b) ECMP

Figure 5.5: Adaptive Clone/Replicate: SMART Enhancements vs. Base Algorithm

SMART avoided the SLA violations by up to 95%, in the modeled network environment.

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 86

Majority of the flows that initially violate SLAs abide by the SLA with SMART enhancements.

Performance of the controller and switches in detecting the violations, and updating the rules,

contributes to the potential SLA violations. However, by carefully considering a soft-threshold

in addition to the hard-threshold, SMART avoided causing SLA violations to a critical flow that

does not violate the SLAs in the base approach without the SMART enhancements. Abiding

by a soft-threshold indicates that the existing route is adequate to meet SLA and no congestion

observed along the path of the critical flow. Therefore, unless a critical flow meets its specified

soft-threshold, SMART did not invoke its enhancements.

How well SMART fares in avoiding SLA violations for critical flows, of course, rely on

several factors, including the percentage of the flows that are marked as priority flows and the

definition of the SLA (in this case, how short the routing time is). We observe that there

is a dynamic, minimum value in routing time that can be defined as the SLA limit. This

value depends on the nature of the network and how fast the network flows can be cloned and

recomposed. We evaluated SMART with the SLA limit of 500 ms. If we reduce this time

slightly, SMART still functions reasonably well, as it clones the subflows during the fraction

of the SLA limit, defined as the soft-threshold. However, if we reduce the SLA limit further,

the overheads in network flow manipulations will become prominent, thus making SMART

inefficient. Furthermore, significantly reduced soft-thresholds will also lead to a higher level of

redundancy in the subflows, and consequently flooding the network and adversely affecting the

flow scheduling for regular flows as well as the critical flows.

Assessment of Overheads: SMART exhibits an adaptive behavior to the nature of the

congestion, finding the right time to clone or divert. The data plane devices perform the routing

with minimal intervention from the controller unless a critical flow meets its soft-threshold.

We observed that SMART cloned only around 16.7% of the packets of the critical flows in the

modeled data center networks. The overall redundancy is further smaller, depending on the

fraction of the flows that are considered critical. Thus, we observe that the SMART subflows

do not contribute to the congestion themselves. We estimate the overhead to be lower than

100 ms in switches when SMART manipulates the breakpoints and updates the flow tables,

with minimal overhead in the bandwidth. As we have integrated the SMART enhancement

algorithms and FlowTagger with the SDN architecture, we observe no significant overhead by

the deployment of SMART .

Qualitative Assessment: Several previous works, including MPTCP and the work that was

built upon MPTCP, constitute a significant motivation behind the architecture of SMART .

SMART borrows its subflow handling mechanisms from the MPTCP design. Among the other

related works, QJump [142] and SMART focus on SLA for the higher priority flows through

bypassing the traditional network routing. However, SMART adaptively leverages redundancy

in addition to ‘jumping the queues.’ Conga [14] aims for a congestion-aware load balancing via

a flowlet switching. Conga flowlets are similar to SMART subflows. However, Conga does not

support differentiated SLA or QoS guarantees. The research works that leverage MPTCP or

flowlets do not use redundant subflows for a reliable transfer of network flows. They also do

not prioritize the flows based on user preferences to satisfy SLAs of critical flows. In addition

to addressing these research gaps, SMART proposes an extended SDN and middlebox based

CHAPTER 5. SDN MIDDLEBOX ARCHITECTURE FOR RESILIENT TRANSFERS 87

architecture for resending or cloning the subflows, if a flow has not reached the destination within

the stipulated time. Hence, SMART aims at enhancing the SLA-awareness for the critical flows,

through its extended SDN architecture that supports passing extended contextual information

to the network plane from the tenant applications.

5.5 Conclusion

Enterprise clouds and data centers limit their optimizations to typically at individual layers,

rather than aiming for cross-layer optimizations. Multi-tenant clouds consist of applications

that are of different priority levels. The priority levels are either mandated by the SLAs or

are indicated by the tenants for their application processes. Research on SDN and middleboxes

aim to improve the data centers in various network aspects such as congestion control and

delivery guarantees. Despite these promising developments, enterprise multi-tenant network

scheduling approaches fail to adequately reflect the complex tenant requirements received from

their applications at the network level.

We developed SMART as an SDN and middlebox architecture for multi-tenant clouds, by

diverting or cloning subflows of critical flows for timely delivery in a network with congested links.

SMART imposes a selective redundancy on the critical network flows of the tenant applications

as a mean to improve their QoS. SMART propagates tenant policies to the network layer to

equip the tenants with more control over the shared virtual network. Preliminary evaluations

highlighted the efficiency of SMART in offering SLA-awareness to data center networks and

applications, through its cross-layer enhancements.

SDN implementations offer limited opportunities to pass the user preferences from the ap-

plications to the network, due to the limited extensibility and scope of SDN protocols such as

OpenFlow. On the other hand, a FlowTags middlebox implementation enables more descriptive

and extensible data input from the applications hosted on the servers for cross-layer enhance-

ments. SMART depends on both SDN and FlowTags. Therefore, its applicability in the real

world depends on the prevalence of SDN data centers compliant with FlowTags. Consequently,

we note that currently, SMART is more research-oriented, rather than an approach that can

be deployed on the enterprise data centers with minimal effort. We see SMART as a first step

in leveraging redundancy more efficiently together with the capabilities to dynamically change

the network routing and pass the application level user policies to the network through an SDN

architecture extended with a software middlebox.

IIIService-Oriented
Architecture

6Software-Defined

Service-Compositions

Scheduling service composition workflows across multi-domain networks abiding by the ten-

ant policies is a challenging task. Service compositions enable complex eScience workflows and

enterprise business processes, by chaining the outputs of several services. The volume and distri-

bution of data and the services that access and process the data continue to increase. The service

composition workflows execute on diverse computational nodes, ranging from servers to light-

weight smart devices, which are geographically distributed at Internet scale. Service providers

face the challenge of finding the optimal deployment node for their services among these various

geo-distributed nodes. On the other hand, the end users who consume these services have their

intents and policies such as maximizing the throughput and uptime of their service workflows,

while minimizing the monetary cost and end-to-end latency. The service providers specify and

ensure that the requirements for efficient and uninterrupted execution of their services are met.

However, an optimal service composition should meet the demands of the tenants that consume

the workflows, in addition to the individual requirements of each service instance as well as the

overall policies specified by the service providers.

The increasing demand for access to data and computing resources makes geo-distributed

service composition workflows more prevalent. Enterprise and eScience workflows are typi-

cally composed of several web services and microservices. Workflows of mission-critical appli-

cations consist of redundancy in links as well as alternative implementations, often developed

and maintained by multiple providers. Service providers deploy each of their service implemen-

tations across several nodes as alternative service instances, to ensure performance, scalability,

fault-tolerance, congestion control, and load balancing. Distributed cloud computing [112] and

volunteer computing [22] are two examples that permit multi-tenant computation-intensive com-

plex workflows to execute in parallel, leveraging distributed resources. Nevertheless, the existing

workflow scheduling approaches do not cater for the scheduling of tenant workflows abiding by

their policies across multi-domain networks.

A service execution should be able to migrate between possible service deployments when a

service instance fails to respond to the incoming service requests within a specified time interval.

An inter-domain migration is necessary when the controller fails to resolve such service execution

failures caused by issues such as network congestion, inside the same network domain due to

the limited availability of services or other resources in the domain. While web services are

implemented using several approaches, languages, and frameworks, they still offer interoperable

SOA and RESTful APIs. These APIs unify the message passing between the services and enable

seamless migration among the potential service instances in a best-effort and best-fit strategy.

In this chapter, we propose Software-Defined Service Composition (SDSC), an SDN-based

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 90

service composition approach for efficient service composition and workflow placement. First, by

separating the execution from the data plane of the overall system, SDSC facilitates integration

and interoperability of more diverse implementations and adaptations of the services. Second, we

extend SDN with MOM to support network-aware scheduling of service composition workflows

in multi-domain wide area networks. Finally, by deploying the service composition workflows

over an extended SDN architecture, SDSC gives the controller an overview of the service com-

position environment such as the service instances and the servers that host the services. The

SDSC distributed controller architecture thus possesses an increased control over the underlying

network, while supporting the dynamic scheduling of the service composition workflows from

various traditional web services engines and the distributed execution frameworks.

SDSC leverages both the service statistics of the web services engines and the network-

awareness of the SDN controller to find the best-fit service instances to schedule each tenant

workflow execution, among various service implementations and deployments. Each network

domain is aware of the service requests served by its service instances through the extended SDN

controller architecture. The controller maps the service requests to the underlying network and

provisions the network resources accordingly to the service instances. The controller monitors

congestion and failure of the underlying computing nodes and links, and dynamically remove

or demote the malfunctioning nodes among the alternatives. MOM protocols facilitate the

communication and coordination among the SDN controllers of different domains. Leveraging

the MOM architecture of SDSC, each SDN controller propagates the changes in the network of

its domain to the relevant SDN controllers of other domains, based on their subscriptions. Thus,

SDSC fine-tunes the services placement, supports dynamic resource allocation for each service

request, and facilitates intra- and inter-domain service execution migration.

We build Mayan,1 an SDSC framework that exploits the existing web services engines and

distributed execution frameworks such as MapReduce. Mayan i) facilitates an adaptive ex-

ecution of scientific workflows and ii) enables a very large-scale reliable service composition

by finding and consuming the current best-fit among the multiple service instances in a wide

area network. While a distributed SDN controller architecture can facilitate a global network-

awareness across multiple network domains, such an architecture is mostly infeasible as enter-

prises are in practice reluctant to share the network status and statistics with another domain

or a third-party entity. Through its SDN controller architecture federated with MOM, Mayan

enables collaboration and coordination without depending on such a static network hierarchy.

Our evaluations highlight that Mayan can enhance the scalability of the service compositions in

a context-aware manner.

This chapter is composed of the contents of the publications: [C2, W1, B2].

6.1 SDSC Model for Service Composition Workflows

Service providers deploy instances of a web service or a network function, enabling the service

users to consume them. A workflow exploiting multiple services can be composed by choosing

1Mayan is a mythical architect, commonly known as Mamuni Mayan in Tamil literature.

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 91

an instance of each relevant service from the available service instances. Service instances can

be identical implementations of a service deployed in different server locations or endpoints,

or entirely different implementations of a service definition offering the same functionality yet

following different programming languages and paradigms.

∀n ∈ Z+,∀α ∈ {A,B, . . . , N} : snα =⇒ Implementation α of service sn. (6.1)

Service compositions chain the output of a service as the input of another. Equation 6.2

represents a sample service composition S where the outputs of both s1 and s2 invocations are

provided as the input to s3. Here, s1 and s2 can be executed in parallel, while s3 will have to

wait until both s1 and s2 return their respective output, as it depends on those service responses

as its input.

S =< s3, (< s1, Input1 >,< s2, Input2 >) > (6.2)

Figure 6.1 illustrates a potential to deploy a workflow across several environments (A, B, ..,

Z) as a service composition. s
(2,3)
Z represents a service that is functionally equal to the service

composition of s3
A ◦ s2

A, the output of s2
A as an input to s3

A. Hence, it is not an alternative to

s2
A or s3

A. Not all the services have an implementation in considered environments, as indicated

by the lack of C for s2. When the service instance s3
A is either congested or crashed, the service

execution is migrated to s3
B, the next best-fit implementation of s3 for the workflow SA.

s1
A s1

B s1
Z

s2
A s2

B s(2,3)
Z

s3
A

s3
B

sn
A sn

B sn
Z

s1
C

s3
C

sn
C

W
or

kf
lo

w
 S

A

W
or

kf
lo

w
 S

B

W
or

kf
lo

w
 S

Z

...

Figure 6.1: A sample representation of multiple alternative workflow executions.

Furthermore, each implementation of a service can have multiple deployments, distributed

across the globe, either as replicated deployments or independent deployments by different ser-

vice providers, as illustrated by Equation 6.3.

∀m ∈ Z+ : snαm =⇒ mth deployment of snα. (6.3)

A service composition workflow S can be represented as a composite function of its services,

which are a subset of services available to compose a workflow. We consider N different ser-

vice implementations and a varying number mα of deployments for each implementation of sx.

Equation 6.4 derives the minimum number of execution alternatives for sx.

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 92

∀x, y, z ≤ n ∈ Z+ : S = sx ◦ sy ◦ . . . ◦ sz.
κx =⇒ The minimum number of execution alternatives, ∀sx ∈ S.

∴ ∀sx ∈ S : κx =

N∑
α=A

mα.

(6.4)

ηS represents the number of alternative execution paths for each service composition S.

The service that has the minimum alternatives limits the minimum number of potentials for any

given service composition workflow, as shown by Equation 6.5.

ηS ≥ min
x≤n

κx ≥ 1. (6.5)

The maximum number of alternatives is limited by a product of alternatives for each ser-

vice, taking into account the alternatives due to various service combinations in the service

composition as illustrated by Equation 6.6.

ηS ≤
n∏
x=1

κx. (6.6)

Equation 6.7 thus summarizes our observations from Equation 6.5 and Equation 6.6.

min
x≤n

κx ≤ ηS ≤
n∏
x=1

κx. (6.7)

It is necessary to choose the best-fit service deployments among the service composition

alternatives for a given workflow, abiding by the user policies. For example, consider the scenario

of parental control for web browsing. The web traffic may go through a firewall and virus scanner

in a regular mode but go through the firewall and parental control before reaching the virus

scanner before arriving at the children’s browser sessions. Subsequently, a service composition

workflow can be represented by multiple alternative forms as shown by Figure 6.2. The flow

is divided and sent in two different paths: one going through s1 and s2 and the other just s1,

before both merging to s3 as in the above parental control scenario. The flow is then directed

to s4, where based on the policies, a certain matching subset of data reaches the user directly

while the remaining goes through s5. This service composition can be defined as (s1 ◦ s2 + s1)

◦ s3 ◦ (s4 ◦ s5 + s4), or it can be reduced to s1 ◦ (s2 + 1) ◦ s3 ◦ s4 ◦ (s5 + 1).

These multiple representations of the service composition workflow increase the potential

execution alternatives while also supporting parallel execution with redundancy in the paths.

SDSC aims at context-aware service compositions by exploiting the service and network statistics

from the web services engines and the SDN controller.

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 93

s1 s4

s1

s2

s3

s5

s4

s1 s2

s3

s5

s4

Figure 6.2: Parallel Execution Alternatives of a Service Composition Workflow

6.2 Solution Architecture

Mayan enables communication between the services and the network control plane through

MOM messages. Mayan configures the web services engines to identify the status changes, such

as an interruption in service availability and congestion in a workflow execution path, and pass

them to the controllers that have subscribed to the topic. In this section, we will look into the

Mayan controller deployment, its layered architecture, and its core algorithms.

6.2.1 Mayan Controller Farm

In its core, Mayan consists of a Controller Farm, a federated SDN deployment in a

wide area network that enables communication and collaboration between multiple network

domains via MOM. A single centralized global controller deployment (including the distributed

controller architectures or hierarchies that are still managed by a single entity, thus effectively

an administratively centralized one) is infeasible at Internet scale due to administrative and

political hurdles that prevent managing data plane devices belonging to several providers and

domains by a single entity. Therefore, Mayan proposes a federated controller deployment that

comprises numerous controllers from different domains or organizations in a wide area network.

Each controller has protected access to the controllers of the other domains comprising the

federated controller deployment, facilitated through a MOM publish-subscribe [116] model.

The Controller Farm is a loosely connected federated deployment of controllers, without a

static hierarchy or topology. Each controller in the Controller Farm communicates with other

controllers in a wide area network flexibly through messages. The Controller Farm manages the

communication and coordination across all the entities from the multiple domains. It controls

the inter-domain workflows through subscriptions and messages between the controllers of each

domain. In addition to the proposed federated controller deployment to manage the inter-domain

workflows, each domain typically consists of a cluster of controllers instead of a stand-alone one,

to prevent the controller from being the single point of failure or a bottleneck in each domain.

In case of a stand-alone deployment, the controller is typically hosted on a dedicated server to

avoid overloading the server with other computing workflows and applications. However, it is

still possible to host the controller in a server that is also shared by the web services engines

or a distributed execution framework, especially when either the number of servers or the web

service execution workload is minimal.

By leveraging SDN extended with MOM, the Controller Farm aims to provide a seamless

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 94

scaling with the problem size. A controller instance connects to the Controller Farm by sub-

scribing to the relevant topics from the MOM broker. Hence, a new domain can enter the

multi-domain environment managed by Mayan with its controller extended with MOM. The

controllers communicate with each other to collaborate in a protected and regulated manner,

by passing messages, leveraging the public Internet or a dedicated/private direct network link

between the domains. The MOM supports inter-domain communication and sharing the health

statistics of the nodes to the relevant user. Local network topology data that is relevant to

the other controllers, including information on the data tree, event notifications, and RPCs are

shared with other controllers, based on their subscriptions. Thus Mayan disseminates crucial

information on network topology and service health statistics of each domain with other inter-

ested/relevant domains, giving control to each domain on what to publish (and to whom, by

deploying relevant authentication mechanisms offered by the MOM broker, to limit the audience)

and which topics to subscribe.

The Controller Farm coordinates multi-domain networks through its MOM approach, as

inter-domain controller hierarchies impose additional challenges concerning privacy and enter-

prise policies. A fixed or static hierarchy of inter-domain controllers would require a central

controller deployment in one or a selected set of domains, thus forcing the controllers of other

domains to accept a single controller as the core or primary authority (thus creating a controller

hierarchy or levels of control and trust). Opening up controllers for a higher level controller

from outside domain could also make the network topologies of each domain or infrastruc-

ture provider open for compromises from outside, making the crucial information on network

topologies vulnerable to curious entities or onlookers from outside the domain or organization.

Thus, a centralized approach would limit the applicability of the solution and is not feasible in

a multi-domain edge and inter-cloud environments with multiple third-party data center and

service providers. Therefore, Mayan proposes and leverages a Controller Farm instead of an

inter-domain hierarchy of controllers.

6.2.2 Context-Aware Service Compositions with Mayan

Figure 6.3 depicts the deployment architecture of Mayan. The ControllerA controls the

DomainA, whereas the ControllerB controls the DomainB. The s1
A and s1

B service instances

satisfy the web service requests to the s1 in the DomainA and DomainB, respectively. An entire

workflow execution sequence is carried out in a single original composition (typically from the

same domain) unless any given threshold (such as the load on any of the service instance) is

met. When a threshold is met, an event is triggered, and the controller is notified. If there

is no service instance to satisfy the request in the current domain, Mayan sends the request

for service provisioning to an alternative deployment from another service domain, based on

the domain’s subscription via its Event Listener. Upon successful acceptance of the service

migration request, a service instance from the other domain continues to execute the remaining

of service executions.

In addition to the services engines, Mayan also consists of a Web Services Registry in each

domain, to list and describe the service endpoints belonging to the domain. Mayan maintains

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 95

ControllerA
Requests (S1)

Event_ListenerA
BrokerB

DomainA

Event_ListenerAEvent_ListenerB

Building_Block1ABuilding_Block1AService: s1
A

ControllerA
ControllerA ControllerA

Requests (S1)

Building_Block1ABuilding_Block1AService: s1
B

ControllerA
ControllerB

DomainB

Event_ListenerAEvent_ListenerA

MapReduce_ApplicationB

Web Services Engines Web Services Engines

MapReduce_ApplicationA

W
eb

 S
er

vi
ce

s
R

eg
is

tr
y A

W
eb

 S
er

vi
ce

s
R

eg
is

tr
y B

Se
rv

ic
es

 C
om

po
si

tio
n

C
lie

nt
B

Se
rv

ic
es

 C
om

po
si

tio
n

C
lie

nt
A

Figure 6.3: Inter-Domain Service Compositions with Mayan Controller Farm

constructs and components to ensure that the list of available services is up to date in the

web services registry, to minimize inter-domain service compositions and workflow migrations.

Once the latter segment of the workflow completes execution in the receiving domain, the result

is sent back to the workflow consumer. A MapReduce application monitors and analyses the

frequency of inter-domain service invocations and updates the controller accordingly to minimize

communication overloads due to frequent data transfer between different domains. The web

services registry holds a sorted list of services endpoints and service descriptions, with the input

from the controller. Designed as a simple Java program, the Mayan registry is generalized to

accommodate MapReduce services and the IMDG distributed applications, in addition to the

regular web services such as Axis2 or CXF. When the services are developed with MapReduce

or other distributed execution frameworks, Mayan registry holds the endpoints of the master

node that receives the user requests.

The Service Composition Client in each domain enables the tenants to consume services

from the domain and compose service workflows from the services hosted in the web services

engines and the distributed execution frameworks used as alternatives to the traditional web

services engines. Mayan respects user preferences when choosing the service instances for the

service composition. If the user does not indicate a preference for specific service instances,

Mayan identifies the service instances based on the tenant policies dynamically. First, service

implementations are handled at the web services registry, whereas service deployments for the

same implementation (i.e., server nodes deploying identical service instances) are handled at SDN

level. Time taken to complete an individual service invocation is measured at the web services

engine, and the time taken to complete the service composition is measured at the Mayan service

composition client. The nodes hosting the web service deployments which consume more time

to complete the service requests are moved downwards in the routing table to avoid further

network flows from being routed to those nodes. Thus, SDSC partially delegates the procedure

to find the best-fit service instance to the SDN controller.

For the initial requests to a web service in a service composition workflow, the service com-

position client retrieves the endpoint URIs (Uniform Resource Identifiers) of the potential service

instances, leveraging the controller and the web services registry. The service composition client

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 96

thus identifies a service instance for each of the service composing the workflow, and executes

the service composition workflow by chaining the responses from the service instances. The

respective services return the results to the service composition client. If any service invocation

depends on the results of a previous service invocation, the service will block and wait until it

receives the results from those invocations. Services that do not have such dependencies execute

in parallel. Mayan contains stickiness such that once a service instance serves a request, the

same instance continues to serve further requests from the tenant workflow by default. Thus,

Mayan avoids migration of state for a stateful invocation of continuous service executions.

The Mayan web services registry can be modified through a configuration file at startup

time or can be edited later manually or by Mayan dynamically. Preference order of the services

is changed based on the load on the web services as observed by the web services engine.

Service descriptions in the web services registry define the service names, details on different

installations, and multiple deployment endpoints for each of the service instances. The execution

order, whether the service execution can be distributed, should the service wait until the previous

execution to complete, are a few common properties included for the service composition.

6.2.3 Initializing the Mayan Framework

Algorithm 5 presents the initialization procedure of the Mayan framework in each domain.

First, as shown in line 2, initController() initializes the SDN controller with bootstrapping infor-

mation consisting of the endpoints of the MOM brokers. The MOM brokers can be local brokers

managed by the domain of the controller, or remote brokers managed by other domains that the

controller has subscribed to. The bootstrapping information enables the controller to commu-

nicate with the brokers for the inter-domain communications regarding the wide area network

status as well as the migrations including the data storage and service executions. Then the

flag controller.initialized is set. If the domain manages any broker instances, broker.initialize()

initializes those instances next if they have not been initialized already by a prior initialization

procedure (line 4 - 5). The boolean outcome of the initialize() is set as the value for the flag

broker.initialized.

Once the controller and the brokers are initialized, init(server) (lines 7 - 9) initializes each

server (precisely a subset of servers, the servers in a dedicated cluster in the data center, rather

than all the servers of the data center, since Mayan does not necessarily span the entire data

center) and its respective persistent storage (such as SQL and NoSQL databases) in the data

center. Then initImdgCluster() initializes all the IMDG clusters (lines 10 - 12). Each IMDG

cluster spans the entire execution nodes as a virtual in-memory cluster. An instance that

initializes a cluster becomes the master instance of the cluster. Since we can have several IMDG

clusters for each IMDG (such as Hazelcast [177] and Infinispan [225]), the procedure initializes

at least one cluster per IMDG. Once the IMDG clusters are initialized, initServiceEndpoints()

(line 13) initializes the service endpoints, to receive the client requests for the services and APIs

from the clients. Then, startIMDG() (line 16) starts the IMDGs in each of the servers. Once

an IMDG instance is launched, joinImdgCluster(id, server) joins the instance to the respective

IMDG cluster (line 17). Finally, initServices() (line 19) initializes the service instances in each

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 97

Algorithm 5 Initialize the Mayan Framework

1: procedure InitMayan()

2: controller ← initController(brokers) . Initialize the controller with the bootstrap information

3: controller.initialized ← TRUE

4: if (∃ broker ∈ controller.brokers; (broker.isLocal() ∧ ¬broker.initialized) then

. Presence of uninitialized local brokers
5: broker.initialized ← broker.initialize() . initialize() returns TRUE, if successful

6: end if
7: for all (server ∈ cluster) do

8: init(server)

9: end for
10: for all (imdg ∈ IMDGs) do

11: imdgIDs ← initImdgCluster(imdg)

12: end for
13: initServiceEndpoints()

14: for all (server ∈ cluster) do

15: for all (id ∈ imdgIDs) do

16: startIMDG(id, server)

17: joinImdgCluster(id, server)

18: end for
19: initServices(server)

20: end for
21: while (controller.initialized) do . Periodic update to the SDSC environment of the domain

22: if (broker.getEvent(t) 6= ∅) then . A non-null event received at current time t

23: E(t) ← broker.getEvent(t) . Set the value of E(t) from the event

24: if (E(t) = SIGINT) then . Interrupt Signal Received

25: controller.initialized ← ¬controller.initialized . Negate the controller.initialized flag
26: else
27: update(∇E(t))

. An event composed of updates to the controller, as well as the broker and service instances
28: end if
29: end if
30: end while
31: end procedure

server and starts receiving the service requests.

Once Mayan is initialized for the domain (typically a data center or a cluster), the Mayan

controller continues to monitor for events from the broker (line 21). If a non-null event is received

at time t (line 22), it is stored asynchronously in an event queue of E , with the timestamp t

(line 23). If the event is an interrupt signal SIGINT (line 24), the flag isControllerInitialized is

inverted (line 25). Otherwise, the update function is invoked to update the controller, broker,

and service instances appropriately via update(∇E(t)) (line 27). Equation 6.8 defines the change

propagated through the event E(t) as ∇E(t). ∇E(t) is a combination of changes in controller

(c), local broker instances (b ∈ Bc) as well as the service instances (s ∈ Sc) managed by the

controller c.

∇E(t) =
∂E(t)

∂c
+
∂E(t)

∂b
|∀b ∈ Bc +

∂E(t)

∂s
|∀s ∈ Sc (6.8)

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 98

Thus, the update procedure keeps the environment updated in each domain until the con-

troller is terminated. As the controller termination itself is defined as an event, the event of

a controller (and consequently, the domain controlled by the controller) leaving the network is

immediately propagated to the other controllers as a MOM event, before the controller termi-

nates.

6.2.4 Scheduling Service Composition Workflows

Algorithm 6 presents the overall scheduling of a service s that composes a workflow on a clus-

ter (or a data center) following the SDSC approach. First, an empty set named potentialServers

is created to track the potential servers for the given service scheduling (line 2). Then, while the

controller is in the initialized state (as illustrated in the Algorithm 5), the scheduling process

continues to wait for the service invocations (line 3). Network congestion or resource scarcity

in the current execution node can interrupt the execution, in the form of control flows. As

illustrated by Equation 6.8, update(s) will trigger an update to the scheduled service executions,

if ∂E(t)
∂s 6= 0. If the set potentialServers does not contain the best-fit server (as an ordered set,

the first entry indicates the best-fit, and therefore, the algorithm simply confirms that the set is

not empty) or if an update is triggered for the given service (line 4), the potentialServers set is

initialized with the servers that host the relevant service instances in the current domain (line

5).

Algorithm 6 Context-Aware Scheduling of a Web Service

1: procedure Schedule(cluster, s)

2: potentialServers ← ∅

3: while (controller.initialized) do

4: if ((potentialServers.getBest() = ∅) ∨ (update(s) 6= ∅)) then . ∂E(t)
∂s
6= 0

5: potentialServers ← cluster.getServer(s) . minimize(A(n, D))

6: if (potentialServers = ∅) then

7: broker.update(s, status) . Service status as a MOM message to the associated brokers

8: serviceEndpoint ← broker.get(s).endpoint

. Receive potential service instance to migrate the workflow

9: s.migrate(serviceEndpoint)

10: return
11: end if
12: s.schedule(potentialServers.getBest()))

. Choose the first in the ordered set of best servers in the cluster
13: end if
14: end while
15: end procedure

If the set remains empty after initialization, the algorithm identifies that the servers in the

current domain did not meet the resource requirements for the service execution (line 6). Then

the controller updates the brokers that it has subscribed to, with this status for the service

execution (line 7). Then, the controller receives a potential service endpoint for the service

invocation via the broker, from the other domains (line 8). Once an alternative service endpoint

is identified, the service invocation is migrated to the newly identified service instance, and the

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 99

execution of the service in the current domain terminates (line 9). Finally, the service invocations

are scheduled to the chosen server(s) using s.schedule() (line 12), until its completion. The chosen

service instances continue to receive the client requests from the service composition client for

the specific tenant workflow until another interrupt occurs. The invocations to the following

services of the workflow are migrated accordingly to the new domain, if the domain also hosts

those service instances and if such a migration is favorable for performance.

6.2.5 Layered Architecture of Mayan

Figure 6.4 illustrates the layered architecture of Mayan with a network view and a service

composition view. The network view consists of the hosts deployed on top of the network.

Controllers are connected to the switches through OpenFlow protocol. Service composition

client receives the user requests and queries for the service deployment. It redirects the service

calls to relevant service deployments, after consulting the web services registry. At the network

level, the controller has the autonomy to decide one of the available alternative deployments

for the same service implementation. The service composition view looks into the same hosts

through a higher level of abstraction. OpenDaylight, the default SDN Controller of Mayan,

enables communication between the two views, as it is known from, and aware of, both views -

through its southbound OpenFlow API to network view, and through its northbound user-facing

APIs to service composition view. Master and secondary instances aim at providing scalability

and fault-tolerance to the service composition client.

Axis2
Engine

CXF
Engine

Hadoop
Cluster

Hadoop-
Master

NameNode

Seco
ndary

NameNode

Jo
bT

rac
ke

r

Tas
kT

rac
ke

r

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Axis2
Engine

CXF
Engine

CXF
Engine

CXF
Engine

Service
Composition

Client

S
D

N

C
ontroller

Service Registry
S

D
N

 C
ontroller

S
D

N
 C

ontroller

N
et

w
or

k
Vi

ew
S

er
vi

ce
 C

om
po

si
tio

n
V

ie
w

Network
Topology

Service
Composition

Client

Hadoop
Cluster

Hadoop-
Master

NameNode

Seco
ndary

NameNode

Jo
bT

rac
ke

r

Tas
kT

rac
ke

r

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Service
Composition

- Server Service-
Server

Service-
Server MapReduce

- Server
Hadoop -

Serve
r

Hadoop

-Serve
r

Had
oo

p -

Serv
er

Had
oo

p -

Serv
er

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Data
Nod

e

Had
oo

p -

Serv
erService-

Server

Service-
Server
Service-
Server
Service-
Server

Service
Composition

- Server

S
D

N

C
ontroller

Registry - Server

S
D

N

C
ontroller
C

ontroller
 - S

ervers

MapReduce
-Server

Hadoop -

Serve
r

Had
oo

p -

Serv
er Had

oo
p -

Serv
er Had

oo
p -

Serv
er

Switches

Figure 6.4: Three-Dimensional View of Mayan: Hosts, Network Topology, and Services

Service composition client invokes the web services hosted in the relevant web services

engines. Moreover, it also connects to the IMDG clusters and Hadoop-Master instances which

mimic the web services engines in producing the access point for those distributed execution

clusters. The service composition client gets the service health information from the web services

engines and Hadoop master instance of each of the Hadoop clusters and updates the SDN

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 100

controller on the routing table. It uses the web services registry to get the list of services

and service descriptions including the service endpoints which were earlier removed from the

routing table by Mayan due to their failure to respond or congestion. Thus, the servers hosting

those removed services are added back to the flow tables after a specific time of blacklisting

the congested or malfunctioning instances. In addition to the Hadoop-Master instance, each

Hadoop cluster consists of a NameNode, JobTracker, TaskTracker, Secondary NameNode, and

multiple DataNodes. The various DataNodes contribute to the Hadoop Distributed File System

(HDFS). Service composition client finally returns the outcome of the web service invocations

to the user.

6.3 Implementation

We prototyped Mayan to examine the feasibility and performance of an SDSC framework. In

addition to Apache Axis2 1.6.3 and Apache CXF 3.1.3 web services engines, we exploited Apache

Hadoop 2.7.1 and Hazelcast 3.6 to implement our services. We used OpenDaylight Beryllium as

the core SDN controller. We custom developed a services registry to accommodate descriptions of

services deployed in the web services engines, as well as MapReduce frameworks such as Hadoop

in the service composition workflow to replace a traditional web services engine. Mayan depends

on the availability of multiple implementations of services offering the same functionality, and

numerous deployment instances of same implementations which can be chosen by the extended

SDN controller, by partially delegating the service discovery to the network level. The flow

tables list the hosts consisting of service deployments that are high on priority, for the service

composition workflows. Mayan demotes the identified highly congested service deployments in

the services list.

Mayan leverages OpenDaylight’s data tree as the internal data store of its control plane.

Mayan inter-domain controllers communicate and collaborate through AMQP messages bro-

kered by ActiveMQ broker, without actually sharing a single global view of the network. The

controller persists the messages in a queue for a higher level of parallel messages, to handle the

scale efficiently. When the controller is overloaded, or the memory of the server that runs the

controller is overutilized due to a higher number of messages, the broker persists the messages

to an instance of KahaDB file-based data store in the local filesystem. The stored messages can

later be retrieved when necessary. Mayan uses a YAML (YAML Ain’t Markup Language) [45]

style configuration for service descriptions in the registry. Given below is a sample service listing

in the registry, with minimal description. This listing refers to data cleaning in an integrated

data repository construction workflow.

s e r v i c e s :
s e r v i c e : d a t a c o n s o l i d a t i o n :

type : compos it ion
en t ry po in t : 1 9 2 . 1 6 8 . 0 . 1 6 4
d e s c r i p t i o n : c o n s o l i d a t e s data from var i ous data sourc e s
s e r v i c e s :

d a t a c o n s o l i d a t e :
order : 1

d e t e c t d u p l i c a t e s :
order : 2

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 101

s e r i a l i z e d : f a l s e
wr i t e :

order : 3
s e r i a l i z e d : t rue

s e r v i c e : dup l i n s t ance count
impl : ax i s 2

axa : 1 9 2 . 1 6 8 . 0 . 1 0 4 ;
. . .

impl : cx f
type : j axws p r e l im ina ry ve r

cxa : 1 9 2 . 1 6 8 . 0 . 1 3 0
type : j axws ver 2

update : t rue
cxb : 1 9 2 . 1 6 8 . 0 . 1 3 1

type : j a x r s
cxc : 1 9 2 . 1 6 8 . 0 . 1 3 2

impl : mapreduce hadoop
mra : 1 9 2 . 1 6 8 . 0 . 1 3 3
. . .

impl : h a z e l c a s t
hza : 1 9 2 . 1 6 8 . 0 . 1 5 8
. . .

dataconsolidation is a service composition consisting of simple service implementations,

data consolidate, detect duplicates, and write. Here, data consolidate retrieves data from mul-

tiple data sources. detect duplicates finds duplicates out of the pairs of data elements from the

invocation of data consolidate. Finally, write service invocation outputs the data to the relevant

integrated data repository. dupl instance count is a simple service with various implementations

and deployments in Axis2, CXF, Hadoop MapReduce, and Hazelcast. The alternative endpoints

represent multiple physical or virtual deployments of the same service code. Moreover, different

implementations exist, even using the same services engine as depicted for CXF, where three

implementations exist - one is a REST/JAX-RS based implementation whereas the other two

are SOA/JAX-WS based implementations. We can add further extended service-specific param-

eters, as shown by the property “update” for CXF implementation of jaxws preliminary ver.

