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Overview
� Exponential growth of IoT
◦ Internet of Things: devices at the logical extreme of 

the Internet (farthest away from the cloud center)
� Applications at the extreme edge
◦ Use GRiSP platform and Erlang applications

� Sensor fusion for person tracking
◦ Practical results: two moving people in real time

� Big data on the extreme edge
◦ Practical results: cheapest possible solution

� Conclusions
◦ IoT is just beginning; GRiSP and Erlang are a good 

platform for anyone who wants to enter this 
innovative new area
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GROWTH OF IOT
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IoT: The New Exponential

� IoT (Internet of Things) will 
have exponential growth for 
the foreseeable future
◦ Moore’s Law is fading

◦ Mobile phones saturate, but 
IoT will reach 75B by 2025

� Programmability challenge
◦ How do we program this fast-

growing, heterogeneous 
infrastructure?

◦ Big companies (GAFA) are all 
extending their cloud 
frameworks toward the edge, 
but is this a final solution?
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“The Edge is Becoming the Center”

� The IoT market is growing much faster than the cloud: 
13%/year versus 5%/year

� Computation must be done closer to the edge instead 
of in the cloud
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Demand for microchips is not in servers

Holger Pirk, Imperial College, 2020 (CAGR = Compound Annual Growth Rate)



APPLICATIONS AT THE 
EXTREME EDGE
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Applications at the extreme edge
� We give two examples of applications that run 

directly at the extreme edge, i.e., on the sensor 
boards, with no cloud or computers needed
◦ Sensor fusion: accurate real-time person tracking in a 

room using sonars
◦ Big-data computation: MapReduce framework to do 

big-data-style computations

� We use the GRiSP hardware and software
◦ GRiSP provides off-the-shelf support for IoT 

prototyping using Erlang and Digilent Pmod sensors
◦ GRiSP is a complete solution for IoT; no further 

installations are needed (like, e.g., for Raspberry Pi)
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Open-source software
� All software for the two projects presented in this talk 

is available in open-source repositories
◦ All software is written in Erlang/OTP and runs on GRiSP boards

� Lynkia (MapReduce on GRiSP)
◦ https://github.com/lynkia

� Hera (Sonar-based person tracking on GRiSP)
◦ General sensor fusion framework (independent of GRiSP)

� https://github.com/guiste10/hera
� https://github.com/bastinjul/hera_synchronization

◦ Sonar-based application for deployment on GRiSP boards:
� https://github.com/bastinjul/sensor_fusion

◦ LiveView application for real-time visualization
� https://github.com/bastinjul/sensor_fusion_live_view
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Foundation of this talk (1)
� Two master’s projects done at UCL in 2019-2020, 

supervised by Peter Van Roy and Igor Kopestenski
◦ Both available at https://www.info.ucl.ac.be/~pvr/pldc.html

� Guillaume Neirinckx and Julien Bastin. “Sensor 
Fusion at the Extreme Edge of an Internet of Things 
Network”. Master’s project, Université catholique 
de Louvain, Aug. 2020.

� Julien Banken and Nicolas Xanthos.  “Doing Large-
Scale Computations on an Internet of Things 
Network”. Master’s project, Université catholique 
de Louvain, Aug. 2020.
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Foundation of this talk (2)
� GRiSP 1 platform for building embedded systems with 

Erlang & Elixir, developed by Stritzinger GmbH.
See www.grisp.org.

� LightKone H2020 project (2017-2019): Lightweight 
computation for networks at the edge.
See www.lightkone.eu.
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GRiSP platform
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� GRiSP 1 platform for IoT prototyping
developed by Stritzinger GmbH

� Hardware:  “Top-of-the-line laptop year 2000”
◦ ARM Cortex M7 at 300 MHz with FPU, 64MB RAM, 

MicroSD Card “disk”, Wi-Fi support
◦ Five Digilent Pmod interfaces, one I2C interface, one 

Dallas 1-Wire interface
� Software
◦ RTEMS real-time operating system
◦ Full Erlang/OTP supporting Erlang and Elixir



Pmod MaxSonar sensor
� This card uses the MB101 LV-MaxSonar-EZ1 

sonar range finder
� 1inch resolution, 50ms reading time
� People detection claimed up to 2.4m / 8ft
◦ We measure it as somewhat less (see later!)

