
Design, Implementation
and Evaluation of MPVS:

A Tool to Support the Teaching
of a Programming Method

Isabelle Dony

Thesis submitted in partial fulfillment of the requirements
for the Degree of Doctor in Applied Sciences

September 14, 2007

Faculté des Sciences Appliquées
Département d’Ingénierie Informatique

Université catholique de Louvain
Louvain-la-Neuve

Belgium

Thesis Committee:
Baudouin Le Charlier (Advisor) UCL/INGI, Belgium
Philippe Delsarte UCL/INGI, Belgium
Pierre-Arnoul de Marneffe ULg, Belgium
Kung-Kiu Lau University of Manchester, UK
Jean-François Raskin ULB, Belgium
Yves Deville (Chair) UCL/INGI, Belgium



ii



Contents

Acknowledgements vi

Abstract viii

I A Pedagogical Challenge 1

1 Introduction 3

1.1 Our Contributions . . . . . . . . . . . . . . . . . . . . . . . . 4

1.2 Overview of the Thesis . . . . . . . . . . . . . . . . . . . . . . 5

2 Teaching a Structured Programming Method 7

2.1 A Method of Structured Programming . . . . . . . . . . . . . 7

2.1.1 Basic Notions Related to Algorithms . . . . . . . . . . 8

2.1.2 The Indian Exponentiation Algorithm . . . . . . . . . 12

2.1.3 The Binary Search Algorithm . . . . . . . . . . . . . . 16

2.1.4 The Insertion Sort Algorithm . . . . . . . . . . . . . . 21

2.1.5 An Algorithm to find the Next Permutation . . . . . . 26

2.2 Pedagogical Findings . . . . . . . . . . . . . . . . . . . . . . . 34

2.2.1 Pedagogical Motivations . . . . . . . . . . . . . . . . . 35

2.2.2 Pedagogical Difficulties . . . . . . . . . . . . . . . . . 36

2.2.3 Our Proposal to Overcome the Difficulties . . . . . . . 37

3 How about Existing Tools to Teach Structured Program-
ming? 39

3.1 Extended Static Checker . . . . . . . . . . . . . . . . . . . . . 39

3.1.1 The Java Modeling Language . . . . . . . . . . . . . . 40

3.1.2 The ESC/Java2 Verification Technique . . . . . . . . . 41

3.1.3 Experimentation on Some Examples . . . . . . . . . . 43

3.1.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2 Spark . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.2.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.2 Experimentation on some Examples . . . . . . . . . . 66

3.2.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 80

iii



iv Contents

3.3 SMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . 81

3.3.2 Model Checking . . . . . . . . . . . . . . . . . . . . . 81

3.3.3 Symbolic Model Checking . . . . . . . . . . . . . . . . 82

3.3.4 SMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

3.3.5 Supporting the Methodology with SMV . . . . . . . . 84

3.3.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . 89

3.4 Software Model Checkers . . . . . . . . . . . . . . . . . . . . 90

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

4 MPVS: A New Tool to Teach Structured Programming 93

4.1 What our Tool can Do . . . . . . . . . . . . . . . . . . . . . . 94

4.1.1 The Indian Exponentiation . . . . . . . . . . . . . . . 94

4.1.2 Binary Search Algorithm . . . . . . . . . . . . . . . . 99

4.1.3 The Insert Sort . . . . . . . . . . . . . . . . . . . . . . 104

4.1.4 The Next Permutation . . . . . . . . . . . . . . . . . . 107

4.2 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

II Definition and Implementation of the Languages 113

5 Definition of the Languages 115

5.1 Mathematical Notations . . . . . . . . . . . . . . . . . . . . . 115

5.1.1 Partial functions . . . . . . . . . . . . . . . . . . . . . 115

5.2 A Simple Programming Language . . . . . . . . . . . . . . . . 116

5.2.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . 116

5.2.2 Operational Semantics . . . . . . . . . . . . . . . . . . 117

5.3 The Assertion Language . . . . . . . . . . . . . . . . . . . . . 131

5.3.1 Abstract Syntax . . . . . . . . . . . . . . . . . . . . . 131

5.3.2 Semantics . . . . . . . . . . . . . . . . . . . . . . . . . 131

6 Implementation of MPVS 141

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

6.2 The Oz Programming Language and the Mozart Program-
ming System . . . . . . . . . . . . . . . . . . . . . . . . . . . 142

6.2.1 The multiparadigm programming language Oz . . . . 142

6.2.2 Finite Domain Constraint Programming with Oz . . . 145

6.2.3 The Mozart programming system . . . . . . . . . . . . 148

6.3 Verification Conditions . . . . . . . . . . . . . . . . . . . . . . 149

6.4 Translating Verification Conditions in Oz . . . . . . . . . . . 150

6.4.1 Basic Constraints . . . . . . . . . . . . . . . . . . . . . 150

6.4.2 Naive Translation . . . . . . . . . . . . . . . . . . . . 151

6.4.3 Using Reified Constraints . . . . . . . . . . . . . . . . 152

6.5 Solving the Constraints . . . . . . . . . . . . . . . . . . . . . 155



Contents v

6.6 Automating the Translation . . . . . . . . . . . . . . . . . . . 160

6.6.1 Use of Dictionaries . . . . . . . . . . . . . . . . . . . . 160

6.6.2 Pattern-matching on the Syntactic Tree . . . . . . . . 160

6.6.3 Translating Quantified Assertions . . . . . . . . . . . . 162

6.7 Interleaving Constraint Translation with Constraint Solving . 163

6.8 Distribution Heuristics - Completeness of our Method . . . . 167

6.9 Final Improvements . . . . . . . . . . . . . . . . . . . . . . . 168

6.9.1 Detecting Run-time Errors and Incorrect Assertions . 168

6.9.2 Dealing with Negative Expressions . . . . . . . . . . . 171

6.10 Architecture of MPVS . . . . . . . . . . . . . . . . . . . . . . 174

6.11 Efficiency Experiments . . . . . . . . . . . . . . . . . . . . . . 177

6.12 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178

III Experimentation 181

7 Using MPVS in a Programming Course 183

7.1 What Do we want to Evaluate? . . . . . . . . . . . . . . . . . 184

7.2 A First Experimentation . . . . . . . . . . . . . . . . . . . . . 185

7.2.1 The Course Organisation . . . . . . . . . . . . . . . . 185

7.2.2 Evaluation . . . . . . . . . . . . . . . . . . . . . . . . 194

7.3 A Second Experimentation . . . . . . . . . . . . . . . . . . . 194

7.3.1 The Course Organisation . . . . . . . . . . . . . . . . 194

7.3.2 The Project . . . . . . . . . . . . . . . . . . . . . . . . 195

7.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

8 Conclusion 219

A Existing Tools 223

A.1 ESC/Java2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

A.1.1 The Binary Search . . . . . . . . . . . . . . . . . . . . 223

A.1.2 The Next Permutation . . . . . . . . . . . . . . . . . . 224

A.2 SPARK . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228

A.2.1 Proofs of User-defined Rules for the Exponentiation . 228

A.3 SMV . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

A.3.1 Complete SMV Script for the Insertion sort . . . . . . 232

B MPVS Tool 235

B.1 Concrete Syntax of the Languages . . . . . . . . . . . . . . . 235

B.1.1 Declarations . . . . . . . . . . . . . . . . . . . . . . . . 235

B.1.2 The Programming Language . . . . . . . . . . . . . . 236

B.1.3 The Assertion Language . . . . . . . . . . . . . . . . . 237

B.2 Availability of the Tool . . . . . . . . . . . . . . . . . . . . . . 238

B.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 238



vi Contents

B.3.1 Parsing and Type Checking . . . . . . . . . . . . . . . 238
B.3.2 Generating the Script . . . . . . . . . . . . . . . . . . 238
B.3.3 The GUI . . . . . . . . . . . . . . . . . . . . . . . . . 241

B.4 Testing Students’ Solutions to the Subarray with Biggest Sum
Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 243

B.5 Solutions to the Exercises Presented in Chapter 7 . . . . . . . 247

Bibliography 247



Acknowledgements

The realization of this thesis would not have come to an end without the
support of many people.

My first thought goes to my advisor, Baudouin Le Charlier, who is the
main person responsible for the achievement of this thesis. He has dedicated
some considerable time to help me in the redaction of papers and of my
thesis; he has provided a lot of helpful comments, advices and suggestions.
I thank him for his human qualities and his faculty to regulate my stress.
He has transmitted some rigour in my work and some very good teaching
influence.

I am also grateful to the members of my jury, Jean-François Raskin,
Philippe Delsarte, Pierre-Arnoul de Marneffe, and Kung Kiu Lau, as well
as Yves Deville, the president of my jury, for having read my thesis and for
their valuable feedback. Thank you Philippe Delsarte for the second reading
of my thesis mainly focused on the English language. Special thanks to Yves
Deville, for the constant encouragements, especially during the hard times.

Let me also thank Charles Pecheur, for all the discussions we shared,
ideas and advices.

I cannot forget to show some gratitude to Raphaël Collet. His advices
are the bases of my work. Without him, I certainly would never have used
the Oz language in my thesis. He has spent quite some time to help me and
all his free consulting days are priceless. Many thanks for his availability.

I also extend my gratitude and appreciation to many other colleagues,
previous and current. Donatien shared my office. He helped me in several
ways, from Oz consultant to friend relation. Marie-Catherine also worked
several years right in front of me. We shared many enthusiastic discus-
sions about teaching, but also about the life in general. Thank you Nico-
las and Xavier, Gustavo and François, my next door office neighbours, to
have helped me so often, solving technical problems, or sharing my recur-
rent doubts about this thesis... Thank you to my newly colleague José, who
has used the preliminary version of my tool for his memory. He was very
helpful for several improvements, but still more thank for the numerous dis-
cussions about teaching: for the past, but also the coming year, a year full
of questions... I wish him good success with his thesis. Special thanks to the
feminine minority of the department, who was there to cheer me up...

vii



viii Acknowledgements

Thank you to all the students and especially the three grade students who
have experimented our tool.

I would like to thank our close group of friends (le souper piscine) for
their great sense of humour, their support during all these years, and the
great moments we have spent together.

Many thanks to my parents and parents in law, for their constant pres-
ence each time I needed some help. They allow me to manage both my thesis
and my familial life. Special thanks to Francis, for his careful readings.

Of course, I cannot close this acknowledgement section without thanking
with all my heart my husband Valery Anciaux, for his love and tireless sup-
port during my whole thesis. Living by my side during my doubts and my
existential questions was not a piece of cake. Thanks a lot for his several
reading and re-reading of my thesis.

My thanks also go to my children Corentin and Charlotte who regularly
brought me down-to-earth...

I promise you all, I will never bother you again with my thesis.



Abstract

Teaching formal methods is notoriously difficult and is linked to motivation
problems among the students; we think that formal methods need to be sup-
ported by adequate tools to get better acceptance from the students. One of
the goals of the thesis is to build a practical tool to help students to deeply
understand the classical programming methodology based on specifications,
loop invariants, and decomposition into subproblems advocated by Dijkstra,
Gries, and Hoare to name only a few famous computer scientists. Our mo-
tivation to build this tool is twofold. On the one hand, we demonstrate that
existing verification tools (e.g., ESC/Java, Spark, SMV) are too complex to
be used in a pedagogical context; moreover they often lack completeness,
(and sometimes, even soundness). On the other hand teaching formal (i.e.,
rigorous) program construction with pen and paper does not motivate stu-
dents at all. Thus, since students love to use tools, providing them with a
tool that checks not only their programs but also their specifications and
the structure of their reasoning seemed appealing to us.

Obviously, building such a system is far from an easy task. It may
even be thought completely unfeasible to experts in the field. Our approach
is to restrict our ambition to a very simple programming language with
simple types (limited to finite domains) and arrays. In this context, it is
possible to specify problems and subproblems, both clearly and formally,
using a specific assertion language based on mathematical logic. It appears
that constraint programming over finite domains is especially convenient
to check the kind of verification conditions that are needed to express the
correctness of imperative programs. However, to conveniently generate the
constraint problems equivalent to a given verification condition, we wish to
have at hand a powerful language that allows us to interleave constraints
generation, constraints solving, and to specify a distribution strategy to
overcome the incompleteness of the usual consistency techniques used by
finite domain constraint programming. We show in this thesis that the Oz
language includes all programming mechanisms needed to reach our goals.

Such a tool has been fully implemented and is intended to provide in-
teresting feedback to students learning the programming method: it de-
tects programming and/or reasoning errors and it provides typical counter-
examples. We argue that our system is adapted to our pedagogical context

ix



x Abstract

and we report on experiments of using the tool with students in a third year
programming course.



Part I

A Pedagogical Challenge

1





Chapter 1

Introduction

One of the big challenges when teaching formal methods is to motivate
students. This difficulty is by no means new since, in 1981, Dijkstra wrote in
his foreword to Gries book [26]: we get a glimpse of educational challenge we
are facing: besides teaching technicalities, we have to overcome the mental
resistance always evoked when it is shown how the techniques of scientific
thought can be fruitfully applied to a next endeavour. A quarter of a century
later, the discipline of computer science is more mature, the discipline of
Formal Methods has evolved, but the educational challenge appears to be
as great as ever. Since Dijkstra, the boom of information technology has
left aside the rigorous programming methods. Formal methods have mainly
focused on practical aspects, like embedded systems and static detection of
programming errors. From our side, we think it is essentiel for students to
approach a good and rigorous programming method, even if it is not directly
based on a practical field. Even if students are more motivated when they
write a concrete application, it is by learning to write correct programs that
they will master the art of working out concrete applications. Our two main
objectives are to motivate our students, and to find a better approach to
make them understand what a good programming method is.

In such a context, the idea is to make an experimentation with students.
With our teaching experience, the idea is to enhance our course with a tool
to motivate the students to learn the structured programming method. We
would like to help the students to overcome the mental resistance: using
an appropriate software could enforce the use of the method, give a precise
feedback to the students, help them to understand their reasoning errors.
The requirements for such a tool have already been studied in [14]. However,
building such a system is far from an easy task. It may even be thought
completely unfeasible to experts in the field, since verifying the correctness
of algorithms is an undecidable problem in the general case. We think that
such a tool can be implemented if we restrict our ambition to our pedagogical

3



4 Introduction

context and if we consider a simple programming language.

1.1 Our Contributions

Analysis of how existing tools can help to teach structured pro-
gramming There are two complementary approaches to program verifi-
cations: model checking and theorem proving. Model checking is a formal
verification technique based on state exploration. Making an exhaustive
verification can give a precise result claiming that the property is true or
else providing counter-examples. However, the size of the state space is of-
ten exponential in the size of the system description, resulting in the state
explosion problem. Theorem proving uses a mechanical verification, it does
not have the constraints on the domain size but it is not complete and/or it
requires user’s guidance. Among tools based on theorem proving, we have
considered ESC/Java and Spark. ESC/Java [23, 12, 16] has been designed
to be fully automatic. As a consequence, it focuses on some limited prop-
erties, and is nor sound nor complete. Spark[3] is a powerful tool, used in
mission critical applications. But it requires extensive human guidance. We
also studied a model checker: SMV [44]. It gives an interesting feedback
about the correctness of algorithms, but it cannot be used directly by the
students, because encoding the programs and the verification conditions into
SMV is not a trivial work. In conclusion, none of these tools are exactly
appropriate to fulfill our needs because they require too much expertise and
often do not provide precise feedback about the verification.

Definition of a new tool devoted to teach structured programming
In our programming learning context, we would like a fully automatic tool,
easy to manipulate, enforcing the use of the structured programming method
and giving precise feedback to help the students to understand their reason-
ing errors. The ideal tool should be easy to use, while applying the non
trivial concepts taught. This should enforce rigor, the role of the invari-
ant and the decomposition into subproblems. The feedback given by the
tool should be clear, to help our students to understand their reasoning
errors. Displaying precise counter-examples may be very informative, and
false warnings and forgotten errors have to be avoided. Our approach is to
restrict our ambition to a simple programming language with simple types
(limited to finite domains) and arrays. We do not need to cover a large
and complex programming language like Java: we consider that, for teach-
ing algorithmic, we do not need a very elaborate language. The simpler it
is, the better it is. In this context, it is possible to specify problems and
subproblems, both clearly and formally, using a specific assertion language
based on mathematical logic: the specification language can be expressive
enough to express as directly as possible what the student means.



1.2. Overview of the Thesis 5

Development of constraint programming techniques to implement
the new tool In this restricted context, it appears that constraint pro-
gramming over finite domains is especially convenient to check the kind of
verification conditions that are needed to express the correctness of impera-
tive programs. To conveniently generate the constraint problems equivalent
to a given verification condition, we use the Oz language, a multiparadigm
and powerful language.

Experiments with the tool in an advanced programming course
Such a tool has been fully implemented. In the context where it is in-
tended to provide interesting feedback to students learning the program-
ming method, we analyse the impact of such a tool on the behaviour, the
motivation and the understanding of the students learning this method. We
have the opportunity to participate in the “Program Conception Methods”
course [39] addressed to the computer science students in the third year of
their studies. This tool has been experienced twice as a support of this
course.

1.2 Overview of the Thesis

• Chapter 2: Teaching a Structured Programming Method:
Principles and Difficulties

We describe the main aspects of structured programming based on
Baudouin Le Charlier’s presentation [37]. We present the reasoning
methods, considering the constructive approach and the verification
approach. To illustrate these, we have chosen four examples, with
increasing difficulties; for each of them, we detail the process of con-
structing the algorithm and, thereafter, we make the mathematical
proofs of correctness. These examples are used later on for discussing
program verification with tools. We conclude with the pedagogical
findings of this method. We believe that supporting this method with
an adapted software can help the students: we enumerate the require-
ments of such a tool.

• Chapter 3: How about Existing Tools to Teach Structured
Programming?

We describe three existing verification tools that could be interesting
to use in our pedagogical context: ESC/Java2, Spark, and SMV. For
each system, we first describe the technical aspect, we present some
scenarii of verification with the algorithms we have studied in Chapter
2, and we conclude that it is difficult to find an appropriate existing
tool in our pedagogical context. Finally, we argue that the best way
to have a precise feedback about the correctness of the programs, is to



6 Introduction

perform exhaustive verification even if we have to restrict the program
variable domains to small finite domains.

• Chapter 4: A new Tool to Teach Structured Programming

We present the tool that we have completely implemented. We show
several scenarii of verification with the same algorithms as in the pre-
ceding chapters. We discuss the advantages comparing to the studied
existing tools.

• Chapter 5: Definition of Languages To deeply understand the
behaviour of the tool and to have a reference for the next chapter
which explains the implementation, we give a complete definition of
the programming language and the assertion language accepted by our
tool.

• Chapter 6: Implementation of the Tool using the Mozart
Programming System

We describe the way verification conditions are checked using finite do-
main constraint programming. We show how our programs are trans-
lated into contraints and how counter-examples are provided.

• Chapter 7: Using our Tool in a Programming Course

We present two experimentations with the tool, and we conclude with
our feeling about the impact of this tool on the student motivation
and about their understanding level.

• Chapter 8: Conclusion

We finally conclude about this thesis project. Working out such a tool
is possible and can help to teach a structured programming method.
However, the tool has some drawbacks that are inherent in any tool.



Chapter 2

Teaching a Structured
Programming Method:
Principles and Difficulties

2.1 A Method of Structured Programming

1 A while ago, the programming task did not involve much theoretical con-
cern. Learning how to program was restricted to learning a programming
language and few people worked on program correctness. The first article on
proving program correctness [46] was by Peter Naur in 1966. Naur empha-
sised the importance of program proofs and provided an informal technique
for their specification. Then, work on program correctness has moved up:
Robert Floyd [24] attached assertions to programs, Tony Hoare [28] defined
his well-known theory: it proves partial correctness of programs by defining
a restricting programming language in terms of a logical system of axiom
and inference rules. From this, a lot of research on axiomatisation has been
done [30, 31, 32]. In 1976, Edger W.Dijkstra [17] introduced weakest pre-
conditions and then showed, through examples, how they could be used as
a “calculus for the derivation of programs”. From this time, it became clear
that theory and formalism could actually lead to development of programs
in a more reliable manner. A programming discipline with a method based
on formal logic was born. Its goal was to learn writing a program from the
specifications:
Specifying, then constructing the program by proving that it is correct. This
approach is based on rigour, reasoning, loop invariant, decomposition into
subproblems, and formal specification.

1based on the book of D. Gries [26]

7



8 Teaching a Structured Programming Method

In this chapter, we describe the main aspects of structured programming
based on Baudouin Le Charlier’s presentation [37]. First, we introduce basic
notions needed for writing simple algorithms. Next, we present the reason-
ing methods. We consider the constructive approach and the verification
approach. To illustrate them, we have chosen four examples, with increas-
ing difficulties; for each of them, we detail the process of constructing the
algorithm and then we make the mathematical proofs to ensure the correct-
ness of the algorithm. These examples will be used later on for discussing
program verifications with tools.

2.1.1 Basic Notions Related to Algorithms

An algorithm is an ordered set of precise rules, used to produce some output
when the input data is correctly chosen. J.Arsac [2]

This definition needs to be contextualized: in our programming learning
context, we first introduce the objects we are going to manipulate (the data
and the auxiliary objects), then we detail the basic operations and the con-
trol structures to be used to define and organise the rules. Next, we explain
what a correct algorithm is, and the meaning of input data correctly chosen
and output.

We use integer and Boolean values, simple programming variables (of
integer or Boolean type) and integer constants; we also manipulate arrays:
a[u..v] where u and v are constants. It means that the indexed variables
a[u], a[u+1],..., a[v] exist; but evaluating an indexed variable a[i] with i > v
or i < u returns an error. a[u..v] with v < u is an empty array.

The basic components are expressions, conditions and assignments. The
simplest expressions are values, simple variables or indexed variables. The
more complex expressions involve operations. For arithmetic expressions, we
allow addition, subtraction, multiplication, integer division and the modulo
operation. For Boolean expressions (conditions), the allowed operations are
comparisons between integer expressions, and equality or inequality between
Booleans expressions. Global operations on arrays are not allowed. When
evaluating an expression, the values of the involved variables are read but
never modified. Naturally, to have a well-defined evaluation, all the variables
involved must be initialised. In a first approach, we consider that the integer
domain is infinite, and so we avoid, at this moment, some out of domain
bounds problems. The execution of an assignment, x:= expr modifies or
initialises the variable x with the value of the right expression expr.

We define a statement as an action, or a set of actions on the program
variables. The simplest one is the assignment. For the other statements, we



2.1. A Method of Structured Programming 9

use three control structures: sequence of statements, conditional statement
and while statement.

S1;

S2;

..

SN

sequence of statements

if C then S1

else S2

end

conditional statement

Init;

while not H

Iter

end;

Clot

while statement

Here S1, S2, ...,SN stand for simpler statements, they can be themselves
sequences, conditional statements or while statements. C is a condition
(Boolean expression) and according to the evaluation of C, the statement
S1 or the statement S2 is executed. In a while statement, we assign specific
roles to the statements: Init stands for the initialisation, Iter stands for
the iteration and Clot, for the closure. H is the halting condition.

After having presented all the required elements of an algorithm, let us
define what a correct algorithm is. An algorithm is correct according to
its specification: an initial situation (the precondition) and a final situation
(the postcondition). When the input data satisfies the precondition, the
algorithm must guarantee that the output fulfills the postcondition. In
fact, the final situation is reached through successive modifications from
the initial situation. Initial, final and intermediate situations are named
assertions when they are expressed in a mathematical way.

Here is an example of a sequence of assignments. We can observe the
different concepts that we have introduced. A standard format is set for the
used variables and the pre and postconditions. Besides, we write assertions
between braces since they need to be distinguished from the code.
The goal of the algorithm is to exchange the values of two variables, a and
b.

• Declarations:

var a, b : integer;

• Pre: a, b initialised

Post: a = b0 and b = a0

• {a = a0 and b = b0}

t := a;



10 Teaching a Structured Programming Method

{a = a0 and b = b0 and t = a0}

a := b;

{a = b0 and b = b0 and t = a0}

b := t

{a = b0 and b = a0}

We can notice some successive modifications of the initial assertion before
reaching the postcondition. By convention, a0 and b0 represent the initial
values of a and b.

For an iterative algorithm, we need an invariant, a general situation encap-
sulating all intermediate situations we get at each iteration. In other words,
the invariant is an assertion that must hold before and after every iteration.

• Declarations:

const n; n ≥ 0;

tab a: array[1..n] of integer ;

var s: integer;

• Pre: a initialised

Post: a is unchanged and s = Σj=n
j=1a[j]

• {a is initialised}

i := 1 ;

s := 0 ;

{a = a0 and 1 ≤ i ≤ n + 1 and s = Σj=i−1
j=1 a[j]}

while (i <> n + 1)

s := s + a[i] ;

i := i + 1 ;

end

{a = a0 and s = Σj=n
j=1a[j]}

This example computes the sum of the array elements; it shows us that
assertions can be more expressive than the algorithm expressions and con-
ditions. As we will see in the following chapters, we can write less or more
formal assertions depending on the context of reasoning about an algorithm.



2.1. A Method of Structured Programming 11

In our reasoning about algorithms, we use the Hoare notation: let Q, and
P be two assertions, and let S be a statement, we write

{P} S {Q}

to mean that if the assertion P holds before executing S, it is guaranteed
that S terminates and does not generate any run-time error, and that after
executing S, the assertion Q also holds. Notice that we use the notation to
express total correctness, not only partial correctness as in Hoare’s original
proposal [29]; partial correctness simply requires that if S terminates and if
no runtime error occurs, then it is correct. In our view, S must terminate.
Moreover, it must terminate without runtime error.

In the specific context of the while statement, we have:

• {Pre} Init {Inv}

• {Inv and not H} Iter {Inv}

• {Inv and H} Clot {Post}

To have total correctness of a while statement, we need the total correct-
ness of the three Hoare propositions, and besides, we need to guarantee the
termination of the loop by proving a variant, a positive integer function of
the program variables that strictly decreases at each iteration.

In the next sections, we develop two reasoning approaches based on these
notations.

• In the constructive approach, we first define the pre and post con-
ditions; if there is no obvious way to go from the precondition to
the postcondition, we search for intermediate assertions that seem to
make the problem easier to solve, then we derive the statements. If
the process is iterative, we choose an invariant and then we derive the
initialisation, the iteration, the closure and halting condition.

Elaborating the problem by reasoning with intermediate situations
leads us to reduce the problem to very simple problems. The benefit
of this method stems from the divide-and-conquer approach. This
method of construction of algorithm guarantees the correctness of the
algorithm since the subproblems are very simple to solve.

• In the verification approach, giving the code and the assertions
(invariant and other intermediate assertions), we mathematically prove
the correctness of each transformation {P}S{Q}.

In each of the following examples, we first present in a concrete way the
construction method by pinpointing some difficulties that we (more specifi-
cally students) generally meet, then we present some interesting proofs. The
typical patterns are represented through these examples.



12 Teaching a Structured Programming Method

2.1.2 The Indian Exponentiation Algorithm

The first example uses simple variables, and the invariant expresses an in-
teresting relation. The first part of the exercice consists in elaborating an
algorithm computing xy in log(y) time where y ≥ 0, assuming that 00 = 1.
Then, we prove the correctness of the algorithm according to the specifica-
tions.

Constructing a correct algorithm using the invariant method First,
in order to explain the intuitive reasoning using concrete values, let us com-
pute 1015:

1015 = 10 ∗ 1014

= 10 ∗ (102)7

= 10 ∗ 1007

= 10 ∗ 100 ∗ 1006

= 1000 ∗ (1002)3

= 1000 ∗ 100003

= 1000 ∗ 10000 ∗ 100002

= 10000000 ∗ 100000000
= 1000000000000000

From this, we hightligth a constant relation xy = z ∗uv where z, u and v are
auxiliary variables that lead us to the result that will be in z (when v = 0).
Now, we are able to fix the declarations; we can specify the precondition
and the postcondition, and identify the invariant from the relation that we
have highlighted.

These first steps are depicted below.

• Declarations:

var x, y : integer; (input)

var z : integer; (output)

var u, v : integer; (auxiliary variables)

• Pre: x, y initialised and y ≥ 0

Post: x, y unchanged and z = xy

Inv: x, y unchanged and v ≥ 0 and xy = z ∗ uv

When these steps are completed, we derive the statements from the
Hoare propositions.

First, we derive the initialisation from {Pre} Init {Inv}.
We want to get xy = z ∗ uv.
It is clear that if we choose z = 1 and u = x and v = y, this equality is
satisfied.
To have this, we simply need to execute the three statements



2.1. A Method of Structured Programming 13

z := 1 ; u := x ; v := y

which are correct because the precondition guarantees that x and y are
initialised.
Besides, v ≥ 0 because y ≥ 0.

Then, we need to discover the halting condition and we derive the iteration
from {Inv and not H} Iter {Inv}.

The condition v=0 seems a judicious halting condition because if v = 0,
then xy = z ∗ uv becomes xy = z, i.e., the relation of the postcondition. So,
before each iteration, we have xy = z∗uv with v > 0 and we want xy = z∗uv

by modifying the auxiliary variables z, u, v. Let u = u1, v = v1, z = z1,
satisfying xy = z1 ∗ uv1

1 and v1 > 0.

1. If v1 is even, then

z1 ∗ uv1

1 = z1 ∗ (u2
1)

v1 div 2

So we restore the invariant such that z = z1 and u = u2
1 and v =

v1 div 2 by executing
u := u * u ; v := v div 2

which are correct statements because v and u are initialised and the
division operation does not divide by zero.

We get the equality xy = z ∗ uv, and v stays positive because v1 ≥ 2.

2. If v is odd, then,

z1 ∗ uv1

1 = z1 ∗ u1 ∗ (u2
1)

(v1−1) div 2

with z = z1 ∗ u1 and u = u2
1 and v = (v1 − 1) div 2, we satisfy the

invariant.

We can execute
z := z * u ; v := v - 1 ; u := u * u ; v := v div 2

which are correct for similar reasons as in the previous item (when v
is even).

We observe that v stays positive because v := v - 1, v1 > 0 .

Next, no closure is needed to have {Inv and H} Clot {Post}, because the
postcondition is exactly the result obtained when leaving the loop: (xy =
z ∗ uv and v = 0) is equivalent to xy = z.

Finally, we represent in Figure 2.1 the algorithm in the loop format.



14 Teaching a Structured Programming Method

• Declarations:

var x, y : integer; (input)

var z : integer; (output)

var u, v : integer; (auxiliary variables)

• Pre: x, y initialised and y ≥ 0

Post: x, y unchanged and z = xy

• u := x ; v := y ; z := 1

while (v <> 0)

if (v mod 2 = 1) then

z := z * u ;

v := v - 1

end

u := u * u ;

v := v div 2

end

Figure 2.1: The algorithm of the Indian exponentiation

Proving the correctness of the algorithm To prove {P} S {Q}, we
make a symbolic execution. It means that we give initial symbolic values
to the variables used by S. Then, for all possible execution paths of S, we
calculate the final values, we verify that the execution is well defined and
that the final values satisfy Q.

We have to prove three Hoare propositions:

• {Pre} Init {Inv}

After the initialisation execution, xy = z ∗ uv is correct.

Indeed, the equality is trivial with u = x, v = y and z = 1.

• {Inv and not H} Iter {Inv}

Let u1, v1, z1 be the initial values of u, v, z;

by hypothesis, z1 ∗ uv1

1 = xy and v1 > 0.

To verify that the invariant holds after the iteration, we have to dis-
tinguish two cases generated by the conditional statement.

Before, we verify that the condition (v mod 2 = 1) is well-defined: v0

is initialized and we do not have a modulo operation by zero.

1. If v1 mod 2 = 0 then

we immediately see that no runtime error can occur because u
and v are initialised.

So, the execution of the iteration terminates with

v = v1 div 2, u = u1 ∗ u1, z = z1.



2.1. A Method of Structured Programming 15

The invariant holds:

v ≥ 0 because

v = v1 div 2 ≥ 0 div 2 = 0

and
z ∗ uv = z1 ∗ (u1 ∗ u1)

v1 div 2

= z1 ∗ (u2
1)

v1 div 2

= z1 ∗ uv1

1 (v1 is even)
= xy (by hypothesis)

2. If v1 mod 2 = 1 then

we immediately see that no runtime error can occur for similar
reasons as in item 1.

So, the execution of the iteration terminates with

v = (v1 − 1) div 2 , u = u1 ∗ u1, z = z1 ∗ u1.

The invariant holds:

v ≥ 0 because

v1 ≥ 1 and v = (v1 − 1) div 2 ≥ (1 − 1) div 2 = 0

and
z ∗ uv = (z1 ∗ u1) ∗ (u1 ∗ u1)

(v1−1) div 2

= (z1 ∗ u1) ∗ (u2
1)

(v1−1) div 2

= (z1 ∗ u1) ∗ uv1−1
1 (v1 is odd)

= z1 ∗ uv1

1

= xy (by hypothesis)

• {Inv and H} Clot {Post}

the closure is empty and,

by hypothesis, xy = z ∗ uv and v = 0.

Hence the postcondition is satisfied since xy = z ∗ u0 = z.

Finally, proving the three Hoare propositions only guarantees partial cor-
rectness of the algorithm. To prove total correctness, we still have to prove
the loop termination by providing a variant. A variant is a positive integer
function of the program variables that strictly decreases. In this example,
we can easily see that v is an appropriate variant, since v strictly decreases
to 0.

More formal reasoning on the assertions can be made using, for example,
the strongest postcondition or the weakest precondition method. They are
less intuitive than the symbolic execution method and they require much
more formalisation to be used; for small algorithms using simple variables,
they can be used, but for more complex algorithms with complex assertions,
these methods are not easy to use. Actually, they are mainly used by auto-
mated verification tools; it is in this context that we mention these methods



16 Teaching a Structured Programming Method

later, in the next chapters. These methods are also in the student cursus
but we do not give them priority: our main goal is to teach a method of con-
struction of algorithm with a reasonable formalism and not to manipulate
difficult formulas.

2.1.3 The Binary Search Algorithm

Now, we use the arrays in the classical binary search algorithm. This is an
algorithm notoriously difficult to construct correctly without a good pro-
gramming method.

Constructing a correct algorithm using the invariant method The
goal of the algorithm is to look for the value of x in the increasing array a
by binary search. If the value of x occurs in a, the Boolean result variable
b is set to true; otherwise, b is set to false.

We first express the specifications:

Precondition The array a is initialised and is sorted (increasing).

Postcondition The variable b is equal to true if x occurs in the array a; it
is equal to false otherwise.

This is how the binary search principle works: it splits a sorted subarray
that may contain the element x in two parts. Then, according to the value of
the middle element of this subarray, we keep the half part that may contain
x. By iterating this process, we can easily see that the array stays always
divided in three parts.

It is time to choose a loop invariant: to divide the array a, we use two indices
g and d. The key of success to have a correct algorithm is the enforcement
of an index convention. We choose g, the index of the first element out of
the left part of the array and d, the index of the first value of the right part.
The invariant is:

1 g d n

a :

1 ≤ g ≤ d ≤ n + 1

x is strictly greater than any value of a[1..g − 1]

x is strictly smaller than any value of a[d..n]

a is unchanged

Now, we are able to derive the statements:



2.1. A Method of Structured Programming 17

According to the invariant picture, the statements are the following
g := 1 ; d := n+1

Indeed, the left and right examined parts are empty, and x cannot have
been found in a.

For the iteration, we choose an element in the middle of the subarray
a[g..d − 1], namely a[m] (this subarray cannot be empty i.e., g < d). To
determine m, we compute m = (g + d) div 2; we verify that a[m] belongs to
a[g..d − 1] (which also guarantees that a[m] belongs to a[1..n]):

1. m < d since

(g + d) div 2 ≤ (g + d)/2 (div takes the quotient by default)
< (d + d)/2 = d

2. g ≤ m since

(g + d) div 2 ≥ (g + g) div 2 = g

In fact, according to the picture, we have four possibilities:

1. g = d: the execution can stop, b must be false; the statement is
b := false

2. a[m] = x (and a[g..d − 1] is not empty):

x has been found and the execution can stop, b must be true; the
statement is

b := true

3. a[m] < x (and a[g..d − 1] is not empty):

1 g m d n

a : < x

the statement is
g := m + 1

and all the elements of the new left subarray a[1..g−1] are still strictly
smaller that x:

1 m g d n

a : < x

4. a[m] > x (and a[g..d − 1] is not empty):

1 g m d n

a : > x



18 Teaching a Structured Programming Method

the statement is
d := m

and all the elements of the new subarray a[d..n] are still strictly greater
than x:

1 g d n

a : > x

So the iteration terminates when the subarray a[g..d − 1] is empty or
when a[m] = x.

For conception reasons, we choose that b stands in the halting condition
to say whether a[m] = x or not. So, the halting condition becomes b =

true or g = d, and the invariant has to be modified:

1 g d n

a :

1 ≤ g ≤ d ≤ n + 1

x is strictly greater than any value of a[1..g − 1]

x is strictly smaller than any value of a[d..n]

a is unchanged

b is true if x has been found in a[1..n]

The initialisation changes:
g := 1 ; d := n+1 ; b:= false

The iteration becomes

m := (g + d) div 2 ;

if(a[m] < x) then g := m + 1 ;

if(a[m] > x) then d := m ;

if(a[m] = x) then b := true

No closure is needed, because the value of b satisfies the postcondition
when the iteration stops with b = true and when the iteration stops with
g = d.

Together, the invariant and the halting condition say that:
if b = true, then x has been found in a[1..n];
if g = d, then we know that x does not occur in a because all the elements
on the left of g are strictly smaller than x and all the elements on the right
of g (including a[g]) are strictly greater than x.

A complete version of the algorithm with declarations, more formal pre-
condition and postcondition is given in Figure 2.2.



2.1. A Method of Structured Programming 19

• Declarations:

const n;

var a: array[1..n] of integer; x: integer; (input)

var b: Boolean; (output)

var g, d, m: integer; (auxiliary variables)

• Pre: a, x initialised, n is the array size,
(∀ i : 1 ≤ i ≤ n − 1 : a[i] ≤ a[i + 1])

Post: a, x unchanged, b = (∃ i : 1 ≤ i ≤ n : a[i] = x)

• g := 1 ; d := n + 1 ; b := false

while (not (g = d or b))

m := (g + d) div 2 ;

if(a[m] < x) then g := m + 1 ;

if(a[m] > x) then d := m ;

if(a[m] = x) then b := true

end

Figure 2.2: A binary search algorithm and its specification

Before doing a mathematical proof of the correctness of the algorithm, we
need to formalise the invariant picture:

(1) 1 ≤ g ≤ d ≤ n + 1

(2) (∀ i : 1 ≤ i < g : a[i] < x)

(3) (∀ i : d ≤ i ≤ n : a[i] > x)

(4) b ⇒ (∃ i : 1 ≤ i ≤ n : a[i] = x)

(5) a unchanged

Line 4 formally translates the role of b described in the informal invariant:
when b is true, we guarantee that (∃ i : 1 ≤ i ≤ n : a[i] = x); when b is false,
we cannot guarantee there is no x in a unless when g = d: in this case, lines
2 and 3 assert that x does not accur in a, indeed, x is neither in the left
subarray of a, nor in the right subarray.

Proving the correctness of the binary search algorithm Focusing on
the iteration, let us verify that the proposition {Inv and not H} Iter {Inv}
holds.

Let g1, d1, b1 be the initial values of g, d, b;
by hypothesis,

(1) (∀ i : 1 ≤ i < n : a[i] < a[i + 1])

(2) 1 ≤ g1 < d1 ≤ n + 1

(3) (∀ i : 1 ≤ i < g1 : a[i] < x)

(4) (∀ i : d1 ≤ i ≤ n : a[i] > x)



20 Teaching a Structured Programming Method

(5) b1 ⇒ (∃ i : 1 ≤ i ≤ n : a[i] = x)
(6) a is unchanged
(7) b1 = false

Notice that hypothesis (5) is true because of (7).
After the first statement, m = (g1 + d1) div 2.

1. There are no out of bound error for a[m]:

(a) m ≤ n

since (g1 + d1) div 2 <= (n + n + 1) div 2 = n

(b) 1 ≤ m

since (g1 + d1) div 2 > 2 div 2 = 1

2. We symbolically execute the three conditional statements. We detail
the first one: a[m] < x.

the execution of the iteration terminates with

g = m + 1, d = d1, b = b1.

The invariant is satisfied:

• ∀i : 1 ≤ i ≤ g − 1 : a[i] < x because

a[m] < x and ∀i : 1 ≤ i ≤ m − 1 : a[i] ≤ a[i + 1] (from (1),(6))

and so, ∀i : 1 ≤ i ≤ m : a[i] < x with m = g − 1.

• 1 ≤ g ≤ d because
g = m + 1

= (g1 + d1) div 2 + 1 (m = (g1 + d1) div 2)
< d1 + 1 (g1 < d1)
= d + 1 (d = d1)

and
g = m + 1

= (g1 + d1) div 2 + 1
≥ 1.

• The other parts of the invariant are satisfied because d = d0 and
b = b0.

Finally, for this example, choosing an appropriate variant is not so simple:
the decreasing integer function should probably take into account the size
of the middle part of the array because this part tends to an empty part: in
mathematical terms, d − g is decreasing to 0. But is it sufficient? There is
a second condition for terminating the loop: when the element x is found.
The iteration consists in changing the value of b from false to true. As the
variant must be an integer function, we can, for example, “convert” false



2.1. A Method of Structured Programming 21

and true to 0 and 1. One of the possible variants is if b = true then d− g −
1 else d − g.
This variant is always positive, because

• if b = true, then g < d and so d − g > 0 and d − g − 1 ≥ 0;

• otherwise, g ≤ d, and so d − g ≥ 0

Notice that before the iteration, g < d and b = false, and so, d − g > 0.

It is important to observe that many students would have written g :=

m instead of g := m+1. The three Hoare propositions are correct but we
cannot find a suitable variant simply because the algorithm does not termi-
nate. In fact, when the subarray a[g..d − 1] contains only one element, we
can have g = (g + d) div 2, if we execute the statement g := m, it does not
modify g and the halting condition is never reached.

This algorithm is an interesting example involving many representative
aspects of the method. Using a rigorous method is essential and without
any invariant picture, we can definitly not be sure to construct a correct
algorithm. We can try to convince students by giving them the same exercise
with another index convention choice. Indeed, for this exercise, the invariant
helps for

• choosing a well-defined middle element of a subarray,

• correctly updating the index g and d in such a way that the algorithm
terminates,

• correctly choosing the halting condition.

The proof of the correctness has shown that formalising the invariant is
not always easy. There are some risks of inconsistency between formal and
pictured versions, especially when students are not used to write assertions.
Providing an appropriate variant is also not simple but it is useful.

2.1.4 The Insertion Sort Algorithm

The programming method that we are presenting tends to reduce the
difficulties by dividing the problem and solving small subproblems instead
of solving globally the main problem.

We now introduce a more general idea of decomposition into subproblems.
A problem can consider some complex operations as subproblems that will
be solved independently from each other. To discuss this decomposition into
subproblems, we develop the insertion sort algorithm.



22 Teaching a Structured Programming Method

Constructing a correct algorithm by decomposition into subprob-
lems, and using the invariant method As usual, we begin with the
specification:

Precondition The array (denoted by a) just needs to be initialised.

Postcondition a is a permutation of the initial a (denoted a0) and is sorted
(increasing).

To have in mind the insertion sort algorithm, we have a look at an example:
at each iteration the “next” element is inserted at the right place in the
sorted subarray.

• At the beginning,

a : 2 1 4 3

︸︷︷︸

• After inserting 2 in the sorted subarray,

a : 2 1 4 3

︸︷︷︸

sorted

• After inserting 1 in the sorted subarray,

a : 1 2 4 3

︸ ︷︷ ︸

sorted

• After inserting 4 in the sorted subarray,

a : 1 2 4 3

︸ ︷︷ ︸

sorted

• After inserting 3 in the sorted subarray,

a : 1 2 3 4

︸ ︷︷ ︸

sorted array



2.1. A Method of Structured Programming 23

The loop invariant can be choosen:

1 i n

a : sorted unchanged

0 ≤ i ≤ n
a is a permutation of a0

a[1..i] is sorted
a[i + 1..n] is unchanged

Again, keeping the same index convention along the construction of the
algorithm is essential.
In the example, the first iteration seems useless, and restricting the invariant
to 1 ≤ i ≤ n instead of 0 ≤ i ≤ n could seem appropriate, it is not when the
array is empty (n = 0) and it is better to have a more global approach.

So, the initialisation statement is
i := 0

The array is completely sorted when i = n, so the halting condition is
i=n.
No closure is needed and the iteration consists in inserting a[i+1] at the right
place in a[1..i+1], and then incrementing i. A subproblem SP is responsible
for the insertion of a[i + 1].

SP ; i := i + 1

We specify the subproblem:

Precondition: 0 ≤ i < n and a[1..i] is sorted (increasing)

Postcondition: a[1..i + 1] is sorted (increasing) and a is a permutation of
a0 and a[i + 2..n] is unchanged

According to this specification, the subproblem can be constructed.

To insert a[i + 1], we have to find the correct position, and shift the left
values of that position to the right. For complexity reasons, we make two
operations at the same time: we look at a place a[j − 1]; if it is strictly
greater than a[i + 1], we shift it, we finish when a[j − 1] is smaller and we
can place a[i + 1] in the a[j] place. The loop invariant follows.

1 j i i + 1 n

a : unchanged a0[j] ......... a0[i − 1] a0[i] unchanged

︸︷︷︸

hole



24 Teaching a Structured Programming Method

i is unchanged

1 ≤ j ≤ i + 1

a[i + 2..n] is unchanged

a[1..j] is unchanged

x = a0[i + 1]

∀k : j + 1 ≤ k ≤ i + 1 : a[k] > x

∀k : j ≤ k ≤ i : a[k + 1] = a0[k]

Before the first iteration, nothing has been changed in the array and x
contains a[i + 1]; we can derive the initialisation statements:

j := i + 1; x := a[j]

The iteration consists in shifting an element to the right and updating j:
a[j] := a[j - 1]; j := j - 1

The loop terminates when we are at the beginning of the array or when
a[j] is the right place for x, i.e., a[j − 1] ≤ x; the halting condition is

j = 1 || a[j - 1] <= x

The Boolean operator || stands for a disjunction evaluation from left to
right, we evaluate the second term only if the first term is not satisfied. A
strict evaluation would generate an out of bound exception because if j = 1
then a[j − 1] is not defined.

To satisfy the postcondition, a statement (the closure) is needed after
leaving the loop; we set x at its place:

a[j] := x

and so, the subarray a[1..i + 1] is sorted and a is a permutation of a0.

A final version is depicted in Figure 2.3. In postcondition, “a is increas-
ing” is formalised and permut(a,a0) stands for “a is a permutation of a0”.

Proving the correctness of the main algorithm We suppose that the
subproblem is correct according to its specifications (the proof is left to the
reader) and we prove the correctness of the main problem. We first verify
that the proposition {Inv and not H} Iter {Inv} holds. This contains a
subproblem call.

Let a1, i1 be the initial values of a, i;
by hypothesis,
0 ≤ i1 < n and ∀j : 1 ≤ j < i1 : a1[j] ≤ a1[j + 1]
and a1 is a permutation of a0 and a1[i1 + 1..n] is unchanged.



2.1. A Method of Structured Programming 25

• Declarations:

const n ;

tab a : array [1..n] of integer; (input, output)

var i , j , x : integer; (auxiliary variable)

• Pre: a initialised and n ≥ 0

Post: ∀j : 1 ≤ j < n : a[j] ≤ a[j + 1] and permut(a,a0)

• i := 0;

while(i <> n)

j := i + 1;

x := a[i + 1];

while(j <> 1 && a[j - 1] > x)

a[j] := a[j - 1];

j := j - 1

end

a[j] := x;

i := i + 1

end

Figure 2.3: The insertion sort algorithm

First, according to this hypothesis, we verify that the precondition of the
subproblem is satisfied with the values i1 and a1. It is satisfied.

Next, let us verify that the invariant holds after the iteration.
Indeed, the execution terminates with
a[i1+2..n] unchanged with regard to a1[i1+2..n] and ∀k : 1 ≤ k ≤ i1 : a[k] ≤
[k + 1] and a is a permutation of a1 and i = i1 + 1. It is important to notice
that we do not pay attention to the implementation of the subproblem, we
just need its specification.

The final values a and i satisfy the invariant:

• 0 ≤ i ≤ n because i = i1 + 1 < n + 1;

• giving that unchanged is a reflexive and transitive relation, and that
if the relation is true for a[x..y], the relation is true for any subarray
of a[x..y],

we can argue that a[i + 1, ..n] is unchanged because

– a[i1 + 2..n] is unchanged with regard to a1[i1 + 2..n]

– and a1[i1 + 1..n] is unchanged compared to a0[i1 + 1..n] and so
a1[i0 + 2..n] is unchanged compared to a0[i1 + 2..n];

– and i1 = i − 1.



26 Teaching a Structured Programming Method

• (∀k : 1 ≤ k < i : a[k] ≤ a[k + 1]) because (∀k : 1 ≤ k ≤ i1 : a[k] ≤
a[k + 1]) and i1 = i − 1;

• giving that permut is a reflexive and transitive relation,

permut(a,a0) because permut(a, a1) and permut(a1, a0).

Now, let us verify that the invariant holds after the initialisation: after
the initialisation, i = 0.

• 0 ≤ i ≤ n holds if i = 0;

• a is a permutation of a0 because a = a0 after the initialisation;

• a[1..0] is sorted

• a[1..n] is unchanged because a is not modified upto now.

We verify the proposition {Inv and H} Clot {Post}:
by hypothesis,
i = n and ∀j : 1 ≤ j < i : a1[j] ≤ a1[j + 1]
and a is a permutation of a0 and a[i + 1, ..n] is unchanged.
This is equivalent to the postcondition.

To guarantee total correctness, we use the variant n − i. This function is
positive because 0 ≤ i ≤ n and is decreasing at every iteration, because i
increases. So, our algorithm terminates.

Looking at the final version of this sorting algorithm, we can easily be
convinced that we needed to use a rigorous method to correctly solve this
problem. It is not by trial and error that we can get this short, clear and
correct program. The decomposition into subproblems clearly helps for the
construction and the verification of the algorithm. For the construction,
one can observe that, to avoid too many formal sentences, we use precise
shortcuts to express known notions as a permutation or the fact that a
subarray is unchanged.

2.1.5 An Algorithm to find the Next Permutation

As last example, we consider a more complex algorithm whose construc-
tion and verification need a decomposition into four subproblems. Given
a permutation of the natural numbers 1, . . . , n, the problem is to write an
algorithm that finds the next permutation according to the lexicographic
ordering (denoted by �). For example, the next permutation of

1 2 3 4 5

a: 1 2 3 5 4



2.1. A Method of Structured Programming 27

is

1 2 3 4 5

a : 1 2 4 3 5

Informally, by means of the example, this problem can be decomposed as
follows:

1. First (SP1), we compute the largest index i such that a[i] < a[i + 1].

1 2 i 4 5

a : 1 2 3 5 4

2. Then (SP2), we determine j, which is the index of the smallest element
on the right side of a[i] that is larger than a[i].

1 2 3 4 j

a : 1 2 3 5 4

3. Next, we exchange a[i] and a[j]

1 2 i 4 j

a : 1 2 4 5 3

4. Finally (SP3), we reverse the order of the elements in the subarray
a[i + 1..n]

1 2 i 4 5

a : 1 2 4 3 5

a is the next permutation.

To construct the algorithm, we must specify the three subproblems in a
more formal way than in the explanation above.

