
An	Empirical	Study	of	the	Global	
Behavior	of	Structured	Overlay	
Networks	as	Complex	Systems	

Ruma	R.	Paul	
	

KTH	Royal	InsGtute	of	Technology,	Sweden			
Université	catholique	de	Louvain,	Belgium	

	
	

LicenGate	Seminar	
October	20,	2015	

IntroducGon	

•  Large-scale	distributed	systems	as	Complex	Systems.	
	
•  Many	operaGng	modes	depending	on	environment.	
	
•  Introduce	many	problems	as	stressed	beyond	where	their	behavior	is	a	

straighTorward	extrapolaGon	of	behavior	of	their	parts.	
–  Require	conGnual	babysiUng.	

•  Why??	
	
	

	

	
Ø  Designed	to	operate	within	a	specific	failure	and	threat	model.	

Ø Undefined	behavior	outside	these	models.	

2	

What	should	be		
the	Design	Approach?	

	
•  Goal:	Design	systems	with	predictable	and	reversible	behavior	in	

complete	opera+ng	space	including	highly	stressful	situaGons.	

•  Why	it	is	necessary	to	explore	highly	stressful	situaGons?	
–  For	prac*cal	system	design:	Systems	running	in	so-	called	“stable”	

environments	also	have	peaks	of	high	stress.	
	
–  Applica*ons:	New	venues	for	applicaGon	design,	such	as	mobile	and	

ad-hoc	networks	and	Internet	of	Things,	for	which	current	fault-
tolerance	techniques	are	insufficient.	

–  For	scien*fic	reasons:	to	understand	what	happens	in	those	regimes.		

	
	

3	

Our	Approach	
	
•  RepresentaGve	Complex	Systems:	a	class	of	Structured	Overlay	Networks.		

	
•  What	is	a	highly	stressful	or	inhospitable	environment?	

–  OperaGng	environment	in	which	certain	stress	parameters	can	
potenGally	reach	high	values	and	temporarily	increase	without	bound.		

	
	

•  For	our	representa*ve	systems	we	make	an	empirical	study	of	both	the	
behavior	and	design	in	inhospitable	environments.		

4	

Our	Approach	(cont..)	
•  Experimental	approach	

–  Step	1:	In	Simulated	environment	(LicenGate	Thesis).	
–  Step	2:	In	Real-world	dynamic	environment,	scaling	up	(Future	Work).	
	

•  Incremental	approach	
–  Explore	one	stress	parameter	(with	zero/constant	value	of	other	stress	

parameters);		
–  InvesGgate	interacGon	between	stress	parameters.	
	

•  LicenGate	Thesis:	Explored	two	stress	parameters.	
–  Churn;	
–  Network	ParGGoning;		
–  InteracGon	between	Network	ParGGoning	and	Churn.	

5	

Stories	and	Their	ContribuGons	
•  First	Story:	"Are	the	Maintenance	Strategies	reversible	against	Churn?”	

–  The	concept	of	Knowledge	Base	is	introduced;		
–  Establish	the	necessity	of	proacGve	merger	using	Knowledge	Base.	

	
•  Second	Story:	"Can	we	observe	the	Global	Structure?		YES!	Phase	TransiGons.”	

–  Insight	on	how	to	observe	global	structure;	
–  Insight	on	how	phase	of	each	node	is	related	to	funcGonality	of	the	system;	
–  Empirical	demonstraGon	that	reversible	phase	transiGons	happen	in	a	reversible	system	as	the	

stress	varies.	
	
•  Third	Story:	"Can	our	Maintenance	Strategies	help	with	Network	ParGGoning?”	

–  Case	of	zero	Churn:	empirical	demonstraGon	of	power	of	local	maintenance	strategies	(do	not	
need	any	explicit	merger	to	achieve	reversibility).	

	
•  Fourth	Story:	"Understanding	how	ParGGoning	and	Churn	interact”	

–  Stranger	Model	is	introduced;	
–  Empirical	demonstraGon	of	need	for	(proacGve)	merger	(using	Knowledge	Base).	