� Beam characteristic diagrams from datasheet
◦ Dowels: A: 0.25inch, B:1inch, C:3.5inch, D:11inch
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SENSOR FUSION FOR 
PERSON TRACKING
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General approach
� The system consists of n sonar-equipped GRiSP nodes 

installed along the walls of a room
� Sonar measurements are done as frequently as possible 

(limited by the MaxSonar sensor)
� Each node receives all information from all sonars to 

compute position of static or moving targets
� This general approach is made practical with the following 

refinements:
◦ Trilateration: compute positions of up to 2 people with 4 sonars
◦ Noisy sonars: handle noise and incorrect sonar operation
◦ Crosstalk: handle interference between sonars in each other’s view
◦ UDP multicast: needed for real-time operation
◦ Live view: support for real-time graphical representation
◦ Resilience: implemented using a supervisor tree
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Trilateration: one target

� The target position is 
computed in 2-dimensional 
space from two sonars

� For two sonars S1 and S2 

there are two possible 
target positions A and B

� To remove ambiguity, three 
sonars are necessary in 
theory, although we find 
that in practice two suffice 
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Trilateration: two targets

� We place four sonars in a rectangle

� Because of room constraints, two sonars are sufficient to 
determine the position of one person.  We add a position filter to 
implement these constraints:  A is removed by the position filter.

� In most cases (but not all), four sonars suffice to determine the 
positions of two people
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Trilateration: limits and filters

� Four sonars are not always sufficient for two persons

� This example shows two possible positions for two persons in the room
◦ A & C is one possibility and B & D is another possibility!

� This happens when the two persons are both near the center of the room

� We solve this problem with a speed filter, which gives a maximum speed of 
a person.  If a position violates this speed limit, it is filtered.

� With the position filter and speed filter, four sonars suffice for two persons
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Noisy sonars
� The sonars are not 100% accurate
◦ They are noisy (they have jitter) and they occasionally 

generate completely false measurements

� To handle both inaccurate sonars and 
computation ambiguities, the system has a 
general filter module that allows to install 
multiple filters
◦ Generic filter: upper bound on difference in 

successive measured values (meters, ms)
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Crosstalk

� When two sonars are in each other’s line of sight, we observe that 
they interfere with each other and give incorrect measurements
◦ S1 and S3 interfere, also S2 and S4 interfere

� To solve this problem, the sonars need to coordinate
◦ We add a synchronization server to activate the sonars in alternation

◦ In collaboration with Stritzinger GmbH, we extended the GRiSP MaxSonar 
driver to allow controlling when measurements are done (the default driver 
gives only the latest sonar reading)
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RESULTS FOR PERSON 
TRACKING
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Maximum distance

� We measured one sonar’s accuracy for people detection for 
a stationary person in two orientations (front toward sonar 
and side toward sonar)
◦ We make a series of measurements and compute the fraction of 

the measurements that are accurate
� For all orientations, it looks like 200 cm is a practical limit
◦ The system works in rooms up to perhaps 4m x 4m, not more

� The MaxSonar datasheet gives a limit of 244 cm; this is 
technically correct but too optimistic for accuracy
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150 cm 200 cm 250 cm

Front 75% 68% 23%

Side 52% 30% 6%



Distance to a person (one sonar)

� We show the distance measurements with one sonar for a 
moving and stationary person
◦ 50ms per measurement; 100 measurements is 5 seconds

� Note that the sonar occasionally misses a stationary person
23

67 6.4. Person tracking

(a) Moving randomly - Obtained with gnuplot (b) Standing at 200 cm - Obtained with gnuplot

Figure 16.: Distance to a person

6.4.2.2. Using 2 boards

The results mentioned below were carried out with a person that does not move in
a room. The person is always in more or less the same position in the room for all
experiments with two boards.

We have also conducted tests with a moving person, but given the very small space
where the person can be detected by both sonars at the same time, too little data
has passed the filters for us to be able to draw any conclusion about the data.
In the graphs proposed for 2, 3 and 4 boards, each blue square represents a position
estimated by one board and each red star represents the position of a sonar.

Facing sonars By comparing graphs of Figure 17, we can see that when the synchro-
nization of measurements is activated, there is not much difference in the positions
calculated for tests carried out with or without measurement filters. The points
are more or less all grouped together in a 30 x 30 cm square. On the other hand,
we can see that when the measurement filter and the synchronization are off, the
calculated coordinates are much more dispersed throughout the chart. This is due to
the presence of crosstalk between the 2 sonars.

This is a first example of the importance of synchronization to avoid crosstalk
between sonars.

Other graphs about the experiments’ results with synchronization and without
filters as well as without synchronization and without filters are available in Appendix
B.3.2.1. These graphs show the same trend as those mentioned above.



