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Abstract
A cyber-physical system (CPS) is a smart mechanical environment, developed by an amalgamation of computation,

networking, and physical dimensions. Each CPS consists of a network of devices, often limited in computing, storage, or

bandwidth resources. Moreover, the frequent small-scale communications between the various counterparts of CPS require

data and computation of CPS to be deployed close to each other, with the ability to support micro-executions. Due to these

operational requirements, CPS faces several inherent challenges, uncommon to a traditional computational environment. In

this paper, we describe software-defined cyber-physical systems (SD-CPS), a CPS framework built by extending and

adapting the design principles of software-defined networking (SDN) into CPS. We realize the support for CPS operation

as a workflow of microservices, possibly in continuous or cyclic execution. SD-CPS coordinates each CPS execution step,

performed by a microservice, through an extended SDN controller architecture. By creating, placing, deploying, migrating,

and managing the computation processes of CPS as service workflows at the edge, SD-CPS orchestrates the entire lifecycle

of the CPS effectively and efficiently. SD-CPS thus addresses the general challenges of CPS, concerning modeling,

development, performance, management, communication and coordination, scalability, and fault-tolerance, through its

software-defined approach. Our evaluations highlight the efficiency of the SD-CPS framework and the scalability of its

SDN controller to manage the complex CPS environments.

Keywords Cyber-physical system (CPS) � Software-defined networking (SDN) � Message-oriented middleware (MOM) �
Software-defined systems (SDS)

1 Introduction

A cyber-physical system (CPS) comprises numerous sen-

sors or sensor-based devices that collect different types of

data from various access points. It is composed of

autonomous systems with frequent communication among

them [29]. Smart homes [42], Smart grids [24], smart

cities [20, 44], mobile ad-hoc networks (MANETs) [37],

and vehicular ad-hoc networks (VANETs) [64] are a few

systems that are currently built as CPS. CPS often have

execution nodes in an edge network. They utilize the

computing resources in the edge nodes as surrogates for the

workload execution from their resource-constrained devi-

ces [46]. Such use of CPS eliminates the resource limita-

tions in CPS execution. Thus, adoption and capabilities of

CPS continues to grow with the use of edge.

1.1 Common challenges faced by CPS

CPS faces several challenges in design and performance,

due to its scale and variety in its devices [28]:

(Ch1) Unpredictability of the execution

environments [27]
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(Ch2) Orchestrating the communication and coordination

within the CPS [47].

(Ch3) Security, distributed fault-tolerance, and recovery

upon system and network failures [9].

(Ch4) Decision making in the large-scale geo-distributed

execution environments [53].

(Ch5) Modeling and designing the complex CPS

environments [14].

(Ch6) Management and orchestration of the intelligent

agents [8].

Deploying the workloads at the edge can offer a high-

performant execution for the latency-sensitive CPS appli-

cations [45]. However, the current cloud and edge envi-

ronments often do not favor a seamless deployment and

smooth frequent migrations of the workloads between the

execution environments, which are essential for CPS. This

limits the number of edge nodes that can participate in the

CPS execution. Furthermore, the diversity of the edge

nodes as well as CPS has created a management challenge

in the execution of CPS workloads.

1.2 Network softwarization and CPS

Software-defined networking (SDN) offers programmabil-

ity and management capabilities, to data networks, typi-

cally within cloud networks, but also extended to wide area

network scenarios such as content distribution networks

(CDNs) [63]. Initiatives such as network service orches-

tration (NSO) [7] and lifecycle service orchestration

(LSO) [41] aim at addressing the shortcoming in resource

orchestration for workflows in the network environments.

They unify the network services through standardization, to

improve the interoperability of services. The state-of-the-

art indicates the potential to leverage SDN and the network

softwarization efforts to manage the CPS environments

more effectively. SDN has been proposed to improve the

resilience of multi-networks in CPS [49], secure the CPS

networks through SDN-assisted emulations [4], and

enhance the resilience [17] of CPS. These early research

efforts highlight the potential of SDN and how its global

network awareness and controllability can be extended to

model and manage CPS. However, despite these promising

early results on exploiting SDN to manage CPS efficiently,

currently there is no complete framework for leveraging

network softwarization to mitigate the identified challenges

of CPS.

A framework to support workload execution at the edge

with capabilities to support frequent communication and

workload migration is essential for the successful execu-

tion of CPS workloads at the edge. We propose executing

the CPS workloads as web service workflows can offer

unified deployment and execution, as web services are

developed following standards. However, for the success-

ful execution of the CPS workflows at the edge, we need to

build an orchestration framework to manage the services

and resources in the wide area network, as well as the CPS

environment.

1.3 Motivation

Given the above premises, we aim at addressing the fol-

lowing research questions in this paper:

(RQ1) Can SDN or a more encompassing approach

inspired by SDN help mitigate the identified

challenges of CPS that hinder its wide-scale

adoption?

(RQ2) Can we seamlessly scale such an approach beyond

data centers, to a wide area network, for modeling

and executing CPS?

(RQ3) Can we leverage the edge resources for a

distributed execution of CPS workloads through a

unified control, without additional overheads?

(RQ4) Can we generalize the CPS execution as service

workflows at the edge, to support interoperable

execution across wide area networks such as edge

and cloud-assisted overlay networks?

1.4 Contributions

The goal of this paper is to answer the identified research

questions to mitigate the major challenges faced by CPS.

We presented an early design of our software-defined

approach for CPS in our previous work [26]. The main

contributions of this paper are:

1. A generic framework for building and executing CPS

through service workflows at the edge, to support

interoperable execution of the workloads in multi-

domain networks (RQ3, RQ4 and Ch2). Presented in

Sect. 3.1.

2. Software-defined cyber-physical systems (SD-CPS), a

scalable and distributed software-defined system

(SDS), to coordinate the heterogeneous CPS devices

by extending SDN with message-oriented middleware

(MOM) protocols [11] for wide area networks (RQ1,

RQ2, and Ch4). Presented in Sect. 3.2.

3. Incorporating user policies and resource requirements

for efficient CPS resource allocation and migration.

Thus, offering efficient control of the network

resources for the user applications, despite the unpre-

dictability of the CPS networks that are shared across

several users (Ch1). Presented in Sect. 3.3

4. A reusable execution model for the CPS workflows to

modeling, incremental development, and seamless
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execution in a sandbox and production environments.

Thus, managing the execution of CPS in the physical

and cyberspaces effectively with minimal duplicate

effort (Ch5 and Ch6). Presented in Sect. 3.2.