6.4 Evaluation

We evaluated Mayan for its controller performance and scalability of the execution workflows

in multi-domain networks. We used a computer cluster with Intel R© CoreTM i7-4700MQ CPU

@ 2.40GHz × 8 processor, 8 GB memory, and Ubuntu 14.04 LTS 64 bit operating system for

the evaluation. Due to the limited accessibility to servers in wide area networks, we emulated

SDN networks with Mininet and OpenDaylight extended with Mayan components. We engaged

a varying number of servers in a cluster to benchmark the performance and speedup of the

workflow execution with Mayan against the conventional network-agnostic service compositions.

6.4.1 Mayan Controller Performance

We evaluated the controller efficiency in composing the service workflows with inter-domain

messages. To quantitatively assess the controller performance, we limited our evaluation to a

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 102

stand-alone controller deployment that receives messages from the controllers of other domains

through a MOM architecture and returns service migration notifications.

Prototype deployment: We emulated a simple CPS workflow with several sensors, actuators,

and processing services connected to the Mayan controller deployment. We modeled the sensors

as services that produce data and the actuators as those receive the input from the sensors and

compute and perform actions based on the other service processing inputs. The workflow is

executed in a single domain, until the services are overloaded with the requests, thus leading to

a notification to the controller. Each message received by the controller triggers an execution

migration between the service instances across the domains managed by multiple controllers.

We thus built our workflow as a service composition with several service executions.

Controller Throughput: We evaluated the Mayan controller performance with a varying

number of concurrent and parallel messages, concerning throughput, number of messages pro-

cessed concurrently, and success rate. We measured the end-to-end throughput of the controller

as the number of messages entirely transformed by the controller, arriving from the publisher

domain and forwarded towards a relevant receiver domain. Figure 6.5 shows the throughput

and the total processing time of a stand-alone controller deployment.

 0

 1000

 2000

 3000

 4000

 5000

 100 1000 10000 100000 1×106 1×107

T
h
ro

u
g
h
p
u
t

(m
sg

/s
)

Number of Parallel Messages

(a) Throughput of the controller

 0.1

 1

 10

 100

 1000

 10000

 100 1000 10000 100000 1×106 1×107

Pr
o
ce

ss
in

g
 T

im
e

(s
)

Number of Parallel Messages

(b) Total processing time

Figure 6.5: Mayan stand-alone controller performance in processing messages in parallel

We observed the Mayan controller performance in handling messages to ensure that Mayan

can manage multi-domain workflow traffic with minimal overhead. Figure 6.5a illustrates the

throughput or the typical message processing rate of a single Mayan controller against that

of the number of parallel messages that the controller processes. By effectively handling the

parallel messages, the Mayan controller processes 5000 messages/s in a concurrency of 10 million

messages. Figure 6.5b depicts the total time taken to process the complete set of messages at

a single instance of the Mayan controller, against a varying number of messages. During a

timeframe of 40 minutes, it processed a sum of 10 million messages. The controller linearly

scaled concerning processing time with the number of parallel messages.

Success Rate: We observed how many messages can be processed and delivered per second

with a high success ratio with a single controller deployment of Mayan in each domain. Figure 6.6

illustrates the success rate of message processing with an increasing number of parallel messages.

The success rate remained high around 100%, always above 99.5% regardless of the number of

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 103

parallel messages the controller handles. For up to 10,000 parallel messages, the success rate

remained at 100%, and only slightly reduced down to 99.5% for a more substantial number of

messages: up to 10 million parallel messages. Even the reported 0.5% of failures indicates just

the failed first attempt; Mayan resends the failed message, based on the configurations (whether

to retry or ignore in case of a message processing or delivery failure). The evaluations highlight

the resilience of Mayan regardless of the increased number of messages, except for a massive

amount of messages such as 100 million parallel messages, which makes the server that hosts

the controller run out of memory, due to a large number of messages in the in-memory queue.

 90

 92

 94

 96

 98

 100

 100 1000 10000 100000 1×106 1×107

S
u
cc

e
ss

 (
%

)

Number of Parallel Messages

Figure 6.6: Success rate of the controller vs. number of messages processed in parallel

Mayan scales horizontally to cover more domains with a federated controller deployment.

We observed the Mayan throughput in a clustered controller deployment in an AWS cloud

deployment in a single placement group. We note that the throughput or the number of messages

processed in a given time indeed increased in such a clustered deployment in each domain.

Therefore, we can improve the throughput by deploying Mayan in a server with more resources,

or through a distributed and clustered deployment in each service domain.

6.4.2 Speedup of Service Compositions with Mayan

To benchmark the speedup of the Mayan SDSC approach, we modeled a workflow perform-

ing distributed data cleaning and consolidation as i) a base distributed web service composition

as well as ii) a network-aware SDSC execution. We used around 100 datasets of sizes between 1

- 3 GB from the Cancer Imaging Archive (TCIA) [77], a medical image repository. We further

synthesized more data with near-duplicates from the original datasets. Figure 6.7 depicts the

speedup of the distributed execution with a various number of distributed instances.

Both the base distributed execution as well as the Mayan execution scaled near-linearly for

up to 100 geo-distributed execution nodes for the service workflow scheduling. We observed

that initially, both the base and the SDSC approaches showed speedup with reduced time for

workflow execution and migrations with an increasing number of service instances. We noted

that the speedup with the base execution reached the global maximum much faster than the

Mayan execution. The base execution started to poorly perform when we distributed the services

to several instances beyond what is essential for the fastest execution time. Mayan minimized

the cross-domain workflows while efficiently exploiting the services deployed close to each other.

By leveraging the global knowledge of the network and data distribution readily available to

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 104

 0

 20

 40

 60

 80

 100

 40 50 60 70 80 90 100 110 120 130
S

p
e
e
d
u
p

Number of Instances

Base Distributed Execution
Mayan execution

Figure 6.7: Speedup of distributed data cleaning and consolidation workflow

the controller, Mayan devised a context-aware distributed data cleaning workflow, with related

objects, stored closer, increasing the locality.

The difference in scalability and speedup between the base execution and the Mayan exe-

cution indeed depends on the nature of the service composition, workload, and the considered

multi-domain network environment. Furthermore, with even more nodes introduced to the exe-

cution environment, Mayan too ceases to provide speed up with additional nodes. However, we

note that with its network-aware scaling and service workflow scheduling, Mayan offers better

scalability, compared to the base network-agnostic distributed execution. Our observations high-

light the performance benefits of the global network awareness in the SDSC approach achieved

through the federated controller deployment with SDN and MOM. Furthermore, our evalua-

tions illustrate the efficiency of the Mayan controller in offering the throughput and success rate

necessary for the inter-domain control.

6.5 Conclusion

Complex eScience workflows aggregate and chain several geo-distributed web services and

microservices for their execution. Large-scale workflow executions are often intensive in com-

putation or communication, where delays and failures are not tolerated. Various alternative

implementations and deployments exist for these services and applications, attempting to in-

crease their fault-tolerance. However, seamlessly deploying and migrating service executions

across these alternative instances is a challenging task due to the lack of coordination among

the service providers of several domains.

SDSC is an integration of SDN into service composition to facilitate context-aware execution

of service workflows. It minimizes latency and communication overhead, by enabling coordina-

tion across service providers of multiple domains. We built Mayan as an SDSC framework

for an adaptive execution of scientific workflows through a federated deployment of SDN con-

troller clusters in a wide area network. Mayan thus enables communication across inter-domain

controller clusters, without sharing a global network view with any single entity.

Mayan finds the best-fit among the alternatives of available service execution options, con-

sidering various constraints of network and service level resource availability and requirements,

CHAPTER 6. SOFTWARE-DEFINED SERVICE-COMPOSITIONS 105

while respecting the locality of the service requests. Mayan utilizes the local service load infor-

mation available for the web services engine. It achieves network level heuristics beyond data

center scale, using protocols such as MOM in conjunction with SDN. Preliminary evaluations on

the Mayan prototype showed how an SDSC approach could be leveraged as a reusable, scalable,

and resilient distributed execution framework for the scientific workflows on a global scale.

7Network Service Chain

Orchestration at the Edge

As network services are often latency-sensitive, NSC should be carried out maintaining

proximity among the services that compose the NSC as well as the user that consumes the NSC.

Due to the inherent bandwidth cost associated with the distance between the network services

and the end user, more and more third-party VNF providers choose to deploy their services at

the edge, rather than a cloud. Finding the best-fit VNFs that offer a high QoE while abiding by

the user policies remains a significant challenge in the multi-tenant edge environments. Mobile

environments face further hurdles due to their resource-constrained nature and the requirement

for live migration of data and execution. The need for locality and an optimal match between

the user policies and the VNF offerings has created several research challenges in the context of

service placement at the edge. A typical NSC consumes various network services, where one’s

output becomes the input of another. Despite their increasing number, current edge providers

give limited control to the users to compose their NSCs by seamlessly choosing the VNF instances

based on the user policies. By increasing the number of deployment and execution alternatives,

the rise of the distributed and decentralized edge nodes has increased the complexity of finding

the optimal VNF instances at the edge for an NSC.

Motivation: Given the above premises, we aim at addressing the following research questions

in this chapter:

(RQ1) Can we simplify and generalize the VNF allocation for seamless execution of the user

NSCs at the edge, in the presence of several third-party edge VNF providers and numerous

users?

(RQ2) Can we bring the control of the NSC back to the user from the service providers, despite

using third-party edge VNFs?

(RQ3) Can we optimally provision the user NSCs across multi-provider edge VNFs, adhering

to the user-defined policies?

(RQ4) Can we scale SDN to compose NSCs at the edge in a resilient and agile manner?

Contributions: The goal of this chapter is to answer the identified research questions. The

main contributions of this chapter are:

1. A scalable and optimal framework for NSC placements at the edge, consisting of an

SDN architecture extended with MOM [87] for global awareness of the VNF nodes. (RQ3

and RQ4)

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 107

2. Generalizing the challenge of resource allocation, service discovery, and workflow migra-

tion on the edge platforms for an adaptive execution of NSC as MILP problems. (RQ1)

3. A graph-based approach to solving the MILP models from the perspective of a remote

user of third-party edge VNF providers. (RQ1 and RQ3)

4. Adaptive algorithms, executing decentralized at the devices of the VNF users, indepen-

dent from the executions of the other devices, to optimally provision the user NSCs across

the edge VNFs for a locality-aware and policy-aware execution. (RQ2 and RQ3)

We implemented Évora1 (Edge VNF Orchestration with Resilience and Agility), to con-

struct and deploy NSCs at the edge. Évora considers various system constraints such as band-

width efficiency and economic aspects, as well as user-defined policies such as SLOs of required

throughput and uptime. Évora exploits its SDN architecture extended with MOM to discover

the global VNFs in a wide area network. It chooses the edge VNFs locally for the execution of

the NSC requests of the users, by wholly and exclusively searching the nodes identified via the

MOM messages. Thus, Évora follows a greedy approach of “think globally, act locally”, and

solves the NSC allocation efficiently at each edge device with dynamic programming.

Évora ensures optimality in the NSC placement at the edge from the user perspective,

without sacrificing the performance of the user NSC and the VNF providers. Évora brings

control of the NSC back to the user, from the cloud and service providers, as it used to be in

the days before the invent of multi-tenant cloud platforms. Thus, Évora transforms the user

into the central entity of the NSC ecosystem, from being a passive participant. Furthermore, it

supports the seamless inclusion of more network domains by adding their respective controller

to the Évora ecosystem by subscribing through the MOM messages.

We deployed and performed an experimental evaluation of Évora for NSC execution at the

edge. In particular: (i) we evaluated the correctness and optimality of Évora in its NSC alloca-

tions adhering to the user-defined policies, and (ii) we assessed the complexity and scalability

of the Évora graph-based approach in solving the optimal VNF allocation, posed as the MILP

problems. The results obtained indicate that Évora ensures that the user-defined policies are

met in allocating the user NSCs across the edge VNFs. Furthermore, we observed that the

Évora extended SDN architecture enables scaling out the edge environment.

This chapter is composed of the contents of the publication: [J1].

7.1 Edge VNF Orchestration with Resilience and Agility

The Évora ecosystem consists of an Event Manager and an Orchestrator, two light-

weight modules, executing independently in each user device. These modules let the users

manage their NSCs themselves, albeit using third-party edge VNFs. The Event Manager finds

1Évora is a Portuguese city with a rich history of five millennia, located at a junction of several important
routes of the Roman era.

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 108

Table 7.1: Notation of the Évora Representation

G The acyclic multigraph of edge nodes

H The hypergraph of edge VNFs

V The set of compute nodes hosting the VNFs

L The set of links that connect the compute nodes

N The set of compute nodes considered by an Évora deployment

S The set of VNFs considered by an Évora deployment

Si The set of VNFs in a node ni
Sj The set of VNFs composing an NSC ψj
s∗ A VNF instance; s∗ ∈ S
X The set of VNFs, annotated by the node deployment

I The set of intra-node links between the VNFs of each node

E The set of links that connect the edge VNFs

R The set of resources provided by the edge VNF provider

VNFs from the edge nodes, based on event notifications. The orchestrator optimally allocates

the NSCs among the VNFs identified by the Event Manager, by formulating MILP models.

Section 7.1.1 describes how the orchestrator internally represents the edge nodes and VNFs as

graphs in the user devices. Section 7.1.2 formulates the MILP models to provision the user

NSCs across the VNFs optimally. Section 7.2 elaborates the orchestrator algorithms to solve

the MILP problems.

7.1.1 NSC at the Edge: Graph Representation

Évora models the MEC environment consisting of various interconnected computing nodes2

as an undirected acyclic multigraph G = (V,L). V represents the set of nodes hosting the VNFs,

and L represents the links that connect them. ∀i,j,k∈ Z+, each node ni ∈ N ⊂ V consists of a

set of services Si ⊆ S. A user uj can compose her NSC ψj as a composite function from a set of

services, as shown by Equation 7.1. Complete details on the notations are listed in Table 7.1.

∀s∗ ∈ Sj ⊆ S : ψj = sa ◦ sb ◦ . . . ◦ sx (7.1)

Since each node offers one or more VNFs, Évora denotes the service deployments in a

hypergraph H = (X,E) as an overlay on the node graph G = (V,L). Évora minimizes the NSC

resource allocation problem into how to place ψj in the hypergraph H optimally. Each vertex of

H can be either i) a single vertex (interchangeable with a vertex of G) or ii) a complete graph

of multiple service deployments within a vertex of G. The former refers to a node that offers

only a single network service, while the latter refers to one that offers multiple network services.

E = L ∪ I, where I represents the set of intra-node links between the services in each node.

2To avoid overloading the words ‘node’ and ‘edge’, we refer to the graph properties with ‘vertex’ and ‘link’.
In our terminology, ‘edge’ is strictly restricted to the edge environment, and ‘node’ is strictly restricted to the
compute nodes (i.e., servers and smart devices) at the edge.

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 109

Equation 7.2 represents X as services annotated with their node deployments. As intra-node

service composition is more bandwidth-efficient than inter-node executions, the edges of the

hypergraph are differentiated in weight accordingly to represent the minimal latency between

the E hosted in a given V.

∀xi ∈ X : xi = nj .sk

where sk =⇒ Any of the services deployed in the node nj ∈ V.
(7.2)

Edge data centers often have (either logically or physically) separate links for control flows

instead of sharing the same links with the data flows, as data flows are heavy while control flows

are light-weight and more critical. The control flows of OpenFlow and SD-WAN span across the

edge nodes as well as with the mobile/edge user device. As an illustrative example, Figure 7.1

demonstrates the multigraph G of an edge environment with a user, representing data flows

with dark solid lines and control flows with dotted lines. Évora interprets the edge environment

of VNF deployments as a hypergraph with the service instances inside a node as vertices, and

nodes themselves as supernodes, where a single hyperedge connects all the services inside a data

center. A hypergraph representation of this environment will lead to several intra-node links, I =

{n1.{s1, s4}}, n3.{s1, s3}, n4.{s2, s4}, n6.{s2, s3, s4}, n7.{s1, s3}, n12.{s3, s4}, n16.{s3, s4}}. The

sample NSC is defined as s5 ◦ s4 ◦ s3.

s1
s3

s4

s2

s3

s2

s1

s4

s5

s4 s3 s2

s1

s2

s3 s4 s2

s1s5

s1
n1

n2

n3

n4

n5

n6

n7

n8

n9

n10 n11

n12 n13

n14

n15

n16 n17
s4

s1

s2 s3
s4

User
Device

s5 s4 s3

Figure 7.1: A User-Defined NSC Among the Edge Nodes

The orchestrator instance in the user device identifies the nodes required for the execution

of each service in the NSC that the user has composed. The user device connects to the nearest

nodes, through either a dedicated connection or the public Internet. The orchestrator considers

an undirected acyclic graph with only the data links that are responsible for the VNF traffic in

its service allocation, eliminating the control links from the model. The user defines her NSC

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 110

and seeks the best-fit for the execution based on her NSC policies. To minimize latency in an

oversimplified approach based on the geographical distance between the edge nodes, the first

and last VNFs need to be proximate to the user, whereas the services in the NSC themselves

need to be close to each other. In the ideal case, all the services will be close to each other

and the user. The proximity aims to minimize the latency caused by too many hops and the

geographical distance between the user and services.

7.1.2 NSC at the Edge: MILP Models

Edge VNF User Perspective: The Évora orchestrator in the user device chooses the VNFs

among the available alternatives accordingly, to satisfy the user’s policies for the NSC execu-

tion. The user policies may consist of several parameters, such as throughput, monthly cost, and

latency. For example, the user needs to maximize the throughput (T) of her NSCs while mini-

mizing the total monthly cost (C) and latency (L). We define MILP models from the individual

user perspective to support the user policies in a scalable manner. The algorithms executing

from each VNF user device compute and solve these models for the user’s own NSCs.

Equation 7.3 defines the latency Ls as the contribution to the overall latency of the NSC

from a service s composing the NSC. τs represents latency of the service s. %s represents the

latency between the ingress port and connecting link from the previous service, or the time taken

for a unit data to arrive at the current service s from s−1 (s−1, s ∈ ψ). Thus, τs + %s represents

the time interval between the departure of a unit data from the VNF s−1 and the time VNF

s outputs the data through its egress port. ts0 and tsf represent the start and end time of the

execution of any VNF s composing the NSC ψ.

Ls = τs + %s = tsf − t
s−1

f (7.3)

Since the VNF provider can charge a dynamic unit price for the VNF offerings based on

the current demand and resource availability, we define the cost incurred by a VNF offering by

a time integral of the service unit cost over the VNF execution period. cs denotes the unit cost

to acquire a VNF s. Equation 7.4 describes the execution cost of s as part of a user NSC.

Cs =

∫ tsf

ts0

csdt (7.4)

The user should aim at reducing her total operational cost of all the services in the NSC,

rather than performing a local minimization for each of her VNFs. As a global minimization

problem, we find and store the effective amount composed of Cs, Ls, and Ts of each VNF of

NSC as C, L, and T for each NSC, as depicted by Equation 7.5. Here, the latency and cost of

the NSC are a sum of the individual values of them for each of the VNF in the NSC. The VNF

that has the least of the throughput among those composing the NSC limits the overall NSC

throughput.

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 111

C =
∑
s∈ψ

Cs;L =
∑
s∈ψ

Ls;T = min
s∈ψ

Ts (7.5)

In practice, a VNF provider does not change the unit cost of a service within a brief time.

Therefore, for a reasonably short NSC execution time, we can assume the unit cost of a VNF

to be constant throughout. Thus, we can simplify the total cost calculation as illustrated by

Equation 7.6.

dcs
dt

= 0 =⇒ Cs = (tsf − ts0)× cs (7.6)

Maximum total volume of data passed through a VNF can be expanded as duration ×
throughput, (tsf − ts0) × Ts. Finally, Equation 7.7 models the edge NSC allocation as a MILP

problem.

minimize
α,β,γ∈N

(αC + βL+ γT−1) (7.7)

The policy gives weight to the parameters, relative to each other as in a ratio. It can also

include further constraints and SLOs such as “T ≥ 50” to indicate the user requirement to have

a minimum end-to-end throughput of 50 Mbps for the NSC. T−1, the inverse of throughput,

denotes how much time it takes to process a unit data (measured in Mb) end-to-end through the

NSC. For example, a service we hosted on Amazon EC2 offered 50 Mbps or 0.02 s/Mb. α, β, and

γ are integers defined by the user as the policy for the NSC in the form of “C α;L β;T γ”. The

penalty value F = αC+βL+γT−1 can be generalized to include more configuration options as in

Equation 7.8. The minimization problem can also be extended to include additional properties

(such as uptime, QoS guarantees, and carbon efficiency) and constraints.

minimize
α,β∈N,γ∈Z,a,b∈R>0,γ×c∈R≤0

(αCa + βLb + γT c) (7.8)

Edge VNF Provider Perspective: The VNF provider needs to be economically sustainable.

Therefore, she should maximize the number of VNF deployments ηs for each VNF s ∈ Si,

to increase the income, while confirming that the VNFs do not overutilize the total available

resources r ∈ R, at any given time t. Equation 7.9 expresses these constraints while maximizing

the overall platform profit over time. υs,r refers to the consumption of resource r by a single

VNF deployment of s. ∆cs refers to the profit of each VNF, as a difference between the income

cs and expense estimated for the particular VNF deployment ιs.

∆cs = cs − ιs; maximize
ηs∈N,ε∈R>0

(∫
t>ε

(ηs ×∆cs)dt

)
.

s.t.∀r ∈ R, r ≥
∑
s∈Si

ηs(t)× υs,r(t).
(7.9)

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 112

A service provider should spawn a VNF instance in a node only when it is profitable for

her (i.e., more income from the end users compared to the cost of running an additional VNF

and consequently, more nodes). The provider may even terminate an existing instance without

affecting the active NSC workflows to ensure that the overall VNF execution is profitable. Thus,

when the VNF provider incurs an economic loss, the change in the number of any VNF instance

will be a non-positive value as Equation 7.10 illustrates.

∀s ∈ Si : ∆cs(t) ≤ 0 =⇒ dηs
dt
≤ 0 (7.10)

Although we formulate MILP models for both the user and the edge VNF providers, we

limit our focus to the edge user perspective of NSCs and solve the MILP optimization problem

illustrated by the Equation 7.8. Since Évora executes from the user perspective, it considers

each edge node as an indivisible atomic unit. Nevertheless, an edge data center often consists

of several servers with their own constraints. Managing the VNFs and allocating resources for

VNFs inside each edge node (regardless of its nature or scale) is analogous to NSCs in data

centers, a well-studied subject [36].

7.2 Évora Algorithms

The Évora orchestrator executes algorithms that efficiently resolve the NP-hard problem of

hypergraph matching [267] for the NSC allocation using dynamic programming. It initializes the

global variables that represent the node and service graphs. For each user NSC, the orchestrator

identifies the multiple execution paths and chooses the best fit for the current NSC based on its

policy (which of the parameters to be minimized or maximized and their respective thresholds).

It thus solves the MILP models efficiently for each user, for each of their NSCs along with their

policies. The execution is performed only once per a user NSC defined with a given policy,

unless there is a change in the user demand or the status of the node or the VNF instance. The

chosen execution path is stored for subsequent executions of the NSC with the same policies.

Thus Évora incurs no overhead in finding the optimal VNFs in subsequent accesses.

7.2.1 Évora Global Environment

Algorithm 7 defines the process of orchestrating the user environment by initializing and

maintaining the environment consisting of graphs and other global variables. The orchestrateEn-

vironment procedure initializes the global variables (defined in lines 2 - 5). The events received

as notifications from the edge nodes, based on the event subscriptions of the user, trigger updates

to these variables.

The orchestrateEnvironment procedure takes as input a map of user-defined NSCs and

their respective policies including SLOs (such as latency, throughput, and loss rate) and other

objectives such as minimal cost. initOrchestrator() (invoked in line 8) initializes the Évora

orchestrator that manages the VNF requests to chain them as NSC. initEventManager() (invoked

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 113

Algorithm 7 Orchestrating the Environment

1: global variables

2: edgeNodesMap . <property of edge node, relevant value>

3: servicesMultiMap . <node, deployed services>

4: matchingSubgraphsMultiMap . <nsc, matching paths>

5: nscMap . <<nsc, policy>, executionPath>

6: end global variables
7: procedure orchestrateEnvironment(initNscMap<nsc, policy>)

. The policy includes the user policies for the MILP models

8: initOrchestrator()

9: initEventManager()

10: for all (broker ∈ brokers) do

11: subscribe(broker)

12: initNodes ← getEvent(broker, INITIALIZE EVENT)

13: for all (node ∈ initNodes) do

14: edgeNodesMap ← edgeNodesMap ∪ {(node.getKey(), node.getValue().properties),

(node.getKey()+ ’NEXT’, node.getValue().links)}
. Adding the node properties and linking the next nodes to the current node.

15: servicesMultiMap ← servicesMultiMap ∪ {(node.getKey(), node.getValue().services)}
16: end for
17: end for
18: nscMap ← < initNscMap,∅ >

19: repeat

20: if (eventReceived) then

21: updateUserEnvironment(event)

22: end if
23: until (aborted)

24: edgeNodesMap ← ∅
25: servicesMultiMap ← ∅
26: nscMap ← ∅
27: matchingSubgraphsMultiMap ← ∅
28: end procedure

in line 9) initializes the Event Manager. The Event Manager subscribes to the notifications as

defined by the orchestrator, by providing the endpoint of the brokers co-located with a controller

in edge nodes (line 11).

Upon initialization, the broker retrieves the details of edge nodes from the broker queue

with the topic INITIALIZE EVENT (line 12). INITIALIZE EVENT is a system-defined global

static constant, used as the topic for the data necessary to bootstrap the system in the broker.

For each of the node received from the broker queue, its properties are added to the edgeN-

odesMap with the key of the node identifier. Furthermore, the next nodes are added to the

edgeNodesMap with the key {DATACENTER ID} +‘NEXT’, to represent the node graph (line

14), by denoting the properties of the links. The services of each node are added to the services-

MultiMap to represent the services hypergraph (line 15). Each service can be directly retrieved

from the multimap by providing the node. The initNscMap is added as the keys of the nscMap

global variable, as a <nsc, policy> tuple, with the value of each entry set to ∅, an empty or

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 114

null object (line 18).

The Event Manager listens to the relevant notifications published by the edge nodes. An

event will be triggered for the availability of new nodes, unavailability or status update of an

existing node, availability of new services in a current node, and unavailability or status update

of an existing service in a node. The event is triggered either by the action of the edge nodes

or by the user herself such as moving her location from where she executes the NSC from or

updating her NSC definitions or their policies. When an event is received from one of the brokers

in the edge nodes, the user environment and the global variables (edgeNodesMap, servicesMul-

tiMap, matchingSubgraphsMultiMap, and nscMap) are appropriately updated by invoking the

updateUserEnvironment procedure (lines 20 - 22). This update ensures that the NSC executions

are dynamically updated to reflect the current status of the edge nodes. When the orchestrator

is terminated, the global variables are reset to ∅ (lines 24 - 27). As the orchestrateEnvironment

procedure manages the user environment, the user has the updated information on the available

service deployments at the edge.

7.2.2 NSC Execution Paths at the Edge

Algorithm 8 is an implementation of a graph matching problem, optimally designed for

adaptive NSC allocation at the edge. We built the algorithm based on our observation that

NSCs have fewer vertices (typically, up to 10 VNFs), whereas the edge nodes are much larger in

numbers (several thousand in MEC environments). This algorithm confirms the interconnection

between the service deployments for a complete NSC execution, rather than merely confirming

the existence of a VNF in a node from servicesMultiMap. The algorithm depicts the process of

finding the potential execution paths for an NSC, which can be later used to determine the exact

NSC execution flow for any given policy. It takes nsc defined by the user programmatically or

through a configuration file, as well as a pointer to a graph traversal function iTraverse() as

the input. Since the nearest nodes of the hypergraph represent the services in the same node,

the algorithm by default chooses breadth-first traversal as the implementation of iTraverse().

Any user-defined traversal such as random walk can replace the traversal implementation. With

the choice of the traversal algorithm, the constructed execution paths are already sorted to fit

the search criteria.

partialNSCs is a list of arrays (line 2) that traces the potential NSC execution paths in the

node graph, as the algorithm constructs them into partial chains of the NSC. Each array in the

list consists of maximum entries equal to the number of services in the NSC in the form of a

tuple <service, currentNode>. These arrays grow with the number of service deployments found

from the edge nodes, as a matching subset of the complete NSC. Similarly, the partialNSCs list

itself grows as more potential execution alternatives are constructed. Thus, it provides chains

of pointers to the matching node for each of the services in the NSC. The multiple arrays in the

partialNSCs list indicate the possible multiple execution paths, stored against their service. The

algorithm initializes partialNSCs list with ∅ (line 5). Then it repeatedly traverses the graph

until it completes visiting each of the nodes. iTraverse() traverses the edgeNodesMap, one node

at a time, returning the current node at each move (line 7). Then the algorithm finds whether

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 115

Algorithm 8 Finding NSCs at the Edge

1: local variables
2: partialNSCs . List{< currentNode, Service > []}
3: end local variables
4: procedure initNSC(nsc, iTraverse())

5: partialNSCs ← ∅ . Initialize the list with an empty set, ∅
6: repeat

7: currentNode ← iTraverse(edgeNodesMap) . Traverse the map, one node at a time

8: for all ((service ∈ currentNode) ∧ (service ∈ nsc)) do

. Services composing nsc found in the currentNode

9: for all ((pNSC ∈ partialNSCs) ∧ (service /∈ pNSC)) do

. Service found not to be in partialNSC elements

10: if (((edgeNodesMap.get(currentNode.getKey()+NEXT)) ∧ pNSC) 6= ∅) then

. A link exists between an element in pNSC and currentNode

11: pNSC ← pNSC ∪ {(service, currentNode)}
12: end if
13: end for
14: partialNSCs ← partialNSCs ∪ {newPartialNSC(service, currentNode)}

15: for all (pc ∈ partialNSCs) do

16: if (pc.length = nsc.length) then

. Array at full capacity. pc has been constructed as the NSC

17: pc.persistPenaltyValues(pc) . Add metadata to pc object

18: matchingSubgraphsMultiMap ← matchingSubgraphsMultiMap ∪ {(nsc, pc)}

19: partialNSCs ← partialNSCs \ {pc}
20: end if
21: end for
22: end for
23: until (allNodesTraversed)

24: end procedure

the current node has one or more services that are part of the NSC (line 8), as it can readily

retrieve the services available in each node from the servicesMultiMap.

For each array representing the constructed partial NSC (pNSC) in the partialNSCs list,

the algorithm checks whether the service is not already present (line 9). Then it confirms that

there are overlaps between a pNSC and the ‘NEXT’ pointers of the current node stored in the

edgeNodesMap to denote the links (line 10). An overlap indicates the existence of one or more

links, showing the possibility to add the current node into the NSC. Thus, the algorithm puts

the <service, currentNode> tuple into the pNSC array to add the next entry in the chain (line

11). For each node with a service matching one from NSC, a new object is created with the

tuple <service, currentNode> as the first VNF, and added to the partialNSCs list (line 14).

This approach gives space to construct new potential NSCs with the currently traversed node as

the first entry. Equation 7.11 depicts the construction of partialNSCs list in the form of NSCs.

The subsets of the longest partial NSC are also stored in the list, to identify and store all the

alternative execution paths effectively.

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 116

∀y, z ∈ N, ∀sy ∈ Sj ,∀nz ∈ V, {l,m, o, . . . , t, p, q, r, . . . , k} ⊂ N, serviceIDs = {p, q, r, . . . , k} :

partialNSCs = { [∅], [< sp, nl >], [< sp, nl >,< sq, nm >], [< sp, nl >,< sq, nm >,< sr, no >],

. . . , [< sp, nl >,< sq, nm >,< sr, no >, . . . , < sk, nt >] }
(7.11)

Performance Optimizations: Évora stores the intermediate stages of the matches together

with their computed penalty values, to speed up the performance of finding the complete NSCs.

The algorithm checks the partialNSCs list during each traversal for complete NSCs (line 15).

Each element in the partialNSCs list is an array towards building the NSC. Therefore, when

any of the arrays consists of services equal to the number of services in the NSC, the algorithm

considers the array to be complete (line 16). We expect a better performance by comparing the

array lengths with the number of services composing NSC, instead of comparing the services

themselves. Évora computes the penalty values consisting of parameters such as T−1 and C

for each chosen NSC, by retrieving the unit values (such as cs and τs) from the edge VNF

provider APIs for each of the VNFs. Since its goal is to satisfy the optimization of the MILP

models, it stores the computed penalty values consisting of parameters as metadata for the NSC,

using persistPenaltyValues() (line 17). Storing of penalty values as metadata against each NSC

increases the performance of finding the best-fit NSCs for different user-defined penalty ratios

(such as α, β, and γ) at each execution.

Évora identifies and stores multiple matches of execution paths for each nsc, to traverse

later and find the best fit for any user-defined policy for a given NSC. Finally, pc is added to the

matchingSubgraphsMultiMap against the key, nsc (line 18). The caching of multiple options en-

sures a quick reaction to the dynamic changes of the edge nodes, such as node downtime, service

interruption, resource overutilization in any given service deployment, and network congestion.

pc is then removed from the partialNSCs list since the NSC is now complete and therefore no

further service needs to be added to it (line 19). The algorithm thus finds all the potential

execution paths until it finishes traversing the nodes detected through the MOM messages (line

23). Consequently, the initNSC procedure traverses the node graph, to find all the complete

matching NSC execution paths and stores them accordingly in the service graphs. By a complete

search with all the nodes in the graph, and then choosing the NSC with the minimal penalty

value, Évora ensures that the optimal NSC is chosen.