6	

PublicaGons	
•  [1]	Ruma	R.	Paul,	Peter	Van	Roy	and	Vladimir	Vlassov.	An	Empirical	Study	

of	the	Global	Behavior	of	A	Structured	Overlay	Network.	14th	IEEE	
InternaGonal	Conference	on	Peer-to-Peer	CompuGng	(P2P	2014),	
September	8-12,	2014,	London,	England.	(Published)	

	
•  [2]	Ruma	R.	Paul,	Peter	Van	Roy	and	Vladimir	Vlassov.	Interac*on	Between	

Network	Par**oning	and	Churn	in	a	Self-Healing	Structured	Overlay	
Network.		21st	IEEE	InternaGonal	Conference	on	Parallel	and	Distributed	
Systems	(ICPADS	2015),	December	14-17,	2015,	Melbourne,	Australia.	
(Accepted)	

	
•  [3]	Ruma	R.	Paul,	Peter	Van	Roy	and	Vladimir	Vlassov.	Reversible	Phase	

Transi*ons	in	a	Structured	Overlay	Network	with	Churn.		19th	
InternaGonal	Conference	on	Principles	of	Distributed	Systems	(OPODIS	
2015),	December	14-17,	2015,	Rennes,	France.	(Submiped)	

7	

RepresentaGve	Complex	Systems:	Ring	
Structured	Overlay	Networks	

8	

Design	Aspects1	&	An	Example	Ring	
Overlay	(Chord)	

•  Choice	of	IdenGfier	Space:	A	subset	of	natural	numbers	of	size	N,	with	closeness	metric,	d(x,	y)	=	(y	
−	x)	mod	N	.	
ü  Example:	Space	N=16	{0,…,15};	d(8,14)=6	and	d(14,6)=8		
	

•  	Mapping	to	the	IdenGfier	Space:	A	uniform	hash	funcGon	or	some	random	funcGon.		
ü  Example:	A	uniform	Hash	funcGon.	H(a)=7,	H(d)=14	
	

•  Management	of	the	IdenGfier	Space:	A	peer	with	virtual	idenGfier	p	is	responsible	for	the	interval	
(predecessor(p),p].	
ü  Example:	Peer	with	virtual	id	12	is	responsible	for	(8,12]	({9,10,11,12}).	

12

14

0
2

8

3

6

7

1

4

5

9

10	

11	

13	

15	

•  Graph	Embedding:	Belongs	to	“rouGng-efficient”	small-world	networks.		
ü  Example:		

o  Each	peer	views	the	idenGfier	space	as	parGGoned	in	log2	(N)	parGGons	
where	each	parGGon	is	2	Gmes	bigger	than	the	previous	one.		

o  Each	peer	has	a	rouGng	table	which	contains	log2	(N)	links	to	some	
nodes	from	each	parGGon.	

o  Rou*ng_Table(0)	=	{2,6,8}.	
	

•  RouGng	Strategy:	Greedy	rouGng	strategy.	
	
•  Maintenance	Strategy:	Required	to	maintain	the	structural	integrity	

as	peers	join,	fail	or	leave.	
ü  Example:	Periodic	StabilizaGon.	

1Aberer	et.	al.,	“The	essence	of	P2P:	a	reference	architecture	for	overlay	networks,”	in	Proc.	P2P,	2005.		
	

9	

Ring	Overlays	(Cont..)	
•  Many	variaGons	of	Chord:	

–  To	gradually	improve	and	circumvent	or	relax	the	requirements	of	a	
perfect	ring	for	accuracy.		

–  	Join	in	Chord	may	be	incorrect	(inconsistency	due	to	concurrent	
joins).	

–  	DKS:	correct	join,	but	requires	simultaneous	locking	of	mulGple	
nodes.	

–  Beernet:	correct	lock-free	two	step	join.		

10	

Stress	in	OperaGng	Environment	

		
•  What	are	the	stress	parameters?	

–  IdenGfied	and	organized	operaGng	space	using	5	parameters:	
•  Churn:	node	turnover.	
•  Network	ParGGon:	parGGon	of	the	system.	
•  Network	Dynamicity:	changes	of	connecGvity.	
•  Workload:	workload	beyond	capacity.	
•  System	Size:	measurement	of	scalability.	

11	

Self-*	ProperGes	

	
•  To	survive	inhospitable	environments,	Self-*	properGes	are	crucial.	

–  In	parGcular	requires	complete	self-healing.	
	
	

•  	Structured	Overlay	Networks	(SONs)	provides	certain	self-*	properGes.	
–  ExisGng	Maintenance	in	SONs	shows	parGal	self-healing	behavior.	
–  ExisGng	literature	lacks	assessment	or	verificaGon	of	SONs	

reversibility	by	complete	self-healing.	

12	

Reversibility		
&	

Self-StabilizaGon	
•  Reversibility	Property	of	a	system:	

–  Ability	to	repair	itself	to	provide	its	original	func*onality	when	the	external	stress	is	
withdrawn.		

–  FuncGonality	of	a	system	is	a	property	of	current	environment	hosGlity	and	not	of	the	history	
of	environment	hosGlity.		