5. Resilient and agile CPS execution by offloading the

CPS workload as service composition workflows at the

edge, by exploiting a logically centralized control of

the edge resources (Ch3). Presented in Sect. 3.4.

The complexity of CPS increases due to both volume and

variety of its components. The edge offers a compromise

on bandwidth usage between on-device or on-premise

computation and computation in the cloud. Thus, it has

been proposed for specific smart environments such as a

smart campus [35] or connected cars [38]. SD-CPS miti-

gates the complexity of the computation and limitation of

the resources by decoupling and decomposing the execu-

tion of CPS into workflows of microservices and offloading

the workflows to edge environments. However, discovering

the resource availability and deploying the workflow as

service invocations at the nodes need to be performed

effectively to reap the benefits of the edge. We design a

controller deployment as the core of SD-CPS to perform

the overall coordination and manage the ‘‘cyber’’ of the

CPS and orchestrate the CPS elements. Along with its

software-defined approach, SD-CPS executes CPS in a

programmable and predictable manner, inherently

addressing many of the operational challenges of CPS. We

implemented and evaluated a prototype to assess the per-

formance of the SD-CPS approach. The quantitative eval-

uations highlight the efficiency, success rate, and

scalability of CPS execution modeling and resource allo-

cation through edge workflows.

1.5 Paper organization

SD-CPS is built as a generic software-defined approach

applicable for the CPS environments. However, we explain

the motivation behind SD-CPS using MANETs and

VANETs as a specific use case scenario, in Sect. 2. Sec-

tion 3 presents the SD-CPS solution architecture. Section 4

presents the SD-CPS implementation. We further narrow

down our focus to VANETs in the prototype evaluations

(presented in Sect. 5) for a more representative outcomes

for the specific network scenario. Section 6 further elabo-

rates how SD-CPS builds upon the state-of-the-art, and

qualitatively assesses it against the other research work

addressing the challenges faced by CPS. Finally, Sect. 7

concludes the paper with the current state of the research

and future research directions.

2 MANETs and VANETs: a case for SD-CPS

Complex computations at the mechanical or physical

devices of CPS often require resources beyond what is

available physically on the device, such as a smart vehicle

or a mobile terminal. Hence, workloads heavy in comput-

ing or memory are delegated to the cloud-based cyber-

space, instead of executing them (often only as firmware)

in the smart terminals of the CPS. In this section, we will

look into a few common characteristics of CPS that moti-

vate the case for an orchestration framework in a wide area

network, by discussing MANETs and VANETs as potential

cases for CPS.

MANETs are comprised of mobile devices, that can

function independently as autonomous systems as well as

sensors, while also communicating among themselves. A

typical example of a MANET device, a smart mobile

phone, can sense its environment, including (i) background

noise level through its audio sensor (microphone), (ii) light/

vision through its camera, and (iii) motion through its

motion/shock detectors. In addition to the sensing capa-

bilities, a smart mobile device also has computing and

memory resources (that can be leveraged to detect, analyze,

and monitor user activity such as standing, walking, run-

ning, and cycling), though in a limited capacity compared

to the traditional computation devices.

VANETs include autonomous automotive systems such

as networks composed of self-driving vehicles [3] or smart

vehicles [57]. A self-driving vehicle depends heavily on

the contextual information sensed by itself as well as those

shared by other smart vehicles, due to the absence of an

experienced human driver. Smart vehicles collaborate and

coordinate with one another, to share information such as

current traffic, and dynamically decide their traveling path

by analyzing the accumulated dynamic data, in real-time.

While VANETs can be considered a subset of MANETs,

by its nature regarding its velocity, VANETs have a higher

degree of dynamism than the other MANETs such as

mobile terminals. VANETs are expanding their scope

beyond the road traffic, also to consider the air traffic

monitoring and aircraft control [51]. These latest

advancements have widened the research challenges asso-

ciated with the CPS.

An automobile such as a connected car [19] or an air-

craft can pass through various control stations, while on the

move. Therefore its proximity to sensors (including satel-

lites for the air traffic control) or computing nodes (for

connected cars) in the VANET differs with time. Thus, the

current updated location of a smart device or terminal

needs to be considered when some data is routed towards it.

Research identifies networking and message exchanging

problems caused by the dynamism in VANETs [64].
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Remarkably, VANET CPS needs to route various messages

from adjacent sensors or other vehicles towards a moving

vehicle considering its current geographic location and

ensure that an ongoing flow is served following the pre-

vious route to avoid data loss or inconsistency.

Metadata in the controller should be dynamically

updated to reflect the changes in the cost of each path in a

dynamic CPS network environment such as MANETs,

VANETs, and robotics systems. SDN has been extended

for VANETs to coordinate the data scheduling efficiently

in a centralized manner [34]. Previous research has pro-

posed using cloud-assisted execution for CPS applications

such as context-aware vehicles [62]. The availability of

resources in their proximity to the execution has led to

considering smart devices to utilize the edge instead of

cloud resources [59]. While VANET communications are

typically mouse flows (data flows caused by frequent

small-scale interactions), flows such as backup of vehicular

data to the edge cloud are heavy in bandwidth requirements

and data volume, and are elephant flows. Such elephant

flows need to be rerouted with minimal overhead if the

previously chosen path is not the best-fit anymore, due to

the mobility of the vehicle. These are complex traffic

engineering problems that are addressed by advances in

SDN research [1]. However, the scale and variety of CPS

require further research beyond the intra-data center traffic

engineering.

3 Solution architecture

SD-CPS aims at mitigating the design and operational

challenges of CPS through its software-defined approach.

In this Section, we will look into the solution architecture

of SD-CPS.

3.1 CPS execution as service workflows

SD-CPS consists of multiple tenants, the users who con-

figure and deploy their application workload as workflows,

abiding by their respective policies. Each tenant defines

service level objectives (SLOs) for her workflows, enabling

differentiated execution based on tenant-defined policies.

The multi-tenant execution of SD-CPS virtually associates

each workflow with its tenant at the edge nodes despite

sharing the execution space with other tenants.

SD-CPS designs a CPS execution as a workflow com-

posed of web services. These services would typically be

running iteratively or periodically, thus continuously car-

rying out monitoring, assessment, decision, and actuation

activities. Consider a traffic analysis workflow w belonging

to a VANET CPS. It is composed of various services,

including (i) data sensing at each of the vehicular sensor

devices, (ii) data matching from various adjacent vehicles

for data correction to minimize noises, (iii) data integration

at an edge node, (iv) analytics based on current and past

data, (v) traffic prediction on each route, and (vi) receiving

or sending personalized information from the edge cloud

back to the vehicle. Equation 1 illustrates a generalized

form of such a CPS workflow, composed of various

services.