7.2.3 Resilient and Adaptive Scheduling of the NSCs

Algorithm 9 presents the orchestrator procedure of scheduling the user-defined NSC. It takes

as input the nsc), the relevant policies that need to be satisfied and optimized through the MILP

models (policy), and a pointer to the iTraverse() function interface as the input parameters.

First, the scheduleNSC procedure initializes matchingSubgraphsMultiMap and nscGraph for the

relevant NSC execution, if they were not initialized previously. initNSC() procedure (elaborated

in Algorithm 8) is called to initialize the matchingSubgraphsMultiMap (line 5). Each NSC is

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 117

defined along with the policies that it needs to abide by, such as minimal cost or minimal latency.

The algorithm chooses the best fit among the matching execution paths from the multimap based

on the user-defined policy, to resolve the MILP models (line 7). Since the penalty values for

each NSC is stored as metadata against each NSC entry in Algorithm 8, we can solve the

minimization/maximization problem by a simple integer substitution (of α, β, γ, . . .).

Algorithm 9 Scheduling an NSC at the Edge

1: procedure scheduleNSC(nsc, policy, iTraverse())

2: nscGraph ← nscMap.get(<nsc, policy>)

3: if (nscGraph = ∅) then . One-time initialization per <nsc, policy>

4: if (matchingSubgraphsMultiMap.get(nsc) = ∅) then

5: initNSC(nsc, iTraverse())

6: end if
7: nscGraph ← matchingSubgraphsMultiMap.getBest(nsc, policy)

. Resolve the MILP models based on the policy.

8: nscMap ← nscMap ∪{(<nsc, policy>, nscGraph)}
. Replace the ∅ value set in Algorithm 7 for the entry.

9: end if
10: nextNodes ← nscGraph.getFirst() . For parallel execution with multiple first VNFs

11: for all (node ∈ nextNodes) do

12: node.schedule(nscGraph)

13: end for
14: broker.sendEvent(nsc, policy)

15: end procedure

nscGraph defines the chosen execution path or the chain of VNFs executing the NSC work-

flow. nscGraph is stored against the <nsc, policy> tuple in the nscMap (line 8). The first nodes

to initialize the NSC workflow are identified from nscGraph (line 10). The VNF execution is

scheduled at the first nodes in the execution path (lines 11 - 13). As the NSC may consecutively

invoke two or more parallel service deployments, the execution is generalized for distributed and

parallel execution of NSC. An event is sent to the respective broker using sendEvent() (line 14),

with information on the NSC and policy.

7.3 Implementation

We prototyped Évora by extending OpenDaylight with VNF orchestration capabilities. We

used Oracle Java 1.8.0 as the programming language and ActiveMQ as the MOM broker. We

emulated user devices consisting of an Event Manager that connects with the brokers through

MOM messages and an Orchestrator that orchestrates the user NSC execution.

Figure 7.2 presents an illustrative deployment of the edge nodes and the user device. It

also demonstrates how the orchestrator of the user device visualizes the hypergraph of the edge

node services in a graph of complete graphs. The edge nodes are detected through the MOM

messages, by subscribing to the relevant notifications. The user chooses to find only the relevant

VNF nodes at the edge. Thus, she can effectively control the size of the graphs based on her

interests in various VNFs. The size of the Évora graph representation in each user device can

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 118

be anywhere from a few KBs to several MBs. Évora represents each node by a complete graph.

Each link to the node that connects it to adjacent nodes or the Internet is depicted by multiple

links to each of the service in the nodes. The connected graphs representing each node consists

of vertices that denote the services connected by stronger links than the inter-node links of the

hypergraph as illustrated.

Orchestrator’s Simplified
Representation of the Hypergraph

User Device

Orchestrator

s4

s2

M
O

M

m
essages

SDN
Controller

SDN
Controller

s2 Event
Manager

Event
Manager

Event
Manager

Event Manager

B
ro

ke
r

s3 s4
n6

n9

n8
s3 s1

n7

n6.s2

n6.s3n6.s4

n7.s3 n7.s1
n9.s4

n8.s2

n6

n7

n8

n9

Event
Manager

B
ro

ke
r

Figure 7.2: An Évora deployment: Edge Nodes and the User Device

Some nodes have a broker, while every edge node consists of an Event Manager. Event

Manager is a thread that functions as an event publisher and event listener, to publish messages

to the subscribers through the broker, and subscribe to notifications for relevant events. The

user device is thus subscribed to the broker instances to know the status of the edge VNF

deployments. We developed the interaction between the Event Manager and the broker through

AMQP messages. The controllers manage the node networks, with the ability to dynamically

program the network. MOM messages do not necessarily require a static link, as they can go

through over the Internet or an overlay network, and can be formed dynamically without a

predefined hierarchy.

There should be a secured connection between the nodes for the data transfer between the

service executions in an NSC. Edge nodes of a single provider in a neighborhood are typically

connected to form a private network to minimize latency, reduce expenditures and security risks

caused by utilizing the public Internet for local inter-node traffic, and maximize throughput.

Unlike a stand-alone VNF execution, NSC requires a workflow of multiple services. A VNF

provider typically guarantees a protected connection for live migration of data between her

VNF offerings. Évora ensures completeness of a user NSC execution through the availability of

a connected graph of nodes consisting of all the services in the NSC, despite leveraging service

instances from different providers to compose the NSC.

In a typical edge user scenario (such as an edge data center used for network services), the

user is subscribed to offerings from particular edge nodes and will have dedicated connections

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 119

established between the edge nodes and the user on-premise deployments and servers to avoid

latency. In a mobile environment or an execution environment composed of many light-weight

edge nodes, the user needs to develop links dynamically through the Event Manager. As with

the cloud platforms and web services, edge nodes should provide standardized APIs for the

end users to interact with their service offerings, and support inter-node migration of data and

execution. Unless a single edge VNF provider offers all the related network services, it is fair to

expect that they provide relevant secured APIs for NSCs, to maintain a competitive business

model.

7.4 Evaluation

We assess Évora algorithms with microbenchmarks to evaluate its performance and ability

to abide by the user policies.

7.4.1 Problem Size and Scalability of Évora

Évora represents the edge services hypergraph as a graph of complete graphs, as elaborated

in Section 7.1. The number of links in the node graph depends on the average degree of each edge

node, in its connections with other edge nodes, and the total number of edge nodes considered in

a given deployment of Évora. First, we evaluate the growth of the service graph representation

against the increasing number of services in each node and the average number of links between

the nodes.

Figure 7.3 illustrates the growth of the problem space of constructing NSCs at the edge. Just

with 10 VNFs per edge node, and nine links in the node graph, Évora service graph reaches 1000

links. We observe that the number of links in the service graph representation grows linearly

with the number of links between the edge nodes, and exponentially with the average number

of services per edge node. The growth of the alternative parts composing the NSC illustrates

the scale of the resource allocation problem.

 1 2 3 4 5 6 7 8 9 10 0
 2

 4
 6

 8
 10

 0
 200
 400
 600
 800

 1000
 1200

N
o
.

o
f

S
e
rv

ic
e
 G

ra
p
h
 L

in
k
s

Avg No. of Services in a Node No. of N
ode Graph Lin

ks

N
o
.

o
f

S
e
rv

ic
e
 G

ra
p
h
 L

in
k
s

Figure 7.3: Representation of the service graph from the node graph

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 120

Table 7.2: Performance and Scalability of Évora Orchestrator Algorithms

Algorithm Frequency Θ(f(n))

1: Construct the graphs Once per user device Θ(n2)
1: Updates to the graphs Upon an update message from a broker Θ(1)
2: Finding potential VNFs for an NSC Once per user NSC definition Θ(n2)
3: Choosing the best-fit VNFs Once per < nsc, policy > pair Θ(n)
3: Policy-aware NSC scheduling Once for each NSC execution Θ(1)

We further profiled the performance of Évora with microbenchmarks to evaluate its perfor-

mance with scale. Table 7.2 lists how the orchestrator in the user device performs in various

stages of its execution. The most time-consuming tasks are constructing the graphs initially and

finding the potential VNFs for an NSC via graph matching for the first time. Constructing the

edge and VNF graphs are performed at the initialization of the user device by the Algorithm 7.

The time it takes is bound by the number of edge nodes and the number of brokers. The number

of brokers can be at most as high as the number of edge nodes, in the worst case scenario for the

performance of Évora orchestrator. In the best case, the number of brokers is much smaller in

number compared to the number of edge nodes. Therefore the Évora orchestrator takes Θ(n2)

time to initialize the graphs, where n represents the number of edge nodes that the user device

identifies. The data is stored in indexed map structures. Therefore, the subsequent update

messages received from the brokers take Θ(1) time to keep the graphs updated, regardless of

the number of edge nodes and VNFs present. Therefore, with time, the overhead caused by the

edge notifications in practice remains constant. In the worst case, if most of the edge nodes send

update notifications at once, the update time will be Θ(log(n)).

Once the graph is constructed, the orchestrator needs to find the potential VNFs for a

given NSC, by executing Algorithm 8. The MILP models on maximizing or minimizing specific

parameters are not considered in the initial graph matching to find and store all the matching

pairs of VNFs. Hence, this step is performed regardless of the user policies. The number of

VNFs in a user NSC is in practice less than 10. It does not grow into as large as the number of

vertices (in the scale of thousands or even more, considering the future potential for pervasive

edge nodes) and links in the graph representation of the edge environment. Therefore, Évora

graph matching does not grow into an optimal graph matching problem that typically takes

exponential time. Évora graph matching is performed as an execution of graph search for the

times of the number of VNFs present in the user NSC. The intermediate results are stored in

a variable (partialNSCs). The Évora graph matching takes quadratic time by leveraging a

dynamic programming approach with the intermediate results. The time consumed depends

on the number of VNFs in the graph. Furthermore, in practice, this graph matching is often

executed just once, along with the initialization of the graphs. The subsequent updates are

handled within a logarithmic time scale, similar to the graph initialization.

Finally, solving the MILP models for each < nsc, policy > pair takes in all the cases Θ(n)

time. Once the VNFs are chosen for a user NSC abiding by the policies, the subsequent overhead

to the NSC execution from Évora orchestration is of a negligible constant time. Thus, by using

its efficient map data structures to store the graphs, Évora minimizes the overheads on more

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 121

frequent executions, while making the MILP optimization time linear. Furthermore, by storing

the previously computed results such as all the matching VNFs, Évora handles the updates more

efficiently, from constant to logarithmic times in the average and worst case scenarios. While the

initialization process itself takes a few seconds (depending on the computational power and the

number of edge nodes) in the presence of thousands of edge nodes, this is a one-time initialization

process.

We observed that Évora optimally and efficiently allocates the user NSCs across the edge

VNFs, despite the presence of 1000 edge nodes, along with a million service graph links. We

measured and estimated the time overhead from Évora for the first execution of an NSC to be

less than 0.3%, taking a few seconds when the NSC executions (such as browsing the Internet

through a protected NSC with firewalls, parental control, and load balancers) are in the scales

of minutes to hours. Furthermore, except for the first flow of a user NSC, all the subsequent

flows do not incur an overhead from the Évora algorithms.

7.4.2 Efficient VNF Allocation at the Edge

We evaluated the accuracy of Évora (to assess its effectiveness in the sense of how accurately

its decisions reflect the user’s intent) in VNF allocation at the edge, based on user-defined

penalty functions consisting of one to three attributes: from latency (ms), throughput (Mbps),

and monthly cost ($).

When handling two or more attributes, the penalty function gives weight (through user-

defined policies) to the normalized values of each of the metrics (e.g., throughput and monthly

cost) across each one’s value range (e.g., from 0 to 12000 Mbps; from 0$ to 1800$, respectively).

Évora normalizes the attribute values using feature scaling as illustrated by Equation 7.12. The

max(X) and min(X) indicate the potential maximum and minimum values for any edge node

for the attribute X.

∀x ∈ X :
∧
x =

x−min(X)

max(X)−min(X)
(7.12)

In the following figures, the more accurate (and thus better performant) Évora is regarding

the user’s intent, the lower the penalty function is, and the darker the circles are (so, lower

penalty and darker circles are better). These darker circles should thus occupy regions of the

graphs where the (possibly combined) metrics of interest to the user exhibit better values.

Two Variable Attributes in the User Policies: Figure 7.4 depicts the performance of

Évora, calculating a composite penalty value from two variable attributes (each with an equal

weight of 1) and minimizing the penalty value for a resource allocation adhering to the user-

defined policy. The Figures show darker circles where the penalty function is lower (and therefore

indicating closeness to what it captures as the user’s intent).

In Figure 7.4a we can see that most darker circles are closer to the highest values of through-

put (one aspect of the user’s policy) but in the top-right corner (higher cost). Nonetheless, we

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 122

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 3000 6000 9000

M
o
n
th

ly
 C

o
st

 (
$
)

Throughput (Mbps)

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

(a) Max. Throughput and Min. Cost

 0

 200

 400

 600

 0 3000 6000 9000
La

te
n
cy

 (
m

s)

Throughput (Mbps)

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 3

(b) Max. Throughput and Min. La-
tency

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0 200 400 600

M
o
n
th

ly
 C

o
st

 (
$
)

Latency (ms)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

(c) Min. Latency and Min. Cost

Figure 7.4: Évora policies with two attributes of equal weight.

note that there are also darker circles (two) on areas with lower cost ($1000, i.e., with signifi-

cant savings from $1600) than other circles that offer lower bandwidth with a higher cost (i.e.,

lighter circles on the $1400 line). This observation indicates that our penalty function can award

some of the lowest values (and therefore identify those as of higher interest to the user) to the

combination of 9000 Mbps and around $1000 cost. This seems the best combination for the

user indeed (remember she gives equal weight to monetary cost and throughput).3 Figure 7.4b

shows that the darker cycles are more present in the lower-right area of the chart. Thus, the

penalty function can identify how to maximize throughput (well over 9000 Mbps) while min-

imizing latency (with equal weights) with great effectiveness (once again, any of values with

the lowest distance to the lower-right corner would be optimal). Similarly, in Figure 7.4c, the

darker circles are predominantly in the lower-left region, showing that the penalty function can

capture solutions that minimize cost (lower than $400), with very reduced latency (as good as

with solutions costing $1000 and downwards).

Three Variable Attributes in the User Policies: We then evaluated the VNF allocation

considering all three attributes: latency, throughput, and monthly cost. Figure 7.5 illustrates

the performance of Évora giving prominence to one of the three attributes while considering the

others as a secondary preference, in a three-dimensional space. The attribute with the highest

prominence is given the weight of 10, while the other two are given the weight 3. The monthly

cost of the NSC is depicted by the radius of the circles, while the throughput and latency are

illustrated by the x and y-axes respectively. Similarly, Figure 7.6 demonstrates the performance

of Évora giving prominence to two or all of the three attributes equally.

In Figure 7.5a we can see that most darker circles are closer to the highest values of through-

put (higher than 9000 Mbps). We also note that with equal throughput, the darkest circles are

at the bottom-right, indicating lower latency in addition to the high throughput. As the cheaper

services offered lower throughput, they are not chosen by Évora. Figure 7.5b shows that the

3It is an extra step, not hard under these circumstances, to identify this more adequate value (even though,
for completeness, this could entail, e.g., exploring the Pareto frontier of the optimal solutions, that we do not
consider here and leave for future work).

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 123

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000

La
te

n
cy

 (
m

s)

Throughput (Mbps)

-150

-100

-50

 0

 50

 100

 150

(a) Max. Throughput

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000
La

te
n
cy

 (
m

s)

Throughput (Mbps)

-60

-40

-20

 0

 20

 40

 60

 80

 100

(b) Min. Cost

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000

La
te

n
cy

 (
m

s)

Throughput (Mbps)

-100

-50

 0

 50

 100

 150

 200

 250

(c) Min. Latency

Figure 7.5: Évora policies considering three attributes with prominence to one of the three
attributes. The radius of the circles represents the cost.

dark cycles are those with the smallest radius, indicating how the cost is minimized. Moreover,

still, the darkest circles are found at the bottom of the plot, indicating the minimal latency.

Since higher throughput services typically entailed a higher cost, it was a trade-off that lower

throughput services were chosen in favor of a lower cost. Similarly, in Figure 7.5c, the darker

circles are predominantly in the bottom region, showing the penalty function can capture so-

lutions that minimize latency (lower than 200 ms). Among those, the circles with the smallest

radius (cheapest services) and those in the bottom-right (higher throughput) remain the darkest,

indicating the efficacy of Évora in adhering to the user policies.

Figure 7.6a, Figure 7.6b, and Figure 7.6c give prominence to two of the three attributes

equally (10), while still considering the third attribute (with a weight of 3). Figure 7.6d gives

equal prominence (weight of 1) to all three attributes. Figure 7.6a displays the darkest circles at

the highest values of throughput (higher than 9000 Mbps), while also having darker circles with

smaller radius indicating the cheaper services (as found in a cheaper service offering around 6000

Mbps). Since latency was not given prominence, it can be noted that a smaller circle (lower cost)

with high throughput (9000 Mbps) still has a dark complexion though it had a high latency (500

ms). Figure 7.6b shows the darkest circles in the bottom-right corner, showing high throughput

(higher than 9000 Mbps) and lower latency (less than 100 ms), albeit with higher prices as the

cost was not given prominence. Figure 7.6c contains the circles with the smallest radius on the

bottom as the darkest, indicating the success in identifying choices of minimal cost and minimal

latency (less than 150 ms). However, as a trade-off, here the services with lower throughput

were chosen. Figure 7.6d attempts to give equal weight to all the properties. In doing so, it

manages to maximize the throughput (typically above 9000 Mbps) and minimize the latency

(typically below 100 ms). It also has dark circles with low radius, indicating the preference for

cheaper services.

Our evaluations highlight how Évora supports user-driven policies effectively in selecting

the NSCs, considering one to three attributes with multiple user-specified policies (including

various attributes, normalized with weights). Évora provides a trade-off between the various

attributes, with their normalized values and a user-specified weight for each of those attributes.

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 124

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000

La
te

n
cy

 (
m

s)

Throughput (Mbps)

-80

-60

-40

-20

 0

 20

 40

 60

 80

 100

(a) Max. Throughput and Min. Cost

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000

La
te

n
cy

 (
m

s)

Throughput (Mbps)

-200

-150

-100

-50

 0

 50

 100

 150

 200

 250

 300

(b) Max. Throughput and Min. La-
tency

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000

La
te

n
cy

 (
m

s)

Throughput (Mbps)

-150

-100

-50

 0

 50

 100

 150

 200

(c) Min. Cost and Min. Latency

 0

 100

 200

 300

 400

 500

 600

 700

 0 3000 6000 9000 12000

La
te

n
cy

 (
m

s)

Throughput (Mbps)

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

(d) Max. Throughput, Min. Cost,
and Min. Latency

Figure 7.6: Évora policies considering three attributes with prominence to two or all of the three
attributes. The radius of the circles represents the cost.

The evaluations also demonstrate its capability of supporting policies with contradicting and

conflicting outcomes - such as maximize throughput and minimize cost, when the high through-

put service chains incur a higher cost. Évora can handle complex user policies with more than

three attributes defining the penalty value that needs to be minimized, by considering more

attributes as n-dimensional environments.

Évora looks at the service chain placement from the user perspective, whereas the previous

works [36] make the VNF provider as their focus. LSO [234] encompasses the network softwariza-

tion for end-to-end management, orchestration, and control of network services. Standardization

efforts, such as LSO and TOSCA (OASIS Topology and Orchestration Specification for Cloud

Applications) [210], aim for complete end-to-end workflow orchestration. The Évora approach

aligns with these efforts on service orchestration. It expands the existing research on network

softwarization and LSO into edge computing environments, which are more dynamic than the

traditional cloud and data centers. A hybrid network with dedicated physical/hardware network

functions along with VNFs can offer elasticity to the network functions and support bursts in

demand. Efficient placement of such a hybrid deployment can improve the throughput of NSCs,

as shown through ILP models in previous research [243]. We can extend and adopt Évora for

CHAPTER 7. NETWORK SERVICE CHAIN ORCHESTRATION AT THE EDGE 125

these hybrid networks at the edge and enhance their efficiency.

7.5 Conclusion

VNFs are placed at the edge to support the overwhelming demand for latency-aware service

execution. However, resource allocation at the edge for user NSCs is an NP-hard problem as

various user policies must be satisfied to assure QoE while choosing the VNF instances to sched-

ule the NSC execution. We researched the optimal service instance allocation in a workflow as

a minimization problem, by assigning weights to various parameters (such as latency, through-

put, and cost) defined by the user. We generalized the challenge of resource allocation, service

discovery, and workflow migration on the edge platforms for an adaptive execution of service

workflows as MILP problems. We solved the MILP problems with a graph-based approach, to

optimally compose NSCs by leveraging the third-party edge VNFs from multiple providers.

We designed Évora, extending SDN and MOM for an adaptive execution of user NSCs, con-

suming several third-party VNFs. Évora, with its software-defined approach, schedules the VNF

executions in each edge node that offers the particular services, ensuring that the user policies

are met in composing her NSC. Évora thus helps to compose NSCs that are policy and latency-

aware, in a scalable user-centric manner, in multi-domain edge environments. We evaluated the

Évora models and algorithms for NSCs with various user-defined policies. Our evaluations high-

light how Évora provides resilience and agility to the NSCs in the MEC environments through

its orchestration of multiple execution paths spanning the edge nodes.

8Software-Defined

Cyber-Physical Systems

CPS faces several challenges in design and performance, due to the scale and variety in

its devices and execution environments [199]. Deploying the workloads at the edge can offer

a high-performant execution for the latency-sensitive CPS applications [268]. However, the

current cloud and edge environments often do not favor a seamless deployment and smooth

frequent migrations of diverse CPS workloads between the execution environments. Therefore,

the number of edge nodes that can contribute their resources to the execution of a CPS workload

is significantly limited. We posit that executing the CPS workloads as web service workflows

can offer unified deployment and execution, as web services are developed following standards.

We propose an SDS framework to efficiently manage CPS workflow scheduling at the edge with

capabilities of frequent communication and workload migration.

Challenges: We first identify a set of core challenges faced in executing and managing CPS:

(Ch1) Unpredictability of the execution environments [198]

(Ch2) Orchestrating the communication and coordination within the CPS [273].

(Ch3) Security, distributed fault-tolerance, and recovery upon system and network failures [68].

(Ch4) Decision making in the large-scale geo-distributed execution environments [308].

(Ch5) Modeling and designing the complex CPS environments [99].

(Ch6) Management of the intelligent agents [64].

Motivation: Given the above premises, we aim at addressing the following research questions:

(RQ1) Can SDN or a more encompassing network softwarization approach inspired by SDN

help mitigate the identified challenges of CPS that hinder its wide-scale adoption?

(RQ2) Can we seamlessly scale such an approach beyond data centers, to a wide area network,

for modeling and executing CPS?

(RQ3) Can we leverage the edge resources for a distributed execution of CPS workloads through

a unified control, without additional overheads?

(RQ4) Can we generalize the CPS execution as service workflows at the edge, to support inter-

operable execution across wide area networks such as edge and cloud-assisted networks?

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 127

Contributions: The goal of this chapter is to answer the identified research questions to

mitigate the major challenges faced by CPS. The main contributions of this chapter are:

1. A generic framework for building and executing CPS through service workflows at the

edge, to support interoperable execution of the workloads in multi-domain networks (RQ3,

RQ4 and Ch2).

2. Software-Defined Cyber-Physical Systems (SD-CPS), a scalable and distributed SDS,

to coordinate the heterogeneous CPS devices by extending SDN with MOM protocols [87]

for wide area networks (RQ1, RQ2, and Ch4).

3. Incorporating user policies and resource requirements for efficient CPS resource allo-

cation and migration. Thus, offering efficient control of the network resources for the

user applications, despite the unpredictability of the CPS networks that are shared across

several users (Ch1).

4. A reusable execution model for the CPS workflows to modeling, incremental develop-

ment, and seamless execution in a sandbox and production environments. Thus, managing

the execution of CPS in the physical and cyberspaces effectively with minimal duplicate

effort (Ch5 and Ch6).

5. Resilient and agile CPS execution by offloading the CPS workload as service composi-

tions at the edge, by exploiting a logically centralized control of the edge resources (Ch3).

SD-CPS mitigates the complexity of the computation and resource scarcity by decoupling

and decomposing the execution of CPS into interoperable workflows of microservices and of-

floading the workflows to edge environments. As small autonomous and loosely-coupled ser-

vices, an SOA with microservices [246] enables extensible modularized architecture for SD-CPS

workflows, compared to typical web service composition workflows. Discovering the resource

availability and deploying the workflow as service invocations at the nodes need to be performed

effectively to reap the benefits of the edge. We design a controller deployment as the core of SD-

CPS to achieve the overall coordination to manage the “cyber” of the CPS and orchestrate the

CPS elements. SD-CPS executes CPS in a programmable and predictable manner, inherently

addressing many of the operational challenges of CPS with its software-defined approach. The

quantitative evaluations on a SD-CPS prototype highlight its efficiency in resource allocation

through edge workflows and success rate in CPS execution modeling.

This chapter is composed of the contents of the publication: [J2, C6, W6].

8.1 MANETs and VANETs: A Case for SD-CPS

Complex computations at the mechanical or physical devices of CPS often require resources

beyond what is available physically on the device, such as a smart vehicle or a mobile terminal.

Hence, workloads heavy in computing or memory are delegated to the cloud-based cyberspace,

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 128

instead of executing them (often only as firmware) in the smart terminals of the CPS. In this

section, we will look into a few common characteristics of CPS that motivate the case for an

SDS framework for CPS, by discussing MANETs and VANETs as potential cases for SD-CPS .

MANETs are comprised of mobile devices, that can function independently as autonomous

systems as well as sensors, while also communicating among themselves. A typical example of a

MANET device, a smart mobile phone, can sense its environment, including i) background noise

level through its audio sensor (microphone), ii) light/vision through its camera, and iii) motion

through its motion/shock detectors. In addition to the sensing capabilities, a smart mobile

device also has computing and memory resources (that can be leveraged to detect, analyze,

and monitor user activity such as standing, walking, running, and cycling), though in a limited

capacity compared to the traditional computation devices.

VANETs include autonomous automotive systems such as networks composed of self-driving

vehicles [12] or smart vehicles [331]. A self-driving vehicle depends heavily on the contextual

information sensed by itself as well as those shared by other smart vehicles, due to the absence

of an experienced human driver. Smart vehicles collaborate and coordinate with one another,

to share information such as current traffic, and dynamically decide their traveling path by

analyzing the accumulated dynamic data, in real-time. While VANETs can be considered a

subset of MANETs, VANETs have a higher degree of dynamism and speed than the other

MANETs such as mobile terminals. VANETs are expanding their scope beyond the road traffic,

also to consider the air traffic monitoring and aircraft control [293]. These latest advancements

have widened the research challenges associated with the CPS.

Research identifies networking and message exchanging problems caused by the dynamism

in VANETs [361]. An automobile such as a connected car [134] or an aircraft can pass through

various control stations, while on the move. Therefore its proximity to sensors (including satel-

lites for the air traffic control) or computing nodes (for connected cars) in the VANET differs

with time. Thus, the current updated location of a smart device or terminal needs to be consid-

ered when some data is routed towards it. VANET CPS needs to route various messages from

adjacent sensors or other vehicles towards a moving vehicle considering its current geographic

location and ensure that an ongoing flow is served following the previous route to avoid data

loss or inconsistency.

Exploiting SDN for CPS require further research beyond the typical traffic engineering use

cases of SDN due to the scale and variety of CPS. SDN has been adopted for VANETs to

coordinate the data and workload scheduling efficiently in a centralized manner [212]. Previous

research proposes a cloud-assisted execution for context-aware vehicles [343]. A functional SD-

CPS framework requires extending the SDN research on complex traffic engineering problems [8]

catering to the complexity of CPS.

8.2 Solution Architecture

SD-CPS consists of multiple tenants, the users who configure and deploy their CPS workload

as workflows composed of web services, abiding by their respective policies. SD-CPS virtually

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 129

associates each workflow with its tenant at the edge nodes despite sharing the execution space

with other tenants. Each tenant defines SLOs for her CPS workflows, scheduling them based on

tenant-defined policies. Consider a traffic analysis workflow w belonging to a VANET CPS. It is

composed of various services, including i) data sensing at each of the vehicular sensor devices, ii)

data matching from numerous adjacent vehicles for data correction to minimize noises, iii) data

integration at an edge node, iv) analytics based on current and past data, v) traffic prediction on

each route, and vi) receiving or sending personalized information from the edge cloud back to the

vehicle. These services would typically be running iteratively or periodically, thus continuously

carrying out monitoring, assessment, decision, and actuation activities. Equation 8.1 illustrates

a generalized form of such a CPS workflow, composed of various services.

∀x ∈ Z+ : w = s1 ◦ s2 ◦ . . . ◦ sx. (8.1)

Equation 8.2 represents wi, a distributed execution of w by the same set of services, but

with multiple instances in parallel. Here, a instances of s1 run and send their outcomes to b

instances of s2. Eventually, the service workflow completes with the invocation of n instances

of sx with the previous service composition invocation (s1 ◦ s2 ◦ ..) outcome as its input.

∀x, a, b, n ∈ Z+ : wi = a · s1 ◦ b · s2 ◦ . . . ◦ n · sx. (8.2)

The CPS data flow goes through various intermediate nodes, from the sensors that collect

data as input devices, to the actuators that perform actions based on the contextual data.

These links between the nodes form the execution paths of SD-CPS workflows. Decomposition

of the workload into smaller deployable services (e.g., containerized microservices) at the edge

helps increase the perceived path redundancy of the workflow. SD-CPS exploits an extended

controller deployment, decentralized at Internet scale, to manage the metadata that governs

the alternative execution paths for each workflow of a CPS execution. The workflows can have

different replication levels for each service, based on the user policies indicating the importance

of each of them. SD-CPS aims for increased resilience, load balancing, and congestion control

among the underlying network paths with the path redundancy and the global awareness of the

controller on their existence.

8.2.1 SD-CPS Coordination

In the core of the SD-CPS ecosystem is the Controller Farm proposed in Chapter 6.

The Controller Farm coordinates the CPS workflows at the edge efficiently, as the component

with the highest processing power. The CPS workload needs to be defined in a format that

supports migration and interoperability between multiple edge nodes, due to the small-scale and

heterogeneity of these nodes. Therefore, SD-CPS represents the workloads as a decomposable

service chain, to achieve a seamless microservice workflow across the execution environments.

The workload is offloaded to the edge as web service invocations if the resource capacity is limited

in the CPS firmware. With a unified view, SD-CPS chooses the workflows to be executed in

its cyberspace or at the edge, based on the resource availabilities. Thus, SD-CPS develops a

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 130

seamless approach to modeling a CPS in cyberspace and executing it in the physical environment,

consisting of the mechanical devices (physical space) as well as the edge nodes as surrogates or

extended cyberspace.

SD-CPS executes the same code of the CPS physical devices in a Modeling Sandbox first,

before executing them in the production CPS environment, thus reducing the unpredictability

of the CPS executions. CPS applications are often modeled as software simulations before

being built as device firmware or deployed into the physical devices of CPS. SD-CPS performs

a simulation through placeholders that can be controlled by its controller, in the same way

the controller coordinates the modeled physical systems. The SD-CPS controller consists of

the Modeling Sandbox, an extension to the Simulation Sandbox presented in Chapter 3.

The Modeling Sandbox functions as a controlled space to execute the CPS models. Figure 8.1

represents how the systems are modeled in the sandbox environment of the SD-CPS controller.

The counterparts of the CPS physical space are modeled in the cyberspace as Virtual Intelligent

Agents. The interactions among the CPS counterparts in the physical space are mapped between

the Virtual Intelligent Agents to reflect the communications in the cyberspace and to model the

workflows better.

SD-CPS Controller

Modeled CPS agents

Interactions

Virtual
Intelligent
Agents

Cyberspace

Physical Space
/ Smart Device

Interactions
model()

Controller FarmController Farm

load()

Orchestrates

Modeling Sandbox

Figure 8.1: CPS Design and Development with SD-CPS Approach

The Controller Farm orchestrates both the physical systems and their simulated counterparts

in the cyberspace. By simulating the API that connects the physical space into the cyberspace,

SD-CPS creates a one-to-one mapping between the simulated Virtual Intelligent Agents and

interdependent components of the physical system. The interactions are modeled and closely

monitored in the Modeling Sandbox before the decisions are loaded into the physical space. Thus,

the Modeling Sandbox seamlessly models the executions in the cyberspace as simulations and

emulations and then loads the changes to the physical execution environment. The simulation

functions as a virtual proxy for the designed system that it simulates - including its actors, such

as sensors, actuators, and other physical and mechanical components. SD-CPS thus builds once

and executes the same code in the controller’s Modeling Sandbox or the physical space, reusing

the same single development effort.

The SD-CPS modeling approach minimizes the code duplication by executing the real code

from the controller, instead of having a simulation or model running custom code, thus indepen-

dent of the actual execution. The SD-CPS controller, devised as an extension to OpenDaylight,

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 131

Table 8.1: Notation of the SD-CPS Representation

N The set of nodes (including the cyberspace and the edge nodes)

L The set of links that connect the CPS to ∀n ∈ N
R The set of computing resources (CPU, memory, . . .) in a node

PN The set of static properties of a node (availability, up time, . . .)

PL The set of static properties of a link (multitenancy, QoS guarantees, . . .)

Sn The set of services concurrently deployed in a node n

Sl The set of services concurrently sharing a link l

X The set of variables defining the utility value, ∆

ln A link towards the node n from the current CPS workload

ip Value of a static property p

rn Maximum resource capacity of a node

bln Maximum bandwidth allocated to a link ln
tln Latency of a link ln
rs Maximum resource consumption by a service s

bs Maximum bandwidth allocated to a service s

is developed in Java, a high-level language. Therefore, it enables the deployment of custom

applications as controller plugins to alter or reprogram the behavior of CPS. It simulates the

execution environment and the CPS workload through Java objects inside the SDN controller.

The physical system loads the decisions from the cyberspace. The multi-tenant execution space

of SD-CPS supports parallel modeling of multiple CPS. SD-CPS further avoids repeated com-

putation efforts by caching the previously completed service outcomes.

8.2.2 Resource Allocation

SD-CPS deploys the CPS workflows as services across the edge, aiming to satisfy the CPS

policies while maximizing the overall resource utilization of the edge nodes. SD-CPS leverages

the node utilization and health statistical data retrieved from the edge nodes as messages, to

estimate the utilization of edge nodes. The health check of the edge nodes ensures that the

resource requirements of the services are met, and the available nodes are sufficiently utilized

with minimal idling nodes that are connected to the edge.

SD-CPS thus identifies, with the deployment of a service s of a CPS workflow w, how much

resources a node n or a link ln that connects to the node will have in excess. δrn and δbln
define the underutilization of a resource r of a node n (with s in n), and the underutilization

of bandwidth of a link ln (with s in ln) respectively in Equation 8.3.