Crosstalk avoidance (2 sonars)

� This shows the effect of synchronization to remove crosstalk 
in the case of two perpendicular sonars and one stationary 
person (with sonars facing each other it is even worse)

� We can see that crosstalk avoidance is essential: without it, 
no reasonable results can be obtained
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Chapter 6. Experiments 68

(a) With filter and synchroniza-

tion

(b) Without filter and with syn-

chronization

(c) Without filter and synchro-

nization

Figure 17.: Trilateration of a non-moving person inside a room with 2 facing sonars
- Obtained with gnuplot

Non-facing sonars The same philosophy emerges from experiments with sonars
that are perpendicular to each other, as evidenced by the plots of Figure 18. The
rest of the experiments are in Appendix B.3.2.1.

(a) With filter and synchronization (b) Without filter and synchronization

Figure 18.: Trilateration of a non-moving person inside a room with 2 facing sonars
- Obtained with gnuplot

6.4.2.3. Using 3 boards

Non-moving person with anti-crosstalk Figure 19 shows us once again that the
results obtained with and without the measurement filter are not very different from
each other. Moreover, the person is quite well detected. However, some results in
Appendix B.3.2.2 show that even with a filter, some deviations from reality remain.
This shows that the filter is not perfect and needs improvement. We will discuss
these possible improvements at Section 7.2.

sonar

sonar



Crosstalk avoidance (3 sonars)

� We show the effect of crosstalk avoidance in a room 
with 3 sonars in a triangle (red dots show the sonars)

� Both diagrams show a stationary person
� Left diagram is with synchronization and right without 

synchronization; both diagrams without filter

25

69 6.4. Person tracking

(a) With filter and synchronization (b) Without filter and with synchronization

Figure 19.: Trilateration of a non-moving person inside a room with 3 sonars -
Obtained with gnuplot

Non-moving person without anti cross-talk Figure 20 shows the same experience
of a person at the center of 3 sonars, but this time without the synchronization feature
enabled. We can see once again that this feature is essential because the results
obtained without it are disastrous. The more sonars are used without synchronization,
the more crosstalk is present.

Figure 20.: Trilateration of a non-moving person inside a room with 3 sonars, with
filter and synchronization deactivated - Obtained with gnuplot

Moving person Figure 21 shows the trajectory of a person that describes a circle
obtained in the inner space of the 3 boards.

In the next graphs representing one (or two) person(s) moving, a colour scale is

69 6.4. Person tracking

(a) With filter and synchronization (b) Without filter and with synchronization

Figure 19.: Trilateration of a non-moving person inside a room with 3 sonars -
Obtained with gnuplot

Non-moving person without anti cross-talk Figure 20 shows the same experience
of a person at the center of 3 sonars, but this time without the synchronization feature
enabled. We can see once again that this feature is essential because the results
obtained without it are disastrous. The more sonars are used without synchronization,
the more crosstalk is present.

Figure 20.: Trilateration of a non-moving person inside a room with 3 sonars, with
filter and synchronization deactivated - Obtained with gnuplot

Moving person Figure 21 shows the trajectory of a person that describes a circle
obtained in the inner space of the 3 boards.

In the next graphs representing one (or two) person(s) moving, a colour scale is



Moving person (3 sonars)

� We show the computed trajectory of a person moving 
in a circle in a room with three sonars (color shows 
time, from blue to green, 50ms/iteration, 20 iterations is 
one second)

� This is computed with both filter and synchronization
26

Chapter 6. Experiments 70

located on the right side of the graph. This scale represents the calculations’ iterations
made by one board. As a reminder, there is a 50 ms interval between each iteration.
For example, in graph 21, the positions on the graph were obtained from a 4 second
time interval that starts two seconds after the position calculations are started. The
purpose of these graphs is to show the trajectory as seen on the live view.

We can see in this figure that the trajectory taken by the person is well detected
by our system.

Figure 21.: Trilateration of a moving person inside a room with 3 sonars, with
filter and synchronization activated. The person is describing a circle
between the 3 board - Obtained with gnuplot

We have also conducted another experiment with a moving person. Figure 22 shows
on the right the movement performed by the person and on the left the obtained
result. We can see once again that the movement of that person is more or less well
detected.

6.4.2.4. Using 4 boards

The tests in this section have been performed with the measurement filter and anti-
crosstalk features activated. The tests with 2 and 3 sonars have already shown the
importance of having the anti-crosstalk feature activated.