8x 2 Zþ;w ¼ s1 � s2 � � � � � sx: ð1Þ

The CPS data flow goes through various intermediary

nodes, from the sensors that collect data as input devices, to

the actuators that perform actions based on the contextual

data. These links between the nodes form the execution

paths of SD-CPS workflows. Decomposition of the work-

load into smaller deployable services (e.g., containerized

microservices) at the edge helps increase the perceived

path redundancy of the workflow. SD-CPS exploits an

extended controller deployment to manage the metadata

that governs the alternative execution paths for each

workflow of a CPS execution. The controller is physically

decentralized, yet logically centralized. Thus, it controls

the service workflows globally, yet in a decentralized

manner. The workflows can have different replication

levels for each service, based on the user policies indicat-

ing the importance of each of them. We aim for increased

resilience, load balancing, and congestion control among

the underlying network paths with the path redundancy and

the global awareness of the controller on their existence.

Figure 1 models a wireframe of the underlying system

of CPS with data flow between two smart devices, with

multiple potential paths. The origin and destination nodes

are respectively the start and the end nodes of a commu-

nication initiated by a distributed computation. In a data

center network, these nodes are hosts or servers, while the

intermediate nodes are traditionally switches that connect

the underlying network. However, due to the heteroge-

neous nature of CPS, origin or destination can be smart

mobile devices/terminals or virtual execution spaces in the

controller, while intermediate or destination nodes can be

surrogate nodes such as edge servers or switches in a data

center network. In a mobile CPS or a MANET, these end

nodes can be dynamic with an ever-changing geographic

location, such as automobile devices, moving robots, or

smartphones on the move.

With the dynamic traffic of network flows, a few service

or network nodes and links may become congested.

Moreover, some nodes may be prone to failures. The SD-

CPS controller identifies the congested, malfunctioning, or

malicious nodes and links (that are highlighted and dif-

ferentiated as unhealthy in Fig. 1 for the ease of reference)

through its controller, by monitoring the responsiveness of

the nodes. Thus the controller alters execution paths
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towards a healthy alternative dynamically. It creates sub-

flows by diverting or cloning parts of the flows and sends

them towards a node known as the clone destination. For

mission-critical CPS such as ICU medical monitoring

systems, the critical services need to execute correctly and

timely. In such workflows, when an intermediary is iden-

tified as failed or slow, the controller enforces partial

redundancy in the data flows to ensure correctness and end-

to-end delivery. By the extension of this, the controller

aims for a load balanced execution environment at the edge

among the microservice deployments.

SD-CPS defines a clone destination where it recon-

structs the flow from the subflows it created. The clone

destination can be as same as the original destination of the

flow, or an intermediary node in the flow path. In case 1

identified in Fig. 1, the clone destination is the same as the

original destination of the CPS workflow. While this sce-

nario may lead to a higher level of redundancy due to the

presence of duplicate or replicated subflows, it avoids the

need to manipulate the network flows at the intermediary

nodes. However, case 2 has a clone destination that differs

from the original. Here the cloned subflow is sent towards

an intermediate node (on the original path connecting the

origin and destination), in an alternative path. The flow is

recomposed afterward. The case 2 approach minimizes

unnecessary redundancy when it is possible to recompose

the flow at the clone destination or an intermediate node.

When such a recomposition of flows (i.e., making flows

reconverge) is impossible at an intermediate node due to

the technical difficulties, or due to the nature of the con-

gestion or network failure itself, the flow is eventually

recomposed when it reaches the destination node as in the

case 1.

3.2 SD-CPS coordination

The controller is the element with the highest processing

power in the SD-CPS ecosystem. It manages the commu-

nication and coordination across all the entities, including

the CPS, humans, and the applications. It controls the inter-

domain CPS workflows at the edge through subscriptions

and messages. Rather than having a single centralized

controller deployment (including the distributed controller

architectures or hierarchies that are still managed by a

single entity, thus effectively an administratively central-

ized one), SD-CPS proposes a federated controller

deployment. An SD-CPS federated controller deployment

comprises numerous controllers from different domains or

organizations at the edge. Each controller has protected

access to the other controllers of the federated controller

deployment, or a Controller Farm [25].

The CPS workload needs to be defined in a format that

supports migration and interoperability between multiple

edge nodes, due to the small-scale and heterogeneity of

these nodes. Therefore, SD-CPS represents the workloads

as a decomposable chain, a microservice workflow, to

achieve a seamless execution across the execution envi-

ronments. The workload is offloaded to the edge as web

service invocations if the resource capacity is limited in the

CPS firmware. With a unified view, SD-CPS chooses the

workflows to be executed in its cyberspace or at the edge,

based on the resource availabilities. Thus, SD-CPS devel-

ops a seamless, unified approach to modeling a CPS in

cyberspace and executing it in the physical environment,

consisting of the mechanical devices (physical space) as

well as the edge nodes as the surrogates or extended

cyberspace.

CPS applications are often first modeled as software

simulations before being built as device firmware or

deployed into the physical devices of CPS. SD-CPS per-

forms a simulation through placeholders that can be con-

trolled by its controller, in the same way the controller

coordinates the modeled physical systems. The SD-CPS

controller consists of the Modeling Sandbox, a controlled

space to execute the CPS models. This controlled execution

of the same code in the cyberspace significantly reduces the

unpredictability of CPS executions. Figure 2 represents

how the systems are modeled in the sandbox environment

of the SD-CPS controller. The counterparts of the CPS

physical space are modeled in the cyberspace as virtual

intelligent agents. The interactions among the CPS coun-

terparts in the physical space are mapped between the

Virtual Intelligent Agents to reflect the communications in

the cyberspace and to model the workflows better. Such a

mapping offers latency-aware resource provisioning by

Origin

D
es

tin
at

io
n

 Case 2 : Sending the subflow 
     to an intermediate node

Case 1: Sending the subflow 
  to the destination node

Original Flow

Links and Nodes

- Healthy

- Unhealthy

Tenant-Aware Virtual Network Allocation

Fig. 1 Executions as service

workflows with alternative

execution paths
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understanding the interaction between the service work-

flows of SD-CPS entities.

The Controller Farm orchestrates both the physical

systems and their simulated counterparts in the cyberspace.