	
•  Self-Stabiliza9on	and	Reversibility	:	

–  Self-stabilizaGon	talks	about	system	state	(internal);	Reversibility	talks	about	system	
funcGonality	(behavior,	external).	

	
–  A	self-stable	system	is	able	to	survive	arbitrarily	high	levels	of	transient	failures	(state	

perturbaGon);	Reversibility	in	a	SON	might	also	concerns	about	permanent	failures,	Churn.	
	
–  Self-stabilizaGon	means	resilient	to	arbitrary	temporary	failures;	Reversibility	in	case	of	SON	is	

different	–	combinaGon	of	permanent	node	failures	and	temporary	communicaGon	failures:	
•  Churn:	Nodes	fail	(permanently)	and	new	nodes	arrive	to	replace	them.		At	system	level,	this	is	like	a	

temporary	perturbaGon.		At	node	level,	there	are	only	permanent	failures.	
•  ParGGoning:	It	is	temporary	but	it	is	external	to	the	nodes	–	communicaGon	problems,	no	perturbaGon	

of	system	state.	

13	

•  Goal	of	this	work:	enhancement	of	maintenance	in	our	representaGve	
complex	systems	to	survive	in	inhospitable	environments.		

Maintenance	Strategies	

Reac+ve	 Proac+ve	

Local	 CorrecGon-on-Change	
(for	self-healing)	and	
CorrecGon-on-Use	
(provides	self-
opGmizaGon	and	self-
configuraGon).	
Ex.	DKS,	Beernet.	

Periodic	StabilizaGon:	
correcGon	using	periodic	
probing.	
Ex.	Chord,	Chord#.	

Global	 Overlay	Merger	with	
Passive	List:	Trigger	
Merger	using	falsely	
suspected	nodes2.	
	

Overlay	Merger2	with	
Knowledge	Base:	
Proac+ve	approach	to	
trigger	merger	using	the	
gathered	knowledge	at	
each	node	(our	
contribu+on).	

.	2T.	M.	Shafaat,	“ParGGon	tolerance	and	data	consistency	in	structured	overlay	networks,”	Ph.D.	dissertaGon,	KTH,	Sweden,	2013.		
	

14	

Knowledge	Base	(KB)	
•  Best-effort	view	of	global	membership	of	the	system	at	each	node.	
	
•  Each	node	keeps	on	learning	about	other	nodes,	build	an	“acquaintance”	

list.	
	
•  Different	levels	of	KB:	

–  Passive	KB:	Built	through	listening	only.		
•  At	peer	p:	for	each		new	node	a,	p	comes	across	(while	rouGng	or	as	a	member	of	its	current	

neighborhood),	virtual	id	and	network	reference	of	a	is	added	to	KBp.	
•  Not	shared	with	other	peers,	thus	no	bandwidth	consumpGon.		
•  May	be	out	of	date	quicker.	
	

–  	AcGve	KB:	a	node	communicates	with	others	to	enhance	its	KB.		
•  A	weak	algorithm,	e.g.	each	joining	node	informs	others;	
•  A	stronger	algorithm,	such	as	gossip	where	each	node	asks	a	random	node	to	send	its	KB	that	it	unions	

with	its	own	KB.		
•  Faster	convergence	of	KB.	
•  Extra	Bandwidth	consumpGon.	
	

–  Oracle:	informaGon	from	“outside	the	system”.	
•  Required	when	system	is	unable	to	achieve	reversibility	by	itself.	

	 15	

Maintenance	Strategies	(Cont..)	
•  ProacGve	Merger	using	Knowledge	Base:	Each	node	opGmisGcally	

samples	in	a	periodic	manner	from	its	KB	to	trigger	merger.	
	
•  KB	and	Gossip	Frameworks:	

–  Gossip	can	be	used	to	build	Knowledge	Base	–	only	in	case	of	AcGve	
Knowledge	Base.	

–  Future	work:	improved	maintenance	and	applicaGon	of	knowledge,	by	
borrowing	ideas	from	gossip	protocols.		

	
•  Are	these	the	only	possible	maintenance	strategies?	

–  Probably	not!!	But	they	cover	a	large	part	of	the	operaGng	space;	
–  They	have	proven	their	usefulness	in	pracGce	(we	have	extended	them	

when	we	found	gaps,	like	KB);	
–  Other	strategies	exist,	e.g.,	gossip,	with	different	properGes,	some	of	

our	future	work	will	invesGgate	this.	