SP1: The largest index such that a[i] < a[i+1] means that (∀ k : i+1 ≤ k ≤ n−1 :
a[k] ≥ a[k + 1]) and a[i] < a[i + 1]; but, there is also the case where there is
no i such a[i] < a[i + 1], i.e., when i = 0. The complete formal specification
is:

Pre: a initialised and n > 0
Post: a unchanged and
(i = 0 and (∀ k : 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1]))
or
(0 < i < n and (∀ k : i + 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1]) and a[i] < a[i + 1])



28 Teaching a Structured Programming Method

SP2: Expressing the postcondition of SP2 is not trivial: it must express that
a[j] is the least element greater than a[i], on its right. We might write an
assertion involving the minimum notion but it is simpler (and more efficient
for the design of the algorithm) to consider in the precondition states that
the subarray a[i + 1..n] is decreasing and that a[i] < a[i + 1]. In this way,
it is sufficient to write that a[j] > a[i] and a[j + 1] ≤ a[i] if j < n, but the
case j = n needs a special treatment, since there is no element a[n + 1]. The
complete formal specification is:

Pre: a initialised and 0 < i < n
and (∀ k : i + 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1]) and a[i] < a[i + 1]
Post: a, i unchanged and i < j ≤ n and a[j] > a[i] and

(j < n and a[j + 1] ≤ a[i]) or j = n

SP3: For this subproblem, we have to be careful about the indexes computing to
express the reversing of the subarray a[i + 1..n].

The symmetric element of a[(i + 1) + k] is a[n − k] with 0 ≤ k ≤ n − (i + 1)
or else,

the symmetric element of a[k] is a[n− (k − (i + 1))] with i + 1 ≤ k ≤ n. The
complete formal specification is:

Pre: a initialised and 0 < i < n
Post: i inchanged and a[1..i] unchanged
and (∀ k : i + 1 ≤ k ≤ n : a[k] = a0[n − k + i + 1])

The main difficulty of the design of this algorithm is this translation of the
informal specifications into pictures or into mathematical formulas. After
that, the construction of each subproblem does not involve a lot of diffi-
culties. We notice that the natural trend is to restrict specifications to the
context of the main problem. For example, in subproblem preconditions,
it may be more natural to restrict a to a permutation of 1..n; however, it
is better to construct more general subproblems. We can observe that the
postcondition of SP1 is larger when the precondition does not restrict the
values of the array a (we have non strict inequalities that we would not have
with the restricted version). However, for SP2, we keep a restriction on a in
precondition to make the design of its algorithm easier.

Anyway, the elaboration of the code of the main algorithm is very simple
when the subproblems are solved. It does not involve an iteration. Hence no
invariant is needed. Let us first clarify the specifications: in precondition,
a is a permutation of 1..n; in postcondition, if b is true then a is the next
permutation of a0; if b is false, then a is the last permutation of 1..n. As a
sequence of statements, we first execute SP1: precondition of SP1 is satisfied
because a is well initialised in precondition of the main algorithm. Then,

• if i = 0, it means that a is the last permutation of 1..n; we assign false
to b;



2.1. A Method of Structured Programming 29

• if i > 0,

– we execute SP2: precondition of SP2 is satisfied because it cor-
responds to the postcondition of SP1 when i > 0.

At this moment, i and j are determined, and 0 < i < j ≤ n.

– We can permute a[i] and a[j], these elements are well defined.

– Finally, we execute SP3,

this subproblem only requires that 0 < i < n, which is guaranteed
because of SP1 postcondition and because i is unchanged in the
other subproblems.

– The resulting array is the next permutation of a0; we assign true
to b.

We provide the complete version of this algorithm in Figure 2.4. One can
observe that the formal postcondition of the main algorithm is not simple.
The formalisation of “a is the next permutation of a0” needs a universal
quantification over an array variable: to express it, we say that among all
the permutations of 1 . . . n which are greater than a0, a is the smallest; to
express that a is the last permutation, we say that all the permutations of
1 . . . n are smaller.

Writing correct formal specifications for the subproblems is needed to
efficiently construct the subproblems, it is also the key issue to prove the
correctness of the complete algorithm in a compositional way.

Proving the correctness of the algorithm by symbolic execution
By symbolic execution we propagate assertions. We execute the main al-
gorithm and we determine the strongest assertion at each program point.
Before each subproblem call, the subproblem precondition must hold; af-
ter each subproblem call, the subproblem postcondition is satified, and the
assertion of the previous program point still holds when the variables are
unchanged. When some variables are changed, these variables considered in
the previous program point are renamed, and the previous assertion holds
with these renamed variables.

Let A0 be the initial assertion. We analyse the sequence of statements
related to the case where a next permutation (b = true) exists. We write
a0 for the initial values of a; by hypothesis, a0 is a permutation of 1..n (we
note this assertion by perm1N(a0)).

A0 ≡ {perm1N(a0)}

SP1;



30 Teaching a Structured Programming Method

• Declarations:

const n;

var a: array [1..n] of integer; (input, output)

var b: Boolean; (output)

var i, j, tmp: integer; (auxiliary variable)

• Pre: n is the array size, a is a permutation of [1..n]

Post:

(b ⇒ (permut(a, a0) and a � a0

and (∀ c[1..n] : (permut(a0, c) and c � a0) ⇒ c � a)))
and
(¬b ⇒ (a unchanged and (∀ c[1..n] : permut(a, c) ⇒ c � a)))

• i := n - 1;

while (( i > 0) && (a[i] >= a[i + 1])) i := i-1 end ;

if (i > 0) then

j := i + 1 ;

while ((j <> n) && (a[j + 1] > a[i])) j := j+1 end ;

tmp := a[i] ; a[i] := a[j] ; a[j] := tmp ;

l := i ;

while (l < i + (n - i) div 2)

l := l + 1 ;

tmp := a[l] ;

a[l] : = a[n - (l - (i + 1))] ;

a[n - (l - (i + 1))] := tmp

end ;

b := true

else b := false

end

Figure 2.4: Algorithm to find the next permutation

A1 ≡







A0 and
(i = 0 and (∀ k : 1 ≤ k ≤ n − 1 : a0[k] ≥ a0[k + 1]))
or
(0 < i < n and
(∀k : i + 1 ≤ k ≤ n − 1 : a0[k] ≥ a0[k + 1])
and a0[i] < a0[i + 1])







if (i>0) SP2;

A2 ≡







A1 and 0 < i < j ≤ n and
a0[j] > a0[i] and
((j < n and a0[j + 1] ≤ a0[i])
or j = n)







temp := a[i];

a[i] := a[j];



2.1. A Method of Structured Programming 31

a[j] := temp;

A3 ≡

{
A2 and
a0[1..n] = a[1..n] unless for a[i] = a0[j] and a[j] = a0[i]

}

SP3;

A4 ≡







Let a1[1..n] be the values of a at the previous state :
A2 and a0[1..n] = a1[1..n] unless for a1[i] = a0[j] and a1[j] = a0[i]
and a[1..i] = a1[1..i] and
(∀k : i + 1 ≤ k ≤ n : a[k] = a1[n − k + i + 1])







b := true

A5 ≡ {A4 and b = true}

else b := false

A6 ≡ {A0 and (∀ k : 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1])) and b = false}

end

We first verify that the statements are well defined; at each subproblem
call, its precondition holds:

• the SP1 precondition holds because in the main algorithm precondi-
tion, a is initialised;

• the SP2 precondition holds because, SP2 is called only when i > 0,

and (A1 and i > 0) implies the SP2 precondition;

• the SP3 precondition holds because, SP3 is called only when i > 0,

and a is initialised in the main algorithm precondition.

Besides, the sequence
temp := a[i];

a[i] := a[j];

a[j] := temp;

is well defined because, before the execution, 0 < i < j ≤ n.

Supposing that the subproblems are correct according to their specifica-
tions, A0 is modified after every statement until it reaches the A5 assertion,
if a next permutation exists. Let us prove that the algorithm actually com-
putes the next permutation, i.e., that A5 expresses the fact that a is the
next permutation of a0. We leave to the reader the proof of that A6 ex-
presses that a is the last permutation. The proposition that we prove is the



32 Teaching a Structured Programming Method

following:

(1) perm1N(a0),
(2) 0 < i < n,
(3) (∀k : i + 1 ≤ k ≤ n − 1 : a0[k] ≥ a0[k + 1]),
(4) a0[i] < a0[i + 1],
(5) i < j,
(6) a0[j] > a0[i],
(7) ((j < n and a0[j + 1] ≤ a0[i]) or j = n),
(8) ∀k : 1 ≤ k ≤ n : k 6= i, j ⇒ a1[k] = a0[k],
(9) a1[i] = a0[j],
(10) a1[j] = a0[i],
(11) ∀k : 1 ≤ k ≤ i : a[k] = a1[k],
(12) (∀k : i + 1 ≤ k ≤ n : a[k] = a1[n − k + i + 1])
⇒
(13) permut(a, a0),
a � a0,
(∀c[1..n] : (permut(c, a0) and c � a0 ⇒ c � a))

• permut(a, a0) because

1. permut(a0, a1) because, according to (8, 9, 10), we can find a
permutation f of 1..n, such that ∀k : 1 ≤ k ≤ n : a1[k] = a0[f(k)].

Permutation f is defined as follows:

∀k : 1 ≤ k ≤ n : (k 6= i, j ⇒ f(k) = k) and f(i) = j and f(j) = i.

2. permut(a, a1) because (11) and (12) highlight a

permutation f of 1..n, such that

∀k : 1 ≤ k ≤ i : f(k) = k and ∀k : i + 1 ≤ k ≤ n : f(k) =
n − k + i + 1

and so, by definition, a is a permutation of a1.

If f1 and f2 are permutations of 1..n then f1 ◦ f2 is a permutation of
1..n, and so, permut(a, a0) is true.

• a � a0:

we prove that ∃k : 1 ≤ k ≤ n : (∀s : 1 ≤ s < k : a[s] = a0[s])
and a[k] > a0[k].

We simply instantiate k with i:

(∀s : 1 ≤ s < i : a[s] = a1[s] = a0[s]) by (8, 11)

and a[i] =(11) a1[i] =(9) a0[j] >(6) a0[i].

• let c be an array such that permut(c, a0) (14) and c � a0.

c � a0 means that



2.1. A Method of Structured Programming 33

(15) (∃k : 1 ≤ k ≤ n :

(16) (∀s : 1 ≤ s < k : a0[s] = c[s]),

(17) c[k] > a0[k]).

Suppose by contradiction that c ≺ a (18).

We instantiate k satisfying (15)

– assume k > i:

(14) implies that if (16, 17), c[k] ∈ a0[k + 1..n], i.e.,

(19) (∃r : k + 1 ≤ r ≤ n : a0[r] = c[k] >17 a0[k]).

But, giving that k > i and (3),

(∀r : k ≤ r ≤ n − 1 : a0[r] ≥ a0[r + 1]);

and so, (∀r : k + 1 ≤ r ≤ n : a0[k] ≥ a0[r])

which is inconsistent with (19).

– assume k < i:

(∀s : 1 ≤ s < k : a0[s] = c[s] = a[s]) by (8, 11, 16)

and c[k] >(17) a0[k] =(8,11) a[k]

and so, c � a contrary to (18).

– assume k = i:

(∀s : 1 ≤ s < i : a0[s] = c[s] = a[s]) by (8, 11, 16)

c[i] >(17) a0[i] and a[i] =(9,11) a0[j] >(6) a0[i];

(18) means that

(20) (∃l : 1 ≤ l ≤ n :

(21) (∀s : 1 ≤ s < l : a[s] = c[s]),

(22) c[l] < a[l]).

We instantiate l satisfying (20)

∗ assume l = i:
(14, 16, 17) implies that c[i] ∈ a0[i + 1..n]

· if c[i] ∈ a0[i + 1..j − 1] then c[i] ≥(3) a0[j] =(9,11) a[i]
contrary to (22);

· if c[i] ∈ a0[j + 1..n] then c[i] ≤(3) a0[j] <(6) a0[i]
which is contrary to (17);

· if c[i] = a0[j] then c[i] = a[i] and (22) is not satified.

∗ assume l < i:
(∀s : 1 ≤ s < l : a[s] = c[s] = a0[s]) by (8, 11, 16)
c[l] <(20) a[l] =(8,11) a0[l];
so, by definition, c ≺ a0, inconsistent with (15).



34 Teaching a Structured Programming Method

∗ assume l > i:
(∀s : l ≤ s ≤ n : a[s] ≤ a[s + 1]) (*)
(13, 15, 21, 22) implies that c[l] ∈ a[l + 1..n] and so, c[l] ≥
a[l]
which is contrary to (22).
(*)Indeed,

· (23) (∀k : i + 1 ≤ k ≤ n − 1 : a1[k] ≥ a1[k + 1])
from (3) and

when j < n,
a1[j] =(10) a0[i]

≥(7) a0[j + 1]

=(8) a1[j + 1]

and when j > i + 2,
a1[j] =(10) a0[i]

≤(6,3) a0[j − 1]

=(8) a1[j − 1]

· (∀k : i + 1 ≤ k ≤ n − 1 : a[k + 1] > a[k]) because
∀k : i + 1 ≤ k ≤ n − 1 :
a[n − k + i + 1] =12 a1[k]

≥23 a1[k + 1]
=12 a[n − (k + 1) + i + 1]
= a[n − k + i]

with i + 1 ≤ n − k + i ≤ n − 1,

and so, the conclusion holds.

As in the previous example, this exercise highlights the advantages of the
decomposition into subproblems. It also shows that it is not simple to prove
that the succession of these subproblems results in a next permutation in the
lexicographic order even if the person who chooses this decomposition can
feel (through examples) it should work. The formalisation of the postcondi-
tion and the mathematical proof of the correctness are particularly tedious.
In fact, the programming method converts the complexity of elaborating a
program to a purely mathematical reasoning approach, which is not always
so obvious.

2.2 Pedagogical Findings

Ten years ago, the invariant method was assiduously taught from the in-
troductory programming course [37]. The main purpose of an introductory
course was the algorithmic learning; constructing programs with rigor and
formal specifications was considered very important. Today, efforts are of-
ten mainly deployed on teaching oriented-object concepts as exemplified by



2.2. Pedagogical Findings 35

the JAVA language. Learning algorithmics with a structured method is no
longer a priority among the courses. One reason probably is that students
have a hard time to understand the method, another reason may be the
general discouragement from teachers partially due to the observation that
the method will never be completely supported by an automatic tool.

In our view, we consider that, anyway, algorithmics learning using this
construction method is fundamental in computer science. There are many
concepts, such as decomposition into subproblems, looking for simplicity,
reasoning, requirements, etc. that we introduce through this learning and
that are very important notions overall in computer science. So, in our
courses, we continue to give major role to algorithmics and to the struc-
tured programming method, we continue to teach the invariant method to
help constructing (simple) programs more systematically, but we do it very
informally in the introductory course [38]. Then, in a more advanced course
[39], we review the method more formally, and we expect the students to
get a deeper understanding of it.

The first section explains the reasons why such a method is appropriate in
a universitary cursus. Section 2.2.2 describes the difficulties that students
meet when they learn this method; finally, in Section 2.2.3, we propose to
overcome these difficulties by using verification tools.

2.2.1 Pedagogical Motivations

From the first approach to programming, learning the use of a structured
method for building an algorithm is crucial. The method that we pro-
pose has the big advantage of constructing correct programs. This also
leads the programmer to write simple and readable programs. Unhappily,
the method is not simple to learn and it requires a lot of experiments and
imagination from the beginner. Through this learning, students learn many
other important notions, they decompose a problem into subproblems,
they understand the role of a complete specification, they learn to be
rigorous and gain a better abstraction level. The systematic decompo-
sition into subproblems is the spirit of computer science, teaching this good
reflex with rigour is essential even to the beginners. Also, writing precise
specifications and being rigorous should be the practice of any programmer;
and a good computer scientist will always need to have a good abstraction
capability.

Concretely, we are conscious that, with novice students, it is difficult to
focus on mathematical formalisation of assertions, and so, we just construct
algorithms by representing the specifications and the invariant with pictures;
representing these pictures requires abstraction and rigor that cannot be



36 Teaching a Structured Programming Method

minimised. In a more advanced course, the same concepts are reviewed
with more background. We learn to formalise the pictures and to adopt a
mathematical reasoning on algorithms; the abstraction level is higher and
the student can be conscious that we are able to prove the correctness of
programs.

2.2.2 Pedagogical Difficulties

Studying computer science requires a good level of abstraction: an algo-
rithm is abstract, a specification is more abstract, and formal specification
is even more abstract. It is not amazing that this method is difficult to
learn. The problem is that most students never feel the advantages of the
method, they feel it as a constraint and they do not understand the role of
the invariant in the constructive approach. The main reasons are:

• Thinking in terms of situations is not intuitive.

For many novice students, the difference between statement and as-
sertion is not obvious, and it takes a long time to feel correctly the
meaning of an assertion and an invariant.

Besides, after having understood these notions, the student has to
think in terms of situations and has to discover an invariant, which is
not intuitive for a beginner.

Students have some difficulties to understand deeply the meaning of
a decomposition into subproblems: to construct or verify a program
calling a subproblem, we do not need the implementation of the sub-
problem, the specifications are used instead; the subproblem is con-
structed or verified independently. For a loop construction, each Hoare
condition is completely independent from the others. For example, we
do not need the initialisation statements when we construct or verify
the loop transformation. In fact, many students do not understand
what is a complete invariant, even for simple examples.

Facing with these difficulties, most students do not use the method,
they prefer to solve globally the problem by trial and error and fi-
nally they write a posteriori a kind of invariant (often incorrect or
incomplete) for the teacher.

• Lack of mathematical maturity.

Abstraction or formalisation, these two mathematical requirements are
seldom gained by our students and we cannot overcome this general
problem by our own.

And yet, the splendor of verification approach of this method can be
successful only if students are able to write specifications (and invari-
ants) that are both sound and complete. If the method is not sup-



2.2. Pedagogical Findings 37

ported by a formal specification language, it is very hard to explain
what a good specification (or invariant) is.

We notice that many students, even advanced students have some
difficulties to express pictured assertions formally.

Besides, formalising assertions may sometimes be more complex than
writing the algorithm. Most students do not find satisfaction, the
magic of the proof of a program correctness does not seem to interest
them.

Next to these problems of abstraction, there is a lack of motivation.
We have a few possible explanations:

• It misses an authority argument.

This method is too often viewed as an isolated method without any
link with the other courses. For, example, if we are alone to insist
on complete and formal specifications, the impact of this learning will
not have the same effect than if every teacher whould send the same
message. This lack of coherence may demotivate students.

• Students think that the design of an algorithm together with its spec-
ifications using this method takes too much time and is too complex.
It fact, it is very difficult to convince students that this method allows
them to write simple and correct algorithms and to gain time.

• Reasoning on paper does not motivate students; they are used to write
their programs directly on the computer without any explicit reason-
ing.

2.2.3 Our Proposal to Overcome the Difficulties

The structured programming method encourages a rigorous behaviour,
teaches mathematical formalism, increases the abstraction capacity and so,
we are convinced that this method is appropriate in a university cursus:
we do not want to forget this method arguing that it is too complex for
students, we wish to help them to overcome these pedagogical obstacles.

Since our students are often more motivated by using a computer than
by reasoning on paper, we propose to stimulate them by using automatic
verification tools. To be more precise, we would like to help our students by
providing them an appropriate tool that enforces the use of the method:
decomposition into subproblems, complete specification of the subproblems
and loop invariants. Moreover, the automatic verification should provide
an informative feedback to the students when they make specification or
reasoning errors. Furthermore, we would like a tool that charms the students
with the magic of the proofs of the algorithm correctness.



38 Teaching a Structured Programming Method

In the next chapter, we evaluate several automatic verification tools in
our context of programming method learning. First, we try ESC/Java [23,
12, 16], a fully automatic tool that verifies Java programs and uses JML,
a very expressive assertion language; the weakness of this tool is that it
is neither complete (it gives false warnings) nor sound (it forgets errors).
We analyse the ESC/Java behaviour when it verifies pedagogical algorithms
from our teaching context. Then, we try SparkAda [3], which is partially
automatic and verifies Ada programs; this tool is able to be complete and
sound if the user has some expertise in interactive theorem prover. We
observe the set of algorithms that can be verified automatically, without
using the interactive theorem prover, and we evaluate the feedback given
when errors occur; the weakness of this tool is that the interactive theorem
proving requires expertise from the user; we evaluate this expertise level and
we conclude about the adequacy of this tool in our programming courses.
Finally, we use SMV [44] to verify our algorithms; this tool works on finite
domains, and is complete and sound; we evaluate the difficulty level to
translate our programs and assertions in the model checker language and we
analyse the feedback of this tool.



Chapter 3

How about Existing Tools to
Teach Structured
Programming?

3.1 Extended Static Checker

ESC/Java developed at DEC/SRC 1 was a pioneering tool in the ap-
plication of static analysis and verification technology to annotated Java
programs [23]. It was the successor to the ESC/Modula-3 tool described
in [16]. The basic project was studying the engineering practices of best
programmers and it was developing a tool that improved the quality of pro-
grams, without changing their essential nature [16]. The programmers can
annotate their programs with JML specifications, loop invariants, and inter-
mediate assertions; other annotations can be associated to field declarations,
method declarations and class declarations [7, 41]. According to these anno-
tations, ESC/Java catches errors at compile time which are not ordinarily
caught until runtime. Let us mention examples like array index bounds er-
rors, nil dereferences, and deadlocks and race conditions in multi-threads
programs. ESC/Java was not designed to be complete nor entirely sound,
but claims to operate on full Java programs, keeping the complexity low for
industrial-sized programs. The ESC/Java2 tool, an extension of ESC/Java,
has continued that spirit, though some unsound aspects have been corrected
[12].

Most applications of ESC/Java and ESC/Java2 are performed by the SoS
group at the University of Nijmegen, with other members of the European

1Research laboratory created by Digital Equipment Corporation (DEC) in 1984, in
Palo Alto, California.

39



40 How about Existing Tools to Teach Structured Programming?

VerifCard Project. They focus on the verification of Java Card programs 2.
For example, the decimal representation in Java for smart card, a problem
that has been described and proved interactively in [6], and has been up-
dated and re-verified with ESC/Java2 [12]. The GemPlus Electronic Purse
case study has been verified by ESC/Java and then by ESC/Java2 [8, 12].
A major partial verification using ESC/Java2 is the verification of a vote
counting system (KOA system) in 2004, for the Dutch Parliament [12].

Given the importance of Java in academia, given the expressivity of
JML, given the ambition of ESC/Java2 and an attractive demonstration
at MOVEP’04 winter school [41], we propose to evaluate the impact of such
a tool to convince students of the utility of a formal method to construct
and verify programs. We wonder if this tool motivates students for writing
complete and formal specifications. In this section, we first detail a subset
of the specification language JML. Then we present the verification tech-
nique used by ESC/Java, with the main role given to the theorem prover
Simplify [15]; we explain where the tool loses completeness and soundness.
Next, we give a general idea of the ESC/Java2 behaviour through some ex-
amples of algorithm verification. Finally, we conclude about the adequacy
of ESC/Java2 in our programming learning context.

3.1.1 The Java Modeling Language

The Java Modeling Language (JML) is a large specification language.
Although JML has been designed in an oriented object context, we only
describe the JML subset that we need to construct and verify algorithm from
our learning context. So, we focus on annotations related to statements: pre
and post conditions, loop invariant, intermediate assertions. And we also
consider annotations related to methods, saying for example which variables
can be modified. Details about annotations related to classes and fields,
principles of specification inheritance are described in [7, 41].

Specifications are included in the text of a Java program in special an-
notation comments, which start with an at-sign(@). JML uses a requires

clause to specify the implementor’s precondition, and an ensures clause to
specify its postcondition. The keyword loop invariant is used to express
loop invariant, and assert permits to attach an assertion to any program
point; decreasing E is used to check that E decreases but stays non neg-
ative at each iteration. The keywords modifies and pure are related to
a method, modifies specifies the set of possibly modified variables, pure
stands for methods that do not modify any data.

2Java Card is a technology that enables smart cards and other devices with limited
memory to run small applications, called applets, that utilise Java technology.



3.1. Extended Static Checker 41

The syntax of specifications follows Java closely. It excludes any oper-
ation that has side effects (such as the increment operator ++). Allowed
operations such as arithmetic and comparison operators, have the syntax
and the semantics of Java. Some expressions use extensions to Java such as
\result which represents the result of a method call, \old(E) which is a
way of referring to the pre-state value of an expression E. Other operators
are also available, such as implication ==> and equivalence <==>. Besides,
JML supports several kinds of quantifiers in assertions: a universal quanti-
fier \forall, an existential quantifier \exists, generalised quantifiers \sum,
\product, \min and \max and a numeric quantifier \num_of. For example,
the following predicate uses a universal quantifier:

(\forall int i; 0 <= i & i < g ; a[i] < x)

In a quantified formula, there is a declaration of a variable that is local to
the quantifier (int i). This is followed by an optional range predicate: the
range restricts the domain to which the quantifier applies (0 <= i & i < g).
The body of the quantifier, a[i] < x in the above example, must be true for
all the objects (or values) that satisfy the range predicate. \sum, \product,
\min and \max return respectively the sum, the product, the minimum and
the maximum of the value of their body when the quantified variables satisfy
the given range expression; \num_of returns the number of values for quan-
tified variables for which the range and the body predicate are true. Specifi-
cation predicates may include method calls, if those methods are pure; tools
supporting JML can check that the implementation of pure methods have
no side-effect.

JML is associated to a number of tools, which are provided to address
the various needs such as reading, writing and checking JML specifications.
A way of checking JML specifications, is runtime assertion checking, i.e.,
simply running the Java code and testing for violations of JML assertions.
Such runtime assertion checks are accomplished by using the JML compiler
(jmlc). The unit testing tool jmlunit combines runtime assertion checks with
unit testing [10]. More ambitious is ESC/Java2 which tries to statically
verify that the code satisfies its specifications.

3.1.2 The ESC/Java2 Verification Technique

Given a Java program, ESC/Java2 automatically derives and checks a set
of verification conditions corresponding to a defined class of errors. Further-
more, it also allows the programmer to record design decisions, and to guide
the choice of verification conditions by annotating the program with speci-
fications, assertions, loop invariants by means of JML clauses. Verification
conditions are submitted to the automatic theorem prover Simplify [15].



42 How about Existing Tools to Teach Structured Programming?

Simplify’s input is an arbitrary first-order formula, including universal
and existential quantifications. Simplify handles propositional connectives
by backtracking search and includes complete decision procedures for the
theory of equality and for linear rational arithmetic; but it is not complete
for the linear theory of integers nor for the theory of nonlinear multiplica-
tion. Simplify does not support mathematical induction. The semantics of
McCarthy’s functions for updating and accessing arrays are also pre-defined.
The two important modules in the prover are the E-graph module and the
Simplex module. Each module implements a method to detect contradiction.
The E-graph module focuses on the theory of equality with uninterpreted
function symbols; the Simplex module focuses on rational linear arithmetic.
Besides, we need a satisfiability procedure for the combination of the the-
ories. To achieve this, it is necessary for the two modules to cooperate,
according to a protocol known as equality sharing, introduced by Nelson
and Oppen [47]. Simplify handles quantifiers by pattern driven instanti-
ation. For instance, (\forall T t1, ...,tn; B) is verified by selective
instantiating the body B with substitutions for t1,...,tn determined by
matching certain “triggering patterns” against a set of terms already under
consideration. It matches up to equivalence in an E-graph, which detects
relevant pattern instances. But in some cases, the triggering may be too
restrictive, preventing Simplify from finding instances.

To analyse an algorithm with a loop, ESC/Java2 considers only those that
execute at most one complete iteration. In this way, it does not need an
invariant. The user can unroll a loop more times, by specifying the number
of iterations ESC/Java2 should consider (with -loop n). If the argument
of the option is n.0 where n in a non-negative integer literal, to check the
program fragment

while (B) {S}

ESC/Java2 will consider n executions of

i f ( !B) break ;
S

If the argument of the option is n.5, ESC/Java2 will consider n executions
of

i f ( !B) break ;
S

plus one additional execution of

i f ( !B) break ;

The default behaviour of ESC/Java2 is given by -loop 1.5

In terms of verification, ESC/Java2 can give spurious warnings: this is
due to the fact the verification conditions generated by ESC/Java2 are sub-
mitted to Simplify which is not complete. Then, the proofs that Simplify



3.1. Extended Static Checker 43

does not conclude lead to error messages. ESC/Java2 can miss real program-
ming errors, i.e., it is unsound: this is partially due to a tradeoff between
the efficiency of ESC/Java2 and its semantic completeness. The verifica-
tion conditions generated may not be exactly a translation of the annotated
program. In particular, ESC/Java2 does not consider all possible execution
paths through a loop. Finally, other sources of unsoundness and uncomplete-
ness exist such as search limits of Simplify and the fact that ESC/Java2 does
not check arithmetic overflows.

3.1.3 Experimentation on Some Examples

3.1.3.1 The Binary Search Algorithm

First, we present a correct Java version of the algorithm, together with
its JML specifications. One can observe the adequate expressivity and read-
ability of JML for this exercise. This can be a source of motivation to be
rigorous, complete and formal in writing the specifications.

/∗@requires a!= nu l l &&
(\ f o r a l l i n t i , j ; 0 <= i & i < j & j < a . l ength ;

a [ i ] <= a [ j ] ) ;

@ensures \ r e s u l t <==>
(\ e x i s t s i n t j ; 0 <=j & j < a . l ength ;

a [ j ] == x) ;
@∗/

public /∗@ pure @∗/ static boolean dicho ( int [ ] a , int x )
{

int n = a . length ;
int m ;
int g = 0 ;
int d = n ;
boolean b = fa l se ;

/∗@loop inva r i ant 0 <= g & g <= d & d <= a . length ;
@ loop inva r i ant (\ f o r a l l i n t i ; 0 <= i & i < g ;

a [ i ] < x ) ;
@ loop inva r i ant (\ f o r a l l i n t i ; d <= i & i < a . l ength ;

a [ i ] > x ) ;
@ loop inva r i ant b ==>

(\ e x i s t s i n t j ; 0 <= j & j < a . l ength ;
a [ j ]==x) ;

@∗/

while ( ( b == fa l se ) & ( g != d )){
m = (g + d) / 2 ;
i f ( a [m] < x) g = m + 1 ;
else i f ( a [m] > x) d = m;
else b = true ;



44 How about Existing Tools to Teach Structured Programming?

}

return b ;
}

Let us observe the ESC/Java2 behaviour through the binary search al-
gorithm verification. First we display its feedback when it proves the cor-
rectness; then we intentionally insert errors in code or specifications and
we assess the pertinence of the generated counter-examples. We arbitrary
choose to unroll the loop 4 times: we run escj -loop 4 Dicho.java

Feedback Information

No error occurs Here is the message of ESC/Java2:

ESC/Java version ESCJava-2.0a9

[0.155 s 4395512 bytes]

Dicho ...

Prover started:0.032 s 6380112 bytes

[1.455 s 6015480 bytes]

Dicho: dicho(int[], int) ...

[2.339 s 6378800 bytes] passed

Dicho: Dicho() ...

[0.052 s 6534184 bytes] passed

[3.849 s 6535064 bytes total]

The proof was successful.

An error in the initialisation Imagine b is set to true in the initialisa-
tion, the tool is able to detect that the invariant does not hold; the
violated part of the invariant is displayed:

Dicho.java:24:

Warning: Loop invariant possibly does not hold (LoopInv)

while ((b == false) & (g != d)){

^

Associated declaration is "Dicho.java", line 23, col 10:

@loop_invariant b ==> (\exists int j ; 0 <= j & j < a.length

==> ( ...

^

Execution trace information:

Reached top of loop after 0 iterations in "Dicho.java",

line 24, col 6.



3.1. Extended Static Checker 45

We can interpret that before the first iteration, i.e., after the initiali-
sation, the last part of the invariant is violated. No concrete counter-
example is displayed, i.e., no concrete values are given for each program
variable to attest that the implication does not hold.

An error in the invariant Instead of line 2 in the invariant, the user
writes:

@loop inva r i ant (\ f o r a l l int i ; 0 <= i & i <= g ;
a [ i ] < x ) ;

the tool displays a similar message:

Dicho.java:21:

Warning: Loop invariant possibly does not hold (LoopInv)

while ((b == false) & (g != d)){

^

Associated declaration is "Dicho.java", line 18, col 10:

@loop_invariant (\forall int i ; 0 <= i & i <= g ;

a[i] < x) ;

^

Execution trace information:

Reached top of loop after 0 iterations in "Dicho.java",

line 21, col 6.

The invariant does not hold after the initialisation.

An out of bound error Instead of comparing a[m] to x,

we compare a[m+1], the tool clearly displays the out of bound error:

Dicho.java:24:

Warning: Array index possibly too large (IndexTooBig)

if (a[m+1] < x) {g = m+1;

^

Execution trace information:

Reached top of loop after 0 iterations in "Dicho.java",

line 21, col 6.

Again ESC/Java2 does not display a concrete counter-example.

A loop that does not terminate ESC/Java2 is not able to detect by it-
self that a loop does not terminate. But, if the user provides a variant,
it can guarantee termination.

The annotation to use is //@decreasing E; where E is an arithmetic
expression.

To express it in this algorithm, we propose to declare a new integer
variable y initialised and modified so that the implementation satisfies



46 How about Existing Tools to Teach Structured Programming?

//@loop_invariant y == 1 <==> b && y == 0 <==> !b ;.
The adapted implementation stands in Annex A.1.1. When we write g
:= m ; instead of g := m + 1 ; in the iteration, ESC/Java2 verifies that
the variant is positive and detects that the variant does not decrease:

Dicho.java:24:

Warning: Loop variant function possibly not decreased

while ((b == false) & (g < d)){

^

Associated declaration is "Dicho.java", line 22, col 10:

//@decreasing d-g-y;

^

Execution trace information:

Reached top of loop after 0 iterations in "Dicho.java",

line 24, col 6.

Executed then branch in "Dicho.java", line 27, col 26.

[0.749 s 6233632 bytes] failed

One can observe that ESC/Java2 is able to detect reasoning errors in
specifications as well as in the code. No concrete counter-example is dis-
played, but the error is well underlined. One can also notice that the errors
are displayed as warnings. ESC/Java2 suspects an error but does not guar-
antee it. Unfortunately, ESC/Java2 generally suspects too many errors: in
most verification scenarii using ESC/Java2, ESC/Java2 displays many false
warnings. The number of warnings can be restricted if the user spends time
to understand the reasoning of the theorem prover.

Helping Simplify The way of formalising assertions may help the auto-
matic verification: with the following formalisation (which is the one chosen
is Figure 2.2), ESC/Java2 is not able to prove that the invariant holds.

@ r e qu i r e s a!=null &&
(\ f o r a l l int i ; 0 <= i & i < a . length−1 ;

a [ i ] <= a [ i +1]) ;

In fact, for instance, to prove a[m] < x ⇒ (∀k : 0 ≤ k ≤ m : a[k] < x),
given that (∀i : 0 ≤ i < a.length − 1 : a[i] ≤ a[i + 1]), one must for each k,
0 ≤ k < m, show that a[k] ≤ a[k + 1], a[k + 1] ≤ a[k + 2]...a[m − 1] ≤ a[m],
and given that a[m] < x, we conclude that a[k] < x.
This needs induction, what Simplify does not provide.

On the other hand, with the following formalisation, the theorem prover
is able to check the verification condition.

@ r e qu i r e s a!=null &&
@ (\ f o r a l l int i , j ; 0 <= i & i < j & j < a . l ength ;
@ a [ i ] <= a [ j ] ) ;



3.1. Extended Static Checker 47

Indeed, given (∀i : 0 ≤ i < j < a.length : a[i] ≤ a[j]), Simplify just needs to
recognise for each k, 0 ≤ k < m that a[k] ≤ a[m] and given that a[m] < x,
a[k] < x by transitivity.

The ESC/Java2 verification does not reflect some principles of
the structured programming method Without invariant, ESC/Java2
seems to be able to prove the algorithm correctness or to find errors. For
example, if we initialise g to 1 instead of 0, the tool is able to find a problem
in the iteration without any invariant:

Dicho.java:24: Warning: Array index possibly too large (IndexTooBig)

if (a[m] < x) {g = m+1;

^

Execution trace information:

Reached top of loop after 0 iterations in "Dicho.java",

line 21, col 6.

Contrary to the invariant method, the initialisation and the iteration are not
independent from each other; in the invariant method they are independent
thanks to a complete invariant. In fact, ESC/Java is not designed to detect
a too weak invariant. However, to let ESC/Java2 detect a too weak invari-
ant, we can decompose a loop in three specified submethods corresponding
to the Hoare propositions; for example, {Inv and not H} Iter {Inv} is
implemented as follows:

static int g ;
static int d ;
static boolean b ;

/∗@requires a != nu l l &&
(\ f o r a l l i n t i , j ; 0 <= i & i < j & j <= a . length ;

a [ i ] <= a [ j ] ) ;
@requi r es (0 <= g & g <= d & d <= a . length ) ;
@requi r es (\ f o r a l l i n t i ; 0 <= i & i < g ;

a [ i ] < x) ;
@requi r es (\ f o r a l l i n t i ; d <= i & i < a . l ength ;

a [ i ] > x) ;
@requi r es b ==> (\ e x i s t s i n t j ; 0 <= j & j < a . l ength ;

a [ j ]==x) ;
@requi r es ( ( b == f a l s e ) & ( g < d ) ) ;

@ensures (0 <= g & g <= d & d <= a . length ) ;
@ensures (\ f o r a l l i n t i ; 0 <= i & i < g ;

a [ i ] < x) ;
@ensures (\ f o r a l l i n t i ; d <= i & i < a . l ength ;

a [ i ] > x) ;
@ensures b ==> (\ e x i s t s i n t j ; 0 <= j & j < a . l ength ;

a [ j ]==x ) ;
@∗/



48 How about Existing Tools to Teach Structured Programming?

public static boolean I t e r ( int [ ] a , int x )
{

int m = (g + d) / 2 ;
i f ( a [m] < x) g = m+1 ;
else i f ( a [m] > x ) d = m ;
else b = true ;

}

where g, d and b are global declarations for the three methods. Using this
way of writing each sequence of the loop, the verification guarantees3 that
the invariant is complete. However, we notice that this less natural way of
writing a loop requires that the auxiliary variables used in the invariant are
declared as global variables, and we need to write several times the invariant,
in pre and/or postcondition of the three methods.

Badly defined assertions We can also notice that ESC/Java2 does not
consider that an assertion may not be well defined; we mean that, for exam-
ple, it does not check out-of-bound errors or division by zero in assertions.
Simplify uses the first-order theory of arrays (with the two axioms ”select
and store”) [35], where out-of-bounds are not considered as errors. Strict or
non strict evaluations do not have the same behaviour as the evaluation of
real Java expressions. For example, the assertion x / 0 == 1 | b == b is
evaluated to true since x / 0 is not illformed.

Several semantics are possible; as there is no formal, official specification
of the JML language, we have to test particular cases to have an idea of
the language semantics. It seems important for us to understand on which
semantics the verification is based, and so, to have an idea of the translation
of JML into the Simplify language.

3.1.3.2 Indian Exponentiation

Let us have a look to the ESC/Java2 behaviour when it analyses an algo-
rithm involving multiplications.

/∗@requires x != 0 && y >= 0 ;
@ensures \ r e s u l t == Math . pow(x , y ) ;
@∗/
public /∗@ pure @∗/ static int a lgo ( int x , int y )
{

int u = x ;
int v = y ;
int z = 1 ;

3assuming that ESC/Java is able to prove these assertions, which is not always true



3.1. Extended Static Checker 49

/∗@loop inva r i ant Math . pow(x , y ) == z ∗ Math . pow(u , v ) ;
@ loop inva r i ant v >= 0 ;
@∗/

while ( v != 0){
i f ( v % 2 == 1){

z = z ∗ u ;
v = v − 1 ;

}
u = u ∗ u ;
v = v / 2 ;

}
return z ;

}

A priori, this algorithm cannot be verified for two reasons:

The power operator is not a Java primitive The corresponding func-
tion in the Math class does not seem to be specified in JML and so
it cannot be used by ESC/Java2. We can imagine defining the power
relation, by means of a function head and axioms as follows:

//@ pub l i c s t a t i c pure model i n t power ( i n t x , i n t y ) ;

/∗@ axiom (\ f o r a l l i n t x , y ;
y == 0 ; power ( x , y ) == 1) ;

@ axiom (\ f o r a l l i n t x , y ;
y > 0 ; power ( x , y + 1 ) == x ∗ power ( x , y ) ) ;

@∗/

ESC/Java2 is not complete for non linear expression Unfortunately,
given the characteristics of Simplify, for all exercises involving non lin-
ear multiplications, the tool gives spurious warnings.

However, we can define our own multiplication theory:

public static /∗@ pure @∗/ int mul ( int x , int y)
{return x∗y ; } ;

/∗ @ axiom (\ f o r a l l i n t x ; mul ( x , 0 ) == 0) ;
@ axiom (\ f o r a l l i n t x , y ;

mul ( x + 1 , y ) == mul ( x , y ) + y ;
@ axiom (\ f o r a l l i n t x , y ;

mul ( x , y ) == mul ( y , x ) ) ;
@ axiom (\ f o r a l l i n t x , y , z ;

mul ( x , mul ( y , z ) ) == mul ( mul ( x , y ) , z ) ) ;
@∗/

The last two axioms can be proved from the first two ones but this is not
completely trivial. We update the multiplication operator * in the iteration
and in the power axiom by calls of mul function, and we try to verify the



50 How about Existing Tools to Teach Structured Programming?

algorithm using ESC/Java2: Simplify gets lost. On the other hand, if we
delete the previous definitions and we give the following rules:

/∗@ axiom (\ f o r a l l i n t x , y ;
y == 0 ; power ( x , y ) == 1) ;

@ axiom (\ f o r a l l i n t x , y ;
y % 2 != 1 ==>
power ( x , y ) == power ( mul ( x , x ) , y / 2 ) ) ;

@ axiom (\ f o r a l l i n t x , y , z ;
y % 2 == 1 ==>
mul ( power ( x , y ) , z ) ==
mul ( power ( mul ( x , x ) , y / 2) , mul ( x , z ) ) ) ;

@∗/

then ESC/Java2 is able to prove the algorithm in about 2.6 secondes if
we unroll the loop 5 times. One can observe that these rules correspond
to pattern-matching between equalities in the manual proof described in
Section 2.1.2. These rules are elaborated by the user and may be unsound;
ESC/Java2 may discharge false verification conditions by using these rules.

We also must notice, that ESC/Java2 does not detect any overflow, al-
though the power of two integers may be larger than an integer: contrary
to Chapter 2 where we consider that integers have an infinite domain, Java
integers have a limited size.

3.1.3.3 The Next Permutation Problem

We now observe the behaviour of ESC/Java2 with the next permutation
algorithm involving a complex specification and a decomposion into sub-
problems. The decomposition is explained in Section 2.1.5. We first verify
the subproblem 1 consisting of finding the larger index i of the array such
that a[i] < a[i + 1].

The Java code and the JML specifications follow. Again, the assertion
expressing that the subarray a[i + 1..a.length − 1] is decreasing, has been
formatted to help Simplify verify the correctness of the algorithm. The same
observation can be made for the second part of the invariant.

/∗@requires ( a != nu l l ) && (a . l ength > 0 ) ;
@ensures −1 <= \ r e s u l t & \ r e s u l t <= a . length − 2 ;
@ensures \ r e s u l t == −1 | | a [\ r e s u l t ] < a [\ r e s u l t + 1 ] ;
@ensures (\ f o r a l l i n t k ;

0 <= k && k < a . l ength − 2 − \ r e s u l t ;
a [ k + 1 + \ r e s u l t ] >= a [ k + 2 + \ r e s u l t ] ) ;

@∗/

public /∗@ pure @∗/ static int sp1 ( int [ ] a ) {
int i = a . l ength − 2 ;



3.1. Extended Static Checker 51

/∗@loop invar iant−1 <= i & i <= a . length − 2 ;
@ loop inva r i ant (\ f o r a l l i n t k ;

0 <= k && k < a . l ength − 2 − i ;
a [ k + 1 + i ] >= a [ k + 2 + i ] ) ;

@∗/

while ( i != −1 && a [ i ] >= a [ i + 1 ] ) i −−;

return i ;
}

Ranging the quantified variables from 0 may help the theorem-prover.

The invariant is not the key of verification In fact, the tool checks
verification conditions but does not prove partial correctness using the Hoare
method. Using the weakest precondition method [17] on a loop unrolled 3
times, the tool is able to prove the correctness of the subproblem for all
array a such that a.length < 4; the tool does not guarantee correctness for
an array a with a.length ≥ 4. For example, if the specifications are the
following:

/∗@requ ires ( a != nu l l ) && (a . l ength > 4 ) ;
@ensures −1 <= \ r e s u l t & \ r e s u l t <= a . length − 2 ;
@ensures \ r e s u l t == 88 | | a [\ r e s u l t ] < a [\ r e s u l t +1] ;
@ensures (\ f o r a l l i n t k ;
@ 0 <= k && k < a . l ength − 2 − \ r e s u l t ;
@ a [ k + 1 + \ r e s u l t ] >= a [ k + 2 + \ r e s u l t ] ) ;
@∗/

we need to unroll the loop at least 3.5 times to detect the error in postcon-
dition.

SP1: sp1(int[]) ...

------------------------------------------------------------------------

SP1.java:19: Warning: Postcondition possibly not established (Post)

}

^

Associated declaration is "SP1.java", line 4, col 10:

@ ensures \result == 88 || a[\result] < a[\result+1];

^

Execution trace information:

Reached top of loop after 0 iterations in "SP1.java", line 14, col 8.

Reached top of loop after 1 iteration in "SP1.java", line 14, col 8.

Reached top of loop after 2 iterations in "SP1.java", line 14, col 8.

Reached top of loop after 3 iterations in "SP1.java", line 14, col 8.

Short circuited boolean operation in "SP1.java", line 14, col 23.

Executed return in "SP1.java", line 18, col 8.



52 How about Existing Tools to Teach Structured Programming?

------------------------------------------------------------------------

[0.56 s 6030952 bytes] failed

It is said that the disjunction of the postcondition may not hold in the case
where we need to iterate at least three times. So, when we iterate two times,
ESC/Java2 does not detect any error. The verification is unsound; however,
we admit that, in most of cases, if the parameter of unrolling is well chosen,
this method gives a good feedback about the correctness of the algorithm.
The same process is used to verify that the invariant holds.

Verification of the main algorithm A complete version of the main
algorithm and its subproblems SP2 and SP3 with their JML specifications
is given in Appendix A.1.2. ESC/Java2 is able to prove the subproblems
(if specifications are formatted to help Simplify), but the main algorithm
seems unprovable.

We present some non trivial steps in the elaboration of specifications of
the main algorithm. As in Section 2.1.5, we need to formally express in
precondition that a is a permutation of 0..a.length − 1 4. We propose the
following JML precondition.

@requires ( a != null ) && (a . l ength > 0 ) ;
@requi r es (\ f o r a l l int i ; 0 <= i && i < a . l ength ;
@ (\ num of int k ; 0 <= k & k < a . l ength ;
@ a [ k ] == i )
@ == 1) ;

We express that for each value 0..a.length − 1, the number of occurrences
in the array a is one. Unfortunately, this quantifier is not supported by
ESC/Java2. In postcondition, we express that a is strictly greater than a0

in the lexicographic order:

@ensures \ r e s u l t ==>
@ (\ e x i s t s int i ; 0 <= i && i < a . l ength ;
@ ((\ f o r a l l int k ; 0 <= k && k < i ;
@ a [ k ] == \ o ld ( a [ k ] ) )
@ && a [ i ] > \ o ld ( a [ i ] ) ) ) ;

Giving the code of the main algorithm, and each subproblem completely
specified, ESC/Java2 is able to prove this assertion. We can also express
that a is the smallest next permutation of a0:

@ensures \ r e s u l t ==>
(\ f o r a l l int [ ] c ;
( c . l ength == a . length
&&

4We consider a permutation of 0..a.length−1 and not of 1..n for practical reasons: the
first index of a Java array is 0



3.1. Extended Static Checker 53

(\ f o r a l l int i ; 0 <= i && i < c . l ength ;
(\ num of int k ; 0 <= k & k < c . l ength ;

c [ k ] == i )
==1)

&&
(\ e x i s t s int i ; 0 <= i && i < a . l ength ;

( (\ f o r a l l int k ; 0 <= k && k < i ;
c [ k ] == \ o ld ( a [ k ] ) )

&&
c [ i ] > \ o ld ( a [ i ] ) ) ) )

==>
(\ e x i s t s int i ; 0 <= i && i < a . l ength ;

( (\ f o r a l l int k ; 0 <= k && k < i ;
c [ k ] == a [ k ] )

&&
c [ i ] >= a [ i ] ) ) ) ;

Again, one can observe that JML is very expressive, we can quantify on
objects such as arrays. But ESC/Java2 is not able to prove this assertion.

Another way for specifying the main algorithm, is to translate the algo-
rithm in postcondition (in a declarative way) : we may express that the
array a is divided in two parts, the first, a[0..i−1] is unchanged, the second,
a[i..a.length−1] is decreasing, with a[i] > a0[i] and a[i], the smallest greater
than a0[i]:

@ensures \ r e s u l t ==>
(\ e x i s t s int i ; 0 <= i & i <= a . length −1;

\ o ld ( a [ i ] ) < a [ i ]
&&

(\ f o r a l l int j ; 0 <= j & j < i ;
\ o ld ( a [ j ] ) == a [ j ] )

&&
(\ f o r a l l int j ; i+1 <= j & j < a . length−1 ;

a [ j ] ) < a [ j +1])
&&

(\ f o r a l l int j ; i+1 <= j & j <= a . length −1;
a [ j ] > \ o ld ( a [ i ] ) ==> a [ j ] > a [ i ] )

) ;

This part of postcondition is the translation of the next permutation algo-
rithm. But who does guarantee that this assertion expresses correctly the
next permutation? It does not guarantee that the algorithm actually com-
putes the next permutation if we verify it according to these specifications.
This kind of verification is just a way to be more confident in the algorithm
but it does not prove that the algorithm really computes the next permu-
tation. Anyway, ESC/Java2 is not able to prove it; the manual proof in
Section 2.1.5 suggests that it would be difficult for an automatic theorem
prover to prove that the subarray a[i + 1..a.length − 1] is decreasing.



54 How about Existing Tools to Teach Structured Programming?

3.1.4 Conclusion

JML allows us to write convenient specifications, and keywords exist to
specify preconditions, postconditions and loop invariants. There is even a
keyword to provide a variant. Nevertheless, it is not completely adequate to
learn a strict structured programming methodology for a number of reasons.

• First, the use of the invariant method is not encouraged: ESC/Java2
does not need an invariant to prove correctness with respect to spec-
ifications. Moreover, ESC/Java2 does not help us to write “good”
(i.e., complete) invariants since it does not check Hoare’s propositions
independently.

• The feedback is not always very informative. Too often ESC/Java2
gives false warnings, and sometimes it forgets errors. Moreover, ES-
C/Java2 does not display verification conditions in a readable way.

• ESC/Java2 does not provide concrete counter-examples.

• Finally, the “pragmatism” of the ESC/Java2 design has a number
of unpleasant consequences: since it is not possible to exactly know
a priori what kind of assertions can be proven or falsified, users may
spend too much time using the tool by trial and errors, which is exactly
the opposite of our teaching goals.

A new European project [45] is improving ESC/Java2: instead of working
with a single theorem prover, it proposes to couple multiple provers (even
concurrently) and the choice of prover(s) is based upon context. New logics
encoded in PVS and Coq will increase ESC/Java2 soundness, completeness,
and performance. With these improvements, ESC/Java2 should be reeval-
uated with respect to the pedagogical goals.

In the next Section, we present another tool which follows a different
philosophy: verification must be very precise; it cannot be unsound and
must lead to complete verifications, the price to pay is that the tool is
partially interactive.