By simulating the API that connects the physical space into

the cyberspace, SD-CPS creates a one-to-one mapping

between the simulated Virtual Intelligent Agents and

interdependent components of the physical system. The

interactions are modeled and closely monitored in the

Modeling Sandbox before the decisions are loaded into the

physical space.

Thus, the Modeling Sandbox seamlessly models the

executions in the cyberspace as simulations and emulations

and then load the changes to the physical execution envi-

ronment. The simulation functions as a virtual proxy for

the designed system that it simulates—including its actors,

such as sensors, actuators, and other physical and

mechanical components. SD-CPS thus builds once and

executes the same code in the controller’s Modeling

Sandbox or the physical space, reusing the same single

development effort.

The SD-CPS modeling approach minimizes the code

duplication by executing the real code from the controller,

instead of having a simulation or model running custom

code, thus independent of the actual execution. The SD-

CPS controller, devised as an extension to OpenDaylight,

is developed in Java, a high-level language. Therefore, it

enables deployment of custom applications as controller

plugins to alter or reprogram the behavior of CPS. We

simulate the execution environment and the CPS workload

through Java objects inside the SDN controller. The

physical system loads the decisions from the cyberspace.

The multi-tenant execution space of SD-CPS supports

parallel modeling of multiple CPS. The microservice-based

SD-CPS execution further avoids repeated computation

efforts by caching the previously completed service

outcomes.

3.3 Resource allocation

SD-CPS deploys the CPS workflows as services across the

edge, aiming to satisfy the CPS policies while maximizing

the overall resource utilization of the edge nodes. SD-CPS

leverages the node utilization and health statistical data

retrieved from the edge nodes as messages, to estimate the

utilization of edge nodes. This health check of the edge

nodes ensures that the resource requirements of the ser-

vices are met, and the available nodes are sufficiently uti-

lized with minimal idling nodes that are connected to the

edge.

SD-CPS thus identifies, with the deployment of a service

s of a CPS workflow w, how much resources a node n or a

link ln that connects to the node will have in excess. The

underutilization of a resource r of a node n (with s in n),

and the underutilization of bandwidth of a link ln (with s in

ln) are respectively defined by drn and dbln in Eq. 2.

ð
P

s2Sn rsÞ represents the total resource consumption by the

other service workloads in the node n. Similarly, ð
P

s2Sl bsÞ
denotes the consumption of the link resources (such as

bandwidth) by the existing service workloads sharing the

link l. Complete details on the notations are listed in

Table 1.

drn ¼ rn �
X

s2Sn
rs

 !

þ rs

 !

;

dbln ¼ bln �
X

s2Sl
bs

 !

þ bs

 ! ð2Þ

SD-CPS normalizes the variables using feature scaling

as in Eq. 3, to give equal weight to all the variables con-

sidered (including drn , dbln , tln , and ip). The max(X) and

min(X) indicate the potential edge node with the maximum

and minimum value for the variable X, respectively.

SD-CPS Controller

Modeled CPS agents

Interactions

Virtual 
Intelligent
Agents

Cyberspace

Physical Space  
/ Smart Device

Interactions
model()

Controller FarmController Farm

load()

Orchestrates

Modeling Sandbox
Fig. 2 CPS design and

development with SD-CPS

approach
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8x 2 X; x
^ ¼ x� minðXÞ

maxðXÞ � minðXÞ ð3Þ

Equation 4 defines a compound utility value Dn for each n.

Tenants define a coefficient for each of the resources, for

their workflows to input the relative importance of each of

node or link properties. The coefficients cr; cb; ct, and cp
are respectively defined for (i) each resource (such as

memory and CPU) availability in the nodes, (ii) the

bandwidth availability in the link towards the node, (iii)

latency to reach the edge from the CPS workload, and (iv)

other static properties. SD-CPS chooses the nodes with the

maximum utility value as the execution space for the ser-

vices of CPS workflow.

8n2N ;8ln2L;fcr;cbg�Zþ;fct;cpg�N;P¼PN [PL;

Dn¼

P

r2R
ðcr �drn

^
Þþcb �dbln

^
þ
� ct

tln
^
�
þ
X

p2P
ðcp � ip

^
Þ;

Q

r2R
drn

� �

�dbln[0

�1;
Q

r2R
drn

� �

�dbln�0

8
>>><

>>>:

ð4Þ

The inherent properties (such as the quality of service

(QoS) guarantees and uptime) of the nodes and the links

PN and PL are static and do not change frequently (except

in the case of failures, which edge providers are supposed

to minimize, often abiding by the service level agreements

(SLAs) [56]). However, the node properties such as current

available memory and CPU are dynamic and change with

time, based on the other service executions. Similarly, the

bandwidth of a link is shared with various flows, and is

limited by a maximum capacity bln . bln is shared by mul-

tiple tenant workflows, and each tenant workflow is throt-

tled in bandwidth allocation for fair use of the bandwidth

by various tenants. Thus, utilizing a particular link ln for s

depends on the existing virtual tenant network allocations.

SD-CPS aims to deploy the services in the nodes that

satisfy the minimal resource requirements, that is also

connected by a link to the CPS physical space with the

necessary bandwidth. The utility value for the nodes that

do not satisfy the minimal resource requirements for a

workflow is set to negative infinity (�1) to avoid choosing

these nodes for the CPS workflow deployment.

When multiple suitable edge nodes are available (the

nodes represented with a utility value other than �1), SD-

CPS chooses the one with the maximum utility value.

Thus, SD-CPS identifies and uses the edge nodes that offer

the best quality of experience (QoE) to the user, abiding by

the user-defined policies. SD-CPS gives appropriate

weights (as provided by the tenant) to each of the resource

requirement while satisfying the minimum requirements

for the workflow deployment at the nodes.

The resource allocation approach based on D is imple-

mented as the core allocation algorithm and incorporated

into the core SDN controller of SD-CPS, as an extension.

The controller, based on its contextual information on the

nodes and the links, ensures that the resource availabilities

in the node and the link that connects the node can support

the maximum resource requirements of the service work-

load. The controller then deploys the services of the

workflow, fulfilling their resource requirements while

aiming to satisfy the tenant policy in allocating the

resources to the workflows. The execution node location

for each type of service can be cached in the CPS devices,

thus invoking controller only once before the start of the

workflow. Subsequent services of the same nature can

execute on the already chosen node, without reverting to

the controller for the resource allocation, unless controller

notifies of failure, congestion, or a change in the status of

the current execution nodes.