16	

Principles	 Local/
Global	

Reac+ve/
Proac+ve	

Fast/Slow	 Safety	 Bandwidth	
Consump+on	

CorrecGon-on-*	 Local	 ReacGve	 Fast	 Yes	 Small	

Periodic	
StabilizaGon	

Local	 ProacGve	 Slow	 Lookup	
inconsistencies	
and	uncorrected	
false	suspicions	
can	be	
introduced		

High	

Merger	with	
Passive	List	

Global	 ReacGve	 Adaptable	 Yes	 Adaptable	

Merger	with	KB	 Global	 ProacGve	 Adaptable	 Yes	 Adaptable	

17	

Summarizing	Maintenance	
Strategies	

Beernet	
•  Beernet3	is	a	representaGve	example	of	the	design	class	as	per	the	

reference	architecture	proposed	by	Aberer	et.al.	
	
•  Why	Beernet?	

–  Has	properGes	typical	of	our	design	class.	Similar	to	Chord,	but	has	a	correct	lock-free		join	
operaGon.		

–  Relaxes	ring	membership	operaGons.	
•  Requires	only	simple	message	passing,	never	locking	of	mulGple	nodes.	

–  Based	on	2	invariants.	
•  Every	peer	is	in	the	same	ring	as	its	successor;		
•  A	peer	does	not	need	to	have	connec*on	with	its	predecessor,	but	it	must	know	its	

predecessor’s	key.	
–  Consequence:	Natural	Branching	structure.	A	stable	core	ring	and	transient	branches.	
–  Nodes	join	in	two	steps:	first,	on	branch,	then	on	the	core	ring.	

Branches	on	a	relaxed	ring.	Peers	p	
and	s	consider	u	as	successor,	but	u	
only	considers	s	as	predecessor.	Peer	
q	has	not	established	a	connecGon	
with	its	predecessor	p	yet.		
	

	
3B.	Mejías,	“Beernet:	A	relaxed	approach	to	the	design	of	scalable	systems	with	self-managing	behaviour	and	transacGonal	robust	

storage,”	Ph.D.	dissertaGon,	UCL,	Belgium,	2010.		
18	

EvaluaGon	

•  An	overlay	of	100	peers.	
	
•  All	experiments	are	done	in	Mozart-Oz	2.0	in	a	
simulated	environment.		

•  Experiments	were	done	to	observe	the	effects	of	the	
maintenance	techniques	in	various	parts	of	the	
operaGng	space	(high	values	of	stress	parameters).	

•  Ongoing	Work:	ExperimentaGon	in	a		real-world	
dynamic	environment	(not	simulated).	

19	

First	Story	
	Churn	&	Reversibility		

20	

Are	the	Maintenance	Strategies	
Reversible?	(1)	

CorrecGon-on-*	

Churn:	%	of	node	turnover	per	second.	
Metric:	%	of	nodes	on	core	ring	as	a	funcGon	of	Gme		

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180

Pe
rc

en
ta

ge

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

DisconGnuaGon	of	Self-healing	
due	to	lack	of	liveness!!	

21	

Are	the	Maintenance	Strategies	
Reversible?	(2)	

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180

P
e
rc

e
n

ta
g

e

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

CorrecGon-on-*	and	Periodic	
StabilizaGon	

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140 160 180

P
er

ce
n

ta
g

e

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

CorrecGon-on-*	and	Periodic	
StabilizaGon	and	Merger	with	

passive	list	

S+ll	not	Reversible.	Why?	
22	

•  Incomplete/pending	joining	of	new	nodes.	
•  High	churn	makes	overlay	unstable,	which	do	not	allow	new	peers.		

–  Rapidly	invalidates	the	join	reference	new	peer	has.	
•  In	order	to	make	these	isolated	peers	part	of	overlay,	need	to	re-trigger	join	by	providing	

new	valid	join	reference.	
–  Knowledge	Base	is	required	to	get	knowledge	about	an	alive	peer	of	overlay.	

•  Proac+ve	triggering	of	merger	using	Knowledge	Base	to	avoid	parGGon	of	the	system	
a�er	isolated	nodes	complete	their	join	procedures.	

 0

 20

 40

 60

 80

 100

 20 40 60 80 100 120 140

P
er

ce
n

ta
g

e

Time (in sec)

For Churn = 10%
For Churn = 50%

For Churn = 100%

CorrecGon-on-*,	Periodic	StabilizaGon,	
Merger	with	Knowledge	Base.	

23	

Are	the	Maintenance	Strategies	
Reversible?	(3)	

A	Perfect	Ring	with	100%	nodes!!	