(∑
s∈Sn

rs

)
represents the

total resource consumption by the existing service workloads in the node n. Similarly,

(∑
s∈Sl

bs

)
denotes the consumption of the link resources (by default, bandwidth) by the existing service

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 132

workloads sharing the link l. Complete details on the notations are listed in Table 8.1.

δrn = rn −

((∑
s∈Sn

rs

)
+ rs

)
; δbln = bln −

((∑
s∈Sl

bs

)
+ bs

)
(8.3)

SD-CPS gives equal weight to all the variables considered, including δrn , δbln , tln , and ip,

using feature scaling, as illustrated by Equation 7.12. Equation 8.4 defines a compound utility

value ∆n for each n. Tenants define a coefficient for each of the resources, for their workflows to

input the relative importance of each of node or link properties. The coefficients cr, cb, ct, and cp
are respectively defined for i) each resource (such as memory and CPU) availability in the nodes,

ii) the bandwidth availability in the link towards the node, iii) latency to reach the edge from

the CPS workload (i.e., latency between the CPS workfload or the physical device and the

execution/surrogate node), and iv) other static properties. SD-CPS chooses the nodes with the

maximum utility value as the execution space for the services of CPS workflow.

∀n ∈ N , ∀ln ∈ L, {cr, cb} ⊂ Z+, {ct, cp} ⊂ N, P = PN ∪ PL :

∆n =


∑
r∈R

(cr ·
∧
δrn) + cb ·

∧
δbln +

(
ct
∧
tln

)
+
∑
p∈P

(cp ·
∧
ip), {∀r ∈ R : δrn , δbln} ⊂ R≥0

−∞, {∀r ∈ R : δrn , δbln} 6⊂ R≥0

(8.4)

The inherent properties (such as the QoS guarantees and uptime) of the nodes and the links

PN and PL are static and do not frequently change (except in the case of failures, which edge

providers are supposed to minimize, abiding by the SLAs [316]). However, the node properties

such as current available memory and CPU are dynamic and change with time, based on the other

service executions. Similarly, the bandwidth of a link is shared with various flows and is limited

by a maximum capacity of bln . Multiple tenant workflows share bln , and each tenant workflow

is throttled in bandwidth allocation for fair use of the bandwidth by various tenants. Thus,

utilizing a particular link ln for s depends on the existing virtual tenant network allocations.

SD-CPS aims to deploy the services in the nodes that satisfy the minimum resource re-

quirements (identified by a positive real value for each δ), that is also connected by a link to

the CPS physical space with the necessary bandwidth. The utility value for the nodes that do

not satisfy any of the minimum resource requirements for a workflow is set to negative infinity

(−∞) to avoid choosing these nodes for the CPS workflow deployment. When multiple suitable

edge nodes (the nodes represented with a utility value other than −∞) are available, SD-CPS

chooses the one with the maximum utility value. Thus, SD-CPS identifies and uses the edge

nodes that offer the best QoE to the user, abiding by the user-defined policies.

SD-CPS incorporates its resource allocation approach as an extension to the SDN controller.

The controller, based on its contextual information on the nodes and the links, ensures that the

resource availabilities in the node and the link that connects the node can support the resource

requirements of the service workload. The controller then deploys the services of the workflow,

fulfilling their resource requirements while aiming to satisfy the tenant policy in allocating the

resources to the workflows. The execution node location for each type of service can be cached in

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 133

the CPS devices, thus invoking controller only once before the start of the workflow. Subsequent

services of the same nature can execute on the already chosen node, without reverting to the

controller for the resource allocation, unless controller notifies of failure, congestion, or a change

in the status of the current execution nodes.

8.3 SD-CPS Controller

SD-CPS extends OpenDaylight Beryllium with MOM as its core SDN controller. We used

Oracle Java 9.0.4 as the programming language for the CPS environments, and ActiveMQ 5.15.2

as the message broker. We implemented the resource allocation algorithms as OpenDaylight ex-

tensions. Figure 8.2 depicts the solution architecture of the SD-CPS controller. We built the

Software-Defined Sensor Networks on top of the Controller Farm, representing each mobile ter-

minal or a smart device as a sensor or an actuator. Tenant-Aware Virtual Network Allocation

of SD-CPS allocates the bandwidth among the SD-CPS tenants who share the execution space.

SD-CPS controller exposes its functionalities to its users through its APIs following the nomen-

clature of the SDN controller APIs.

SD-CPS Controller Southbound API

Modeling
Sandbox

Controller Farm

Software-Defined Sensor Networks

Tenant-Aware Virtual
Network Allocation

SD-CPS Controller Northbound API

CPS

Tenant
Users

SD
-C

PS
 C

on
tr

ol
le

r
Ea

st
bo

un
d

A
PI

A
dm

in
is

tr
at

or

SD
-C

PS
 C

on
tr

ol
le

r
W

es
tb

ou
nd

 A
PI

C
ro

ss
-C

on
tr

ol
le

r
C

om
m

un
ic

at
io

ns

SDN Controller

Figure 8.2: SD-CPS Controller Architecture

The SD-CPS controller APIs consist of the implementation of different integration proto-

cols and connection points for the extended distributed controller deployment for CPS. The

Westbound API enables inter-control communication among the controllers in SD-CPS , as well

as inter-domain communications across multiple SD-CPS controller deployments. The SD-CPS

system administrators leverage the Eastbound API to configure and manage the controller de-

ployment. The Northbound API consists of the common SDN northbound protocols including

REST and MOM protocols for the tenant processes to interact with the controller. The South-

bound API includes implementations of SDN southbound protocols and MOM protocols for

communication with the physical devices.

The SD-CPS controller communicates with the network data plane through implementations

of SDN southbound protocols such as OpenFlow and interact with the devices that are not

SDN-native through various southbound protocols inspired by OpenFlow. The incorporation of

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 134

multiple protocols ensures that while SD-CPS has SDN at its core, it is not limited to software-

defined networks with SDN switches that are still far from widespread in CPS settings (outside

data centers). Based on the defined policies, rules, and the tenant inputs from northbound, the

controller determines and propagates the relevant actions back to the data plane consisting of

the SDN switches and physical devices through the southbound. Thus, the southbound API

handles the communication, coordination, and integration of the network data plane consisting

of the CPS devices with the control plane.

Figure 8.3 shows the Software-Defined Sensor Networks enabled by SD-CPS as its commu-

nication medium. Messaging4Transport is an OpenDaylight bundle that we developed to expose

the OpenDaylight data tree as messages in a messaging protocol. SD-CPS controller stores the

dynamic context data sensed by the sensors of the various appliances into the data tree of Open-

Daylight MD-SAL. Each device subscribes to the relevant topics while publishing the relevant

information detected by their sensor. As the SDN controller is often a super-computer or a clus-

ter of high-end servers, SD-CPS ensures efficient communication between its counterparts by

leveraging its Software-Defined Sensor Networks approach and storing the dynamic data inside

the data tree of the controller.

Messaging4Transport

MD-SAL

AMQPConf

essage
Broke

pub/sub

subscribe

CPS
Device Event

Listener
Sensor

Controller publish

{..}Conf

Message
Broker

Message
Broker

RESTConf

Software-Defined Sensor Networks

OpenDaylight Controller

Figure 8.3: Network Layer - Higher Level View

While SD-CPS uses AMQP as its default messaging protocol, its design is extensible to

use the implementations of the other MOM protocols. ZeroMQ [160] messaging library would

offer better scalability and distributed execution due to its lack of brokers and message queues,

compared to the MOM implementations of the messaging protocols. ZeroMQ aims at func-

tioning in a truly distributed manner, allowing communications between the nodes rather than

having a broker as a coordinating entity between the nodes. However, it also would introduce

a management overhead where each CPS nodes must address the other nodes, rather than a

commonly known (typically, static) broker. Therefore, we found ZeroMQ to be less desirable for

a dynamic environment such as SD-CPS , considering the scalability of the network and man-

agement overhead as a trade-off. Furthermore, a MOM broker and the SDN controller co-exist

in the SD-CPS ecosystem in a logically centralized manner, rather than creating a physically

centralized bottleneck.

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 135

8.4 Evaluation

We deployed the SD-CPS controller on a server of AMD A10-8700P Radeon R6, 10 Compute

Cores 4C+6G × 4 processor, 8 GB of memory, and 1 TB hard disk. We assessed the performance

of SD-CPS in a scenario of CPS execution at the edge as service workflows, and its efficiency in

composing and managing CPS, through simulations and microbenchmarks.

8.4.1 CPS Execution Modeling

We designed an execution environment with several nodes, and then deployed a VANET CPS

prototype with Vehicle-to-Vehicle (V2V), Vehicle-to-Infrastructure (V2I) and Infrastructure-to-

Vehicle (I2V) communications [101]. We modeled a traffic data monitoring workflow with SD-

CPS , as a composition of several parallel instances of a few services.

Execution Nodes at the Edge: We first modeled the execution environment with four

categories of nodes: N1: 10,000 Embedded mobile systems in the connected cars, N2: 1000

edge cloud nodes, N3: 100 servers, and N4: 10 larger servers. The resource specifications of

each category specify average values. Each node belonging to a category varies slightly from the

other nodes of the category within a range of the resource capabilities of the category. Due to

its pervasiveness and proximity to the vehicles, N1 has the least latency to most of the devices,

while N4 has the highest of the CPU and memory with often poor latency from the vehicles

compared to N1. Figure 8.4 depicts how the resource availability of each node is feature scaled

(as illustrated by Equation 7.12 in Section 8.2) by the SD-CPS controller.

Figure 8.4: Properties of the nodes (normalized)

CPS Workflows: We then modeled a vehicular monitoring workflow W, composing of various

services. Service S1 fetches and transforms personalized sensor information to the grid. Due

to quick data transfer needs, S1 has a necessity for minimal latency. Throughput, CPU, and

uptime are not crucial for its execution. Service S2 performs traffic data cleaning and integration

at an aggregator node. It needs a minimal latency and also high memory for quick in-memory

computations. S2 aims to output integrated data while avoiding outliers that may indicate

malicious, dirty, or bogus data collected from S1. Service S3 performs data analysis for traf-

fic congestion control with contextual data, with moderate latency and memory requirements.

Service S4 conducts data crunching with historical data for more data science computations,

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 136

including traffic prediction, thus requiring high bandwidth, CPU, and memory (with relatively

minimal demands concerning latency). Service S5 personalizes alerts and notifications to the

vehicles. Characteristics and requirements of S5 are similar to those of S1.

W is modeled as W = 1000S1 ◦ 100S2 ◦ 10S3 ◦ 2S4 ◦ 1000S5, with parallel execution of

multiple service instances of S1, S2, S3, S4, and S5 composing the workflow. 1000 of S1 service

instances send their output to 100 of S2 service instances, which further have their outcome

forwarded to 10 of S3 instances, which in turn have their findings sent to 2 of S4 instances.

Finally, the relevant results of S4 are sent to the 1000 instances of S5 for the final processing.

Figure 8.5 illustrates the resource requirements of the services in the workflow. A workload is

modeled by a set of tuples, <resource requirement, resource utility function weight>, in defining

the utility value ∆. We set all the coefficients for the resources to 1 in workflow W, for ease of

representation. However, SD-CPS supports different values for each coefficient. For example,

workflows belonging to an ambulance or law enforcement authorities could be given higher

priority. Such coefficients give tenants more control in choosing their execution nodes when

multiple alternative nodes offer possible deployments to the services.

Figure 8.5: Resource requirements (normalized) of the services

The negative normalized values for certain resources indicate that even the minimum avail-

able resources in a node is sufficient for the service. For example, S1, S2, and S5 have negative

normalized utility value for uptime, indicating that all the node types can serve them, concern-

ing uptime. On the other hand, the highly positive value of uptime for S3 and S4 show their

demand for high uptime. Similarly, since S1 and S5 require minimal latency, they consist of a

high 1
latency .

8.4.2 Resource Allocation Efficiency

We finally evaluated the resource allocation efficiency of SD-CPS with simulations and

microbenchmarks, to confirm that the SD-CPS workflow-based approach minimizes idling nodes

while ensuring fair resource utilization across all the node types. We deployed 1 million instances

of workflow W across several edge nodes over the course of 1 hour. Figure 8.6 illustrates the

percentage of services hosted in each node types over a parallel deployment of the workflows.

Around 98% of the services were observed to be deployed in the node with the highest utility

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 137

value. The deviation for the remaining 2% of services accounts for the full utilization of specific

type of nodes at times, thus aiming to maximize the utilization of all the node types.

Figure 8.6: Service deployment over the nodes

We assessed the average resource utilization of the nodes and the percentage of idling nodes

over the timeframe. Figure 8.7a illustrates the average resource utilization (%) across each node

category. The resource utilization was always around 90%, with more variations in resource

allocations to N4 nodes. There are just 10 of the N4 nodes, each with abundant resources, yet

with high latency. The high latency prevents N4 from executing the more frequently occur-

ring services (S1 and S5), potentially contributing to the relatively frequent drops in resource

allocation of N4. The nodes of the other categories remained stable in their resource allocation.

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

U
ti
liz

at
io

n
 (

%
)

Time (s)
N1 N2 N3 N4

(a) Average resource utilization

 0

 20

 40

 60

 80

 100

 0 500 1000 1500 2000 2500 3000 3500

Id
lin

g
 N

o
d
es

 (
%

)

Time (s)
N1 N2 N3 N4

(b) Idling nodes

Figure 8.7: Parallel execution of 1 million workflows with SD-CPS

Figure 8.7b demonstrates the percentage of idling nodes during the execution of the work-

flows. Except during the start and the end of the workflows (fixed to have a timeframe of 1

hour), there was near-zero percentage of idling nodes. The results highlight the efficiency of

the SD-CPS resource allocation, with minimal idling nodes and high resource utilization when

there are sufficient requests to utilize the abundant resources.

The preliminary evaluations highlight that by distributing the workload as microservice

workflows, SD-CPS ensures fair and efficient resource allocation across the edge nodes. We

note that the more frequent latency-sensitive microservices that compose the CPS workflows

CHAPTER 8. SOFTWARE-DEFINED CYBER-PHYSICAL SYSTEMS 138

favor the edge nodes compared to a centralized server for their execution. On the other hand,

computation-heavy executions require a larger node, such as a server, even if that incurs a

higher latency. Such a fine-grain service placement is facilitated by composing CPS workload as

microservice chains, rather than a monolith application, or even a big service in the CPS cyber-

space. While resource allocation approaches across heterogeneous execution environments have

been presented in the previous work, we note that SD-CPS is the first to propose CPS workflow

placement at the edge in a scalable, managed, and network-aware manner. Furthermore, we

observe that in the presence of such CPS service workflows at the edge, the edge nodes are highly

utilized with minimal idling nodes. Although the exact resource utilization and the percentage

of idling nodes would depend on the nature of the CPS workflows and the availability of the

edge nodes, we note that the simulated CPS is representative of a typical CPS scenario and can

be generalized to other CPS environments. By exploiting both SDN and SOA, SD-CPS offers

better resource allocation, orchestration, and modeling capabilities compared to the traditional

CPS. We thus note that by leveraging the abundant proximate smart devices and edge nodes,

SD-CPS can facilitate a more widespread CPS adoption at the edge.

While SDIoT [174] approaches inspired the SD-CPS vision, SD-CPS is built from scratch

for CPS. Therefore, it differs in scope and implementation to those of SDIoT, though they

share similar motivation and can benefit from each other. SDIIoT [342] adopts SDN for IIoT.

Although IIoT is related to CPS as CPS is a core enabler of Industry 4.0 [202], SDIIoT limits

its focus to safety, reliability, and standardization aspects. Unlike the other approaches that

aim to bring SDN to CPS such as SDCPS [126], SD-CPS does not require a hierarchy of SDN

controllers. Thus it natively caters to multi-domain edge environments with multiple providers,

with minimal administrative burden. SD-CPS caters to the resource provisioning, execution,

and migration challenges of CPS, by offering a unified workflow-based approach at the edge,

regardless of the specifics of domain, realization, or deployment of a CPS.

8.5 Conclusion

Wide-spread adoption of CPS is hindered by several challenges in terms of building, operat-

ing, and maintaining the CPS. The SD-CPS framework aims to mitigate the common challenges

faced by CPS, through a standard software-defined approach for the design and operation of

CPS. As an extended SDN architecture, SD-CPS orchestrates and manages the CPS workflows

with a unified control. SD-CPS leverages the edge resources in offloading the CPS workload

as service workflows. We observe that the execution of CPS as a workflow of microservices

can enable resource allocation and migration with higher performance, supporting user policies

effectively. Although currently the reach of edge nodes and stability of the networks in mobile

CPS environments such as MANETs are limited, they continue to improve with innovation. We

anticipate more and more edge nodes, connected by a stable network, will support the CPS

execution environments, including the mobile CPS. We see SD-CPS as a futuristic approach

for executing CPS at the edge as composable microservice workflows. We believe that with the

SDN adoption in wide area networks and the increasing reach of edge nodes, approaches such

as SD-CPS will lead the next generation CPS.

IVData Services

9On-Demand Big Data

Integration

Reproducible research requires data integrated and shared on-demand across multiple orga-

nizations in a bandwidth-efficient manner. Data used in a scientific research study often needs to

be shared among researchers for collaboration and reproducibility purposes. However, this pro-

cess is not efficient. First, sharing data by replicating its contents creates an excessive overhead

on bandwidth, storage, and data maintenance. Therefore, data must be shared with minimal

data replication. Second, the current data integration approaches are not optimized for repeated

scientific experiments beyond organizational boundaries, and hence lead to repeated and man-

ual efforts. In this chapter, we propose an efficient data service approach for on-demand data

integration, with the potential for efficient data sharing with human-in-the-loop and minimal

data replication.

Big data integration is crucial for numerous application domains, such as reproducible sci-

ence [285], medical research [201], and transport planning [165], to enable data analysis and

information retrieval. Scientific research often requires access to big data from various data

sources, often geographically distributed [157]. Scientific data is typically heterogeneous, in-

cluding binary and textual data, and stored in structured, semi-structured, or unstructured

formats. Furthermore, data sources usually support distinct data access interfaces, ranging

from database SQL queries to service-based APIs [156]. Effectively and efficiently integrating

large volumes of diverse data is challenging. To discover compelling scientific insights from data,

it is often required to extract, transform, and load it into an integrated data repository (e.g., a

data warehouse [74]). This process is typically called ETL [330]. An ETL process makes data

accessible through a uniform schema, by constructing an integrated data repository. Thus it

supports fast and efficient querying of the scientific research data.

Repetition of the ETL process to obtain the same integrated data must be avoided, even

when the collaboration extends beyond the organizational boundaries. Researchers interested

in the data resulting from an integration process may belong to one or many organizations. A

typical use case among the medical research scientists is to virtually integrate datasets from

heterogeneous distributed data sources and share the results among the collaborators. The

sharing of the integrated data is often a manual procedure, oblivious to the ETL process. Such

data sharing is inefficient and may lead to the existence and maintenance of duplicate data. A

distributed ETL process to support sharing of the integrated data, with minimal repeated data

integration and loading and minimal bandwidth overhead, is still lacking.

Motivation: Given the above premises, we aim at addressing the following research questions

in this chapter:

(RQ1) Can we increase the speed of the bootstrapping process in ETL by selectively accessing,

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 141

integrating, and loading metadata?

(RQ2) Can we achieve faster execution time for repetitive scientific research queries by storing

the previously integrated and loaded data in an integrated data repository?

(RQ3) Can we incorporate the human knowledge into an ETL framework to selectively and

incrementally integrate and load only the relevant subsets of metadata or data, from web

data sources?

(RQ4) Can the relevant subsets of data and metadata loaded by a research scientist for a specific

experiment be shared efficiently for reproducibility purposes, minimizing data replication

across multiple organizations and avoiding the repetition of the ETL process?

Contributions: The goal of this chapter is to answer the identified research questions, focusing

on medical research as motivating real-life domain. The main contributions of this chapter are:

1. A novel hybrid ETL approach for accessing and integrating data and metadata from

heterogeneous data sources, and loading the resulting data into a scalable integrated data

repository. (RQ1 and RQ2)

2. The incorporation of human knowledge into a hybrid ETL process to selectively integrate

and load subsets of data and metadata on-demand. (RQ3)

3. A data sharing mechanism that enables to virtually share the relevant datasets efficiently

through “pointers” to data, instead of repeatedly loading and replicating the actual data

and metadata. (RQ4)

We implemented Óbidos1, an on-demand big data integration platform for scientific research.

In this chapter, we elaborate in detail, how Óbidos supports a distributed hybrid ETL approach

enhanced with human-in-the-loop for efficient data sharing. We deployed and performed an

experimental evaluation of Óbidos for medical research data. In particular: (i) we compared

Óbidos data loading and query execution times with eager [330] and lazy [183] ETL, and (ii)

we evaluated the efficiency of Óbidos regarding the amount of data replication and bandwidth

required in data sharing. The results obtained indicate that Óbidos performs better than or equal

to both eager and lazy ETL approaches. We further observed that Óbidos data sharing feature

avoids data replication and repeated ETL efforts. Thus, we present Óbidos data integration

and data sharing as classic big data use cases where a data service approach can enhance the

interoperability of diverse and distributed real-world big data applications.

This chapter is composed of the contents of the publication: [J3, C4, W2, W4].

1Óbidos is a medieval fortified town that has been patronized by various Portuguese queens. It is known for
its sweet wine, served in a chocolate cup.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 142

9.1 Motivation

Research has proposed several enhancements to data integration such as virtual data integra-

tion [195] and human-in-the-loop data integration [206]. Similarly, proposals such as distributed

data sharing [367] aim at improving the efficiency of data sharing. LigDB [240] provides a query-

based integration without storing any data, and efficiently handles unstructured data with no

schema. However, these approaches do not focus on big data integration for scientific research

that has its limitations and constraints as well as requirements such as reproducibility.

Traditionally, ETL has been an eager process, loading the entire content of the data sources

into an integrated data repository as a first step. However, eager ETL is often unsuitable

for handling scientific data. First, the bootstrapping process of eager data integration and

loading takes too long. This time waste is unnecessary for scientific research [67] that often

requires only a subset of data. Second, entirely integrating and loading the contents of data

sources can be challenging due to the substantial resource demands with high loading time and

bandwidth. Furthermore, eager ETL also demands large storage due to the typical amount of

data to integrate. Third, scientific data sources are often accessible only to authorized people.

Loading the entire contents of data sources into an integrated data repository may enable to

bypass the data authorization permissions established for data sources. Users would then be

able to access data from the integrated data repository, thus increasing the probability of data

access violation.

Lazy ETL aims at mitigating the limitations of eager ETL, by integrating and loading the

data only when necessary. It avoids loading the entire contents of data sources into an integrated

data repository as the initial step, by eagerly integrating and loading only the metadata. A data

source is composed of several data entries. For binary data such as the medical images stored

in DICOM (Digital Imaging and Communications in Medicine) [241] and seismological data

stored in SEED (The Standard for the Exchange of Earthquake Data) [6] standard formats,

there is typically a piece of textual metadata (containing identifying information) attached to

each data entry in the file header. Metadata is often sufficient for the initial scientific research

demands. The metadata can be leveraged in the early stages of the research, while image

processing can be performed at a later phase, only for images selected as relevant (from the

metadata). A lazy ETL [183] framework for seismological research demonstrates how metadata

can be efficiently used for study-specific queries without actually constructing an entire data

warehouse beforehand, by using files in SEED format. Integrating and loading the metadata, in

these cases, is faster than loading the entire data entry, due to the substantially smaller size of

the metadata. Therefore, lazy ETL usually bootstraps faster than eager ETL.

Lazy ETL has its shortcomings in reproducible scientific research, especially when the meta-

data is significantly large or when the experiments consist of repetitive queries. First, persisting

the previously processed data entries into the integrated data repository would make recurring

scientific research experiments faster. While eager ETL loads the data entirely into an integrated

data repository, current lazy ETL approaches are not able to persistently store data required

for previous queries. Therefore, recurring scientific queries execute slower under lazy ETL than

under eager ETL. The gain obtained by faster data integration and loading in lazy ETL is lost

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 143

when executing recurring queries because they cannot use stored results from previous queries.

Second, scientific research often requires integrating large amounts of heterogeneous data from

several web data sources [107]. Consequently, even an eager metadata-only ETL process (as

prescribed by lazy ETL) can be challenging in scientific research. Third, metadata of some

data sources tend to be as large as or larger than the data entries themselves. For example,

Scality RING petascale object storage [297] consists of metadata up to 10 times larger than the

data entries, supporting content-based searches through its metadata (designed for indexing).

A typical lazy ETL process may fail to outperform an eager ETL process in bootstrapping in

the presence of such data sources, due to the large size of metadata.

Currently, in some domains, ETL is performed on-demand by a user [192]. The user is

involved in the ETL process by incrementally integrating and loading subsets of data or metadata

that are relevant to a given research question. The user is often aware of the details about data

source access and data location. So, the researcher may be able to directly access the required

data without accessing and querying the corresponding metadata. This expert knowledge should

be incorporated into the ETL process. This type of user involvement is called human-in-the-

loop ETL. It often consists of two parts. First, the user manually searches and downloads the

datasets from the web data sources. Then, she integrates and stores the result in an integrated

data repository. By narrowing down the search space to a smaller subset of relevant data sources,

human-in-the-loop ETL shortens the data integration and loading time. However, existing ETL

frameworks do not support the automatic incorporation of human in the process. Therefore,

currently, human-in-the-loop ETL process remains a cumbersome manual and repetitive task.

Reproducible science requires a hybrid ETL that enables a selective loading of metadata

and data and storing the integrated data in an integrated data repository for later access. Since

the number of web data sources, as well as the amount of data and metadata, tend to increase,

the storage requirements for the integrated data repository must be adaptable. In particular,

scalable storage is essential to accommodate data and metadata selectively accessed and incre-

mentally integrated and loaded by the researcher. However, the current ETL approaches do not

support such a selective ETL process into a scalable integrated data repository. We propose a

service-based on-demand data integration as well as persisting and sharing integrated data across

multiple research organizations, to address these identified shortcomings in data integration for

reproducible scientific research.

9.2 Óbidos: An On-Demand Big Data Integration Platform

The Óbidos platform is instantiated for each organization. Users from the organization can

access, integrate, and load data into the integrated data repository of the corresponding Óbidos

instance. Furthermore, they can share datasets stored in the integrated data repository with

other users from the same or different organizations. Section 9.2.1 presents the Óbidos hybrid

ETL approach and the underlying architecture. Section 9.2.2 explains how Óbidos incorporates

human knowledge in the ETL process to selectively and incrementally integrate and load subsets

of data and metadata. Section 9.2.3 details Óbidos efficient data sharing mechanism beyond

organization boundaries to minimize data replication and repeated ETL efforts.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 144

9.2.1 Hybrid ETL Process

Óbidos Architecture: Figure 9.1 depicts the architecture of an Óbidos instance. From

bottom to top, Óbidos consists of i) a scalable Integrated Data Repository, ii) a Data

Management Layer with constructs for fast data integration and loading, and iii) a Query

Rewriter with constructs for efficient and unified access to the data in the integrated data

repository and the data sources.

Óbidos

Query Rewriter

Integrated Data Repository

Metadata Index
Integrated Metadata

Integrated Data
Virtual Proxies

Data Management Layer

Replicaset Holder Data Loader

{Pointers to Datasets, User Query}

Óbidos User
Data Sources

{Replicaset, sub-queries}

Figure 9.1: Óbidos Architecture

The Integrated Data Repository incrementally stores the data and metadata integrated

and loaded by users. It consists of i) structured and unstructured data (including binary data)

as integrated data and ii) the corresponding metadata as integrated metadata. Further-

more, the metadata stored in the integrated data repository needs to be indexed for efficient

query execution over the binary data. We call this index of the integrated data repository, the

Metadata Index. The Metadata Index functions as an internal index that is built over the

integrated data and metadata in the Óbidos instance. Óbidos further stores the incomplete

metadata entries, the metadata that is being loaded, as virtual proxies. The virtual proxies

are stored as future or a placeholder for the complete metadata in the integrated data repository.

The complete metadata will replace the virtual proxies once the entire metadata is loaded.

The Data Management Layer consists of data structures to manage the data in the

integrated data repository and components to access, integrate, and load from the data sources.

It stores its data structures in memory in a cluster of machines, aiming to offer fast access to the

integrated data while not compromising fault-tolerance. A virtual replica is a pointer to a dataset

from a distinct data source. A replicaset is an Óbidos data structure that is composed of several

virtual replicas. Thus, each replicaset points to the distributed and diverse datasets relevant to

a scientific research study. Furthermore, the replicasets are identified by timestamps. Therefore,

the integrated data repository can be periodically updated with the changes or updates to the

datasets in the data sources pointed by the replicasets.

The Replicaset Holder is the core module of the Data Management Layer. It identifies

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 145

each replicaset by a globally unique identifier known as replicasetID. The Replicaset Holder

stores the replicasets in memory in a data structure that maps each item of integrated and

loaded metadata into the corresponding replicasets. Thus, it indicates which of the datasets

have already been loaded into the integrated data repository, either as integrated metadata and

data or as virtual proxies. Moreover, it enables sharing the replicasets among users freely to

make the datasets relevant to the scientific research available to other participants. Therefore,

it serves as a component that prevents repetitive attempts to access, integrate, and load the

same datasets. The Data Loader selectively loads metadata and data from the data sources.

The location and the access mechanisms to the data sources are provided by the user and are

stored in memory by the Data Loader.

Finally, the Query Rewriter enables uniform access to data sources as well as to the

integrated data repository. It accepts as input a user query and pointers to the relevant datasets.

Then, it converts the pointers to the datasets into replicasets. It also translates user queries

into sub-queries that access either the data sources or the integrated data repository. If the data

required to answer the user query is not present in the integrated data repository, it invokes the

Data Loader to integrate and load the datasets to answer the user query as well as the virtual

proxies corresponding to the replicaset.

Óbidos Incremental Data Integration and Loading: Óbidos accesses data and metadata

from the data sources, and incrementally integrates and loads the results of the user queries into

an integrated data repository. The integrated data repository persists previous query answers as

well as the data and metadata integrated and loaded for answering previous queries. Therefore,

queries can be regarded as virtual datasets that can be re-accessed or shared (akin to the

materialized view in traditional RDBMS).

Óbidos enables to incrementally integrate and load metadata to mitigate the challenges in

loading the metadata entirely or eagerly. When incrementally loading the metadata, Óbidos

replaces the counterparts of metadata that has not been loaded yet with a virtual proxy. The

use of virtual proxies minimizes the volume of metadata integrated and loaded. Óbidos stores

the virtual proxies in the integrated data repository in addition to the integrated data and the

corresponding metadata. If only a fraction of metadata is relevant for a search query, it is

sufficient to load only that fraction. Therefore, Óbidos selectively loads metadata as virtual

proxies. The virtual proxies are later replaced by the complete metadata as the metadata is

accessed and integrated. Thus, virtual proxies refer to the metadata of a dataset larger than

that is integrated and loaded to the integrated data repository.

Often a virtual replica may be present in the Replicaset Holder, without having the exact

data for the user query. This usually means, previously at least one different user query has been

executed on the same virtual replicas. Therefore, while the virtual proxies of the replicaset are

present, the exact data for the user query may not be present in the integrated data repository.

With time, as more and more data are selectively integrated and loaded, the integrated data

repository will contain the necessary data for the subsequent scientific research queries.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 146

9.2.2 Human-in-the-Loop ETL Process

Óbidos supports a human-in-the-loop ETL process. By ‘human-in-the-loop,’ here we mean

to incorporate the human knowledge that corresponds to the user-defined replicasets and queries

to selectively access and integrate data from the data sources and incrementally loading the

integrated data repository. A user identifies certain datasets as relevant to her scientific research,

and these datasets are the ones against which the user query will be executed. She defines a

replicaset by including pointers to these datasets as virtual replicas. The replicaset and a specific

user query determine the data to be integrated and loaded by each selective data integration

and loading process. This avoids the need to look for the desired data across data sources

exhaustively.

Óbidos selective load process is initiated every time a user issues a query. First, Óbidos

iteratively checks for the existence of the data necessary to answer the query in the instance. It

queries the Replicaset Holder for each of the virtual replicas and then executes the user query

on the integrated data repository. If the data is not available in the instance, it is integrated

and loaded from the data sources. The results of the user queries are persistently stored into

the integrated data repository. Furthermore, rather than just querying and loading only the

answers of the user query, Óbidos selectively loads the metadata pointed by the replicaset. This

ensures that the integrated data repository can be incrementally loaded with data, rather than

merely storing discrete, incoherent, or independent sets of data. Figure 9.2 shows an Óbidos

user defining a replicaset along with a user query to be executed on multiple data sources. The

replicaset narrows down the search space from the entire data sources to specific datasets to

answer the user query. She ensures with the knowledge of the data sources, the data required

to answer her user query is part of the datasets pointed by her replicaset.

Data Source 2 Data Source n

Replicaset

Dataset_1 Dataset_2 Dataset_m

User Query

An Óbidos User

...
Data Source 1

defines

Figure 9.2: Narrowing down the search space with user-defined replicasets

The data integrated and loaded into the integrated data repository of an Óbidos instance

should be available to be accessed later for scientific research. For example, when a user re-

ceives a replicaset from another user from the same or another organization, she may access her

organization’s instance to check for already loaded data. Algorithm 10 illustrates how a user

initiates the selective and incremental data integration and loading process of Óbidos.

The algorithm starts by initializing a temporary variable toLoad, as a set, with the copy of

the replicaset (line 2). toLoad tracks the virtual replicas belonging to the replicaset that have

not yet been loaded from the data sources. Then, the algorithm proceeds to check the existence

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 147

Algorithm 10 Óbidos Human-in-the-Loop Incremental ETL

1: procedure selectiveLoad(replicaset, userQuery)

2: toLoad ← replicaset

3: for all (virtualReplica ∈ replicaset) do

4: wasLoadedBefore ← replicasetHolder.get(virtualReplica)

5: if ¬(wasLoadedBefore) then

6: loadData(virtualReplica, userQuery)

7: replicasetHolder ← replicasetHolder ∪ {virtualReplica}

8: toLoad ← toload \ {virtualReplica}
9: end if

10: end for
11: if ((toLoad 6= ∅) ∧(integratedDataRepository.query(userQuery) = ∅)) then

12: for all (virtualReplica ∈ toLoad) do

13: loadData(virtualReplica, userQuery)

14: end for
15: end if
16: end procedure

of the data pointed by each virtual replica in the instance (line 3). First, it queries the Replicaset

Holder to check whether datasets pointed by the virtual replica have already been loaded by a

previous query (line 4). If no dataset has yet been loaded for the virtual replica (line 5), the data

relevant for the virtual replica and the user query is loaded from the data sources incrementally,

invoking the loadData procedure (line 6). The Replicaset Holder matches the replicasets to the

respective data and metadata integrated and loaded in the integrated data repository, by the

selective load process. Therefore, in line 7, the virtual replica is added to the Replicaset Holder.