Table 1 Notation of the SD-

CPS representation
N The set of nodes (including the cyberspace and the edge nodes)

L The set of links that connect the CPS to 8n 2 N
R The set of computing resources (CPU, memory, etc.) in a node

PN The set of static properties of a node (availability, up time, etc.)

PL The set of static properties of a link (multitenancy, QoS guarantees, etc.)

Sn The set of services concurrently deployed in a node n

Sl The set of services concurrently sharing a link l

X The set of variables defining the utility value, D

ln A link towards the node n from the current CPS workload

ip Value of a static property p

rn Maximum resource capacity of a node

bln Maximum bandwidth allocated to a link ln

tln Latency of a link ln

rs Maximum resource consumption by a service s

bs Maximum bandwidth allocated to a service s
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3.4 SD-CPS controller

Figure 3 depicts the solution architecture of the SD-CPS

controller. The software-defined sensor networks are built

on top of the Controller Farm, representing each mobile

terminal or a smart device as a sensor or an actuator.

Tenant-Aware Virtual Network Allocation of SD-CPS

virtually allocates the bandwidth among the SD-CPS

tenants who share the execution space.

SD-CPS control plane can communicate with the

underlying network through implementations of SDN

southbound protocols such as OpenFlow [39] and interact

with the devices that are non-compliant with OpenFlow

through a similar approach inspired by OpenFlow. Various

other southbound protocols can be incorporated into the

SD-CPS controller to communicate with the devices, to

support the systems that are not SDN-native. The incor-

poration of multiple protocols ensures that while SD-CPS

has SDN at its core, it is not limited to software-defined

networks with SDN switches that are still far from wide-

spread in CPS settings (outside data centers).

An SD-CPS Controller Farm is a loosely connected

federated deployment of controllers, without a static hier-

archy or topology. Each controller in the Controller Farm

communicates with other controllers in a wide area net-

work flexibly through messages. The messages are man-

aged through subscriptions, to orchestrate the CPS devices

in the edge network. We extend OpenDaylight controller

with advanced message queuing protocol (AMQP) [60]

messaging integration, such that multiple stand-alone

controllers can communicate and collaborate through

messages brokered by ActiveMQ broker, without actually

sharing the single global view of the network. The SD-CPS

controller persists the messages in a queue for a higher

level of parallel messages, to handle the scale efficiently.

When the controller is overloaded, or the memory of the

server that runs the controller is overutilized due to a higher

number of messages, the messages are persisted to an

instance of KahaDB file-based data store in the local

filesystem. The stored messages can later be retrieved when

necessary.

A new CPS domain can enter a multi-domain edge

environment by using its controller to connect to the

Controller Farm. The controllers communicate with each

other to collaborate in a protected and managed manner, by

passing messages, leveraging the public or dedicated/pri-

vate connectivity between the domains. The MOM sup-

ports inter-domain communication and sharing the health

statistics of the edge nodes to the relevant CPS. Local

network topology data that is relevant to the other con-

trollers, including information on the data tree, event

notifications, and remote procedure calls (RPCs) are shared

with other controllers, based on their subscriptions. Thus

SD-CPS disseminates crucial information on its network

topology and service health statistics. By leveraging SDN

extended with MOM, the Controller Farm aims to provide

a seamless scaling with the problem size.

4 Prototype implementation

The SD-CPS controller is built by extending an SDN

controller. While any SDN controller can work with the

architecture, we chose OpenDaylight as it offers a modular

architecture based on Apache Karaf [43] OSGi runtime.

We used OpenDaylight Beryllium [40] as the default core

SDN controller, as its architecture makes it easy to extend

it with MOM middleware. We used Oracle Java 9.0.4 as
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the programming language and runtime, and ActiveMQ

5.15.2 [54] as the message broker for MOM protocols. We

implemented the resource allocation algorithms as an

extension to OpenDaylight.

SD-CPS controller exposes its functionalities to its users

through its APIs following the nomenclature and style of

the SDN controller APIs [23]. The APIs consist of the

implementation of different integration protocols, and

connection points for the extended distributed controller

deployment for CPS. The Westbound API enables inter-

control communication among the controllers in SD-CPS,

as well as inter-domain communications across multiple

SD-CPS controller deployments, through their westbound.

The Eastbound API is leveraged by the SD-CPS system

administrators to configure and manage the controller

deployment.

The SD-CPS Controller Northbound API consists of the

typical SDN northbound protocols including REST and

MOM protocols such as AMQP or MQTT (formerly,

message queue telemetry transport) [36] for the tenant

processes to interact with the controller. As MOM proto-

cols are long researched for use with networks of wireless

sensors and actuators [10, 21], extending SDN with MOM

increases its applicability, in addition to scalability. The

Southbound API consists of implementations of SDN

southbound protocols and MOM protocols for the com-

munication with the physical devices. Based on the defined

policies, rules, and the tenant inputs from northbound,

controller determines the actions. The actions are propa-

gated back to the data plane consisting of the SDN switches

and physical devices through the southbound. Thus, the

southbound API handles the communication, coordination,

and integration of the network data plane consisting of the

CPS devices with the control plane.

Controller Farm supports orchestrating CPS by con-

trolling larger networks beyond data center scale, without

binding to static network topologies in the wide area net-

work. On the other hand, a fixed or static hierarchy of

controllers would require a central controller deployment

in one or a selected set of domains, thus forcing the con-

trollers of other domains to accept a single controller as the

core or primary authority (thus creating a controller hier-

archy or levels of control). Opening up controllers for a

higher level controller from outside domain could also

make the network topologies of each CPS open for com-

promises from outside, making the crucial information on

network topologies vulnerable to curious entities or

onlookers from outside the domain or organization. Thus, a

centralized approach would limit the applicability of the

solution and is not feasible in a multi-domain edge envi-

ronment with multiple CPS and third-party data center and

service providers. Due to these reasons, we chose a

Controller Farm instead of an inter-domain hierarchy of

controllers.

Figure 4 shows the software-defined sensor networks

enabled by SD-CPS as its communication medium. The

model-driven service abstraction layer (MD-SAL) of

OpenDaylight [40] enables a straightforward extension of

the controller with more bindings. OpenDaylight controller

by default consists of REST northbound bindings, through

which the data tree, remote procedure calls (RPCs) [55],

and notifications are exposed. Messaging4Transport is an

OpenDaylight bundle that we developed to expose the

OpenDaylight data tree as messages in a messaging pro-

tocol. While we used AMQP as the default messaging

protocol, other messaging protocols can be implemented

following the same design. The data tree of OpenDaylight

MD-SAL is leveraged to store the dynamic context data

sensed by the sensors of the various appliances. Each of the

appliances subscribes to the relevant topics while pub-

lishing the relevant information sensed by their sensor, to

be written to the data tree.

