
MODULAR FAULT TOLERANCE IN
A NETWORK-TRANSPARENT
PROGRAMMING LANGUAGE

LADA Workshop (“Languages for Distributed Algorithms”)
Philadelphia, PA

Jan. 23-24, 2012

Peter Van Roy, Raphaël Collet, Sébastien Doeraene, and
Géry Debongnie
ICTEAM Institute
Université catholique de Louvain
B-1348 Louvain-la-Neuve, Belgium

OVERVIEW

  Our goal is to build a programming language and system for
distributed applications that removes all irrelevant complexity
  Combine network transparency with network awareness in a

language that supports the right concepts

  Research implementation based on Oz language and Mozart
Programming System

  Evaluating the approach and the language

  Failure and modularity
  The failure model and how fault streams expose it to the program

  Blocking failure handling versus non-blocking failure handling

  Why non-blocking failure handling is right for network transparency

  Theory and practice
  Formal semantics of Distributed Oz

  Some common fault stream programming patterns

  Conclusions and references

NETWORK TRANSPARENCY
AND NETWORK AWARENESS
 We would like to remove irrelevant programming complexity

 “The removal of much of the accidental complexity of programming means that the intrinsic
complexity of the application is what’s left” – Ross Anderson, in Security Engineering (2001)

 Remove code for marshalling/unmarshalling, connecting/disconnecting, failure
detection, data caching, globally unique identities, memory management

 Network transparency: execution obeys the same language semantics
independent of physical distribution

 A program executing on multiple nodes gives same result as on one node, if
network delays are ignored

 Network awareness: sufficient system properties can be observed and
controlled by program so that execution is efficient

 Physical distribution, network behavior, partial failure

S1 Sn-1 Sn Tasks

σ Store

Network transparency:
illusion of a single store

…

CONTEXT OF THE RESEARCH

  Oz multiparadigm language (Gert Smolka et al)
  Contains many concepts, factored for simplicity

 See textbook Concepts, Techniques, and Models
of Computer Programming, MIT Press 2004

  For distribution we especially appreciate:
 Fine-grained concurrency & non-blocking channels

 Distinction between stateless, single assignment (monotonic), stateful

 Higher-order declarative dataflow subset with concurrency and laziness

  Mozart Programming System (www.mozart-oz.org)
  Open-source, many developers, first public release in 1991

  Network-transparent distribution in 1999

  Improved distribution architecture in 2005 (Erik Klintskog)

  Modular fault tolerance in 2007 (Raphaël Collet)

  Distributed applications and scalability ongoing since 2008

THE GOOD, THE BAD, AND THE UGLY
 Network transparency is implementable and practical. We have built large

nontrivial applications that are of intrinsic interest, for example:
 TransDraw (Donatien Grolaux): multi-user graphic editor that uses distributed

transactions combined with human-computer interface design to overcome
network delays (instantaneous reactivity combined with global coherence)

 Beernet (Boriss Mejías): scalable transactional store based on self-organizing peer-
to-peer network, replication, and Paxos uniform consensus for atomic commit

 Network awareness is more difficult
 Partial failure cannot be hidden: focus of this talk
 Ability to have efficient network behavior for natural programs
 Ability to define fault-tolerance abstractions within the system

 Caveats for implementation and usability
 Implementing this distribution model is a lot of work: several Ph.D. theses (Per

Brand, Erik Klintskog, Raphaël Collet)
 Usability depends on fault model: so far, we have a model that fits most Internet

failures
 The current system does not support security or long-term resource management

defined inside the system (i.e., formal software rejuvenation)

THE MODEL IN A NUTSHELL
 Each language entity (mutable variable, channel, dataflow variable,

thread, closure, record, number, name) can be distributed
  Operations on the entity are implemented using distributed

algorithms to keep the same semantics as a centralized system

  Each node maintains a local fault state for each distributed
entity: ok, tempFail, localFail, and permFail
  Failure model designed for Internet with TCP/IP: crash-stop processes

and FIFO message delivery between processes with arbitrary message
delay or loss

  The fault state is reified in the language as a fault stream, i.e., a
monotonically growing list of fault states, a new state added for
each transition
  This fault state can be monitored by a separate thread