3.2 Spark

According to John Barnes’s book [3], Spark is a high level programming
language designed to write software for applications that cannot fail. It
is used in safety critical applications where life and limb are at risk if the
program is in error, or in security applications where access and integrity
of information is critical. When the user is an expert in theorem proving,
Spark tools enable to prove partial correction of programs. Besides, Spark



3.2. Spark 55

encourages the development of programs in an orderly manner with the aim
that the program should be correct by construction. In application areas as
avionics and railway signaling [1], it is argued that, when Spark is used,
not only the program is more likely to be correct, but the overall cost of
development is actually less in total after all testing and integration phases
are taken into account.

Spark is also used in the academical context [36]; indeed, Spark offers a
small language that can be used to teach the principles of design-by-contract
(which is a fashionable word for structured programming), static analysis,
formal verification and safety- and security-critical software development
[48]. The book [3] is quite pedagogical and explains the Spark language
and technology.

As the Spark philosophy corresponds exactly to our objectives in the
structured programming method learning, we propose to analyse to what
extend the Spark tools are adapted to help the teacher and the student
in the concerned methodology. To evaluate the adequacy of this tool in
our learning context, we would like to approximate the set of algorithms
that can be verified fully automatically, and we would like to appreciate the
required level of expertise of the user, when algorithms cannot be verified
automatically.

3.2.1 Overview

3.2.1.1 The Programming Language

The Spark language comprises a kernel which is a subset of Ada [25];
It provides additional features inserted as annotations in the form of Ada
comments. The annotations are divided into two categories: the first one
is concerned flow analysis, and visibility control; the second one is con-
cerned with formal proof. Notice that, although the kernel language omits
many features of full Ada, it stays nevertheless a rich language containing
for example a full capability for defining Abstract Data Types that we do
not investigate. To remain on our research track, we focus on the part of
the language related to the structured programming method explained in
Chapter 2.

The first category of annotations (named kernel annotations) can express
the use of global variables by subprograms, to specify the information flow
between their imports and exports via both parameters and global variables.
For example, the following method declaration, together with its kernel an-
notations,



56 How about Existing Tools to Teach Structured Programming?

procedure Algo(X , Y : in My_Integer ;

Z : out Integer) ;

--# derives Z from X , Y ;

expresses that the formal parameters X and Y are constants initialized by the
value of the associated actual parameter, and Z is an uninitialized variable,
that can be updated.
The annotation "derives Z from X,Y" expresses that the value of Z will
be obtained from the values of X,Y.

Pre and post conditions are in the second category (named proof annota-
tions); unlike the kernel annotations, proof annotations are optional and are
written in an expression language which is an extension of Ada. We can re-
fer to the initial values of variables (X~ denotes the inital value of X); we can
use logical implication, universal and existential quantifiers. The following
proof annotation expresses that the subarray A[I+2..N] stays unchanged:

--# (for all K in Integer range I+2..N => (A(K) = A~(K)));

K in Integer is the declaration of the quantified variable, the range is op-
tional and the body of the quantified expression compares the values at each
array index, which satisfies the range, with their respective initial values. We
can also declare proof functions for use in annotations as mathematical func-
tion which we define by means of a collection of proof rules. For example,
we declare a function Perm to express that an array A is a permutation of
an array B:

--# function Perm(A, B : Array_Type) return Boolean;

and so we can write, for example, in a proof annotation that A is a permu-
tation of the initial array A~ : --# Perm(A , A~ ).

Precondition is determinated by the keyword # pre, postcondition, with the
keyword # post. Within subprogram bodies, additional proof annotations
are used for

• code cutpoints (e.g. loop invariant) via # assert annotations;

• well-formation checks, via # check annotations

Each of such assertions specifies a relation between program variables which
must hold at that precise point, whenever execution reaches it. Assert an-
notations generate a cut point on the flow chart of the subprogram, whereas
check annotations do not.



3.2. Spark 57

package Exponentiation

is

subtype My_Integer is Integer range 0..5 ;

procedure Algo(X , Y : in My_Integer ;

Z : out Integer) ;

--# derives Z from X , Y ;

--# pre Y >= 0 ;

--# post Z = X ** Y ;

end Exponentiation;

package body Exponentiation

is

procedure Algo(X,Y: in My_Integer; Z: out Integer)

is

U : Integer;

V : My_Integer;

begin

U := X ;

V := Y ;

Z := 1 ;

loop

--# assert X ** Y = Z * U ** V and V >= 0 ;

exit when V = 0 ;

if V mod 2 = 1 then Z := Z * U ; V := V - 1 ; end if ;

U := U * U ;

V := V / 2 ;

end loop;

end Algo;

end Exponentiation;

Figure 3.1: The Indian exponentiation algorithm

To present the Spark tools, we refer to the example of the Indian expo-
nentiation, a Spark version of which is depicted in Figure 3.1; this consists
in two packages; the first one defines the method specification, the second
one contains the method implementation. This Spark version of specifica-
tion and implementation is very similar to that elaborated in Section 2.1.2
in Figure 2.1. Apart from the syntax, the only difference lies in the fact
that, in the Spark version, we define a subtype My Integer that is not de-
fined in Figure 2.1. The algorithms that we mention in Chapter 2 do not
consider overflow for integers (they are treated as mathematical integers);
actually any programming language has to consider that the set of integers
has a limited size. In this algorithm, overflow can be source of error: if we
compute the exponentiation of two integers, the result may be larger that
an integer and even larger than a long. To simplify the problem, we take
the option of limiting the size of the data.



58 How about Existing Tools to Teach Structured Programming?

3.2.1.2 The Examiner

Flow analysis The Examiner is the main Spark tool, it checks confor-
mance of the code to the rules of the kernel language and it checks consis-
tency between the code and the embedded annotations by control, data and
information flow analysis. So, the Spark language with its kernel annota-
tions ensures that a program cannot have certain errors related to the flow
of information. The Examiner can detect the use of uninitialized variables
and the overwriting of values before they are used. The techniques used are
based on [34]. In order to do so, Spark accepts only assignments, sequen-
tial composition, conditional statements and loops (to be precise, Spark

also accepts multi-exit loops and case statements, which are statements
that can be composed out of the primitive compound statements by var-
ious transformations). The information flow analysis is based on a number
of relationships between variables and expressions. The expressions depend
of the variables and the variables depend on the expressions. As a conse-
quence, the final values of the variables depend upon the initial values of the
variables through the intermediary of the expressions. To develop formulae
for the two relationships between expressions and variables, they define, for
each statement, a binary matrix. Then, they can easily compute the overall
relationship, using operations on the matrices: the reasoning is based on
abstract interpretation.

Generating Verification Conditions In case no problem occurs in the
flow analysis, given proof annotations, the Examiner generates, in a specific
file, all the verification conditions using the weakest precondition method.
For each Hoare proposition, the Examiner generates formulas of the form
H1 & H2 & . . . → C1 & . . .. The verification conditions produced by the
Examiner are expressed in a form that can be manipulated by the automatic
tools that we describe later. The employed notation is an extended form of
the language FDL (Functional Description Language). The translation de-
tails of Spark expressions into FDL expressions is provided in the book [3].
The verification condition below is the last one (the 16th), this corresponds
to the Hoare proposition {Inv and H} clot { Post };

procedure_algo_16.

H1: x ** y = z * u ** v .

H2: v >= 0 .

H3: x >= my_integer__first .

H4: x <= my_integer__last .

H5: y >= my_integer__first .

H6: y <= my_integer__last .

H7: y >= 0 .

H8: v >= my_integer__first .

H9: v <= my_integer__last .

H10: v = 0 .



3.2. Spark 59

->

C1: z = x ** y .

If we prove that, assuming the clauses H1... H10, the conclusion C1 holds,
we guarantee that the proposition { Inv and H} Clot { Post } holds. Figure
3.2 shows the verification condition corresponding to the iteration when v is
odd. One can observe that verification conditions may easily become very
large.

Verification conditions are also generated for runtime checks: index range,
division checks and overflow checks. In the example, we have for each as-
signment of U, V and Z a verification condition to check whether there is
no runtime error. To achieve this, the Examiner automatically inserts a
proof annotation just before each assignment; and then, generates verifica-
tion conditions using the weakest precondition method. It is the reason why
in this example, there are 16 verification conditions.

...

--# check U * U in Integer;

U := U * U;

--# check V div 2 in My_Integer and 2 <> 0;

V := V div 2;

..

Here is the verification condition checking whether there is no runtime error
with the assignment u := u * u.

H1: x ** y = z * u ** v .

H2: v >= 0 .

H3: x >= my_integer__first .

H4: x <= my_integer__last .

H5: y >= my_integer__first .

H6: y <= my_integer__last .

H7: y >= 0 .

H8: v >= my_integer__first .

H9: v <= my_integer__last .

H10: not (v = 0) .

H11: v >= my_integer__first .

H12: v <= my_integer__last .

H13: 2 <> 0 .

H14: v mod 2 = 1 .

H15: z >= integer__first .

H16: z <= integer__last .

H17: u >= integer__first .

H18: u <= integer__last .

H19: z * u >= integer__first .

H20: z * u <= integer__last .



60 How about Existing Tools to Teach Structured Programming?

procedure_algo_5.

H1: x ** y = z * u ** v .

H2: v >= 0 .

H3: x >= my_integer__first .

H4: x <= my_integer__last .

H5: y >= my_integer__first .

H6: y <= my_integer__last .

H7: y >= 0 .

H8: v >= my_integer__first .

H9: v <= my_integer__last .

H10: not (v = 0) .

H11: v >= my_integer__first .

H12: v <= my_integer__last .

H13: 2 <> 0 .

H14: v mod 2 = 1 .

H15: z >= integer__first .

H16: z <= integer__last .

H17: u >= integer__first .

H18: u <= integer__last .

H19: z * u >= integer__first .

H20: z * u <= integer__last .

H21: v >= my_integer__first .

H22: v <= my_integer__last .

H23: v - 1 >= my_integer__first .

H24: v - 1 <= my_integer__last .

H25: v - 1 >= my_integer__first .

H26: v - 1 <= my_integer__last .

H27: v - 1 > 0 .

H28: u >= integer__first .

H29: u <= integer__last .

H30: u * u >= integer__first .

H31: u * u <= integer__last .

H32: v - 1 >= my_integer__first .

H33: v - 1 <= my_integer__last .

H34: (v - 1) div 2 >= my_integer__first .

H35: (v - 1) div 2 <= my_integer__last .

H36: 2 <> 0 .

->

C1: x ** y = z * u * (u * u) ** ((v - 1) div 2) .

C2: (v - 1) div 2 >= 0 .

C3: x >= my_integer__first .

C4: x <= my_integer__last .

C5: y >= my_integer__first .

C6: y <= my_integer__last .

C7: y >= 0 .

Figure 3.2: The verification condition corresponding to the iteration when
v is odd



3.2. Spark 61

H21: v >= my_integer__first .

H22: v <= my_integer__last .

H23: v - 1 >= my_integer__first .

H24: v - 1 <= my_integer__last .

H25: v - 1 >= my_integer__first .

H26: v - 1 <= my_integer__last .

H27: v - 1 > 0 .

H28: u >= integer__first .

H29: u <= integer__last .

->

C1: u * u >= integer__first .

C2: u * u <= integer__last .

The reader who proves this verification condition can observe that it is
important to reduce the domains of the data x and y.

3.2.1.3 The Simplifier

The Spade Automatic Simplifier (usually referred to as just the Simpli-
fier) is an automatic tool that tries to reduce a verification condition to
true. The fundamental algorithm employed by the Simplifier consists, for
each verification condition, in a sequence of the processes described below;
some of them are repeated several times. Notice that the algorithm always
terminates but it does not guarantee to find a proof.

• Scalar constant substitution:

Replacing the constants by their value.

In the example, integer first and integer last are replaced resp.
by -2**31 and 2**31-1;

My integer first and My integer last are resp. replaced by 0 and
5.

• Expression simplification:

Trying to evaluate expressions by using a list of simplification rules;

for examples, not true is evaluated to false,

X + 0 is evaluated to X,

2 + 3 is evaluated to 5,

X ** 0 is evaluated to 1.

The Simplifier goal is to try to evaluate the conclusions of a verification
condition to true.

• Global logical simplification:

Moving negation inwards as far as possible, splitting up conjunctions
and adding new consequents.



62 How about Existing Tools to Teach Structured Programming?

• Proof conclusion:

The inference engine of Simplifier tries to deduce conclusions from the
existing hypotheses.

• Construction of standard forms:

Multiplying out terms such as (a + b) * (d + c), collecting like
terms and ordering sums of products lexicographically

• Search for a contradiction:

If the inference engine cannot eliminate all the conclusions, the next
strategy is to search for a contradiction in the hypothesis of the verifi-
cation condition; if it finds a contradiction, the verification condition
holds since false → X is true.

To perform it, the tool looks for mutually exclusive hypotheses (for
each hypothesis P, it attempts to infer not P); it tries to find a variable
on an empty range; it constructs a collection of joins (a join is formed
by adding or subtracting two relational expressions in a sound way).

• Expression reduction:

Eliminating hypotheses true, repeated hypotheses, redundant hypothe-
ses.

Reducing A → B to B if the engine has inferred A to true.

• Proof framing:

For a conclusion with one specific pattern, like for all(x:t,p(x)) or
p -> q, the Simplifier has heuristics for breaking the conclusion into
subgoals.

• Application of user-defined rules:

If, after applying all of the preceding phases, there are still unproven
conclusions in the current verification condition, the Simplifier at-
tempts to make use of the user-defined rules to prove each of the
remaining conclusions in turn; it is its final attempt to complete the
proof of the current verification condition. We give some examples of
user-defined rules later in this section.

Let us submit the verification condition algo 16 to the Spade Automatic
Simplifier for reducing it to simply

***true. /*all conclusions proved*/

For the particular case, it proceeds like this (it is described in the log file):

1. The Simplifier applies substitution rules:

it instantiates my integer’first and my integer’last,



3.2. Spark 63

2. Then, it eliminates all redundant hypotheses,

3. Then, it replaces all occurrences of v by 0,

the hypothesis H10 is eliminated.

In H1, u ** 0 is simplified to 1 and z * 1 is simplified to z.

The new H1 becomes x ** y = z.

4. Then, it replaces all occurrences of z by x ** y.

H1 is eliminated.

We get C1: x ** y = x ** y.

5. Finally C1 is simplified to true and the verification condition is proved.

Of course, it is common that the Simplifier is unable to reduce a ver-
ification condition to true. If it does not succeed, it provides the initial
verification condition reduced to an intuitive simpler form, which is not
necessarily the last form obtained by the algorithm.

The verification condition algo 5 in Figure 3.2 cannot be reduced to true:
in the simplified verification condition algo 5, one can observe that one of
the 7 conclusions has not been proved. For better readability, some hypothe-
ses concerning the variables domains have not been displayed.

procedure_algo_5.

H1: x ** y = z * u ** v .

H7: y >= 0 .

H14: v mod 2 = 1 .

H27: v - 1 > 0 .

->

C1: x ** y = z * u * (u * u) ** ((v - 1) div 2) .

To help the Simplifer, the user can provide user-defined rules: inference rules
and substitution rules. For this example, we provide the following additional
rule:

myexpo(4): Z * X ** Y may_be_replaced_by

Z * X * (X * X) ** ((Y - 1) div 2)

if [Y mod 2 = 1] .

And the Simplifier is able to prove the conclusion C1. On the other hand, if
we give the rule myexpo(4)’, the Simplifier is not able to prove C1.

myexpo(4)’: X ** Y may_be_replaced_by

X * (X * X) ** ((Y - 1) div 2)

if [Y mod 2 = 1] .



64 How about Existing Tools to Teach Structured Programming?

Besides, it brings risk that the user may add rules that are not sound, and
use these unsound rules to discharge verification conditions that are not
provable. Ideally, the user should construct a proof with the Proof Checker,
with other tool or, at least, manually.

3.2.1.4 The Proof Checker

The Proof Checker is an interactive program; this enables the user to
direct the Checker to explore the use of various strategies and rules on the
condition to be proved. It is designed around first-order predicate calculus
with classical logic. It does not permit quantification over objects such
as arrays, records, etc. Importantly, we must be careful about what we
are claiming to have proved: we have to assume that all subexpressions
occurring in a verification condition are well defined. Thus, if we have a
hypothesis c div d = x, there is an assumption that c div d is defined
(i.e, d is not zero); but imagine we also have the hypothesis that d = 0,
then classical logic ceases being applicable, because we have a hypothesis
whose value is undefined.

The Proof Checker proceeds by applying various strategies and rules. The
rules are the hard facts available to the Checker whereas strategies are dy-
namical approaches available. The user directs the proof process by telling
the Checker which strategies to apply. Available strategies include

• simple inference by pattern matching against the rules,

• deduction using truth tables,

• proof by cases: cases for x = 0 and x >= 0 might need different ap-
proaches,

• proof by contradiction,

• proof by induction.

To give an idea of the way the user interacts with the Checker, we prove
the user-defined rule myexpo(4); this example mainly applies substitution
rules, more interesting proof strategies are shown later in the section.

H1: y mod 2 = 1 .

->

C1: z * x ** y = z * x * (x * x) ** ((y - 1) div 2) .

To prove it, we need the following rules wich are in the database, the
rules are grouped in families; they are identified by the name of their family
and a number.



3.2. Spark 65

exp(8): X ** 1 may_be_replaced_by X .

exp(9): X ** 2 may_be_replaced_by X * X .

commut(2): A * B may_be_replaced_by B * A .

assoc(1): (A + B) + C may_be_replaced_by A + (B + C)

minus(1): X - X may_be_replaced_by 0 .

minus(7): A + (-B) & A - B are_interchangeable .

intdiv(11): A * B div B may_be_replaced_by A if [B <> 0] .

The keyword may be replaced by implies one-way replacement only and
are interchangeable implies remplacement in both ways. Notice that
commut(2) is a one-way rule covering both directions, intdiv(1) has a
condition. But we also need rules that do not exist in the set of rules of the
Checker:

myexpo(1): X ** (Y * Z) may_be_replaced_by (X ** Y) ** Z .

myexpo(2): X ** (Y + Z) may_be_replaced_by X ** Y * X ** Z .

myexpo(3): X mod 2 = 1 may_be_replaced_by X = K * 2 + 1 .

The database evolves over the years from Spark experience with projects;
it is the reason why, for some operators, the set of rules contains many
properties, and many rules quite easy to derive from the others, whereas for
other operators, such as the exponentiation, there exist only few rules.

In fact, we can consider that the proof of myexpo(4) is made by decom-
position into subgoals which are myexpo(1), myexpo(2), myexpo(3). So, to
be sound and complete, we need to prove all these three assumptions be-
fore proving myexpo(4). As an example of proof by induction, the proof of
myexpo(2) is given in Appendix A.2. Let us develop the proof of myexpo(4).
The interaction with the Checker for the first two steps is depicted in the
real form. The next steps are described in an adapted, more readable way.

CHECK|:replace H#1

OLD EXPRESSION : y mod 2 = 1

Pattern? y mod 2 = 1.

Subexpression is y mod 2 = 1

Change this expression (yes/no)? yes

Type new subexpression pattern t * 2 + 1 = y .

By which rule? myexpo.

myexpo(3) allows y mod 2 = 1 to be replaced by t * 2 + 1 = y directly

The only possible replacement for y mod 2 = 1 is:

t * 2 + 1 = y

according to rule myexpo(3)

Proceed(yes/no)? yes

NEW EXPRESSION : t * 2 + 1 = y

Is it OK(yes/no)? y

Replace more (yes/no)? no

OK

CHECK|: replace c#1.



66 How about Existing Tools to Teach Structured Programming?

OLD EXPRESSION : z * x ** y = z * x * (x * x) ** ((y - 1) div 2) .

Pattern? y

Subexpression is y

Change this expression (yes/no)? yes

Change which occurrence (number/none/all)? 1.

...

At this moment, we replace the first occurrence y in C1 by t * 2 + 1 by doing an
equality substitution. New C1 is

z * u ** (t * 2 + 1) = z * x * (x * x) ** ((y - 1) div 2) .
According to myexpo(2), we replace the pattern

x ** (X + Y) by x ** X * x ** Y.

By the predefined rule exp(8), x ** 1 is simplified to x.

We replace the pattern t * 2 by 2 * t using commut(2).

We replace the pattern x ** (2 * t) by (x ** 2) ** t using myexpo(1).

We replace the pattern x ** 2 by x ** x using exp(9).

The current C1 is

z * (x * x) ** t * x = z * x * (x * x) ** ((y - 1) div 2)

After two commutations, C1 becomes

z * x * (x * x) ** t = z * x * (x * x) ** ((y - 1) div 2)

Then, we prove t * 2 = y - 1 using assoc(1), minus(1), minus(7).

We replace the pattern y - 1 in C1 by t * 2, by doing an equality substitution.

Finally, t * 2 div 2 can be replaced by t using intdiv(11).

We get C1: z * x * (x * x ) ** y = z * x * (x *x) ** t which is simpli-

fied to true.

One can observe that encoding this proof in the Checker is tedious, each
step, as small as it can be, has to be formally justified. The command to let
the Checker working by itself is done, but the Checker’s inference engine is
not as clever as we might expect.

3.2.2 Experimentation on some Examples

In this section, we evaluate the adequacy of these tools to support the
methodolology of learning the structured programming method. Through
two examples that we have studied in Chapter 2, we analyse if all the as-
pects of the methodology can be easily used with Spark. We first analyse
the insertion sort algorithm, then we tackle the next permutation algorithm
whose manual correctness proof was far from simple.

3.2.2.1 The Insertion Sort Algorithm

Decomposition into subproblems and the assertions expressivity
In the abstract package (see Figure 3.3), we define the decomposition into
two subproblems. For the main problem Sort, one can observe that we can
easily express in postcondition that the result array A is sorted by using a



3.2. Spark 67

package triinsert is

N : constant := 10;

subtype Index_Type is Integer range 1..N;

type Array_Type is array(Index_Type) of Integer;

--# function Perm(A, B : Array_Type) return Boolean;

procedure SP(A : in out Array_Type; I: in Integer) ;

--# derives A from A, I;

--# pre 0 <= I and I <= N-1 and

--# (for all K in Index_Type range 1 .. I-1

--# => (A(K) <= A(K+1)));

--# post (for all K in Index_Type range 1 .. I

--# => (A(K) <= A(K+1)))

--# and Perm(A , A~) and

--# (for all K in Index_Type range I+2 .. N

--# => (A(K) = A~(K)));

procedure Sort(A : in out Array_Type);

--# derives A from A;

--# post (for all K in Index_Type range 1 .. N-1

--# => (A(K) <= A(K+1)))

--# and Perm( A , A~);

end triinsert;

Figure 3.3: Insertion sort specifications



68 How about Existing Tools to Teach Structured Programming?

package body triinsert is

procedure Sort(A : in out Array_Type) is

I : Integer;

begin -- Sort --

I:= 0;

loop

--# assert 0 <= I and I <= N and

--# (for all K in Index_Type range 1 .. I-1

--# => (A(K) <= A(K+1)))

--# and Perm(A , A~);

exit when I = N ;

SP(A,I);

I := I+1;

end loop;

end Sort;

end triinsert;

Figure 3.4: Insertion sort Algorithm

universal quantifier; besides Spark allows us to formally express that the
result array A is a permutation of the initial array A~ thanks to a proof
function. The specification of the subproblem SP, whose goal is to insert the
element A(I) at the right place in the subarray A[1..I], is also expressed
in a similar way as in Section 2.1.4. In the abstract package, we also define
the variables types, the array size and we declare the proof function Perm.
The implementation of the main problem stands in the package body (see
Figure 3.4) and the loop invariant is inserted in the code.

Proof of the correctness using the invariant method Spark follows
the principles of the stuctured programming method: independently, for
both subproblems, the Examiner generates (in two separate files) verification
conditions using the weakest precondition and the invariant. Let us observe
the verification condition of the loop transformation of the main algorithm.
For better readability, some hypotheses concerning the variables domains
have not been displayed and redundant hypotheses have been omitted as
well.

procedure_sort_3.

H1: 0 <= i .

H3: for_all(k_: integer, ((k_ >= 1) and (k_ <= i - 1))

-> (element(a, [k_]) <= element(a, [k_ + 1]))) .

H4: perm(a, a~) .

H14: i <= n - 1 .

H16: for_all(k_: integer, ((k_ >= 1) and (k_ <= i))

-> (element(a__1, [k_]) <= element(a__1, [k_ + 1]))) .

H17: perm(a__1, a) .



3.2. Spark 69

H18: for_all(k_: integer, ((k_ >= i + 2) and (k_ <= n))

-> (element(a__1, [k_]) = element(a, [k_]))) .

->

C1: 0 <= i + 1 .

C2: i + 1 <= n .

C3: for_all(k_: integer, ((k_ >= 1) and (k_ <= i + 1 - 1))

-> (element(a__1, [k_]) <= element(a__1, [k_ + 1]))) .

C4: perm(a__1, a~) .

The verification conditions that we prove in Section 2.1.4 are not exactly the
same as those generated by Spark because, in order to define them, we use
the symbolic execution method and Spark uses the weakest-precondition
method. By experiment, these verification conditions are very similar, there
is just less renaming with the wp method.

To be verified, the predicate Perm must be defined: it is declared in the
abstract package in Figure 3.3, but it also needs to be defined as an equiv-
alence or one can axiomatize its definition by a set of rules. The second
method is often more rewarding since the rules can be efficiently used by
the Simplifier and the Proof Checker while a definition as an equivalence
can be operationally useless. However, incorrect rules may allow the user
to “prove the correctness” of a wrong program. Hence, a rigorous approach
would be to formally prove that rules are valid according to a definition
as an equivalence. But, since such a proof can be difficult or tedious, it is
often omitted in practice. We now display a set of rules for the predicate
perm(X,Y).

perm(1): perm(update(update(A,[I],X),[J],Y),B)

may_be_deduced_from

[perm(update(update(A,[I],Y),[J],X),B)].

perm(2): perm(A,A) may_be_deduced .

perm(3): perm(A,B) may_be_replaced_by perm(B,A).

perm(4): perm(A,B) may_be_deduced_from [perm(A,C),perm(C,B)].

The first rule expresses that when two elements are exchanged, the array
remains a permutation. The second rule stands for the identity of perm;
the third rule expresses that perm is symmetric. perm(4) expresses the
transitivity of the relation.

Using these rules, the Simplifier is able to verify all the conclusions of
this verification condition. And also, most of the verification conditions of
the main problem are automatically verified. Amazingly, the Simplify is not
able to simplify the following condition to true:

C1: for_all(k_ : integer, 1 <= k_ and k_ <= - 1 ->

element(a, [k_]) <= element(a, [k_ + 1])) .

We do not detail here the interactive proof of this condition because we let
the next example explore the possibilities of the Proof Checker.



70 How about Existing Tools to Teach Structured Programming?

Anyway, the feedback of Spark is not clear, it does not give any warning,
it just says when the Automatic simplifier has finished. Some verification
conditions are completely simplified and for other verification conditions,
the simplification has not succeeded. In the last case, it is not clear if
it is because the verification condition is false, or because the tool needs
additional rules, or even because the tool is not clever enough. The user has
to analyse it manually.

3.2.2.2 The Next Permutation Problem

Decomposition into subproblems and assertions expressivity
Again, we have an abstract package (in Figure 3.5) which describes the

several subproblems with there specificiations such as they are described in
Section 2.1.5. The main problem can be formalised: to constraint the array
A to be a permutation of 1..N, we define a proof function perm1N(A); and in
postcondition, to express that A is the next permutation of A~, we use a trick:
a formal parameter C in the procedure Main which is just mentioned in the
specification, to say that for all array C the written postcondition is satisfied.
greater, and greaterEq are two proof functions expressing lexicographic
relations between arrays of integers. Notice that the Examiner, analysing
the flow, gives some warnings because C is not used in the code.

Proof of the correctness This example highlights the Simplifier limits
because, even for simple subproblems such as the subproblems SP1 and SP2,
the Simplify cannot manage quantified expressions. Each of the subproblems
must be proved with the interactive Proof Checker. To show an example
of using the interactive Proof Checker with verification conditions involving
quantifiers, we propose to prove the first subproblem, its goal is to find the
smallest index i of an array a such that a[i] < a[i+1].

The proof of the correctness of the subproblem SP1 To guide the
proof checker, we need to elaborate a good manual proof first. Thus, given
the algorithm with its specification in Figure 3.6, we provide a manual proof
of its correctness. Afterwards, we show how it could be formalised with
Spark.

The manual proof To demonstrate the partial correctness of the SP1
algorithm, let us prove the three Hoare propositions by symbolic execution.

1. {a initialised} i := n - 1 {Inv}

The execution of the initialisation terminates with i = n − 1;

with a initialised and i = n − 1, the invariant holds:

• 0 ≤ i ≤ n − 1 and



3.2. Spark 71

package permutsuivante is

N : constant := Integer(100) ;

subtype Index is Integer range 1..N ;

type Array_Type is array(Index) of Index ;

--# function perm1N(A : Array_Type) return Boolean ;

--# function greater(A1 : Array_Type ; A2: Array_Type)

--# return Boolean ;

--# function greaterEq(A1: Array_Type ; A2: Array_Type)

--# return Boolean ;

procedure SP1(A : in Array_Type; I : out Integer) ;

--# derives I from A ;

--# post 0 <=I and I < N

--# and (for all K in Index range I+1.. N-1

--# => A(K) >= A(K+1))

--# and (I = 0 or A(I) < A(I + 1)) ;

procedure SP2(A : in Array_Type ; I : in Integer

; J : out Integer) ;

--# derives J from I , A ;

--# pre 0 < I and I < N

--# and (for all K in Index range I+1.. N-1

--# => A(K) >= A(K+1))

--# and A(I) < A(I+1) ;

--# post I < J and J <= N and A(J) > A(I)

--# and (J = N or A(J + 1) <= A(I)) ;

procedure SP3(A : in out Array_Type; I : in Integer) ;

--# derives A from A,I ;

--# pre 1<= I and I< N ;

--# post (for all K in Index range I + 1..N

--# => (A(K) = A~(N - (K - (I + 1)))))

--# and (for all K in Index range 1..I

--# => (A(K) = A~(K))) ;

procedure Main(A : in out Array_Type ;

C : in out Array_Type ; B : out Boolean) ;

--# derives A , B from A &

--# C from C ;

--# pre perm1N(A) ;

--# post (B -> (perm1N(A) and greater(A , A~)

--# and ( (perm1N(C) and greater(C , A~))

--# -> greaterEq(C , A))

--# ))

--# and

--# (B = false -> (for all K in Index_Type range 1..N-1

--# => (A(k) > A~(K+1)))) ;

end permutsuivante;

Figure 3.5: The next permutation specification



72 How about Existing Tools to Teach Structured Programming?

• Declarations:

var a : array[1..n] of integer ; (input)

var i : integer ; (output)

• Pre: a initialised

Post: a unchanged and 0 ≤ i ≤ n − 1

and (∀k : i + 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1])

and (i = 0 or a[i] < a[i + 1])

Invariant: a unchanged and 0 ≤ i ≤ n − 1

and (∀k : i + 1 ≤ k ≤ n − 1 : a[k] ≥ a[k + 1])

• Init: i := n - 1

Iter: i := i - 1

H: i = 0 || a[i] < a[i+1]

Figure 3.6: The algorithm to find the smallest index i such a[i] < a[i+1]

• (∀k : n ≤ k < n : a[k] ≥ a[k + 1]) is true because there is no k
such that n ≤ k < n.

2. {Inv and not H} i := i - 1 {Inv}

Let i1 be the initial value of i; by hypothesis,

(1) 0 < i1 ≤ n − 1 and

(2) (∀k : i1 + 1 ≤ k < n : a[k] ≥ a[k + 1]) and

(3) a[i1] ≥ a[i1 + 1]

The execution of the iteration terminates with i = i1 − 1 and the
invariant holds:

• 0 ≤ i ≤ n − 1, because of (1):

0 ≤ i1 − 1, i.e., 0 < i1

and i1 − 1 ≤ n − 2, which implies i1 − 1 ≤ n − 1

• (∀k : i + 1 ≤ k < n : a[k] ≥ a[k + 1]) holds, i.e:

(∀k : i1 ≤ k < n : a[k] ≥ a[k + 1]) holds:

Indeed, this last quantified assertion is the same as (2) except
that the range of the quantification has an extra value i1; but the
case of the extra value i1 is covered by the relation (3).

3. {Inv and H} skip {Post}

It is trivial since Inv and H is equivalent to the postcondition.

4. An appropriate variant is i: it is positive and strictly decreases at each
iteration.



3.2. Spark 73

procedure SP1(A : in Array_Type; I : out Integer) ;

--# derives I from A ;

--# post 0 <=I and I < N

--# and (for all K in Index range I+1.. N-1

--# => A(K) >= A(K+1))

--# and ( I = 0 or A(I) < A(I + 1)) ;

procedure SP1(A : in Array_Type ; I : out Integer)

is

begin

I:= N - 1 ;

loop

--#assert 0 <= I and I <= N - 1 and

--# (for all K in Index range I+1..N-1

--# => (A(K) >= A(K+1)));

exit when I = 0 or else A(I) < A(I+1) ;

I:= I - 1 ;

end loop ;

end SP1 ;

Figure 3.7: The Spark version of the subproblem SP1

Inserting the proofs in the Checker The verification conditions are
generated from the corresponding Spark version depicted in Figure 3.7.
Then, these verification conditions are submitted to the Simplifier which
tries to evaluate them to true. We use the Checker to prove the verification
conditions that the Simplifier has not succeeded to simplify to true.

Let us insert the manual proofs in the Checker: we can observe that
adapting the manual proofs is not so natural: we have to know the several
strategies that can be used by the Checker.

1. {a initialised} i := n - 1 ; {Inv}

The manual proof of the first verification condition is simple. However,
the Simplifier does not succeed in finding it: the simplified verification
condition is the following

procedure_sp1_2.

H1: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 100 ->

1 <= element(a, [i___1]) and element(a, [i___1]) <= 100)

->

C1: for_all(k_ : integer, 100 <= k_ and k_ <= 99 ->

element(a, [k_ + 1]) <= element(a, [k_])))



74 How about Existing Tools to Teach Structured Programming?

To prove C1, we do not need any hypothesis, the manual proof has
shown that C1 is true because there is no k such that n ≤ k < n (in
the Spark version N is determinated and is equal to 100). The goal is
to lead the proof to conclude that one hypothesis is false, no k exists.

The user eliminates the quantification by unfolding: C1 becomes:

C1: 100 <= int_k__1 and int_k__1 <= 99 ->

element(a, [int_k__1 + 1]) <= element(a, [int_k__1])))

which suggests a proof by implication: as the conclusion has the form
A → B, we insert A in the hypothesis, and B is now the conclusion.

H2: 100 <= int_k__1

H3: int_k__1 <= 99

C1: element(a, [int_k__1 + 1]) <= element(a, [int_k__1]))) .

We infer false from H2 and H3 which entails that this verification con-
dition holds.

2. {Inv and not H} i := i - 1; {Inv}

procedure_sp1_3.

H1: 0 < i .

H2: i <= 99 .

H3: for_all(k_ : integer, i + 1 <= k_ and k_ <= 99 ->

element(a, [k_ + 1]) > element(a, [k_]))) .

H4: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 100 ->

1 <= element(a, [i___1]) and element(a, [i___1]) <= 100) .

H5: i >= 0 .

H6: element(a, [i + 1]) <= element(a, [i]) .

H7: i >= 1 .

H8: i <= 100 .

->

C1: for_all(k_ : integer, i <= k_ and k_ <= 100 ->

-> element(a, [k_ + 1]) >= element(a, [k_]))) .

In the manual proof, the assertion corresponding to C1 is proved us-
ing two different hypotheses, (2) (corresponding to H3) and (3)(corre-
sponding to H6), according to the value of the quantified variable. The
strategy of this proof consists in proving by cases. We first remove the
quantifier, we unfold and prove by implication and we obtain:

H9: i <= int_k__1

H10: int_k__1 <= 99 .

->

C1: element(a, [int_k__1 + 1]) <= element(a, [int_k__1]) .



3.2. Spark 75

then, we prove by cases on int k 1 = i or int k 1 > i.

H11: i = int_k__1 or i< int_k__1

• For int k 1 = i,

H12: i = int_k__1

C1 becomes element(a, [i + 1]) <= element(a, [i])

which is the hypothesis H6.

• H12: i< int_k__1

The case int k 1>i is proved by unfolding H3.

H13: i + 1 <= int_K__1 and int_K__1 <= 99 ->

element(a, [int_K__1 + 1]) <= element(a, [int_K__1])))

We instantiate int K 1 with int k 1.

we infer i+1 <= int k 1 from H12 (H14)

we infer C1 from H14, H13, H10.

3. {Inv and H} skip ; {Post}

The corresponding verification condition is proved automatically.

4. The verification conditions for runtime checking are trivial for this
algorithm, and are completely proved by the Simplifier.

5. The loop termination cannot be proved with the Spark tools.

The proof of the main algorithm We present the interactive proof that
the following algorithm computes the next permutation.

procedure Main(A : in out Array_Type ;

C : in out Array_Type ; B : out Boolean)

is

I, J, T: Integer;

begin

SP1(A , I);

if I > 0 then SP2(A , I , J);

T := A(J);

A(J) := A(I);

A(I) := T;

SP3(A,I);

B := true;

else B := false;

end if;

end Main;



76 How about Existing Tools to Teach Structured Programming?

The interesting verification condition generated by the Examiner and
simplified by the Simplifier is the following:

procedure_main_8.

H1: perm1n(a) .

H2: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 100 ->

1 <= element(a, [i___1]) and element(a, [i___1]) <= 100) .

H3: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 100 ->

1 <= element(c, [i___1]) and element(c, [i___1]) <= 100) .

H4: i__1 < 100 .

H5: for_all(k_ : integer, i__1 + 1 <= k_ and k_ <= 99 ->

element(a, [k_]) >= element(a, [k_ + 1])) .

H6: element(a, [i__1]) < element(a, [i__1 + 1]) .

H7: i__1 > 0 .

H8: element(a, [i__1]) < element(a, [i__1 + 1]) .

H9: i__1 < j__2 .

H10: j__2 <= 100 .

H11: element(a, [j__2]) > element(a, [i__1]) .

H12: j__2 < 100 -> element(a, [j__2 + 1]) <= element(a, [i__1]) .

H13: element(a, [i__1]) >= 1 .

H14: element(a, [j__2]) <= 100 .

H15: for_all(k_ : integer, i__1 + 1 <= k_ and k_ <= 100 ->

element(a__3, [k_]) =

element(update(update(a, [j__2], element(a, [i__1])), [i__1],

element(a, [j__2])), [100 - (k_ - (i__1 + 1))])) .

H16: for_all(k_ : integer, 1 <= k_ and k_ <= i__1 ->

element(a__3, [k_]) =

element(update(update(a, [j__2], element(a, [i__1])), [i__1],

element(a, [j__2])), [k_])) .

H17: for_all(i___1 : integer, 1 <= i___1 and i___1 <= 100 ->

1 <= element(a__3, [i___1]) and element(a__3, [i___1]) <= 100) .

->

C1: greater(a__3,a).

C2: perm1n(a__3).

C3: perm1n(c) and greater(c,a) -> greaterEq(c,a__3).

Except for some renamings, the verification condition is similar to the one
we construct by symbolic execution.

Elaborating user-defined rules Before trying to make the proof, we
define the several proof functions used in the specifications.

lexico(1): greater(X,Y) may_be_replaced_by

for_some(p:integer,1 <= p and p <= 100 ->

for_all(q:integer,1 <= q and q < p ->

element(X,[q]) = element(Y,[q]))

and element(X,[p]) > element(Y,[p])).

lexico(2): not greaterEq(X,Y) may_be_replaced_by greater(Y,X).

lexico(3): permut1N(X) may_be_replaced_by



3.2. Spark 77

for_all(p:integer,1 <= p and p <= 100 ->

for_some(q:integer,1 <=q and q <= 100 ->

element(X,[q])= p)).

Proving C1 Before inserting the proof of C1 in the Checker, let us first
recall the structure of our manual proof attesting that a � a0; we pick up
in the proof detailed in Section 2.1.5.

we prove that ∃k : 1 ≤ k ≤ n : (∀s : 1 ≤ s < k : a[s] = a0[s])
and a[k] > a0[k].
We simply instantiate k with i:
(∀s : 1 ≤ s < i : a[s] = a1[s] = a0[s]) by (8, 11)
and a[i] =(11) a1[i] =(9) a0[j] >(6) a0[i].

The hypotheses (8),(9), (11) that are used in this proof are represented in
the hypotheses H16 and H9. (6) corresponds to the hypothesis H11.
To insert this proof in the checker, we first replace C1 by its definition (using
lexico(1)):

C1: for_some(s_ : integer, s_ >= 1 and s_ <= 100 and

(for_all(k_ : integer, 1 <= k_ and k_ <= s_ - 1 ->

element(tab__3, [k_]) = element(tab, [k_])

)

and element(tab__3, [s_]) > element(tab, [s_]))

)

Then, we unfold this new C1; C1 is replaced by four new goals:

New goal C1: int_S__1 >= 1

New goal C2: int_S__1 <= 100

New goal C3: for_all(k_ : integer, 1 <= k_ and k_ <= int_S__1 - 1 ->

element(tab__3, [k_]) = element(tab, [k_]))

New goal C4: element(tab__3, [int_S__1]) > element(tab, [int_S__1])

We instantiate int S 1 by i 1, and C1, C2 are proved immediately.

The subgoal C3: We use the strategy of unfolding and proving by impli-
cation; we obtain:

New H19: 1 <= int_k__1

New H20: int_k__1 <= i__1 - 1

New goal C1: element(tab__3, [int_k__1]) = element(tab, [int_k__1])

Proving C3 is reduced to prove the new goal C1: We unfold H16 and we get:

New H21: 1 <= int_K__1 and int_K__1 <= i__1 ->

element(tab__3, [int_K__1]) =

element(update(update(tab, [j__2], element(tab, [i__1])),

[i__1], element(tab, [j__2])),

[int_K__1])



78 How about Existing Tools to Teach Structured Programming?

We instantiate int K 1 with int k 1
and we prove C1 using H20, H9 and array(3):

array(3): element(update(A,J,X),K) & element(A,K) are_interchangeable

if [J<>K] .

Indeed,

element(update(TAB, [i__1], element(tab, [j__2])), [int_k__1])

= element(TAB, [int_k__1])

where TAB = update(tab, [j 2], element(tab, [i 1]))

because int k 1 <> i 1 using H20

and

element( (update(tab, [j__2], element(tab, [i__1])),[int_k__1])

= element(tab, [int_k__1])

because int k 1 <> j 2 using H9 and H20

So, C3 is proved.

The subgoal C4: We use H21, we instantiate K 1 with i 1 and using
array(1)

array(1): element(update(A,I,X),I) may_be_replaced_by X .

we get element(tab 3, [i 1]) = element(tab, [j 2]).

Using H11, element(a, [j 2]) > element(a, [i 1]);

by transitivity, element(tab 3, [i 1]) > element(tab, [i 1]).

By experimenting the Checker on this example, which proves that a 3

is greater than a, one can admit that the user needs expertise and a lot
of patience and perseverance to conclude his proofs. Anyway, the Checker
allows one to make complex proofs such as for example the proof that a 3

is the next permutation of a. Section 2.1.5 shows a tedious manual proof;
it is possible to insert this in the Checker. We do not completely detail this
proof which is very long, but the proof inserted in the Checker follows the
same structure than the manual proof that is made by contradiction:

Proving C3

• First we consider that permut1n(c) and greater(c,a~ ) are hy-
potheseses H18, H19 resp. (14), (15) in the manual proof.

• then we prove by contradiction: not greaterEq(c,a) becomes a hy-
pothesis (H20) (18).



3.2. Spark 79

• not greaterEq(c,a) can be replaced by smaller(c,a) and then by
the quantified formula defining smaller. greater(c,a~ ) must also
be replaced by the definition.

New H20: for_some(s1_ : integer, s1_ >= 1 and (s1_ <= 100 and

(for_all(k1_ : integer, 1 <= k1_ and k1_ <= s1_ - 1 ->

element(c, [k1_]) = element(a__3, [k1_])) and

element(c, [s1_]) < element(a__3, [s1_]))))

New H19: for_some(s2_ : integer, s2_ >= 1 and (s2_ <= 100 and

(for_all(k2_ : integer, 1 <= k2_ and k2_ <= s2_ - 1 ->

element(c, [k2_]) = element(a, [k2_])) and

element(c, [s2_]) > element(a, [s2_]))))

• We make unfolding on the quantified hypotheses H19 and H20.

New H19: int_s2__1 >= 1 and (int_s2__1 <= 100 and

(for_all(k2_ : integer, 1 <= k2_ and k2_ <= s2_ - 1 ->

element(c, [k2_]) = element(a, [k2_])) and

element(c, [s2_]) > element(a, [s2_]))))

New H20: int_s1__1 >= 1 and (int_s1__1 <= 100 and

(for_all(k1_ : integer, 1 <= k1_ and k1_ <= int_s1__1 - 1 ->

element(c, [k1_]) = element(a__3, [k1_])) and

element(c, [int_s1__1]) < element(a__3, [int_s1__1])))

Several times, we need the following rule:

lexico(4): for_all(k:integer, L <= k and k <= 100 ->

for_some(q:integer,L <= q and

(q <=100 and element(a,[k]) = element(a2,[q]))

)

)

may_be_deduced from

[perm1N(a);

for_all(s:integer, 1 <= s and s <= L-1

-> element(a,[s])=element(a2,[s]))]

We should have proved this before proving the verification condition that
we consider. Notice that in the manual proof of Section 2.1.5, we do not
detail this proof either.

• We prove C1 by cases: for each case we have to find a contradiction
between hypotheses. This structure corresponds exactly to the way
we prove it manually.

– int s2 1 < i 1

– int s2 1 > i 1

– int s2 1 = i 1

Replacing all int s2 1 by i 1, we prove by cases on:

∗ int s1 1 = i 1

∗ int s1 1 < i 1

∗ int s1 1 > i 1



80 How about Existing Tools to Teach Structured Programming?

3.2.3 Conclusion

In the context of learning to construct programs based on invariants and
decomposition into subproblems, Spark is interesting because it follows
the principles of structured programming. To check the correctness of a
code fragment involving a loop, we only have to give its specification and
loop invariant. The verification conditions are generated and verified in-
dependently from each other. Also, for verifying code fragments involving
subproblems, Spark only uses the specifications of the subproblems. Notice
however that there is no straightforward way to provide a variant to prove
loop termination.

Drawbacks Spark is a well designed tool but it suffers from three limi-
tations in our specific context.

• A first limitation is that, very often, the Spade Simplifier is not power-
ful enough to finish proofs. Besides, when the proof has not succeeded,
it is not clear whether it is because the verification condition does not
hold, or because the tool needs additional rules, or even because Sim-
plifier is not powerful enough.

• The second limitation is that the user has to analyse the failure manu-
ally. The tool does not provide counter-examples that could highlight
the cause of failure.

• The third limitation lies in the proof checker, which requires too much
expertise from the user in our context of learning. The user has to
spend a lot of time to learn to manipulate the tool, and to develop
correctness proofs.

Actually, Spark could be used in a more advanced context than ours. Its
assertion language is expressive and its Ada subset is a pedagogical language.
Since the user can visualise generated verification conditions and log files of
automatic proofs, the tool could be useful in a follow-up course devoted to
formal verification of software.

As ESC/Java2, Spark is not able to provide counter-examples, with con-
crete values, attesting that the algorithm is not correct according to its
specifications. In the next section, we present SMV, a tool able to provide
counter-examples and to pinpoint the errors.



3.3. SMV 81

3.3 SMV

3.3.1 Overview

To check the correctness of systems, formal methods offer opportunities
for mechanical verification, but most existing techniques either require ex-
tensive human guidance, or are limited to verify simple properties, in term
of verification they are generally unsound and/or incomplete. Using tools
based on formal methods involving theorem provers has shown these disad-
vantages in our pedagogical context.

Symbolic model checking (SMV [44]) on Binary Decision Diagrams is an
efficient automatic verification technique that is simultaneously capable of
scaling and of verifying a wide range of properties. It has been applied
successfully to many industry-scale hardware circuits and protocols; but
in our context of learning a programming methodology, SMV could also
be appropriate as it is fully automatic and it generates concrete counter-
example when a property does not hold.

3.3.2 Model Checking

Model checking is a formal-verification technique based on state explo-
ration 5. Given a state transition system and a property, model checking
algorithms exhaustively explore the state space to determine whether the
system satisfies the property. The result is either a claim that the property
is true or else a counter-example (a sequence of states from some initial
state) falsifying the property.

3.3.2.1 CTL Model Checking

In temporal-logic model checking, we are given a state transition system,
which models a software or hardware system, and a property specified as a
formula in a certain temporal logic, and we determine whether the system
satisfies the formula. A common logic for model checking is the branching
time Computation Tree Logic CTL, which extends propositional logic with
certain temporal operators.

Formally, a state transition system 〈Q,R, I〉 consists of a set of states Q,
a state transition relation R ⊂ Q × Q, and a set of initial states I ⊆ Q.
A path is an infinite sequence of states such that each consecutive pair of
states is in R. For simplicity, we discuss just a subset of CTL, namely the
subset with only the temporal operators AG, AF, EG and EF. We say that a
proposition is any Boolean combination of predicates on the state variables.

5This subsection is strongly inspired from [9]



82 How about Existing Tools to Teach Structured Programming?

A formula is either a proposition, a Boolean combination of formulas, or of
the form AG f , AF f , EG f , or EF f where f is a formula. Each formula
is evaluated at some state q. A proposition holds at q if q satisfies the
proposition. The operator A means ”for all paths starting at q”, E means
”for some path starting at q”, G means ”for every state along the path”
and F means ”for some state along the path. So AG safe holds at q if every
state (G) along every path (A) starting at q satisfies the proposition safe.
The system satisfies a formula if the formula holds at all initial states. If
not, a model checker attempts to find a counter-example. For example, if
the formula AG safe is false, a counterexample is a finite path starting at
some initial state and ending at a state that is not safe.

3.3.3 Symbolic Model Checking

In explicit model-checking techniques, the truth value of a CTL formula
is determined in a graph-theoretic manner by traversing the state diagram,
with time complexity linear in the size of the state space and the length of
the formula. Unfortunately, the size of the state space is often exponential in
the size of the system description, resulting in the state explosion problem.

An important breakthrough in model checking was the introduction of
symbolic techniques. Instead of visiting individual states, symbolic model
checking visits a set of states at a time. A state set can be represented
by a predicate on the state variables such that a state is in the set if and
only if the predicate is true in the state. The efficiency of symbolic model
checking relies on succinct representations and efficient manipulations of
these predicates.

3.3.3.1 Binary Decision Diagrams

When the state space is finite, we can assume without loss of generality
that the state variables are Boolean and there are only finitely many of
them. A predicate on these variables is simply a Boolean function, which
can be represented by reduced ordered binary decision diagrams (BDDs).

Intuitively, a BDD is like a binary decision tree, except that isomorphic
subtrees must be combined resulting in a directed acyclic graph. In ad-
dition, each path can contain a variable at most once, and must comply
with a fixed linear order of the variables. BDDs are canonical and Boolean
operations such as conjunction, disjunction and negation can be computed
in polynomial time. BDDs are usually small, but often their sizes depend
critically on the variable order.



3.3. SMV 83

3.3.4 SMV

SMV is a CTL symbolic model checker using BDDs to represent state sets
and transition relations. In SMV, 1 represents true and 0 represents false.
The logical operators and, or and not are &, \ and !, respectively. An SMV
program consists of a description of a finite-state transition system and a
list of CTL formulas. Recall that a transition system is defined by a state
space, a transition relation and a set of initial states.

The state space is determined by state variable declarations, preceded by
the keyword VAR. For example,

VAR

b: boolean;

x: 0..7;

state: {inv, post}

declares a Boolean variable b, a integer variable ranging between 0 and 7,
and a variable state with value drawn from the set inv, post. The variable
x is internally represented as three Boolean variables.