Integrating the sensor networks into the SDN controller

enables quicker response to the dynamic changes in the

context information. The SDN controller is often a super-

computer or a cluster of high-end servers. Hence, SD-CPS

ensures efficient communication between its counterparts

by leveraging its Software-Defined Sensor Networks

approach and storing the dynamic data inside the data tree

of the controller.

5 Evaluation

We deployed the SD-CPS controller on a server of AMD

A10-8700P Radeon R6, 10 Compute Cores 4C?6G � 4

processor, 8 GB of memory, and 1 TB hard disk. We assess

the performance of SD-CPS in a scenario of CPS execution

at the edge as service workflows, and its efficiency in

composing and managing CPS, through simulations and

microbenchmarks.
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5.1 CPS execution modeling

We deploy a prototypical VANET CPS with vehicle-to-

vehicle (V2V), vehicle-to-infrastructure (V2I) and infras-

tructure-to-vehicle (I2V) communications [15]. We model

the traffic data monitoring workflow with SD-CPS, as a

composition of several parallel instances of a few services.

We first design an execution environment with several

nodes, falling into different categories, and then develop a

complex workflow involving V2I/I2V communication

services.

5.1.1 Execution nodes at the edge

We modeled the execution environment with four cate-

gories of nodes: N1: 10,000 Embedded mobile systems in

the connected cars, N2: 1000 edge cloud nodes, N3: 100

servers, and N4: 10 larger servers. Due to its pervasiveness

and proximity to the vehicles, N1 has the least latency to

most of the devices, while N4 has the highest of the CPU

and memory with often poor latency from the vehicles

compared to N1. Figure 5 depicts how the resource avail-

ability of each node, belonging to the 4 different categories,

is feature scaled (as illustrated by Eq. 3 in Sect. 3) by the

SD-CPS controller. The nodes are depicted with back-

ground processes, and each node can vary slightly within a

range of its resource capabilities (as not all nodes will

typically be strictly identical).

5.1.2 CPS workflows

Having designed our VANET CPS execution environment

with SD-CPS, we model a vehicular monitoring workflow

W. The workflow W is a composition of various services.

Service S1 fetches and transforms personalized sensor

information to the grid. Due to quick data transfer needs,

S1 has a necessity for minimal latency. Throughput, CPU,

and uptime are not crucial for its execution. Service S2

performs traffic data cleaning and integration at an aggre-

gator node. It needs a minimal latency and also high

memory for quick in-memory computations. S2 aims to

output integrated data while avoiding outliers that may

indicate malicious, dirty, or bogus data collected from S1.

Service S3 performs data analysis for traffic congestion

control with contextual data. It has moderate latency and

memory requirements. Service S4 conducts data crunching

with past and historical data for more data science com-

putations, including traffic prediction. Latency is the least

important among the resources for it, while it requires high

bandwidth, CPU, and memory. Service S5 performs per-

sonalization of alerts and notifications to the vehicles.

Characteristics and requirements of S5 are similar to those

of S1.

W is modeled as W ¼ 1000S1 � 100S2 � 10S3 � 2S4�
1000S5, with parallel execution of multiple service

instances of S1, S2, S3, S4, and S5 composing the work-

flow. 1000 of S1 service instances send their output to 100

of S2 service instances, which further have their outcome

forwarded to 10 of S3 instances, which in turn have their

output sent to 2 of S4 instances. Finally, the relevant results

of S4 are sent to the 1000 instances of S5 for the final

processing.

Figure 6 illustrates the resource requirements of the

services in the workflow. A workload is modeled by a set

of tuples, \resource_requirement, resource_utility_func-

tion_weight[, in defining the utility value D. In workflow

W, all the coefficients for the resources are set to 1, for ease

of representation. However, different values for each

coefficient could be utilized for particular scenarios to

indicate a different utility value compared to the other

vehicles in the CPS. For example, workflows belonging to

an ambulance or law enforcement authorities could be

given higher priority, and such coefficients give tenants

more control in choosing their execution nodes when

multiple alternative nodes offer possible deployments to

the services.

The negative normalized values for certain resources

indicate that even the minimum available resources in a

node is sufficient for the service. For example, S1, S2, and

S5 have negative normalized utility value for uptime,

indicating that all the node types can serve them, con-

cerning uptime. On the other hand, the highly positive

Fig. 5 Properties of the nodes

(normalized)
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value of uptime for S3 and S4 show their demand for high

uptime. Similarly, Fig. 6 also highlights the demand for

minimal latency (or a high 1
latency

) for S1 and S5.

5.2 Resource allocation efficiency

We deploy 1 million instances of workflow W across

several edge nodes (as described in Sect. 5.1) over the

course of 1 h. The edge nodes and the workflows are

coordinated by the SD-CPS Controller Farm. With the CPS

and its workloads modeled, we evaluate the resource

allocation efficiency of SD-CPS, with simulations and

microbenchmarks. We aim to assess the efficiency in

resource utilization and confirm that SD-CPS workflow-

based approach minimizes idling nodes. Figure 7 illustrates

the percentage of services hosted in each node types over a

parallel deployment of the workflows during a time frame

of an hour. Around 98% of the services were observed to

be deployed in the node with the highest utility value. The

deviation for the remaining 2% of services accounts for the

full utilization of specific type of nodes at times, thus

aiming to maximize the utilization of all the node types.

5.2.1 Resource utilization

Next, we evaluated the efficiency of resource utilization as

well as the effectiveness of SD-CPS in minimizing the

idling edge nodes. We assessed the performance of SD-

CPS allocating services with parallel execution of 1 million

workflows, over a timespan of an hour. Figure 8 illustrates

the average resource utilization (%) across each node cat-

egory. The resource utilization was always around 90%,

with more variations in resource allocations to N4 nodes.

We believe that having just 10 of the N4 nodes, each with

abundant resources, yet with less bandwidth to manage the

more frequently occurring services (S1 and S5) must have

contributed to the relatively frequent drops in resource

allocation of N4. The nodes of the other categories

remained more stable in their resource allocation.

Figure 9 demonstrates the percentage of idling nodes

during the execution of the workflows. Except during the

start and the end of the workflows (fixed to have a time-

frame of 1 h), there was near-zero percentage of idling

nodes. The results highlight the efficiency of the resource

allocation approach of SD-CPS, with minimal idling nodes

and high resource utilization (when the requests for

resources are high to utilize the abundant resources).