Now since the dataset pointed by the virtual replica has already been loaded, the virtual replica

is removed from toLoad (line 8).

The first loop (lines 3 - 10) checks whether the data, metadata, or virtual proxies relevant

for one or more of the virtual replicas exist in the integrated data repository. It loads the data

only when neither corresponding data and metadata nor virtual proxies are found for a given

virtual replica. Therefore, a non-empty set of toLoad at the end of the loop indicates that at

least a few virtual replicas were not loaded during this iteration. In that case, the algorithm

proceeds to check whether the data and metadata necessary to answer the current user query

are completely available in the integrated data repository (line 11). The user query will return

a null value if the complete metadata and data necessary to answer the query are not present

in the integrated data repository. Consequently, the loadData procedure is executed for all the

virtual replicas in the toLoad set (lines 12 - 14).

The loadData Procedure: The loadData procedure is the core of the Óbidos human-in-the-

loop incremental ETL approach. It accepts a replicaset and a user query as input arguments.

First, the data sources are accessed, and the datasets identified by the replicasets are selectively

loaded as virtual proxies, without loading the entire metadata. Then, the user query is executed

against the data sources. The relevant metadata representing the results of a user query is

integrated and loaded to the integrated data repository. If the user query also indicates access

to the binary data, the respective binary data (usually a subset of data corresponding to the

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 148

metadata already loaded by the query) is also loaded to the integrated data repository. The

loadData procedure selectively loads the metadata corresponding to the replicaset as virtual

proxies. If previously a different user query was issued with the same virtual replica, the virtual

proxies corresponding to the virtual replica would be present while the exact data and metadata

to answer the current user query would be absent in the integrated data repository.

9.2.3 Data Sharing Process

An Óbidos instance is deployed in each organization. Each Óbidos instance is used by: i)

users from the organization and ii) users from other organizations and external users who have

limited access to the Óbidos instance. Users can share the datasets among them by sharing the

replicasets or their respective replicasetIDs. Therefore, there is no need to replicate the actual

data of the data sources nor the integrated data repository of an Óbidos instance.

Datasets can be shared by as a replicaset or the respective replicasetID. Replicasets are

small in size. However, they grow with the number of data sources and diversity of data.

ReplicasetID is smaller in size compared to the replicaset and is of a fixed size. Therefore,

they are shared by default. A user outside the organization can access the data already loaded

in an Óbidos instance using the replicasetID. Moreover, users can share the replicasets with

other organizations, without letting them access the data in their integrated data repository.

The receiver organization can then integrate and load the datasets pointed by the replicaset,

into its own Óbidos instance. Figure 9.3 illustrates the process of data sharing between users

User s1 and User r1 from two different organizations (called sender and receiver). The sender

organization and the receiver organization can also represent the same organization if both users

belong to the same organization.

Óbidos Instance_s: Sender Organization

Replicaset Holder_s

Replica_Set_1

Integrated Data Repository_s

Replica_Set_1
Replica_Set_1

Replicaset_s1

Data Source_1

Óbidos Instance_r: Receiver Organization

Replicaset Holder_r

Replica_Set_1

Integrated Data Repository_r

Replicaset_1Replicaset_r1

Replicaset_s1

D
at

a
 A

cc
es

s

D
at

a
Sh

ar
e

Data Source_2
Data Source_m

DataSet_1 DataSet_2 DataSet_n...

User_s1
Users

Users User_r1

Figure 9.3: Data Sharing with Óbidos

Algorithm 11 describes the data sharing procedure executed by the Óbidos instance of the

receiver organization. It takes as input: a replicaset (or its replicasetID) received from another

user, the identification of users that created/sent and received the replicaset, and an optional

object known as accessSender (line 1). A null value for the accessSender object indicates that

the shared datasets should be accessed from the data sources. A non-null value indicates that

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 149

the datasets need to be accessed directly from the sender instance. The accessSender object

consists of relevant access mechanisms such as the access key to the integrated data repository

of the sender instance.

Algorithm 11 Data Sharing via a Replicaset

1: procedure shareReplicaset(replicaset, sender, receiver, accessSender)

2: if (replicaset.isURI())

3: replicaset ← sender.get(replicaset) then

4: end if
5: if (accessSender 6= ∅)

6: sender.access(replicaset) then

7: else
8: receiver.selectiveLoad(replicaset, ∅)

9: end if
10: end procedure

If a replicasetID is received, the replicaset is retrieved from the sender instance first (lines 2

- 4). Since the replicaset was initially created by a user of the sender organization, the datasets

or the virtual proxies pointed by the replicaset would be present in the sender organization.

Therefore, if the accessSender is set to a non-null value (line 5), the datasets pointed by the

replicaset are accessed directly from the sender instance, by the receiver organization (line 6).

Otherwise, the shareReplicaset procedure selectively loads the datasets pointed by the replicaset

into the receiver instance, from the data sources (line 8). As there is no user query defined in a

shared replicaset, the selectiveLoad procedure is invoked with a null value in place of the user

query.

9.3 Implementation

We built Óbidos with several data services, including data cleaning, loading, and sharing.

Óbidos consists of data structures, APIs, and software components that enable chaining of these

data services for its execution.

9.3.1 Data Structures

The Replicaset Holder stores the replicasets in a minimal tree-like data structure, to of-

fer efficient search and indexing capabilities. Figure 9.4 illustrates the data structures of the

Replicaset Holder and the data representation of Óbidos.

The Replicaset Holder consists of a few instances of a multi-map data structure, storing a

list of values against a given key. As each user composes several replicasets, the userMap stores

a list of replicasets against the identification of the users (userID) that created them. Each value

stored in the userMap represents a replicaset of a user and further points to a replicasetMap.

The replicasetMap includes the virtual replicas belonging to each replicaset, and whether the

replicasets have already been integrated and loaded to the integrated data repository. A repli-

casetID is a globally unique random value generated by appending a random string generated

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 150

Key (UserID) Value (Instances of replicasetMap)

... ...

userMap ().. replicasetMap ().

Key (replicasetID) Value (List of Sources)

[CaMic, S3, Local, ..]

[Box, TCIA,..]

[S3, TCIA, ..]

... ...

Boolean Array for
 Data Source (eg: for TCIA)

Collections Patients Studies Series
Key
(replicasetID)

Value (List
of Entries)

...

... ...

Maps for Granularity0

Key
(replicasetID)

Value (List
of Entries)

...

... ...

Maps for Granularity1

Key
(replicasetID)

Value (List
of Entries)

...

... ...

Maps for Granularity2 Key
(replicasetID)

Value (List
of Entries)

...

... ...

Maps for Granularity3

Figure 9.4: Data Structures of the Replicaset Holder

via Java’s random UUID generator (using UUID.randomUUID().getLeastSignificantBits()) to

the URL of the Óbidos deployment. The replicasetMap employs the replicasetID as its key

and the list of data source names contributing data to a replicaset as the value. Thus, each

replicasetMap stores the relevant data sources for each of the replicaset.

Replicasets include pointers to datasets from various data sources as virtual replicas. Mul-

tiple maps internally represent each data source belonging to a replicaset. Figure 9.4 represents

an illustrative use case for hierarchical data storage. It considers cancer images of DICOM for-

mat stored in data repositories such as TCIA, S3 buckets, directories in Box.com, and a local

folder/file hierarchy. Metadata includes identifying information on the data, including how it

fits in the overall data storage or larger granularity. Therefore, the Replicaset Holder exploits

the metadata to efficiently index and store the data.

The Replicaset Holder uses a boolean array Ab of length n to represent the replicasets of

hierarchical data storage formats in a bit-map like structure, where n refers to the number of

granularity levels. Each element Ab[i] of the array represents the existence of a non-null entry in

the map of ith granularity. Thus, the boolean flags in Ab indicate the presence (or lack thereof)

of the dataset in a particular granularity of a replicaset. If an entire level of granularity is

included in the replicaset by the user, the relevant flag is set to true. The Replicaset Holder

further consists of n maps, each representing one of the granularity levels in the data source.

For the DICOM images, n = 4. Thus, 4 maps represent its 4 granularity levels - collections,

patients, studies, and series, with an array of length 4 pointing to each map. Each of these

maps stores replicasetIDs as its keys and lists of the entries in the specific granularity (shown

as Granularity0, Granularity1, . . .) as its values. The hierarchical data representation enables

incremental loading and virtual proxies through its indexed data structure.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 151

9.3.2 Service-based APIs

The Óbidos APIs are designed as CRUD (Create, Retrieve, Update, and Delete) RESTful

services on replicasets. Óbidos offers a data sharing API to share scientific research datasets, by

sharing the replicasets. Replicasets can also be shared outside Óbidos, through other commu-

nication media such as email. The data sharing method is typically one-to-one, meaning that a

user shares data with another user in the same or different organization. However, it can also

be listed for the public to be freely accessed.

The user accesses, queries, integrates, and loads the relevant data from the data sources

by invoking the create replicaset procedure. This procedure creates a replicaset and initiates

the selective data integration and loading process. When retrieve replicaset is invoked, the

data corresponding to the given replicaset is retrieved from the integrated data repository.

Furthermore, Óbidos checks for updates from the data sources pointed by the replicaset, if the

data corresponding to the replicaset has already been integrated and loaded. Metadata of the

replicaset is compared against that of the data sources for any corruption or local changes. The

user deletes existing replicasets by invoking the delete replicaset. When a replicaset is deleted,

the Replicaset Holder is updated immediately to avoid loading updates to the deleted replicasets.

The user updates an existing replicaset to increase, decrease, or alter its scope, by invoking the

update replicaset. Thus, the update process may, in turn, invoke parts of create and delete

processes, as new data may be loaded while existing parts of data may be removed.

The Replicaset Holder associates each dataset to a user, through its data structures such as

the userMap. While each user has her own virtually isolated space in memory, the integrated

data repository consists of a data storage shared among all the users of the organization. Hence,

before deleting a data entry from the integrated data repository, the data should be confirmed

to be an ‘orphan’ with no replicasets referring to them from any of the users. Deleting data

from the integrated data repository is initiated by a background system task, rather than the

users. When the storage is abundantly available in a cluster, Óbidos advocates keeping orphan

data in the integrated data repository rather than immediately initiating the cleanup process,

and repeating it too frequently.

9.3.3 Óbidos Software Components

We separate the Óbidos architecture and interfaces from its implementation, avoiding tight

coupling of the framework to ensure its reusability. The Óbidos architecture consisting of its

data structures and interfaces is generic and can be exploited for the integration of data from

data sources other than the medical research data. We utilize several open source frameworks as

primary dependencies in our Óbidos prototype. Óbidos uses HDFS as the core of the integrated

data repository, due to its scalability and support for storing unstructured and semi-structured,

binary and textual data. Óbidos executes on a cluster of Infinispan [225] IMDG. Consequently,

the Data Management Layer stores its data structures in an Infinispan cluster. The metadata

of the binary data in HDFS is stored in tables hosted in Apache Hive [324] metastore based

on HDFS. The Hive tables consisting of the metadata are indexed with the Metadata Index for

users to query and locate the data from the integrated data repository efficiently.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 152

Óbidos supports SQL queries on unstructured data stored in HDFS, through the Metadata

Index stored in Hive. Apache Drill [154] enables SQL queries on structured, semi-structured, and

unstructured data. Therefore, the Query Rewriter unifies and accesses the storages seamlessly

by leveraging Apache Drill. This approach allows efficient queries to the data, partially or wholly

loaded into the integrated data repository. API Umbrella is deployed as the default API gateway

to manage and provide users with access to the APIs. Óbidos incorporates authorization to its

shared data from the integrated data repository through the use of API keys, leveraging the

API gateway. A user can only access the data shared with her, and only with the API key that

belongs to her. Thus, Óbidos provides access-controlled, unified, and scalable access to the data

in the integrated data repository and the data sources.

Oracle Java 1.8 is used as the programming language in developing Óbidos. Apache Velocity

1.7 [138] is leveraged to generate the application templates of the Óbidos web interface. Hadoop

2.7.2 stores the integrated data along with its corresponding metadata and virtual proxies,

whereas the Metadata Index is stored in Hive 1.2.0. Hive-jdbc package writes the Metadata

Index into the Hive metastore through its JDBC (Java Database Connectivity) bindings to Hive.

SparkJava 2.5 [312] compact Java-based web framework is leveraged to expose the Óbidos APIs

as RESTful services. We deployed Óbidos as a web application on Embedded Tomcat 7.0.34.

Infinispan 8.2.2 is used as the IMDG where its distributed streams support distributed execution

of the hybrid ETL processes across the Óbidos clustered deployment. The data structures of

the Data Management Layer are represented by instances of the Infinispan Cache class, which

is a Java implementation of distributed HashMap. Drill 1.7.0 is exploited for the SQL queries

on the integrated data repository. It uses the JDBC API provided by the drill-jdbc module to

connect with the Query Rewriter programmatically.

9.4 Evaluation

We benchmarked Óbidos against the implementations of eager ETL and lazy ETL, using

microbenchmarks derived from medical research queries on cancer imaging and clinical data.

We deployed an Óbidos prototype to integrate medical data from various heterogeneous data

sources including TCIA [77], DICOM imaging data hosted in Amazon S3 buckets, medical

images accessed through caMicroscope [65], clinical and imaging data stored in local data sources

including relational and NoSQL databases, and file system with files and directories along with

CSV files as metadata. Our evaluations primarily used DICOM images stored as collections of

various volume as shown in Figure 9.5, sorted according to their total volume. The data consists

of large-scale binary images (in the scale of a few thousand GB, up to 10 000 GB) along with a

smaller scale textual metadata (in the range of MBs).

The evaluated collections consist of diverse entries. Figure 9.5a shows the total volume of the

collections. Figure 9.5b illustrates the number of patients, studies, series, and images in each of

the collection. Each collection consists of multiple patients; each patient has one or more studies;

each study has one or more series; each series has numerous images. We defined replicasets at

these different levels of granularity. The varying pattern of Figure 9.5b, when compared against

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 153

 0.1

 1

 10

 100

 1000

 10000

 0 10 20 30 40 50 60 70

V
o
lu

m
e

 (
G

B
)

Collection ID

(a) Total Volume of the Collections

 1
 10

 100
 1000

 10000
 100000

 1x106
 1x107

 0 10 20 30 40 50 60 70

N
u

m
b

e
r

o
f

E
n

tr
ie

s

Collection ID

Images
Series

Studies
Patients

(b) Various Entries in the Collections

Figure 9.5: Evaluated DICOM Imaging Collections (Sorted by Total Volume)

that of Figure 9.5a, shows that the total volume of a collection does not necessarily reflect the

number of entries in it.

9.4.1 Performance of Integrating and Loading Data

We benchmarked Óbidos for its data integration and loading time against that of lazy ETL

and eager ETL approaches, for a varying number of studies. Since the scientific research data

sources span the globe, the network bandwidth will impact the performance of loading data

directly from them. To avoid this influence, first, we replicated the data sources such as TCIA

to data sources hosted on the local servers.

Figure 9.6a shows the data integration and loading time from different total volumes of

data sources for the same replicasets of the user. Since lazy ETL and eager ETL approaches

query the entire data sources, the increasing volume of data in the data sources leads to a larger

time to integrate and load them. Eager ETL always took more time as it has to integrate and

load the entire metadata and data. Since lazy ETL loads only the metadata eagerly, it loads

faster than eager ETL. Óbidos selectively loads the metadata of only the data corresponding to

the replicaset. The loading time remained constant, regardless of the growth of the increasing

total volume of data in the data sources, as the replicaset and the user query remained the

same. Therefore, the human-in-the-loop contributed positively to the integration and loading

performance of Óbidos by narrowing down the search space from the data sources.

Óbidos consumed more time for the data integration and loading compared to the lazy

ETL for smaller volumes of data. For small volumes, eagerly loading the entire metadata can be

faster than the selective loading by Óbidos, as Óbidos executes the query on the data source and

loads the virtual proxies, creating and updating the constructs such as the Metadata Index and

the Replicaset Holder. However, as the total volume of data grows, the data loaded by Óbidos

remained the lowest compared to both eager ETL and lazy ETL, thus resulting in faster data

integration and loading. For repetitive user queries, both eager ETL and Óbidos outperformed

the lazy ETL due to the availability of the integrated data repository in both eager ETL and

Óbidos, and the storing of query answers in Óbidos.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 154

 10

 100

 1000

 10000

 5000 10000 15000 20000

T
im

e
(s

)

Number of Studies

Eager ETL Lazy ETL Obidos

(a) Change in total volume of data sources (Same user
query and same replicaset)

 10

 100

 1000

 10000

 5000 10000 15000 20000

T
im

e
(s

)

Number of Studies of Interest in the Replicaset

Eager ETL Lazy ETL Óbidos

(b) Varying number of studies of interest in the replicaset
(same user query and constant total data volume)

Figure 9.6: Data load time

Figure 9.6b depicts the data integration and loading time for the same experiment, but with

constant total volume of data sources while increasing the number of studies of interest in the

replicaset. Since the total volume remained constant, the lazy ETL and eager ETL had the

same data integration and loading time, as they are oblivious to the change in the number of

studies of interest. However, the performance of Óbidos depends heavily on how the replicasets

are defined. Therefore, with the growth of the replicaset, the loading time of Óbidos increased.

Eventually, the data integration and loading time of Óbidos converged with the time taken by

the lazy ETL approach, as the replicaset was defined to cover all the studies in the data sources

(thus, making it same as eagerly loading the metadata).

Figure 9.7 shows the data integration and loading time from remote sources. The datasets

were integrated and loaded directly from the remote data sources (such as TCIA and S3 buckets)

through their web service APIs, to evaluate the effects of data downloading and bandwidth

consumption associated with it. We changed the total volume of data in the data sources

by adding more data to the data sources while keeping the replicaset unchanged. Eager ETL

performed poor as binary data had to be downloaded over the network. Lazy ETL too performed

slowly for large volumes as it must eagerly load the metadata (which itself grows with scale) over

the network. As with the case of Figure 9.6a, Figure 9.7 too illustrates a fixed time for Óbidos

data integration and loading. As the data was integrated and loaded over the Internet from the

data sources, the time taken grew linearly for eager ETL and lazy ETL. However, lazy ETL

consumed much lower time compared to the eager ETL. As only the datasets corresponding

to the replicaset are accessed, integrated, and loaded, Óbidos uses bandwidth conservatively,

loading no irrelevant data or metadata.

9.4.2 Performance of Querying the Integrated Data Repository

We then benchmarked Óbidos for its efficiency in querying the data and integrated data

repository against the eager ETL. Query completion time depends on the number of entries

in the queried data rather than the size of the entire integrated data repository. Hence, we

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 155

 10

 100

 1000

 10000

 100000

 0 3000 6000 9000
T
im

e
 (

s)

Data Volume (GB)

Eager ETL Lazy ETL Óbidos

Figure 9.7: Load time from the remote data sources

measured the amount of data by the number of studies that were queried. Figure 9.8 depicts

the query completion time of Óbidos and eager ETL. Óbidos showed a speedup compared to the

eager ETL due to its efficient indexing of the binary data in the integrated data repository with

Metadata Index and the efficiency of the Data Management Layer in managing the storage and

execution. The unstructured data in HDFS was efficiently queried as in a relational database

through the distributed query execution of Drill with its SQL support for NoSQL data sources.

 0

 20

 40

 60

 80

 100

 0 5000 10000 15000

T
im

e
 (

s)

No. of Studies

Eager ETL Óbidos

Figure 9.8: Query completion time for the integrated data repository

Óbidos brings the best of both worlds from eager ETL and lazy ETL approaches for scientific

research data integration and loading. Typically, lazy ETL approaches do not consist of an

integrated data repository. Therefore, we avoid comparing the query performance on the Óbidos

integrated data repository against the lazy ETL. Eager ETL could outperform Óbidos for queries

that access data not yet loaded in Óbidos, as eager ETL would have constructed an entire data

warehouse beforehand. However, with the domain knowledge of the medical data researcher, the

relevant datasets are loaded timely, and only those. The time required to construct a complete

data warehouse would preclude any benefits of eager loading from being prominent. If data is

also not loaded beforehand in eager ETL, it will consume much longer to construct the entire

data warehouse before actually starting the processing of the user query. Moreover, loading

everything beforehand may be irrelevant, impractical, or even impossible for scientific research

studies due to the scale and distribution of the data sources.

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 156

9.4.3 Sharing Efficiency of Medical Research Data

Figure 9.9 benchmarks the bandwidth efficiency of the Óbidos data sharing approaches

against the typical binary data transfers. Various image series of an average uniform size are

shared between users inside an Óbidos instance and across multiple instances. Óbidos facilitates

data sharing by sharing either the replicasetID or the replicaset itself. First, we used a varying

number of series to compare the Óbidos data sharing approaches, as illustrated by Figure 9.9a.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000 10000 100000

S
h

a
re

d
 D

a
ta

 (
M

B
)

Number of Shared Series

Óbidos: Data Sharing via a Replicaset
Óbidos: Data Sharing via a ReplicasetID

(a) With changing number of shared series

 0.0001

 0.01

 1

 100

 10000

 1x106

 10 100 1000

S
h

a
re

d
 D

a
ta

 (
M

B
)

Volume of the Image Series (GB)

Replicating and Sharing Data
Óbidos: Data Sharing via a Replicaset

Óbidos: Data Sharing via a ReplicasetID

(b) With changing volume of shared images

Figure 9.9: Volume of data shared in Óbidos use cases vs. in regular binary data sharing

Since sharing data by its actual content does not directly depend on the number of entries

(unlike the Óbidos approaches), we then measured the volume of the image series in the case of

benchmarking against sharing of data by replicating and sharing the actual content. Figure 9.9b

highlights that negligible volume of data was shared in both cases of Óbidos as opposed to sharing

the actual data. Sharing via the replicasetID outperformed sharing via replicaset in all the cases,

as replicasetIDs are relatively smaller and of constant size. Even sharing the replicaset itself was

more bandwidth efficient than actually replicating and sharing the data.

Óbidos is inspired by the data integration research and aims to bring the control of data

integration to the end user. The use of a unified schema in (VCE) [53] to virtually integrate

data is similar to the Óbidos approach. However, Óbidos offers a complete hybrid ETL approach

and supports sharing data with minimal data replication. Various large-scale scientific data

repositories such as EUDAT [197] share the motivation of Óbidos concerning data integration.

Loading the entire data from all the sources is irrelevant for the consumers of EUDAT data, as

in Óbidos. Hence, choosing and loading certain sets of data is supported by these service-based

data access platforms.

Óbidos attempts to address several shortcomings in the current big data integration and

sharing approaches with its hybrid ETL designed for reproducible scientific research. First,

exploiting the scalable architecture offered by Hadoop and the other big data platforms to create

an index to the unstructured integrated data. Second, managing the data in-memory for quicker

data manipulations. Third, sharing the results and datasets efficiently with peers. The existing

big data integration approaches [221] do not adequately address these fronts, whereas the Óbidos

approach focuses on them. The incremental integration and loading approach enables Óbidos to

CHAPTER 9. ON-DEMAND BIG DATA INTEGRATION 157

load complex metadata faster than the current lazy ETL approaches. The hierarchical structure

and metadata format of binary image formats are not limited to DICOM. It is shared by various

scientific data formats such as SEED [6]. Thus, we note that while we prototype Óbidos for

medical research, the approach is also applicable to multiple research and application domains.

9.5 Conclusion

Óbidos is an on-demand data integration system with human-in-the-loop for scientific re-

search. Inter-disciplinary researches require access and integration of datasets spanning multiple

data sources on the Internet. In this chapter, we presented a hybrid ETL process driven by users,

which selectively integrates and loads the data and metadata from heterogeneous data sources

into a scalable integrated data repository. We built Óbidos as an implementation of the hybrid

ETL for medical research data. Óbidos leverages the respective APIs offered by the data sources

to integrate and load the data while providing its RESTful APIs for accessing its integrated data

repository. We envisioned that various organizations with an Óbidos instance would be able to

coordinate to construct and share the integrated datasets internally and between one another

through its standard interoperable service APIs with minimal data replication. We believe that

such approaches will continue to enrich the potential for chaining big data executions as data

service workflows that can be dynamically composed and reused by multiple tenants.

10
Interoperable and

Network-Aware Big Data

Workflows

Interoperability and network-awareness are crucial for distributed big data applications to

reduce bandwidth cost as well as communication and coordination overheads. Big data frame-

works consist of diverse storage media and processing of a large volume of heterogeneous data

from several scientific and enterprise domains [75]. Big data processing requires resources be-

yond what can be offered by a single server or even a data center, due to the volume, variety,

and geo-distribution of the data. Therefore, big data is processed in a distributed and parallel

manner [290], either on top of in-memory frameworks such as IMDG [129], on the disk in data

stores such as relational databases and NoSQL data sources, or on hybrid architectures consist-

ing of persistent data on disk as well as cached data and computations in-memory [364]. Such

an execution leads to a significant amount of data processed and transferred across multiple

computing nodes and therefore is usually heavy in its bandwidth demand [140]. Distributed

execution frameworks such as IMDGs aim to minimize the performance degradation associated

with communication and coordination overheads, by reducing, if not avoiding, unnecessary data

movements between the execution and storage nodes [353].

Enterprise big data executions are typically confined to their platforms, and cannot be

shared with other frameworks, due to the independent development of the big data platforms

and incompatibility across their executions and interfaces [364]. The big data frameworks are

designed to work in an environment such as a cluster, data center, or a cloud, that offer consistent

network connectivity and topology. However, big data workflows can indeed extend beyond

the boundaries of a data center, and continue to do so, more and more in recent times [347].

On the other hand, multiple network providers manage the wide area networks such as the

inter-cloud and edge networks. Thus, centralized and unified control is challenging concerning

both technologies as well as administration and policies. This state of affairs indeed hinders

interoperability and the potential of the big data execution frameworks to efficiently schedule

the workload and share the resources beyond a data center or a cloud. Due to these factors,

distributing or chaining the execution of big data applications among several servers spanning

multi-domain data centers and edge nodes in a wide area network is a significant undertaking.

While research efforts such as volunteer computing [22], namely at the edge, have leveraged

resource sharing and workload dissemination across independent and decentralized execution

nodes, their use is limited to specific applications. Initially proposed for CPU-bound work-

loads, volunteer computing and cycle sharing have recently been extended for data-intensive

applications [16]. However, volunteer computing approaches significantly lack the potential to

distribute data-intensive workloads in a network-aware manner, as the central coordinators in

such approaches are developed with minimal control over the execution nodes for less intru-

sion [215] and easy integration with computing resources of independent participants [322].

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS159

Motivation: Given the above premises, we aim at addressing the following research questions

in this chapter:

(RQ1) Can we extend and adopt SDN and web services paradigms as a generic software-defined

approach for interoperable and network-aware big data executions?

(RQ2) Can such a software-defined approach enhance the performance, management, and

scheduling of the data service workflows at various scales from data centers to the In-

ternet?

(RQ3) Can network domains advertise and share their dedicated network links among each

other for dynamic data service compositions, through enterprise communication protocols

such as MOM [87] protocols?

Contributions: The goal of this chapter is to answer the identified research questions. The

main contributions of this chapter are:

1. Software-Defined Data Services (SDDS), a big data execution model, to generalize the

big data applications, including storage and processing, as data services, and execute them

across multi-domain wide area networks. (RQ1)

2. A network-aware execution of big data workflows, leveraging the Internet paths as well

as the direct links provided by various enterprises, such as the cloud direct connects. (RQ3)

3. Mayan-DS , an SDDS framework that aims to solve the challenges that hinder efficient

and interoperable big data executions inside and beyond data center networks. (RQ2)

In this chapter, we elaborate the design and deployment of Mayan-DS from data centers

to multi-domain wide area networks. First, Mayan-DS defines the big data workflows as data

services, adopting the interoperability offered by the web service definitions across heterogeneous

big data environments. It enables the execution to be agnostic to the storage media, format, and

location, by defining each step of the execution as interoperable data services. Second, it exploits

SDN for the performance, scalability, and bandwidth efficiency of the data services execution

in the wide area network. By deploying a federated multi-domain controller over a wide area

network, the SDDS controller receives a global overview of the data service instances comprising

the workflows. By leveraging both the service statistics of the web services engines and the

network status from the SDN controller, the Mayan-DS controller architecture schedules the

data services composing the big data workflows in an interoperable and network-aware manner.

Our evaluations on a Mayan-DS prototype with microbenchmarks highlight that Mayan-DS

enhances the scalability and performance of big data executions in data centers and wide area

networks.

This chapter is composed of the contents of the publication: [J4, C5, B1].

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS160

10.1 An SDDS Model at Internet Scale

Efficient placement of data and service is essential for distributed big data frameworks. A

network-aware data service workflow should distribute the data objects {i, j} belonging to data

sets of interest D and execution across the servers, minimizing li,j (the distance between the

related data objects) as well as ln,j (the distance between the execution server n and the relevant

data object j). These distances can be determined by a utility function, giving weights to the

network properties such as bandwidth, throughput, and latency, rather than a mere physical

distance between the service endpoints. However, in the simplistic form, we can define the

distances to represent end-to-end latency that can be measured by a continuous ping. While

geographical distance plays a role in latency, a direct dedicated link between two geographically

distributed servers can offer minimal latency compared to two servers connected via the public

Internet despite the geographical distance.

An SDDS framework should minimize the total area A(n,D), referring to the total distance

between the execution server and the related data objects from D, as depicted by Equation 10.1.

The spread of the data set D is represented by |D|, a subset of among all the servers of the SDDS

framework (covering an area of ξ).

A(n,D) = minimize
∀i,j∈D

(∫
|D|⊆ξ

(
li,j + ln,j

)
dξ

)
(10.1)

Equation 10.2 illustrates a simplified notion of the network distance. Mayan-DS gives a

distance value of 0 to placements inside the same server, and positive values of α, β, and γ

to placements in different servers of the same rack, servers of different racks, and servers of

different data centers respectively. Cloud providers own several servers spanning data centers.

Some servers are in the same data center (Do). Some are in the same availability zone, i.e., data

centers (Do and Dd) connected by high-bandwidth low-latency network links. Each network

region has multiple availability zones (ao and ad). Network traffic between regions (ro and rd)

incur a large latency that depends on the number of hops between the regions and the nature of

the backbone network that connects the regions. Moreover, if the different regions are connected

by a low-latency dedicated link (distance value of γ(ro, rd)D), they perform better than being

connected via the public Internet (distance value of γ(ro, rd)I).

(
γ : γ(ro, rd)I > γ(ro, rd)D > γ(ao, ad) > γ(Do, Dd)

)
> β > α > 0. (10.2)

Mayan-DS seeks optimal service placement at Internet scale. We define an Internet-based

path P(o,d) between the services so and sd, by so · sd. Mayan-DS iteratively expands a path into

sub-paths consisting of direct dedicated paths and Internet paths. It denotes a low-latency ded-

icated link between any service si and another Internet service si by −−−→si · si. The path P(o,d) can

be replaced with an alternative path belonging to a set of paths P ′(o,d) defined by Equation 10.3.

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS161

P ′(o,d) = so · so +−−−→so · sd + sd · sd (10.3)

Equation 10.4 denotes that if the server si is the same as the server of si, the value repre-

sented by the path si · si is reduced to 0.

∀si ∈ P ′(o,d) : si ≡ si =⇒ si · si =
#»
0 (10.4)

Thus, we observe P ′(o,d) as a generic form of an execution path of the data service workflow,

concerning two service endpoints, as illustrated by Equation 10.5.

P(o,d) ⊆ P ′(o,d) (10.5)

Consequently, the execution path of a larger service composition workflow, consisting of

more than two services, can be expanded as shown by Equation 10.6.

W = so ◦ si1 ◦ . . . ◦ sin ◦ sd =⇒ P ′W = P ′(o,i1) + P ′(i1,i2) + . . .+ P ′(in,d) (10.6)

Mayan-DS consists of an initialization procedure and a data scheduling procedure. Mayan-

DS initialization procedure identifies the potential workflow execution paths as a set P ′(o,d) as

denoted by Equation 10.5. The Mayan-DS data service scheduling procedure leverages the

best-performing option among the potential paths identified by the Equation 10.6.

10.2 Solution Architecture

The Mayan-DS framework consists of a federated deployment of SDN controllers that spans

multiple network domains. Typically, a domain represents a data center or a network managed

by a single provider. The federated deployment denotes a set of servers and topology of SDN

switches that are controlled by an SDN controller in each domain. The controllers communicate

with the controllers of the other domains through MOM messages, to propagate status updates

on the network and bandwidth health statistics. The messages are limited to the ones relevant

for each domain, based on the subscriptions of each controller. Thus, each controller achieves a

limited access to the network topologies beyond its domain.

Figure 10.1 illustrates a sample deployment of Mayan-DS in a data center along with inter-

domain communication between the controllers. Users invoke the data services individually,

or as part of a larger workflow. The data services are hosted on the Distributed Execution

Frameworks to support dynamic execution of the service requests on the instance with the best

available resources. The controller is hosted on a server, while the other servers in the domain

host the distributed execution frameworks such as an IMDG. These IMDG instances form a

Virtual Execution Cluster, an execution environment at the application level. Distributed

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS162

big data executions are usually stateful. Therefore, once a given instance serves a client request,

it continues to receive and serve all the subsequent requests.

DomainBDomainA

Virtual Execution Cluster

Servers

Network Topology

SDN
Controller

Distributed
Execution

Framework

Distributed
Execution

Framework

Distributed
Execution

Framework

Distributed
Execution

Framework

SDN Switches

Data Services Invocations

Data

SDN
Controller

 M
O

M
M

es
sa

ge
s

Users

Figure 10.1: A Sample Mayan-DS Deployment

Mayan-DS leverages the global network knowledge of the SDN controller to find the best

service instance among various potential service deployments for the service workflow execution.

Each controller instance monitors and stores several metrics, including, the service execution

completion time, the number of service failures, and end-to-end latency. The controllers compute

and propagate the inter-domain network properties including the nature of the link between two

endpoints in different domains such as bandwidth and latency and propagate them via MOM

messages between controllers across the network domains. These messages include the update

on the availability of a server or a data service initialized in the server, with the information

received via the SDN protocols of the controller as well as the web services engines. Mayan-

DS enables its tenants to share their direct connects with other users, by deploying a service

that functions as an application level router [117]. By sharing such low-latency links across the

tenants, Mayan-DS collectively minimizes the latency of the tenant workflows when scheduling

the workflows based on the Internet paths are slower. Thus, Mayan-DS aims to give more

options and control to the tenants on choosing their workflow execution path.

10.3 Prototype Implementation

We prototyped Mayan-DS to assess the feasibility of an SDDS framework. We created the

data service APIs on top of Hazelcast 3.9.2 and Infinispan 9.1.5 IMDGs, using Apache Axis2 1.7.0

and Apache CXF 3.2.1 web services engines. The underlying persistent storage was composed of

MySQL server and MongoDB. OpenDaylight Beryllium was leveraged as the core SDN controller,

extended with AMQP for inter-domain control flows. We deployed the Mayan-DS on a cluster

with Infinispan IMDG initialized on them, using ActiveMQ 5.15.3 as the default MOM broker.