The transition relation and the inital states can be specified by a collection
of simultaneous assigments: Initial-state assignments are made simultane-
ously at the start, and subsequently next-state assignments are simulta-
neously executed one per cycle. Assigments are preceded by the keyword
ASSIGN. For any variable var, init(var) refers to the value of var in the initial
states, so the code

ASSIGN

init(b) := 0;

sets the initial values of b to 0 (i.e., false). To define the transition relation,
the expression next(var) represents the value of var in the next states.
Therefore,

ASSIGN

next(x) := case state = inv & b = 0: x + 1 ;

1: 0 ;

esac

specifies x will be incremented by 1 in the next state if we are in state inv

and value of b is currently 0.



84 How about Existing Tools to Teach Structured Programming?

An alternative way to specify the transition relation is to use the keyword
TRANS, followed by an arbitrary expression involving the state variable, de-
fined symbols and/or their next versions. The expression directly defines
the transition relation as a proposition. The following next(state) above
is equivalent to the following:

TRANS

(state = inv & b = 0) -> next(x) = x+1

Next-state assignments define the transition relation imperatively, whereas
TRANS statements define it declaratively. TRANS are however less robust; for
example, an empty transition relation can be specified with TRANS state-
ments, resulting in strange analysis results. Such problems can be hard to
track down, so TRANS statements must be used with care. A program can
contain both next-state assignments and TRANS statements. Their conjunc-
tion forms the transition relation.

The Cadence SMV model checker [43] is an evolution of the original SMV
[44]: it allows several forms of specification, including the temporal logics
CTL and LTL, finite automata, embedded assertions, and refinement spec-
ifications. It also includes a graphical user interface.

3.3.5 Supporting the Methodology with SMV

To get a representative idea of the possibilities of SMV in our pedagogical
context, we propose to verify the insertion sort algorithm that we have
constructed and proved in Section 2.1.4. This manipulates arrays, includes
decomposition into subproblems and non trivial predicates. To have it right
in front of us, we recall the main algorithm with its specification in Figure
3.8 as well as the subproblem called specification.

Modelling the Statements in SMV

We first represent each part of every subproblem as a transition system,
where states correspond to key program points (at least the initial and final
points) and transitions are sequences of assigments. A conditional statement
is translated into two conditional transitions. A call to a subproblem can be
translated into one transition from a precondition state to a postcondition
state.

As an example, we write the script partially shown in Figure 3.9 to trans-
late the statement SP; i+1 (i.e., the statement Iter of Figure 3.8).

• We define four states. The states state-iter1 and state-iter2 cor-
respond to the program points before and after the iteration.



3.3. SMV 85

• Declarations:

const n ;

tab a : array [1..n] of integer; (input, output)

var i : integer; (auxiliary variable)

• Pre: a initialised and n ≥ 0

Post: (∀j : 1 ≤ j < n : a[j] ≤ a[j + 1]) and a is a permutation of a0

Inv: 0 ≤ i ≤ n and a is a permutation of a0 and

(∀k : 1 ≤ k < i : a[k] ≤ a[k + 1) and

a[i + 1..n] is unchanged

• Init: i := 0 ;

Halting condition: i != n

Iter: SP ; i := i + 1

• SP specification:

Pre: 0 ≤ i < n and (∀k : 1 ≤ k < i : a[k] ≤ a[k + 1])

Post: (∀k : 1 ≤ k ≤ i : a[k] ≤ a[k + 1])

and a is a permutation of a0

and a[i + 2..n] is unchanged

Figure 3.8: The main subproblem of the insertion sort algorithm

The states state-preSP and state-postSP represent the program
points before and after the call to the subproblem.

• The ASSIGN declaration defines the next value of i depending on its
value in the previous state. It also expresses that a is unchanged except
during the call to the subproblem.

• The TRANS declaration expresses how the value of a can be modified by
the call to the subproblem using a relation between its value before and
after the call. (We explain later in this Section how pre/post conditions
can be translated to the corresponding conditions assert-preSP and
assert-postSP.)

It should be noticed that the array size is not parameterised and that, for
each variable (even an auxiliary variable), the user has to choose adequate
finite domains.

Translating the assertions to SMV Translating assertions into SMV
is possible as we work on finite domains (although formulas can become
quite complicated). As an example, let us show how we can express that
a[1..i] is a permutation of a0[1..i]. In fact, it is not possible to express
a relation between the initial and final values of a without modifying the



86 How about Existing Tools to Teach Structured Programming?

MODULE main

VAR

a : array 1..4 of 1..4;

i: 0..5;

state : {state-iter1,state-iter2,state-preSP,state-postSP};

ASSIGN

--relations between program points

next(state):= case state = state-iter1 & i < 4 : state-preSP;

state = state-preSP : state-postSP;

state = state-postSP : state-iter2;

1: state;

esac;

--i:=i+1 in Iter

next(i):= case state=state-postSP &i<5: i+1;

1:i;

esac;

--a[i] is unchanged unless the SP is called

next(a[1]):= case state = state-preSP : 1..4;

1: a[1];

esac;

next(a[2]):= case state = state-preSP : 1..4;

1: a[2];

esac;

next(a[3]):= case state = state-preSP : 1..4;

1: a[3];

esac;

next(a[4]):= case state = state-preSP : 1..4;

1: a[4];

esac;

--SP call

TRANS

(state= state-preSP & assert-preSP) -> (assert-postSP)

Figure 3.9: Transition system corresponding to the main problem iteration



3.3. SMV 87

scripts for the statements. We need to introduce a new array a0 and to
specify that it is left unchanged by every transition6. Then, with the help of
several intermediate modules, we can translate the assertion as an instance of
the module perm(a,b,i). Note that the result fields of the intermediate
modules are useful to pinpoint the violated parts of an assertion when a
counter-example appears.

MODULE count(a,x,i)

-- #x dans a[1..i]

DEFINE result := (a[1]=x & 1<=i) + (a[2]=x & 2<=i)

+ (a[3]=x & 3<=i) + (a[4]=x & 4<=i);

MODULE samecount(a,b,x,i)

-- #x dans a[1..i]=? #x dans b[1..i]

VAR count_a : count(a,x,i);

count_b : count(b,x,i);

DEFINE result:= count_a.result = count_b.result;

MODULE perm(a,b,i)

VAR samecount1 : samecount(a,b,a[1],i);

samecount2 : samecount(a,b,a[2],i);

samecount3 : samecount(a,b,a[3],i);

samecount4 : samecount(a,b,a[4],i);

DEFINE result:= samecount1.result & samecount2.result

& samecount3.result & samecount4.result;

Quantified assertions such as (∀j : 1 ≤ j < i : a[j] ≤ a[j + 1]) or “a[i + 1..n]
is unchanged” can be defined similarly, using other modules instantiated
in the main module. Writing these modules is tedious because all correct
valuations of the variables must be enumerated:

MODULE increasing(a,i)

DEFINE result:= (i=0) | (i=1) | (i=2 & a[1]<=a[2]) |

(i=3 & a[1]<=a[2] & a[2]<=a[3]) |

(i=4 & a[1]<=a[2] & a[2]<=a[3] & a[3]<=a[4]);

MODULE unchanged(a,a0,i)

DEFINE result:= (i=4) | (i=3 & a[4]=a0[4]) |

(i=2 & a[4]=a0[4] & a[3]=a0[3]) |

(i=1 & a[4]=a0[4] & a[3]=a0[3] & a[2]=a0[2]) |

(i=0 & a[4]=a0[4] & a[3]=a0[3] & a[2]=a0[2] & a[1]=a0[1]);

Defining increasing a, unchanged a and perm a a0 as instances of the
modules increasing, unchanged and perm, we can finally formalise the
following assertions:

DEFINE assert-preSP := 0<=i & i< 4 & increasing_a.result;

6The whole script is in Appendix A.3.1



88 How about Existing Tools to Teach Structured Programming?

--0<=i<4 && forall j:1<=j<i: a[j]<=a[j+1]

DEFINE assert-postSP:= (unchangedN_a.result & increasingN_a.result

& perm_a_a0N.result

);

DEFINE assert-iter1:= i<4 & increasing_a.result & unchanged_a.result

& perm_a_a0.result; --Inv and not H

DEFINE assert-iter2:= i<=4 & increasing_a.result & unchanged_a.result

& perm_a_a0.result; --Inv

Checking the correctness of the program with SMV

Given the whole script, which is in Appendix A.3.1, we can check the
proposition

{Inv and not H} iter {Inv}

. It can be translated into temporal logic formulas as follows:

SPEC ((state=state-iter1) & assert-iter1) -> AF(state = state-iter2)

SPEC ((state=state-iter1) & assert-iter1) ->

AG (state = state-iter2 -> assert-iter2)

The first formula states that the statement iter always terminates. The sec-
ond formula says that the invariant Inv holds after executing this statement
if the condition {Inv and not H} holds beforehand.

With the variable domains given in Figure 3.9, Cadence SMV is able
to prove the correctness of {Inv and not H} iter {Inv} in 20 ms. The
subproblem is proved in 40 ms.

The feedback In case of any mistake in the (formalisation of the) program
and of its assertions, counter-examples are provided by SMV. For example,
if the subproblem postcondition is not strong enough; we forget to say that
a[1..i + 1] is a permutation of a0[1..i + 1], Cadence SMV gives a counter-
example that we can interpret in Figure 3.10:
first column gives a variable state satisfying {Inv and not H} (assert iter1).
Columns 2 and 3 represent the variable states before and after the sub-
problem call; the last column gives a variable state that does not satisfy
the invariant (assert iter2). If appropriate modules are defined, errors
can be pinpointed: one can observe, in the fourth column, the violation of
perm a a0.result saying that a[1..i] is a permutation of a 0[1..i].

Loop termination With SMV, it is possible to check termination by
brute force: we can write the transition system corresponding to the com-
plete algorithm and ask SMV to verify the temporal logic property that,



3.3. SMV 89

Figure 3.10: The Cadence SMV feedback

using data satisfying the precondition, every execution will lead to the post-
condition state: assert-pre1 -> AF(state = state-post) 7. Neverthe-
less, in order to support the programming methodology, we must use an-
other method and write a new script modelling {Inv and not B and v0 =
variant } Iter; v := variant {v < v0 and v ≥ 0}.

3.3.6 Conclusion

SMV is powerful enough to represent the kind of imperative programs we
deal with and their associated verification conditions. We can express and
check all desirable properties; translating assertions into SMV is possible as
we work on finite domains.

SMV is sound and complete in the restricted variable domains. It is able
to give counter-examples, with concrete values that violate a property; it
can also pinpoint violated parts of the property checked. This tool is very
efficient in our context, but time is increasing with the size of the variable
domains. No matter, since we can consider that, if an algorithm is correct
for small size arrays, it is most probably correct for large size arrays, and if
an algorithm is correct for small variable domains (well chosen), it is most

7The state state-post corresponds to the last program point.



90 How about Existing Tools to Teach Structured Programming?

probably correct considering the same variables with non restricted integer
domains. The way of formalising assertion has no impact on the complet-
ness or soundess of a verification. It can just have an impact on efficiency.
However, the work that is required to formalise these properties is well be-
yond what can be asked to students learning the methodology. Besides,
many mistakes can simply be made when they translate the statements in
transition system.

It is clearly possible to extend SMV with a higher level language, in order
to get a tool translating algorithms into transition systems and translation
expressive assertions into CTL properties. This could possibly be done using
a macro preprocessor like M4 [4].

Comparing with the verification tools based on theorem proving, it ap-
pears that making an exhaustive verification such as SMV does is appropri-
ate since our objective is to be as precise as possible, and to give counter-
examples for helping the user to understand his errors.

3.4 Software Model Checkers

In the previous section, we have concluded that making an exhaustive
verification to get a precise feedback about the correctness of our algorithms
seemed the best approach even if we have to restrict the data domains
to small finite domains. Using SMV, we have observed the difficulties to
translate our algorithms and specifications into transition systems and CTL
properties. An alternative to a pure model checker like SMV could be the use
of software model checkers. Problems of translation into transition systems
are no more to be considered and these tools use model-checking techniques
to ”check the correctness” of the algorithms. We consider Blast [27], Java
PathFinder [5], BANDERA [13] andCBMC [11].

The Blast [27] tool is a software model-checker that focuses on checking
sequential C code, using well-engineered predicate abstraction and abstrac-
tion refinement tools. The abstraction is made on the fly; a first model is
model-checked: if there are no wrong path, the model is safe. Otherwise, we
check the counter-example using symbolic execution. If it is non relevant,
the abstraction is refined. Assertion expressiveness is restricted to the C
syntax and Blast does not deal with arrays up to now. We tried to use
it for algorithms that do not use arrays like indian exponentiation, simple
integer division, and computing x2 using the relation (x+1)2 = x2 +2x+1.
Problems appear probably because the theorem prover used by Blast does
not handle full arithmetic.



3.5. Conclusion 91

Java PathFinder [5] is a system to verify Java byte code: it systematically
explores all potential execution path. JML [7] specifications can partially
be checked, in fact they are executed/evaluated thanks to JMLC [10]. The
verification is not compositional: no invariant is used and the verification of
a problem does not use the specification of the called subproblems; it uses
their code. So, JPF cannot enforce the use of the structured programming
method. Besides, the verification is not complete since only a subset of JML
assertions can be executed (like with ESC/Java2).

BANDERA is a software to analyse Java source code, interfacing it with
verification tools like JPF, SPIN [33], SMV. However, these tools do not seem
appropriate for our purpose, because they do not focus on specifications but
on the code. The verification cannot be compositional.

CBMC [11] is a bounded model-checker fo C programs, its assertion lan-
guage is not expressive enough, the verification is not compositional: it does
not need any loop invariant because it unrolls loop.

These tools have not been deeply investigated, but, to our knowledge,
they are limited to handle specific properties of programs, not fully com-
plete specifications. Their objective is different. Since they have to check
programs written in a ‘real life’ language, they must restrict to specific prop-
erties such as checking out of bounds errors, for instance.

3.5 Conclusion

In conclusion, we observe that existing tools have never the same objec-
tives as ours. They focus on real life programs, using a complex language.
They focus on some specific properties; their goal is not to give a complete
and sound verification according to the specification. They do not want
to enforce the use of the decomposition into subproblems and the use of
the invariant; on the opposite, they try to do not disturb the programmer
behaviour.

With this observation, we have built our own tool. Programs, specifi-
cations, variants, invariants can be expressed straightforwardly; the verifi-
cation is compositional. Moreover, it is able to produce concrete counter-
examples. The next chapter presents this tool.





Chapter 4

MPVS: A New Tool to Teach
Structured Programming

We are convinced that students, and still more computer science students,
are motivated when they use computer tools; the difficulty is to provide a
very well adapted tool according to our pedagogical objectives. We have
searched for an existing tool that could help our students to elaborate their
programs with the structured programming method, but all the tools anal-
ysed are not adapted: using verification tools like ESC/Java2 or Spark,
the student cannot get a precise feedback: too often ESC/Java2 gives false
warnings, and sometimes it forgets errors; too often Spark is not powerful
enough to finish the proofs. These tools do not provide concrete counter-
examples and, even when they are said to be automatic, they require too
much effort and too much expertise from the user to be able to manipulate
it. SMV has the advantage to be automatic and to give precise feedback to
the user but it cannot be used as it is because the work required to trans-
late an algorithm with its specification is well beyond what can be asked to
students learning the methodology. In a general way, all these tools requires
more notions than what we want to teach; if using a tool should help the
student to easily understand the concepts to be learnt, this objective may
not be reached when the tool is not appropriate.

In our programming learning context, we would like a fully automatic
tool, easy to manipulate, enforcing the use of the structured programming
method and giving precise feedback to help the students to understand their
reasoning errors. We do not want to consider that students need any no-
tion of theorem provers or model checkers. Students would just need to
formalise assertions and to write code, since these are the goals of our pro-
gramming course. The ideal tool should be easy to use, while using the non
trivial taught concepts, this should show the witchery of the method, while
enforcing rigor, the role of the loop invariant and the decomposition into

93



94 MPVS: A New Tool to Teach Structured Programming

subproblems. The feedback given by the tool should be clear, to help our
students to understand their reasoning errors. Displaying precise counter-
examples may be very informative and false warnings and forgotten errors
have to be avoided.

We have designed and implemented a tool that fulfils those requirements
better, in our opinion. The presentation of the tool, that we name MPVS

has been published in [21]. MPVS considers a very simple programming lan-
guage which handles naturals and Booleans. The assertion language mainly
contains quantifiers over finite domains, arbitrary arithmetic relations and
also some predicates that we have considered useful by experimentation.
The concrete syntax of the assertion and the programming languages are
fully described in Appendix B.1. We now present what our tool can do
through the several examples for which we have already tried to check the
correctness using Spark, ESC/Java2 or SMV.

4.1 What our Tool can Do

4.1.1 The Indian Exponentiation

To describe the several functionalities of MPVS, let us first have a look
at Figure 4.1 that shows concretely a picture of our tool when it is used to
check the correctness of the Indian exponentiation algorithm. The program
is written in a specific format in an editor provided by the tool. Above this
editor, there is a textfield with the name of the file (if it exists) corresponding
to the text displayed on the editor. On the right, we have a button providing
the list of opened files to easily go from one file to another. The second text
area gives feedback on the verification, we name this the feedback area. Each
opened file has its own editor and feedback area.

The menu contains three items: Files allows one to open, close and save
files; Actions allows the verification operations.

Syntax and syntactic verification Figure 4.2 displays the algorithm
together with its specifications, exactly as it must be written in the tool
editor. This example only uses integer variables. Let us make it precise that
x^y stands for xy and that unchanged(x) expresses that x is unchanged
with respect to its value at the beginning of the program execution. A loop
is explicitly decomposed into the initialisation (Init), the iteration (Iter),
the closure (Clot) and the halting-condition (Halting condition). Besides,
to prove termination of the loop, the user can provide a variant. MPVS

first verifies the syntax of the algorithms and specifications. To give a clear
feedback to the user, syntactic errors are underlined in the text editor.



4.1. What our Tool can Do 95

Figure 4.1: The graphical interface



96 MPVS: A New Tool to Teach Structured Programming

Data: var x : 0..6;

var y : 0..6;

Auxiliary_variables: var u : 0..maxint;

var v : 0..maxint;

Result_variables: var z : 0..maxint;

Precondition: x >= 0 & y >= 0

Postcondition: unchanged(x) & unchanged(y) & z = x^y

Invariant: unchanged(x) & unchanged(y) & v <= y & x^y = z*(u^v)

Init: u := x ;

v := y ;

z := 1

Iter: if (v mod 2 = 0)

then skip else

z := z * u ;

v := v - 1

end;

u := u * u ;

v := v div 2

Clot: skip

Halting_condition: v = 0

Variant: v

Figure 4.2: The Indian Exponentiation algorithm with its specification



4.1. What our Tool can Do 97

Figure 4.3: The verification menu

Checking the correctness of an algorithm To enforce the verification
method and the role of the loop invariant, MPVS concretely forces the user
to verify each Hoare proposition independently as we can observe in the item
unrolled in Figure 4.3.

Let us analyse the behaviour of the tool when it checks a Hoare proposi-
tion. Since the proposition { Pre } Init { Inv } is correct, the tool simply
displays, in the feedback area, the following message (see Figure 4.1):
Succeeded : verification of {Pre} Init {Inv}
Similar messages are displayed for the other Hoare propositions. Since each
Hoare proposition and termination are proved to be correct, the user can
deduce that his algorithm is correct according to its specification. Using a
AMD Ahtlon XP 2800+, 2GHz CPU with 1GB RAM, our system is able to
prove the correctness of the algorithm 4.2 in 100 ms (adding up the execution
times of all Hoare propositions).

Generating counter-examples Let us have a look at the tool behaviour
if the user makes an error in the code, for example, he forgets to write the
assignment z := z * u in the conditional statement where v mod 2 = 1.
When verifying { Inv and not H } Iter { Inv}, the tool detects some
problems after 30 ms. A message is printed in the feedback area with a
counter-example; this counter-example is also presented in the following ta-
ble.

Other counter-examples can be displayed thanks
to the next button. This table gives an example
of input values satisfying the precondition (col-
umn 2), column 3 displays a state satisfying the
invariant { Inv and not H } before an execution
of the iteration and the last column provides the
state obtained after executing the iteration. It
can be observed that the assertion { Inv } is
false in this state.

In addition, the violated part of the invariant and the involved sequence



98 MPVS: A New Tool to Teach Structured Programming

Figure 4.4: The tool feedback for a wrong version of the Indian exponenti-
ation algorithm



4.1. What our Tool can Do 99

of statements are underlined in the text as we can see in Figure 4.4.

Out of domain errors The tool can also detect out of bound of variable
domain. For example, if we maintain the original variable domains except
for the variable u where we restrict its domain to 0..46656 (66), the tool
pinpoints nearly instantly a runtime error; the feedback is the following:
Problem in {Inv and not(H)} Iter {Inv} :

The value 65536 is out of the domain of the variable u

Precondition : x = 4 , y = 4

Invariant : u = 256 , v = 1 , x = 4 , y = 4 , z = 1

Program point : u = 256 , v = 0 , x = 4 , y = 4 , z = 256

The third variables state (Program point) corresponds to the program state
just before the underlined assignment u := u * u which is involved in the
runtime error.

This table gives an example of input values
satisfying the precondition (column 2), col-
umn 3 displays a state satisfying the invariant
{Inv and not H} before an execution of the it-
eration; the execution of the iteration will gener-
ate a runtime error before reaching the program
point where the invariant must hold as it is rep-
resented in the last column.

4.1.2 Binary Search Algorithm

Now, we consider again the binary search algorithm that we have elaborated
and manually proved in Section 2.1.3 and that we have automatically proved
with ESC/Java2 in Section 3.1. We show the ability for our tool to manage
arrays, Boolean, existential and universal quantifiers on integer variables,
implication, equivalence, evaluations from left to right. Let us look at Figure
4.5. The precondition expresses that x is initialised and that the array a is
sorted. It is important to notice that, contrary to ESC/Java2, the way of
formalising specifications has no consequence on the proof of correctness. We
could have written (forall i:1 <= k <= n:(forall i: 1 <= l <= n:k

< l => a[k] <= a[l])) instead. In postcondition, we use the predicate
unchanged(1, n:a) to say that the array a is not modified; we use the
operator of equivalence to express the role of the result variable b. In the
invariant, we use a logical operator && which evaluates assertions from left to
right; we consider that, in an assertion, we cannot have expressions that are
not well defined. For examples, out of bound array index and division by zero
are prohibited in an assertion as they are prohibited in a statement. With



100 MPVS: A New Tool to Teach Structured Programming

these considerations, assertions must sometimes be evaluated in a specific
order.

Proving the algorithm correctness Our system is able to prove the
correctness of this program in 10ms (for n = 0), 40ms (n = 1), 120ms
(n = 2), 710ms (n = 3), 5.34s (n = 4), and 61.72s (n = 5). But we do not
have to fix the array size: we can choose, as in Figure 4.5, a finite domain
for n, instead. Indeed, it may be useful to automatically verify borderline
cases involving arrays (cases where n = 0 and n = 1). It takes 1min 6.4s to
prove the correctness of the program for all n in [0..5].

Finding errors in an incorrect binary search algorithm Now, we
keep the same specification and loop invariant, but we introduce an error in
the algorithm: we replace the statement d := m by d := m - 1. the system
gives the following counter-examples.

The first table displays the first counter-example which is found after 10 ms.
The second table displays the fifth one. In this particular scenario, about 10
ms is needed to find each counter-example. These counter-examples show
that the proposition {Inv and not H} Iter {Inv} is not true. They expose
a program state satisfying the assertion {Inv and not H} such that, after
executing the iteration, the resulting program state does not satisfy the in-
variant anymore. For the first counter-example, the violated part exhibited
by the tool is g <= d , for the second counter-example, the violated part is

(forall i : d <= i <= n : a[i] > x) . Besides, each time the tool
underlines d := m - 1. Since the variable d is involved in both cases, we
have a clue that the error lies in the statement d := m - 1.

Finding reasoning errors We can easily imagine that the user forgets
to specify the Boolean variable b in the loop invariant. The invariant is:

Invariant: unchanged(1, n : a) & unchanged(x)

& 1 <= g & d <= n + 1 & g <= d



4.1. What our Tool can Do 101

Data: const n : 0..6 ;

var x : 0..n ;

tab a : array [1..n] of 0..n ;

Auxiliary_variables: var g : 0..maxint ;

var d : 0..maxint ;

var m : 0..maxint ;

Result_variables: var b : boolean ;

Precondition: initialised(x) &

(forall i: 1 <= i <= n-1 : a[i] <= a[i+1])

Postcondition: unchanged(1, n : a) &

(b <=> (exist i: 1 <= i <= n : a[i] = x))

Invariant: (unchanged(1, n : a) & unchanged(x)

& 1 <= g & d <= n + 1 & g <= d

&&

(forall i : 1 <= i <= g-1 : a[i] < x)

&

(forall j : d <= j <= n : a[j] > x))

&

(b => (exist k : 1 <= k <= n : a[k] = x))

Init: g := 1 ;

d := n + 1 ;

b := false

Iter: m := (g + d) div 2 ;

if (a[m] < x) then

g := m + 1

else

if (a[m] > x) then

d := m

else

b := true

end

end

Clot: skip

Halting_condition: g = d | b = true

Variant: d - g - b

Figure 4.5: The binary search algorithm and its specifications



102 MPVS: A New Tool to Teach Structured Programming

&&

(forall i : 1 <= i <= g-1 : a[i] < x)

&

(forall j : d <= j <= n : a[j] > x)

The system displays the following message in 10 ms:

Counter example: verification of {Inv and H} Clot {Inv} :

Precondition : a = [1,1], n = 2, x = 2

Invariant and not(H): a = [1,1], b = 1, d = 3, g = 1 , n = 2, x = 2

Postcondition : a = [1,1], b = 1, d = 3, g = 1 , n = 2, x = 2

The user can understand that the example program state proposed before
the execution of the closure (Invariant and not(H)) is not possible when
he thinks at the algorithm operationally: the invariant is too weak. Indeed,
nothing in the invariant expresses the fact that b is true if x has been found
in a.

Runtime errors Let us assume that we use the condition g = d + 1

instead of g = d in the halting condition of the algorithm. In this case, the
system finds input values for which an out of bound array error occurs. The
runtime error is underlined in the code:

if ( a[m] < x) then ...

The first counter-example generated is a borderline case: n = 0:
Problem in {Inv and not(H)} Iter {Inv} :

Out of bound error : a[1]

Precondition : a = [], n = 0, x = 1,

Invariant : a = [], b = 0, d = 1, g = 1, n = 0, x = 1,

Program point: a = [], b = 0, d = 1, g = 1, m = 1, n = 0, x = 1

The variable state (Program point) corresponds to the program state just
before the conditional statement for which the condition evaluation involves
the runtime error.
Here is another counter-example with n = 5:
Problem in Inv and not(H) Iter Inv :

Out of bound error : a[6]

Precondition : a = [1,1,1,1,1], n = 5, x = 2,

Invariant : a = [1,1,1,1,1], b = 0, d = 6, g = 6, n = 5, x = 2,

Program point: a = [1,1,1,1,1], b = 0, d = 6, g = 6, m = 6, n = 5, x

= 2,



4.1. What our Tool can Do 103

Badly defined assertions We recall that, in an assertion, we cannot
have expressions that are not well defined: an out of bound array index and
division by zero are prohibited in an assertion as they are prohibited in a
statement. With these considerations, assertions may need to be evaluated
in a specific order thanks to the operators && and || (the formal semantics of
these operators is defined in Chapter 5. Suppose now that, in the invariant,
we do not specify any order of evaluation between the assertions: we write
& instead of && between the constraints on the indexes (g and d) and the
quantified assertions ranged on a domain depending on these indexes, as
illustrated bellow:

...

1 <= g & d <= n + 1 & g <= d

&

(forall i : 1 <= i <= g-1 : a[i] < x)

&

(forall j : d <= j <= n : a[j] > x)

...

The not well defined expression is underlined:
(forall i: 1<= i<= g-1 : a[i] < x)

A counter-example for n = 5, is the following:
The invariant or the halting condition is not well-defined :

Out of bound error : a[6]

Precondition: a = [1,1,1,1,1], n = 5, x = 2,

Invariant: a = [1,1,1,1,1], b = 1, d = 7, g = 10, i = 6, n = 5, x = 2,

Generally, the tool displays counter-examples involving only the program
variables state. In this counter-example there appears the bound variable
i; this shows a value of the bound variable for which an expression in the
quantified assertion is not well defined.

The termination of the algorithm In Section 2.1.3, we have explained
why, to provide a variant for this algorithm, we need to “convert” the
Boolean b into an integer value. The tool allows an automatical convertion



104 MPVS: A New Tool to Teach Structured Programming

of Booleans to integers. Syntactically, the variant is an arithmetic expres-
sion that can contain Boolean variables: true and false are resp. converted
to 1 and 0. So, the user can write the following variant: d - g - b.

Suppose the user writes g := m instead of g := m + 1. The tool provides
the following counter-example:
Counter example : variant does not decrease

Inv: a = [1,1,1,1,3], b = 0, d = 5, g = 4, n = 5, variant = 1, x = 2,

Inv: a = [1,1,1,1,3], b = 0, d = 5, g = 4, m = 4, n = 5, variant = 1,

x = 2,

If the user chose a negative variant, for example g - d - b, the tool prints
the following message:
Variant not well-defined : negative expression

Precondition: a = [1,1,1,1,1], n = 5, variant = 10, x = 1,

Invariant: a = [1,1,1,1,1], b = 0, d = 6, g = 1, n = 5, variant = 10,

x = 1,

4.1.3 The Insert Sort

The insert sort algorithm has been a representative example when we have
studied Spark and SMV. This involves a decomposition into subproblems,
quantified assertions, a predicate to express the permutation between ar-
rays. To argue the qualities of our tool, let us have a look on the way our
tool manages the verification of this algorithm. Importantly, subproblems
are proved completely independently from each other. Thus, checking the
main problem does not require the code of the subproblem, it relies on its
specification instead. Besides, it is allowed that a subproblem is only spec-
ified (declarations, precondition and postcondition). Notice that our tool
does not consider parameters, but only involves global variables.

Figure 4.6 depicts the two subproblems composing the insert sort algo-
rithm. Concretely each subproblem is identified by its file and we can go
easily from one to the other. In both, we use a predicate permut(a , a 0

, 1 , i , 1 , i) expressing that the subarray a[1..i] is a permutation of
the initial subarray a0[1..i]. a and a0 denote functions from the index set
to the set of values: a0 stands for this function at the initial state. The
predicate unchanged(i + 1 , n :a) expresses that the subarray a[i+1..n]
is unchanged relating to the array values specified by a0. The variables in-
volved in pre and postconditions of the subproblem are variables of the main
problem.

Proving the algorithm correctness The subproblems are proved inde-
pendently from each others. With n : 0..4, the subproblem insertsortSP



4.1. What our Tool can Do 105

Data: const n: 0..4;

tab a : array [1..n] of 1..n;

Auxiliary variables: var i : 0..maxint;

Precondition: initialised(a)

Postcondition: (forall k: 1 <= k <= n-1 : a[k] <= a[k+1]))

& permut(a , a_0 , 1 , n , 1 , n)

Invariant: 0 <= i <= n &&

(forall k: 1 <= k <= i-1 : a[k] <= a[k+1])

& permut(a , a_0 , 1 , i , 1 , i)

& unchanged(i + 1 , n : a)

Init: i := 0

Iter: sp(triinsertSP.in) ; i := i + 1

Clot: skip

Halting_condition: i = n

Figure 4.6: The main problem of the insertion sort algorithm

is proved in 240 ms; the main problem is proved in 650 ms. Notice that the
parametrisation n :0..4 takes the borderline cases into account : it must
also be correct for an empty array and for an array with one element.

A violated precondition If the user considers that the subproblem in-
serting a[i] at the right place in a[1..i] requires that i > 0 1, the tool
gives the following counter-example in the main problem feedback area:
Problem in Inv and not(H) Iter Inv :

The precondition of the subproblem triinsertSP is not satified

Precondition : a = [1..4,1..4,1..4,1..4], n = 4,

Invariant : a = [1..4,1..4,1..4,1..4], i = 0 , n = 4,

Program point: a = [1..4,1..4,1..4,1..4], i = 0 , n = 4,

In this example, the elements of a are not determined; 1..4 is the do-
main given at the array declaration; in fact, no matter the values of a, the
subproblem precondition is violated when i = 0.
In the subproblem editor, the violated part of the precondition is underlined:
Precondition: 0 < i & i < n && ...

1This can be justified since inserting a[1] in a[1] is not useful



106 MPVS: A New Tool to Teach Structured Programming

Data: const n : 0..4;

var i : 1..n;

tab a : array [1..n] of 1..n;

Auxiliary variables: var j : 0..maxint;

var x : 0..maxint;

Precondition: 0 <= i & i < n &&

(forall j : 1 <= j <= i-1 : a[j] <= a[j+1]))

Postcondition: unchanged(i) &&

unchanged(i+2 , n : a) &

(forall k : 1 <= k <= i : a[k] <= a[k+1]) &

permut(a , a_0 , 1 , i+1 , 1 , i+1)

Invariant: unchanged(i) &

(1 <= j & j <= i+1)

&& (unchanged(i+2 , n : a) & x = a_0[i+1] &

(forall k : j <= k <= i: a_0[k] = a[k+1]) &

unchanged(1 , j : a) &

(forall k :j+1 <= k <= i+1 : a[k]>x)

Init: j := i+1 ; x := a[j]

Iter: a[j] := a[j-1] ; j := j-1

Clot: a[j] := x

Halting_condition: j = 1 || a[j-1] <= x

Figure 4.7: triinsertSP.in: the subproblem of the insertion sort algorithm



4.1. What our Tool can Do 107

A too weak invariant Assume that we keep the same specification and
the same code, but that we forget to mention, in the loop invariant, that
the subarray a[i+1..n] is unchanged. The invariant is:

0 <= i <= n &&

(forall j : 1 <= k < i: a[k] <= a[k+1]))

& permut(a , a_0 , 1 , i , 1 , i)

Assuming n = 4, our system gives the following counter-example in 10 ms.

The variable state satisfying the given invariant shows that a[1] is differ-
ent from a0[1], which is strange because if i = 0, nothing in the array can
have been permuted. The user should discover that its invariant is not strong
enough: all the values that we do not permute must stay unchanged.

Runtime error If we use a strict evaluation in the closure of the sub-
problem: j = 1 | a[j-1] <= x. The tool discovers a runtime error and
the involved expression is underlined:

Halting condition: j = 1 | a[j-1] <= x

A counter-example is the following:
The invariant or the halting condition is not well defined :

Out of bound error : a[0]

Precondition : a = [1,0,0..4,0..4] , i = 1 , n = 4 ,

Invariant : a = [1,1,0..4,0..4] , i = 1 , j = 1 , n = 4 , x = 0 ,

We see that the invariant considers a program state where j = 1, the eval-
uation of the halting condition in this case, generates a runtime error since
the two parts of the disjunction are evaluated simultaneously.

4.1.4 The Next Permutation

The automatic proof of the correctness of the next permutation algorithm
is a real challenge: this algorithm requires a assertion language with a lot
of expressivity, and it needs a technical way adapted to make so tedious
proofs. We have already submitted this algorithm to a manual proof, and
to automatic (or partially automatic) proofs using theorem proving. Let us
have a look on the way our tool will manage this algorithm. Below, we can
first observe the subproblems specifications exactly as they are written in
our tool.



108 MPVS: A New Tool to Teach Structured Programming

SP1: The largest index such that a[i] < a[i + 1].

Precondition: initialised(1,n :a) & n > 0

Postcondition: unchanged(1,n : a) &

(0 <= i & i < n) &&

(forall k : 1 <= k <= n-1 : a[k] >= a[k+1])&

(i = 0 & || a[i] < a[i+1])

SP2: a[j] is the last element greater than a[i], on its right.

Precondition: 0 < i & i < n &&

(forall k1: i+1 <= k1 <= n-1: a[k1] >= a[k1+1])

& a[i] < a[i+1]

Postcondition: unchanged(1,n: a) & unchanged(i) &

(i < j & j <= n) &&

(j = n && a[j] > a[i]) |

(j < n && (a[j+1] < a[i] & a[j] > a[i]))

SP3: The reversing of the subarray a[i + 1..n].

Precondition: initialised(1,n : a) & 0 < i & i < n

Postcondition: unchanged(i) && unchanged(1 , i: a)

& (forall k : i + 1 <= k <= n :

a[k] = a_0[n-(k-(i+1))])

The formalisation is very similar to the formalisation expressed in Section
2.1.5. Let us have a look on the specification of the main algorithm on Fig-
ure 4.8. As seen in Section 2.1.5, this specification needs high expressivity:
we can use quantifiers on arrays, a generalised quantifier for a number of
occurrences #, relations between arrays: << , >> and >>= for the lexico-
graphic order. To express that a is a permutation of 1..n, we say that each
value from 1..n must have one and only one occurrence in a. However, the
algorithm is a simple sequence of subproblem calls.

Proving the algorithm correctness For an array of size n:0..5, it takes
2.18 sec. To prove the correctness of the subproblems, assuming n : 0..5, it
takes 80 ms for SP1, 200 ms for SP2 and 250 ms for SP3.

A too weak specification of the subproblem SP2 Let us now assume
that we try to prove the correctness of the main algorithm with an inade-
quate (i.e., too weak) specification of a subproblem. More specifically, we
forget the constraint a[j] > a[i] in the postcondition of SP2. For n = 5, we
get the following counter-example for the main algorithm.
Counter example : verification of {Pre} Instr {Post}

Pre : a = [3,5,4,2,1] , n = 5 ,

Post : a = [2,1,3,4,5] , b = 1 , i = 1 , j = 4 , n = 5 , temp = 2 ,

The violated part is a 0 << a .



4.1. What our Tool can Do 109

Data: const n = 5;

tab a : array [1..n] of 1..n;

Auxiliary_variables: var b: boolean;

var i: 0..maxint;

var j: 0..maxint;

var temp: 0..maxint;

Precondition: (forall k : 1 <= k <= n :

(# l:1 <= l <= n : a[l] = k) = 1)

Postcondition:

(b =>

(

((forall k:1 <= k <= n : (# l:1 <= l <= n : a[l] = k) =1)

&

a_0 << a)

&&

(forall x[1..n] : 1 <= x <= n :

((forall k:1 <= k <= n :

(# l:1 <= l <= n : x[l] = k) = 1) & x >> a_0)

=> x >>= a

)

))

&

((! b) =>

(unchanged(1,n:a) & (forall k : 1 <= k <= n-1: a[k] > a[k+1])))

Instr:

sp(sp1.in);

if(i<>0) then

b:= true;

sp(sp2.in);

temp := a[j];

a[j] := a[i];

a[i] := temp;

sp(sp3.in)

else

b:= false

end

Figure 4.8: The main algorithm of the next permutation, together with its
specification



110 MPVS: A New Tool to Teach Structured Programming

A too strong postcondition of the subproblem SP2 On the other
hand, if we forget the special case (j = n && a[j] > a[i]) in the postcondi-
tion of SP2, we get a too strong postcondition (i.e., no terminating algorithm
may implement such a specification). This error, which was actually made
unintentionally when we first solved this problem, cannot logically be de-
tected in the proof of the main algorithm. However, it is detected if we
analyse the subproblem itself: if we attempt to construct the algorithm ac-
cording to this wrong specification, we get an out of bound error prediction;
if we check a correct algorithm with respect to the wrong specification, we
get counter-examples for {Inv and H} Clot {Post}.

4.2 Discussion

In this chapter, we have presented an automatic tool that we have com-
pletely elaborated and that insures complete and sound verification. If the
user rigorously follows the structured programming method (which is a con-
dition that corresponds to our pedagogical objectives), the tool is able to
prove the correctness or to find counter-examples. The user cannot get false
warnings and there are no forgotten errors; so, the user can be confident in
the feedback; he can try to understand his reasoning errors without doubting
of the error.

The example of the Indian exponentiation has shown the ability of our tool
to manage non linear expressions such as multiplication and exponentiation
between variables. The tool easily detects reasoning errors and overflow;
the user does not have to write any specific rules, nor to help the verifi-
cation by making an interactive proof. With the binary search algorithm,
we have introduced verification scenarii involving quantifiers. We have seen
that the verification result is precise, no matter how the assertions are for-
malised, whereas ESC/Java2 requires the user to help the verification by
writing assertions in a way instead of another. The insertion sort algorithm
also shows that manipulating quantifiers does not involve any problem of
completeness or soundness; it also uses a predicate to express that a subar-
ray is a permutation of another subarray. This algorithm is an example of
decomposition into subproblems and the tool follows the principles of the
structured programming method. Again the verification feedback is precise
for both subproblems; notice that the subproblem that inserts an element
at the right place in a subarray cannot be verified by ESC/Java2, nor by
Spark. The example of the next permutation shows that no matter the
complexity of the proof of the correctness, the tool guarantees a complete
and sound verification. This example uses a specific quantifier to express
the number of occurrences and specific relation operators to express the lex-
icographic order. A quantifier on array is used and does not involve any



4.2. Discussion 111

problem to give a precise feedback about the correctness of the algorithm.
Nowhere in these exercises, the student needs an additional knowledge be-
yond the structured programming method.

Our tool has all these advantages because we have restricted our ambition
to our pedagogical context: we do not need to cover a large and complex
programming language like Java: we consider that, for teaching algorith-
mics, we do not need a too much elaborated language. The simpler it is, the
better it is: our language just needs to consider the basic notions introduced
in Section 2.1.1. The language considered is imperative, it is an approxi-
mate subset of Pascal; it is simple in that there are no parameters, no local
declarations, and each algorithm must have a specific format. Calls to sub-
problems are permitted; their variables must be global to the problem. We
use fixed size arrays, integers (limited to finite domains) and Booleans. On
the opposite, one can observe that the specification language is expressive
enough to be really usable: we express relations between values and relations
between arrays, we use existential and universal quantifiers on variables on
finite domains, other generalised quantifiers such as sum, maxima, number
of occurrences, quantifiers on arrays, and some predefined predicates are
useful as that of the permutation. To refer to the initial value of a variable
x, we write x 0.

This context allows us to follow an approach which is rather original: we
translate the program together with its related assertions into a set of con-
straints. Then, constraints programming techniques can be used to prove
that the program is correct or to exhibit errors. Completeness and sound-
ness stems from the fact that we exhaustively solve the constraints (unless
counter-examples are produced and the user decides to give up their gener-
ation). Of course, this is possible only because we make the variables range
over small domains. We believe that this limitation is not harmful, in our
context.



112 MPVS: A New Tool to Teach Structured Programming



Part II

Definition and
Implementation of the

Languages

113





Chapter 5

Definition of the Languages

In the previous chapter, we have given the reader a general idea of the
approach used by the tool, by demonstrating our tool abilities. The pro-
gramming language of MPVS is imperative; it can be viewed as a small
subset of Pascal: there are no parameters, no local declarations and the
form of the algorithm is restricted. On the opposite, the specification lan-
guage is very expressive. In this chapter, after fixing some mathematical
notations, we formally define the programming language and the assertion
language accepted by our tool. The goal of this chapter is to provide a com-
plete information about the languages so that the user can fully understand
the specific behaviour of the tool.

5.1 Mathematical Notations

This section can be skipped at first reading. It gives notations to be under-
stood for a deeper reading of the technical point of view in this Chapter.

5.1.1 Partial functions

We need to define several ways to update a function. Let M and N be
two sets. A partial function from M to N is denoted by f : M 9 N . The
domain of f is noted dom(f) and the codomain of f , codom(f).

• φ is the empty partial function, undefined for all m ∈ M .

• Let m ∈ M,n ∈ N .

f [m/n] is the function f ′ : M 9 N that updates f such that:

forall i ∈ dom(f) ∪ {m}:

– f ′(i) = f(i) if i 6= m

– f ′(m) = n

115



116 Definition of the Languages

• Let m ∈ M,n ∈ N .

– If m 6∈ dom(f) , f [m 7→ n] is the function f ′ : M 9 N that
updates f such that:

for all i ∈ dom(f) ∪ {m}:

∗ f ′(i) = f(i) if i 6= m

∗ f ′(m) = n

– If m ∈ dom(f) and f(m) = n then f [m 7→ n] = f .

– If m ∈ dom(f) and f(m) 6= n then f [m 7→ n] is not well-defined
and generates an error.

• Let m ∈ M , n ∈ N and n′ ∈ P(N).

– If m 6∈ dom(f), f [m ↪→ n′] is the function f ′ : M 9 N that
updates f such that:

for all i ∈ dom(f) ∪ {m}:

∗ f ′(i) = f(i) if i 6= m

∗ f ′(m) = choice(n′)
where

choice : P(N) → N
n′ → n

such that n ∈ n′.

– If m ∈ dom(f) and f(m) ∈ n′ then f [m ↪→ n′] = f .

– If m ∈ dom(f) and f(m) 6∈ n′ then f [m ↪→ n′] is not well-defined
and generates an error.

5.2 A Simple Programming Language

5.2.1 Abstract Syntax

We first present in Table 5.1, the allowed phrase types of our language, and
we specify in Table 5.2, the language syntax. Types admitted are integer and
Boolean. Programs can use integer constants, Boolean and integer variables,
and arrays of integers; all these objects are defined on positive finite domains
which are defined by expressions that may depend on constants. A program
is a list of subproblems such that each subproblem called must be listed
after the subproblem calling it. Each subproblem is composed of a list of
declarations and a body. The body can be a simple sequence of statements,
a conditional statement or a loop statement.



5.2. A Simple Programming Language 117

decl ∈ Decl declarations
body ∈ Body subproblem cores
com ∈ Com statements

aexpr ∈ Aexpr numerical expressions
bexpr ∈ Bexpr Boolean expressions
spr ∈ SPr subproblems
be ∈ Be numerical expressions

for bounded domains
l ∈ L numerical expressions

for array length

bop ∈ Bop strict Boolean operators
bopltr ∈ BopLtr lazy Boolean operators
bnot ∈ Bnot unary Boolean operator
cop ∈ Cop relation operators
eop ∈ Eop equality operators
aop ∈ Aop numerical operators

i ∈ N integers
bool ∈ Bool Booleans

c ∈ C constant names
x ∈ Id integer variable names
b ∈ B Boolean variable names
tab ∈ Tab array names
p ∈ P subproblem names

Table 5.1: Syntax Domains, Generic Variables

5.2.2 Operational Semantics

In this section, we formally describe the execution of programs written in
this language, by means of an operational semantics. The first part of our
definition is the definition of the semantic sets. The choice of these sets is
closely related to our implementation.

5.2.2.1 Constants and semantic values

The constant maxint is the greatest integer representable in our tool; its
value is implementation dependent.

The domain Val is the finite natural domain [0..maxint]. It represents
the set of values that we can assign to our program variables.

The set D is the set of all intervals for which the values are included in
V al; D ⊆ P(V al).

D = {[binf..bsup] | binf ∈ V al, bsup ∈ V al}



118 Definition of the Languages

Declarations
decl ::= const c : [be..be]

| tab[1..l] of [be..be]
| x : [be..be]
| b : Boolean
| decl∗

l ::= i | c | l aop l
be ::= l| maxint
Statements
com ::= skip

| x := aexpr
| b := bexpr
| tab[aexpr] := aexpr
| if bexpr then com else com
| p
| com com∗

Expressions
aexpr::= c

| i
| x
| tab[aexpr]
| aexpr aop aexpr

bexpr ::= bool
| b
| aexpr cop aexpr
| bexpr bop bexpr
| bexpr bopltr bexpr
| bnot bexpr

Operators
bop ::=| | & | eop
bopltr ::=|| | &&
bnot ::=!
aop ::=+ | − | ∗ | div | mod
cop ::=< | > | <= | >= | eop
eop ::== | <>

Subproblems and Programs
body ::= com

| com com com bexpr
spr ::= decl body
prog ::= p : spr (p : spr)∗

Table 5.2: Language Syntax

The abstract value neg represents any strictly negative value.

Generally speaking, our language does not handle negative numbers.
Nevertheless, there are few situations where the user has to specify empty
intervals by means of negative upperbounds. Thus, we accept a limited use
of negative expressions.

5.2.2.2 The static environment

As we have explained in Chapter 4, one of the characteristics of MPVS is
that we do not have to fix the arrays size, which may be useful to automat-
ically verify borderline cases involving arrays. To allow it, we can choose a
finite domain for the constant defining the array size. Also, it may be useful
that for each variable, we can choose a domain related to the constants:
For example, in the next permutation algorithm, the data domain must be
dependent on the array size: tab a: array[1..n] of [1..n]. The role
of the static environment is to fix the array sizes and the variables domains
according to fixed values for each constant.

The static environment is represented in Figure 5.1 and specifies:



5.2. A Simple Programming Language 119

Td 3 td : C + Id + Tab 9 V al + D + (V al × D)

For readability reasons, we may mention it as a triple function
(tdc, tdid, tdtab) defined as follows:

tdc : C 9 V al
tdid : Id 9 D
tdtab : Tab 9 V al × D

Figure 5.1: The static environment

• a value for each constant,

• a domain of values for each integer variable,

• a fixed size for each array plus a domain of values for its elements.

5.2.2.3 The environment

According to one specific static environment td, an environment e associates
each simple variable of the program to a value or to noval if the variable is
not initialised, and each array to a partial function that links the indexes to
a value (or noval). We call Envtd the set of the environments compatible
with the static environment td: Figure 5.2 expresses that

• for constants the value must be the one specified in the static environ-
ment td,

• for initialised Boolean variables, the value must be true or false,

• for initialised integer variables, the value must be in the domain spec-
ified in td,

• for arrays, let f be the function associated to the identifier: dom(f)
is the set of indexes of the array, i.e., an interval from 1 to the array
length (specified in td), and codom(f) is the set of elements of the
array; they must be included in the domain specified in td.

5.2.2.4 The interpretation set

According to a static environment td, the semantics of a subproblem is an
environment-transforming function whose domain is the set of environments
ein ∈ Envtd. So, for each subproblem, we associate a function

f = Envtd → Envtd + {error,⊥}



120 Definition of the Languages

Envtd 3 e :

C+Id+B+Tab 9 V al+(N 9 V al+{noval})+{true, false}+{noval}

For readability reasons, we may mention it as a quadruple function
(ec, eid, eb, etab) defined as follows:

ec : C 9 V al
eid : Id 9 V al + {noval}
eb : B 9 {true, false, noval}
etab : Tab 9 (N 9 V al + {noval})

such that
for all c ∈ dom(ec) : ec(c) = tdc(c)
for all id ∈ dom(eid) : eid(x) ∈ tdid(x) or eid(x) = noval
for all tab ∈ dom(etab):

let (l, d) = tdtab(tab):
dom(etab(tab)) = [1..l] and for all k ∈ dom(etab(tab)) :

etab(tab)(k) ∈ d or etab(tab)(k) = noval

Figure 5.2: The environment

. For each ein ∈ Envtd, the execution of the subproblem

• may not terminate by generating a runtime error: f(ein) = error;

• may not terminate: f(ein) =⊥;

• may terminate with the program environment eout: f(ein) = eout.

We call the interpretation set, itp ∈ Itp, the function that associates
each subproblem identifier to its semantics.

itp : P 9 {Envtd → Envtd + {error+ ⊥}}

The semantics of a program is a partial function itp where dom(itp) is the
set of the identifiers of all subproblems appearing in the definition of the
program given by prog ::= p : spr (p : spr)∗.

5.2.2.5 Type Checking analysis

We consider that expressions between double brackets are well defined: each
involved identifier exists and belongs to an appropriate syntactic set.



5.2. A Simple Programming Language 121

5.2.2.6 Declarations

The semantics of a program is based on a static environment td which is
defined from program declarations. To give an intuitive idea of how td is
initialised, let us first look at an example.