5.3 SD-CPS controller performance

We evaluated the performance, resilience, and scalability

of the SD-CPS controller in coordinating the CPS

components.

Fig. 6 Resource requirements

(normalized) of the services

Fig. 7 Service deployment over

the nodes
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5.3.1 Execution environment

We built a simple CPS with several sensors and several

actuators, connected to a single SD-CPS controller

deployment. We modeled the sensors as publishers sending

data as messages to the controller to disseminate to the

relevant destination nodes based on topics appropriately,

and the actuators as those subscribed to receive the

messages.

5.3.2 Success rate

First, we measured the performance of the SD-CPS con-

troller through its success ratio against the number of

messages it receives from the sensors. Through this, we

aim to observe how many messages can be processed and

delivered per second with a high success ratio with a single

controller deployment of SD-CPS. Figure 10 illustrates the

observed success rate of the message processing of a stand-

alone deployment of the controller, with an increasing

number of parallel messages.

The success rate remained high around 100%, always

above 99.5% regardless of the number of parallel messages

the controller handles. For up to 10,000 parallel messages,

the success rate remained at 100%, and only slightly

reduced down to 99.5% for a more substantial number of

messages: up to 10 million parallel messages. Even the

reported 0.5% of failures indicates just the failed attempt at

the first attempt; SD-CPS resends the failed message, based

on the configurations (whether to retry or ignore in case of

a message processing or delivery failure). The evaluations

indicated that the success rate of SD-CPS is mostly resilient

regardless of the increased number of messages, except for

a massive amount of messages such as 100 million parallel

messages, which makes the server that hosts the controller

run out of memory, due to a large number of messages in

the queue in-memory.

5.3.3 Throughput

We then measured throughput of an SD-CPS controller as

the number of messages entirely processed by the con-

troller, arriving from the sensors to be forwarded towards a

relevant receiver. We observed how the throughput varies

with the number of concurrent and parallel messages at the

controller. Figure 11 illustrates the throughput or the typ-

ical message processing rate of a single SD-CPS controller

against that of the number of parallel messages that the

controller processes. By effectively handling the parallel

messages, the SD-CPS controller processes 5000 messages/

s in a concurrency of 10 million messages.

5.3.4 Processing time

Finally, Fig. 12 illustrates the total time taken to process

the complete set of messages at an SD-CPS controller,

against the varying number of messages. The SD-CPS

controller scaled linearly regarding processing time with

the number of parallel messages. It processes 10 million

messages in 40 min.

The results presented are for a single stand-alone

deployment of the SD-CPS controller (the throughput or

the number of messages processed in a given time can be
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increased by a clustered controller deployment in each

controller domain). Nonetheless, SD-CPS is designed to

operate with a federated controller deployment. With a

decentralized, federated deployment, SD-CPS scales hori-

zontally to cover a wider area with more CPS devices and

improved latency. Therefore, the SD-CPS controller can

further be scaled to handle more concurrent messages in

each controller domain.

6 Related work

In this section, we will look into a few related works to SD-

CPS.

6.1 SDN for distributed systems

Albatross [31] is a membership service that addresses the

uncertainty of distributed systems. Albatross tends to be ten

times more efficient than the previous membership services

by exploiting the standard interface offered by SDN to

monitor and configure network elements. It addresses

common network failures, while avoiding interfering with

working processes and machines, and maintaining a quick

response time and high overall availability. The challenges

such as split-brain scenarios and violations in availability

and consistency that are addressed by Albatross are rele-

vant for CPS too. However, while CPS is a distributed

system, it has its peculiar challenges uncommon in a typ-

ical distributed system, starting from building the CPS to

operating the CPS, due to its diverse nature in implemen-

tation and devices. While Albatross aims to address the

uncertainty and difficulties in ensuring reachability of

distributed systems, SD-CPS seeks to mitigate a list of

challenges inherent to CPS by innovating a logically cen-

tralized control plane and management architecture.

Albatross approach narrows itself to data centers equipped

with software-defined networks, leaving wide area net-

works as future work. SD-CPS is designed exclusively for

CPS, to scale up from the edge to the Internet scale.

6.2 Smart environments and CPS

Software-defined environment (SDE) [16, 32] focuses on

factors such as, (i) resource abstraction based on capability,

(ii) workload abstraction and definition based on policies,

goals, and business/mission objectives, (iii) workload

orchestration, and (iv) continuous mapping and optimiza-

tion of workload and the available resources. SDN con-

troller and physical and virtual SDN switches remain the

heart of SDE. The control of computing, network, and

storage is built atop a virtualized network. By leveraging

Network Function Virtualization (NFV) [5], middlebox

actions typically handled by hardware middleboxes such as

firewalls and load balancers are replaced by relevant soft-

ware components in an SDE.

Software-defined buildings (SDB) [13] envision a

building operating system (BOS) which functions as a

sandbox environment for heterogeneous device firmware to

run as applications atop it. The BOS spans across multiple

buildings in a campus, rather than confining itself to a

single building. The scale of SDB and SDE can be

increased through collaboration and coordination of the

controllers of the buildings or environments. While SDB

and SDE architectures can be extended for CPS, they

cannot cater for CPS by themselves due to the variety and

heterogeneity in the design and requirements of CPS. The

increased dynamics and mobility of CPS compared to the

environments controlled by SDB and SDE further hinder

adopting them for CPS. SD-CPS caters to the resource

provisioning, execution, and migration challenges of CPS,

by offering a unified workflow-based approach at the edge,

regardless of the specifics of domain, realization, or

deployment of a CPS.

Hierarchy of orchestrators has been proposed to control

multiple domains and services, consisting of an Overar-

ching Orchestrator (OO) and a set of Domain Orchestrators

(DOs). Each DO controls a specific technological domain

by coordinating with the respective controller. The OO sits

atop the multiple domains, orchestrating the DOs while

ensuring end-to-end service orchestration in SDN and

cloud environments [6]. The 5G Exchange (5GEx) builds

upon SDN and NFV for a multi-domain orchestrator

(MdO) that spans across multiple domains, technologies,

and operators, for an automated and high-performance

network service provisioning [52]. SDCPS [18] is an

architecture with a hierarchy of multi-domain SDN con-

trollers for CPS, similar to MdO. Both SDCPS and SD-CPS

aims at bringing SDN to CPS. However, unlike the SDCPS

and MdO approaches, SD-CPS does not require a hierarchy

of SDN controllers, thus natively supports inter-domain

edge environments with multiple service providers.
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6.3 Software-defined internet of things (SDIoT)

SDIoT [22] proposes a software-defined architecture for

IoT devices by handling the security [2], storage [12], and

network aspects in a software-defined approach. SDIoT

proposes an IoT controller composed of controllers for

software-defined networking, storage, security, and others.