Second	Story	
Phase	TransiGons	

24	

Phase,	Phase	TransiGon		
&	CriGcal	Point	

•  System	=	An	aggregate	enGty	composed	of	a	large	number	of	
interacGng	parts.	
–  	Each	part	is	a	node	of	the	SON.		

•  A	Phase	is	a	subset	of	a	system	for	which	the	qualitaGve	properGes	
are	essenGally	the	same.		
–  Different	parts	can	be	in	different	phases,	depending	on	the	local	

environment	observed	by	the	part.		
	

•  Why	is	this	interesGng?	
–  System	funcGonality	depends	on	these	qualitaGve	properGes	;	

•  Use	phase	for	observing	system	funcGonality,	but	it	should	work	without	extra	
computaGon	and	even	when	communicaGon	is	broken;	

–  Important	for	applicaGons	running	on	top	of	SON	in	a	hosGle	seUng.	

25	

Phase,	Phase	TransiGon		
&	CriGcal	Point	(Cont..)	

•  A	Phase	Transi*on	occurs	when	a	significant	fracGon	of	a	system’s	parts	
changes	phase.	
–  This	can	happen	if	the	local	environment	changes	at	many	parts.		

	
•  A	Cri*cal	Point	occurs	when	more	than	one	phase	exists	simultaneously	in	

significant	fracGons	of	a	system.		

26	

Can	we	observe	the	global	structure?		
YES!	Phase	transiGons	!!	

•  Phase	transiGons	between	solid,	liquid	and	gaseous	states.	
–  Solid:	neighbors	do	not	change	(core	ring).	
–  Liquid:	neighbors	changing	(branches).	
–  Gaseous:	no	neighbors	(isolated	nodes).		

	
•  Phase	transiGons	are	not	global	synchronizaGons.	

–  At	one	Gme,	each	node	can	be	in	a	different	phase,		
–  Different	phases	can	coexist	in	the	same	system.	

27	

Under	increasing	churn	during	5	minutes	 A�er	withdrawing	churn	

Phase	TransiGons	in	SON:	red,	green	and	blue	areas	correspond	to	%	of	
nodes	on	ring	(solid),	branches	(liquid)	and	isolaGon	(gaseous)	respecGvely.		
	

28	

 0

 20

 40

 60

 80

 100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

26
0

28
0

30
0

Time (in sec)

 0

 20

 40

 60

 80

 100

32
0

34
0

36
0

38
0

40
0

42
0

44
0

46
0

48
0

50
0

52
0

54
0

Time (in sec)

Increasing	churn	with	Gme	up	to	a	gaseous	state,	then	decreasing	churn	
with	Gme:		

29	

What	are	Phase	TransiGons	good	for?	
ü Give	useful	informaGon	to	the	applicaGon.	
ü Can	be	observed	easily	(by-product	of	maintenance,	no	
global	sync	needed)		

 0

 20

 40

 60

 80

 100

0 20 40 60 80 10
0

12
0

14
0

16
0

18
0

20
0

22
0

24
0

Time (in sec)

Third	Story	
Network	ParGGoning	without	Churn	

(Brief	Network	ParGGons)	

30	

Can	our	Maintenance	Strategies	help	
with	Network	ParGGoning?	

Scenario	 Local	Maintenance	
(Correc+on-on-*,	
Periodic	Stabiliza+on)	

Global	Maintenance	
(Merger	with	passive	
list/knowledge	base)	

Execu+on	during	
Network	Par++on	
(par++on-tolerance)	

Can	Create	separate	
rings	in	each	parGGon	
but	can	get	stuck.	

Merger	with	KB	is	
Required	to	provide	
the	best	parGGon-
tolerance;	however	
Merger	with	passive	
list	can	fail	to	fulfill	
the	requirement.		
	

Execu+on	at	Par++on	
Repair	(merging	of	
overlays)	

Combined	reacGve	
and	proacGve	
correcGons	is	able	to	
merge	mulGple	
overlays,	even	reacts	
quicker.	

Provides	no	
improvement	over	
the	combined	local	
strategies.	

31	

Ø  CorrecGon-on-*:	unavailability	of	key	ranges.	
Ø  Periodic	StabilizaGon:	eventually	recovers	from	unavailability,	but	

mulGple	overlays	are	formed	in	same	parGGon.		

Merger	with	passive	list	fails	to	
trigger	merging	of	mulGple	
overlays	in	same	parGGon	
(holding	black	nodes)	

ProacGve	manner	to	trigger	
merging	using	knowledge	base	
is	required.	