Example:

(1) const n : 1..6 ;

(2) const m : 0..n + 1 ;

(3) var x : 0..m ;

(4) tab a :array[1..n] of 1..m ;

(1) An arbitrary value for n included in 1..6 is chosen, say n = 3; (2) to
choose a value for m among the domain 0..n + 1, the value of n must have
been chosen; in the example, we can choose for instance m = 4. (3) The x

domain is fixed to 0..4. (4) The length of a is fixed to 3 and the domain
of its elements is fixed to 1..4.

D : Decl 9 Td → Td + {error}

D[[c : [be1..be2]]] td = td[c ↪→ [i1..i2]]
where i1 = Evalc [[be1]] td
and i2 = Evalc [[be2]] td

D[[x : [be1..be2]]] td = td[x 7→ [i1..i2]]
where i1 = Evalc [[be1]] td
and i2 = Evalc [[be2]] td

D[[b : Boolean]] td = td
D[[tab[1..l] of [be1..be2]]] td = td[tab 7→ (i1, [i2..i3])]

where i1 = Evalc [[l]] td
and i2 = Evalc [[be1]] td
and i3 = Evalc [[be2]] td

D[[ ]] td = td
D[[decl1 decl]] td = D[decl] (D[decl1] td)

where Evalc is a function that evaluates arithmetic expressions only involv-
ing constant values that must be determined in the static environment.

Evalc : Be → Td → V al + {error}

Evalc[[c]] td = tdc(c) if c ∈ dom(tdc)
error otherwise

Evalc[[i]] td = i
Evalc[[be1 aop be2]] td = v if v ∈ V al

error otherwise
where v = Aopstrict[[aop]] (Evalc[[be1]] td) (Evalc[[be2]] td)
The function Aopstrict is defined in Table 5.4

The semantics of a declaration decl modifies the static environment td, unless
the identifier declared by decl is already in dom(td); it this case, the static
information given by decl must match the current static environment td.



122 Definition of the Languages

The static environment td for a program is defined from the declarations
of all its subproblems.

Dprog : Prog → Td + {error}

Let spr = decl body

Dprog[[p : spr]] = D[[decl]] φ
Dprog[[p : spr (pi : spri)

+]] = D[[decl]] td
where td = Dprog[[(pi : spri)

+]] φ
error if Dprog[[(pi : spri)

+]] φ = error

The static environment td is updated with the union of the declarations of
the subproblems list. This formal definition expresses that there cannot be
coherence problems in the static environment such as, for example, a same
variable involved in two subproblems with two different domains of values
is not allowed.

5.2.2.7 Expressions

The semantics of an expression is the result of its evaluation. The environ-
ment is not modified, the evaluation function just consults it. The semantics
is described as follows:

Numerical expressions Usually, the evaluation of a numerical expression
results into a numerical value or possibly an error because, for example, of
an array out-of-bound error, of a division by zero or simply because the
variable to be evaluated is not initialised.

In general, MPVS does not handle negative values. To cover some cases
that may become more convenient, we use abstract domains of values and
abstract interpretation techniques: if we have enough information to testify
that the result is negative, the evaluation result is an “abstract” value, neg.
If we do not have enough information to testify that the result is negative
or has a precise numerical value, the result of the evaluation is error. Let
us detail our specific evaluation function:

Eval : Aexpr → Envtd → V al + {error, neg}

Eval[[c]] e = ec(c)
Eval[[i]] e = i
Eval[[x]] e = eid(x) if eid(x) 6= noval

error otherwise
Eval[[tab[aexpr]]] e = etab(tab)(Eval[[aexpr]] e)

if Eval[[aexpr]]e ∈ dom(etab(tab))
error otherwise

Eval[[aexpr1 aop aexpr2]] e = Aop(aop) (Eval[[aexpr1]] e) (Eval[[aexpr2]] e)

where Aop describes the semantics of the arithmetic operators and is defined
below:



5.2. A Simple Programming Language 123

Arithmetic operators Our domain of values is not the usual domain of
integers. In fact, V al + {Neg} is an abstract domain such that

abs : Z → V al + {neg}
i → i if i ≥ 0

→ neg if i < 0

1 Usually, in abstract interpretation, we add in the abstract domain, the
value > to get an order relation � on the precision on the approximations
of the abstract values. In our context, we should have neg � > and i � >
where i ∈ V al. However, the value > will be considered as an error because
we cannot handle this case of expression evaluation in our tool.

So, the semantics of the “abstract” operators aop ∈ Aop is defined as
follows:

Aop : Aop → V al+{error, neg} → V al+{error, neg} → V al+{error, neg}

Table 5.3 expresses error propagation : an operation involving an error
generates an error.

If we do not consider the error propagation, we define the following func-
tion

AopA : Aop → V al + {neg} → V al + {neg} → V al + {neg} + {error}

Let v1, v2 ∈ Z, the function AopA has the following property:

AopA[[aop]] abs(v1) abs(v2) = abs(v1 aopZ v2) if v1 aopZ v2 6= error
error otherwise

if for all x ∈ abs(v1), for all y ∈ abs(v2) : abs(x aop y) = abs(v1 aopZ v2)
where aopZ is the arithmetic operator usually manipulated between integers
(the concrete operator corresponding to aop). For the other cases, the result
abstraction is not manageable, the result is error. Notice that an error can
result from something else than an abstract problem: a badly defined arith-
metic expression such as a division by zero, a modulo by zero or a modulo
with negative values. The complete definition is given in Table 5.6.

To make this definition, we define the semantics of the operations between
values from V al.

Aopstrict : Aop → V al → V al → V al + {error, neg}

1To be nicer, we mention Z for the usual integers domain, in fact, our usual integers
domain is [−∞,maxint].



124 Definition of the Languages

The behaviour of the abstract operators in this context is very similar to the
behaviour of the corresponding operators between usual integers. We may
just have a loss of information with the minus operator whose evaluation
may result to a negative value. Table 5.4 gives details of this function.

We also define in Table 5.5 the semantics of the operators between negative
values.

Aopneg : Aop → {neg} → {neg} → V al + {error, neg}

For most operators, the result is not manageable. A positive result will
never be precise enough.

Boolean expressions The evaluation of a Boolean expression should re-
sult to a Boolean value, i.e., true or false. As for numerical expressions,
the evaluation may generate an error, because of an error in a numerical
subexpression, or because the Boolean variable that we want to evaluate is
not initialised.

B : Bexpr → Envtd → {true, false, error}

B[[bool]] e = bool
B[[b]] e = eb(b) if eb(b) 6= noval

error otherwise
B[[aexpr1 cop aexpr1]] e = Cop[[cop]] (Eval[[aexpr1]] e) (Eval[[aexpr2]] e)
B[[bexpr1 bop bexpr2]] e = Bop[[bop]] (B[[bexpr1]] e) (B[[bexpr2]] e)
B[[bexpr1 bopltr bexpr2]] e = Bop[[bopltr]] (B[[bexpr1]] e) (B[[bexpr2]] e)
B[[bnot bexpr]] e = true if B[[bexpr]] e = false

false if B[[bexpr]] e = true
error otherwise

Relational operators

Cop : Cop → V al+{neg, error} → V al+{neg, error} → {true, false, error}

Table 5.8 expresses the error propagation : a comparison involving an error
generates an error. For comparisons that do not have any error term, we
define the following function:

CopA : Cop → V al + {neg} → V al + {neg} → {true, false} + {error}

The behaviour of the abstract relational operators is similar to the behaviour
of the corresponding operators between usual integers. We will just have a
loss of information if we compare two negative values. In the other cases,
we have enough information to get a precise comparison result. As it is
described in Table 5.9, if we compare a strictly negative value with a value i
from V al (i ≥ 0), the result is clearly defined; if we compare two values from



5.2. A Simple Programming Language 125

Aop : Aop → V al+{error, neg} → V al+{error, neg} → V al+{error, neg}

aop a1 error V al + {neg}
a2

error error error

V al + {neg} error AopA[[aop]] a1 a2

where AopA is defined in Table 5.6.

Table 5.3: Error propagation in an arithmetic expression evaluation

Aopstrict : Aop → V al → V al → V al + {error, neg}

Aopstrict[[+]] i1 i2 = i1 + i2 if i1 + i2 ∈ V al,
error otherwise

Aopstrict[[−]] i1 i2 = i1 − i2 if i1 ≥ i2,
neg if i2 > i1,
error otherwise

Aopstrict[[∗]] i1 i2 = i1 ∗ i2 if i1 ∗ i2 ∈ V al,
error otherwise

Aopstrict[[div]] i1 i2 = i1 div i2 if i2 6= 0,
error otherwise

Aopstrict[[mod]] i1 i2 = i1 mod i2 if i2 6= 0,
error otherwise

Table 5.4: Evaluation of arithmetic expressions between values v ∈ V al

Aopneg : Aop → {neg} → {neg} → V al + {error, neg}

Aopneg[[+]] a1 a2 = neg
Aopneg[[−]] a1 a2 = error
Aopneg[[∗]] a1 a2 = error
Aopneg[[div]] a1 a2 = error
Aopneg[[mod]] a1 a2 = error

Table 5.5: Evaluation of arithmetic expressions between strictly negative
values



126 Definition of the Languages

AopA : Aop : V al + {neg} → V al + {neg} → V al + {error, neg}

+ a1 neg V al
a2

neg Aopneg[[+]] a1 a2 error
V al error Aopstrict[[+]] a1 a2

− a1 neg V al
a2

neg Aopneg[[−]] a1 a2 error
V al neg Aopstrict[[−]] a1 a2

div a1 neg V al
a2

neg Aopneg[[div]] a1 a2







0
if a1 = 0
neg

otherwise

V al







error

if a2 = 0
neg

otherwise

Aopstrict[[div]] a1 a2

∗ a1 neg V al
a2

neg Aopneg[[∗]] a1 a2







0
if a1 = 0
neg

otherwise

V al







0
if a2 = 0
neg

otherwise

Aopstrict[[∗]] a1 a2

mod a1 neg V al
a2

neg error error
V al error Aopstrict[[mod]] a1 a2

Table 5.6: Arithmetic operators semantics



5.2. A Simple Programming Language 127

V al, the comparison results from the concrete comparison between integer
values as it is detailed in Table 5.7.

Copstrict : Cop → V al → V al → {true, false}

Boolean operators Bop :
Bop+Bopltr → {true, false, error} → {true, false, error} → {true, false, error}
Table 5.10 contains the semantics of each operator from the Bop and Bopltr.
For the operators bop ∈ Bop, error is propagated when a term is error, the
propagation is similar to the one of an arithmetic evaluation or a comparison
evaluation.

However, for operators bopltr ∈ Bopltr, the order of the evaluation is
important: let us have a look at the operator &&; if the first expression is
evaluated to false, the result is false, and the second expression does not
have to be evaluated. In other terms, it does not matter if the evaluation of
the second expression generates an error or not.

5.2.2.8 Statements

Let us define the semantics of the statements; the execution of a statement
updates the environment. An assignment command accesses and changes
the environment. A conditional statement transforms the environment ac-
cording to the environment state: a Boolean expression is evaluated in this
environment to know in which way this will be transformed. A subproblem
call transforms the environment according to the interpretation set itp. A
sequence is interpreted as a composition of environment-transforming func-
tions and errors are propagated. The skip command has no effect on the
environment.



128 Definition of the Languages

Copstrict : Cop → V al → V al → {true, false}

Copstrict[[=]] i1 i2 = i1 = i2
Copstrict[[! =]] i1 i2 = i1 6= i2
Copstrict[[<]] i1 i2 = i1 < i2
Copstrict[[>]] i1 i2 = i1 > i2
Copstrict[[<=]] i1 i2 = i1 ≤ i2
Copstrict[[>=]] i1 i2 = i1 ≥ i2

Table 5.7: Semantics of relational operators between values V al

Cop : Cop → V al+{neg, error} → V al+{neg, error} → {true, false, error}

cop a1 error V al + {neg}
a2

error error error

V al + {neg} error CopA[[cop]] a1 a2

Table 5.8: Error propagation

CopA : Cop → V al + {neg} → V al + {neg} → {true, false, error}

< a1 neg V al
a2

neg error false
V al true Copstrict[[<]] a1 a2

<= a1 neg V al
a2

neg error false
V al true Copstrict[[<=]] a1 a2

> a1 neg V al
a2

neg error true
V al false Copstrict[[>]] i1 i2

>= a1 neg V al
a2

neg error true
V al false Copstrict[[>=]] a1 a2

= a1 neg V al
a2

neg error false
V al false Copstrict[[=]] a1 a2

! = a1 neg V al
a2

neg error true
V al true Copstrict[[! =]] a1 a2

Table 5.9: Semantics of Relational operators



5.2. A Simple Programming Language 129

C : Com → Itp → Envtd → Envtd + {error,⊥}

C[[skip]] itp e = e
C[[x := aexpr]] itp e = e[x/Eval[[aexpr]] e]

if Eval[[aexpr]] e ∈ tdid(x)
error otherwise

C[[x := bexpr]] itp e = e[x/B[[bexpr]] e]
if B[[bexpr]] e 6= error
error otherwise

C[[tab[aexpr1] := aexpr2]] itp e = e[tab(Eval[[aexpr1]] e)/Eval[[aexpr2]] e]
if Eval[[aexpr1]] e ∈ dom(etab(tab))
and Eval[[aexpr2]] e ∈ d
where (l, d) = tdtab(tab)
error otherwise

C[[if bexpr then com1 else com2]] itp e = C[[com1]] itp e if B[[bexpr]] e = true
C[[com2]] itp e if B[[bexpr]] e = false
error otherwise

C[[p]] itp e = itp(p) e
C[[com1; com2]] itp e = C[[com2]] itp e′

with e′ = C[[com1]] itp e ∈ Envtd

error otherwise

5.2.2.9 Subproblems and program

Subproblem Given a static environment td, the semantics of a subprob-
lem is the transformation of the set of environments satisfying td. These
transformations may generate an error or a loop. We define the function
SP that, according to a set of interpretations itp ∈ Itp, defines the seman-
tics of a subproblem.

SP : Body → Itp → (Envtd → Envtd + {error,⊥})

SP [[com]] itp = f

where f : Envtd → Envtd + {error,⊥}
e → C[[com]] itp e

The semantics of a simple subproblem, according to the set of interpretations
itp is a function mapping a set of environments ein into a set of environments
eout (if no termination problem occurs). Each of these environments satisfies
the domains specified in td. This function is defined from the semantics of
the statements.

SP [[com1 com2 com3 bexpr]] itp = f

where f : Envtd → Envtd + {error,⊥}
e → f3(e2) if e2 ∈ Envtd

e2 otherwise



130 Definition of the Languages

where e2 = f2(e1) if e1 ∈ Envtd

e2 = e1 otherwise
where e1 = f1(e)

where
f1 = C[[com1]] itp
f2 = loop(com2, bexpr) itp
f3 = C[[com3]] itp

loop : Com × Bexpr → Itp → Envtd → Envtd + {error,⊥}

loop(com, bexpr) itp e = en if n < ∞
⊥ if n = ∞

where en is the first ei in L such that en = en + 1.

L is the list e1, e2, ...en, en+1, . . . where all ei ∈ Envtd + {error,⊥};

this list is defined as follows:





e1 = e
ei+1 = ei if ei 6∈ Envtd or else B[[bexpr]] ei = true

C[[com]] itp ei otherwise

For a subproblem with a loop form (three statements blocks and a halting
condition), we have a composition of environment-transforming functions
f1, f2, f3. error and ⊥ are propagated. f2 is the result of the function loop
which defines an iteration of the environment transformation: expression
bexpr is evaluated and command com2 is executed repeatedly, alternating,
until the value of bexpr becomes true. Unfortunately, it is possible that the
value of bexpr never becomes true, then, the execution does not terminate.
⊥ is an undefined environment due to a command that fails to terminate.

Program A program is defined as a set of subproblems semantically de-
fined according to a static environment td. A program is represented by a
function itp ∈ Itp defined in section 5.2.2.4, so that dom(itp) is the set of
the identifiers of the subproblems composing the program. The function itp
is defined as follows:

Prog = Prog → Itp

Prog[[p : spr]] = φ[p 7→ SP [[body]] φ]

where spr = decl body

Prog[[p : spr (pi : spri)
+]] = itp′[p 7→ SP [[body]] itp′]

where spr = decl body

where itp′ = Prog[[(pi : spri)
+]]

Notice that to update the interpretation set, we begin by defining the
subproblems lying on the right in the list p1 : spr1 (p : spr)∗. Indeed, by
convention, the called subproblems must lie on the right of the subproblem
calling and to define the semantics of a problem we need the semantics of
the subproblems called.



5.3. The Assertion Language 131

5.3 The Assertion Language

5.3.1 Abstract Syntax

First, in Table 5.11, we extend syntactical domains and generic variables
from Table 5.1. Table 5.12 specifies the syntax of the assertion language.
All the operators such as arithmetic, comparison and Boolean operators of
the programming language are admitted in the assertion language. Some ex-
pressions use extensions as x0 or tab0 which is a way of referring resp. to the
value of the variable x at the precondition state and to the array tab with its
initial values. Other logical operators also are available, such as implication
=> and equivalence <=>. Importantly, this language supports several kinds
of quantifiers in assertions: the universal quantifier, the existential quanti-
fier, the generalised quantifiers sum, min and max and the numeric quantifier
#. Besides, to make our assertion language as convenient as possible, we
have some predefined predicates such as the unchanged predicate, the per-
mutation predicate. The comparison operators between arrays to express
the lexicographic order also exist.

5.3.2 Semantics

As for the programming language, the expression evaluation function con-
sults the environment but does not modify it. We use the same semantic
domains as those we have defined in Section 5 (see Figure 5.1 and 5.2).

There are three main observations:

• An assertion or a generalised numerical expression is evaluated accord-
ing to a particular static environment td (which is usually initialised
by the program we want to check)

For instance, we need to know the size of arrays to check out-of-bound
errors.

• The evaluation function may consult two environments:

– the environment at the program point where we evaluate the
expression, say e ∈ Envtd,

– the environment at the precondition point, named e0 ∈ Envtd:

we may express something according to the initial value of a vari-
able.

• Bodies of quantified expressions are evaluated according to a td which
is updated with the bounded variables of the quantified expression.



132 Definition of the Languages

& b1 true false error
b2

true true false error
false false false error
error error error error

&& b1 true false error
b2

true true false error
false false false error
error error false error

| b1 true false error
b2

true true true error
false true false error
error error error error

|| b1 true false error
b2

true true true error
false true false error
error true error error

= b1 true false error
b2

true true false error
false false true error
error error error error

! = b1 true false error
b2

true false true error
false true false error
error error error error

Table 5.10: Boolean operators Semantics

assert ∈ Assert assertions
eaexpr ∈ Eaexpr extended numeral expressions
gaexpr ∈ GAexpr generalised numeral expressions
dom ∈ Dom bounded domains

iop ∈ Implop impliement operators
taop ∈ TAop numeral quantifier operators
tbop ∈ TBop Boolean quantifier operators
tcop ∈ TCop relation operators between arrays

Table 5.11: Syntax Domains, Generic Variables for assertions



5.3. The Assertion Language 133

Assertions

assert ::= bexpr
| gaexpr cop gaexpr
| gtab tcop gtab
| assert bop assert
| assert iop assert
| bnot assert
| forall x : dom : assert
| exist x : dom : assert
| forall tab[1..eaexpr] : dom : assert
| exist tab[1..eaexpr] : dom : assert
| permut (dom, gtab, dom, gtab)
| unchanged x
| unchanged (dom, gtab)

dom ::= eaexpr..eaexpr

Extended Numerical Expressions

eaexpr ::= aexpr
| x0

| tab[eaexpr]
| tab0[eaexpr]
| eaexpr aop eaexpr

Generalised Numerical Expressions

gaexpr ::= eaexpr
| gaexpr aop gaexpr
| gaexpr exp gaexpr
| taop x : dom : gaexpr
| tbop x : dom : assert

gtab ::= tab0 | tab

Operators

iop ::= => | <=>
taop ::= sum | max | min
tbop ::= #
tcop ::= = | ! = | << | =<< | >> | >>=

Table 5.12: Assertion syntax



134 Definition of the Languages

5.3.2.1 Evaluation of generalised numerical expressions

The evaluation of a generalised numerical expression should result into
a numerical value, but it can also generate an error because, for example,
of an array out-of-bound error, of a division by zero or simply because the
variable to be evaluated is not initialised. If we have enough information
to testify that the result is negative, the evaluation result is an “abstract”
value, neg. If we do not have enough information to testify that the result
is negative or has a precise numerical value, the result of the evaluation is
error.

Gevaltd : GAexpr → Envtd → Envtd → V al + {neg, error}

Gevaltd[[aexpr]] e0 e = Eval[[aexpr]] e
Gevaltd[[x0]] e0 e = e0id

(x) if e0id
(x) 6= noval

error otherwise
Gevaltd[[tab[eaexpr]]] e0 e = etab(tab)(Gevaltd[[eaexpr]] e0 e)

if Gevaltd[[eaexpr]] e0 e ∈ dom(etab(tab))
error otherwise

Gevaltd[[tab0[eaexpr]]] e0 e = e0tab
(tab)(Gevaltd[[eaexpr]] e0 e)

if Gevaltd[[eaexpr]] e0 e ∈ dom(etab(tab))
error otherwise

Gevaltd[[gaexpr aop gaexpr]] e0 e = Aop[[aop]] (i1, i2)
with i1 = Gevaltd[[gaexpr1]] e0 e
and i2 = Gevaltd[[gaexpr2]] e0 e

Gevaltd[[gaexpr1 exp gaexpr2]] e0 e = ii21 if ii21 ∈ V al,
with i1 = Gevaltd[[gaexpr1]] e0 e ∈ V al
and i2 = Gevaltd[[gaexpr2]] e0 e ∈ V al
error otherwise

The generalised numeral expressions may refer to the value of a variable at
the precondition state: we consult this value through the environment of the
precondition, e0. Aop is the semantic function of the operators aop ∈ Aop
described in Table 5.3.

In a quantified formula, there is a declaration of a variable local to the quan-
tifier (x). This is followed by a range (dom) on a finite domain for which the
bounds are extended expressions (eaexpr) and a body (gaexpr). If the range
is badly defined, i.e., one of the bounds is badly defined, the evaluation of
the quantified expression generates an error.

Assume d = Domtd[[dom]] e0 e 6= error

Let ai = Gevaltd[x/d][[gaexpr]] e0 e[x/i]

Gevaltd([[taop x : dom : gaexpr]] e0 e = T a[[taop]] f
where f : N 9 V al + {neg, error}
with dom(f) = d
and forall i ∈ dom(f) : f(i) = ai

sum, min and max return respectively the sum, the minimum and the maxi-



5.3. The Assertion Language 135

mum of the value of the body when the quantified variables satisfy the given
range expression. To compute it:

• We evaluate the range on finite domain with the function Dom which
is described below.

• Then, we evaluate gaexpr for each value i satisfying the range expres-
sion (to achieve it, we update the environment by adding the local
declaration and giving it the value i).

• If no error is found in the evaluation of each body geaxpr, the function
T a computes the sum, the minimum or the maximum of the set of
geaexpr evaluation result;

otherwise, the error is propagated.

Similar computing is done for the numeric quantifier # which returns the
number of values for the quantified variable for which the range and the
body predicate are true:

Assume d = Domtd[[dom]] e0 e 6= error

Let ai = Atd[x/d][[assert]] e0 e[x/i]

Gevaltd[[tbop x : dom : assert]] e0 e = T b[[#]] f
where f : N 9 Bool + {error}
with dom(f) = d
and forall i ∈ dom(f) : f(i) = ai

The function Domtd gives the semantics of dom ∈ Dom, it returns a
interval on which we can evaluate the quantified expression. It is in this
context that we observe a reason why we define neg in our abstract domain.
Let [i1..i2] be an interval, if i1 ∈ V al and i2 is negative (i2 = neg), no matter
the concrete value of i2: the interval [i1..i2] is empty. However, an interval
where i1 is negative is not manageable in Oz (and so, by our tool).

Dom : Dom → Envtd → Envtd → D + {error}

Assume i1 = Gevaltd[[eaexpr1]] e0 e and i2 = Gevaltd[[eaexpr2]] e0 e
Domtd[[eaexpr1 ≤ x ≤ eaexpr2]] e0 e = [i1..i2] if i1 ∈ V al and i2 ∈ V al

[] if i1 ∈ V al and i2 = neg
error otherwise

T a is defined in Table 5.13 and gives the semantics of the generalised
arithmetic operators: sum computes a sum of the elements of a set, max
and min returns resp. the maximal and the minimal element of a set defined
through a partial function f : N 9 V al + {neg, error} where dom(f) is
range on finite domain. The generalised arithmetic operators do not manage



136 Definition of the Languages

negative value2; it means that the evaluation for each value i ∈ dom(f)
must be in V al; otherwise, the evaluation generates an error. Errors are
also propagated if at least one of the evaluations is error. Notice that for
max and min, dom(f) cannot be empty.

The operators tbop ∈ Tbop is defined in Table 5.14; the partial function
that we use is f : N 9 Bool + {error}. # computes the number of values
of dom(f) such that f(i) = true. Errors are also propagated if one of the
evaluation results in an error.

5.3.2.2 Evaluation of assertions

To define the semantics of the assertion, we divide the set of assertions into
three sets. First we consider the binary and unary operations, containing
Boolean operators and relational operators. Then, we consider quantified
assertions, and finally, we define some useful predicate. Anyway, the evalu-
ation of an assertion returns true or false or it may generate an error:

Atd : Assert → Envtd → Envtd → {true, false, error}

Binary and unary operations The semantics of the relational operators
and Boolean operators are given in Table 5.9 and Table 5.10. Two other
Boolean operators are available: the implication and the equivalence. Table
5.15 defines the semantics of these operators. We have also defined the
lexicographic order between arrays. The definition is given in Table 5.16.
In order to make operation on arrays, we define the following function:

G : Tab + Tab0 → Envtd → Envtd → (N 9 V al)

Gtd[[tab0]] e0 e = e0(tab)

Gtd[[tab]] e0 e = e(tab)

The function G gives the state of an array tab according to the current en-
vironment or to the precondition environment.

2We could have chosen to accept negative values, because in some cases abstract inter-
pretation could give a precise result.



5.3. The Assertion Language 137

T a : Taop → (N 9 V al + {neg, error}) → V al + {error}

T a[[sum]] f =
∑

i∈dom(f) f(i) if codom(f) ⊆ V al

and
∑

i∈d f(i) ∈ V al
error otherwise

T a[[max]] f = f(i) with i ∈ dom(f)
and forall j ∈ dom(f) : f(i) ≥ f(j)
if codom(f) ⊆ V al
and dom(f) 6= []

error otherwise
T a[[min]] f = f(i) with i ∈ dom(f)

and forall j ∈ dom(f) : f(i) ≤ f(j)
if codom(f) ⊆ V al
and dom(f) 6= []

error otherwise

Table 5.13: Semantics of the generalised arithmetic operators

T b : Tbop → (N 9 Bool + {error}) → V al + {error}

T b[[#]] f =
∑

i∈dom(f) g(f(i)) with g : Bool → {0, 1}

such that g(true) = 1 and g(false) = 0
if codom(f) ⊆ Bool

error otherwise

Table 5.14: Semantics of the generalised arithmetic operator #



138 Definition of the Languages

Atd : Assert → Envtd → Envtd → {true, false, error}

Atd[[bexpr]] e0 e = B[[bexpr]] e
Atd[[gaexpr1 cop gaexpr2]] e0 e = Cop[[bop]] (i1, i2)

with i1 = Gevaltd[[gaexpr1]] e0 e
and i2 = Gevaltd[[gaexpr2]] e0 e

Atd[[assert1 bop assert2]] e0 e = Bop[[bop]] (b1, b2)
with b1 = Atd[[assert1]] e0 e
and b2 = Atd[[Assert2]] e0 e

Atd[[assert1 bopltr assert2]] e0 e = Bop[[bopltr]] (b1, b2)
with b1 = Atd[[assert1]] e0 e
and b2 = Atd[[Assert2]] e0 e

Atd[[bnot assert]] e0 e = true ifAtd[[assert]] e0 e = false
false ifAtd[[assert]] e0 e = true
error otherwise

Atd[[assert1 iop assert2]] e0 e = Iop[[iop]] (b1, b2)
with b1 = Atd[[assert1]] e0 e
and b2 = Atd[[Assert2]] e0 e

Let f1 = Gtd[[gtab1]] e0 e
Let f2 = Gtd[[gtab2]] e0 e
Assume [1..l1] = dom(f1)
and [1..l2] = dom(f2)

Atd[[gtab1 tcop gtab1]] e0 e = false if l1 6= l2
T cop[[tcop]] f1 f2 otherwise

Quantified expressions In a quantified assertion, there is a declaration
of a local variable (x), there is a range on finite domain (dom) and the body
(assert). If the domain dom is badly defined, the evaluation generates an er-
ror; otherwise, with a universal quantifier, the body must be true for all the
values that satisfy the given range expression; with an existential quantifier,
the body must be true for at least one value that satisfies the given range
expression. In both cases, if the evaluation of the body generates an error
for one value, this error is propagated and the evaluation of the quantified
assertion is error.

Assume d = Domtd[[dom]] e0 e 6= error

Let bk = Atd[x/d][[assert]] e0 eid[x/k] (k ∈ d)

Atd[[forall x : dom : assert]] e0 e = error if bk = error for some k ∈ d
true if bk = true for all k ∈ d
false otherwise

Atd[[exist x : dom : assert]] e0 e = error if bk = error for some k ∈ d
false if bk = false for all k ∈ d
true otherwise

It is also possible to have quantified assertions whose local variable is an
array a[1..ea] where ea ∈ Eaexpr:



5.3. The Assertion Language 139

=> b1 true false error
b2

true true true error
false false true error
error error error error

<=> i1 true false error
i2

true true false error
false false true error
error error false error

Table 5.15: Implication and equivalence operators Semantics

T cop : Tcop → (N 9 V al) → (N 9 V al) → {true, false}

Assume [1..l] = dom(f1) = dom(f2)
T cop(�) f1 f2 = true if f1 = f2

or for some i ∈ [1..l − 1],
f1(j) = f2(j)for all j ∈ [1..i − 1]
and f1(i) > f2(i)

false otherwise
T cop(�) f1 f2 = true if for some i ∈ [1..l − 1], f1(i) > f2(i),

and f1(j) = f2(j) for all j ∈ [1..i − 1]
false otherwise

T cop(�) f1 f2 = true if f1 = f2

or for some i ∈ [1..l − 1], f1(i) < f2(i)
and f1(j) = f2(j)for all j ∈ [1..i − 1]

false otherwise
T cop(≺) f1 f2 = true if for some i ∈ [1..l − 1], f1(i) < f2(i)

and f1(j) = f2(j) for all j ∈ [1..i − 1]
false otherwise

Table 5.16: Semantics of the lexicographic relation operators



140 Definition of the Languages

Assume d = Domtd[[dom]] e0 e 6= error

Assume l = Gevaltd[[ea]] e0 e 6= error

Let T = {f : N 9 V al|dom(f) = [1..l] and codom(f) ⊆ d}

Let bf = Atd[tab/(l,d)][[assert]] e0 eid[tab/f ] (f ∈ T )

Atd[[forall tab[1..ea] : dom : assert]] e0 e = error if bf = error for some f ∈ T
true if bf = true for all f ∈ T
false otherwise

Atd[[exist tab[1..ea] : dom : assert]] e0 e = error if bf = error for some f ∈ T
true if bf = true for all f ∈ T
false otherwise

Predefined predicates The predicate unchanged compares the value
of a variable with its initial value; it can also compare the values of an array
with its initial values.

Atd[[unchanged x]] e0 e = e0(x) = e(x) if e0(x) 6= noval
error otherwise

Assume d = Domtd[[dom]] e0 e 6= error
Atd[[unchanged(dom, tab)]] e0 e = true if e0(tab)(k) = e(tab)(k) for all k ∈ d

error if for some k ∈ d : k 6∈ dom(e0(tab))
false otherwise

The predicate permut expresses that the set of values of two subarrays cor-
responds to the same set of values with identical duplications if any: there
is a bijection f between the indexes of the two subarrays, let tab1 and tab2,
such that tab1[k] = tab2[f(k)] for index k of the subarray tab1:

Assume d1 = Domtd[[dom1]] e0 e 6= error
and d2 = Domtd[[dom2]] e0 e 6= error
Assume f1 = Gtd[[gtab1]] e e0

and f2 = Gtd[[gtab2]] e e0

Atd[[permut (dom1, gtab1, dom2, gtab2)]] e0 e
= true if #d1 = #d2

and for some f ∈ Bij(d1, d2) : f2 ◦ f = f1

= false otherwise

where Bij(d1, d2) is the set of bijections between the two sets d1 and d2; #di ex-

presses the size of di (cardinality).



Chapter 6

Implementation of MPVS

using the Mozart
Programming System

6.1 Introduction

In Chapter 4, we have observed that MPVS is able to prove the cor-
rectness of our algorithms. This chapter will hopefully reveal some of the
mysteries.

Constraint programming over finite domains seems to us especially conve-
nient to check the kind of verification conditions that are needed to express
the correctness of imperative programs. We have chosen the multiparadigm
language Oz because to conveniently generate the constraint problems equiv-
alent to a given verification condition, it is desirable to have at hand a power-
ful language that allows us to interleave constraint generation and constraint
solving. Oz includes all programming mechanisms that are needed to reach
our goals. In addition, we have an excellent support because we are working
in UCL, in the same department as the Belgian Mozart/Oz pool which is
partially responsible for the implementation of the Oz language. We also
have been easily convinced to use it.

Chapter 6 focuses on the way our programs are automatically translated
into constraints, and how the constraints are solved. Most explanations
have already been published in [18, 20]. We also show how the violated
parts of an assertion can be precisely provided to the user. We show that
the architecture of MPVS is very simple.

In Section 6.2, we provide an overview of the Oz programming language
and the Mozart system that could be useful to understand this chapter.

141



142 Implementation of MPVS

Then, we explain in Section 6.3 the use of verification conditions to check
the correctness of our programs. We introduce an example of verification
condition that we follow through the next sections: we start from a sim-
ple translation into constraints and then, gradually, we add some technical
aspects too difficult to assimilate in the first place. So, in Section 6.4 and
Section 6.5, we manually translate a subset of the verification condition ex-
ample and we solve this constraint problem. We give a first idea of the
heuristics of the distribution strategy. In Section 6.6, we explain the auto-
matic translation of our assertions into a set of constraints. In Section 6.7,
we motivate the interleaving between constraint generation and constraint
solving. We argue that our method is complete in Section 6.8. More com-
plex techniques in our implementation are introduced in Section 6.9: we
consider the detection of runtime errors and of incorrect assertions, and we
deal with negative expressions; with these final improvements, our method
is sound. Section 6.10 displays the simple architecture of the tool. Finally,
Section 6.11 shows some efficiency experimentation results and Section 6.12
gives a conclusion.

6.2 The Oz Programming Language and the Mozart
Programming System

For a better understanding of this chapter, let us first explain some of the
characteristics of the Oz language.

6.2.1 The multiparadigm programming language Oz

Oz [50] is a multi-paradigm language that is designed for advanced, con-
current, networked, soft real-time, and reactive applications. It provides
the salient features of object-oriented programming, the salient features
of functional programming, and the salient features of logic programming
and constraint programming including logical variables, constraints and pro-
grammable search mechanisms.

The Oz execution model consists of dataflow threads observing a shared
store: A data flow thread is a thread that, executing an operation, will
suspend it until all operands needed have a well-defined value; i.e., if the
statement needs a value that is not yet available, then the thread automat-
ically blocks until it can access that value. The store contains unbound and
bound logic variables, cells (named explicit state), and procedures. Variables
can reference the names of procedures and cells. When a variable is bound,
it disappears: all threads that reference it will automatically reference the



6.2. The Oz Programming Language and the Mozart Programming System143

binding instead. Variables can be bound to any entity, including other vari-
ables. The variable and procedure stores are monotonic, i.e., information
can only be added to them, not changed or removed.

Logic variables An Oz variable is a single-assignment variable. Initially,
it is introduced with an unknown value, and later it might be assigned a
value, in which case the variable becomes bound. Once a variable is bound, it
cannot be changed. Variables can be bound to variables. Oz is a dynamically
typed language. Any variable, if it ever gets a value, will be bound to a value
of one of these types

Records, tuples and lists

• A record is a compound data structure. It consists of a label followed
by a set of pairs Feature:Field.

The following is a record:

sol(x:X y:Y z:Z)

It has three arguments, and the label sol.

x,y,z are features and X,Y,Z are fields that can be instantiated or
not. An atom is a record with no features.

• A tuple is a record where we omit the features, reducing it to a com-
pound term.

So, the following tuple has the same label and fields as the above
record:

sol(X Y Z)

The corresponding record is sol(1:X 2:Y 3:Z).

• A list is also an important class of data structures in Oz: a list is either
the atom nil representing the empty list, or is a tuple using the infix
operator | and two arguments which are respectively the head and the
tail of the list.

Thus, a list of the first three positive integers is represented as:

1|2|3|nil

Another convenient special notation for a closed list, i.e. a list with a
determined number of elements is: [1 2 3].

These data structures may contain unbound variables. We refer them as
partial values.



144 Implementation of MPVS

The full Oz language is defined by transforming all statements into a
kernel language. Let us briefly define the statements S that will be used in
the next sections.

• X = v

v denotes a value (a number, record and procedure).

The statement X=v binds the unbound variable X to the integer v,
and adds this information to the store. If X is already bound to an
incompatible value, i.e. to any value different from v, an exception is
raised.

• Binding a variable to a value is a special case of the operation named
unification.

The unification term1 = term2 makes the partial values equal if pos-
sible by adding bindings in the store.

Examples:

X1 = X2: if both variables are unbound; one binding between these
variables is added to the store.

X = f(A) and Y = f(25) : doing X = Y binds A to 25

• S1 S2

Inside a thread, a sequence of statements is executed sequentially ac-
cording to the dataflow: a statement needs that its variables are bound
to be executed, the execution of the sequence may be suspended wait-
ing that another thread bounds the variables needed to be bound.

• local X in S end

All variables are logic variables, declared in an explicit scope defined
by the local statement.

• A procedure is the value of a procedure type.

The statement X = proc{$ Y1... Yn} S end binds the variable X to
a new procedure value. That is, it simply declares a new procedure. So,
procedures are defined at run-time. The $ indicates that the procedure
value is anonymous, i.e. created without being bound to an identifier.

A shortcut is

proc{X Y 1.. Y n} S end

– Any statement can be encapsulated into a procedure by putting
inside a procedure declaration.

– A free identifier of a statement is an identifier that is not defined
in that statement.



6.2. The Oz Programming Language and the Mozart Programming System145

– A procedure can have external references which are free identifiers
in the procedure body. The value of an external reference is its
value when the procedure is defined (lexical scoping).

This characteristics is important, it allows higher order procedures and
we often use it in our implementation.

• fun{F X1 ... Xn} S E end

This function definition is translated into

proc{F X1... Xn ?R } S R = E end

R = {F X1... Xn} translates the procedure call {F X1 ... Xn R}

• if X then S1 else S2 end

Conditionals use the keyword if and block until the condition variable
X is true or false in the variable store.

• The pattern-matching

case X of E_1 then S_1

[] E_2 then S_2

[] ...

else S end

We often use the case statement with multiple alternatives and compli-
cated conditions. All variables introduced in Ei are implicitly declared,
and have a scope stretching over the corresponding Si.

• thread S end

Threads are created explicitly with the thread statement.

• {Wait X}

This statement suspends explicitly the current thread until X is de-
termined

6.2.2 Finite Domain Constraint Programming with Oz

The Oz language allows constraint programming over finite domains. In this
section, we provide an overview of the Oz constraint programming model, a
complete description of which can be found in [49].

Constraints Oz constraint programming uses two kinds of constraints.
Basic constraints are in the form x ∈ D where x is a variable and D is
a finite subset of the natural numbers, called the domain of x. Non-basic
constraints express relations between variables; a simple example is x+y ≤ z.



146 Implementation of MPVS

Constraint solving Operationally, computation takes place in a compu-
tation space. A computation space consists of a constraints store and a set of
propagators. The constraints store implements a conjunction of basic con-
straints, which can be dynamically refined by the propagators. A propagator
is a concurrent computational agent that imposes a non basic constraint by
narrowing the domains of the variables involved in the constraint.

Let us assume, for instance, that the constraint store s consists of two basic
constraints x ∈ {1, . . . , 6}, and y ∈ {1, . . . , 6}. Moreover, let us suppose that
the propagator pa1 imposes the constraint x + 3 = y. The basic constraints
are refined to x ∈ {1, 2, 3} and y ∈ {4, 5, 6} because other values of the
domains are not compatible with the constraint x + 3 = y. Propagators
communicate through the constraint store by shared variables. Consider
again our example and let us add another propagator pa2, that imposes
the constraint y − 2 ∗ x > 1. Once pa1 has refined the basic constraints to
x ∈ {1, 2, 3} and y ∈ {4, 5, 6}, the second propagator ensures that x ∈ {1, 2}.
Now, pa1 can propagate again giving y ∈ {4, 5}, then pa2 establishes x = 1,
and, finally, pa1 computes y = 4. At this moment, the computational space
encapsulating s, pa1 and pa2 becomes stable (i.e., no further constraint
propagation is possible). Moreover, one says that this computational space
has succeeded, which means that the variable assignment x = 1 and y = 4 is
a solution to the initial constraint problem. A computational space can also
be failed if a propagator detects that its associated constraint is inconsistent
with a basic constraint.

Variable distribution Constraint propagation is not a complete solution
method: It may happen that a set of constraints has a unique solution and
that constraint propagation does not find it. Similarly, constraint propaga-
tion may be unable to detect that no solution exists. Consider, for instance,
the same problem where propagator pa2 is replaced by propagator pa′2, that
imposes y−x∗x > 1. After propagation, the computational space gets stable
with the following store: x ∈ {1, 2, 3} and y ∈ {4, 5, 6}. In such a situation,
the computational space is said to be distributable, which means that it can
be divided into two disjoint computational spaces by splitting the domain
of a variable. To do so, we make two copies of the original computational
space and we add a propagator that imposes x = 1 to the first copy and a
propagator that imposes x 6= 1 to the second one. Propagators may then
wake up in both spaces. The choice of the variable to be distributed and
the choice of the value given to this variable is called a distribution strategy.
The efficiency of constraint solving may heavily depend on the distribution
strategy. A popular strategy is the first-fail strategy: select a variable with
the least number of values. To guarantee a complete solution method, we
can simply ensure that all the Oz variables can be distributed.



6.2. The Oz Programming Language and the Mozart Programming System147

Figure 6.1: An example of search tree

Search trees Search proceeds by distributing the space. Iterating con-
straint propagation and distribution leads to a tree of spaces, the search
tree. An example is displayed in Figure 6.1 : each node in the search tree
corresponds to a computation space. Leaves correspond to solved spaces
(drawn as diamonds) or failed spaces (drawn as boxes), and distributable
spaces (drawn as circles). Given the tree search, several strategies are pos-
sible to explore it: depth-first or breadth-first exploration. A program that
implements exploration is called a search engine. The following functional-
ities are available: search for a single solution, several solutions, or all the
solutions. An interactive and visual search is also provided (see Figure 6.1).
A resulting search tree must be deterministic, i.e., the distribution of a
computation space must be deterministic. One reason is that search engines
feature support recomputation: the search engine may recompute any node
of the search tree instead of cloning it. Concretely, a problem with a large
number of variables or propagators or a problem for which the search tree
is very deep might use too much memory to be feasible. Recomputation
reduces the space requirements for these problems in that it trades space for
time.

The script A script for a finite domain problem is a program that can
compute one or all solutions of the problem. In Oz, scripts will be run
on predefined search engines implementing the propagate and distribute
method just described. Separating scripts from the search engines running
them is an important abstraction making it possible to design scripts at a
very high level. To develop a script for a given problem, we start by designing
a model and a distribution strategy. We then obtain an executable script



148 Implementation of MPVS

by implementing the model and distribution strategy with the predefined
abstractions available in Oz.

In Oz, a script takes the form of a procedure

proc {Script Root}

%% declare variables

in

%% post constraints

%% specify distribution strategy

end

The procedure declares the variables needed, posts the constraints modelling
the problem, and specifies the distribution strategy. The argument Root

stands for the solutions of the problem to be solved. If the solutions of a
problem are given by more than one variable, say X, Y, and Z, we may simply
combine these variables into one record by posting a constraint such as

Root = solution(x:X y:Y z:Z).

The procedure {SearchOne Script ?Solutions}will run the script Script
until the first solution is found. If a solution is found, it is returned as the
single element of a list; otherwise, the empty list is returned.

6.2.3 The Mozart programming system

Mozart is the system that implements the Oz language. Besides, the
Mozart system provides many predefined modules (records that group to-
gether a set of related operations). We mention those used in this chapter.

Predefined modules

• The Dictionary module contains procedures operating on dictionar-
ies.

A dictionary is a mapping from simple constants (atoms, names or
integers) to partial values. Both the domain and the codomain can be
changed.

• The Finite Domain module, FD is the module of Oz which contains
all the useful procedures for finite domain constraint programming.
The propagators and the distribution functions are defined there.

• The List module contains procedures operating on lists.

• The Oz Explorer is a graphical and interactive tool to visualize and
analyze search trees.

• The Search module describes the different search engines.



6.3. Verification Conditions 149

6.3 Verification Conditions

To check the correctness of a program with respect to a specification,
we use verification conditions. A verification condition is a formula that is
logically equivalent to propositions of the form {P}S{Q}, where P and Q
are assertions and S is a program fragment. All verification conditions have
the form A ⇒ B. Using the weakest precondition method [17], we verify
P ⇒ wp(S,Q); using the strongest postcondition method [24], we verify
sp(P, S) ⇒ Q.

We have chosen the sp approach because it allows us to directly translate
the assertion P into a set of constraints equivalent to sp(P, S), i.e., without
manipulating the syntactic tree of P . The renaming needed in a assertion
transformation with the sp method is implicit. Each assertion transforma-
tion consists of adding a constraint between two environments of program.
When using the wp method, the assertion transformation consists in a sub-
stitution of a variable with an expression and concretely, we would first
transform the syntactic tree of Q into another syntactic tree representing
wp(S,Q) before translating this into a set of constraints.

To check that a verification condition A ⇒ B is valid, the idea is to find
the solutions of a constraint problem equivalent to A & !B. If no solution
exists, the verification condition is valid. Otherwise, counter-examples to
the verification condition are found. It is in this way that the Oz constraint
solving system checks whether the verification conditions are valid.

To give a clear idea of the way we translate verification conditions into Oz
constraints and how the constraints problems are solved, we propose to detail
a part of the verification of the binary search algorithm. This algorithm has
been used in Chapter 4 to demonstrate the behaviour of our tool when the
algorithm (or the specification) is not correct. It is depicted with its speci-
fications in Figure 4.5. Through this example, we explain a few important
matters. Let us check a part of the proposition {Inv and not H} Iter{Inv},
in the case where a[m] > x.

{Inv & !(g = d|b = false) & m = (g + d) div 2 & a[m] > x} d := m {Inv}

Using the strongest postcondition approach (sp), we want to prove the fol-
lowing implication:

(∃d1 : d = m & Invd
d1

& !(g = d1|b) & m = (g + d1)div 2 & a[m] > x)

⇒ Inv



150 Implementation of MPVS

The notation Invd
d1

means that we substitute the new variable d1 for every
free occurrence of the variable d in the formula Inv. Unfolding the formula
Invd

d1
, the first part of the implication rewrites to the formula

(1) (∀ i : 1 ≤ i ≤ n − 1 : a0[i] ≤ a0[i + 1])
(2) & d = m
(3) & a, x unchanged
(4) & 1 ≤ g ≤ d1 ≤ n + 1
(5) && (∀ i : 1 ≤ i < g : a[i] < x)
(6) & (∀ i : d1 ≤ i ≤ n : a[i] > x)
(7) & b ⇒ (∃ i : 1 ≤ i ≤ n : a[i] = x)
(8) & !(g = d1|b = true)
(9) & m = (g + d1) div 2
(10) & a[m] > x

The second part of the implication is

(11) & 1 ≤ g ≤ d ≤ n + 1
(12) & a, x unchanged
(13) && (∀ i : 1 ≤ i < g : a[i] < x)
(14) & (∀ i : d ≤ i ≤ n : a[i] > x)
(15) & b ⇒ (∃ i : 1 ≤ i ≤ n : a[i] = x)

6.4 Translating Verification Conditions in Oz

We now explain how an assertion can be translated into an Oz constraint
problem. To obtain the script, we first need to declare the Oz variables and
specify their basic constraint. Then, we have to translate the assertions into
constraints. We show a direct translation of the verification condition first.
Observing the problems encountered with this translation, we motivate our
actual method.

6.4.1 Basic Constraints

We define the initial constraint store. For each program variable men-
tioned in the assertion, according to the program declarations, we generate
a basic constraint (one for each element of an array). We recall the decla-
rations of the binary search program:

const n = 4;

var x : 0..n ;

tab a : array [1..n] of 0..n+1 ;

var g : 0..maxint ;

var d : 0..maxint ;



6.4. Translating Verification Conditions in Oz 151

var m : 0..maxint ;

var b : boolean ;

The corresponding Oz variables declaration are:

X :: 0#4

A = {FD.tuple ’tab’ 4 0#5}

[G D D1 M]::: 0#FD.sup

B :: 0#1

• X, G, D, D1, M are the Oz variables corresponding to the program
integer variables x, g, d, d1,m; d and d1 represent the same program
variable but at two different program states.

FD.sup is a constant integer : the largest value of the Oz variables
in finite domain constraint programming. Its concrete value is imple-
mentation dependent: 134 217 726.

• The array a is defined as a tuple with the following basic constraints:
A.1::0#5, A.2::0#5, A.3::0#5, A.4:0#5.

• The Boolean variable b is represented by a simple Oz variable for which
the domain is {0, 1} where 0 corresponds to false and 1 corresponds
to true.

6.4.2 Naive Translation

We manually translate the verification condition. In fact, not all sub-
assertions can be directly (i.e., statically) translated into Oz constraints.
For instance, the translation of assertion (5) depends on the value of the
variable g. When needed values are not known statically, translation must
be done dynamically (when these needed variables become bound to a single
value). Thus, for simplicity, we limit ourselves to assertions whose transla-
tion is direct.

(1) (∀ i : 1 ≤ i ≤ n − 1 : a[i] ≤ a[i + 1])
(2) & d = m
(4) & 1 ≤ g ≤ d1 ≤ n + 1
(8) & !(g = d1|b = true)
(9) & m = (g + d1) div 2
(11) & !(1 ≤ g ≤ d ≤ n + 1)

The corresponding Oz script that we can naturally write is depicted in Fig-
ure 6.2: To every subassertion corresponds a set of propagators; a number
expresses these correspondences.

• We mainly use relational propagators: =:, >, and =<:.



152 Implementation of MPVS

• The relation (9) involves a non trivial arithmetic expression:

to translate it, we use an auxiliary Oz variable X1.

• To translate (8), we first give another form to this assertion:

g 6= d1 & b = false.

• We translate the quantified assertion (1) into a conjunction before
translating it into propagators.

• Assertion (11) is first translated into 1 > g | g > d | d > 5,

then to specify the disjunction, we use a choice statement.

• Sol=sol(a:a(A.1 A.2 A.3 A.4) g:G d1:D1 d:D m:M)

stands for the solution of the constraint problem; it is explained in
Section 6.2.2.

• {FD.distribute ff [A.1 A.2 A.3 A.4 G D1 D M X1]}

is the call of the predefined distribution method using the first-fail
strategy on the given list of variables; we do not focus on this matter
in this section.