  Any operation on a failed entity blocks until the fault state is ok,
or forever if it is permFail or localFail
  Failure causes no behavior that would be incorrect for no failure

LOCAL FAULT STATE OF AN ENTITY

  The fault stream combines information from three failure
detectors
  tempFail detector: suspect/resume events, eventually perfect and

adaptive to round-trip time variations

  permFail detector: accurate but incomplete, for example process failure
inside a host that does not fail

  localFail detector: perfect, but handles local failures only

  After experience with more complex detectors, we find that
giving the simplest useful information is best

local
Fail

perm
Fail

ok

temp
Fail

FAULT-TOLERANT COMPUTE SERVER:
BLOCKING VERSION
proc {RemoteCompute Comp ?Res}
 Node = {GetNodeFromPool}

 ResFromNode
in

 try

 ResFromNode = {Send Node comp(Comp $)} /* send computation to node */
 {Wait ResFromNode} /* wait for result (dataflow synchronization) */

 Res=ResFromNode

 catch remoteException(Why) then /* retry if failure */

 {RemoteCompute Comp Res}
 end

end

Red code is for
failure handling

Note: This example and the others in this talk are written in Oz.
The syntax is designed to support the language’s multiparadigm
design. Three properties should suffice to understand the examples:

•  variable identifiers start with capital letters,

•  procedure/function calls are enclosed in braces {…}, and

•  ‘$’ marks the return argument when a statement is used as an expression.

An exception is
raised when there
is an attempt to
use the result

FAULT-TOLERANT COMPUTE SERVER:
NON-BLOCKING VERSION
proc {RemoteCompute Comp ?Res}
 Node = {GetNodeFromPool}

 ResFromNode
in

 ResFromNode = {Send Node comp(Comp $)} /* send computation to node */

 {MonitorResult ResFromNode proc {$} {RemoteCompute Comp Result end}
 {Wait ResFromNode} /* wait for result */

 Res=ResFromNode

end

proc {MonitorResult ?ResFromNode OnFail}

 proc {Loop Xs} /* loop over fault stream */

 case Xs of ok|Xr then {Loop Xr}
 [] tempFail|Xr then {Break ResFromNode} {Loop Xr} /* restart a slow computation */

 [] F|Xr andthen (F==localFail orelse F==permFail) then {OnFail} /* retry if failure */

 [] nil then skip
 end

in

 thread {Loop {GetFaultStream ResFromNode}} end
end

Red code is for
failure handling

No exception is
raised; instead the
attempted use
waits indefinitely
and the fault
stream is extended

WHY NON-BLOCKING FAILURE HANDLING
IS BETTER
 First problem with the blocking solution: it cannot handle tempFail

efficiently since any failure will abort the remote computation and
raise an exception

 But this is small fry compared to the real problem. In an network-
transparent system, the invoking node of any remote operation is not
aware that its result is coming from another node.
  Because of dataflow, the result behaves like a promise: the invoking node

can pass the result through the program, bind it to other dataflow
variables, put it in data structures, and can potentially use it at any
arbitrary point in the program (it will wait at that point until the
remote computation returns its result)

  If a failure occurs during the remote computation, then blocking failure
handling will raise an exception at that point:

  It couples the entire application to the distributed execution!

  With blocking failure handling, exception handlers are needed everywhere
to handle potential distribution failures!

  With non-blocking failure handling, this problem does not occur. Program
execution will wait without raising an exception. The failure can be
handled in a separate thread that monitors the fault stream.