A	ParGGon	Scenario:	white	and	black	nodes	belong	to	two	
different	parGGons;	parGGon	having	black	nodes	have	absence	of	
more	than	|succ_list|	−	1	consecuGve	peers	(here,	|succ_list|	=	4).	 32	

ExecuGon	during	Network	ParGGon	

ExecuGon	at	ParGGon	Repair	(1)	
•  EvaluaGon	using	number	of	islands	as	a	funcGon	of	Gme.	

–  An	island:	a	disconnected	sub-graph	by	following	successor	
pointer	of	each	node.			

 0

 0.5

 1

 1.5

 2

 2.5

 3

 0 1 2 3 4 5

N
u
m

b
er

 o
f

Is
la

n
d
s

Time (in sec)

For CoC+CoU
Error Bar

For CoC+CoU+PS
Error Bar

For ReCirCle (PS+Merger)
Error Bar

Number	of	ParGGons=2	

33	

ExecuGon	at	ParGGon	Repair	(2)	

 0

 1

 2

 3

 4

 5

 0 1 2 3 4 5

N
u

m
b

er
 o

f
Is

la
n

d
s

Time (in sec)

For CoC+CoU
Error Bar

For CoC+CoU+PS
Error Bar

For ReCirCle (PS+Merger)
Error Bar

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 1 2 3 4 5
N

u
m

b
er

 o
f

Is
la

n
d

s

Time (in sec)

For CoC+CoU
Error Bar

For CoC+CoU+PS
Error Bar

For ReCirCle (PS+Merger)
Error Bar

Number	of	ParGGons=4	 Number	of	ParGGons=10	

34	

Fourth	Story	
InteracGon	between	Network	ParGGon	

and	Churn	

35	

Stranger	Model	

•  To	understand	impact	of	churn	during	a	network	parGGon.		
–  QuanGfy	challenge	for	maintenance	mechanism,	while	merging	
mulGple	overlays,	as	a	network	parGGon	ceases.			

•  Due	to	churn	during	network	parGGon,	parGGons	of	system	
diverges	with	Gme.	

	
–  Suppose	P1	and	P2	two	parGGons.	|P1|=n1,|P2|=n2	and	n1≈		n2.	
	
–  Best	possible	state	at	t=0,	since	network	parGGon:	

36	

Stranger	Model	(cont..)	

•  AssumpGons:		
– Uniform	distribuGon	of	peer	lifeGmes	
(corresponds	to	worst	case	scenarios).	

– The	set,																			,	remains	unchanged	with	Gme.	

•  A�er	t	(t>0)	Gme	units,	since	network	parGGon:		

37	

Cut-off	Point	

•  A�er	TCO	Gme	unit	P1	and	P2	will	be	complete	
strangers	to	each	other.		

Ø It	is	impossible	for	system	to	achieve	
reversibility	by	itself	beyond	cut-off	point.	

Churn	 Theore+cal	TCO	 Measured	TCO	

10%	 39.12	 40	

30%	 13.04	 14	

80%	 4.89	 5	
38	

ValidaGon	of	
Stranger	Model	by	
Experiments	

EvaluaGon	of	Maintenance		
Strategies	against	Strangers	(1)	

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

Is
la

n
d
s

Time (in sec)

Churn Duration = 8 sec
Error Bar

Churn Duration = 20 sec
Churn Duration = 32 sec
Churn Duration = 36 sec

CorrecGon-on-*.		
Fails	even	for	lower	number	of	

strangers.	

39	

v  OperaGng	Environment:	
§  Churn	=	10%,		
§  ParGGons=	2,	
§  Cut-off	Point	=	40.	

v Metric:	Number	of	Islands	(disconnected	sub-graph	by	following	successor	pointers).	
Should	converge	to	1.	

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60

N
u
m

b
e
r

o
f

Is
la

n
d
s

Time (in sec)

Churn Duration = 8 sec
Churn Duration = 20 sec
Churn Duration = 32 sec
Churn Duration = 36 sec

Error Bar

CorrecGon-on-*	and	Periodic	
StabilizaGon.	Shows	

compeGGve	result	with	an	
explicit	merge	algorithm.		

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60
N

u
m

b
e
r

o
f

Is
la

n
d
s

Time (in sec)

Churn Duration = 8 sec
Churn Duration = 20 sec
Churn Duration = 32 sec
Churn Duration = 36 sec

Error Bar

CorrecGon-on-*	and	Periodic	StabilizaGon	
and	Merger	with	passive	list.	

Fails	to	achieve	reversibility	for	36	seconds	
of	churn	during	network	parGGon.	