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS163

When a service composition workflow execution requires execution of services spanning several

data centers, Mayan aims to find the service instances in a network-aware manner, finding the

best execution paths from the set of potential execution paths identified in Equation 10.5.

We developed Mayan-DS data services to represent various data actions, such as data stor-

ing, data deduplication, data aggregation, data analysis, and data manipulation. Some of these

data services can be composite, with a series of data services chained to each other as a ser-

vice composition. The data storage in Mayan-DS is performed at the initial stage, with later

continuous updates. Mayan-DS defines all of its executions, including the data storage task, as

data services. Mayan-DS leverages the constructs offered by the underlying distributed execu-

tion framework to identify the servers to host data, to minimize the communication overhead of

migrating data back and forth inside the data center or cluster, as illustrated by Equation 10.1.

Figure 10.2 illustrates the layered architecture of the Mayan-DS framework. The data plane

consists of switches and servers. The storage plane includes various SQL and NoSQL databases.

The control plane comprises deployment of the OpenDaylight controller and IMDG clusters.

The OpenDaylight controller and the IMDG clusters control the network data plane devices and

data placement accordingly. An AMQP implementation supports the inter-domain workflows,

by offering them as subscriptions between the controllers. Execution plane consists of the service

APIs of web services engines and API gateways such as Kong, Tyk, and API Umbrella. The API

gateways host the API endpoints of the multi-domain deployments to serve the user requests

seamlessly.

Domain - 2Domain - 1

SDN
Controller

SDN
Controller

Data Plane

MySQL MongoDB

Storage Plane

IMDG Cluster

Control Plane

Execution Plane

Service
Endpoints CXF

API GatewaysAxis2

SD
D

S

SD
N

Inter-domain
Control Flows

M
O

M

B
ro

ke
r

User

Figure 10.2: A Three-Dimensional View of the Mayan-DS Implementation

The separation of control from the data and storage planes enables efficient cross-

control communications. The SDN controller facilitates cross-layer communication between the

execution-data planes whereas the IMDGs enable execution-storage plane coordination. On the

other hand, supporting inter-domain communications through MOM messages allows a dynamic

multi-domain network, without requiring a static topology. Thus, Mayan-DS offers a platform

for scalable and interoperable data service workflows.

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS164

Table 10.1: The Simulated Mayan-DS Deployment Environment (with modeled latency in ms)

Origin node Nodes connected via a direct link

Svalbard {Moscow (30.94), Oslo (25.33), . . .}
Vladivostok {Tokyo (10.62), . . .}

Hobart {Sydney (20.55), . . .}
Cape Town {Windhoek (19.29), . . .}
Mangilao {San Francisco (44.36), . . .}
Manila {Seoul (31.82), . . .}

... {
...}

10.4 Evaluation

In this section, we seek to identify whether an SDDS approach can significantly enhance

the big data workflow performance in multi-domain wide area networks at Internet scale. We

evaluated Mayan-DS locally for its applicability for big data workflow scheduling. We then

performed preliminary assessments on the feasibility of the Mayan-DS approach for an Internet

scale execution. Due to the limited resources in evaluating Mayan-DS workflows in a geo-

distributed manner, we resorted to simpler microbenchmarks. We leave the complete deployment

and comprehensive evaluation of Mayan-DS in multi-domain wide area networks as future work.

We first assessed Mayan-DS with on-demand user-driven big data integration workflows that

consume Óbidos service APIs, locally, for its feasibility. The big data we used in our assessments

consist of a large volume of binary and textual data. It also consists of variety in data formats

as well as data sources. The microbenchmarks on our Mayan-DS prototype confirmed that data

service executions such as Óbidos could be extended to function as an SDDS workflow, with the

architecture of Mayan-DS .

We then modeled a geo-distributed network with RIPE ATLAS Probes [33] and our physical

servers, to evaluate the performance enhancements of a network-aware data service workflow

execution at Internet scale. The network consists of nodes forming a connected graph spanning

the globe. The nodes are connected to the Internet. We realistically modeled direct connects

between selected pairs of nodes that are geographically close to each other, typically one in a

remote region and another in a nearby city. Table 10.1 elaborates a part of the direct connects

of our modeled network, together with the latency between the pairs of nodes. The direct links

are bidirectional, although we list them as origin and destination for the ease of reference. We

modeled the direct dedicated connects between the pairs of nodes with a 10 Gbps bandwidth,

the maximum bandwidth offered by the AWS Direct Connect to connect the user servers to the

cloud servers directly. We modeled the RTT of Mayan-DS with realistic values. We used a

constant fiber path adjustment of 10% and metro fiber and a local loop length of 100 km. We

considered the speed of light in fiber as 200 km/ms. We considered the equipment latency of 1

ms in our evaluation nodes. We thus estimated the latency between a pair of directly connected

Internet nodes.

We evaluated Mayan-DS for network-aware big data workflows, by comparing the RTT

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS165

Table 10.2: Ping Times (ms) between two nodes: Regular Internet vs. Mayan-DS

No. Origin (o) → Dest. (d) ISP (o → d) Mayan-DS Mayan-DS Path

1 Svalbard → São Paulo 339.164 246.436 o ⇒ Oslo → d

2 Vladivostok → São Paulo 373.712 282.451 o ⇒ Tokyo → d

3 Atlanta → Hobart 255 255 o → d

4 Hobart → São Paulo 413.869 340.617 o ⇒ Sydney → d

5 Atlanta → Svalbard 164 164 o → d

6 Atlanta → Vladivostok 287 194.68 o → Tokyo ⇒ d

7 Cape Town → Colombo 345.889 342.877 o ⇒ Windhoek → d

8 Atlanta → Windhoek 301 299.29 o → Cape Town ⇒ d

9 Mangilao → São Paulo 968.149 252.111 o ⇒ San Francisco → d

10 Singapore → Seoul 200.581 75.907 o → Manila ⇒ d
...

... →
...

...
...

...

between two endpoints that connect through Mayan-DS against that of using the Internet-

based connectivity of ISPs. We sent pings between the endpoints, first entirely utilizing the

public Internet paths and then through Mayan-DS , where Mayan-DS chooses the best-path

considering the available direct connections and the Internet paths, in composing the end-to-end

connection between the origin and the destination nodes. Our considered big data applications

for Mayan-DS are such as Óbidos that have a high volume and variety of data. Therefore,

we note that our evaluations on Mayan-DS at Internet scale are indeed preliminary and are

used to measure only the latency. As future work, we propose to measure more parameters

such as throughput and jitter, in the context of big data applications. We observe that servers

that accept incoming big data flows are limited in number, compared to those who accept

simple network measurements. Therefore, we note that such evaluation would be limited by the

capability to send big data across the globe, rather than research and technical challenges.

Table 10.2 lists a part of the ping times between two endpoints via the Internet-based

routes as well as via Mayan-DS . The arrow → indicates a public Internet path (i.e., ISP-based

connectivity) between two nodes, whereas ⇒ indicates a direct link. Therefore, (o ⇒ i → d)

indicates that the origin node o and the destination node d are connected via an intermediate

node i, where there is a direct connect between o and i whereas the rest of the path (i.e., i to d)

is a public Internet path. Mayan-DS exploits the available direct links that connect either the

origin or the destination to an intermediate node.

We modeled a data service execution and deployed its instances across 40 pairs of geo-

distributed nodes. Figure 10.3 depicts the data service invocation time via Mayan-DS and

public Internet paths, assuming the delay caused by the service execution itself to be negligible.

Each point denotes the invocation of a data service deployed in d from the origin o. o can either

be a user, or a previous service whose output is sent to the service in d to compose the big data

workflow.

The Mayan-DS controller exploits its awareness of direct links between pairs of Internet

nodes and shares them for multi-tenant workflow execution through the nodes. We observe that

Mayan-DS was able to minimize latency by exploiting the existing direct connects between a

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS166

 0
 100
 200
 300
 400
 500
 600
 700
 800
 900

 1000

 5 10 15 20 25 30 35 40

R
T

T
(m

s)

Data Service Index

ISP-based/Public Internet Path
Mayan-DS (Direct Link + Public Internet)

Figure 10.3: Ping times of Mayan-DS against the Public Internet-based Connectivity

pair of nodes as a part of its workflow execution path. Mayan-DS was able to achieve up to 33%

reduction in latency with just a little fraction of the path routed through a low-latency direct link.

When the direct link covers a substantial portion of the route, apparently, the latency reduced

significantly up to 75% or more. We further observe that the availability of such direct links also

minimized the outliers (i.e., the pairs of endpoints that consume an abnormally large amount of

time for the data transfer), by reducing the dependency on long-haul public Internet-based links

from the remote regions to the nearby regional Internet hubs. A big data workflow consists of

several such data service invocations chained together. Therefore, the latency improvements of

Mayan-DS in big data workflows will be even more prominent.

Mayan-DS exploits its network-awareness to schedule the workflows more adaptively, rather

than the Internet paths that do not offer such flexibility to the end users. For example, our obser-

vations indicate that sometimes smaller towns have faster connectivity than a bigger metropoli-

tan neighbor. While this might be due to the local congestions or other external factors, it is also

difficult to predict which of the two cities will benefit more by leveraging the direct links between

two servers in the cities. Therefore, by exploiting existing direct connects in a context-aware

manner, Mayan-DS enhances the big data workflow execution performance.

10.4.1 Discussion

Exploiting services to offer unified access interfaces to big data has been proposed in previous

research. While the studies on resource sharing, volunteer computing [22], and SOA [248]

researched their peak a decade ago, widespread adoption of SDN and research on expanding

SDN for wide area networks are recent. Therefore, despite their promising outcomes regarding

interoperability, the research efforts on data services have not been extended to the Internet

scale in a network-aware manner. Mayan-DS exploits the recent advancements in network

softwarization to enable interoperable and network-aware data service workflows in wide area

networks. While previous work has proposed data-aware and network-aware workflow scheduling

in data centers and clouds [227], they mostly narrow their focus to a given domain managed by a

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS167

single vendor. Mayan-DS aims at the efficient scheduling of big data workflows in multi-domain

wide area networks consisting of several federated clouds and data centers.

A computation-intensive workflow is typically smaller in duration and volume. Therefore,

a quick decision is essential for minimal overhead, causing an additional constraint on service

instance selection in multi-domain wide area networks. On the other hand, data service work-

flows have substantial demand for data volume and data rate and are typically long-running.

Furthermore, overheads caused by the control flows in big data workflows are negligible, as these

workflows are composed of elephant flows of data services. Therefore, it is feasible to have a

more involved and time-consuming service instance selection procedure in the controller, in favor

of optimal data and execution placement, for big data workflows.

The current enterprise SDDS offerings have several limitations. First, they limit their focus

to certain data services rather than providing a generic data services framework. Second, they

are limited to a single provider, such as a cloud or a data center. Third, they lack interoper-

ability with other execution environments due to their vendor-specific implementation. These

limitations highlight the need for a complete network-aware and interoperable SDDS frame-

work. Mayan-DS is the first to propose a generic SDDS framework, with a fine-grain control

inside data centers, as well as coordination between domains, for data service workflows. The

Mayan-DS prototype is limited to specific frameworks (such as Infinispan and MongoDB). In

practice, researching and implementing such an interoperable approach as a global framework

is a challenging task. We looked into the way of addressing the research challenges through our

proposed Mayan-DS architecture and its service-based approach.

Mayan-DS addresses the challenge of storing related data closer to each other through its

network-awareness achieved by SDN extended with a MOM deployment. However, storing of

data inside a cluster, ensuring that related objects stay closer, is specific to the storage plane.

This task is achieved with the support of the human user in the data sources, for example, with

careful indexing, to group the related objects. IMDGs and database frameworks already offer

such efficient storage for quick query and access capabilities. Mayan-DS proposes to exploit

such existing constructs in ensuring minimal data movements inside a data center or a cluster.

It utilizes inter-domain control flows in identifying the best path for workflow execution.

SDDS aims to exploit the data awareness offered by the big data applications together with

the network awareness of an extended SDN hierarchy in the wide area network. However, the

realization of such systems for heterogeneous data sources is a complex problem due to several

implementation challenges. Deploying an in-memory cluster on top of a persistent storage plane

is a relatively trivial engineering task. However, porting existing big data workflows to use an

SDDS approach involves writing the respective services to execute on top of the IMDG cluster.

An increasingly complex workflow would require more and more data services to be developed

and chained. The practicality of disseminating the service instances themselves across the nodes

requires automation, as expecting to configure layers of platforms and software on top of the

servers is questionable. One potential solution is to distribute the platform stack itself container

instances, supported through frameworks such as Docker [237]. However, a detailed discussion

of such possible implementation alternatives is future work.

Expanding the scope of the data service execution can be seamless once such a deployment

CHAPTER 10. INTEROPERABLE ANDNETWORK-AWARE BIG DATAWORKFLOWS168

is established across several servers, thanks to the recent advancement of network softwarization

research. In this paper, we proposed a federated SDN deployment extended with MOM as an

SOA to enable network-aware big data workflows at Internet scale. However, the practicality and

success of these approaches heavily depend on the adoption of the proposed framework by several

infrastructure providers (including data center providers as well as independent nodes as in the

case of volunteer computing). We limited our evaluations to our globally distributed servers,

AWS cloud instances, and RIPE Atlas Probes. However, a latency-aware execution requires

several millions of nodes in each region, to offer redundancy in execution paths with multiple

alternative routes between two endpoints. We introduced the concept of SDDS at Internet

scale with the fair assumptions on community adaptation of the SDDS framework. However,

the realization of a complete interoperable SDDS framework and overcoming its operational

challenges are left as future work.

10.5 Conclusion

SDDS extends network softwarization and SOA to bring the benefits of network-awareness

and interoperability to big data applications. Data services aim at offering interoperability in

wide area networks, by exploiting the standardization of web services for big data access and

processing. The proliferation of data services has caused a management challenge in placing and

composing data service workflows. As an SDDS framework, Mayan-DS extends data services

with the management and resource allocation capabilities of SDN. It ensures minimal data

migrations in big data applications, by keeping the related data and the execution close. Mayan-

DS scales and distributes the data services, exploiting the global awareness of the network

topology and network flow statistics of an SDN controller. It minimizes the overhead caused by

frequent inter-node communications through an adaptive and context-aware execution supported

by a federated deployment of SDN controllers in a wide area network. Thus, Mayan-DS reduces

the bandwidth overhead common in distributed big data processing. Our evaluations on the

Mayan-DS prototype indicate how an SDDS approach could be leveraged as a reusable, scalable,

and resilient distributed execution framework for the big data workflows on a global scale.

VClosure

11Final Remarks

We presented our research on network-aware SDS approaches for service composition and

workflow placement across heterogeneous infrastructures in this document. Efficient resource

allocation and coordination of executions in multi-tenant environments such as cloud platforms

is a complex task. Executing a tenant workflow across several services hosted on multi-domain

environments such as inter-clouds and the edge is even more challenging due to the limita-

tions in composing service workflows spanning infrastructures and platforms of multiple service

providers. Service providers should provide compatible APIs for seamless live migration of ex-

ecution across the service instances. In this dissertation, we looked into leveraging SDN and

SOA for the execution of service composition workflows of the tenant users across heterogeneous

cloud and edge environments. We devised SDS architectures by exploiting network softwariza-

tion for the placement and execution of service composition workflows abiding by the tenant

policies. We built SDS frameworks to efficiently manage tenant service composition workflows

in heterogeneous environments, from the design to the deployment of service workflows. We

thus proposed three primary contributions in this work.

First, we looked into the technical and economic feasibilities and benefits of network soft-

warization across heterogeneous infrastructures, from data centers to cloud networks, in various

development phases from modeling to the deployment of networks. We proposed architectures

to separate the network infrastructure from the execution to enable seamless migration of the

workload, regardless of the execution environment and the development phase. We designed an

SDN-based platform to unify the modeling and deployment of service workflows on the cloud

networks. We adopted existing middlebox research, namely FlowTags, to tag the network flows

with tenant policies and flow priority information. Thus, we enabled cross-layer optimizations

in the network architecture, despite the presence of several network middleboxes such as load

balancers and proxies in the data center network. We dynamically diverted network subflows

to avert network congestion by leveraging an SDN middlebox architecture. Furthermore, by

selectively enforcing redundancy on the critical tenant network flows, we enhanced SLAs in data

center networks. We then introduced a virtual connectivity provider at Internet scale via cloud-

assisted networks. We assessed the feasibility to exploit cloud spot VMs to build an overlay

network that can function as a latency-aware connectivity provider. Specifically, we demon-

strated how a third-party that does not own the infrastructure can still provide such a network

by leasing cloud resources from multiple cloud providers. Thus, we bring network softwarization

to various development stages and deployment environments.

Second, we extended our network softwarization approaches with SOA to enable network-

aware service composition and workflow placement in multi-domain wide area networks. We

presented optimal algorithms for QoS-aware service compositions at the edge with various web

CHAPTER 11. FINAL REMARKS 171

services, network services, and data services, by constructing an extended SDN architecture

with MOM. We identified and resolved, in addition to the technical limitations, challenges con-

cerning enterprise policies to support an inter-domain service workflow execution and efficient

resource management. Our resilient and adaptive SDSC approach brings the control of the

service compositions back to the user, despite using several third-party service providers. Fur-

thermore, we highlighted the potential of exposing diverse scenarios such as CPS, IoT, and big

data applications as composable network-aware service workflows with the SDSC approach. Re-

markably, smart environments can leverage the context-aware execution of the network flows,

exploiting the programmability of network softwarization and the interoperability of a MOM-

based publish-subscribe approach. We designed SD-CPS , a prototype SDS framework for CPS,

and accessed it as a real-world use case of network-aware service workflows at the edge. Thus,

we proposed a resilient and adaptive execution of service composition workflows across various

service instances from diverse third-party service providers.

Third, we leveraged our research findings on network softwarization and service composition

to execute big data applications in an interoperable and network-aware manner at Internet scale.

While standards and protocols are in place in the web services domain, in practice, it is often

not the case with enterprise big data applications. A framework to support service composition

and workflow placement in wide area networks spanning multiple domains should ensure that

the service implementations offer interoperable and compatible APIs or the framework should

provide mediation across various application interfaces. While middleware frameworks such as

ESB provide such mediation features, their scope is often limited to web services. We proposed

interoperable big data executions by leveraging human-in-the-loop as well as network softwariza-

tion. We presented SDDS, extending the data services with the SDN paradigm. First, SDDS

models the big data executions as composable data service workflows. Then, it manages and

schedules the service executions in an interoperable manner, by logically separating the service

workflow executions from the underlying architecture consisting of network and storage. We thus

presented the design of an SDDS framework for network-aware big data executions at Internet

scale.

11.1 Future Work

We proposed SDS algorithms and architectures for network-aware service composition and

workflow placement. We built simulations and prototypes to evaluate the performance and

efficiency of our approach to compose and deploy service workflows inside and between data

centers. We see our work as the first step in an adaptive workflow execution in heterogeneous

environments at Internet scale. Thus, we foresee the following list as future work extending our

current contributions, while addressing the remaining open research challenges.

Multiple Providers and Regions for the Cloud-Assisted Networks: The viability of

using cloud-assisted networks as an alternative connectivity provider depends on the need for

connectivity services that are more dynamic than the traditional ones, and the potential for

such a network to be beneficial in both economic and technological aspects. We established

that the resilient architectures built atop spot instances could bring cloud expenditures down

CHAPTER 11. FINAL REMARKS 172

enough to make cloud-assisted overlays profitable. With these observations, we proposed cloud-

assisted networks as an economical and high-performance alternative to mainstream connectivity

providers. Our evaluations were however mostly limited to particular pairs of AWS regions,

despite the applicability of our approach to various cloud regions and providers. Our limitations

were entirely due to the economic constraints in acquiring several cloud VMs and maintaining

them over periods of months to measure the stability and performance of the overlay. We

envision an Internet scale economic analysis and deployment of NetUber on top of multiple

cloud infrastructures, as future work, to identify more interesting insights. Furthermore, the

feasibility of the cloud-assisted networks and choices of our spot VMs largely depend on the

current pricing model of the cloud providers. An adaptive and intelligent approach to managing

the cloud VMs over time for a sustained execution of the cloud-assisted overlay network remains

future work.

Deployment of SDSC approaches at Internet Scale: Deployment of an SDSC frame-

work across multi-domain networks is a challenging task due to the requirement of coordination

across several service and infrastructure providers. The challenges stem from the fact that the

adoption of a new paradigm to facilitate inter-domain service compositions needs to consider

organizational policies concerning interoperability and open access, in addition to the technical

challenges. With a decentralized, federated controller deployment, Mayan seamlessly scaled out

to cover a wide area network with several web service deployments, for context-aware workflows.

We leave physical deployment and an extensive evaluation of a clustered and federated deploy-

ment of Mayan on such a global-scale as future work, due to the limitation in acquiring and

maintaining multiple servers across several geographical regions. We posit that a large enterprise

service provider with a global network presence and partnerships can initiate such a deployment

with a relatively minimal effort.

Adaptive NSCs on Hybrid and Physical Middlebox Networks: Existence of legacy

hardware middleboxes makes composing adaptive NSCs on top of hybrid and physical networks

more challenging than a network with software middleboxes. Hybrid networks consist of both

physical hosts and hardware middleboxes, as well as virtual hosts and VNFs. Enterprises con-

tain several physical and hybrid networks in addition to the virtual networks. By spawning

VNFs when there is a spike in demand or load for the existing instances of hardware middle-

boxes, we posit that a hybrid network can offer both the performance of the hardware network

functions as well as the scalability and configurability of the VNFs. We propose to extend

SDSC with backward-compatibility for legacy hardware middleboxes that are agnostic to net-

work softwarization as future work. While adopting an agile network-aware service composition

approach in a hybrid network composed of SDN switches and VNFs as well as legacy switches

and hardware middleboxes is relatively straightforward due to the existence of virtual network

components, the feasibility of such approaches in the physical systems with a complete absence

of network softwarization remains an open question.

A Complete Orchestration Framework for Heterogeneous Systems: A comprehensive

orchestration platform should generalize the deployments, executions, and their migrations by

implementing compatible APIs or integrators for various SDN controllers and systems. Exten-

sion points should be developed to enable seamless migration across several deployment infras-

CHAPTER 11. FINAL REMARKS 173

tructures and controllers. An encompassing and generic approach to interoperability is hard

to achieve in heterogeneous multi-domain environments due to the diversity in the workflows

in addition to the infrastructures. We propose as future work, to adopt and incorporate the

SD-CPS approach with implementations of various networking and integration protocols for

multiple use case scenarios. Furthermore, the SD-CPS deployments should be tested against

baseline implementations of various CPS for their efficiency in addressing the identified chal-

lenges of CPS. We see our research work such as SD-CPS , Mayan-DS , and SENDIM as first

steps towards the executions of various heterogeneous applications, such as CPS and big data

applications, as interoperable network-aware service composition workflows.

A Distributed Network-Aware Data Integration Framework: Leveraging the SDDS

approach, we can integrate big data in a bandwidth-efficient manner in a wide area network.

We identified biomedical research data integration as a specific use case for network-aware data

services where locality-awareness is mandatory due to its demand for high throughput and low

latency. Complete automation of data integration workflows is often inefficient, as identifying the

relevant data sets across widespread public and private scientific research data sources requires

expert knowledge. Therefore, a human-in-the-loop approach improves the interoperability and

efficiency of data services. However, machine learning approaches can learn to mimic human

expertise over several iterations of data integration. While we limited the prototype evaluation

of Óbidos to biomedical research data, we note that it can consume and integrate data from

various scientific research data repositories such as EUDAT. We propose as future work, to lever-

age the network proximity among the data sources and the Óbidos instances for efficient data

integration and sharing, by extending Óbidos as a data service of Mayan-DS . Thus, we foresee

distributed virtual data warehouses - data selectively replicated and shared across various re-

search organizations. Consequently, we propose to implement SDDS as a complete interoperable

and network-aware execution platform for various real-world big data applications.

Scaling SDN for Big Data Executions: The SDN research should be on par with the rising

dynamics of big data, with further innovation on network protocols and SDS implementations

to match the scale and complexity of future data. Controllers are logically centralized, yet

physically distributed entities. However, as the volume, variety, and velocity of big data increase

further, the current centralized model offered by SDN and OpenFlow may eventually become

a bottleneck. We should leverage and extend SDN for WAN, CDNs, and the Internet for an

efficient big data storage and processing on the global scale. The open challenge hence lies in how

current research efforts scale from local networks to autonomous systems of the Internet. We

see our research efforts such as Mayan and SMART as first steps towards scaling SDN beyond

data centers and supporting several tenants with network flows of different priority levels more

efficiently. Further research is necessary to design and implement architectures to support big

data at Internet scale through the SDN-based approaches that currently exist at a data center

level.

Bibliography

[1] 365DataCenters. 365 - Managed Services, 2018. Available at

https://www.365datacenters.com/services/managed-services/.

[2] 365DataCenters. 365 - U.S. Data Center Locations, 2018. Available at

http://www.365datacenters.com/data-centers/.

[3] S. Abrishami, M. Naghibzadeh, and D. H. Epema. Deadline-constrained workflow schedul-

ing algorithms for infrastructure as a service clouds. Future Generation Computer Systems,

29(1):158–169, 2013.

[4] I. Afolabi, T. Taleb, K. Samdanis, A. Ksentini, and H. Flinck. Network slicing & softwariza-

tion: A survey on principles, enabling technologies & solutions. IEEE Communications

Surveys & Tutorials, 2018.

[5] B. Ager, N. Chatzis, A. Feldmann, N. Sarrar, S. Uhlig, and W. Willinger. Anatomy of a

large European IXP. ACM SIGCOMM Computer Communication Review, 42(4):163–174,

2012.

[6] T. Ahern, R. Casey, D. Barnes, R. Benson, and T. Knight. SEED Standard for the Ex-

change of Earthquake Data Reference Manual Format Version 2.4. Incorporated Research

Institutions for Seismology (IRIS), Seattle, 2007.

[7] E. Ahmed and M. H. Rehmani. Mobile edge computing: opportunities, solutions, and

challenges. Future Generation Computer Systems, 70:59–63, 2017.

[8] I. F. Akyildiz, A. Lee, P. Wang, M. Luo, and W. Chou. A roadmap for traffic engineering

in SDN-OpenFlow networks. Computer Networks, 71:1–30, 2014.

[9] M. Al-Fares, S. Radhakrishnan, B. Raghavan, N. Huang, and A. Vahdat. Hedera: Dynamic

Flow Scheduling for Data Center Networks. In NSDI, volume 10, pages 19–19. USENIX,

2010.

[10] A. T. Al-Hammouri, Z. Al-Ali, and B. Al-Duwairi. ReCAP: A distributed CAPTCHA

service at the edge of the network to handle server overload. Transactions on Emerging

Telecommunications Technologies, 29(4):e3187, 2018.

[11] N. Alameh. Chaining geographic information web services. IEEE Internet Computing,

7(5):22–29, 2003.

[12] K. M. A. Alheeti, A. Gruebler, K. D. McDonald-Maier, and A. Fernando. Prediction of

DoS attacks in external communication for self-driving vehicles using a fuzzy petri net

174

CHAPTER 11. FINAL REMARKS 175

model. In Consumer Electronics (ICCE), International Conference on, pages 502–503.

IEEE, 2016.

[13] G. Ali, J. Hu, and B. Khasnabish. Software-Defined Data Center. ZTE Communications,

4:002, 2013.

[14] M. Alizadeh, T. Edsall, S. Dharmapurikar, R. Vaidyanathan, K. Chu, A. Fingerhut, F. Ma-

tus, R. Pan, N. Yadav, G. Varghese, et al. CONGA: Distributed congestion-aware load

balancing for datacenters. In SIGCOMM, pages 503–514. ACM, 2014.

[15] M. Alizadeh, S. Yang, M. Sharif, S. Katti, N. McKeown, B. Prabhakar, and S. Shenker.

pfabric: Minimal near-optimal datacenter transport. ACM SIGCOMM Computer Com-

munication Review, 43(4):435–446, 2013.

[16] S. Alonso-Monsalve, F. Garćıa-Carballeira, and A. Calderón. A new volunteer comput-

ing model for data-intensive applications. Concurrency and Computation: Practice and

Experience, 29(24):e4198, 2017.

[17] Amazon. Amazon EC2 Spot Instances, 2017. Available at

https://aws.amazon.com/ec2/spot/pricing/.

[18] Amazon. AWS Regions and Endpoints, 2017. Available at

http://docs.aws.amazon.com/general/latest/gr/rande.html.

[19] Amazon. How Spot Fleet Works, 2017. Available at

http://docs.aws.amazon.com/AWSEC2/latest/UserGuide/spot-fleet.html.

[20] Amazon. Placement Groups, 2017. Available at

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/placement-groups.html.

[21] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer. SETI@ home:

an experiment in public-resource computing. Communications of the ACM, 45(11):56–61,

2002.

[22] D. P. Anderson and G. Fedak. The computational and storage potential of volunteer com-

puting. In Cluster Computing and the Grid (CCGRID). Sixth International Symposium

on, volume 1, pages 73–80. IEEE, 2006.

[23] A. Andrieux, K. Czajkowski, A. Dan, K. Keahey, H. Ludwig, T. Nakata, J. Pruyne,

J. Rofrano, S. Tuecke, and M. Xu. Web services agreement specification (WS-Agreement).

In Open grid forum, volume 128:1, page 216, 2007.

[24] M. Antonioletti, M. Atkinson, R. Baxter, A. Borley, N. P. Chue Hong, B. Collins, N. Hard-

man, A. C. Hume, A. Knox, M. Jackson, et al. The design and implementation of Grid

database services in OGSA-DAI. Concurrency and Computation: Practice and Experience,

17(2-4):357–376, 2005.

[25] D. Antonioli and N. O. Tippenhauer. MiniCPS: A toolkit for security research on CPS Net-

works. In Proceedings of the First Workshop on Cyber-Physical Systems-Security and/or

PrivaCy, pages 91–100. ACM, 2015.

CHAPTER 11. FINAL REMARKS 176

[26] M. Anvari, T. Broderick, H. Stein, T. Chapman, M. Ghodoussi, D. W. Birch, C. Mckinley,

P. Trudeau, S. Dutta, and C. H. Goldsmith. The impact of latency on surgical precision

and task completion during robotic-assisted remote telepresence surgery. Computer Aided

Surgery, 10(2):93–99, 2005.

[27] Apache Qpid. Open Source AMQP Messaging, 2013. Available at http://qpid.apache.org.

[28] S. B. Ardestani, C. J. H̊akansson, E. Laure, I. Livenson, P. Stranák, E. Dima,

D. Blommesteijn, and M. van de Sanden. B2SHARE: An open escience data sharing

platform. In e-Science, 11th International Conference on, pages 448–453. IEEE, 2015.

[29] G.-P. Association et al. Contractual Arrangement: Setting up a Public-Private Partnership

in the Area of Advance 5G Network Infrastructure for the Future Internet between the

European Union and the 5G Infrastructure Association, 2013.

[30] D. O. Awduche and B. Jabbari. Internet traffic engineering using multi-protocol label

switching (MPLS). Computer Networks, 40(1):111–129, 2002.

[31] AWS. AWS Global Infrastructure, 2017. Available at https://aws.amazon.com/about-

aws/global-infrastructure/.

[32] B4RN. Broadband for the Rural North, 2018. Available at https://b4rn.org.uk/about-

us/our-network/.

[33] V. Bajpai, S. J. Eravuchira, and J. Schönwälder. Lessons learned from using the ripe atlas

platform for measurement research. ACM SIGCOMM Computer Communication Review,

45(3):35–42, 2015.

[34] N. Balani and R. Hathi. Apache CXF web service development: Develop and deploy SOAP

and RESTful web services. Packt Publishing Ltd, 2009.

[35] A. Banks and R. Gupta. MQTT Version 3.1.1. OASIS standard, 29, 2014.

[36] M. F. Bari, S. R. Chowdhury, R. Ahmed, and R. Boutaba. On orchestrating virtual

network functions. In Network and Service Management (CNSM), 11th International

Conference on, pages 50–56. IEEE, 2015.

[37] J. Barr. AWS Outbound Data Transfer Prices Reduced By $0.02/GB, 2010. Available at

https://aws.amazon.com/blogs/aws/aws-data-transfer-prices-reduced/.

[38] J. Barr. AWS Data Transfer Price Reduction, 2014. Available at

https://aws.amazon.com/blogs/aws/aws-data-transfer-price-reduction/.

[39] J. Barr. AWS Blog. Category: Price Reduction, 2017. Available at

https://aws.amazon.com/blogs/aws/category/price-reduction/.

[40] S. Barré, C. Paasch, and O. Bonaventure. Multipath TCP: from theory to practice. In

International Conference on Research in Networking, pages 444–457. Springer, 2011.

CHAPTER 11. FINAL REMARKS 177

[41] S. A. Baset. Cloud SLAs: present and future. ACM SIGOPS Operating Systems Review,

46(2):57–66, 2012.

[42] J. M. Batalla, G. Mastorakis, C. X. Mavromoustakis, C. Dobre, N. Chilamkurti, and

S. Schaeckeler. Network Services Chaining in the 5G Vision. IEEE Communications

Magazine, 55(11):112–113, 2017.

[43] J. Batalle, J. Ferrer Riera, E. Escalona, and J. A. Garcia-Espin. On the implementation

of NFV over an OpenFlow infrastructure: Routing Function Virtualization. In SDN for

Future Networks and Services (SDN4FNS), pages 1–6. IEEE, 2013.

[44] B. Bauer. Network traffic monitoring, Sept. 6 2002. US Patent App. 10/236,402.

[45] O. Ben-Kiki, C. Evans, and B. Ingerson. YAML Ain’t Markup Language (YAML) version

1.1. yaml.org, Tech.Rep, page 23, 2005.

[46] T. Benson, A. Akella, A. Shaikh, and S. Sahu. CloudNaaS: a cloud networking platform

for enterprise applications. In Proceedings of the 2nd Symposium on Cloud Computing

(SoCC), page 8. ACM, 2011.

[47] P. Berde, M. Gerola, J. Hart, Y. Higuchi, M. Kobayashi, T. Koide, B. Lantz, B. O’Connor,

P. Radoslavov, W. Snow, et al. ONOS: towards an open, distributed SDN OS. In Proceed-

ings of the third workshop on Hot topics in software defined networking (HotSDN), pages

1–6. ACM, 2014.

[48] D. Bernstein. Containers and Cloud: From LXC to Docker to Kubernetes. In Cloud

Computing, volume 3, pages 81–84. IEEE, 2014.

[49] D. Bhamare, M. Samaka, A. Erbad, R. Jain, L. Gupta, and H. A. Chan. Optimal virtual

network function placement in multi-cloud service function chaining architecture. Com-

puter Communications, 102:1–16, 2017.