SOME RELATED WORK

  Non-blocking failure handling in Oz can be seen as a
generalization of Erlang’s failure handling:

  “Let it fail” for both: use simple failure states

  Ordered versus unordered sequence of fault states

  Handling of temporary failures

  Granularity is a language entity instead of process

  The Erlang model can be implemented in just one page of code

  Network-transparent distribution was pioneered by Emerald

  Emerald’s abilities inspired the design of Distributed Oz

  Emerald has powerful mobility primitives for threads and objects

  Distributed Oz has a useful declarative concurrent subset that
includes declarative dataflow and lazy evaluation as special cases

  Distributed Oz emphasizes asynchronous programming (using
non-blocking channels and fine-grain concurrency)

FORMAL SEMANTICS OF
DISTRIBUTED OZ

OPERATIONAL SEMANTICS IN A
CONCURRENT CONSTRAINT MODEL

 Small-step operational semantics

S

σ

S’

σ'
C

Task

Store
Firing condition

Before After

  Concurrent constraint model
  Store σ is a monotonic conjunction of constraints
 σ = { x, y, z=rec(u), w=100, u=tup(x y z), … }
  Variables x, y, z and single-assignment bindings
  Firing condition C is decidable logical entailment: σ⊨ c

Note: other
constraints

possible (e.g.,
Bloom’s sets!)

EXAMPLE: IF STATEMENT

 Control flow is determined by a logical condition
  If nothing is known about x, then execution waits
  This implements declarative dataflow

if x then S1 else S2 end

σ

S1

σ
σ ⊨ x=true

if x then S1 else S2 end

σ

S2

σ
σ ⊨ x=false

 Concurrent constraint model is expressive and concise
  Complete semantics of Oz multiparadigm language
  Used in many languages, e.g., E, Joule, AKL, Concurrent

Prolog and its successors, constraint programming

IFTRUE

IFFALSE

Store knows
x is true

MUTABLE STATE

  Mutable state (cell) is defined as a pair x:y of a name x
(bound to a constant ξ) and a content y

{Exchange x yold ynew}

σ ∧ x=ξ ∧ x:y

yold=y

σ ∧ x=ξ ∧ x:ynew

  Exchange operation atomically does a read and a write

  Read operation: bind yold and y

  Write operation: replace old content by ynew

  Left side store notation σ ∧ x=ξ is equivalent to condition σ ⊨ x=ξ
  Objects are compound entities built with cells, closures, and records

Cell name Pair of name and content

EXCHANGE

DISTRIBUTED MUTABLE STATE

  We refine the semantics of cells and exchange to specify the nodes
on which the tasks and store contents are located

  Each operation and store item is annotated with a node

  This rule defines a mobile cell implemented with a mobile state
protocol; other rules correspond to other distributed behaviors
(stationary/replicated cell, weaker consistency)

{Exchange x yold ynew}i

σ ∧ x=ξ ∧ (x:y)j

(yold=y)i

σ ∧ x=ξ ∧ (x:ynew)i

Exchange executes on node i

Old cell content is on node j

New cell content is on node i Name is known everywhere
(no node annotation)

Result is a bind operation on node i

MOBILE EXCHANGE

FAULT STREAM OPERATIONS
  Each language entity has one fault stream per node
  The fault stream is extended with each transition of the

entity’s fault state (interface to the failure detector):

σ ∧ (fstreami(x)=f |s)i σ ∧ (fstreami(x)=s)i ∧ (s=f’ |s’)i
f → f’

 (y={GetFaultStream x})i

σ

(y=s)i
σ

σ ⊨ (fstreami(x)=s)i

  Possible values of the fault state f depend on the failure
model; for Mozart: f ∊ {ok,tempFail,localFail,permFail}

  The program can access the fault stream of a language
entity at node i with the operation GetFaultStream:

FSEXTEND

FSACCESS

THE COMPLETE ABSTRACTION

  Three primitive operations are provided for programs to
implement failure handling