This controller operates as an orchestrating middleware

between the data-as-a-service layer consists of end-user

applications, and the physical layer consists of the database

pool and sensor networks. Software-Defined Industrial

Internet of Things [61] extends SDIoT to industrial internet

of things (IIoT), to offer more flexible networks to Industry

4.0. As CPS is a core enabler of Industry 4.0 [30], adopting

SDN for IIoT is highly related to SD-CPS approach, though

unlike SD-CPS this work is focused more on safety, reli-

ability, and standardization aspects.

Various research and enterprise use cases are proposed

and built, including SDIoT for smart urban sensing [33],

and end-to-end service network orchestration [58].

Multinetwork INformation Architecture (MINA) self-ob-

serving and adaptive middleware [50] has been extended

with a layered SDN controller to implement a controller

architecture for IoT [48]. While sharing similarities with

IoT, CPS is set to address a broader set of problems with

more focus on ground issues on interoperability of cyber

and physical dimensions in a CPS. While SD-CPS is

inspired by the SDIoT approaches, it is built as an entirely

new approach, targetting CPS. Hence, SD-CPS differs in

scope and implementation to those of SDIoT, though they

share similar motivation and can benefit from each other.

7 Conclusion

Wide-spread adoption of CPS is hindered by several

challenges it has to tackle regarding building, operating,

and maintaining the CPS. Recent research works have

proposed approaches to address a few of these challenges.

In this paper, we presented SD-CPS, a framework that aims

to mitigate the common challenges faced by CPS, through

a standard software-defined approach for the design and

operation of CPS. We built SD-CPS as an extended

architecture inspired by SDN, to orchestrate and manage

the CPS workflows with unified control. SD-CPS leverages

the edge resources in offloading the CPS workload as

service workflows. We observe that the execution of CPS

as a workflow of microservices can enable resource allo-

cation and migration with higher performance, supporting

the user policies and intents effectively.

We believe that combined with the SDN adoption in

wide area networks, and the increasing reach of edge

nodes, the SD-CPS approach will lead the next generation

CPS. We propose as future work, to incorporate the SD-

CPS approach with implementations of various networking

and integration protocols for multiple use case scenarios.

Furthermore, the SD-CPS deployments should be tested

against baseline implementations of various CPS for their

efficiency in addressing the identified challenges of CPS.
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Université Paris Diderot (1996).

He coordinated the European

project SELFMAN on self management of large-scale systems and

was partner in the projects MANCOOSI, EVERGROW, PEPITO, and

CoreGRID. He is a developer of the Mozart Programming System and

coauthor of a well-known textbook on computer programming. He

teaches two MOOCS on computer programming in the edX platform.

He is currently partner in the SyncFree project (syncfree.lip6.fr),

which is building systems for large-scale computation without

synchronization.

Luı́s Veiga is a (tenured) Asso-

ciate Professor in the Computer

Science and Engineering

Department at IST/UTL. He has

taught courses on Middleware

for Distributed Internet Appli-

cations, Virtual Execution

Environments and Cloud Com-

puting and Virtualization. He is

a Senior Researcher at INESC-

ID, and Group Manager for the

Distributed Systems Group. He

has been an active participant in

government and industry funded

R&D projects and he is leading

two research projects financed by FCT (Portuguese Science Foun-

dation) on P2P cycle-sharing systems, and as local coordinator of two

others in distributed virtual machines and multicore component pro-

gramming. He coordinates locally the FP7 CloudForEurope project,

participates in FP7 Timbus project on digital preservation and virtu-

alization. His research interests include distributed systems, replica-

tion, virtualization technology and deployment, distributed garbage

collection, middleware for mobility support, grid and peer-to-peer

computing. He has 90 scientific publications (Best-paper at Middle-

ware 2007, Best-Paper Award Runner Up at IEEE CloudCom 2013,

and Best-Paper candidate nominee at IEEE CloudCom 2014) peer-

reviewed scientific communications in workshops, conferences, book

chapters, edited books, and journals since 2000. He was one of the

General Chairs of ACM Middleware 2011, Track-Chair for Cloud-

Com 2013 and Euro-Par 2014, and he has previously served in

international conferences as member of program committee, pro-

ceedings editor (ACM Middleware 2012, EuroSys 2007, ACM PPPJ

2007 and 2008, and MobMid/M-MPAC Workshop at ACM Middle-

ware 2008, 2009, and 2010) and as reviewer. He is a member of the

676 Cluster Computing (2019) 22:661–677

123



Editorial Board of the Journal of Internet Services and Applicaitons

(JISA), Springer, and International Journal of Big Data Intelligence

(Inderscience). He is a member of the ACM Middleware Steering

Committee. He was three times ‘‘Excellence in Teaching’’ IST

mention recipient (2008, 2012, 2014), Best Senior Researcher at

INESC-ID (2014) nominated (2013), Best Young Researcher at

INESC-ID (2012) nominated (2010, 2011). He is a member of IEEE,

ACM and EuroSys. He has served terms on CS Department Council,

CS-PhD Coordination Commission, and University Assembly. He is a

member of the Scientific Board of the MSc in Communication Net-

works and the Erasmus Mundus Master in Distributed Computing. He

is a chair of the IEEE Computer Society Chapter, IEEE Section Por-

tugal for 2014–2016.

Cluster Computing (2019) 22:661–677 677

123


	SD-CPS: software-defined cyber-physical systems. Taming the challenges of CPS with workflows at the edge
	Abstract
	Introduction
	Common challenges faced by CPS
	Network softwarization and CPS
	Motivation
	Contributions
	Paper organization

	MANETs and VANETs: a case for SD-CPS
	Solution architecture
	CPS execution as service workflows
	SD-CPS coordination
	Resource allocation
	SD-CPS controller

	Prototype implementation
	Evaluation
	CPS execution modeling
	Execution nodes at the edge
	CPS workflows

	Resource allocation efficiency
	Resource utilization

	SD-CPS controller performance
	Execution environment
	Success rate
	Throughput
	Processing time


	Related work
	SDN for distributed systems
	Smart environments and CPS
	Software-defined internet of things (SDIoT)

	Conclusion
	Acknowledgements
	References