We first notice that to translate our assertion into constraints, we have
normalized the subexpressions to post the adapted constraints. Besides,
using a choice statement seems straightforward to specify a disjunction. In
fact the choice statement specifies the alternatives with which the space is
to be distributed (see Section 6.2.2). It means that we increase the number
of spaces, which will not be easily manageable if we begin to have “nested”
disjunctions. To avoid these problems, the key choice of our implementation
is to encapsulate each assertion into a Boolean variable.

6.4.3 Using Reified Constraints

Reified constraints are of the form c ↔ b where c is a non basic constraint
and b is a Boolean (0/1) variable. If b = 1, the reified constraint is equivalent
to c. If b = 0, it is equivalent to ¬c. The main reasons to use reified
constraints are:

• Any formula of our interpreted logic can be translated into a single
conjunction of reified constraints, i.e., into a single constraint problem.
So, we avoid to increase the number of computational spaces to manage
disjunctions.

Let us consider a formula of the form A|B. It can be translated to the
conjunction of reified constraints

(b = bA|bB) & c1 & . . . & cn & c′1 & . . . & c′n′



6.4. Translating Verification Conditions in Oz 153

declare

proc {VC Sol}

A B G D1 D M B X1

in

A = {FD.tuple tab 4 1#5} %% declaration variables

B::0#1

[G D1 D M]:::0 # FD.sup

[X1]:::0# FD.sup

D =: M (2) %% post constraints

1 =<: G (4)

G =<: D1 (4)

D1 =<: 5 (4)

X1 =: G + D1 (9)

{FD.divI X1 2 M} (9)

G \=: D1 (8)

B =: 0 (8)

A.1 =<: A.2 (1)

A.2 =<: A.3 (1)

A.3 =<: A.4 (1)

choice (11)

G >: D (11)

[]

G <: 1 (11)

[]

D >: 5 (11)

end

Sol = sol(a : b(A.1 A.2 A.3 A.4) g : G d1 : D1 d : D m : M)

{FD.distribute ff [A.1 A.2 A.3 A.4 G D1 D M X1]}

%% specify distribution strategy

end

{Explorer.one VC}

end

Figure 6.2: The naive translation of a verification condition



154 Implementation of MPVS

where the ci are the reified constraints translating A and bA is the
Boolean variable associated to A (similarly for B).

• The translation of our assertions into constraints is more systematic:
it does not require any normalization to be translated into constraints.

• The encapsulation of each subexpression, as tiny as it can be, of an
assertion will allow us to systematically determine the violated part of
this assertion.

Translation of the example Let us translate each subexpression of the
example into a list of reified constraints

(4)







b41 = (1 ≤ g)
b42 = (g ≤ d1)
b43 = (d1 ≤ n + 1)
b4 = b41 & b42 & b43

(2)
{

b2 = (d = m)

(9)







z = g + d1

y = z div 2
b8 = (m = y)

(8)







b91 = (g = d1)
b92 = (b = 0)
b93 = (b91 | b92)
b9 =! b93

(1)







ba1 = (a0[1] ≤ a0[2])
ba2 = (a0[2] ≤ a0[3])
...
ban−1 = (a0[n − 1] ≤ a0[n])
b1 = (ba1 & ba2 & . . . & ban−1)

(11)







b111 = (1 ≤ g)
b112 = (g ≤ d)
b113 = (d1 ≤ n + 1)
b114 = b111 & b112 & b113
b11 =! b114

With n = 4, the list of corresponding propagators is

(4)

B41 = 1 =<: G

B42 = G =<: D1

B43 = D1 =<: 5

B44 = {FD.conj B41 B42}

B4 = {FD.conj B44 B43}

(8)

X1 =: G + D1

X2 = {FD.divI X1 2} % X2 =: X1 / 2

B8 = (M =: X2)

(2)

B2 = (D =: M)



6.5. Solving the Constraints 155

(9)

B91 = (G =: D1)

B92 = (B =: 0)

B93 = {FD.disj B91 B92}

B9 = {FD.nega B93}

(1)

BA1 = A.1 =<: A.2

BA2 = A.2 =<: A.2

BA3 = A.3 =<: A.4

BA4 = {FD.conj BA1 BA1}

B1 = {FD.conj BA3 BA4}

(11)

B111 = (1 =:< G)

B112 = (G =:< D)

B113 = (D =<: N + 1)

B114 = {FD.conj B111 B112}

B11 = {FD.conj B114 B113}

(1) & (2) & (4) & (8) & (9)

R1 = {FD.conj B4 B8}

R2 = {FD.conj B2 B9}

R12 = {FD.conj R1 R2}

R13 = {FD.conj B1 R12}

These examples show

• reified propagators (to encaspulate relations)

• 0/1 propagators (to propagate conjunction and disjunction and nega-
tion)

6.5 Solving the Constraints

The subset of assertions that we have translated in the previous section
corresponds to the following verification condition:







(∀ i : 1 ≤ i ≤ n − 1 : a[i] ≤ a[i + 1])
& d = m
& 1 ≤ g ≤ d ≤ n + 1
& !(g = d|b = true)
& m = (g + d) div 2







d := m

{(1 ≤ g ≤ d ≤ n + 1) }



156 Implementation of MPVS

Suppose the user writes a wrong statement: he writes d := m-1 instead of
d := m. This is a scenario that we have considered in Chapter 4. Let us
show how the tool concretely finds the counter-examples and how it is able
to give a precise feedback about the violated part of the invariant.

Let us recall what we have to solve. We want to verify the correctness of
{P} S {Q}; we translated it into sp(P, S) ⇒ Q where sp(P, S) corresponds
to (1) & (2) & (4) & (8) & (9) which is encapsulated into R13 and Q
corresponds to (11) and is encapsulated into B11. Notice a modification in
(2) since we consider another statement:

(2)

B2 = (D =: M-1)

To prove the correctness or to find a counter-example: we impose

R13 = 1 % sp(P,S) is true

B11 = 0 % Q is false

The propagators try to reduce the domains of the variables. Unfortu-
nately, constraint propagation is not a complete solution method: we may
need to distribute variables. Let us have a look at the example and let us
distribute manually, in an intuitive way.

If R13=1, propagation is able to determine that R12=1 and R3=1.
If R12=1 then R1=1 and R2=1 is computed by propagation and so propagation
imposes B4=1, B8=1, B2=1, B9=1, B1=1, BA5=1.

• B4=1: propagation determines B1=1, B2=1 and B3=1.

Propagation refines the domains of G and D1:

G::1#5 D1::1#5

• B8=1: propagation reduces the domains of M, X1 and X2:

X1::2#10 X2::1#5 M::1#5

• B2=1 impose D=:M-1, the domain of D is refined:

D::0#4

• B9=1: propagators impose B93=0, B91=0, B91=0 and

B is determined: B=0.

• BA5=1: propagation gives BA3=1, BA4=1, BA4=1, BA1=1, BA2=1

but the propagators cannot refine the domains of the elements of A.



6.5. Solving the Constraints 157

• B11=0: we should need to distribute on B113=0 and B114=0.

But in parallel, propagation has determined B111, B113, B112, and
B114

– B111=1: because (1=:<G) is true

– B113=1: because (D=<:5) is true

– B112=0: because B111=1 and B113=1 and B11=0

B112 reifies (G<=:D), so

D<:G is imposed, but no variable domain is refined.

The domains of G and D stay unchanged(*):

G::1#5 D::0#4

We have simulated the way propagators refine the variables domains. The
chronology of the propagators actions is arbitrary, since actually they are
concurrent agents. Besides they may “wake up” several times: if the domain
of G and D is changed in (*), all the other propagators wake up to try to re-
fine again. Well, we come back to our example and, now, the computational
space gets stable and all the Boolean variables are determined. We have the
following store:

[A.1 A.2 A.3 A.4]:::0#5 B=0

G::1#5 D::0#4 D1::1#5

We use the first-fail distribution strategy on this set of Oz variables:

{FD.distribute ff [G D A.1 A.2 A.3 A.4 X1 X2 B]}

D and G have the same smallest domain size (> 1); we distribute for example,
on G:

• G=1 is added to the store.

The values of D, D1 M, X1, X2 are determined:

D=0 M=1 X2=1

Thanks to the propagators corresponding to (8)

D1::2#5 X1::2#3

And, finally, after several refining from the propagators of (8), X1=3
D1=2

We finally distribute on the elements of A.

• G/=:1 ...



158 Implementation of MPVS

The first solution is
a(1 1 1 1) b = 0 d = 0 d1 = 2 g = 1 m = 1

On the search tree:

The violated part in Q is encapsulated in B114 and, more precisely, is en-
capsulated in B112. Indeed, the search consists of finding the violated sub-
assertions in Q. Q is a conjunction of subassertions A1 & A2 &...& An; ¬Q
becomes the disjunction ¬A1 | ¬A2 |...| ¬An. To determine which subasser-
tion is violated, we have to determine which subassertions ¬Ai are true, i.e,
which Ai are encapsulated in false (i.e., 0).

The following figure shows the whole search tree (large green triangles
contain sets of solutions). The red square corresponds to the computational
space where G=5, this fails:

Our example does not require distributing on the Boolean variables. If
we had considered the complete verification condition introduced in Section
6.3, we would have needed to distribute on the Boolean variables. Fig-
ure 6.3 shows the whole search tree containing all the counter-examples of
{Inv and not H} Iter{Inv} with the wrong statement d:= m-1. The set of
small green diamonds corresponds to the set of counter-examples for which
the violated part of the invariant is g <= d, the large green triangle cor-
responds to the set of counter-examples for which the violated part of the
invariant is (∀ i : d ≤ i ≤ n : a[i] > x). All the blue circles above the
large triangles (red and green) are distributable spaces on which a Boolean
variable has been distributed.

The choice of the variable we want to distribute has an impact on effi-
ciency. Ideally, the programmer manually chooses by experimentation the



6.5. Solving the Constraints 159

Figure 6.3: the search tree of {Inv and not H} Iter{Inv} with the wrong
statement d:= m-1

best strategy of distribution for the particular problem he solves. The diffi-
culty for us is that we do not choose a strategy for a particular problem, but
for an automatically generated set of problems. According to the problem,
the best strategy may be different. After experimentation, a good strategy
is to first distribute the Boolean variables encapsulating subexpressions:

• The Boolean Oz variables encapsulating subexpressions of an expres-
sion can be distributed only if the Boolean encapsulating the expres-
sion is determined.

• The integer Oz variables of an arithmetic expression can be distributed
only when the Boolean encapsulating the relation involving this arith-
metic expression is determined.

• Among the variables that can be distributed, we choose the variable
to be distributed using the first-fail strategy

To perform it, we use a data structure containing all the Oz variables
involved in the set of propagators translating the assertion. This structure
gives priority to variables that we want to distribute first, according to our
distribution strategy. For example, the data structure of the subassertion
(4) is the following:

DS4 = [ B4 #[ B44#[B41#[G] B42#[G D1] ] B43#[D1] ]



160 Implementation of MPVS

This data structure is a tree such that for each subtree, the root is a Boolean
variable. It means, for instance, that G can be distributed only if B42 or B41
is determined.

For (8), the data structure is:

DS8 = [B8#[ M X2 X1 G G1] ]

The solution of this constraint satisfaction problem is complete because all
the involved Oz variables are distributable.

6.6 Automating the Translation

6.6.1 Use of Dictionaries

In the manual version, our Oz variables are identified with a capital let-
ter and by convention, we mention the program variables by small letters.
Concretely, in the automatic translations, we use dictionaries that maintain
the correspondence between the program variables identifiers and their cor-
responding Oz variables. To prove the correctness of {P} S {Q} (P and
Q may be in relation with the precondition (Pre)), we use the following
dictionaries:

• one dictionary that corresponds to the state of the data at the Pre
program point, we name it Mp0,

• one dictionary to represent P , the state of the program variables before
the execution of S,

• one dictionary to represent Q, the state of the program variables after
the iteration,

• intermediate dictionaries for the intermediate program points between
P and Q,

• a new dictionary for every instantiation of a free variable (we explain
it at the end of this section).

6.6.2 Pattern-matching on the Syntactic Tree

Using pattern matching, we automatically translate the syntactic tree of
each assertion into the corresponding set of reified constraints: Mp is the
dictionary corresponding to the set of states of the program point where we
want to evaluate Assert. Mp0 is the dictionary corresponding to the pre-
condition states. The reader is advised to refer to Section 5.3: an assertion
is evaluated on two environments. While generating the propagators, we
construct the data structure DS.



6.6. Automating the Translation 161

proc{PropB Assert Mp Mp0 DS B}

case Assert of

ident(X) then {Dictionary.get Mp X}=: B

DS = [B]

[]

>(X Y) then V1 V2

in

[V1 V2]:::0#FD.sup

{PropA X Mp Mp0 DS1 V1} % X =: V1

{PropA Y Mp Mp0 DS2 V2} % Y =: V2

DS = [B#[DS1 DS2]]

B = : V1 > V2

[]

and(A1 A2) then B1 B2

in

[B1 B2]::0#1

{PropB A1 Mp Mp0 DS1 B1} % B1 =: A1

{PropB A2 Mp Mp0 DS2 B1} % B2 =: A2

DS = [B#[DS1 DS2]]

{FD.conj B1 B2 B} % B = B1 and B2

[]

...

end

{Dictionary.get Mp X} takes in Mp the Oz variable corresponding to the
programming variable represented by X.

We have a similar procedure for arithmetic and generalised arithmetic
expressions (defined in Section 5.3).

proc{PropA Gaexpr Mp Mp0 DS V}

case Gaexpr of

ident(X) then {Dictionary.get Mp X}=: V

DS = [V]

[]

indent0(X) then {Dictionary.get Mp0 X}=: V

DS = [V]

[]

+(X Y) then V1 V2 DS1 DS2

in

[V1 V2]:::0#FD.sup

{PropA X Mp Mp0 DS1 V1} % X =: V1

{PropB Y Mp Mp0 DS2 V2} % Y =: V2

DS = {List.append DS1 DS2}

V = : V1 + V2

[]

...



162 Implementation of MPVS

end

Again, we notice that all the variables involved in the constraint satis-
faction problem appear in the data structure DS; no matter the priority rules
of this structure, all the variables can be distributed. The solution of the
generated constraint satisfaction problem is complete.

6.6.3 Translating Quantified Assertions

We come back to our example of verification condition in Section 6.3 and
we look at the following quantified assertion where n is fixed (n = 4):

(1)(∀i : 1 ≤ i < n : a0[i] ≤ a0[i + 1])

The list of reified constraints is:

(1)







ba1 = (a0[1] ≤ a0[2])
ba2 = (a0[2] ≤ a0[3])
...
ban−1 = (a0[n − 1] ≤ a0[n])
b1 = (ba1 & ba2 & . . . & ban−1)

For each i, we have a Boolean variable that encapsulates the constraint
a[i] ≤ a[i + 1]. Then, we have a list of conjunctions to be forced to 1. Func-
tionnal programming is very well adapted to the translation of quantified
assertions/expressions into constraints (with the function Map and Fold) if
we consider the index list:

Figure 6.4 depicts the function that generates a reification of the constraint

∀x : i ≤ x ≤ j : p(x)

where I and J are integers and P is such that B X = {P X} is a reified
constraint of p(x). The data structure DS is the list of the data structures
of each p(x).

To translate (1), we instantiate (first manually) the parameter P with a
function with a parameter I, defining the reified propagator corresponding
to a0[i] ≤ a0[i + 1]:

P = fun{$ I} BI = A0.I =<: A0.(I+1)

DSI = [BI#[A0.I A0.(I+1)]]

BI#DSI

end

in

B1 = {ForEach 1 3 P DS}

We write A0 to mention a0. In the automatisation, A0 is an anonymous tuple
standing in Mp0 for which the key is the atom a:

A0 = {Dictionary.get Mp0 a}



6.7. Interleaving Constraint Translation with Constraint Solving 163

proc {ForEach I J P DS B}

Dom = {List.number I J 1} (1)

in

DS = {Map Dom P} (2)

B = {FoldL Rs fun{$ X Y#_} {FD.conj X Y} end 1} (3)

end

(1)Dom =[I, I+1,...,J]

(2)DS = [P I, P I+1, ... P J] = [BI#DSI , BI+1#DSI+1, ...BI#DSJ ]

(3)B = BI & BI+1 & ...& BJ

Figure 6.4: Generating propagators for ∀x : i ≤ x ≤ j : p(x)

Figure 6.5 shows the automatic instantiation of the the paramater P. In
our example, (without speaking about DS).

• {PropA A1 V1 Mp Mp0 DS1} generates V1=:1 and so determines V1,

{PropA A2 V2 Mp Mp0 DS2} generates V2=:4 and so determines V2,

• each BK = {PropB P Mpl Mp0 DSK} generates a0[i] ≤ a0[i + 1].

To perform it, it uses a new dictionary which is a clone of the current
dictionary, containing one more variable whose key is i.

6.7 Interleaving Constraint Translation with Con-
straint Solving

The previous discussion ignores a major difficulty in our method, which is
that the number and the form of some constraints may depend on the value
of one or several variables. To overcome this difficulty, we interleave con-
straint generation and constraint solving. Consider the following assertion:

(5)(∀ i : 1 ≤ i < g : a[i] < x)

We would like to translate it into the following reified constraint whereas
the variable g is not determined:

(5)







bb1 = (a[1] < x)
bb2 = (a[2] < x)
. . .
b5 = (bb1 & bb2 & . . .)

We would like to execute the ForEach method which is defined in Figure
6.4. But, there is a precondition to execute the procedure of ForEach: the
values of variables I and J must be determined. To ensure this precondition,



164 Implementation of MPVS

proc{PropB Assert Mp Mp0 DS B}

case Assert of

...

[]

’forall’((ident(X) ’<=’ A1 ’<=’ A2) Assert) then

P=fun {$ K} BK Mpl DSK in

{Dictionary.clone Mp Mpl}

K = {Dictionary.put Mpl X}

BK = {PropB P Mpl Mp0 DSK}

BK#DSK

end

V1 V2

in

{Propa A1 Mp Mp0 DS1 V1}

{Propa A2 Mp Mp0 DS2 V2}

B = {ForEach V1 V2 P DS}

[]

...

Figure 6.5: Translating the formula (∀ x : a1 ≤ x ≤ a2 : p(x))

we can encapuslate the ForEach call in a thread and add explicit WAIT

statements for the actual parameters corresponding to I and J before any
call to the procedure ForEach. It is important to put this procedure call into
a thread because it is a generator of propagators that are concurrent agents
and that must be executed independently from each other. For example,
if we do not use any thread to translate a conjunction of two quantified
expressions, the second one cannot be translated before the first one because
the procedure calls are executed sequencially (see Section 6.2).

{PropA A1 Mp Mp0 DS1 V1} % propagators V1 =: A1

{PropA A2 Mp Mp0 DS2 V1} % propagators V2 =: A2

local P = fun{$ I} BI = A.I <: X

DSI =[BI#[A.I X]]

BI#DSI

end

in

thread {Wait V1}{Wait V2}

B = {ForEach V1 V2 P DS}

end

end

where A1 and A2 correspond resp. to 1 and g−1. In a more general way, they
correspond to extended numerical expressions such as defined in Section 5.3



6.7. Interleaving Constraint Translation with Constraint Solving 165

proc{PropB Assert Mp Mp0 DS B}

case Assert of

...

[]

’forall’((ident(X) ’<=’ A1 ’<=’ A2) Assert) then

P= fun {$ K} BK Mpl DSK in

{Dictionary.clone Mp Mpl}

K = {Dictionary.put Mpl X}

BK = {PropB P Mpl Mp0 DSK}

BK#DSK

end

V1 DS1 V2 DS2 DS

in

DS = [[DS1 DS2]# L]

{Propa A1 Mp Mp0 DS1 V1}

{Propa A2 Mp MP0 DS2 V2}

thread {Wait V1} {Wait V2}

Bool = {ForEach V1 V2 P L}

end

[]

Figure 6.6: Translating the formula (∀ x : a1 ≤ x ≤ a2 : p(x))

(eaexpr ∈ Eaexpr). Notice that P is automatically generated, but here, we
define it manually for better readability. Figure 6.6 contains the adapted
version of 6.5.

To translate (∀i : 1 ≤ i ≤ g − 1 : a[i] < x) into constraints, we need
to wait that g is determined. The number of propagators and the new Oz
variables added in the constraint store depend on this value G. Concretely,
some constraints must be solved before generating other propagators. But,
without distribution, this variable G may never be determined and the solv-
ing of this problem may result in a deadlock. So, although every variable
may possibly need to be distributed, variables that must be determined to
allow reified constraint generation must be distributed first. The definition
of DS in Figure 6.6 is so justified: the variables contained in DS1 and DS2

must be distributed first. The word “first” gives a priority notion but in
fact, the Oz variables corresponding to the quantified assertion are not yet
generated, L is undefined until the procedure ForEach is called.



166 Implementation of MPVS

The call to procedure ForEach will not be delayed forever: First the
variable DS, which is part of the partially data structure used for distribution,
is further instantiated with two new variables DS1 and DS2; then procedure
Propa is executed to create two threads that will both evaluate V1 and
V2 and instantiate DS1 and DS2 with the variables to be distributed in A1

and A2 (i.e., the Oz variables corresponding to the variables occurring in the
expressions a1 and a2 of the assertion). As soon as V1 and V2 are determined,
the ForEach function can generate its propagators and instantiate the data
structure.

We come back to the example (5)(∀ i : 1 ≤ i < g : a[i] < x):

DS5=[ B#[ [[1] [G]]#[ ]]]
As soon as G is determined, (we choose for example G = 4), the function
ForEach generates the propagators of a[1] < x & a[2] < x & a[3] < x, and
the structure of the variables to be distributed immediately becomes (see
Figure 6.4 for the construction of this part of the data structure):

B#[ [1 3]#[B1#[A.1 X] B2#[A.2 X] B3#[A.3 X]]]

Next the distribution strategy will choose B1,B2 or B3 if propagation can-
not compute them and the process continues, alterning propagation and
distribution.
The translation of (6)(∀i : d ≤ i ≤ n : a[i] > x) into constraints is similar:
we need to wait until D is determined.

Another example of translation into constraints that needs interleaving
contraint generation and constraint solving is when we need to consult an
element of an array:

(10) a[m] > x

is translated into

(10)

{
a[m] = v
b10 = (v > x)

To refer a[m] in a Oz constraint, we need to wait until the index m is
determined.

T = {Dictionary.get Mp A} % T is the tuple corresponding to A

in

{PropA Y Mp Mp0 DS I} % Propagator I =: Y

thread {Wait I} V =: T.I end % Propagator V =: T[I]

Y represents an extended numerical expression eaexpr that may involve sev-
eral variables possibly to be distributed.



6.8. Distribution Heuristics - Completeness of our Method 167

We have a similar automation for the existential quantifier and for the
generalised arithmetic expressions involving quantifiers such as sum, max,

min, #.

6.8 Distribution Heuristics - Completeness of our
Method

To guarantee a complete solution for our constraint satisfaction problems,
all the involved Oz variables must be distributable, the resulting search tree
must be deterministic (even if in each computation space propagators run
in a non deterministic way) and also, no deadlock should append.

Through the examples of Section 6.7, we have seen that propagators can-
not be posted at the same time, as well as the data structure DS that cannot
be completely built at the same time (statically). The propagators are gen-
erated dynamically while the data structure is built. So, there are many
reasons to doubt about the completeness of our method. Let us explain the
role of the data structure DS to guarantee a complete solution; it is a tree
for three reasons:

• The first reason is that the resulting search tree must be deterministic.
Using this data structure of the dynamically generated variables, the
distribution of a computation space is deterministic.

Indeed, if we add the generated Oz variables at the end of a flat struc-
ture (a list), the distribution in a computation space may be non de-
terministic since the generation of the Oz variables are concurrent
processes. The search tree will not be unique, and if the search engine
recomputes a node from the tree root, the solution of the problem will
be random.

Our data structure is deterministic, as well as our distribution strategy
(the way we select the variable to be distributed).

• Next, we have seen that the set of propagators and the new Oz vari-
ables added to a constraint store may depend on the value of one or
several variables. The data structure allows us to easily select the part
of the tree which is to be considered at each distribution step.

Each time we distribute, we use an adapted first-fail heuristic on the
list of the selected variables. It means that we look for one of the
selected variables with the smallest domain and we distribute on this
variable (this choice is deterministic).

• Finally a minor reason that does not mention completeness but effi-
ciency: the structure gives priorities on the variables to be distributed,
which allows us to improve efficiency of the search.



168 Implementation of MPVS

In fact, using this data structure, we have a complete method. In each
stable computation space, (see 6.2.2) all the Oz variables that are created
with a propagator generation are systematically in the structure DS and
so, are distributable. A current constraint satisfaction problem always has a
complete solution. Of course, it does not necessarily correspond to the whole
problem we want to solve since some propagators may not be already trans-
lated. The WAIT statements involved in the translation of some assertions
may be a source of deadlock. To avoid it, the Oz variables involved in the
WAIT statements are systematically added to the current computation space
and are added in the data structure. Since any current computation space
has a complete solution, we guarantee that the execution of the running
WAIT statements will terminate.

6.9 Final Improvements

6.9.1 Detecting Run-time Errors and Incorrect Assertions

Up to now, we have never mentioned that we may translate badly defined
expressions. A way to manage them is catching the errors while the script
is running. For instance, if we consult an element of an array which is not
defined because of an out-of-bounds error, we stop the search and give a
feedback concerning the error. In our examples of assertion, it may occur
when we propagate V=:T.I or when we run the function ForEach or ForOne
with a too large range.

The Boolean operator && can be translated in an operational way. For
the following example

(4) 1 ≤ g ≤ d1 ≤ n + 1
&& (5) (∀ i : 1 ≤ i < g : a[i] < x)
& (6) (∀ i : d1 ≤ i ≤ n : a[i] > x)

we can first solve the constraint problem related to assertion (4), and then
generate the propagators corresponding to assertions(5) and (6). Since our
example is well defined, no error can be generated.

The simplified generic method corresponding to this translation is the
following:

fun{AndLr P1 P2}

R = {P1}

in

thread

if R == 1 then

{P2}

else



6.9. Final Improvements 169

0 end

end

This function generates the propagators corresponding to assert1 && assert2
P1 and P2 are such that R1={P1} is a reified constraint of assert1 and
R2={P2} is a reified constraint of assert2.

Unfortunately, this way to manage errors does not correspond to the se-
mantics described in Chapter 5. Indeed, the propagators are concurrent
computational agents and so, according to the order in which the propaga-
tors run to narrow the domains of the variables involved in the constraints,
an error can be detected or not (the result is non determinist). The fol-
lowing example shows two propagators that will fail the space, but also a
propagator defining a badly defined expression: A.0.

A={FD.tuple a 4 1#4}

I::0#4

B::0#FD.sup

G <:4

G >: 4

thread {Wait I}

D =: A.I

end

With respect to our semantics, each assertion should be encapsulated in a
variable with three values: true, false and error. Since Oz constraints can-
not be reified in a variable with three values, our implementation considers
ordered pairs of Boolean variables (B, Er): B has to be considered as in the
previous Section (true or false), Er encapsulates the fact that the assertion
is badly defined or not. Of course, if Er=1, the value (determined or not) of
B has no meaning. Let us have a look at some of the subexpressions of our
example:

(10) a[m] > x

The expression a[m] is badly defined if m is out-of-bounds of a, i.e, if m <
1 | m > n (assuming a[1..n]), the identifier x cannot be badly defined. Using
again reified constraints, we have:

(10)







e1 = (m < 1)
e2 = (m > n)
e10 = e1|e2

(5)(∀ i : 1 ≤ i < g : a[i] < x)



170 Implementation of MPVS

This assertion is badly defined if the range is badly defined or if there exists
i in [1..g] such that a[i] is badly defined.

(5)







1 < g
1 < i
e1 = (i < 1)
e2 = (i > n)
e5 = e1|e2

Through the examples, we have observed that the constraints generated
when we want to impose an assertion to be true or false do not correspond
to the same set of constraints that we generate when we want to impose that
the assertion is badly defined. It means that the set of propagators that we
generate depends on the value of the variable Er.

With this choice of implementation, the Boolean operator && has now an
implementation that totally matches with our semantics:

proc{AndLr P1 P2 B Error}

B1 B2 Er1 Er2 :::0#1

in

{P1 B1 Er1}

{P2 B2 Er2}

B = {FD.conj B1 B2}

Er = {FD.disj Er1 {FD.conj B1 Er2}}

end

This function generates the propagators corresponding to assert1 && assert2
P1 and P2 are such that (Er1 B1) = {P1} is a reified constraint of assert1
and (Er2 B2) = {P2} is a reified constraint of assert2. With this imple-
mentation, the propagators of assert1 and assert2 are generated at the same
time.

Similarly, for an arithmetic expression, we have an ordered pair (V,Er)

where V corresponds to the integer value of the expression if Er = 0, i.e.,
the arithmetic expression is well defined, otherwise, V has no meaning and
Er = 1. Let us have a look at the generation of the propagators:

proc{PropB Assert Mp Mp0 DS B Er}

case Assert of

ident(X) then {Dictionary.get Mp X}=: B

DS = [B]

Er = 0

[]

>(A1 A2) then



6.9. Final Improvements 171

{PropA A1 Mp Mp0 DS1 V1 Er1 } % V1 =: A1 or A1 = error (Er1=1)

{PropA A2 Mp Mp0 DS2 V2 Er2 } % V2 =: A2 or A2 = error (Er2=1)

Er = {FD.disj Er1 Er2} % error propagation

thread if Er == 0 then % if A1 and A2 are well defined

B = (V1>:V2) % B = A1 > A2

end

end

DS = [[B Er]#[DS1 DS2]]

[]

...

In both cases (arithmetic expressions or assertions), the set of propagators
that we generate depend on the value of the variable Er. For each Boolean
subexpression the data structure containing the variable to be distributed
has the following form:

DS= [Er,B]#[the involved Oz variables of the expression]

As soon as Er is determined, the generation of the propagators of the ex-
pression runs and initialises in parallel the corresponding parts of the data
structure DS. For arithmetic expression we have a similar reasoning.

Choosing the depth first search strategy, we can first focus on the search
of a badly defined assertion (the first branch of the tree) and then, searching
for a counter-example violating the verification condition we consider. This
case corresponds to the one we have considered in the previous sections
(error problems are ignored).

6.9.2 Dealing with Negative Expressions

A disadvantage of Oz is that it does not manage negative values.

Example Suppose that a student chooses a negative variant for the binary
search algorithm, for example,

Variant: g-d

Our tool should discover a counter-example showing that the variant is neg-
ative. To perform it, we cannot naively translate the arithmetic expressions
(aexpr). Let us have a look at the following set of propagators:

...

Var :: 0#FD.sup

G <: D1

Var =: G - D1

B = (var <: 0)

This set of constraints does not have any solution (since Var::0#FD.sup

and the propagators will reduce the domain of Var to empty) and so no
counter-example is found. Using this method, the tool would be unsound.



172 Implementation of MPVS

With respect to our semantics of Chapter 5, we consider that each aexpr
can be encapsulated into an integer value in [0..maxint] = V al or neg or
error. To support it with Oz, we use a similar implementation as for the
variable with three values of the previous section: we use a tuple (V,Neg,Er)
where V::0#FD.sup and Neg::0#1 and Er::0#1. Er = 1 means that the
aexpr is badly defined, the variable V and neg have no meaning. Otherwise,
Neg =1 means that the aexpr is negative, the variable V has no meaning;
otherwise, V represents the positive value of the aexpr.

To give an idea of the way it works, let us consider the following expression:

Examples

(11) g − d < 3

The principle consists in encapsulating in the variable Neg the fact that
g − d < 0: we write Neg =G<:D and only when Neg=0, we consider the
propagator V=:G-D. So the example g − d < 3 is translated into:

...

V :: 0#FD.sup

Neg = G <: D

thread if Neg = 0 then

V =: G - D

end

end

B = (V <: 3)

1 = {FD.disj Neg B} %G -D < 0 or (G-D = V) < 3

Let us have a look at the automatic generation of propagators of an arith-
metic expression. Of course, a simple identifier cannot be negative. However,
an addition of two expressions is considered to be negative if both expres-
sions are negative, i.e., Neg1 and neg2 are equal to 1. If only one of the
subexpression is negative, we consider that the result is > taking abstract
interpretation notions; as explained in Chapter 5.2, we consider it as an
error. In the last case, when both variables are positive, we post the prop-
agator of the addition. We exactly follow the semantics described in Table
5.6. For a subtraction, we need to encapsulate the comparison between the
two expressions to know if the result is negative or not, as explained in Table
5.4.

proc{PropA Gaexpr Mp Mp0 DS V Er Neg}

case Gaexpr of

ident(X) then

B = {Dictionary.get Mp X}

Er = 0

Neg = 0



6.9. Final Improvements 173

DS = [V]

[]

’+’(X Y) then V1 V2 DS1 DS2 Er1 Er2 Neg1 Neg2 in

{PropA X Mp Mp0 DS1 V1 Er1 Neg1}

{PropA Y Mp Mp0 DS2 V2 Er2 Neg2}

DS = [[Er Neg]#[DS1 DS2]]

Er = {FD.disj {FD.disj Er1 Er2} {FD.exor Neg1 Neg2}}

Neg = {FD.conj Neg1 Neg2}

{FD.plus V1 V2 V}

[]

’-’(X Y) then V1 V2 DS1 DS Er1 Er2 Er3 Neg1 Neg2 Neg3 in

{PropA X Mp Mp0 DS1 V1 Er1 Neg1}

{PropA Y Mp Mp0 DS2 V2 Er2 Neg2}

DS = [[Error Neg Neg3]#[DS1 DS2]]

Er = {FD.disj {FD.disj Er1 Er2} Neg2}

Neg = {FD.disj {FD.conj Neg1 {FD.nega Neg2}} Neg3}

thread if Er == 0 then

thread if Neg3 == 0 then {FD.minus V1 V2 V}

else Neg3 = (V1 <: V2)

end

end

end

end

...

Let us have a look at the propagators generation of an assertion. One
can observe that the translation of a comparison follows exactly the seman-
tics described in Table 5.9. If both expressions are negative, the result is
undetermined (considered as an error), otherwise the case can be handled.

proc{PropB Assert Mp Mp0 DS B Er}

case Assert of

ident(X) then {Dictionary.get Mp X}=: B

DS= [B]

Er = 0

[]

’>’(X Y) then

X1 X2 DS1 DS2 Er1 Er2 Neg1 Neg2

in

{PropA X Mp Mp0 DS1 V1 Er1 Neg1}

{PropA Y Mp Mp0 DS2 V2 Er2 Neg2}

DS = [[Er1 Neg1]#DS1 [Er2 Neg2]#DS2]

Error = {FD.disj {FD.disj Er1 Er2} {FD.conj Neg1 Neg2}}

thread if Error == 0 then

if Neg1 == 1 andthen Neg2 == 0 then Bool = 0

elseif Neg2 == 1 andthen Neg1 == 0 then Bool = 1

else Bool = (V1>:V2)

end



174 Implementation of MPVS

end

end

...

The following example shows that we can handle some cases with a neg-
ative bound in the range of a quantified variable:

(5)(∀i : 1 ≤ i ≤ g − 1 : a[i] < x)

If g−1 is evaluated to neg, i.e., Neg2 = G<:1 entails Neg2=1, then the range
is empty and we do not need to call the ForEach method, the quantified
assertion can be evaluated to true. So, when we call the procedure ForEach,
we suppose that Neg2 = 0.

Thanks to these final improvements, our method is sound, i.e., no error is
forgotten. In fact, the principles of finite domain constraint programming
make it a sound method, but without a particular handling of negatives and
badly defined expressions, the automatic translation of our programs into
constraint satisfaction problems is not correct. With these improvements,
the semantics described in Chapter 5 is totally satisfied.

6.10 Architecture of MPVS

Figure 6.7 provides a view of the architecture. The structure is simple.
Concretely, subproblems files are translated into syntactic trees. From syn-
tactic trees, a procedure generates a script corresponding to the verification
condition to be checked; this script is executed by a search engine to look for
counter-examples. If no counter-example is found, the user receives a feed-
back testifying the total correctness of the Hoare proposition he checks. If a
counter-example is discovered, all the feedback information is in the counter-
example. Let us insist on the fact that we do not need any postprocessor to
analyse the result of the search engine.

Let us focus on each part of the diagram of Figure 6.7:

• The input consists of the declaration, the code and the specification
of the problem to be checked. In the simplest case, it corresponds to
one file. When a decomposition into subproblems is needed, several
files must be provided: the main problem file, plus the files of the
called subproblems from which the tool only needs declarations, pre
and postconditions.

• Parsing of the input files is the first task of MPVS. The tool parses
the main problem and automatically/recursively parses the files of the
called subproblems.



6.10. Architecture of MPVS 175

Figure 6.7: The MPVS architecture



176 Implementation of MPVS

This task includes type checking according to the declaration. The
declaration of all the subproblems are global and must be coherent
with each other, following the semantics described in Section 5.2.

• This syntactic analysis may return an error message (including the
position in the file) if a problem has occurred.

If no error is detected, it returns a set of syntactic trees; each one is
identified by a subproblem name (i.e, the file name).

• According to these syntactic trees and the Hoare proposition we want
to check, let {P} S {Q} given a precondition Pre, a procedure gener-
ates the script; a script is itself a procedure which contains:

– The declarations of Oz variables on finite domain: one for each
symbolic variable of the verification condition:

∗ Statically from Pre, P and S, we generate the dictionaries
mapping the program variables to the generated Oz variables,
denoted by Mp0, Mp and Mp1. The renaming is implicit thanks
to these dictionaries.

– The propagators corresponding to the translation of the associ-
ated verification condition into constraints;

∗ to search for a counter-example testifying that Pre is badly
defined,

∗ to search for a counter-example testifying that P is badly
defined,

∗ to look for a runtime error imposing the constraints corre-
sponding to S badly defined,

∗ adding some constraints between dictionaries Mp and Mp1, ac-
cording to the assignment S, we make implicitly the strongest
postcondition method:

· to look for a counter-example testifying that Q is badly
defined,

· to look for a counter-example violating Q.

– The description of the distribution strategy with its data struc-
ture containing the variables to be distributed.

As explained in Section 6.7, the data structure DS is dynamically
built during the generation of the propagators; MyDistribution
procedure, partially shown in Appendix B.3.2, is an adaptation
of the first-fail strategy.

Details about the organization of the procedures for the generation of
the script are given in Appendix B.3.2.



6.11. Efficiency Experiments 177

• The resulting script runs on a predefined search engine, exactly as
explained in Section 6.2.2.

• The result of the search engine is an empty list if there is no counter-
example. Otherwise, the result is a single element list containing a
record of the following form

Sol = sol(Mp0 Mp Mp1 Violated InvolvedS Feedback Error)

where Mp0, Mp and Mp1 are the dictionaries corresponding to three
environments of the program (see Section 6.6), it corresponds to the
three columns appearing in each counter-example of Chapter 4.

Error allows us to know if the source of the counter-example is a badly
defined expression. If not, i.e., if Error is equal to 0, it means that the
problem stands in the partial correctness of the Hoare proposition.

Violated is a record that represents the violated or badly defined
subassertion (including positions in the file). This information allows
us to underline the involved expressions in the editor.

InvolvedS is a record that represents the sequence of statements in-
volved in the problem; it is also underlined in the file.

Feedback is a record that expresses, when Error = 1, the kind of error
detected if we have a badly defined expression: a division by zero, an
out of bound error, or even a conjunction of different kinds of error.

6.11 Efficiency Experiments
We provide execution times corresponding to the complete verification of a
set of simple programs.
Square computes the square of x using the relation (x + 1)2 = x2 + 2x + 1.
Divide computes the quotient and the reminder of dividing x by y. Power

computes xy in log(y) time (indian exponentiation). SSearch is a sequential
search of x in a. VSearch is a binary search algorithm to find the minimum
value of a “valley” a, where a valley consists of a decreasing sequence followed
by an increasing sequence. BSearch is a binary search algorithm (presented
in [20]). CSmall finds the number of values smaller than x in a valley.
Common finds the number of common values of two strictly sorted arrays a
and b. NPerm is an algorithm to find the next permutation in lexicographic
order (also presented in [20]). It uses three subproblems. NComb is a similar
algorithm to find the next combination of n numbers out of 1, . . . ,m; it also
uses three subproblems.
In Figure 6.8, the second and third columns give the restrictions that were
put on the variable domains to check the programs. The fourth and fifth
columns provide the number of variables and the number of single statements



178 Implementation of MPVS

Algo Program Verification
Data+domains const v i Oz v prop times

Square x ∈ [0..4] 4 7 96 137 31ms
Divide x ∈ [0..16] 4 5 98 422 94ms

y ∈ [0..4]
Power x ∈ [0..4] 5 10 152 2150 656ms

y ∈ [0..4]
SSearch x ∈ [0..1] n ≤ 4 4 5 797 906 90ms

a[1..n] ∈ [0..n]n

VSearch a[1..n] ∈ [0..n]n n ≤ 4 5 8 47648 39181 741ms
BSearch a[1..n] ∈ [0..n]n n ≤ 4 5 11 21359 16459 900ms

x ∈ [0..1]
CSmall a[1..n] ∈ [0..n]n n ≤ 4 5 8 148463 107501 1090ms

x ∈ [0..1]
Common a[1..n] ∈ [0..n]n n ≤ 4 5 11 89951 70952 2794ms

b[1..m] ∈ [0..n]m m ≤ 4
ISort a[1..n] n ≤ 4 4 9 3476 81152 570ms
SPIsort 2754 43422 600ms
NPermut a[1..n] ∈ [0..n]n n : 1..5 6 19 206799 168840 4496ms
SP1 12979 9664 200ms
SP2 2284 112 430ms
SP3 16334 1148 701ms
Ncomb a[1..n] ∈ [0..m]n n ≤ 4 6 16 11030 13929 350ms

m = 6
CSP1 2531 2024 140ms
CSP2 1138 926 100ms
CSP3 913 707 47ms

Figure 6.8: Efficiency results

in the programs. The sixth and seventh columns indicate how many Oz
variables (i.e., basic constraints) and propagators (i.e., non basic constraints)
are generated by the verification system. Finally, the last column contains
the execution times.

6.12 Conclusion

In this chapter, we have explained the automatic translation of verification
conditions into constraints problems. Through our examples of implemen-
tation, we have shown that Oz is a powerful language which is very well
adapted to generate our constraint problems. Oz multiparadigm brings a
better language flexibility, which makes the development shorter. The use of
reified constraints allows a systematic translation of the assertions into prop-
agators. The functional programming principles of Oz and the use of data
structures like dictionaries and tuples facilitates this systematic translation.
Using threads, we can interleave constraint propagation and constraint solv-



6.12. Conclusion 179

ing, and also dynamically define our data structures. We never mention the
graphical interface that has been implemented in Oz as well. It gives the
advantage of allowing interaction between the search engine, the data struc-
tures and the graphical interface. The student can easily keep on searching
counter-examples after he receives the feedback from the previous one.

Using another finite domain constraint programming system to implement
our tool would probably be possible, but then, some code parts would prob-
ably be more complex. For instance, cloning a dictionary in Oz is made
by Mozart. It clones the data stucture together with the variables and the
variable bindings, which is not necessary straightforward with some other
languages. However, Oz is a very powerful language, but it is also very diffi-
cult to learn and to deeply understand. Besides, it does not handle negative
values.

We could have built our verification tool using SMV but this option seems
to require interoperability between several systems what we avoid by using
Oz: translating the algorithm with its specification into scripts (one for
each array size, one for each Hoare proposition), checking the scripts with
SMV, and then exploiting the feedbacks given by SMV to provide a clear
feedback to the student. A comparison between the two approaches has
been published in [19] and is described in [22].

We could also have used a SAT Solver [42]. We do not have more deeply
investigated SAT Solver techniques. CBMC [11] is an example of tool that
follows this approach: it unrolls a given ANSI-C program up to a given
bound on each loop and recursion depth. Then, it translates the resulting
transition relation to propositional logic, assuming the given (finite) type
of each variable (e.g. an integer is represented by a 32-bit vector). Next,
it adds the negation of user-defined assertions to the formula. Finally, it
sends the resulting formula to a SAT solver. But this tool does not handle
quantified assertions and precisely, we think that:

• The translation of these assertions with a non determined range would
be heavy (the translation should be static).

• Encoding our assertions would be more complex than the translation
into constraints.

• Similarly, the output of the SAT Solver must be translated into a clear
feedback to the user. Besides, we think that, using a SAT Solver, our
assertion structure is lost and that the feedback analysis becomes more
difficult.



180 Implementation of MPVS

We have seen in this chapter that keeping the structure of our asser-
tions and our code is important to pinpoint the errors which can help
the student to understand his reasoning errors.

Notice that our objective was to write a pedagogical tool, and not to use
the tool giving the most efficient results. The tool certainly gave us very
rapidly good results. However, it could have been interesting to study more
deeply the heuristic distributions to try to choose automatically a set of
representative counter-examples.



Part III

Experimentation

181





Chapter 7

Using MPVS in a
Programming Course

In this thesis, we propose to use a pedagogical software to stimulate the
students to deeply understand and to use the programming method based on
the invariant and decomposition into subproblems. After the evaluation of
some existing tools, we conclude that it is difficult to get an existing software
that is appropriate enough for our pedagogical objectives. Using a technique
of program verification based on finite domain constraint Programming,
we have completely implemented our own verification tool; this tool gives
optimistic results in the sense that it is fully automatic, it only requires the
abilities we want to teach and no extra skills; and it is able to give precise
feedback to the student in moderate time.

In this context, it would be interesting to analyse the impact of such a
tool on the behaviour, the motivation and the understanding of the students
who learn this programming method. We have the opportunity to teach the
”Program Conception Methods” course [39] to the computer science stu-
dents in the third year of their studies. Among these students we note that
there are three different orientations (engineers, computer science bache-
lors, graduate). The goal of this course 1 is to teach the declarative method
to construct programs. Students learn how to construct programs arguing
that it is correct, a priori, by using a logical reasoning. Concretely, a part
of the course was the teaching of the methodology described in this thesis,
i.e., the teaching of the programming method based on loop invariants and
decomposition into subproblems.

During the last two years, we have experimented our tool to support the
teaching of this programming method. The first year, we used the tool

1The professor is Baudouin Le Charlier in the Computing science department INGI of
UCL

183



184 Using MPVS in a Programming Course

during the first four weeks of the course. The second year, the tool was used
after some theoretical lessons about this method and after some exercises
on paper. At each time, we strongly insisted on the fact that the students
have to think about a solution on paper before encoding their solution in
the tool.

In practice, MPVS is available on the students’ machines of the com-
puting science department; besides, students can easily install it on their
own machine. All exercises are carefully prepared, as detailed later in this
chapter, and they are transmitted to the students via the web.

In this chapter, we first develop what we want to evaluate. Then, we
explain the progress of the course and labs for both years. We present the two
different approaches of using our tool and we provide evaluations. Finally,
we conclude with positive points as well as some less positive observations
that we try to explain.

7.1 What Do we want to Evaluate?

We are convinced that an appropriate tool verifying the correctness of
programs written with the method based on the invariant and the decom-
position into subproblems should help and motivate the student. Through
this learning, students should learn many other important notions, they
should learn to think a program in a declarative way, they should learn to
decompose a problem into subproblems, they should understand the role
of a complete specification, they should learn to be rigorous and im-
prove their abstraction level. Let us give a list of questions that we must
look at concerning the goals reached by the tool.

• Does the tool enforce the use of the method?

• Does the tool help to understand the method?

• Does the tool help the students to integrate the level of abstraction
needed to use this tool?

• Does the tool motivate the students to learn and to write formal spec-
ifications?

• Does the tool help the students to understand what a complete speci-
fication means?

• Does the tool enforce rigor?

• Does the tool give more interest in formal proofs and formal methods
in general?



7.2. A First Experimentation 185

• Does the tool charm the students with the witchery of the algorithm
correctness proofs?

• Does the tool convince students to write programs with this method?

Thanks to our observations during the lab sessions and the evaluation
reports provided by the students, we discuss the answers to these questions.

7.2 A First Experimentation

7.2.1 The Course Organisation

We made our first experimentation during the first weeks of the academic
year 2005-2006 (October and November). In this experimentation, the tool
is used in the first part of the course “Program Conception Methods” [39].
The progress of the course is the following. First, we make a demonstration
of the tool to the students, then, during four weeks, exercises with increasing
difficulties are given to them. From a practical point of view, a lab session
is organised every week, as well as a theoretical lesson to review deeply the
exercises made during the lab session. Besides, students are invited to hand
out each week a report with some of their solutions, their self-evaluation
(which results from the use of the tool), and manual proofs combining sym-
bolic execution of the statements and logical reasoning 2.

In this section, we detail the four lab sessions by providing some exercises
submitted to the students (the solution to these exercises are in Appendix
B.5); one will observe that they are carefully prepared: specifications are
precise, formally or informally; the declaration of the data is given, and, for
each variable, we have chosen a judicious finite domain. Let us detail the
four lab sessions.

Lab 1

We begin with an introduction to the tool. The teacher illustrates the
tool with examples fully specified and coded. Students have the possibility
to change some statements or assertions and can understand the counter-
examples. Students get familiar with the tool and the language. Then,
Java versions of the algorithm are given with their informal specifications
(the sequential search example is presented in Figure 7.1); students must
translate them into our tool and check the correctness. Next, we provide
exercises considering algorithms with the same pre and postconditions but
with another loop invariant. Figure 7.2 displays the exercise of the sequential
search exactly as it is given to the students; they must fill in the code. In

2Examples of manual proofs are given in Chapter 2.



186 Using MPVS in a Programming Course

this exercise, the invariant does not involve any Boolean variable contrary
to the Java version given in Figure 7.1.

These exercises may already highlight the students on the method princi-
ples. At this lab session, many students did not understand the role of the
invariant, and filled in the code without looking at the invariant. We ob-
served students that were not able to understand by themselves the counter-
examples.

Lab 2

The second lab session involves a bit more complicated exercises com-
pletely specified (with a given loop invariant), and without any code. The
students are asked to write the code based on these specifications. One of
these exercises is the Belgian flag algorithm which is presented in Figure 7.3.

Lab 3

The third lab session includes exercises specified (without any given loop
invariant). The students have to choose an invariant and then fill in the
statements. One of the exercises is the algorithm finding the number of
values common to two strictly sorted arrays (see Figure 7.4).

Confronted with these exercises, the students have difficulties to formalise
their invariant, they should understand the efficiency of a reasoning on pic-
ture before formalising; they also notice that it is not simple to have a
complete invariant and why it needs to be complete. Notice that since the
students are free to choose their invariant, they also have to choose (to
declare) their auxiliary variables.

Lab 4

Finally, during the fourth session, the students have to construct more
complex algorithms requiring a decomposition into subproblems. Specifica-
tions are often given informally but the decomposition is completely given
to the students; the student just needs to implement each subproblem of the
decomposition.

Figures 7.5, 7.6 and 7.7 display the three subproblems composing the
algorithm computing the number of occurrences of a value in a sorted array
in log(n) time using binary searches. This exercise shows the importance of
writing precise pre and postconditions in subproblems, even informally.



7.2. A First Experimentation 187

class rechSeqDG

{

static boolean find(int x, int[] a)

/* Pre : a != null

Post : the array a is unchanged

Result : true if an element of a is equals to x ;

false otherwise

*/

{

int i = a.length ;

boolean present = false ;

/* Invariant :

---------

- 0 <= i <= a.length ;

- present = true if and only if the subarray a[i .. a.length-1]

contains an element equals to x.