[50] M. Bjorklund. YANG-A data modeling language for the Network Configuration Protocol

(NETCONF), 2010.

[51] R. Bonafiglia, G. Castellano, I. Cerrato, and F. Risso. End-to-end service orchestration

across sdn and cloud computing domains. In Network Softwarization (NetSoft), Conference

on, pages 1–6. IEEE, 2017.

[52] F. Bonomi, R. Milito, J. Zhu, and S. Addepalli. Fog computing and its role in the internet of

things. In Proceedings of the first edition of the MCC workshop on Mobile cloud computing,

pages 13–16. ACM, 2012.

[53] C. Borckholder, A. Heinzel, Y. Kaniovskyi, S. Benkner, A. Lukas, and B. Mayer. A

Generic, Service-based Data Integration Framework Applied to Linking Drugs & Clinical

Trials. Procedia Computer Science, 23:24–35, 2013.

[54] S. Borzsony, D. Kossmann, and K. Stocker. The skyline operator. In Data Engineering,

Proceedings. 17th International Conference on, pages 421–430. IEEE, 2001.

CHAPTER 11. FINAL REMARKS 178

[55] B. Boudreau. Global Bandwidth & IP Pricing Trends, 2017. Avail-

able at http://www2.telegeography.com/hubfs/2017/presentations/telegeography-ptc17-

pricing.pdf.

[56] C. Bouras, P. Ntarzanos, and A. Papazois. Cost modeling for SDN/NFV based mobile

5G networks. In Ultra Modern Telecommunications and Control Systems and Workshops

(ICUMT), 2016 8th International Congress on, pages 56–61. IEEE, 2016.

[57] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thatte,

and D. Winer. Simple object access protocol (SOAP) 1.1, 2000.

[58] R. Boyd. Network Service Orchestration enabled by Tail-f, 2015. Available at

https://blogs.cisco.com/cin/tail-f.

[59] M. Burgess and R. Ralston. Distributed Resource Administration Using CFEngine. Soft-

ware: practice and experience, 27(9):1083–1101, 1997.

[60] C. X. Cai, F. Le, X. Sun, G. G. Xie, H. Jamjoom, and R. H. Campbell. CRONets: Cloud-

Routed Overlay Networks. In Distributed Computing Systems (ICDCS), 36th International

Conference on, pages 67–77. IEEE, 2016.

[61] Z. Cai, A. L. Cox, and T. Ng. Maestro: A System for Scalable OpenFlow Control.

Technical report, TSEN Maestro-Technical Report TR10-08, Rice University, 2010.

[62] R. N. Calheiros, M. A. Netto, C. A. De Rose, and R. Buyya. EMUSIM: an integrated emu-

lation and simulation environment for modeling, evaluation, and validation of performance

of cloud computing applications. Software: Practice and Experience, 43(5):595–612, 2013.

[63] R. N. Calheiros, R. Ranjan, A. Beloglazov, C. A. De Rose, and R. Buyya. CloudSim: a

toolkit for modeling and simulation of cloud computing environments and evaluation of

resource provisioning algorithms. Software: Practice and Experience, 41(1):23–50, 2011.

[64] D. Calvaresi, M. Marinoni, A. Sturm, M. Schumacher, and G. Buttazzo. The challenge of

real-time multi-agent systems for enabling IoT and CPS. In Proceedings of the Interna-

tional Conference on Web Intelligence, pages 356–364. ACM, 2017.

[65] caMicroscope. caMicroscope, 2018. Available at http://camicroscope.org.

[66] A. T. Campbell, H. G. De Meer, M. E. Kounavis, K. Miki, J. B. Vicente, and D. Villela. A

survey of programmable networks. ACM SIGCOMM Computer Communication Review,

29(2):7–23, 1999.

[67] C. Ö. Çaparlar and A. Dönmez. What is Scientific Research and How Can it be Done?

Turkish journal of anaesthesiology and reanimation, 44(4):212, 2016.

[68] A. Cardenas, S. Amin, B. Sinopoli, A. Giani, A. Perrig, and S. Sastry. Challenges for se-

curing cyber physical systems. In Workshop on future directions in cyber-physical systems

security, page 5, 2009.

CHAPTER 11. FINAL REMARKS 179

[69] M. Carlson, A. Yoder, L. Schoeb, D. Deel, C. Pratt, C. Lionetti, and D. Voigt. Software

Defined Storage. Storage Networking Industry Assoc. working draft, pages 20–24, 2014.

[70] G. Carneiro. NS-3: Network Simulator 3. In UTM Lab Meeting April, volume 20, 2010.

[71] B. Carpenter and S. Brim. Middleboxes: Taxonomy and Issues. RFC Editor, 2002.

[72] Catalogic. ECX, 2018. Available at https://catalogicsoftware.com/products/ecx/.

[73] D. Chappell. Enterprise service bus. O’Reilly Media, Inc., 2004.

[74] S. Chaudhuri and U. Dayal. An overview of data warehousing and OLAP technology.

ACM SIGMOD record, 26(1):65–74, 1997.

[75] C. P. Chen and C.-Y. Zhang. Data-intensive applications, challenges, techniques and

technologies: A survey on Big Data. Information Sciences, 275:314–347, 2014.

[76] E. Christensen, F. Curbera, G. Meredith, S. Weerawarana, et al. Web services description

language (WSDL) 1.1, 2001.

[77] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips,

D. Maffitt, M. Pringle, et al. The Cancer Imaging Archive (TCIA): maintaining and

operating a public information repository. Journal of digital imaging, 26(6):1045–1057,

2013.

[78] M. Claypool and K. Claypool. Latency can kill: precision and deadline in online games. In

Proceedings of the first annual SIGMM conference on Multimedia systems, pages 215–222.

ACM, 2010.

[79] CloudDirect. Move to Cloud ID - quickly, easily and securely, 2017. Available at

https://www.clouddirect.net/.

[80] Cloudflare. Cloudflare Argo, 2017. Available at https://www.cloudflare.com/argo/.

[81] Cogent. Cogent IP Transit, 2017. Available at http://www.cogentco.com/en/products-

and-services/ip-transit.

[82] M. Collina, G. E. Corazza, and A. Vanelli-Coralli. Introducing the QEST broker: Scaling

the IoT by bridging MQTT and REST. In 23rd International Symposium on Personal,

Indoor and Mobile Radio Communications-(PIMRC), pages 36–41. IEEE, 2012.

[83] Commvault. Commvault Introduces New Innovations for the Commvault Data Plat-

form in Software Defined Data Services, Orchestration and User Interface, 2016.

Available at https://www.commvault.com/news/2016/october/commvault-introduces-

new-innovations-for-the-commvault-data-platform-in-software-defined-data-services-

orchestration-and-user-interface.

[84] Console. Console - The Cloud Connection Company, 2017. Available at

https://www.consoleconnect.com/.

CHAPTER 11. FINAL REMARKS 180

[85] M. Cummings and S. Heath. Mode switching and software download for software defined

radio: the SDR Forum approach. IEEE Communications Magazine, 37(8):104–106, 1999.

[86] F. Curbera, M. Duftler, R. Khalaf, W. Nagy, N. Mukhi, and S. Weerawarana. Unraveling

the Web services web: an introduction to SOAP, WSDL, and UDDI. IEEE Internet

Computing, 6(2):86–93, 2002.

[87] E. Curry. Message-oriented middleware. In Middleware for communications, pages 1–28.

John Wiley & Sons, 2004.

[88] A. R. Curtis, W. Kim, and P. Yalagandula. Mahout: Low-overhead datacenter traffic

management using end-host-based elephant detection. In INFOCOM, pages 1629–1637.

IEEE, 2011.

[89] Cyrus. May 9th: IBM announces version 2.2.6 of IBM Spectrum Copy Data Manage-

ment, 2017. Available at https://spectrumcdmsite.wordpress.com/2017/05/12/may-9th-

ibm-announces-version-2-2-6-of-ibm-spectrum-copy-data-management/.

[90] F. Dabek, R. Cox, F. Kaashoek, and R. Morris. Vivaldi: A decentralized network coordi-

nate system. In SIGCOMM Computer Communication Review, volume 34:4, pages 15–26.

ACM, 2004.

[91] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and A. Rindos. SDSe-

curity: A software defined security experimental framework. In Communication Workshop

(ICCW), International Conference on, pages 1871–1876. IEEE, 2015.

[92] A. Darabseh, M. Al-Ayyoub, Y. Jararweh, E. Benkhelifa, M. Vouk, and A. Rindos. SD-

Storage: A Software Defined Storage Experimental Framework. In Cloud Engineering

(IC2E), International Conference on, pages 341–346. IEEE, 2015.

[93] B. S. Davie and Y. Rekhter. MPLS: technology and applications. Morgan Kaufmann

Publishers Inc., 2000.

[94] S. Dawson-Haggerty, J. Ortiz, J. Trager, D. Culler, and R. H. Katz. Energy Savings and

the “Software-Defined” Building. IEEE Design & Test of Computers, 29(4):56–57, 2012.

[95] M. De Brito, S. Hoque, R. Steinke, A. Willner, and T. Magedanz. Application of the

Fog computing paradigm to Smart Factories and cyber-physical systems. Transactions on

Emerging Telecommunications Technologies, 29(4):e3184, 2018.

[96] R. L. S. De Oliveira, A. A. Shinoda, C. M. Schweitzer, and L. R. Prete. Using mininet for

emulation and prototyping software-defined networks. In Communications and Computing

(COLCOM), Colombian Conference on, pages 1–6. IEEE, 2014.

[97] J. Dean and S. Ghemawat. MapReduce: simplified data processing on large clusters.

Communications of the ACM, 51(1):107–113, 2008.

[98] S. Deng, L. Huang, W. Tan, and Z. Wu. Top-Automatic Service Composition: A Par-

allel Method for Large-Scale Service Sets. Automation Science and Engineering, IEEE

Transactions on, 11(3):891–905, 2014.

CHAPTER 11. FINAL REMARKS 181

[99] P. Derler, E. A. Lee, and A. S. Vincentelli. Modeling Cyber-Physical Systems. Proceedings

of the IEEE, 100(1):13–28, 2012.

[100] G. Desaulniers, J. Desrosiers, and M. M. Solomon. Column generation, volume 5. Springer

Science & Business Media, 2006.

[101] K. C. Dey, A. Rayamajhi, M. Chowdhury, P. Bhavsar, and J. Martin. Vehicle-to-vehicle

(V2V) and vehicle-to-infrastructure (V2I) communication in a heterogeneous wireless

network–Performance evaluation. Transportation Research Part C: Emerging Technolo-

gies, 68:168–184, 2016.

[102] T. Dillon, C. Wu, and E. Chang. Cloud computing: issues and challenges. In Advanced

Information Networking and Applications (AINA), 2010 24th IEEE International Confer-

ence on, pages 27–33. Ieee, 2010.

[103] A. Dixit, F. Hao, S. Mukherjee, T. Lakshman, and R. Kompella. Towards an elastic

distributed SDN controller. ACM SIGCOMM computer communication review, 43(4):7–

12, 2013.

[104] C. Dixon, D. Olshefski, V. Jain, C. DeCusatis, W. Felter, J. Carter, M. Banikazemi,

V. Mann, J. M. Tracey, and R. Recio. Software Defined Networking to Support the

Software Defined Environment. IBM Journal of Research and Development, 58(2/3):3:1–

3:14, 2014.

[105] A. Dogac, Y. Tambag, P. Pembecioglu, S. Pektas, G. Laleci, G. Kurt, S. Toprak, and

Y. Kabak. An ebXML infrastructure implementation through UDDI registries and Roset-

taNet PIPs. In Proceedings of the SIGMOD international conference on Management of

data, pages 512–523. ACM, 2002.

[106] X. Dong, H. Lin, R. Tan, R. K. Iyer, and Z. Kalbarczyk. Software-defined networking for

smart grid resilience: Opportunities and challenges. In Proceedings of the 1st Workshop

on Cyber-Physical System Security, pages 61–68. ACM, 2015.

[107] X. L. Dong and D. Srivastava. Big data integration. In Data Engineering (ICDE), 29th

International Conference on, pages 1245–1248. IEEE, 2013.

[108] A. Doria, J. H. Salim, R. Haas, H. Khosravi, W. Wang, L. Dong, R. Gopal, and J. Halpern.

Forwarding and control element separation (ForCES) protocol specification, 2010.

[109] Z. Du, J. Huai, and Y. Liu. Ad-UDDI: An active and distributed service registry. In

Technologies for E-Services, pages 58–71. Springer, 2006.

[110] EdgeConneX. Edge Data Center Locations, 2018. Available at

http://www.edgeconnex.com/edge-data-center-locations/.

[111] J. Elek, D. Jocha, and R. Szabo. Network Function Chaining in DCs: The Unified Re-

curring Control Approach. In Software Defined Networks (EWSDN), Fourth European

Workshop on, pages 13–18. IEEE, 2015.

CHAPTER 11. FINAL REMARKS 182

[112] P. T. Endo, A. V. de Almeida Palhares, N. N. Pereira, G. E. Goncalves, D. Sadok, J. Kel-

ner, B. Melander, and J.-E. Mangs. Resource allocation for distributed cloud: concepts

and research challenges. IEEE network, 25(4), 2011.

[113] R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman. NETCONF configuration

protocol. RFC Editor, 2006.

[114] Epsilon. Epsilon Telecommunications Limited – Connectivity Made Simple, 2017. Avail-

able at http://www.epsilontel.com.

[115] D. Erickson. The beacon openflow controller. In Proceedings of the second SIGCOMM

workshop on Hot topics in software defined networking (HotSDN), pages 13–18. ACM,

2013.

[116] P. T. Eugster, P. A. Felber, R. Guerraoui, and A.-M. Kermarrec. The many faces of

publish/subscribe. ACM computing surveys (CSUR), 35(2):114–131, 2003.

[117] A. Faisal and S. Kasetty. Application level router for routing heterogeneous input to the

most appropriate application, 2011. US Patent 7,895,346.

[118] K. Fall, K. Varadhan, et al. The ns Manual (formerly ns Notes and Documentation). The

VINT project, 47:19–231, 2005.

[119] I. Farris, T. Taleb, H. Flinck, and A. Iera. Providing ultra-short latency to user-centric 5G

applications at the mobile network edge. Transactions on Emerging Telecommunications

Technologies, 2017.

[120] S. K. Fayazbakhsh, L. Chiang, V. Sekar, M. Yu, and J. C. Mogul. Enforcing network-wide

policies in the presence of dynamic middlebox actions using FlowTags. In NSDI. USENIX,

2014.

[121] N. Feamster, L. Gao, and J. Rexford. How to lease the Internet in your spare time. ACM

SIGCOMM Computer Communication Review, 37(1):61–64, 2007.

[122] N. Feamster, J. Rexford, and E. Zegura. The Road to SDN. Queue, 11(12):20, 2013.

[123] M. Fernandez. Evaluating OpenFlow controller paradigms. In ICN, The Twelfth Interna-

tional Conference on Networks, pages 151–157, 2013.

[124] J. Fiaidhi, I. Bojanova, J. Zhang, and L.-J. Zhang. Enforcing multitenancy for cloud

computing environments. IT professional, 1(1):16–18, 2012.

[125] J. Fischer, R. Majumdar, and S. Esmaeilsabzali. Engage: a deployment management

system. In SIGPLAN Notices, volume 47:6, pages 263–274. ACM, 2012.

[126] N. M. Freris et al. A Software Defined architecture for Cyberphysical Systems. In Software

Defined Systems (SDS), Fourth International Conference on, pages 54–60. IEEE, 2017.

CHAPTER 11. FINAL REMARKS 183

[127] A. Galis, S. Clayman, L. Mamatas, J. R. Loyola, A. Manzalini, S. Kuklinski, J. Serrat,

and T. Zahariadis. Softwarization of future networks and services-programmable enabled

networks as next generation software defined networks. In SDN for Future Networks and

Services (SDN4FNS), pages 1–7. IEEE, 2013.

[128] A. Gandhi and J. Chan. Analyzing the Network for AWS Distributed Cloud Computing.

ACM SIGMETRICS Performance Evaluation Review, 43(3):12–15, 2015.

[129] N. Gaur, K. S. Bhogal, C. D. Johnson, T. E. Kaplinger, and D. C. Berg. System and

method of optimization of in-memory data grid placement, Aug. 2 2016. US Patent

9,405,589.

[130] Gearpump. Apache Gearpump, 2018. Available at

http://gearpump.apache.org/overview.html.

[131] H. H. Gharakheili and V. Sivaraman. Cloud Assisted Home Networks. In Proceedings of

the 2nd Workshop on Cloud-Assisted Networking, pages 31–36. ACM, 2017.

[132] G. Gibb, H. Zeng, and N. McKeown. Outsourcing network functionality. In Proceedings

of the first workshop on Hot topics in software defined networks, pages 73–78. ACM, 2012.

[133] L. Girod, T. Stathopoulos, N. Ramanathan, J. Elson, D. Estrin, E. Osterweil, and

T. Schoellhammer. A system for simulation, emulation, and deployment of heteroge-

neous sensor networks. In Proceedings of the 2nd international conference on Embedded

networked sensor systems, pages 201–213. ACM, 2004.

[134] D. J. Glancy. Autonomous and automated and connected cars-oh my: first generation

autonomous cars in the legal ecosystem. Minn. JL Sci. & Tech., 16:619, 2015.

[135] Google. Google Cloud Platform - Cloud Locations, 2017. Available at

https://cloud.google.com/about/locations/.

[136] Google. Preemptible VM Instances, 2017. Available at

https://cloud.google.com/compute/docs/instances/preemptible.

[137] Google. Project Fi, 2017. Available at https://fi.google.com/about/.

[138] J. D. Gradecki and J. Cole. Mastering Apache Velocity. John Wiley & Sons, 2003.

[139] S. Graham, G. Daniels, D. Davis, Y. Nakamura, S. Simeonov, P. Brittenham, P. Fremantle,

D. Koenig, and C. Zentner. Building Web services with Java: making sense of XML,

SOAP, WSDL, and UDDI. SAMS publishing, 2004.

[140] A. Greenberg, J. Hamilton, D. A. Maltz, and P. Patel. The cost of a cloud: research

problems in data center networks. ACM SIGCOMM computer communication review,

39(1):68–73, 2008.

[141] J. Groff. VMware Certified Software-Defined Data Services Offering Enables En-

hanced Performance Gains for Tier-1 Virtualized Applications, 2016. Available at

http://www.primaryio.com/vmware-certified-software-defined-data-services-offering-

enables-enhanced-performance-gains-for-tier-1-virtualized-applications/.

CHAPTER 11. FINAL REMARKS 184

[142] M. P. Grosvenor, M. Schwarzkopf, I. Gog, R. N. Watson, A. W. Moore, S. Hand, and

J. Crowcroft. Queues Don’t Matter When You Can JUMP Them! In NSDI. USENIX,

2015.

[143] N. Grozev and R. Buyya. Inter-Cloud architectures and application brokering: taxonomy

and survey. Software: Practice and Experience, 44(3):369–390, 2014.

[144] L. Gurgen, O. Gunalp, Y. Benazzouz, and M. Gallissot. Self-aware cyber-physical systems

and applications in smart buildings and cities. In Proceedings of the Conference on Design,

Automation and Test in Europe, pages 1149–1154. EDA Consortium, 2013.

[145] M. J. Hadley. Web application description language (WADL), 2006.

[146] P. Halpernj. RFC7665, Service Function Chaining (SFC) architecture, 2015.

[147] L. Hamilton. Compression as a Service is Now Available in the Cloud! Boost-

edge.Net for ISPs, Telcos and Enterprises UbFast.com for end-users! , 2013. Available

at http://www.businesswire.com/news/home/20130207006266/en/Compression-Service-

Cloud!-Boostedge.Net-ISPs-Telcos-Enterprises.

[148] B. Han, V. Gopalakrishnan, L. Ji, and S. Lee. Network function virtualization: Challenges

and opportunities for innovations. Communications Magazine, IEEE, 53(2):90–97, 2015.

[149] N. Handigol, S. Seetharaman, M. Flajslik, N. McKeown, and R. Johari. Plug-n-serve:

Load-balancing web traffic using openflow. ACM SIGCOMM Demo, 4(5):6, 2009.

[150] O. Haq and F. R. Dogar. Leveraging the power of cloud for reliable wide area communica-

tion. In Proceedings of the 14th Workshop on Hot Topics in Networks (HotNets), page 19.

ACM, 2015.

[151] O. Haq, M. Raja, and F. R. Dogar. Measuring and Improving the Reliability of Wide-Area

Cloud Paths. In Proceedings of the 26th International Conference on World Wide Web,

pages 253–262. International World Wide Web Conferences Steering Committee, 2017.

[152] HashiCorp Suite. Vault Project - Encryption as a Service, 2018. Available at

https://www.vaultproject.io/guides/encryption/index.html.

[153] S. Hassas Yeganeh and Y. Ganjali. Kandoo: a framework for efficient and scalable offload-

ing of control applications. In Proceedings of the first workshop on Hot topics in software

defined networks, pages 19–24. ACM, 2012.

[154] M. Hausenblas and J. Nadeau. Apache Drill: Interactive Ad-hoc Analysis at Scale. Big

Data, 1(2):100–104, 2013.

[155] X. He, P. Shenoy, R. Sitaraman, and D. Irwin. Cutting the cost of hosting online services

using cloud spot markets. In Proceedings of the 24th International Symposium on High-

Performance Parallel and Distributed Computing, pages 207–218. ACM, 2015.

CHAPTER 11. FINAL REMARKS 185

[156] P. Heinzlreiter, J. R. Perkins, O. T. Tirado, T. J. M. Karlsson, J. A. Ranea, A. Mit-

terecker, M. Blanca, and O. Trelles. A Cloud-based GWAS Analysis Pipeline for Clinical

Researchers. In CLOSER, pages 387–394, 2014.

[157] T. Hey and A. E. Trefethen. Cyberinfrastructure for e-Science. Science, 308(5723):817–

821, 2005.

[158] A. Heydarnoori. Deploying Component–Based Applications: Tools and Techniques. In

Software Engineering Research, Management and Applications, pages 29–42. Springer,

2008.

[159] B. Hindman, A. Konwinski, M. Zaharia, A. Ghodsi, A. D. Joseph, R. H. Katz, S. Shenker,

and I. Stoica. Mesos: A Platform for Fine-Grained Resource Sharing in the Data Center.

In NSDI, volume 11, pages 22–22. USENIX, 2011.

[160] P. Hintjens. ZeroMQ: messaging for many applications. O’Reilly Media, Inc., 2013.

[161] HL7. FHIR, 2018. Available at https://www.hl7.org/fhir/.

[162] C.-Y. Hong, M. Caesar, and P. Godfrey. Finishing flows quickly with preemptive schedul-

ing. ACM SIGCOMM Computer Communication Review, 42(4):127–138, 2012.

[163] A. C. Houle, L.-P. Boulianne, and L. Dupras. SD-WAN: A Technology for the Efficient Use

of Bandwidth in Multi-Wavelength Networks. In Optical Fiber communication/National

Fiber Optic Engineers Conference (OFC/NFOEC), pages 1–10. IEEE, 2008.

[164] P. Hu. A system architecture for software-defined industrial Internet of Things. In 2015

IEEE International Conference on Ubiquitous Wireless Broadband (ICUWB), pages 1–5.

IEEE, 2015.

[165] Z. Huang. Data Integration For Urban Transport Planning. Citeseer, 2003.

[166] N. Huin, B. Jaumard, and F. Giroire. Optimization of network service chain provisioning.

In IEEE International Conference on Communications 2017, 2017.

[167] U. Hunkeler, H. L. Truong, and A. Stanford-Clark. MQTT-S—A publish/subscribe proto-

col for Wireless Sensor Networks. In Communication systems software and middleware and

workshops, COMSWARE. 3rd international conference on, pages 791–798. IEEE, 2008.

[168] J. Hwang, K. K. Ramakrishnan, and T. Wood. NetVM: high performance and flexible

networking using virtualization on commodity platforms. IEEE Transactions on Network

and Service Management, 12(1):34–47, 2015.

[169] IBM. IBM Spectrum Copy Data Management, 2018. Available at

https://www.ibm.com/us-en/marketplace/spectrum-copy-data-management.

[170] F. Irmert, M. Meyerhöfer, and M. Weiten. Towards Runtime Adaptation in a SOA Envi-

ronment. RAM-SE, 7:17–26, 2007.

CHAPTER 11. FINAL REMARKS 186

[171] M. Isard, M. Budiu, Y. Yu, A. Birrell, and D. Fetterly. Dryad: distributed data-

parallel programs from sequential building blocks. ACM SIGOPS operating systems review,

41:3:59–72, 2007.

[172] iTel. iTel MPLS (IP VPN) High Performance Connectivity, 2017. Available at

https://itel.com/mpls/.

[173] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata, J. Wanderer,

J. Zhou, M. Zhu, et al. B4: Experience with a globally-deployed software defined WAN.

ACM SIGCOMM Computer Communication Review, 43(4):3–14, 2013.

[174] Y. Jararweh, M. Al-Ayyoub, E. Benkhelifa, M. Vouk, A. Rindos, et al. SDIoT: a soft-

ware defined based internet of things framework. Journal of Ambient Intelligence and

Humanized Computing, 6(4):453–461, 2015.

[175] S. Jeschke, C. Brecher, T. Meisen, D. Özdemir, and T. Eschert. Industrial internet of

things and cyber manufacturing systems. In Industrial Internet of Things, pages 3–19.

Springer, 2017.

[176] W. John, K. Pentikousis, G. Agapiou, E. Jacob, M. Kind, A. Manzalini, F. Risso,

D. Staessens, R. Steinert, and C. Meirosu. Research Directions in Network Service Chain-

ing. In SDN for Future Networks and Services, SDN4FNS, pages 1–7, Nov 2013.

[177] M. Johns. Getting Started with Hazelcast. Packt Publishing Ltd, 2013.

[178] F. K. Jondral. Software-Defined Radio: Basics and Evolution to Cognitive Radio.

EURASIP journal on wireless communications and networking, 2005(3):275–283, 2005.

[179] A. Kadadi, R. Agrawal, C. Nyamful, and R. Atiq. Challenges of data integration and

interoperability in big data. In Big Data, International Conference on, pages 38–40. IEEE,

2014.

[180] B. R. Kandukuri, V. R. Paturi, and A. Rakshit. Cloud security issues. In Services Com-

puting, SCC. International Conference on, pages 517–520. IEEE, 2009.

[181] S. Kandula, D. Katabi, S. Sinha, and A. Berger. Dynamic load balancing without packet

reordering. ACM SIGCOMM Computer Communication Review, 37(2):51–62, 2007.

[182] G. Kapitsaki, D. Kateros, I. Foukarakis, G. Prezerakos, D. Kaklamani, and I. Venieris.

Service Composition: State of the art and future challenges. In 2007 16th IST Mobile and

Wireless Communications Summit, pages 1–5. IEEE, 2007.

[183] Y. Karǵın, M. Ivanova, Y. Zhang, S. Manegold, and M. Kersten. Lazy ETL in action: ETL

technology dates scientific data. Proceedings of the VLDB Endowment, 6(12):1286–1289,

2013.

[184] S. Karnouskos. Cyber-physical systems in the smartgrid. In Industrial Informatics (IN-

DIN), 9th International Conference on, pages 20–23. IEEE, 2011.

CHAPTER 11. FINAL REMARKS 187

[185] P. Kathiravelu and L. Veiga. An Adaptive Distributed Simulator for Cloud and MapReduce

Algorithms and Architectures. In Utility and Cloud Computing (UCC), 7th International

Conference on, pages 79–88. IEEE, 2014.

[186] S. Kaur, J. Singh, and N. S. Ghumman. Network programmability using pox controller.

In ICCCS International Conference on Communication, Computing & Systems, IEEE,

volume 138, 2014.

[187] R. Khalili, N. Gast, M. Popovic, U. Upadhyay, and J.-Y. Le Boudec. MPTCP is not

pareto-optimal: performance issues and a possible solution. In Proceedings of the 8th

international conference on Emerging networking experiments and technologies, pages 1–

12. ACM, 2012.

[188] A. Khosravi, S. K. Garg, and R. Buyya. Energy and carbon-efficient placement of virtual

machines in distributed cloud data centers. In Euro-Par 2013 Parallel Processing, pages

317–328. Springer, 2013.

[189] A. Kirilenko, A. S. Kyle, M. Samadi, and T. Tuzun. The flash crash: The impact of high

frequency trading on an electronic market. Available at SSRN, 1686004, 2011.

[190] A. Klein, F. Ishikawa, and S. Honiden. Towards network-aware service composition in

the cloud. In Proceedings of the 21st international conference on World Wide Web, pages

959–968. ACM, 2012.

[191] R. Koo and S. Toueg. Checkpointing and rollback-recovery for distributed systems. Soft-

ware Engineering, IEEE Transactions on, 1:23–31, 1987.

[192] S. Krishnan, D. Haas, M. J. Franklin, and E. Wu. Towards reliable interactive data

cleaning: A user survey and recommendations. In Proceedings of the Workshop on Human-

In-the-Loop Data Analytics, page 9. ACM, 2016.

[193] V. P. Kumar, T. Lakshman, and D. Stiliadis. Beyond best effort: router architectures

for the differentiated services of tomorrow’s Internet. IEEE Communications magazine,

36(5):152–164, 1998.

[194] S. Lange, A. Grigorjew, T. Zinner, P. Tran-Gia, and M. Jarschel. A Multi-objective

Heuristic for the Optimization of Virtual Network Function Chain Placement. In Teletraffic

Congress (ITC), 29th International, volume 1, pages 152–160. IEEE, 2017.

[195] A. Langegger, W. Wöß, and M. Blöchl. A semantic web middleware for virtual data

integration on the web. In European Semantic Web Conference, pages 493–507. Springer,

2008.

[196] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid prototyping for

software-defined networks. In Proceedings of the 9th SIGCOMM Workshop on Hot Topics

in Networks, page 19. ACM, 2010.

[197] D. Lecarpentier, P. Wittenburg, W. Elbers, A. Michelini, R. Kanso, P. Coveney, and

R. Baxter. EUDAT: A new cross-disciplinary data infrastructure for science. International

Journal of Digital Curation, 8(1):279–287, 2013.

CHAPTER 11. FINAL REMARKS 188

[198] E. A. Lee. Computing foundations and practice for cyber-physical systems: A preliminary

report. University of California, Berkeley, Tech. Rep. UCB/EECS-2007-72, 2007.

[199] E. A. Lee. Cyber Physical Systems: Design Challenges. In 11th International Symposium

on Object and Component-Oriented Real-Time Distributed Computing (ISORC), pages

363–369. IEEE, 2008.

[200] E. A. Lee. The past, present and future of cyber-physical systems: A focus on models.

Sensors, 15(3):4837–4869, 2015.

[201] G. Lee, S. Doyle, J. Monaco, A. Madabhushi, M. D. Feldman, S. R. Master, and J. E.

Tomaszewski. A knowledge representation framework for integration, classification of

multi-scale imaging and non-imaging data: Preliminary results in predicting prostate can-

cer recurrence by fusing mass spectrometry and histology. In International Symposium on

Biomedical Imaging: From Nano to Macro, pages 77–80. IEEE, 2009.

[202] J. Lee, B. Bagheri, and H.-A. Kao. A Cyber-Physical Systems Architecture for Industry

4.0-based Manufacturing Systems. Manufacturing Letters, 3:18–23, 2015.

[203] J. B. Leners, T. Gupta, M. K. Aguilera, and M. Walfish. Taming uncertainty in distributed

systems with help from the network. In Proceedings of the Tenth European Conference on

Computer Systems, page 9. ACM, 2015.

[204] D. Levin, A. Wundsam, B. Heller, N. Handigol, and A. Feldmann. Logically central-

ized?: state distribution trade-offs in software defined networks. In Proceedings of the first

workshop on Hot topics in software defined networks, pages 1–6. ACM, 2012.

[205] C.-S. Li, B. Brech, S. Crowder, D. Dias, H. Franke, M. Hogstrom, D. Lindquist, G. Pacifici,

S. Pappe, B. Rajaraman, et al. Software defined environments: An introduction. IBM

Journal of Research and Development, 58(2/3):1:1–1:11, 2014.

[206] G. Li. Human-in-the-loop data integration. Proceedings of the VLDB Endowment,

10(12):2006–2017, 2017.

[207] X. Li, B. Plale, N. Vijayakumar, R. Ramachandran, S. Graves, and H. Conover. Real-

time storm detection and weather forecast activation through data mining and events

processing. Earth Science Informatics, 1(2):49–57, 2008.

[208] J. Liao, J. Wang, B. Wu, and W. Wu. Toward a multiplane framework of NGSON: A

required guideline to achieve pervasive services and efficient resource utilization. Commu-

nications Magazine, IEEE, 50(1):90–97, 2012.

[209] D. S. Linthicum. Cloud computing and SOA convergence in your enterprise: a step-by-step

guide. Pearson Education, 2009.

[210] P. Lipton. OASIS Topology and Orchestration Specification for Cloud Applications

(TOSCA) TC. Technical report, OASIS, 2017. Available at https://www.oasis-

open.org/committees/tc home.php?wg abbrev=tosca.

CHAPTER 11. FINAL REMARKS 189

[211] J. Liu, Y. Li, M. Chen, W. Dong, and D. Jin. Software-Defined Internet of Things for

Smart Urban Sensing. IEEE Communications Magazine, 53(9):55–63, 2015.

[212] K. Liu, J. K. Ng, V. C. Lee, S. H. Son, and I. Stojmenovic. Cooperative data scheduling in

hybrid vehicular ad hoc networks: VANET as a Software Defined Network. IEEE/ACM

transactions on networking, 24(3):1759–1773, 2016.

[213] Y. Liu, G. Shou, Y. Hu, Z. Guo, H. Li, and H. S. Seah. Towards a smart campus: Innova-

tive applications with WiCloud platform based on mobile edge computing. In Computer

Science and Education (ICCSE), 12th International Conference on, pages 133–138. IEEE,

2017.

[214] A. Lombardo, A. Manzalini, G. Schembra, G. Faraci, C. Rametta, and V. Riccobene.

An open framework to enable NetFATE (network functions at the edge). In Network

Softwarization (NetSoft), 1st Conference on, pages 1–6. IEEE, 2015.

[215] D. Lombraña González, A. Harutyunyan, B. Segal, I. Zacharov, E. McIntosh, P. Jones,

M. Giovannozzi, L. Rivkin, M. Marquina, P. Skands, et al. LHC@ HOME: A volunteer

computing system for massive numerical simulations of beam dynamics and high energy

physics events. In Conf. Proc., volume 1205201:IPAC-2012-MOPPD061, pages 505–507,

2012.

[216] J. Loope. Managing Infrastructure with Puppet: Configuration Management at Scale.

O’Reilly Media, Inc., 2011.