40	

EvaluaGon	of	Maintenance		
Strategies	against	Strangers	(2)	
32	sec	=	77%	Strangers,	36	sec=	90%	Strangers,	40	sec	=	cut-off	

GeUng	as	close	possible	to	the	Cut-off	
Point	:	Knowledge	Base	is	the	SoluGon!!	

 0

 0.5

 1

 1.5

 2

 2.5

 0 2 4 6 8 10 12 14 16 18

N
u
m

b
e
r

o
f

Is
la

n
d
s

Time (in sec)

Churn Duration = 8 sec
Churn Duration = 20 sec
Churn Duration = 32 sec
Churn Duration = 36 sec

Error Bar

 0

 0.5

 1

 1.5

 2

 2.5

 3

 3.5

 4

 0 10 20 30 40 50 60
N

u
m

b
er

 o
f

Is
la

n
d
s

Time (in sec)

Churn Duration = 40 sec
Churn Duration = 44 sec

Error Bar

CorrecGon-on-*	and	Periodic	
StabilizaGon	and	Merger	with	
knowledge	base	achieve	self-
healing	even	for	90%	strangers	

CorrecGon-on-*	and	Periodic	
StabilizaGon,	Merger	with	knowledge	

base	and	ORACLE	to	achieve	
reversibility	beyond	cut-off	point	

41	

And	Beyond..	

Conclusion	and	Future	Work	

42	

Conclusion	

	
•  In	order	to	design	provably	correct	complex	
systems,	it	is	required	to	study	behavior	of	
such	systems	in	inhospitable	environments.		
– Build	systems	that	are	both	predictable	(hence,	
useful	in	pracGce)	and	reversible	(hence,	they	
survive).	

43	

Summary	of	Our	Stories!!	
	

•  First	Story:	Repeated	join	and	merger	using	Knowledge	Base	is	required	to	
achieve	Reversibility	against	extremely	high	Churn.	

•  Second	Story:	Phase	TransiGons	in	the	system	as	a	by-product	of	making	
the	system	Reversible	(give	useful	informaGon	to	applicaGons	using	APIs).	

•  Third	Story:	Require	ProacGve	Global	Maintenance	(Merger	with	
Knowledge	Base)	during	Network	ParGGon.	At	ParGGon	Repair	Local	
Maintenance	is	enough	to	achieve	Reversibility	as	long	as	the	churn	
intensity	remains	low	or	the	duraGon	of	network	parGGon	is	short.	

•  Fourth	Story:	ProacGve	Global	Maintenance	(Merger	with	Knowledge	
Base)	is	required	to	get	closer	to	the	cut-off	point.	Can	also	inform	
applicaGon	when	close	to	cut-off	point	(by	measuring	churn	and	using	
Stranger	Model	inside	applicaGon).	With	ORACLE	it	is	possible	to	go	
beyond	the	cut-off	point	(by	injecGng	knowledge	using	an	API).		

44	

Future	Work	(toward	a	Ph.D.)	

•  Three	main	topics:	
–  Increase	scale	(100	nodes	is	not	enough);	
–  Increase	realism	(real	system,	not	simulated);	
–  API	and	applicaGon	scenarios.	
	

•  Maintenance	strategies	and	insights:	
–  Need	to	be	validated,	extended,	increase	understanding;	
–  IntegraGon	with	other	approaches,	e.g.,	gossip.	
	

•  Other	stress	parameters:	
–  Underlying	network	communicaGon	delays:	Impact	on	
maintenance	and	interacGon	with	other	stress	parameters	(churn,	
network	parGGon);	

–  Workload:	Impact	on		maintenance	while	doing	real	work.	
45	

46	

CorrecGon-on-Change	
q	

p r	

Step	1	
q	&	r	 join(q)	

q	->	r	

joinOk(p)	
r	->	q	

q	

q	

p

p

pr	

r	

r	

q	

newSucc(q)	
q	->	p	

predNoMore(p)	
p	->	r	

Step	2	
q	&	p	

Step	3	
p	&	r	

qp r	

Step	1	
p	&	r	 @p:	crash(q)	

fix(p,r)	
p	->	r	

q	

p r	

fixOk(r)	
r	->	p	

Step	2	
r	&	p	

qp r	

Handling	Join	

Handling	Failure	

47	

Periodic	StabilizaGon	

p

q

r	

Step1:	getPred(p,r)	
p	->	r	

Step2:	getPredRes(q)	
r	->	p	

t	

v

Step1:	getPred(t,v)	
t	->	v	

Step2:	
						v.pred	=	t		
						t	->	v:	getPredRes(nil)	Step3:	

						p.succ	=	q	

t	 v

u My	Pred	is	
dead!!	