Variant : i

------- */

while (i != 0 & !present)

{ i-- ; present = (a[i] == x) ; }

return present ;

}

public static void main(String[] args)

{

System.out.println(find(0, new int[]{})) ;

System.out.println(find(0, new int[]{0})) ;

System.out.println(find(0, new int[]{1})) ;

System.out.println(find(0, new int[]{0, 1})) ;

System.out.println(find(0, new int[]{1, 1})) ;

System.out.println(find(0, new int[]{1, 0})) ;

System.out.println(find(0, new int[]{0, 0})) ;

}

}

Figure 7.1: A Java version of the sequential search with its informal speci-
fication and invariant



188 Using MPVS in a Programming Course

Data: const n <= 5 ;

const minv = 0 ;

const maxv = 2 ;

tab a : array [1..n] of minv .. maxv ;

var x : minv .. maxv ;

Auxiliary_variables:

var i : 0 .. maxint ;

Result_variables:

var present : boolean ;

Precondition: initialised(x) & initialised(1, n : a)

Postcondition: unchanged(x) & unchanged(1, n : a) &&

(present <=> (exist i : 1 <= i <= n : a[i] = x))

Invariant: unchanged(x) & unchanged(1, n : a) & 0 <= i & i <= n

&& (forall j : 1 <= j <= i : a[j] != x)

Init:

Iter:

Clot:

Halting_condition:

Variant:

Figure 7.2: The sequential search exercise: the code is to fill in



7.2. A First Experimentation 189

Data: const n <= 5 ;

const noir = 7 ;

const jaune = 8 ;

const rouge = 9 ;

tab a : array[1 .. n] of noir .. rouge ;

Auxiliary_variables:

var in : 0 .. maxint ;

var ij : 0 .. maxint ;

var ir : 0 .. maxint ;

var x : noir .. rouge ;

Precondition: initialised(1, n : a)

Postcondition: permut(a, a_0, 1, n, 1, n) &

(exist i : 0 <= i <= n :

(exist j : i <= j <= n :

(forall kn : 1 <= kn <= i : a[kn] = noir)

& (forall kj : i + 1 <= kj <= j : a[kj] = jaune)

& (forall kr : j + 1 <= kr <= n : a[kr] = rouge)

))

Invariant: 0 <= in & in <= ij & ij <= ir & ir <= n &&

permut(a, a_0, 1, ir, 1, ir) & unchanged(ir + 1, n : a) &

(forall kn : 1 <= kn <= in : a[kn] = noir) &

(forall kj : in + 1 <= kj <= ij : a[kj] = jaune) &

(forall kr : ij + 1 <= kr <= ir : a[kr] = rouge)

Init:

Iter:

Clot:

Halting_condition:

Variant:

Figure 7.3: The Belgian flag exercise: the code is to fill in



190 Using MPVS in a Programming Course

Data:

const m <= 3 ;

const n <= 3 ;

const minv = 45 ;

const maxv = 51 ;

tab a : array [1 .. m] of minv .. maxv ;

tab b : array [1 .. n] of minv .. maxv ;

Auxiliary_variables:

Result_variables:

var k : 0 .. maxint ;

Precondition:

(forall i : 1 <= i <= m - 1 : a[i] < a[i + 1]) &

(forall i : 1 <= i <= n - 1 : b[i] < b[i + 1])

Postcondition:

unchanged(1, m : a) & unchanged(1, n : b) &

k = (# v : minv <= v <= maxv :

(exist i : 1 <= i <= m : a[i] = v) &

(exist j : 1 <= j <= n : b[j] = v)

)

Invariant:

Init:

Iter:

Clot:

Halting_condition:

Variant:

Figure 7.4: The number of values common to two strictly sorted arrays: the
invariant and the code are to fill in



7.2. A First Experimentation 191

Data:

const n <= 5 ;

const minv = 97 ;

const maxv = 99 ;

tab a : array [1 .. n] of minv .. maxv ;

var v : minv .. maxv ;

Auxiliary_variables:

var g : 0 .. n ;

var d : 0 .. n ;

Result_variables:

var nv : 0 .. n ; // number of occurrences of v in a.

Precondition:

// a is sorted (not necessarily strictly) ;

// v est initialised.

Postcondition:

// a and v are unchanged ;

// nv is the number of occurrences of v in a.

Instr:

Figure 7.5: The number of occurrences of the value v in the array a in log(n)
time: the specification and the code are to fill in



192 Using MPVS in a Programming Course

Data:

const n <= 5 ;

const minv = 97 ;

const maxv = 99 ;

tab a : array [1 .. n] of minv .. maxv ;

var v : minv .. maxv ;

Auxiliary_variables:

Result_variables:

var d : 0 .. n ;

Precondition:

// see main subproblem

Postcondition:

// a et v are unchanged ;

// d is the index of the last occurrence of v in a

// (if it exists) ; otherwise, d is the index of the last element

// in a that is smaller than v (if there is one) ;

// otherwise ... (what is logical)

Invariant:

Init:

Iter:

Clot:

Halting_condition:

Variant:

Figure 7.6: Subproblem SP1 using a binary search to compute the number
of occurrences of v in a in log(n) time: specifications, invariant and code
are to fill in



7.2. A First Experimentation 193

Data:

const n <= 5 ;

const minv = 97 ;

const maxv = 99 ;

tab a : array [1 .. n] of minv .. maxv ;

var v : minv .. maxv ;

Auxiliary_variables:

Result_variables:

var g : 0 .. n ;

Precondition: initialised(v) &

// see main subproblem

Postcondition:

// g is the index of the last element of a

// small than v (if it exists) ;

// otherwise ... (what is logical)

Invariant:

Init:

Iter:

Clot:

Halting_condition:

Variant:

Figure 7.7: Subproblem SP2 using a binary search to compute the number
of occurrences of v in a in log(n) time: specifications, invariant and code
are to fill in



194 Using MPVS in a Programming Course

7.2.2 Evaluation

In a general way, we have noticed a good motivation among the students:
the number of exercises handed out was way over our expectations and with
much higher quality than in the previous years, when students had to solve
exercises with pen and paper.

Another positive experience is the direct dialog between the tool and the
students. Is seems very interesting, as it directly gives a feedback to the
students and motivates them to improve their program (and specifications),
and to keep trying to do it better, while the classical approach involves only
one evaluation by the teacher. More specifically, the misunderstanding of
the method appears for many students in the first lab session. They do
not focus on the invariant to build the code of the sequential search; with
the tool, by analysing the counter-examples, students finally understand
problems that they could even not imagine when they were not using the
tool.

Nevertheless, students keep bad habits, they often ignore the error mes-
sages and the counter-example: it doesn’t work, why? and despite our efforts,
students have many difficulties to take a sheet of paper and a pen to think
over, before encoding their solution in the tool. As a consequence, the tool
may be used with an approach similar to the process of “fixing” bugs in
programs by trial and error.

7.3 A Second Experimentation

We made another experimentation in the middle of the academic year
2006-2007 (March and April). In this second experimentation, we have
proceeded in a different way; instead of starting with the tool, we started
with more theory and exercises on paper. So, the tool is used when students
have (at least in theory) a deeper understanding of the methodology. Let
us explain in more detail the organisation of the course before and during
the tool experimentation.

7.3.1 The Course Organisation

The first lesson is devoted to discuss some questions mentioned in the
paper [40]: we explain the meaning of a logical reasoning, of an operational
reasoning and the ambiguity of the notion of formal reasoning. Then, during
two lessons, the teacher constructs the algorithm to find the next combina-
tion in the lexicographic order. It is a nice and complex example where the
decomposition into subproblems and good specifications make the elabora-
tion easier. In parallel, during lab sessions, we focus on both formal and



7.3. A Second Experimentation 195

informal specifications (Most teachers consider that students are able to
formalise, unfortunately many students have difficulties to formalise, even
in the third year of their studies), and we insist on the role of complete
specifications; we make some exercises of decomposing into subproblems,
we construct some algorithms, and prove them manually using symbolic ex-
ecution. Afterwards, a first project is given to the students : to construct
in Java an efficient algorithm finding the greatest value corresponding to
the sum of a non empty rectangular subarray of a two-dimensional array
a[1..m][1..n]; the goal is not to have a trivial algorithm with a complexity
O(m3n3), but with a complexity O(m2n) or possibly even better. The main
operational steps of the algorithm are introduced by the teacher. We do not
detail this exercise because a very similar project is completely explained
later in this section. For this exercise, only 11 students out of 54 succeeded
completely, most of the other students had problems of capacity overflow.
A description of the tests and the students results are in Appendix B.4.

Then follows a four week training period with the tool and a project in
group to reinforce what was learned in the course. The four lab sessions are
similar to those given the previous year and the project is detailed below.

7.3.2 The Project

In this section, we describe the project. Then, by showing the way the
algorithm works, we divise a decomposition into subproblem, we discuss a
solution and, thanks to the students’s questions and the reports that stu-
dents have handed out, we evaluate the impact of the tool on what the
students have learned.

7.3.2.1 Description of the project

The goal of the project is to construct and verify with our tool a program
specified as follows:

Data: const n : ...;

const m : ...;

const minv = ... ;

const maxv = ... ;

tab a : array [1..m][1..n] of minv .. maxv ;

var S : 0 .. m * n * maxv;

Result_variables:

var present : boolean ;

Precondition:

initialised(1,n*m:a) & initialised(S)



196 Using MPVS in a Programming Course

Postcondition:

unchanged(a) & unchanged(S) &&

(present <=> (exist i : 1 <= i <= m : (exist j : i <= j <= m :

(exist k : 1 <= k <= n : (exist l : k <= l <= n :

S = (sum ij : i <= ij <= j :

(sum kl : k <= kl <= l : a[ij][kl]))

)))))

The specification says that present is set to true if there exists a non empty
subarray of the two-dimensional array a for which the sum of the values of
all of its elements is equal to S; the value false is assigned otherwise.

For example, present is set to true for n = 3, m = 3, S = 103 and if the
array a is the following:

1 n

a : 1 12 23 56
6 61 17

m 97 23 2

because we have a subarray (represented in bold) that has a sum equal to
103.

Notice that the size of the data is not fixed, the students can choose for
preliminary tests; the teacher will provide domains later. Since the auto-
matic tool does not manage two-dimensional arrays, the student needs to
simulate the two-dimensional array a[1..m][1..n] by an array a[1..n*m].
The variable a[i][k] is represented by a[n*(i-1)+k].

7.3.2.2 Motivation of the project

In the previous project, the students were asked to follow rigorously the
structured programming method that they had learned. The test results,
displayed in Appendix B.4, show that most students had a wrong algorithm.
By giving the students the opportunity to insert their algorithms into the
tool, the students could have a precise feedback about the correctness of
their algorithms following the structured programming method. Besides,
the use of this method could be enforced for students that did not correctly
follow it.

Since the tool does not manage negative values, the algorithm finding the
greatest value corresponding to the sum of a non empty rectangular subarray
of a two-dimensional array cannot be easily adapted. It is the reason why



7.3. A Second Experimentation 197

the project has been a little modified. The difficulties of both projects are
nevertheless equivalent.

7.3.2.3 Steps of the project

The steps to be followed are precisely provided by the teacher:

Reasoning with a pen and a sheet of paper Together, students must
decompose the problem into subproblems; these must be described in
a precise way.

Then, each student chooses one subproblem to solve: he finds the
formal pre/post conditions of his subproblem and, if necessary, he
completes/modifies the decomposition into subproblems with his co-
workers.

Next, each student manually constructs individually a solution of his
problem and makes a correctness proof using symbolic execution.

Using the tool Then, the student can encode his algorithm in the tool;
he may discover errors and, in this case, he analyses the counter-
examples, reasons again on his algorithm, modifies it and concludes
about his learning.

Handing out a report Each group must hand out a project report; indi-
vidually, each student has to give a report concerning his subproblem
solving. He is asked to mention the difficulties he has met and to
explain the role of the automatic tool in the resolution of the problem.

7.3.2.4 The decomposition into subproblems

To have in mind the way this algorithm works, we have a look on the exam-
ple:

• At the beginning, the analysed part of the subarray is empty, no sub-
array of sum S is found.

1 n

a : 1 12 23 56
6 61 17

m 97 23 2

• Then, we consider the first line of the array and we search for a sub-
array of sum S. The search corresponds to find a subarray of sum S
in a one-dimensional array; if we find it, we stop the algorithm; in the
example, there is no subarray of sum S in line 1.



198 Using MPVS in a Programming Course

1 n

a : 1 12 23 56
6 61 17

m 97 23 2

• Next, we analyse all the subarrays for which the last line is on line 2,
i.e: we search for a subarray of sum S in line 2; then, we search for a
subarray of height 2, for which the sum is S, on lines 1 and 2.

In the first two lines of the array a, no subarray of sum S is found.

1 n

a : 1 12 23 56
6 61 17

m 97 23 2

• Finally, we analyse all the subarrays for which the last line is on line
3.

On lines 2 and 3, we find a subarray for which the sum is S. We can
stop the algorithm and set present to true.

1 n

a : 1 12 23 56
6 61 17

m 97 23 2

Defining the subproblem SP1 As the step between each state of the
simulation is not simple, we define a subproblem SP1 : the goal of SP1 is to
update the Boolean present if there is a subarray of sum S in the subarray
a[1..j][1..n] for which the last line is on line j. Operationally, SP1 searches
for a one-dimensional subarray of sum S in line j; if it does not find it, it
searches for a subarray of sum S and height 2 in the subarray a[j−1..j][1..n];
etc. The subproblem stops when it has found a subarray of sum S or when
it has analysed all the possibilities in the subarray a[1..j][1..n]: we have
an index i to determine the maximal height of the subarrays that we have
analysed:



7.3. A Second Experimentation 199

1 n

a : 1
i

j

m

c :

Decomposing SP1 The iteration of this problem is not simple: it searches
for a subarray of sum S for which the first line is on line i and the last line is
on line j. To perform it, the technique consists in summing the elements of
each column of the array a[i..j][1..n] in an auxiliary array c[1..n]. Then, the
goal reduces to search for a subarray of sum S in the one-dimensional array
c. For efficiency reasons, we keep at each iteration the auxiliary array c that
contains the sum of the values of each column of a[i..j][1..n]: since the next
iteration considers the subarray increased by one line, we can simply add
the new added line in c.

SP1 calls three subproblems:

SP2 a subproblem to initialise c[1..n] with the line j of a[1..m][1..n];

SP3 a subproblem to update the array c[1..n] with the sum of the elements
of line i of a[1..m][1..n] and the elements of the initial c;

SP4 a subproblem to search for a subarray of sum S in the one-dimensional
array, c[1..n].

In this way, considering that SP2 has complexity O(n), SP3 has the com-
plexity O(n), if we have an algorithm SP4 in O(n), in the worst case, the
main algorithm calls 1 time SP2, m − 1 times SP3 and m times SP4. We
have the required complexity : O(m.(n + (m − 1)n + nm)) = O(m2n).

This decomposition was followed by most groups since it should have
been similar to the decomposition of the previous project, and besides, the
operational point of view of the algorithm of the previous project had been
introduced by the teacher.

Specifications of subproblems Students are asked to write precise spec-
ifications for each subproblem, no matter the formalism, they must just be
precise and complete. Then, they have to formalise it into the language of
the automatic tool. In a general way, we can observe that specifications



200 Using MPVS in a Programming Course

written in the assertion language of the tool are more precise and more
complete.

Here follows our decomposition into subproblems and their specifications.

SP1: Pre: a[1..m][1..n], S initialised and 1 ≤ j ≤ m

Post: a, S, j unchanged and

present ⇔ (∃ i1 : 1 ≤ i1 ≤ j : (∃k1, l1 : 1 ≤ k1 ≤ l1 ≤ n :

S =
∑

i1≤ij≤j

∑

k1≤kl≤l1

a[ij][kl]))

SP2: Pre: a[1..m][1..n], j initialised and 1 ≤ j ≤ m

Post: a, j unchanged and

(∀k : 1 ≤ k ≤ n : c[k] = a[j][k])

SP3: Pre: a[1..m][1..n], c[1..n], i initialised and 1 ≤ i ≤ m

∀k : 1 ≤ k ≤ n : c[k] + a[i][k] ≤ maxc

where maxc is the greatest possible value of c;

Post: a, i unchanged and

(∀k : 1 ≤ k ≤ n : c[k] = c0[k] + a[i][k])

SP4: Pre: c[1..n], S initialised

Post: c, S unchanged and

present ⇔ (∃k, l : 1 ≤ k ≤ l ≤ n : S =
∑

k≤kl≤l

c[kl])

To discuss the impact of the tool on the learning of students, we detail
the construction of three subproblems. First, we analyse the subproblem
SP4 that searches for a subarray of sum S in a one-dimensional array; the
design of this algorithm is not simple and requires to master the invariant
method carefully. Then, we study the subproblem SP3 that adds the line
a[i][1..n], componentwize, to the array c[1..n]; this algorithm is simpler but
needs to be carefully specified to prove that no overflow can occur. Finally,
we detail the subproblem SP1 that searches in the array a[1..j][1..n] for a
subarray of sum S for which the last line is on line j; this problem calls
different subproblems and uses the auxiliary array c[1..n], which may be the
source of overflow problems.



7.3. A Second Experimentation 201

7.3.2.5 Searching for a subarray of sum S in a one-dimensional
array

Here is a first glimpse:

1 k l n

c :

︸ ︷︷ ︸

Sl
Operationally, at each iteration, the algorithm increments the index l and
updates Sl; if Sl has become greater that S, the index k is increased until
Sl ≤ S.

Invariant There are two ways to solve this problem: with two loops or
one loop. Our solution consists of a decomposition into two subproblems
(two loops): the main problem increments l; the subproblem increments k.
So, in our implementation, after each iteration, Sl, the sum of the elements
of c[k..l], is the longest subarray terminating at index l such that Sl ≤ S;
besides, there are no subarray of sum S in the subarray c[1..l− 1]. A formal
version of this invariant is :

c, S unchanged and

1 ≤ k ≤ l + 1 ≤ n + 1 and

(∀k1, l1 : 1 ≤ k1 ≤ l1 < l : S 6=
∑

k1≤kl≤l1

c[kl]) and

Sl =
∑

k≤kl≤l

c[kl] and

Sl ≤ S and

(∀k1 : 1 ≤ k1 < k :
∑

k1≤kl≤l

c[kl]) > S)

Derivation of the code From this invariant, we can derive the code:

• Before any iteration, we have not yet analysed anything in the array,
[k..l] is an empty subarray at the beginning of the array: [k..l] = [1..0]
and Sl = 0:

The initialisation is

k := 1 ; l := 0 ; Sl := 0

• In the iteration, we increment l of 1 and we add c[l] in Sl.

Then, we call the subproblem in charge of reducing c[k..l] if Sl > S;



202 Using MPVS in a Programming Course

we detail the specification of this subproblem (named SP5) just below;
we easily see that the SP5 precondition is satisfied.

The iteration is

l := l+1 ; Sl := Sl + c[l] ; SP5

• The algorithm stops when a non empty subarray of sum S is found
(Sl == S & k < l) or when we reach the end on the array (l = n).

The halting condition is

Sl == S & k < l | l = n

• In the closure, according to the reason why the halting condition holds,
we initialise the result Boolean variable present:

present := Sl = s & k < l

Specification of the subproblem SP5 The goal of this subproblem is to
reduce c[k..l] by increasing k such that Sl, the sum of the elements of c[k..l]
becomes smaller than or equal to S: l remains unchanged and k is increased
but importantly, c[k..l] is the greatest subarray terminating at index l such
that Sl ≤ S; in other words, k must be the smallest index such that Sl ≤ S.
A formal specification is the following:

SP5: Pre: c[1..n], S initialised and

1 ≤ k ≤ l ≤ n and Sl =
∑

k≤k1≤l

c[k1]

Post: c, S, l unchanged and

k0 ≤ k and k ≤ l + 1 and

Sl ≤ S and

Sl =
∑

k≤k1≤l

c[k1] and

(∀k1 : k0 ≤ k1 < k :
∑

k1≤k2≤l

c[k2] > S)

The translation in the language of the tool is provided in Figures 7.8 and
7.9.

Analysing students’ solutions

Decomposition into subproblems Few groups have decomposed the
subproblem SP4; but the groups who did it, did not have an ideal specifica-
tion for the subproblem SP5.



7.3. A Second Experimentation 203

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 0 ;

const maxv = 1 ;

tab c : array[1 .. n] of minv .. m * maxv ;

var S : 0 .. n * m * maxv ;

Auxiliary_variables:

var k : 1 .. n + 1 ;

var l : 0 .. n ;

var Sl : 0 .. m * n * maxv ;

Result_variables:

var present : boolean ;

Precondition: initialised(1 , n : c) & initialised(S)

Postcondition: unchanged(1 , n : c) & unchanged(S) &&

(present <=> (exist k : 1 <= k <= n :

(exist l : k <= l <= n :

S = (sum kl : k <= kl <= l : c[kl])

)))

Invariant: unchanged(1 , n : c) & unchanged(S) &

1<= k & k <= l + 1 & l <= n &&

(forall k1 : 1 <= k1 <= l - 1 :

(forall l1 : k1 <= l1 <= l - 1 :

S != (sum kl : k1 <= kl <= l1 : c[kl]))) &

Sl = (sum kl : k <= kl <= l : c[kl]) &

Sl <= S &

(forall k1 : 1 <= k1 <= k - 1 : (sum kl : k1 <= kl <= l : c[kl]) > S)

Init: k := 1 ; l := 0 ; Sl := 0

Iter: l := l + 1 ;

Sl := Sl + c[l] ;

sp(SP5.in)

Clot: present := (Sl = S) & (k <= l)

Halting_condition: ((Sl = S) & (k <= l)) | l = n

Variant: n - l

Figure 7.8: SP4: searching for a subarray of sum S



204 Using MPVS in a Programming Course

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 0;

const maxv = 1;

tab c : array[1 .. n] of minv .. m * maxv ;

var S : 0 .. m * n * maxv ;

var k : 1 .. n + 1;

var l : 0 .. n ;

var Sl : 0 .. m * n * maxv ;

Precondition: initialised(1 , n : c) & initialised (S) &

k <= l &&

Sl = (sum k1 : k <= k1 <= l : c[k1])

Postcondition: unchanged(1, n : c) & unchanged(S) & unchanged(l) &

k_0 <= k & k <= l + 1 &

Sl <= S &&

Sl = (sum k1 : k <= k1 <= l : c[k1])

&

(forall k1 : k_0 <= k1 <= k - 1 :

(sum k2 : k1 <= k2 <= l : c[k2]) > S)

Invariant: unchanged(1, n : c) & unchanged(S) & unchanged(l) &

k_0 <= k & k <= l + 1 &&

Sl = (sum k1 : k <= k1 <= l : c[k1]) &

(forall k1 : k_0 <= k1 <= k - 1 :

(sum k2 : k1 <= k2 <= l : c[k2]) > S)

Init: skip

Iter: Sl := Sl - c[k] ; k := k + 1

Clot: skip

Halting_condition: Sl <= S

Variant: (l + 1) - k

Figure 7.9: SP5: reducing c[k..l] by increasing k such that Sl becomes
smaller than or equal to S



7.3. A Second Experimentation 205

• The trend is to make too strong preconditions: typically, it is not
necessary to say that there are no subarray of sum S in c[1..l − 1]. It
is always better to be as general as possible. This remark is subjective
so that the tool is not able to give any feedback about it.

• The students made too weak postconditions forgetting to give some
constraints on the resulting Sl. A too weak postcondition of a sub-
problem is systematically detected when we automatically verify the
subproblem calling it.

Too weak invariants In their first version, many students have chosen a
too weak invariant, they have forgotten important constraints on Sl: some
invariants were even limited to the following constraints: 1 ≤ k ≤ l ≤ n

and Sl =
∑

k≤k1≤l

c[k1]. The tool has shown counter-examples, and students

have modified their invariants. Most of the groups have not decomposed
the subproblem SP4: one of their solutions is depicted in Figure 7.10. The
invariant in this context is quite complex: it includes two parts of reasoning
that, with our solution, we have thought in two times. Indeed, we have two
subproblems and so two invariants. For some students, it is after a lot of
iterations that they have found a correct invariant. Notice that the halting
condition of this version is not simple.

Too complicated assertions Through the several students reports (espe-
cially for these subproblems SP4 and SP5), we can observe correct programs
but with unreadable/non adapted/redundant specifications. Such compli-
cated assertions are obtained because students modify their algorithm and
their specifications iteratively until they are found correct by the tool. Here
is an example of a bad assertion in a precondition for SP5:

Pre:

...

(forall x: 1 <= x <= k-1: (Sl + (sum y: x <= y <= k-1: c[y]) > Sl))

...

which is equivalent to (k<=1 || c[k-1]>0). It does not seem that the
user has written this non natural assertion at the first shot. In fact, this
constraint exists because of a lack of generality in the specification of the
subproblem: ideally, we should not mind about the subarray c[1..k − 1] in
this subproblem.
The following assertion occurs in the postcondition of another version of
SP5:

...

((Sl <= S &&



206 Using MPVS in a Programming Course

(forall a : k_0 <= a <= l : ((sum s : a <= s <= l : c[s]) <= S)

<=> (k <= a)))

|

((k = l) &&

(forall x: k_0 <= x <= k : (sum s : x <= s <= l : c[s]) > S)))

The first part of the disjunction says that k is the smallest index in c[k0..l]

such that
∑

k≤k1≤l

c[k1] ≤ S if it exists, the second part of the disjunction is

equivalent to (k == l && c[l] > S): it corresponds to the particular case

where there is no c[k..l] such that
∑

k≤k1≤l

c[k1] ≤ S; in this case, k = l. This

postcondition is not nice, we could avoid the particular case and have one
general case (considering that the result array c[k..l] can be empty).

We conclude that it is not always an advantage that the tool admits and
understands any specification even if it is trived or cryptic, we observe a
drawback of the tool: it does not enforce simplicity.

Reasoning errors The postcondition of the problem SP4 must talk about
a non empty subarray of sum S. Many students made the mistake of find-
ing an empty subarray when S = 0. Since the postcondition is generally
correctly formalised:
present ⇔

(∃k : 1 ≤ k ≤ n : (∃l : k ≤ l ≤ n : S =
∑

k≤kl≤l

c[kl])),

counter-examples were provided by the tool and students have had the op-
portunity to change their code. Notice that the postcondition of this sub-
problem is generally correct; otherwise, it is detected during the verification
of the calling subproblem (SP1). Importantly, to get a feedback about this
error, the domain of the variable S must include the value 0.

7.3.2.6 Adding a[i][1..n] to c[1..n]

SP3: Pre: a[1..m][1..n], c[1..n], i initialised and 1 ≤ i ≤ m

∀k : 1 ≤ k ≤ n : c[k] + a[i][k] ≤ maxc

Post: a, i unchanged and

(∀k : 1 ≤ k ≤ n : c[k] = c0[k] + a[i][k])

invariant:

a, i unchanged

1 ≤ k ≤ n + 1

c[k..n] unchanged

(∀k1 : 1 ≤ k1 ≤ k − 1 : c[k1] = c0[k1] + a[i][k1])



7.3. A Second Experimentation 207

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 0 ;

const maxv = 2 ;

tab b : array [1 .. n] of minv .. m*maxv ;

var S : 0 .. m * n * maxv;

Auxiliary_variables:

var k : 1 .. n+1 ;

var l : 1 .. n+1 ;

var Skl : 0 .. m * n * maxv ;

Result_variables:

var present : boolean;

Precondition:

initialised(1, n : b) & initialised(S)

Postcondition:

unchanged(1, n : b) & unchanged(S) &&

(present <=> (exist k : 1 <= k <= n : (exist l : k <= l <= n :

S = (sum kl : k <= kl <= l : b[kl]) )) )

Invariant:

unchanged(1, n : b) & unchanged(S) & 1 <= k & k <= l & l <= n +1 &&

!(exist p : 1 <= p <= k-1 : (exist q : p <= q <= n :

S = (sum pq : p <= pq <= q : b[pq]) )) &

!(exist q : 1 <= q <= l-2 : (exist p : 1 <= p <= q :

S = (sum pq : p <= pq <= q : b[pq]) )) &

Skl = (sum kl : k <= kl <= l-1 : b[kl]) &

(present <=> k != l & S = Skl)

Init: k := 1 ; l := 1 ; Skl := 0 ; present := false

Iter:

if (Skl > S) then

Skl := Skl - b[k] ; k := k+1

else

Skl := Skl + b[l] ; l := l+1

end ;

if (k != l && Skl = S) then present := true else present := false end

Clot: skip

Halting_condition: (present) | (l=n+1 & (k=n+1 | Skl < S))

Variant: 2*n + 2 - k - l

Figure 7.10: A student version of the algorithm searching for a subarray of
sum S



208 Using MPVS in a Programming Course

• the initialisation is:
k := 1

• the halting condition is k = n + 1

• the iteration is
c[k] := c[k] + a[i][k] ; k := k + 1

We are sure there are no out of bound of arrays since 1 ≤ k ≤ n (and
1 ≤ i ≤ m) when we make an iteration and we can guarantee that
c[k]+a[i][k] can be assigned to c[k] because the precondition expresses
it explicitly.

This algorithm needs to be carefully specified to prove that no overflow can
occur; moreover, most students did not pay attention to the overflow risk
in the first project. Students have not thought that adding the elements of
each column of the array a in an auxiliary array c[1..n] could be source of
error if the domain of the elements of c is not large enough to allow these
additions.

The complete solution of this subproblem is given in figure 7.11.

Analysing students’ solutions

Badly defined statements Most students have met the overflow prob-
lem; it has been detected by the tool. The precondition to add to prevent
the overflow error has an impact on the choice of the domains of one of the
global variables of the set of subproblems: the domain of c must be at least
[0..maxv ∗ m]: we detail this choice in the discussion of SP1, which calls
iteratively SP3.

Too strong preconditions We notice that most students have written
the following assertion to guarantee no overflow:

∀k : 1 ≤ k ≤ n : c[k] ≤ maxv ∗ (m − 1)

Considering that each subproblem must be as general as possible, this pre-
condition is too strong.

Inappropriate data domains Some students have not chosen judicious
data domains: for this example, it is important that the constraint (∀k : 1 ≤
k ≤ n : c[k] + a[i][k] ≤ maxvc) does not reduce too much the set of possible
data satisfying the precondition. Indeed, if the set of possible data is too
small, it cannot be representative to have confidence in the tool feedback,
because it may miss the discovery of counter-examples, testifying a false
correctness of the algorithm.



7.3. A Second Experimentation 209

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 45 ;

const maxv = 47 ;

tab a : array [1 .. m][ 1.. n] of minv .. maxv ;

var i : 0 .. m ;

tab c : array[1 .. n] of minv .. m * maxv ;

Auxiliary_variables:

var k : 0 .. maxint ;

Result_variables:

Precondition: initialised(a) & 1 <= i & i <= m &&

(forall k : 1 <= k <= n : c[k] + a[i][k] <= m * maxv)

Postcondition: unchanged(a) & unchanged(i) &&

(forall k : 1 <= k <= n : c[k] = c_0[k] + a[i][k])

Invariant: unchanged(a) & unchanged(i) 1 <= k & k <=n + 1 &&

(forall k1 : 1 <= k1 <= k-1 : c[k1] = c_0[k1] + a[i][k1])

& unchanged (k , n : c)

Init: k := 1

Iter: c[k] := c[k] + a[i][k] ;

k : = k + 1

Clot: skip

Halting_condition: k = n + 1

Variant: n + 1 - k

Figure 7.11: SP3: adding a[i][1..n] to c[1..n]



210 Using MPVS in a Programming Course

Too weak invariants Some students have forgotten to say that c[k..n] is
unchanged; since the tool has given counter-examples, they have improved
their invariant. Notice that very few students use the hypothesis that c[k..n]
is unchanged to prove the correctness of {Inv and not H} Iter {Inv}, using
symbolic execution. Thanks to the tool, they manage to write a correct
invariant but it did not help them to actually understand the necessity of
the assertion required by the tool.

Redundant assertions Some students have expressed in their invariant
that the array c[k..n] is unchanged and have also recalled the precondition
on this array c.

7.3.2.7 Searching for a subarray of sum S in a[1..j][1..n] such
that last line is on line j

To decompose the problem into subproblems, we already had an idea of
the general situation which is true before and after every iteration. For this
subproblem, we need an auxiliary array, say c[1..n], that allows us to reduce
the problem of finding a subarray of sum S in a two-dimensional array to
a one-dimensional problem. At each iteration, this subarray contains one
more line.

The SP1 invariant is:
1 n

a : 1
i

j

m

c :

a is unchanged

j is unchanged

1 ≤ i ≤ j

present is true if a subarray of sum S exists in the subarray a[i..j][1..m];

present is false otherwise.

(∀ k : 1 ≤ k ≤ n : c[k] =
∑

i≤l≤j

a[l][k])

• If we initialise the auxiliary variable i with j, corresponding to the first
line to be analysed; if we initialise the array c[1..n] with the values of
line i; if we make a first search in c[1..n] for a subarray of sum S
(calling SP4 which update the Boolean variable present according to
its SP4 postcondition), the invariant holds.



7.3. A Second Experimentation 211

So, the initialisation is
i := j ; SP2 ; SP4 ;

• We stop the search when we have analysed the whole array a[1..j][1..n]
(i.e., i = 1) or when a subarray of sum S is found (i.e., present = true).

The halting condition is
present | i = 1

• We first increase the height of the subarray that we search by decre-
menting i,

we get 1 ≤ i ≤ m.

We add the line i in c[1..n] (we focus on the SP3 precondition satis-
faction in the pedagogical observations).

The resulting array c contains the sum (column after column) of the
lines of a[i..j][1..n].

We search for a subarray of sum S in c;

present is updated accordingly.

The iteration is
i := i - 1 ; SP3 ; SP4

The version in the tool format is in Figure 7.12.

Analysing students’ solutions

The choice of the domain of c[1..n] Intuitively, thinking that we have
to add maximum m lines of an array a[1..m][1..n] for which the maximum
value of the elements is maxv, the greatest value of the elements of c is at
least maxvc = m ∗ maxv. Notice that this problem was not considered by
most students when they have made the Java project that also needed an
auxiliary array containing a maximum of m lines of integers. Thanks to the
tool feedback, the students have improved their solution.

More formally, let us focus on a part of SP3 precondition:

∀k : 1 ≤ k ≤ n : c[k] + a[i][k] ≤ maxvc

The SP1 invariant says that

1 ≤ j ≤ m and
1 < i ≤ m and

(∀ k : 1 ≤ k ≤ n : c[k] =
∑

i≤l≤j

a[l][k])



212 Using MPVS in a Programming Course

Considering that this invariant holds, it implies that

(∀ k : 1 ≤ k ≤ n : c[k] ≤
∑

2≤l≤m

maxv)

i.e., (∀ k : 1 ≤ k ≤ n : c[k] ≤ (m − 1) ∗ maxv)
which implies that (∀ k : 1 ≤ k ≤ n : c[k]+a[i][k] ≤ (m−1)∗maxv+maxv)

To guarantee that precondition ∀k : 1 ≤ k ≤ n : c[k] + a[i][k] ≤ maxvc is
true when we call SP3, maxvc must be at least equal to m ∗ maxv.

Calls of subproblems Because this problem calls subproblems, non com-
plete postconditions of the subproblems called have been discovered during
the verification of this problem. The most frequent error was to omit to say
that a variable was unchanged.

We do not construct the simple subproblem SP2 that initialises the array
c[1..n] with a line i of the array a[1..m][1..n]; a complete version is in Figure
7.13. The main subproblem has been analysed during the decomposition
into subproblems; we provide a complete version in Figure 7.14.

7.3.2.8 Putting everything together

After having distributed the different subproblems and shared the global
variables and the formal specifications of subproblems, each student has built
his algorithm individually. Notice that the tool allows that a subproblem
is only specified (declaration-precondition-postcondition); in this way the
students are able to use the specification of a called subproblem even if it is
not solved yet.

For each subproblem, individually, the student has first chosen by himself
appropriate variable domains. When the group has put everything together,
the students had to fix the variable domains in a global way. Theoretically,
the sharing should not require effort if the preparation of the work, i.e., the
decomposition into subproblems and the formalisation of the specifications
was correctly done.

7.3.2.9 Evaluation of the project

Good reports In general, we are happy with the interest of the students
in this project. We have received forty group reports; only one group has
given up the project. The work was globally done conscientiously; most
students have reached a solution, even if some students have spent a lot of
time to reach it.



7.3. A Second Experimentation 213

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 45 ;

const maxv = 47 ;

tab a : array [1 .. m][ 1.. n] of minv .. maxv ;

var S : 0 .. maxint ;

var j : 0 .. m ;

Auxiliary_variables:

tab c : array[1 .. n] of minv .. m * maxv ;

var i : 0 .. m + 1 ;

Result_variables:

var present : boolean ;

Precondition: initialised(a) & 1 <= j

Postcondition: unchanged(a) & unchanged(j) &&

(present <=> (exist i1 : 1 <= i1 <= j :

(exist k1 : 1 <= k1 <= n : (exist l1 : k1 <= l1 <= n :

S = (sum ij : i1 <= ij <= j :

(sum kl : k1 <= kl <= l1 : a[ij][kl]))

)))

Invariant: unchanged(a) & unchanged(j) && 1 <= i & i <= j &&

(forall k : 1 <= k <= n : c[k] = (sum ij : i <= ij <= j : a[ij][k])) &

(present <=> (exist i1 : i <= i1 <= j :

(exist k1 : 1 <= k1 <= n : (exist l1 : k1 <= l1 <= n :

S = (sum ij : i1 <= ij <= j :

(sum kl : k1 <= kl <= l1 : a[ij][kl]))

)))

Init: i := j ;

sp(SP2.in) ;

sp(SP4.in);

Iter: i := i - 1 ;

sp(SP3.in)

sp(SP4.in) ;

Clot: skip

Halting_condition: present | i = 1

Variant: i

Figure 7.12: SP1: searching for a subarray of sum S in a[1..j][1..n] such that
the last line is on line j.



214 Using MPVS in a Programming Course

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 0 ;

const maxv = 1 ;

tab a : array [1 .. m * n] of minv .. maxv ;

var i : 0 .. m ;

Auxiliary_variables:

var k : 0 .. n ;

Result_variables:

tab c : array[1 .. n] of 0 .. m * maxv ;

Precondition: initialised(1, m*n : a) & 1 <= i

Postcondition: unchanged(1, m*n : a) & unchanged(i) &&

(forall k : 1 <= k <= n : c[k] = a[n * (i-1) + k])

Invariant: unchanged(1 , m*n : a) & unchanged(i) &&

(forall k1 : 1 <= k1 <= k : c[k1] = a[n * (i-1) + k1])

Init: k := 0

Iter: k := k + 1 ;

c[k] := a[n * (i-1) + k]

Clot: skip

Halting_condition: k = n

Variant: n - k

Figure 7.13: SP2: initialising the array c[1..n] with a[i][1..n];



7.3. A Second Experimentation 215

Data: const n : 1 .. 3 ;

const m : 1 .. 3 ;

const minv = 45 ;

const maxv = 47 ;

tab a : array [1 .. m][ 1.. n] of minv .. maxv ;

var S : 0 .. maxint ;

Auxiliary_variables:

var j : 0 .. m ;

Result_variables:

var present : boolean ;

Precondition: initialised(a)

Postcondition: unchanged(a) &&

(present <=> (exist i : 1 <= i <= m : (exist j : i <= j <= m :

(exist k : 1 <= k <= n : (exist l : k <= l <= n :

S = (sum ij : i <= ij <= j :

(sum kl : k <= kl <= l : a[ij][kl]))

)))

Invariant: unchanged(a) &&

(present <=> (exist i1 : 1 <= i1 <= j : (exist j1 : i1 <= j1 <= j :

(exist k1 : 1 <= k1 <= n : (exist l1 : k1 <= l1 <= n :

S = (sum ij : i1 <= ij <= j1 :

(sum kl : k1 <= kl <= l1 : a[ij][kl]))

)))

Init: j := 0 ; present := false

Iter: j := j + 1 ;

sp(SP1) ;

Clot: skip

Halting_condition: present | j = m

Variant: m - j

Figure 7.14: Main problem: searching for a non empty subarray of sum S
in a[1..m][1..n]



216 Using MPVS in a Programming Course

Students performance We observe two groups of students who did not
have any difficulty to solve their algorithms using an invariant: no error was
found by the tool The reports and the discussions we had with students
show that the tool has been efficient to warn them that their reasoning
was false. Their algorithm was not correct at first time, but, thanks to
the tool they had the opportunity to modify their algorithm. Finally, two
groups have never reached a correct solution. It is important to notice that
this categorization of the students is deeply bound to their orientation: the
students in engineering (especially those in applied mathematics) have a
better abstraction level and a higher rigour than the bachelor students as
well as the graduates in computer science.

Manual proof In the reports, we observe that the errors are nearly never
discovered through the manual proof, but rather by using the tool. Students
do not make their manual proofs correctly, they keep in mind the operational
reasoning instead of thinking in a declarative way.

Efficiency of the tool Many solutions (especially for subproblems SP4

and SP3) have not been correct in one shot: for SP4, few students are able
to write a complete invariant at first shot; for SP3, many students have
met problems of out of domains errors. But in most cases, the students
have reached a correct solution: we think that the feedback of the tool
has allowed better reports; manual proofs have also been improved. Many
students have overcome their difficulties.

Motivation of the students We think that for many groups, the motiva-
tion was great. Nonetheless, motivation is not synonymous with the interest
to master the structured programming method. Some students have spent
a lot of time to reach a correct solution: they use the tool with an approach
similar to the process of “fixing” bugs in programs by trial and error.

7.4 Conclusions

The tool helps to understand the method Clearly, the tool allows
the students to understand some notions that seem difficult. We have ob-
served that, no matter the number of exercises on paper we do with them,
the students (excepted from the more “mathematician” students) begin to
understand the notions when they use the tool: for example, the fact that,
when we consider {Inv and not B} iter {Inv}, we cannot refer to the initial-
isation, has been a revelation for many students at the first lab session using
the tool. The concrete counter-examples were the source of their understand-
ing. However, the experimentation shows that students needs explanation
from the teacher to understand the first time the counter-examples.



7.4. Conclusions 217

The tool enforces the use of the structured programming method
Indeed, the user cannot avoid the decomposition into subproblems and the
use of invariants for building loops. There are two main reasons for that: the
format of the algorithm and the automatic verification that strictly follows
the principles of the structured programming method. Each specification
and each invariant must be extremely precise and in agreement with the
code.

The tool helps to understand the role of a complete specification
Since the automatic verification is based on specifications, and does not
use the code of called subproblems, the specifications must be definitely
complete. Counter-examples can help the user to understand why his spec-
ification is not strong enough.

The tool helps to learn to write formal specifications A substantial
amount of students have difficulties to express their meaning in a pictorial
way and still more in a pure formal way. Encoding the specification formally
in the tool is a good exercise for them; besides, counter-examples can help
the user to understand that he did not formally describe his thoughts.

The tool contributes to improve the level of abstraction The pro-
gramming method requires a good level of abstraction, discouraging the stu-
dents during the learning phase. Since the tool enforces the user to use the
structured programming method, since the students are motivated, since the
tool gives concrete counter-examples when the reasoning is not correct, by
experimenting several times the tool, the level can be better. Obviously, the
tool cannot solve the general problem of lack of abstraction of our computer
science students.

The tool captivates the attention When we make exercises together,
using the board, a large part of students listen passively; we have made the
experiment with the construction of the algorithm computing the number
of common values in two strictly increasing arrays. This exercise has been
solved on the board. The day we made the same exercise using the tool,
many students hadforgotten the board session involving it. Using the tool,
students work more intensively.

The tool can be used by trial and error Both experiments have shown
that the tool does not prevent the students from solving their problem by
trial and error. Even when they approximately understand the method, the
trend is to iterate modifications in the invariant and in the code without
thinking enough. They should stop this process, take a sheet of paper and
reason on picture before encoding the modification. It seems too tempting



218 Using MPVS in a Programming Course

to test the correctness using the tool. We have serious doubts on the actual
chronology that students have followed to solve their problem: most of them
have probably proved the correctness of their algorithm using the tool before
proving it manually.

The tool cannot enforce simplicity We have also observed that stu-
dents do not necessarily think about simple things: simple specifications,
simple decompositions into subproblems, simple invariants, etc.

Our tool is useful and efficient, but it is only a tool. The construction
of program is a complex work, and requires a lot of personal involvement.
The tool is a support to learning, but the learning has to be achieved by the
student, anyhow.



Chapter 8

Conclusion

During these long years of research, we have focused on tools that can
help us teach the structured programming method.

The first approach was to see if some existing tools were adapted to our
needs. Indeed, a few verification tools are available on the market, ready
to be used. After approaching the most promising ones, we had to admit
the difficulty of getting an existing software that is appropriate enough for
our specific pedagogical objectives since their objectives are not ours. Using
verification tools like ESC/Java2 or Spark, the student cannot get a precise
feedback: too often ESC/Java2 gives false warnings, and sometimes it forgets
errors; too often Spark needs the use of its interactive proof checker which
requires too many efforts and too much expertise from the user to be able
to manipulate it. Since softwares based on theorem proving either require
extensive human guidance, or are limited to verify simple properties, we have
looked at techniques of exhaustive verification, model-checking. We have
experimented the use of a model-checker, SMV. It has the advantage to be
automatic and to give a precise feedback to the user but it cannot be used as
it is, because the work required to formalise these properties is well beyond
what can be asked to students learning the methodology. Software model-
checkers have not been deeply investigated, but, to our knowledge, they
are limited to handle specific properties of programs but not fully complete
specifications.

Since we have not found the perfect tool for our needs, our solution was
to develop our own tool, completely adapted to our objectives. It appears
essential that an appropriate tool should give a precise feedback about the
correctness of the algorithms. It seems also important that the tool admits
an expressive assertion language to allow the user to write its specifications
straightforwardly. Besides, the tool must enforce the use of the structured
programming method.

219



220 Conclusion

Having made precise the requirements for such a tool, we quickly found
out that constraint programming techniques are convenient to implement
it. We have chosen the multiparadigm language Oz because it is a powerful
language that includes all programming mechanisms that are needed to reach
our goals. Besides, working at UCL in the same department as the Belgian
Mozart/Oz pool, we have been easily convinced to use it.

Thus, we have implemented in Oz/Mozart a tool that corresponds to our
requirements. This tool gives optimistic results in the sense that it is fully
automatic and it is able to give precise feedback to the student in moderate
times. To evaluate our tool, it was useful to analyse the impact of such a
tool on the behaviour, the motivation and the understanding of the students
who learn this programming method. An interesting application of our
research is in the actual use of our tool in a real-life teaching world, with
real students: our tool is used as a support to the “Program Conception
Methods” course addressed to the computer science students in the third
year of their studies. Experimentation has shown that the tool is completely
useful in a regular academic context, that it really motivates students and
helps them to learn the taught methodology, and that its use was reinforced.
However, our tool stays only a tool, it is a way to learn. The role of a teacher
remains important: students may need explanations, and besides the tool
does not evaluate subjective points like simplicity or the adequacy of the
decomposition into subproblems. Another drawback which is inherent in
any tool is that it can be used by trial and error.

Of course, some improvements could be useful. The assertion language is
expressive, but after experimenting the tool with a lot of exercises, we have
faced several assertion examples for which it would have been handy to
provide a richer syntax. Such an enhancement is not difficult to implement.
In this same idea, it would have been nice to allow the user to define himself
some predicates, used as macros. A functionality that would not be too
difficult to add is giving the possibility to the student to check the correctness
of {P} S {Q} for any step of the algorithm. It would also be interesting to
be able to check the correctness of a implication or equivalence between two
assertions: it could allow the user to check a proof for which he manually
transforms assertions using sp or wp method; it could allow the user to
check the correctness of his specification checking the equivalence with the
teacher’s specification. For problems decomposed into subproblems, it would
be interesting to parameterize the variable domains. A non trivial work
would be to introduce the support of parameters in the procedure definitions.
In a general way, saving the history of the elaboration of the algorithms
would be a nice feature, so that the student can check the different steps he
had to go through to complete his task. In some scenarii, we could simply



Conclusion 221

try to prevent the student to overuse the trial and error process, by limiting
the maximum number of verifications.

Globally, the tool was well accepted by our students. It was a great help
to teach the structured programming method. The tool is a support to
learning, but the learning has to be achieved by the student, anyhow. Still,
we are realistic enough to think that our students will not systematically
think through that method. If we have contributed to a better understanding
of the method, it is already a big step forward.



222 Conclusion



Appendix A

Existing Tools

A.1 ESC/Java2

A.1.1 The Binary Search

The following algorithm provides a variant, to let ESC/Java2 proving ter-
mination of the algorithm. Notice that without the variant, ESC/Java2 is
not able to detect if the loop does not terminate.

/∗@requires a != nu l l &&
(\ f o r a l l i n t i , j ; 0 <= i & i < j & j <= a . length ;

a [ i ] <= a [ j ] ) ;
@ensures \ r e s u l t <==> (\ e x i s t s i n t j ; 0 <= j & j < a . l ength ;

a [ j ] == x) ;
@∗/

public /∗@ pure @∗/ static boolean dicho ( int [ ] a , int x )
{

int n = a . length ;
int m;
int g = 0 ;
int d = n ;
boolean b = fa l se ;
int y = 0 ;

/∗@loop inva r i ant 0 <= g & g <= d & d <= a . length ;
@ loop inva r i ant (\ f o r a l l i n t i ; 0 <= i & i < g ;

a [ i ] < x) ;
@ loop inva r i ant (\ f o r a l l i n t i ; d <= i & i < a . l ength ;

a [ i ] > x) ;
@ loop inva r i ant b ==> (\ e x i s t s i n t j ; 0 <= j & j < a . l ength ;

a [ j ] == x) ;
@ loop inva r i ant b <==> y==1 && ! b <==> y == 0 ;
@∗/

//@decreas ing d − g − y ;

223



224 Existing Tools

while ( ( b == fa l se ) & ( g < d )){

m = ( g + d) / 2 ;
i f ( a [m] < x ) g = m + 1 ;
else i f ( a [m] > x ) d = m ;
else {b = true ; y = 1 ;}

}

return b ;
}

A.1.2 The Next Permutation

Subproblem 2 The first subproblem is completely detailed in Section 3.1;
let us display the second subproblem, it is formally specified to be verified
by ESC/Java2.

/∗@requires a != nu l l && 0 <= i && i <= a . length − 2 ;
@requi r es (\ f o r a l l i n t k ; 0 <= k && k < a . l ength − 2 − i ;

a [ k + 1 + i ] >= a [ k + 2 + i ] ) ;
@requi r es a [ i ] < a [ i + 1 ] ;
@ensures i + 1 <= \ r e s u l t & \ r e s u l t <= a . length − 1 ;
@ensures a [\ r e s u l t ] > a [ i ] ;
@ensures \ r e s u l t == a . length − 1 | | a [\ r e s u l t + 1 ] <= a [ i ] ;
@∗/

public /∗@ pure @∗/ static int sp2 ( int [ ] a , int i ) {

int j = i +1;

/∗@loop inva r i ant i + 1 <= j && j <= a . length − 1 ;
@ loop inva r i ant (\ f o r a l l i n t k ; 0 <= k && k <= j − i − 1 ;

a [ k + i + 1 ] > a [ i ] ) ;
@∗/

while ( ( j != a . l ength − 1) && (a [ j + 1 ] > a [ i ] ) ) j++;

return j ;
}

The implementation of this subproblem is quite easy, when the pre and post-
conditions are well thought. In this exercise, all free variables of quantified
assertions are ranged for 0 and ESC/Java2 is able to verify this algorithm.
One can notice that ESC/Java2 does not mind if an assertion is not well
defined, for example, with

@ensures \ r e s u l t == a . length − 1 | a [\ r e s u l t + 1 ] <= a [ i ] ;

instead of the last line in postcondition.



A.1. ESC/Java2 225

Subproblem 3 Here follows the third subproblem; this algorithm manip-
ulates many index values, and the requirements of Simply do not make the
formalisation easier .