[217] V. Lopez, O. G. de Dios, L. Contreras, J. Foster, H. Silva, L. Blair, J. Marsella,

T. Szyrkowiec, A. Autenrieth, C. Liou, et al. Demonstration of SDN orchestration in

optical multi-vendor scenarios. In Optical Fiber Communications Conference and Exhibi-

tion (OFC), 2015, pages 1–3. IEEE, 2015.

[218] P. Lovelock. Unleashing the Potential of the Internet in Central Asia, South Asia, the

Caucasus and Beyond. ADB Consultant’s Report, pages 27–28, 2015.

[219] A. Ludwig and S. Schmid. Distributed Cloud Market: Who Benefits from Specification

Flexibilities? ACM SIGMETRICS Performance Evaluation Review, 43(3):38–41, 2015.

[220] J. E. Luzuriaga, M. Perez, P. Boronat, J. C. Cano, C. Calafate, and P. Manzoni. Im-

pact of mobility on Message Oriented Middleware (MOM) protocols for collaboration in

transportation. In Computer Supported Cooperative Work in Design (CSCWD), 19th In-

ternational Conference on, pages 115–120. IEEE, 2015.

[221] D.-M. Lyu, Y. Tian, Y. Wang, D.-Y. Tong, W.-W. Yin, and J.-S. Li. Design and imple-

mentation of clinical data integration and management system based on Hadoop platform.

In Information Technology in Medicine and Education (ITME), 2015 7th International

Conference on, pages 76–79. IEEE, 2015.

[222] J. Macker. Mobile ad hoc networking (MANET): Routing protocol performance issues

and evaluation considerations, 1999.

CHAPTER 11. FINAL REMARKS 190

[223] A. Mahmood, C. Casetti, C.-F. Chiasserini, P. Giaccone, and J. Harri. Mobility-aware

edge caching for connected cars. In Wireless On-demand Network Systems and Services

(WONS), 12th Annual Conference on, pages 1–8. IEEE, 2016.

[224] A. Manzalini and R. Saracco. Software Networks at the Edge: a shift of paradigm. In

SDN for Future Networks and Services (SDN4FNS), pages 1–6. IEEE, 2013.

[225] F. Marchioni. Infinispan data grid platform. Packt Pub., 2012.

[226] A. Marotta, E. Zola, F. D’Andreagiovanni, and A. Kassler. A fast robust optimization-

based heuristic for the deployment of green virtual network functions. Journal of Network

and Computer Applications, 95:42–53, 2017.

[227] F. Marozzo, F. Rodrigo Duro, J. Garcia Blas, J. Carretero, D. Talia, and P. Trunfio.

A data-aware scheduling strategy for workflow execution in clouds. Concurrency and

Computation: Practice and Experience, 29(24):e4229, 2017.

[228] J. Martins, M. Ahmed, C. Raiciu, V. Olteanu, M. Honda, R. Bifulco, and F. Huici. ClickOS

and the art of network function virtualization. In Proceedings of the 11th Conference on

Networked Systems Design and Implementation (NSDI), pages 459–473. USENIX, 2014.

[229] M. Mathews. PlexxiPulse – Software-Defined Data Center 50, 2017. Available at

http://www.plexxi.com/2017/03/plexxipulse-2017-software-defined-data-center-50/.

[230] R. McClatchey, A. Anjum, H. Stockinger, A. Ali, I. Willers, and M. Thomas. Data inten-

sive and network aware (DIANA) grid scheduling. Journal of Grid computing, 5(1):43–64,

2007.

[231] N. McKeown. Software-Defined Networking. INFOCOM keynote talk, 17(2):30–32, 2009.

[232] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson, J. Rexford,

S. Shenker, and J. Turner. OpenFlow: enabling innovation in campus networks. ACM

SIGCOMM Computer Communication Review, 38(2):69–74, 2008.

[233] J. Medved, R. Varga, A. Tkacik, and K. Gray. OpenDaylight: Towards a Model-Driven

SDN Controller architecture. In 15th International Symposium on, pages 1–6. IEEE, 2014.

[234] MEF. Lifecycle Service Orchestration — Third Network, 2017. Available at

https://www.mef.net/third-network/lifecycle-service-orchestration.

[235] Megaport. Megaport, 2017. Available at http://megaport.com/.

[236] C. Mellor. Hammer hopes to nail software-defined future for Commvault, 2016. Available at

https://www.theregister.co.uk/2016/10/26/commvault set fair for sustained turnaround/.

[237] D. Merkel. Docker: lightweight linux containers for consistent development and deploy-

ment. Linux Journal, 2014(239):2, 2014.

[238] O. Michel and E. Keller. SDN in wide-area networks: A survey. In Software Defined

Systems (SDS), Fourth International Conference on, pages 37–42. IEEE, 2017.

CHAPTER 11. FINAL REMARKS 191

[239] Microsoft. Software-Defined Datacenter (SDDC) - Windows Server 2016, 2017. Available

at https://www.microsoft.com/en-us/cloud-platform/software-defined-datacenter.

[240] E. Milchevski and S. Michel. ligDB-Online Query Processing Without (almost) any Stor-

age. In EDBT, pages 683–688, 2015.

[241] P. Mildenberger, M. Eichelberg, and E. Martin. Introduction to the DICOM standard.

European radiology, 12(4):920–927, 2002.

[242] F. P. Miller, A. F. Vandome, and J. McBrewster. Apache Maven, 2010.

[243] H. Moens and F. De Turck. VNF-P: A model for efficient placement of virtualized net-

work functions. In Network and Service Management (CNSM), 2014 10th International

Conference on, pages 418–423. IEEE, 2014.

[244] E. Molina and E. Jacob. Software-defined networking in cyber-physical systems: A survey.

Computers & Electrical Engineering, 66:407–419, 2018.

[245] S. Munir and J. A. Stankovic. Depsys: Dependency aware integration of cyber-physical

systems for smart homes. In Cyber-Physical Systems (ICCPS), International Conference

on, pages 127–138. IEEE, 2014.

[246] I. Nadareishvili, R. Mitra, M. McLarty, and M. Amundsen. Microservice architecture:

aligning principles, practices, and culture. ” O’Reilly Media, Inc.”, 2016.

[247] T. D. Nadeau and K. Gray. SDN: Software Defined Networks. O’Reilly Media, Inc., 2013.

[248] E. Newcomer and G. Lomow. Understanding SOA with Web services. Addison-Wesley,

2005.

[249] Nexion. Nexion Networks, 2018. Available at https://www.nexionnetworks.com/cloud-

solutions/.

[250] A. Nierbeck, J. Goodyear, J. Edstrom, and H. Kesler. Apache Karaf Cookbook. Packt

Publishing Ltd, 2014.

[251] T. Nolte. Compositionality and CPS from a Platform Perspective. In 17th International

Conference on Embedded and Real-Time Computing Systems and Applications, pages 57–

60. IEEE, 2011.

[252] B. W. Norton. Internet Transit Prices - Historical and Projected, 2014.

Available at http://drpeering.net/white-papers/Internet-Transit-Pricing-Historical-And-

Projected.php.

[253] Nuage. Nuage Networks, 2017. Available at http://www.nuagenetworks.net/products/.

[254] D. Oppenheimer, B. Chun, D. Patterson, A. C. Snoeren, and A. Vahdat. Service Placement

in a Shared Wide-Area Platform. In USENIX Annual Technical Conference, General

Track, pages 273–288, 2006.

CHAPTER 11. FINAL REMARKS 192

[255] Oracle. REST Data Services, 2018. Available at http://www.oracle.com/

technetwork/developer-tools/rest-data-services/overview/index.html.

[256] C. Or lowski, E. Szczerbicki, and J. Grabowski. Enterprise service bus architecture for the

big data systems, 2014.

[257] G. Orsini, D. Bade, and W. Lamersdorf. CloudAware: Empowering context-aware self-

adaptation for mobile applications. Transactions on Emerging Telecommunications Tech-

nologies, 29(4):e3210, 2018.

[258] G. R. Osborn. Hardware resource identifier for software-defined communications system,

May 23 2006. US Patent 7,050,807.

[259] OSGi Alliance. OSGi service platform, release 3. IOS Press, Inc., 2003.

[260] J. Ouyang, S. Lin, S. Jiang, Z. Hou, Y. Wang, and Y. Wang. SDF: Software-Defined Flash

for Web-Scale Internet Storage Systems. ACM SIGPLAN Notices, 49(4):471–484, 2014.

[261] J. Pacheco, C. Tunc, and S. Hariri. Design and evaluation of resilient infrastructures

systems for smart cities. In Smart Cities Conference (ISC2), International, pages 1–6.

IEEE, 2016.

[262] PacketFabric. PacketDirect, 2017. Available at

https://www.packetfabric.com/packetdirect/.

[263] PacketFabric. PacketFabric, 2017. Available at https://www.packetfabric.com/.

[264] F. Paganelli, M. Ulema, and B. Martini. Context-aware service composition and delivery

in NGSONs over SDN. Communications Magazine, IEEE, 52(8):97–105, 2014.

[265] J. Paiva, P. Ruivo, P. Romano, and L. Rodrigues. AutoPlacer: Scalable Self-Tuning

Data Placement in Distributed Key-Value Stores. ACM Transactions on Autonomous and

Adaptive Systems (TAAS), 9(4):19, 2015.

[266] M. P. Papazoglou. Service-oriented computing: Concepts, characteristics and directions.

In Web Information Systems Engineering, WISE. Proceedings of the Fourth International

Conference on, pages 3–12. IEEE, 2003.

[267] O. Parekh. Iterative packing for demand and hypergraph matching. In International

Conference on Integer Programming and Combinatorial Optimization, pages 349–361.

Springer, 2011.

[268] M. Pasha and K. U. R. Khan. Architecture and Channel Aware Task Offloading in Op-

portunistic Vehicular Edge Networks. IJSSST, 18(4):15.1–15.7, 2015.

[269] P. Patel, M. I. Ali, and A. Sheth. On Using the Intelligent Edge for IoT Analytics. IEEE

Intelligent Systems, 32(5):64–69, 2017.

[270] C. Pautasso, O. Zimmermann, and F. Leymann. Restful web services vs. big’web services:

making the right architectural decision. In Proceedings of the 17th international conference

on World Wide Web, pages 805–814. ACM, 2008.

CHAPTER 11. FINAL REMARKS 193

[271] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D. Jayasinghe, S. Weer-

awarana, and G. Daniels. Axis2, middleware for next generation web services. In Web

Services (ICWS). International Conference on, pages 833–840. IEEE, 2006.

[272] J. Perry, A. Ousterhout, H. Balakrishnan, D. Shah, and H. Fugal. Fastpass: A centralized

zero-queue datacenter network. In Proceedings of the conference on SIGCOMM, pages

307–318. ACM, 2014.

[273] M. Persson and A. H̊akansson. A Communication Protocol for different communication

technologies in Cyber-Physical Systems. Procedia Computer Science, 60:1697–1706, 2015.

[274] D. Petcu. Multi-Cloud: expectations and current approaches. In Proceedings of the 2013

international workshop on Multi-cloud applications and federated clouds, pages 1–6. ACM,

2013.

[275] B. Pfaff, J. Pettit, K. Amidon, M. Casado, T. Koponen, and S. Shenker. Extending

Networking into the Virtualization Layer. In HotNets, 2009.

[276] K. Phemius, M. Bouet, and J. Leguay. Disco: Distributed multi-domain sdn controllers.

In Network Operations and Management Symposium (NOMS), pages 1–4. IEEE, 2014.

[277] Portworx. Portworx, 2018. Available at https://portworx.com/.

[278] PrimaryIO. PrimaryIO: Application Performance Accelerator (APA) 2.5, 2018. Available

at http://www.primaryio.com/.

[279] PureStorage. The data platform for the cloud era, 2018. Available at

https://www.purestorage.com/uk/products.html.

[280] Z. A. Qazi, C.-C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. SIMPLE-fying middlebox

policy enforcement using SDN. In SIGCOMM Computer Communication Review, volume

43:4, pages 27–38. ACM, 2013.

[281] Z. Qin, G. Denker, C. Giannelli, P. Bellavista, and N. Venkatasubramanian. A software

defined networking architecture for the internet-of-things. In Network operations and

management symposium (NOMS), pages 1–9. IEEE, 2014.

[282] Z. Qin, N. Do, G. Denker, and N. Venkatasubramanian. Software-defined cyber-physical

multinetworks. In Computing, Networking and Communications (ICNC), International

Conference on, pages 322–326. IEEE, 2014.

[283] Z. Qin, L. Iannario, C. Giannelli, P. Bellavista, G. Denker, and N. Venkatasubramanian.

Mina: A reflective middleware for managing dynamic multinetwork environments. In

Network Operations and Management Symposium (NOMS), pages 1–4. IEEE, 2014.

[284] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi, and S. Shenker.

Software-Defined Internet Architecture: Decoupling Architecture from Infrastructure. In

Proceedings of the 11th Workshop on Hot Topics in Networks (HotNets), pages 43–48.

ACM, 2012.

CHAPTER 11. FINAL REMARKS 194

[285] O. J. Reichman, M. B. Jones, and M. P. Schildhauer. Challenges and opportunities of

open data in ecology. Science, 331(6018):703–705, 2011.

[286] J. S. Rellermeyer, G. Alonso, and T. Roscoe. R-OSGi: distributed applications through

software modularization. In Proceedings of the ACM/IFIP/USENIX 2007 International

Conference on Middleware, pages 1–20. Springer-Verlag New York, Inc., 2007.

[287] D. Richman. Amazon Web Services’ secret weapon: Its custom-made hardware and net-

work, 2017. Available at https://www.geekwire.com/2017/amazon-web-services-secret-

weapon-custom-made-hardware-network/.

[288] C. Rossenhövel, C. Price, and I. Váncsa. The Interoperability Challenge in Telecom

and NFV Environments. Technical report, The Linux Foundation, 2017. Available at

http://superuser.openstack.org/articles/interoperability-telecom-nfv-tutorial/.

[289] L. Rupprecht. Network-aware big data processing. In Ph.D. Thesis. Imperial College

London, 2017.

[290] S. Sagiroglu and D. Sinanc. Big data: A review. In Collaboration Technologies and Systems

(CTS), International Conference on, pages 42–47. IEEE, 2013.

[291] S. Sahhaf, W. Tavernier, J. Czentye, B. Sonkoly, P. Sköldström, D. Jocha, and J. Garay.

Scalable architecture for service function chain orchestration. In Software Defined Networks

(EWSDN), Fourth European Workshop on, pages 19–24. IEEE, 2015.

[292] P. Saint-Andre. Extensible messaging and presence protocol (XMPP): Core, 2011.

[293] K. Sampigethaya and R. Poovendran. Cyber-physical system framework for future aircraft

and air traffic control. In Aerospace Conference, pages 1–9. IEEE, 2012.

[294] SAP. SAP Data Services, 2018. Available at https://www.sap.com/products/data-

services.html.

[295] C. V. Saradhi, M. Gurusarny, and L. Zhou. Differentiated qos for survivable wdm optical

networks. IEEE Communications Magazine, 42(5):S8–14, 2004.

[296] B. Sayadi, M. Gramaglia, V. Friderikos, D. von Hugo, P. Arnold, M.-L. Alberi-Morel,

M. A. Puente, V. Sciancalepore, I. Digon, and M. R. Crippa. SDN for 5G Mobile Networks:

NORMA perspective. In International Conference on Cognitive Radio Oriented Wireless

Networks, pages 741–753. Springer, 2016.

[297] Scality. Scality is Storage for Digital Business, 2018. Available at

https://www.scality.com/.

[298] J. Schönwälder, M. Björklund, and P. Shafer. Network configuration management using

NETCONF and YANG. IEEE Communications Magazine, 48(9):166–173, 2010.

[299] M. Scurrell. Batch computing at a fraction of the price, 2017. Available at

https://azure.microsoft.com/en-us/blog/announcing-public-preview-of-azure-batch-

low-priority-vms/.

CHAPTER 11. FINAL REMARKS 195

[300] O. Sefraoui, M. Aissaoui, and M. Eleuldj. OpenStack: toward an open-source solution for

cloud computing. International Journal of Computer Applications, 55(3), 2012.

[301] A. Sgambelluri, F. Tusa, M. Gharbaoui, E. Maini, L. Toka, J. Perez, F. Paolucci, B. Mar-

tini, W. Poe, J. M. Hernandes, et al. Orchestration of network services across multiple

operators: The 5G exchange prototype. In Networks and Communications (EuCNC), 2017

European Conference on, pages 1–5. IEEE, 2017.

[302] H. Sheikh. HPE Hyper Converged, 2016. Available at

https://tdhpe.techdata.eu/Documents/SWEDEN/Server

[303] R. Sherwood. The Promise of the Software Defined Data Center: Abstraction,

Hyper-convergence, and Dramatically Increased Business Agility , 2016. Available

at http://www.bigswitch.com/webinar/the-promise-of-the-software-defined-data-center-

abstraction-hyper-convergence-and.

[304] R. Sherwood, M. Chan, A. Covington, G. Gibb, M. Flajslik, N. Handigol, T.-Y. Huang,

P. Kazemian, M. Kobayashi, J. Naous, et al. Carving research slices out of your production

networks with OpenFlow. ACM SIGCOMM Computer Communication Review, 40(1):129–

130, 2010.

[305] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu. Edge computing: Vision and challenges.

IEEE Internet of Things Journal, 3(5):637–646, 2016.

[306] J.-Y. Shin, B. Wong, and E. G. Sirer. Small-world datacenters. In Proceedings of the 2nd

Symposium on Cloud Computing, page 2. ACM, 2011.

[307] H. Shinohara. Broadband access in japan: Rapidly growing ftth market. IEEE Commu-

nications Magazine, 43(9):72–78, 2005.

[308] K. Siozios, D. Soudris, and E. Kosmatopoulos. Cyber-Physical Systems: Decision Making

Mechanisms and Applications. River Publishers, 2017.

[309] B. Snyder, D. Bosnanac, and R. Davies. ActiveMQ in action, volume 47. Manning Green-

wich Conn., 2011.

[310] J. Son, A. V. Dastjerdi, R. N. Calheiros, X. Ji, Y. Yoon, and R. Buyya. CloudSimSDN:

Modeling and simulation of software-defined cloud data centers. In Cluster, Cloud and Grid

Computing (CCGrid), 15th International Symposium on, pages 475–484. IEEE, 2015.

[311] B. Sonkoly, J. Czentye, R. Szabo, D. Jocha, J. Elek, S. Sahhaf, W. Tavernier, and F. Risso.

Multi-domain service orchestration over networks and clouds: A unified approach. ACM

SIGCOMM Computer Communication Review, 45(4):377–378, 2015.

[312] Spark. Spark Framework: An Expressive Web Framework for Kotlin and Java, 2018.

Available at http://sparkjava.com/.

[313] D. Spinellis. Don’t Install Software by Hand. Software, IEEE, 29(4):86–87, 2012.

[314] R. Srinivasan. RPC: Remote procedure call protocol specification version 2, 1995.

CHAPTER 11. FINAL REMARKS 196

[315] A. Stanik, M. Koerner, and L. Lymberopoulos. SLA-driven Federated Cloud Networking:

Quality of Service for Cloud-based Software Defined Networks. Procedia Computer Science,

34:655–660, 2014.

[316] V. Stantchev and C. Schröpfer. Negotiating and enforcing qos and slas in grid and cloud

computing. In International Conference on Grid and Pervasive Computing, pages 25–35.

Springer, 2009.

[317] T. Szyd lo, P. Suder, and J. Bibro. Message-oriented communication for IPv6-enabled

pervasive devices. Computer Science, 14(4):667–667, 2013.

[318] T. Taleb, B. Mada, M.-I. Corici, A. Nakao, and H. Flinck. PERMIT: Network slicing for

personalized 5G mobile telecommunications. IEEE Communications Magazine, 55(5):88–

93, 2017.

[319] I. J. Taylor, E. Deelman, D. B. Gannon, and M. Shields. Workflows for e-Science: scientific

workflows for grids. Springer Publishing Company, Incorporated, 2014.

[320] M. Taylor and S. Vargo. Learning Chef: A Guide to Configuration Management and

Automation. O’Reilly Media, Inc., 2014.

[321] Teridion. Teridion, 2017. Available at https://www.teridion.com/.

[322] D. Thain, T. Tannenbaum, and M. Livny. Distributed computing in practice: the Condor

experience. Concurrency and computation: practice and experience, 17(2-4):323–356, 2005.

[323] E. Thereska, H. Ballani, G. O’Shea, T. Karagiannis, A. Rowstron, T. Talpey, R. Black, and

T. Zhu. IOFlow: a software-defined storage architecture. In Proceedings of the Twenty-

Fourth Symposium on Operating Systems Principles (SOSP), pages 182–196. ACM, 2013.

[324] A. Thusoo, J. S. Sarma, N. Jain, Z. Shao, P. Chakka, S. Anthony, H. Liu, P. Wyckoff, and

R. Murthy. Hive: a warehousing solution over a map-reduce framework. Proceedings of

the VLDB Endowment, 2(2):1626–1629, 2009.

[325] A. Tootoonchian and Y. Ganjali. HyperFlow: A distributed control plane for OpenFlow.

In Proceedings of the 2010 internet network management conference on Research on en-

terprise networking, pages 3–3. USENIX, 2010.

[326] M. Treiber and S. Dustdar. Active web service registries. IEEE Internet Computing, 11(5),

2007.

[327] R. Trivisonno, I. Vaishnavi, R. Guerzoni, Z. Despotovic, A. Hecker, S. Beker, and D. Sol-

dani. Virtual links mapping in future sdn-enabled networks. In SDN for Future Networks

and Services (SDN4FNS), pages 1–5. IEEE, 2013.

[328] R. Turk. Red Hat Stroage: Why Software-Defined Storage Matters, 2016. Available at

https://www.redhat.com/en/about/videos/why-software-defined-storage-matters.

[329] I. Van Beijnum. BGP: Building reliable networks with the Border Gateway Protocol.

O’Reilly Media, Inc., 2002.

CHAPTER 11. FINAL REMARKS 197

[330] P. Vassiliadis. A survey of Extract–transform–Load technology. International Journal of

Data Warehousing and Mining (IJDWM), 5(3):1–27, 2009.

[331] A. M. Vegni, M. Biagi, and R. Cusani. Smart vehicles, technologies and main applications

in vehicular ad hoc networks. In Vehicular Technologies-Deployment and Applications.

InTech, 2013.

[332] P. Velho and A. Legrand. Accuracy study and improvement of network simulation in the

SimGrid framework. In Proceedings of the 2nd International Conference on Simulation

Tools and Techniques, page 13. ICST (Institute for Computer Sciences, Social-Informatics

and Telecommunications Engineering), 2009.

[333] R. Vilalta, A. Mayoral, D. Pubill, R. Casellas, R. Mart́ınez, J. Serra, C. Verikoukis, and

R. Muñoz. End-to-End SDN orchestration of IoT services using an SDN/NFV-enabled

edge node. In Optical Fiber Communication Conference, pages W2A–42. Optical Society

of America, 2016.

[334] M. Villari, M. Fazio, S. Dustdar, O. Rana, L. Chen, and R. Ranjan. Software Defined

Membrane: Policy-Driven Edge and Internet of Things Security. IEEE Cloud Computing,

4(4):92–99, 2017.

[335] M. Villari, M. Fazio, S. Dustdar, O. Rana, and R. Ranjan. Osmotic computing: A new

paradigm for edge/cloud integration. IEEE Cloud Computing, 3(6):76–83, 2016.

[336] S. Vinoski. Advanced message queuing protocol. IEEE Internet Computing, 10(6), 2006.

[337] R. Viswanathan, G. Ananthanarayanan, and A. Akella. Clarinet: Wan-aware optimization

for analytics queries. In 12th USENIX Symposium on Operating Systems Design and

Implementation (OSDI 16), pages 435–450. USENIX Association, 2016.

[338] Voxility. The secure infrastructure for your amazing Cloud Service, 2019. Available at

https://www.voxility.com/.

[339] A. Vulimiri, P. B. Godfrey, R. Mittal, J. Sherry, S. Ratnasamy, and S. Shenker. Low

latency via redundancy. In Proceedings of the ninth conference on Emerging networking

experiments and technologies, pages 283–294. ACM, 2013.

[340] vXchnge. vXchnge Markets, 2018. Available at http://www.vxchnge.com/markets/.

[341] M. Walfish, J. Stribling, M. N. Krohn, H. Balakrishnan, R. Morris, and S. Shenker. Mid-

dleboxes No Longer Considered Harmful. In OSDI, volume 4, pages 15–15, 2004.

[342] J. Wan, S. Tang, Z. Shu, D. Li, S. Wang, M. Imran, and A. V. Vasilakos. Software-

defined industrial Internet of Things in the context of Industry 4.0. IEEE Sensors Journal,

16(20):7373–7380, 2016.

[343] J. Wan, D. Zhang, S. Zhao, L. Yang, and J. Lloret. Context-aware vehicular cyber-physical

systems with cloud support: architecture, challenges, and solutions. IEEE Communica-

tions Magazine, 52(8):106–113, 2014.

CHAPTER 11. FINAL REMARKS 198

[344] C. Wang, B. Urgaonkar, A. Gupta, G. Kesidis, and Q. Liang. Exploiting Spot and

Burstable Instances for Improving the Cost-efficacy of In-Memory Caches on the Public

Cloud. In Proceedings of the Twelfth European Conference on Computer Systems, pages

620–634. ACM, 2017.

[345] F. Wang, J. Li, and H. Homayounfar. A space efficient XML DOM parser. Data &

Knowledge Engineering, 60(1):185–207, 2007.

[346] F.-Y. Wang, L. Yang, X. Cheng, S. Han, and J. Yang. Network softwarization and parallel

networks: beyond software-defined networks. IEEE network, 30(4):60–65, 2016.

[347] L. Wang, J. Tao, R. Ranjan, H. Marten, A. Streit, J. Chen, and D. Chen. G-Hadoop:

MapReduce across distributed data centers for data-intensive computing. Future Genera-

tion Computer Systems, 29(3):739–750, 2013.

[348] R. Wang, D. Butnariu, J. Rexford, et al. OpenFlow-Based Server Load Balancing Gone

Wild. Hot-ICE, 11:12–17, 2011.

[349] S. Wang, A. Zhou, F. Yang, and R. N. Chang. Towards network-aware service composition

in the cloud. IEEE Transactions on Cloud Computing, 1:1–14, 2016.

[350] P. Wette, M. Draxler, and A. Schwabe. MaxiNet: Distributed Emulation of Software-

Defined Networks. In Networking Conference, IFIP, pages 1–9. IEEE, 2014.

[351] M. Wichtlhuber, R. Reinecke, and D. Hausheer. An SDN-based CDN/ISP collaboration

architecture for managing high-volume flows. IEEE Transactions on Network and Service

Management, 12(1):48–60, 2015.

[352] H. Widmann and H. Thiemann. EUDAT B2FIND: A Cross-Discipline Metadata Service

and Discovery Portal. In EGU General Assembly Conference Abstracts, volume 18, page

8562, 2016.

[353] J. W. Williams, K. S. Aggour, J. Interrante, J. McHugh, and E. Pool. Bridging high

velocity and high volume industrial big data through distributed in-memory storage &

analytics. In Big Data, International Conference on, pages 932–941. IEEE, 2014.

[354] C. Wilson, H. Ballani, T. Karagiannis, and A. Rowtron. Better never than late: Meeting

deadlines in datacenter networks. ACM SIGCOMM Computer Communication Review,

41(4):50–61, 2011.

[355] Y. Xing, G. Li, Z. Wang, B. Feng, Z. Song, and C. Wu. GTZ: a fast compression and cloud

transmission tool optimized for FASTQ files. BMC bioinformatics, 18(16):549, 2017.

[356] R. Xiong, Y. Du, J. Jin, and J. Luo. HaDaap: A hotness-aware data placement strat-

egy for improving storage efficiency in heterogeneous Hadoop clusters. Concurrency and

Computation: Practice and Experience, 30(20):e4830, 2018.

[357] X. Xu, Q. Z. Sheng, L.-J. Zhang, Y. Fan, and S. Dustdar. From big data to big service.

Computer, 48(7):80–83, 2015.

CHAPTER 11. FINAL REMARKS 199

[358] X. Xu, L. Zhu, Y. Liu, and M. Staples. Resource-oriented architecture for business pro-

cesses. In Software Engineering Conference, APSEC. 15th Asia-Pacific, pages 395–402.

IEEE, 2008.

[359] M. Yao, P. Zhang, Y. Li, J. Hu, C. Lin, and X. Y. Li. Cutting your cloud computing cost

for deadline-constrained batch jobs. In Web Services (ICWS), International Conference

on, pages 337–344. IEEE, 2014.

[360] Y. Yiakoumis, K.-K. Yap, S. Katti, G. Parulkar, and N. McKeown. Slicing home networks.

In Proceedings of the 2nd SIGCOMM workshop on Home networks, pages 1–6. ACM, 2011.

[361] S. Yousefi, M. S. Mousavi, and M. Fathy. Vehicular ad hoc networks (VANETs): chal-

lenges and perspectives. In ITS Telecommunications Proceedings, 2006 6th International

Conference on, pages 761–766. IEEE, 2006.

[362] Z. Yu, M. Li, X. Yang, and X. Li. Palantir: Reseizing network proximity in large-scale

distributed computing frameworks using SDN. In Cloud Computing (CLOUD), 7th Inter-

national Conference on, pages 440–447. IEEE, 2014.

[363] M. Zafer, Y. Song, and K.-W. Lee. Optimal bids for spot vms in a cloud for deadline

constrained jobs. In Cloud Computing (CLOUD), 5th International Conference on, pages

75–82. IEEE, 2012.

[364] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction for

in-memory cluster computing. In Proceedings of the 9th conference on Networked Systems

Design and Implementation (NSDI), pages 2–2. USENIX, 2012.

[365] B. Zhang, N. Mor, J. Kolb, D. S. Chan, K. Lutz, E. Allman, J. Wawrzynek, E. A. Lee,

and J. Kubiatowicz. The Cloud is Not Enough: Saving IoT from the Cloud. In HotCloud,

2015.

[366] Q. Zhang, L. Cheng, and R. Boutaba. Cloud computing: state-of-the-art and research

challenges. Journal of internet services and applications, 1(1):7–18, 2010.

[367] Q. Zhang, X. Zhang, Q. Zhang, W. Shi, and H. Zhong. Firework: Big data sharing and

processing in collaborative edge environment. In Fourth Workshop on Hot Topics in Web

Systems and Technologies (HotWeb), pages 20–25. IEEE, 2016.

[368] Q. Zhang, Q. Zhu, M. F. Zhani, R. Boutaba, and J. L. Hellerstein. Dynamic service

placement in geographically distributed clouds. IEEE Journal on Selected Areas in Com-

munications, 31(12):762–772, 2013.

[369] Y. Zhang. Network Function Virtualization: Concepts and Applicability in 5G Networks.

John Wiley & Sons, 2017.

[370] L. Zheng, C. Joe-Wong, J. Chen, C. G. Brinton, C. W. Tan, and M. Chiang. Economic

viability of a virtual ISP. In INFOCOM. IEEE, 2017.

	Abstract
	List of Publications
	Contents
	List of Figures
	List of Tables
	List of Algorithms
	List of Acronyms
	I Thesis Overview
	Introduction
	Context
	Challenges of network softwarization
	Thesis Aim and Objectives
	Problem Formulation

	Research Questions
	Thesis Contributions
	Unified SDS Framework
	Individual Contributions

	Thesis Roadmap

	Background and Related Work
	Network Softwarization
	Software-Defined Networking (SDN) and Software-Defined Systems (SDS)
	Network Modeling
	Decoupling Networking from the Infrastructure
	Network Flow Scheduling

	Service Composition Workflows in Wide Area Networks
	Service-Oriented Architecture (SOA)
	SDS for Service Compositions
	Network Service Chaining (NSC)
	SDS for CPS and IoT

	SDS for Big Data
	Software-Defined Data Services (SDDS)
	Interoperability in Data Services
	Network-Aware Big Data Workflows

	Discussion

	II Network Softwarization
	Incremental Development of Cloud Networks
	SENDIM: Software-Defined Cloud Deployments
	SENDIM Algorithms
	Implementation
	Evaluation
	Simulations with SENDIM
	Incremental Updates and State-Aware Executions
	Seamless Migrations Across Development and Deployment Dimensions

	Conclusion

	Cloud-Assisted Networks as a Connectivity Provider
	Cloud-Assisted Networks: A Market Analysis
	Cloud Instances
	Cloud Data Transfer

	Towards NetUber Deployments
	Economical Point-to-Point Connectivity
	Higher Performance Point-to-Point Interconnection
	A Provider of Network Services

	Economic Models for Cloud-Assisted Connectivity
	Evaluation
	Economical Alternative to Connectivity Providers
	Higher Performance Point-to-Point Interconnection
	Qualitative Assessment

	Conclusion

	SDN Middlebox Architecture for Resilient Transfers
	SMART Approaches for Critical Network Flows
	SMART Alternative Approaches
	Clone Destination
	SMART Architecture

	SMART Algorithms
	Implementation
	Evaluation
	Conclusion

	III Service-Oriented Architecture
	Software-Defined Service-Compositions
	SDSC Model for Service Composition Workflows
	Solution Architecture
	Mayan Controller Farm
	Context-Aware Service Compositions with Mayan
	Initializing the Mayan Framework
	Scheduling Service Composition Workflows
	Layered Architecture of Mayan

	Implementation
	Evaluation
	Mayan Controller Performance
	Speedup of Service Compositions with Mayan

	Conclusion

	Network Service Chain Orchestration at the Edge
	Edge VNF Orchestration with Resilience and Agility
	NSC at the Edge: Graph Representation
	NSC at the Edge: MILP Models

	Évora Algorithms
	Évora Global Environment
	NSC Execution Paths at the Edge
	Resilient and Adaptive Scheduling of the NSCs

	Implementation
	Evaluation
	Problem Size and Scalability of Évora
	Efficient VNF Allocation at the Edge

	Conclusion

	Software-Defined Cyber-Physical Systems
	MANETs and VANETs: A Case for SD-CPS
	Solution Architecture
	SD-CPS Coordination
	Resource Allocation

	SD-CPS Controller
	Evaluation
	CPS Execution Modeling
	Resource Allocation Efficiency

	Conclusion

	IV Data Services
	On-Demand Big Data Integration
	Motivation
	Óbidos: An On-Demand Big Data Integration Platform
	Hybrid ETL Process
	Human-in-the-Loop ETL Process
	Data Sharing Process

	Implementation
	Data Structures
	Service-based APIs
	Óbidos Software Components

	Evaluation
	Performance of Integrating and Loading Data
	Performance of Querying the Integrated Data Repository
	Sharing Efficiency of Medical Research Data

	Conclusion

	Interoperable and Network-Aware Big Data Workflows
	An SDDS Model at Internet Scale
	Solution Architecture
	Prototype Implementation
	Evaluation
	Discussion

	Conclusion

	V Closure
	Final Remarks
	Future Work

	Bibliography