v.Pred	=	nil	

@t:	My	Succ	is	not	responding!!	
t.succ	=	getFirstSuccList()	=	v	p

q

r	

Step1:	getPred(q,r)	
q	->	r	 q	is	a	beper	

Pred.	
r.Pred	=	q	

Handling	Join	 Handling	Failure	

Periodic	Maintenance	

48	

ReCircle	
•  Extends	periodic	stabilizaGon	to	react	to	extreme	events	like	network	

parGGons	and	merge.	
•  Two	parts:	

–  Periodic	StabilizaGon	
–  Merger		

•  Merger:	
–  Each	node	maintains	a	queue,	which	holds	idenGfiers	of	all	nodes	that	need	to	

be	fixed.		
	
–  Every	γ	Gme	units	each	node	dequeues	elements	from	its	queue.	
		
–  Does	a	greedy	lookup	using	id	of	each	element.	
	
–  Upon	reaching	peer	responsible	for	id,	triggers	same	mechanism	as	periodic	

stabilizaGon.		

49	

10 15

8

7

18 20
22

25

30

31

33

35

50

90

99
1a.	Mlookup(15,f)	

1b.	Enqueue(90,f)	

2b.	Enqueue(15,f-1)	

2a.	Mlookup(90,f)	

50	

10 22
15 20 18

25

30

31

33

35

8

7

1.	Mlookup(15)	

2a.	Get	
Pred(30)	

2b.	Set	succ:=15	

3a.	GetPredRes(8)	

3b.	Enqueue(30,f)	 3c.	Set	pred:=10	

4.	Set	pred:=8	

5.	Mlookup(30)	

6a.	GetPred(35)	

6b.	Set	succ:=30	

7a.	Enqueue(35,f)	

8.	Mlookup(35)	

7b.	Set		
pred:=25	

51	

po
s

u

x

p
s

u

o
x

o p s u
x

b
d

e
h

i

j

o x

b

j

p
s

u

d

e
hi

52	

RepresentaGve	Complex	Systems	
•  A	parGcular	class	of	overlays.	
–  Logarithmic-style	Ring	Overlays	as	per	reference	
architecture	proposed	by	Aberer	et.	al.1	

–  Ex.	Chord,	Chord#,	DKS,	P2PS,	Beernet	etc.	
–  All	these	overlays	possess	the	same	key	design	aspects.		

1Aberer	et.	al.,	“The	essence	of	P2P:	a	reference	architecture	for	overlay	networks,”	in	Proc.	P2P,	2005.		
	

Design	Aspects	 Ring	Overlays	

Choice	of	IdenGfier	Space	 A	subset	of	natural	numbers	of	size	N,		
with	closeness	metric,	d(x,	y)	=	(y	−	x)	mod	N	.		

Mapping	to	the	IdenGfier	Space		 A	uniform	hash	funcGon	or	some	random	funcGon.		

Management	of	the	IdenGfier	Space		 A	peer	with	virtual	idenGfier	p	is	responsible	for	the	interval	
(predecessor(p),p].		

Graph	Embedding		 Belongs	to	“rouGng-efficient”	small-world	networks.		

RouGng	Strategy	 Greedy	rouGng	strategy.	

Maintenance	Strategy	 Goal	of	this	work:	enhancement	of	maintenance	to	survive	in	
inhospitable	environments.		

53	

Maintenance	Strategies	
•  Can	be	classified	into:		

Ø Local	Maintenance:	
² ReacGve:	with	sub-categories	correcGon-on-change	(for	self-healing)	and	

correcGon-on-use	(provides	self-opGmizaGon	and	self-configuraGon).	
v Ex.	DKS,	P2PS,	Beernet.		

² ProacGve:	correcGon	using	periodic	probing.	
v Ex.	Chord,	Chord#.	

Ø Global	Maintenance:	
² Overlay	merger	algorithm.	

v Adapted	ReCircle2	for	our	work.	
»  How	to	trigger	merger?	

•  Shafaat	et	al.	proposes	a	ReacGve	approach	using	falsely	
suspected	nodes.	

•  We	propose	a	ProacGve	approach,	using	Knowledge	Base.	
ü  Each	node	keeps	on	learning	about	other	nodes,	build	an	

“acquaintance”	list.	
ü  OpGmisGcally	samples	in	a	periodic	manner	from	its	

knowledge	base	to	trigger	merger.	

.	2T.	M.	Shafaat,	“ParGGon	tolerance	and	data	consistency	in	structured	overlay	networks,”	Ph.D.	dissertaGon,	KTH,	Sweden,	2013.		
	

54	