/∗@requires a != nu l l && a . length > 0 & 0 <= i & i < a . length −1;
@ensures (\ f o r a l l i n t k ; 0 <= k & k <= i ;

\ o ld ( a [ k ] ) == a [ k ] ) ;
@ensures (\ f o r a l l i n t j ; 0 <= j && j < ( a . l ength − 1 − i ) / 2 ;

a [ j + i + 1 ] == \ o ld ( a [ a . l ength − 1− j ] )
&& \ o ld ( a [ j + i + 1 ] ) == a [ a . l ength − 1 − j ] ) ;

@∗/

public static void sp3 ( int [ ] a , int i ) {

int l = i ;
int temp ;

/∗@loop inva r i ant i <= l && l <= i + ( ( a . l ength − 1 − i ) / 2) ;
@ loop inva r i ant (\ f o r a l l i n t k ; 0 <= k & k <= i ;

\ o ld ( a [ k ] ) == a [ k ] ) ;
@ loop inva r i ant (\ f o r a l l i n t j ; 0 <= j & j < l− i −1 ;

a [ j + i + 1 ] == \ o ld ( a [ ( a . l ength − 1 − j ) ] )
&& \ o ld ( a [ j + i + 1 ] ) == a [ ( a . l ength − 1 − j ) ] ) ;

@ loop inva r i ant (\ f o r a l l i n t k ; l + 1 <= k && k <= a . length − 1 + i − l ;
a [ k ] == \ o ld ( a [ k ] ) ) ;

@∗/

while ( l < i + ( ( a . l ength − 1 − i ) / 2 ) ) {
l++ ;
temp = a [ l ] ;
a [ l ] = a [ a . l ength − 1 − ( l − i −1)] ;
a [ a . l ength − 1 − ( l − i − 1 ) ] = temp ;

}

}

This algorithm seems to be checked by ESC/Java2; but the postcondition
is not strong enough; ESC/Java2 is not able to prove the following postcon-
dition which is complete

@ensures (\ f o r a l l int k ; 0 <= k & k <= (a . l ength − 1 − i ) / 2
;

a [ k + i + 1 ] == \ o ld ( a [ a . l ength − 1− k ] )
&& \ o ld ( a [ k + i + 1 ] ) == a [ a . l ength − 1 − k ] ) ;

This assertion considers the middle element of the subarray a[i+1..a..length−
1] when the number of elements of this subarray is odd. A nicer way to for-
malise it is

@ensures (\ f o r a l l int k ; 0 <= k & k <= a . length − 2 − i ;
a [ k + i + 1 ] == \ o ld ( a [ a . l ength − 1− k ] ) ) ;

but it does not seem to be adapted to ESC/Java2.



226 Existing Tools

Main algorithm To generate the verification conditions, ESC/Java2 uses
the specifications of the subproblems. One can try to help Simplify by insert-
ing intermediate assertions but, anyway, this exercise is really too difficult.
The pre and post conditions are formalised in Section 3.1.3.

public static boolean permSuiv ( int [ ] a , int [ ] c ) {

int i = sp1 ( a ) ;

i f ( i == −1) return fa l se ;
else {

/∗@assert 0 <= i && i <= a . length −2;
@assert (\ f o r a l l i n t k ; 0 <= k && k < a . l ength − 2 − i ;

a [ k + 1 + i ] >= a [ k + 2 + i ] ) ;
@assert a [ i ] < a [ i +1] ;
@∗/

int j = sp2 (a , i ) ;

/∗@assert ( i + 1 <= j & j <= a . length − 1 ) ;
@assert a [ j ] > a [ i ] ;
@assert j == a . length−1 | | a [ j + 1]<= a [ i ] ;
@∗/

int temp = a [ i ] ;
a [ i ] = a [ j ] ;
a [ j ] = temp ;

/∗@assert a [ i ] == \ o ld ( a [ j ] ) ;
@assert a [ j ] == \ o ld ( a [ i ] ) ;
@assert (\ f o r a l l i n t k ; 0 <= k & k <= a . length−1 ;

( k != i && k != j ) ==> \ o ld ( a [ k ] ) == a [ k ] ) ;
@∗/

sp3 (a , i ) ;

/∗@assert (\ f o r a l l i n t k ; 0 <= k & k < i ; \ o ld ( a [ k])==a [ k ] ) ;
@assert a [ i ]==\o ld ( a [ j ] ) ;
@assert (\ f o r a l l i n t k ; 0 <= j && j < ( a . l ength − 1 − i ) / 2 ;

( k + i + 1 != j && a . length − 1− k != j ) ==>
( a [ k + i + 1 ] == \ o ld ( a [ a . l ength − 1− k ] )

&& \ o ld ( a [ k + i + 1 ] ) == a [ a . l ength − 1 − k ] ) ) ;
@∗/

return true ;
}

}

As consequence, when the user wants to overcome the tool limits, he
may spent a lot of time to try to prove the correctness of algorithms without



A.1. ESC/Java2 227

success.



228 Existing Tools

A.2 SPARK

A.2.1 Proofs of User-defined Rules for the Exponentiation

We prove X**Y * X**Z = X**(Y+Z) by induction, using the definition given
by

exp(4): X ** Y & X * (X ** (Y - 1)) are interchangeable if [ Y > 0].

exp(5): X ** (Y + 1) & X * (X ** Y) are interchangeable if [ Y >= 0].

The following clause is written in a .vcg file.

H1: z >= 0 .

H2: y >= 0 .

->

C1: x ** y * x ** z = x ** (y + z).

And types of x,y,z are specified in a .fld file.
We display the .plg file containing the Interactive Proof log:

STEP 1

Command: newvc

H1: z >= 0

H2: y >= 0

-->

C1: x ** y * x ** z = x ** (y + z)

STEP 2

Command: prove

Attempt to prove x ** y * x ** z = x ** (y + z)

by induction on z (base case: z = 0)

Commence PROOF BY INDUCTION attempt

Entering new proof frame (DEPTH 1) ...

All current conclusions withdrawn

>>> New goal C1: int_z_1 >= 0 and

for_all(int_z_2 : integer, 0 <= int_z_2 and int_z_2 <= int_z_1

-> x ** y * x ** int_z_2 = x ** (y + int_z_2))

-> x ** y * x ** (int_z_1 + 1) = x ** (y + (int_z_1 + 1))

STEP 3

Command: prove

Commence PROOF BY IMPLICATION attempt

Entering new proof frame (DEPTH 2) ...

All current conclusions withdrawn

*** New H3: int_z_1 >= 0

*** New H4: for_all(int_z_2 : integer, 0 <= int_z_2 and int_z_2 <= int_z_1

-> x ** y * x ** int_z_2 = x ** (y + int_z_2))

>>> New goal C1: x ** y * x ** (int_z_1 + 1) = x ** (y + (int_z_1 + 1))



A.2. SPARK 229

STEP 4

Command: unwrap(h # 4)

*** New H5: 0 <= int_INT_Z_2_1 and int_INT_Z_2_1 <= int_z_1

-> x ** y * x ** int_INT_Z_2_1 = x ** (y + int_INT_Z_2_1)

STEP 5

Command: instantiate

*** New H5: 0 <= int_z_1 and int_z_1 <= int_z_1

-> x ** y * x ** int_z_1 = x ** (y + int_z_1)

STEP 6

Command: infer

Successful inference with rule: inference(2)

Proved subgoal: 0 <= int_z_1 and int_z_1 <= int_z_1

-> x ** y * x ** int_z_1 = x ** (y + int_z_1)

Proved subgoal: 0 <= int_z_1 and int_z_1 <= int_z_1

Therefore x ** y * x ** int_z_1 = x ** (y + int_z_1)

*** New H6: x ** y * x ** int_z_1 = x ** (y + int_z_1)

STEP 7

Command: replace(c # 1)

Successful substitution with rule: exp(5)

Proved subgoal: int_z_1 >= 0

Allowing substitution of x * x ** int_z_1

for x ** (int_z_1 + 1)

>>> New goal C1: x ** y * (x * x ** int_z_1) = x ** (y + (int_z_1 + 1))

Successful substitution with rule: assoc(2)

(unconstrained rule: no subgoals)

Allowing substitution of y + int_z_1 + 1

for y + (int_z_1 + 1)

>>> New goal C1: x ** y * (x * x ** int_z_1) = x ** (y + int_z_1 + 1)

STEP 8

Command: infer

Successful inference with rule: inequals(9)

Proved subgoal: y >= 0

Proved subgoal: int_z_1 >= 0

Therefore y + int_z_1 >= 0

*** New H7: y + int_z_1 >= 0

STEP 9

Command: replace(c # 1)

Successful substitution with rule: exp(5)

Proved subgoal: y + int_z_1 >= 0

Allowing substitution of x * x ** (y + int_z_1)

for x ** (y + int_z_1 + 1)

>>> New goal C1: x ** y * (x * x ** int_z_1) = x * x ** (y + int_z_1)



230 Existing Tools

STEP 10

Command: replace(c # 1)

Successful substitution with rule: assoc(4)

(unconstrained rule: no subgoals)

Allowing substitution of x ** y * x * x ** int_z_1

for x ** y * (x * x ** int_z_1)

>>> New goal C1: x ** y * x * x ** int_z_1 = x * x ** (y + int_z_1)

Successful substitution with rule: commut(2)

(unconstrained rule: no subgoals)

Allowing substitution of x * x ** y

for x ** y * x

>>> New goal C1: x * x ** y * x ** int_z_1 = x * x ** (y + int_z_1)

STEP 11

Command: replace(c # 1)

Successful substitution with rule: assoc(3)

(unconstrained rule: no subgoals)

Allowing substitution of x * (x ** y * x ** int_z_1)

for x * x ** y * x ** int_z_1

>>> New goal C1: x * (x ** y * x ** int_z_1) = x * x ** (y + int_z_1)

STEP 12

Command: replace(c # 1)

Successful substitution with rule: eq(1)

Proved subgoal: x ** y * x ** int_z_1 = x ** (y + int_z_1)

Met constraint: x ** y * x ** int_z_1 \= x ** (y + int_z_1)

Allowing substitution of x ** (y + int_z_1)

for x ** y * x ** int_z_1

>>> New goal C1: x * x ** (y + int_z_1) = x * x ** (y + int_z_1)

STEP 13

Command: done

*** Proved C1: x * x ** (y + int_z_1) = x * x ** (y + int_z_1)

Exiting current proof frame (DEPTH 2)

*** New H3: int_z_1 >= 0

and for_all(int_z_2 : integer, 0 <= int_z_2 and int_z_2 <= int_z_1

-> x ** y * x ** int_z_2 = x ** (y + int_z_2))

-> x ** y * x ** (int_z_1 + 1) = x ** (y + (int_z_1 + 1))

*** Proved C1: int_z_1 >= 0

and for_all(int_z_2 : integer, 0 <= int_z_2 and int_z_2 <= int_z_1

-> x ** y * x ** int_z_2 = x ** (y + int_z_2))

-> x ** y * x ** (int_z_1 + 1) = x ** (y + (int_z_1 + 1))

Exiting current proof frame (DEPTH 1)

*** New H3: x ** y * x ** z = x ** (y + z)

*** Proved C1: x ** y * x ** z = x ** (y + z)

*** Proved all conclusions

*** PROVED VC procedure_algo_2



A.2. SPARK 231

The following rules were used in proving the above VC:

c:/praxis/bin/../lib/checker/rules/ARITH.RUL::assoc(2)

c:/praxis/bin/../lib/checker/rules/ARITH.RUL::assoc(3)

c:/praxis/bin/../lib/checker/rules/ARITH.RUL::assoc(4)

c:/praxis/bin/../lib/checker/rules/ARITH.RUL::commut(2)

c:/praxis/bin/../lib/checker/rules/FDLFUNCS.RUL::exp(5)

c:/praxis/bin/../lib/checker/rules/NUMINEQS.RUL::inequals(9)

c:/praxis/bin/../lib/checker/rules/SPECIAL.RUL::eq(1)

c:/praxis/bin/../lib/checker/rules/SPECIAL.RUL::inference(2)



232 Existing Tools

A.3 SMV

A.3.1 Complete SMV Script for the Insertion sort

MODULE main

VAR

a : array 1..4 of 1..4;

a0 : array 1..4 of 1..4; --to memorise values at the precondition state

i: 0..5;

state : {state-iter1,state-iter2,state-preSP,state-postSP};

perm_a_a0 : perm(a,a0,i); --permut(a,a0,1,i,1,i)

perm_a_a0N : permN(a,i+1); --permut(a, next(a), 1,i+1,1,i+1)

increasing_a: increasing(a,i); --forall j:1<=j<i: a[j]<=a[j+1]

increasingN_a: increasingN(a,i+1); --forall j:1<=j<=i: next(a[j])<= next(a[j+1])

unchanged_a: unchanged(a,a0,i); --unchanged(i+1,4:a)

unchangedN_a: unchangedN(a,i+1); --unchanged(i+2,4:next(a))

ASSIGN

--relations between program points

next(state):= case state = state-iter1 & i<4 : state-preSP;

state = state-preSP : state-postSP;

state = state-postSP : state-iter2;

1: state;

esac;

--i:=i+1 in Iter

next(i):= case state=state-postSP &i<5: i+1;

1:i;

esac;

--a[i] is unchanged unless the SP is called

next(a[1]):= case state = state-preSP : 1..4;

1: a[1];

esac;

next(a[2]):= case state = state-preSP : 1..4;

1: a[2];

esac;

next(a[3]):= case state = state-preSP : 1..4;

1: a[3];

esac;

next(a[4]):= case state = state-preSP : 1..4;

1: a[4];

esac;

--a0 stays unchanged

next(a0[1]):= a0[1];

next(a0[2]):= a0[2];

next(a0[3]):= a0[3];

next(a0[4]):= a0[4];

--SP call

TRANS

(state= state-preSP & assert-preSP) -> (assert-postSP)



A.3. SMV 233

DEFINE assert-preSP := 0<=i & i< 4 & increasing_a.result;

--0<=i<4 && forall j:1<=j<i: a[j]<=a[j+1]

DEFINE assert-postSP:= (unchangedN_a.result & increasingN_a.result

& perm_a_a0N.result

);

DEFINE assert-iter1:= (i<4 & increasing_a.result & unchanged_a.result

& perm_a_a0.result

) ;

DEFINE assert-iter2:= (i<=4 & increasing_a.result & unchanged_a.result

& perm_a_a0.result

) ;

SPEC ((state=state-iter1) & assert-iter1) ->

AG (state = state-iter2 -> assert-iter2)

SPEC ((state=state-iter1) & assert-iter1) -> AF(state = state-iter2)

MODULE increasing(a,i)

--0<=i<= 4 && forall j: 1<=j<=i-1: a[j]) <= a[j+1]

DEFINE result:= (i=0) |

(i=1) |

(i=2 & a[1]<=a[2]) |

(i=3 & a[1]<=a[2] & a[2]<=a[3]) |

(i=4 & a[1]<=a[2] & a[2]<=a[3] & a[3]<=a[4]);

MODULE increasingN(a,i)

--0<=i<= 4 && forall j: 1<=j<=i-1: next(a[j]) <= next(a[j+1])

DEFINE result:= (i=0) |

(i=1) |

(i=2 & next(a[1])<=next(a[2])) |

(i=3 & next(a[1])<=next(a[2]) & next(a[2])<=next(a[3])) |

(i=4 & next(a[1])<=next(a[2]) & next(a[2])<=next(a[3]) &

next(a[3])<=next(a[4]));

MODULE unchanged(a,a0,i)

-- 0<=i<= 4 && forall j: i+1<=j<=4: a[j] =a0[j]

DEFINE result:= (i=4) |

(i=3 & a[4]=a0[4]) |

(i=2 & a[4]=a0[4] & a[3]=a0[3]) |

(i=1 & a[4]=a0[4] & a[3]=a0[3] & a[2]=a0[2]) |

(i=0 & a[4]=a0[4] & a[3]=a0[3] & a[2]=a0[2] & a[1]=a0[1]);

MODULE unchangedN(a,i)

-- 0<=i<= 4 && forall j: i+1<=j<=4: next(a[j]) =a[j]

DEFINE result:= (i=4) |

(i=3 & next(a[4])=a[4]) |

(i=2 & next(a[4])=a[4] & next(a[3])=a[3]) |



234 Existing Tools

(i=1 & next(a[4])=a[4] & next(a[3])=a[3] & next(a[2])=a[2]) |

(i=0 & next(a[4])=a[4] & next(a[3])=a[3] & next(a[2])=a[2] &

next(a[1])=a[1]);

MODULE count(a,x,i)

-- #x dans a[1..i]

DEFINE result := (a[1]=x & 1<=i) + (a[2]=x & 2<=i) +

(a[3]=x & 3<=i) + (a[4]=x & 4<=i);

MODULE samecount(a,b,x,i)

-- #x dans a[1..i] =? #x dans b[1..i]

VAR count_a : count(a,x,i);

count_b : count(b,x,i);

DEFINE result:= count_a.result = count_b.result;

MODULE perm(a,b,i)

--permut(a,b,1,i,1,i)

VAR samecount1 : samecount(a,b,a[1],i);

samecount2 : samecount(a,b,a[2],i);

samecount3 : samecount(a,b,a[3],i);

samecount4 : samecount(a,b,a[4],i);

DEFINE result:= samecount1.result & samecount2.result &

samecount3.result & samecount4.result;

MODULE countN(a,x,i)

-- #x dans next(a[1..i])

DEFINE result := (next(a[1])=x & 1<=i) + (next(a[2])=x & 2<=i) +

(next(a[3])=x & 3<=i) + (next(a[4])=x & 4<=i);

MODULE samecountN(a,x,i)

-- #x dans a[1..i] =? #x dans next(a[1..i])

VAR count_a : countN(a,x,i);

count_b : count(a,x,i);

DEFINE result:= count_a.result = count_b.result;

MODULE permN(a,i)

--permut(a,next(a),1,i,1,i)

VAR samecount1 : samecountN(a,next(a[1]),i);

samecount2 : samecountN(a,next(a[2]),i);

samecount3 : samecountN(a,next(a[3]),i);

samecount4 : samecountN(a,next(a[4]),i);

DEFINE result:= samecount1.result & samecount2.result &

samecount3.result & samecount4.result;



Appendix B

MPVS Tool

B.1 Concrete Syntax of the Languages

We display the concrete syntax of the languages. The syntax is divided in
three subsections. We first specify the syntax of the declarations, then the
statements and finally the assertions. Some syntactic elements of a previous
subsection can be used in the following subsections.

B.1.1 Declarations

Declarations
< declarations > ::= Data: < const decl > < decl >

[Auxiliary variables: < decl >
Result variables: < decl >]

< const decl > ::= const < id > : < integer > .. < integer > ;
| const < id > = < integer > ;

< decl > ::= < var decl > ;
< array decl > ;
< decl > < decl >

< var decl > ::= var < id > : < intervalle >
var < id > : boolean

< array decl > ::= tab < id > [ 1 .. < expr > ] : of < intervalle >
< intervalle > ::= < bi > .. < bs >
< bi > ::= < expr > | maxint
< bs > ::= < expr > | maxint
< op > ::= +++ | −−− | ∗∗∗ | div | mod
< integer > ::= ([0 − 9])+

< id > ::= [A − Z, a − z](A − Z, a − z, 0 − 9])∗

< expr > ::= < id >
| < integer >
| < expr >< op >< expr >
| ( < expr > )

235



236 MPVS Tool

B.1.2 The Programming Language

Instructions
< instr > ::= skip

| < id > := (< aexpr> | < bexpr >)
| < id > [ < aexpr > ] := < aexpr >
| if < bexpr > then < instr > else < instr > end
| sp( < file > )
| < instr > ; < instr >

Expressions
< aexpr > ::= < integer >

| < id >
| < id > [[[ < aexpr > ]]]
| < aexpr > < aop > < aexpr >

< bexpr > ::= true | false
| < id >
| < aexpr > < cop > < aexpr >
| < bexpr > < bop > < bexpr >
| < bnot > < bexpr >

< file > :: = < id >.in
Operators
< bop > ::= ||| | & | |||||| | && | < eop >
< bnot > ::= !
< aop > ::= +++ | −−− | ∗∗∗ | div | mod
< cop > ::= <<< | >>> | <=<=<= | >=>=>= | < eop >
< eop > ::= === | !=!=!=

Subproblems
< subproblem > ::= Data: < decl >

[Auxiliary variables: < decl >
Result variables: < decl >]
precondition: < precondition >
postcondition: < postcondition >
[invariant: < invariant >
variant: < variant >]
< blocs instr >

< precondition > ::= < assert >
< postcondition > ::= < assert >
< invariant > ::= < assert >
< variant > ::= < aexpr >
< blocs instr > ::= init: < instr >

iter: < instr >
clot: < instr >
halting condition: < bexpr >
|
instr: < instr >

Programme ::= a set of subproblems being in the same directory.



B.1. Concrete Syntax of the Languages 237

B.1.3 The Assertion Language

Assertions
< assert > ::= < bexpr >

| < gaexpr > < cop > < gaexpr >
| < assert > (< bop > | < iop >) < assert >
| < bnot > < assert >
| ( forall < id >:::<aexpr+><=<=<=< id ><=<=<=<aexpr+>:::<assert>)
| ( exist < id >:::< aexpr+ ><=<=<=< id ><=<=<=< aexpr+ >:::<assert> )
| ( exist < id >[1..< aexpr+ >] :::

< aexpr+ ><=<=<=< id ><=<=<=< aexpr+ >:::< assert> )
| ( forall < id >[1.. < aexpr+ >] :::

< aexpr+ ><=<=<=< id ><=<=<=< aexpr+ >:::< assert> )
| < gtab > < tbop > < gtab >
| permut (< gtab >, <gtab>, < aexpr+ >, < aexpr+ >,

< aexpr+ >, < aexpr+ >)
| unchanged (< id >)
| unchanged (< aexpr+ >,< aexpr+ >:< gtab >)
| initialised (< id >)
| initialised (< aexpr+ >, < aexpr+ >:< gtab >)

Arithmetic expressions
< gaexpr > ::= < aexpr >

| < id > 0
| < id > 0[ < aexpr+ > ]
| < aexpr >^ < aexpr >
| ( < taop > < id > : <aexpr+> <=<=<=< id ><=<=<= < aexpr+ > :

< gaexpr > )
| ( # < id > : <aexpr+> <=<=<=< id ><=<=<= <aexpr+> :

< assert > )
| < gaexpr >< aop >< gaexpr >

< gtab > ::= < id > 0 | < id >
< aexpr+ > ::= < aexpr >

| < id > 0
| < id > 0[ < aexpr+ > ]
| < aexpr+ >< aop >< aexpr+ >

Operators
< iop > ::= =>=>=> | <=><=><=>
< taop > ::= sum | max | min
< tbop > ::= === | ! =! =! = | <<<<<< | <<=<<=<<= | >>>>>> | >>=>>=>>=



238 MPVS Tool

B.2 Availability of the Tool

MPVS is open source and is available on the web site http://sourceforge.net.

B.3 Implementation

B.3.1 Parsing and Type Checking

To make a syntactic analysis of our files, we need to define a scanner and a
parser. A scanner is a program that performs lexical analysis, which means
that it transforms a stream of characters into a stream of tokens. A parser
is a program that performs syntax analysis. This means that a stream of
tokens is analyzed and a (unique) tree structure on the tokens in this stream
is computed.

To do so, we use the Gump Scanner Generator and the Gump Parser
Generator modules. For both, their input consists of an Oz source with
embedded scanner/parser specifications; the output is an Oz class definition.
Files AssertionScanner.ozg and AssertionParser.ozg specify the tokens
and the concrete syntax of our languages. The Parser.oz file creates the Oz
classes corresponding and according to the resulting status of the parsing,
he makes a type checking on this tree (eventually according to the trees of
the called subproblems).

An error in the parsing or in the type checker is automatically propagated
and a detailed message is given to the user.

B.3.2 Generating the Script

If no problem occurs in syntactic analysis, we can generate the script
from a syntactic tree(s): in SearchMethod.oz, a procedure defines, from
the Hoare proposition selected, the script which will be given to the search
engine. To define the script, it needs to

• declare the Oz variables: it uses the MemoriesAccess.oz file

• generate the propagators and initialise the data structure: the respon-
sible procedure is in the HoareMethod.oz file.

• define a heuristic strategy: it is defined in the SearchMethod.oz file

The following procedure generates the script of {P} S{Q}: D contains
the declaration of the program variables; SyntaxTrees represents the set of
syntactic trees; HoareP represents the Hoare proposition we check.



B.3. Implementation 239

fun{ScriptGenerator D SyntaxTrees HoareP}

proc{$ Sol}

Mp = {Dictionary.new}

Mp0 = {Dictionary.new}

List DS

in

try

{Mem.setMemoryConst D Mp0 List}

{FD.distribute naive List}

%% declaration and distribution of the Oz variables

%% corresponding to the constants

{Mem.constraintsStoreClone Mp0 Mp}

{Mem.setMemory He.pre D Mp0 Mp0}

{Mem.setMemory He.p D Mp Mp0}

%% declaration of the Oz variables

%% corresponding to the program variables

catch E then

{Port.send {Access MyErrorPort} E} fail

%% propagation of errors

end

Sol = {HoareM.propagGenerator D SyntaxTrees HoareP Mp Mp0 DS}

%% generation of the propagators

%% corresponding to the Hoare proposition HoareP

{MyDistribution DS}

%% definition of the distribution strategy

end

end

HoareM and Mem are the identifiers of the compilation units corresponding to the

files MemoriesAccess.oz and HoareMethod.oz.

B.3.2.1 The MemoriesAccess.oz file

The following three functions are responsible for generating Oz variables
from the code (according to the declaration represented in D) and linking
them with the program identifier in a dictionary Mp (and Mp0). In fact D has
the role of the static environment td of Chapter 5.

%%to generate the Oz variables corresponding to the program constants

proc{SetMemoryConst D Mp List}

%%to generate the Oz variables corresponding to the identifier Id

proc{SetMemoryId Id D Mp}

%%to generate the Oz variables appearing in the assertion Assert

proc{SetMemory Assert D Mp Mp0}

%%to access the Oz variable (or tuple) corresponding

%%to an identifier Id



240 MPVS Tool

fun{GetMemory Id Mp Mp0}

B.3.2.2 HoareMethod.oz file

To translate {P} S {Q}, where P is an assertion constraining the variables
of the two dictionaries Mp and Mp0 that have been initialised by SetMemory

from MemoriesAccess.oz file, the method declaration is

proc{PropagGenerator D SyntaxTrees HoareP Mp Mp0 DS Sol}

where D (the td environment), SyntaxTrees(the set of syntactic trees),
HoareP(the Hoare proposition we check) are input; Mp, Mp0, and DS are
modifiable data structures and Sol is the output variable that will contain
the counter-example when the script will be executed by the search engine.

B.3.2.3 MyAssertionPropagators.oz file

• The method PropB from MyAssertionPropagators.oz file) is deeply
detailed in Chapter 6. The complete method declaration is the follow-
ing:

proc{PropB Assert Mp Mp0 Violated Feedback DS Bool Error}

We just notice two additional outputs that are

– Violated which corresponds to the subtree which is responsible
to a false evaluation,

– Feedback which is a record containing the kind of error in the
case where the assertion is badly defined.

• It is similar for the arithmetic expressions:

proc{PropA Gaexpr Mp Mp0 Violated Feedback DS V Neg Error}

B.3.2.4 Auxpropagators.oz

The generic methods like ForEach of Figure 6.5 are defined in a file named
AuxPropagators.oz.

B.3.2.5 The distribution function

proc{MyDistribution DS}

L1 L2 in

{Space.waitStable} %% waits that the computational space is stable

L = {F DS DS1}

%% F captures in the list L the set of variables of DS

%% that can be distributed



B.3. Implementation 241

%% and DS1 is the modified data structure DS

%% from which the determined variables are removed

case L of

nil then skip

[]

I|T then

W = {FoldL

fun{$ X J}

Y1 = {FD.reflect.size J} Z1 ={System.nbSusps J}

Y2 = {FD.reflect.size X} Z2 ={System.nbSusps X} in

if Y1*Z2<Y2*Z1 orelse Z2==0

andthen Z1==0 andthen Y1<Y2

then J else X end

end

I}

%% selection from the list of the variables to be distributed:

%% we make a first-fail strategy

%% taking into account

%% the number of threads suspended by each variable

M

in

M = {FD.reflect.min W}

case {Space.choose 2} of

1 then W = M {MyDistribution DS1}

[]

2 then W \=: M {MyDistribution DS1}

end

%% realisation of the tree

end

end

B.3.3 The GUI

The graphical interface is described in file FenetrePrincipale.oz, it has
been implemented using the Tk module. The module QTK is more recent
and would more easily to be used.
Anyway, the functionalities are simple:

• functionalities to open, close and save files,

• functionalities to go from one file to another,

• functionalities to hightlight some text in the opened files,

• functionalities to display a counter-example in a table,

• functionalities to check the correctness of a Hoare proposition of a file:

Parser is used to generate the syntactic tree

SearchMethod is used to generate the script and call the search engine.



242 MPVS Tool

According to the counter-example found, a message is displayed in the
feedback area and the record containing the badly defined or violated
subexpression allows us to underline it in the text area (thanks to the
position in the file that we keep in the syntactic tree), as well as the
involved sequence of statements.

Of course if, no counter-example is found, a message attesting the
correctness of the Hoare proposition is written in the feedback area.



B.4. Testing Students’ Solutions to the Subarray with Biggest Sum Problem243

B.4 Testing Students’ Solutions to the Subarray
with Biggest Sum Problem

This Appendix concerns the first project given to the student in our second
experimentation (in 2007): to elaborate in O(m2n), a Java algorithm finding
the greatest value corresponding to the sum of a non-empty subarray of a
two-dimensional array a[1..m][1..n]. In this Appendix, the reader has details
about the tests automatically generated and the students performances. We
present here five tests with an array content and the expected result.

Test data and correct results

------------------------------

0 1 2

+-------------+-------------+-------------+

0 | 2147483647 | 1 | -2147483648 |

+-------------+-------------+-------------+

1 | -2147483647 | -1 | -2147483647 |

+-------------+-------------+-------------+

2 | 2147483647 | -1 | -2147483647 |

+-------------+-------------+-------------+

A subarray of maximal sum is a[0:0][0:1].

The sum is : 2147483648

0 1

+-------------+-------------+

0 | 2147483647 | 1 |

+-------------+-------------+

0

+-------------+

0 | -1207558202 |

+-------------+

A subarray of maximal sum is a[0:0][0:0].

The sum is : -1207558202

0

+-------------+

0 | -1207558202 |

+-------------+

0 1 2 3 4

+------------+------------+------------+------------+------------+

0 | -624492714 | 578023413 | -61948189 | -739099171 | 334225298 |

+------------+------------+------------+------------+------------+

A subarray of maximal sum is a[0:0][1:1].

The sum is : 578023413

1

+------------+

0 | 578023413 |



244 MPVS Tool

+------------+

0

+-------------+

0 | -1495484563 |

+-------------+

1 | -1531128095 |

+-------------+

2 | 734713349 |

+-------------+

3 | 328665974 |

+-------------+

4 | -877842511 |

+-------------+

5 | -1197603801 |

+-------------+

6 | -409777642 |

+-------------+

7 | -42586036 |

+-------------+

8 | -433009038 |

+-------------+

9 | -689769219 |

+-------------+

10 | -15590802 |

+-------------+

11 | -489849945 |

+-------------+

12 | 979004627 |

+-------------+

13 | -789803059 |

+-------------+

14 | 623199939 |

+-------------+

A subarray of maximal sum is a[2:3][0:0].

The sum is : 1063379323

0

+-------------+

2 | 734713349 |

+-------------+

3 | 328665974 |

+-------------+

0 1 2 3

+-------------+-------------+-------------+-------------+

0 | -96455806 | 472732538 | 488705406 | -1325001031 |



B.4. Testing Students’ Solutions to the Subarray with Biggest Sum Problem245

+-------------+-------------+-------------+-------------+

1 | 1016899380 | -388234579 | -1113064636 | 951334362 |

+-------------+-------------+-------------+-------------+

2 | -1268123216 | 601153015 | 237908767 | 803365760 |

+-------------+-------------+-------------+-------------+

3 | -1795984665 | -549764834 | -1823124583 | -1938761833 |

+-------------+-------------+-------------+-------------+

A subarray of maximal sum is a[1:2][3:3].

The sum is : 1754700122

3

+-------------+

1 | 951334362 |

+-------------+

2 | 803365760 |

+-------------+

Here is the tests evaluation for each student (identified by no icampus). Ti
are the tests, showing 0 in case of failure and 1 in case of success.

no iCampus |T1|T2|T3|T4|T5|

-----------|--|--|--|--|--|

1 | 0| 0| 0| 0| 0|

2 | 1| 1| 1| 1| 1|

3 | 0| 1| 1| 1| 0|

4 | 1| 0| 1| 0| 0|

5 | 1| 1| 1| 1| 0|

6 | 1| 1| 1| 0| 0|

7 | 1| 1| 1| 1| 1|

8 | 0| 0| 0| 0| 0|

9 | 1| 1| 1| 0| 0|

10 | 0| 1| 1| 0| 1|

11 | 0| 0| 0| 0| 0|

12 | 1| 1| 1| 0| 0|

13 | 1| 1| 1| 0| 0|

14 | 0| 0| 0| 0| 0|

15 | 1| 1| 1| 1| 0|

16 | 0| 0| 0| 0| 0|

17 | 1| 1| 1| 1| 1|

18 | 1| 1| 1| 1| 1|

19 | 1| 1| 1| 1| 1|

20 | 0| 0| 0| 0| 0|

21 | 0| 0| 0| 0| 0|

22 | 0| 0| 0| 0| 0|

23 | 0| 0| 0| 0| 0|

24 | 0| 0| 0| 0| 0|

25 | 1| 1| 1| 0| 0|



246 MPVS Tool

26 | 1| 1| 1| 0| 0|

27 | 1| 0| 1| 1| 1|

28 | 1| 1| 1| 0| 0|

29 | 1| 1| 1| 1| 1|

30 | 0| 1| 1| 0| 1|

31 | 1| 1| 1| 1| 1|

32 | 1| 1| 1| 1| 0|

33 | 0| 0| 0| 0| 0|

34 | 0| 0| 0| 0| 0|

35 | 1| 1| 1| 0| 0|

36 | 0| 1| 1| 1| 1|

37 | 1| 1| 1| 0| 0|

38 | 0| 0| 0| 0| 0|

39 | 0| 1| 1| 1| 0|

40 | 1| 1| 1| 0| 0|

41 | 1| 1| 1| 0| 0|

42 | 1| 0| 1| 0| 0|

43 | 1| 1| 1| 1| 1|

44 | 0| 0| 0| 0| 0|

45 | 0| 1| 1| 0| 1|

46 | 1| 1| 1| 1| 1|

47 | 1| 1| 1| 1| 1|

48 | 0| 0| 0| 0| 0|

49 | 0| 0| 0| 0| 0|

50 | 0| 0| 0| 0| 0|

51 | 0| 0| 0| 0| 0|

52 | 1| 1| 1| 0| 0|



B.5. Solutions to the Exercises Presented in Chapter 7 247

B.5 Solutions to the Exercises Presented in Chap-
ter 7

In this section, we provide the solutions for the exercises given to the
students during the tool experimentations.

Data: const n <= 5 ;

const minv = 0 ;

const maxv = 2 ;

tab a : array [1..n] of minv .. maxv ;

var x : minv .. maxv ;

Auxiliary_variables:

var i : 0 .. maxint ;

Result_variables:

var present : boolean ;

Precondition: initialised(x) & initialised(1, n : a)

Postcondition: unchanged(x) & unchanged(1, n : a) &&

(present <=> (exist i : 1 <= i <= n : a[i] = x))

Invariant: unchanged(x) & unchanged(1, n : a) & 0 <= i & i <= n

&& (forall j : 1 <= j <= i : a[j] != x)

Init: i := 0

Iter: i := i +1

Clot: present:= !(i=n)

Halting_condition: i = n || a[i +1]=x

Variant: n - i

Figure B.1: The sequential search exercise



248 MPVS Tool

Data: const n <= 5 ;

const noir = 7 ;

const jaune = 8 ;

const rouge = 9 ;

tab a : array[1 .. n] of noir .. rouge ;

Auxiliary_variables:

var in : 0 .. maxint ;

var ij : 0 .. maxint ;

var ir : 0 .. maxint ;

var x : noir .. rouge ;

Precondition: initialised(1, n : a)

Postcondition: permut(a, a_0, 1, n, 1, n) &

(exist i : 0 <= i <= n :

(exist j : i <= j <= n :

(forall kn : 1 <= kn <= i : a[kn] = noir)

& (forall kj : i + 1 <= kj <= j : a[kj] = jaune)

& (forall kr : j + 1 <= kr <= n : a[kr] = rouge)

))

Invariant: 0 <= in & in <= ij & ij <= ir & ir <= n &&

permut(a, a_0, 1, ir, 1, ir) & unchanged(ir + 1, n : a) &

(forall kn : 1 <= kn <= in : a[kn] = noir) &

(forall kj : in + 1 <= kj <= ij : a[kj] = jaune) &

(forall kr : ij + 1 <= kr <= ir : a[kr] = rouge)

Init: in := 0; ij := 0; ir := 0

Iter: x := a[ir + 1];

ir := ir + 1;

if a[ir]= rouge then skip

else ij := ij+1;

a[ir] := a[ij];

if x = jaune then a[ij] := x

else in := in+ 1;

a[ij] := a[in];

a[in] := x

end

end

Clot: skip

Halting_condition: ir = n

Variant: n - ir

Figure B.2: The Belgian flag exercise



B.5. Solutions to the Exercises Presented in Chapter 7 249

Data:

const m :1..3 ;

const n : 1..3 ;

const minv = 45 ;

const maxv = 51 ;

tab a : array [1 .. m] of minv .. maxv ;

tab b : array [1 .. n] of minv .. maxv ;

Auxiliary_variables: var ia : 0..maxint ;

var ib : 0..maxint ;

Result_variables:

var k : 0 .. maxint ;

Precondition:

(forall i : 1 <= i <= m - 1 : a[i] < a[i + 1]) &

(forall i : 1 <= i <= n - 1 : b[i] < b[i + 1])

Postcondition:

unchanged(1, m : a) & unchanged(1, n : b) &

k = (# v : minv <= v <= maxv :

(exist i : 1 <= i <= m : a[i] = v) &

(exist j : 1 <= j <= n : b[j] = v)

)

Invariant:

unchanged(1, m : a) & unchanged(1, n : b) &

1 <= ia & ia <= m + 1 & 1 <= ib & ib <= n + 1

&&

k = (# v : minv <= v <= maxv :

(exist i : 1 <= i <= ia -1 : a[i] = v) &

(exist j : 1 <= j <= ib - 1 : b[j] = v))

&

((ia = m+1 | ib = 1)|| a[ia] > b[ib-1] )

&

((ib = n+1 | ia = 1)|| b[ib] > a[ia-1])

Init: ia := 1 ; ib := 1 ; k := 0

Iter: if a[ia] < b[ib] then ia := ia + 1

else if a[ia] > b[ib] then ib := ib + 1

else ia := ia + 1 ; ib := ib + 1 ; k := k + 1

end

end

Clot: skip

Halting_condition: ia= m + 1 | ib = n + 1

Variant: m + n + 2 - ia - ib

Figure B.3: The number of values common to two strictly sorted arrays



250 MPVS Tool

Data:

const n <= 5 ;

const minv = 97 ;

const maxv = 99 ;

tab a : array [1 .. n] of minv .. maxv ;

var v : minv .. maxv ;

Auxiliary_variables:

var g : 0 .. n ;

var d : 0 .. n ;

Result_variables:

var nv : 0 .. n ;

Precondition:

initialised(v) &

(forall i : 2 <= i <= n : a[i - 1] <= a[i])

Postcondition:

unchanged(v) & unchanged(1, n : a) &

nv = (# i : 1 <= i <= n : a[i] = v)

Instr:

sp(dichoG.in) ; sp(dichoD.in) ; nv := d - g

Figure B.4: The number of occurrences of the value v in the array a in
log(n) time



B.5. Solutions to the Exercises Presented in Chapter 7 251

Data:

const n <= 5 ;

const minv = 97 ;

const maxv = 99 ;

tab a : array [1 .. n] of minv .. maxv ;

var v : minv .. maxv ;

Auxiliary_variables:

var i : 0 .. n ;

var s : 0 .. n ;

var m : 0 .. n ;

Result_variables:

var g : 0 .. n ;

Precondition: initialised(v) &

(forall j : 2 <= j <= n : a[j - 1] <= a[j])

Postcondition:

unchanged(v) & unchanged(1, n : a) &

0 <= g & g <= n &&

(forall j : 1 <= j <= g : a[j] < v) &

(forall j : g + 1 <= j <= n : v <= a[j])

Invariant:

unchanged(v) & unchanged(1, n : a) &

0 <= i & i <= s & s <= n &&

(forall j : 1 <= j <= i : a[j] < v) &

(forall j : s + 1 <= j <= n : v <= a[j])

Init:

i := 0 ; s := n

Iter:

m := (i + s + 1) div 2 ;

if a[m] < v then i := m else s := m - 1 end

Clot:

g := i

Halting_condition:

i = s

Variant:

s - i

Figure B.5: Subproblem SP1 using a binary search to compute the number
of occurrences of v in a in log(n) time



252 MPVS Tool

Data:

const n <= 5 ;

const minv = 97 ;

const maxv = 99 ;

tab a : array [1 .. n] of minv .. maxv ;

var v : minv .. maxv ;

Auxiliary_variables:

var i : 0 .. n ;

var s : 0 .. n ;

var m : 0 .. n ;

Result_variables:

var d : 0 .. n ;

Precondition: initialised(v) &

(forall j : 2 <= j <= n : a[j - 1] <= a[j])

Postcondition:

unchanged(v) & unchanged(1, n : a) &

0 <= d & d <= n &&

(forall j : 1 <= j <= d : a[j] <= v) &

(forall j : d + 1 <= j <= n : v < a[j])

Invariant:

unchanged(v) & unchanged(1, n : a) &

0 <= i & i <= s & s <= n &&

(forall j : 1 <= j <= i : a[j] <= v) &

(forall j : s + 1 <= j <= n : v < a[j])

Init:

i := 0 ; s := n

Iter:

m := (i + s + 1) div 2 ;

if a[m] <= v then i := m else s := m - 1 end

Clot:

d := i

Halting_condition:

i = s

Variant:

s - i

Figure B.6: Subproblem SP2 using a binary search to compute the number
of occurrences of v in a in log(n) time



Bibliography

[1] P. Amay. Correctness by Construction: Better can also be Cheaper.
CrossTalk, pages 24–28, 2002.

[2] J. Arsac. Vous avez dit algorithmique? In Actes du deuxième colloque
francophone sur la didactique de l’informatique, 1990.

[3] J. Barnes. High Integrity Software: The Spark Approach to Safety and
Security. Addison-Wesley, 2003.

[4] S. Berezin, A. Biere, E. Clarke, and Y. Zhu. Combining Symbolic
Model Checking with Uninterpreted Functions for Out-of-Order Pro-
cessor Verification. In Proceedings of the Second International Con-
ference on Formal Methods in Computer-Aided Design, volume LNCS
1522, pages 369–386. Springer-Verlag, 1998.

[5] G. Brat, K. Havelund, S. Park, and W. Visser. Java PathFinder - A
second generation of a Java model checker. In Proc. of the Workshop
on Advances in Verification, Chicago, Illinois, July 2000.

[6] J. v. C.-B. Breunesse and B. Jacobs. Specifying and verifying a decimal
representation in Java for smart cards. In C. R. H. Kirchner, editor,
Algebraic Methodology and Software Technology, volume LNCS 2422,
pages 304–318. Springer-Verlag, 2002.

[7] L. Burdy, Y. Cheon, D. R. Cok, J. Kiniry, G. T. Leavens, K. R. M.
Leino, and E. Poll. An overview of JML and applications. In Eighth
International Workshop on Formal methods for Industrial Critical Sys-
tem (FMICS 03), volume 80, pages 73–89, Elsevier, 2003. Electronic
Notes in theoretical Computer Sciences.

[8] N. Cataño and M. Huisman. Formal specification of Gemplus’ electronic
purse case study using ESC/Java. In Proc. of Formal Methods Europe
(FME 2002), volume 2391, pages 272–289. LNCS Springer-Verlag, 2002.

[9] W. Chan, R. Anderson, P. Beame, S. Burns, F. Modugno, D. Notkin,
J. Reeseand, and al. Model checking large software specifications. IEEE
Transactions on Software Engineering, 24(7):498–520, 1998.

253



254 BIBLIOGRAPHY

[10] Y. Cheon and G. T. Leavens. A simple and practical approach to
unit testing: The JML and JUnit way. In Boris Magnusson, editor,
ECOOP 2002- Object-Oriented Programming, 16th European Confer-
ence, volume LNCS 2374, Spain, 2002. Springer-Verlag.

[11] E. Clarcke, D. Kroening, and F. Lerna. A Tool for Checking ANSI-C
Programs. In Tools and Algorithms for the Construction and Analysis of
Systems (TACAS 2004), volume LNCS 2988, pages 168–176. Springer,
2004.

[12] D.R. Cok and J.R. Kiniry. ESC/Java2: Uniting ESC/Java and JML. In
Proc. of the International Workshop on the Construction and Analysis
of Safe, Secure, and Interoperable Smart Devices (CASSIS’04), volume
LNCS 3362, pages 108–128. Springer, 2004.

[13] J. Corbett, M. Dwyer, J. Hatcliff, S. Laubach, C. Pasareanu, Robby,
and H. Zheng. Bandera: Extracting finite-state models from Java source
code. In Proc. 22nd International Conference on Sofware Engeneering,
pages 439–448. ACM, 2000.

[14] M. Derroitte and B. Le Charlier. Un système d’aide à l’enseignement
d’une méthode de programmation. In Actes du premier colloque fran-
cophone sur la didactique de l’informatique, 1989.

[15] D. L. Detlefs, G. Nelson, and J. B. Saxe. Simplify: A Theorem Prover
for Program Checking. Technical report, Compaq System Research
Center, 2002.

[16] D.L. Detlefs, K. Rustan, M. Leino, G. Nelson, and J.B. Saxe. Extended
Static Checking. Technical Report Research Report 159, Compaq Sys-
tems Research Center, 1998.

[17] E.W. Dijkstra. A Discipline of Programming. Prentice Hall, Englewood
Cliffs, 1976.

[18] I. Dony and B. Le Charlier. Finding errors with Oz. In Techniques for
implementing constraint programming system, Workshop held in conj.
with CP2002, 8th International Conference on practice of constraint
programming, Ithaca, 2002.

[19] I. Dony and B. Le Charlier. Why don’t we Simply Use a Model Checker.
In Third International Workshop on Constraints in Formal Verification,
2003.

[20] I. Dony and B. Le Charlier. A program Verification System based on
Oz. In Proc. second International Conference MOZ 2004, volume LNCS
3389, Charleroi, Belgium, 2004. Springer.



BIBLIOGRAPHY 255

[21] I. Dony and B. Le Charlier. A Tool for Helping Teach a Program-
ming Method. In The Eleventh Annual Conference on Innovation and
Technology in Computer Science Education, volume 38, pages 212–216,
University of Bologna, Italy, 2006. ACM Press.

[22] I. Dony and B. Le Charlier. Why don’t we Simply Use a Model Checker
(or a tool based on general theorem proving)? submitted for a special is-
sue of the Journal on Satisfiability, Boolean Modeling and Computation
(JSAT) on the topic of application of constraints to formal verification
(CFV), 2007.

[23] C. Flanagan, K. R. M. Leino, M. Lillibridge, G. Nelson, J. B. Saxe,
and R. Stata. Extended static checking for Java. In Proc. of the ACM
SIGPLAN 2002, volume 37, pages 234–245, New York, 2002. Confer-
ence on Programming Language Design and Implementation(PLDI’02),
ACM Press.

[24] R.W. Floyd. Assigning meaning to programs. In Proc. of Symposia in
Applied Mathematics, volume 19, pages 19–32. Mathematical Society,
1967.

[25] N. Gehani. Ada: An Advanced Introduction. Prentice-Hall, Engelwood
Cliffs, Nj, 1983.

[26] D. Gries. The Science of Programming. Springer-Verlag, 1981.

[27] T.A. Henzinger, R. Jhala, R. Majumbar, and G. Sutre. Lazy abstrac-
tion. In In proc. of the 29th Annual Symposium on Principles of Pro-
gramming Language, pages 58–70. ACM Press, 2002.

[28] C.A.R. Hoare. An axiomatic approach to computer science. Commu-
nications of the ACM, 12, 1969.

[29] C.A.R. Hoare. An axiomatic definition of semantics. Communications
of the ACM, 12(10), 1969.

[30] C.A.R. Hoare. Procedures and parametres: an axiomatic approach. In
Symposium on Semantics of Programming Languages, pages 102–116,
1971.

[31] C.A.R. Hoare. Proof of correctness of data representations. Acta In-
formatica, 1:271–281, 1972.

[32] C.A.R. Hoare and N. Wirth. An axiomatic definition of the program-
ming language Pascal. Acta Informatica, 2:335–355, 1973.

[33] G. Holzmann. The Spin model checker. IEEE Transactions on Sofware
Engeneering, 23(5):279–295, May 1997.



256 BIBLIOGRAPHY

[34] Bergeretti J.-F. and B. A. Carré. Information Flow and Data-Flow
Analysis of while-Programs. In ACM, editor, ACM Transactions on
Programming Languages and Systems, volume 7, pages 37–61, New
York, 1985.

[35] J. R. Kiniry. The Logics and Calculi of ESC/Java2. Technical report,
2004.

[36] K. Lau. A beginner’s Course on Reasoning About Imperative Programs.
In Proc. Symposium on Teaching Formal Methods, volume LNCS 3294,
Ghent, Belgium, 2004. Springer-Verlag.

[37] B. Le Charlier. Introduction à la programmation. Librairie des Sciences
des FUNDP, Namur, 1999.

[38] B. Le Charlier. Introduction à l’Algorithmique et à la Programmation.
http://www.icampus.info.ucl.ac.be/SINF1160/, 2007.

[39] B. Le Charlier. Méthodes de Conception de Programmes.
http://www.icampus.info.ucl.ac.be/INGI2122/, 2007.

[40] B. Le Charlier and P. Flener. Specifications are necessarily informal
or: some more myths of formal methods. The journal of Systems and
Software, March, 1998.

[41] G. T. Leavens and Y Cheon. Design by Contract with JML. In
MOVEP’04 6th school on MOdeling and VErifying parallel Processes,
Université Libre de Bruxelles, Belgium, 2004.

[42] J. P. Marques-Silva and K. A. Sakallah. GRASP: A New Search
Algorithm for Satisfiability. In Proc. of International Conference
on Computer-Aided Design, pages 220–227, Santa Clara, California,
U.S.A., 1996.

[43] K. L. McMillan. The SMV model checking system.
http://www.cis.ksu.edu/santos/smv-doc/.

[44] K. L. McMillan. Symbolic Model Checking. Kluwer Academic Publish-
ers, 1993.

[45] MOBIUS. Mobility ubiquity security. http://mobius.inria.fr, 2007.

[46] P. Naur. Proofs of algorithms by general snapshots. BIT 6, pages
310–316, 1969.

[47] G. Nelson. Combining satisfiability procedures by equality-sharing. In
W. W. Bledsoe and D. W. Loveland, editors, In Automatic Theorem
Proving, pages 201–211. American Mathematical Society, 1983.



BIBLIOGRAPHY 257

[48] A. S. Ruocco. Experiences using Spark in an Undergraduate CS Course.
In Proc. of the ACM SIGAda Annual International Conference, volume
25(4), pages 37–40. ACM Press, 2005.

[49] C. Schulte. Programming Constraint Services, volume 2302 of Lec-
ture Notes in Artificial Intellingence. Springer-Verlag, Berlin, Germany,
2002.

[50] P. Van Roy and S. Haridi. Concepts, Techniques, and Models of Com-
puter Programming. The Mit Press, 2004.