1)  Access an entity’s fault stream at the current node:
  S={GetFaultStream X}

2)  Cause an entity to fail globally:
  {Kill X}
  If this succeeds, permFail will appear on the fault stream
  If the entity is temporarily inaccessible (tempFail), this will

wait until the entity is accessible and then cause it to fail

3)  Cause an entity to fail on the current node:
  {Break X}
  This always succeeds; localFail will appear on the fault stream
  Any attempt to use the entity on the current node will block

forever; the entity is still operational on other nodes

SOME COMMON FAULT STREAM
PROGRAMMING PATTERNS

MONITORING THE FAULT STREAM

FS = {GetFaultStream E}
thread {Monitor FS} end
proc {Monitor S}
 case S of F|S2 then
 case F of ok then skip /* do nothing */
 [] tempFail then /* things are slowing down */
 <doSomething>
 [] localFail then /* local use no longer possible */
 <doSomething>
 [] permFail then /* it’s dead everywhere, Jim */
 <doSomething>
 end
 end
 {Monitor S2}
end

IF ONE DIES, KILL THEM ALL
(AN ERLANG ABSTRACTION)

proc {SyncFail Es} /* argument is list of entities */
 Trig in
 for E in Es do /* set up a failure monitor for each entity */
 thread
 if {List.member permFail {GetFaultStream E}} then
 Trig=unit end
 end
 end
 thread /* if one is dead, kill them all (Erlang style) */
 {Wait Trig}
 for E in Es do {Kill E} end
 end
end

POST-MORTEM FINALIZATION

proc {Finalize E P} /* execute P after E is GC’ed */
 thread
 for X in {GetFaultStream E} do skip end
 {P} /* clean up after E */
 end
end

 The fault stream is closed (terminated with nil) when
the entity is garbage collected (known to be no longer
accessible). This can be used to implement post-
mortem finalization.

CONCLUSIONS AND REFERENCES

CONCLUSIONS
 Network-transparent distribution is a promising path for distributed

application development
  It increases the abstraction level of the programming language

 It still has many challenges:
  Supporting more general fault models than just “Internet failures”

  Efficient native code implementation (Mozart is emulated byte code)

  Long-lived scalable applications should have all resource management
“inside the language”

 Non-blocking failure handling is the right approach
  It is natural for asynchronous programming with declarative dataflow

  In a network-transparent system, it avoids the need to handle potential
failure exceptions everywhere in the program

 Generalizations of Distributed Oz

  Executable specifications for distributed algorithms

  CALM and CRON generalize the declarative concurrent execution model of
Distributed Oz

REFERENCES
 Seif Haridi, Peter Van Roy, Per Brand, Michael Mehl, Ralf Scheidhauer, and

Gert Smolka. Efficient Logic Variables for Distributed Computing. ACM
TOPLAS, May 1999, pp. 569-626.

 Peter Van Roy, Seif Haridi, Per Brand, Gert Smolka, Michael Mehl, and Ralf
Scheidhauer. Mobile Objects in Distributed Oz. ACM TOPLAS, Sep. 1997,
pp. 804-851.

 Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models of Computer
Programming. MIT Press, 2004.

 Per Brand. The Design Philosophy of Distributed Programming Systems: the
Mozart Experience. Ph.D. Dissertation, KTH, June 2005.

 Erik Klintskog. Generic Distribution Support for Programming Systems. Ph.D.
Dissertation, KTH, April 2005.

 Raphaël Collet. The Limits of Network Transparency in a Distributed
Programming Language. Ph.D. Dissertation, UCL, Dec. 2007.

 Donatien Grolaux. Transparent Migration and Adaptation in a Graphical User
Interface Toolkit. Ph.D. Dissertation, UCL, Sep. 2007.

 Boris Mejías. Beernet: A Relaxed Approach to the Design of Scalable Systems
with Self-Managing Behaviour and Transactional Robust Storage. Ph.D.
Dissertation, UCL, Oct. 2010.