Non-moving person Figure 23 shows two tests we have performed with a person that
does not move and stands at the center and at the left side of the room respectively.
We can see that in both cases, the person is detected and that its position is correctly
calculated. The results of these two tests are the best we have observed. Indeed,



Stationary person (4 sonars)

� This shows a stationary person in two positions, 
using 4 sonars and synchronization

� The error is higher because of the larger distance: 
this starts to show the limitations of the sonar

27

71 6.4. Person tracking

(a) Trilateration with filter and synchronization (b) Path followed by the person

Figure 22.: Trilateration of moving person inside a room with 3 sonars - Obtained
with gnuplot

figure 24 shows that the results are not always as good, even by using a filter. We
believe that this lack of accuracy shows the limitation of the sonar we use. On the
right of this figure, the person standing on the top side of the room is less in the
range of the sonars than when standing on the left as on the previous figure (23).
This would explain the difference in detection quality between Figures 23b and 24b.
We believe that this problem would disappear by using sonars that possess a wider
detection beam (as explained in 7.2).

(a) Person on the center of the room (b) Person on the left side of the room

Figure 23.: Trilateration of a non-moving person inside a room with 4 sonars -
Obtained with gnuplot

Another problem that can be seen in Figure 24b, is that because the person is in
an area that is less covered by sonar, less sonars’ measurements were used during the



Moving person (4 sonars)

� We give three cases of a moving person in a 
room with four sonars
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73 6.4. Person tracking

conclusions from those results.

(a) Trilateration of a moving person

(b) Path followed by the person

Figure 25.: Trilateration of moving person inside a room with 4 sonars - Obtained
with gnuplot

(a) Movement from top to bottom (b) Movement from left to right

(c) Person describing a circle

Figure 26.: Trilateration of moving person inside a room with 4 sonars - Obtained
with gnuplot



Two persons (4 sonars)

� Our final result is two persons in a room with four 
sonars, in the stationary and moving cases

� We can see it works pretty well, but it’s clear we are 
close to the limit of the abilities of the sonars

29

Chapter 6. Experiments 74

Two persons The experiments for this configuration were performed in a different
room than during the previous tests. Figure 27 shows the results we have obtained
with two people in a room. In Figure 27a we can see that our system is able to distin-
guish two nonmoving people very well and that the results obtained are very grouped.
The reason why the detection is very good, is because the 2 persons were stand-
ing not far away from the sonars (at a bit less than 150 cm) right in front of the sonars.

The results in Figure 27b were obtained with two people that start walking from
either side of the room and meet in the middle. We have chosen this moving pattern
for 2 moving people because it covers an area that is well detected by the sonars. On
the graph, we can easily recognize this pattern. We can clearly see in the middle
the point where our system stops considering them as 2 persons because of their
proximity and considers them as one person instead. As explained in section 5.2.2.1,
when the distance between two detected positions is less than 40 cm, we consider
them as a single entity and fusion the two detected positions.

We can also observe that people start moving on both sides of the room. Indeed,
blue dots start on the left and right, which is the beginning of the movement phase.
They then gradually turn into green dots in the middle of the graph.

We have also experimented with two people each standing between two adjacent
boards. Unfortunately, as the locations of the two people were outside the sonars’
detection zones, no result could be obtained for this experiment.

(a) Two non-moving persons away from each other
(b) Two moving persons synchronously walking to the

center

Figure 27.: Trilateration of two persons inside a room with 4 sonars - Obtained
with gnuplot



Person-tracking conclusions
� Real-time person tracking works well for one and 

two persons, stationary or moving, with four sonars 
in a room up to 3m x 4m

� Four GRiSP boards and Hera software is a practical 
way to track two people in normal-sized rooms

� The main limitations come from the MaxSonar 
sensors themselves, but they are good enough for 
remarkable results

� Crosstalk avoidance is essential
� Live view of the positions is very useful
� For observing more people, more sonars and/or 

smarter software are needed!
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Future work
� Take advantage of improved sonars to increase precision and 

maximum size of room
� Investigate how to increase number of tracked people with 

limited number of sonars (using filters, aggregate trajectories, 
and other information)

� Extend the sonar-based sensor fusion by adding other input
◦ Observe people with video cameras and microphones
◦ Allow people to carry GRiSP boards, for example, with

PmodNav sensors (giving position and acceleration)
� Extend to 3D, for example to do surveillance
� Simplify the initialization by automatically determining sonar 

positions
� Improve the intelligence by using machine learning
� Future sensor boards will be more powerful: target future 

improved hardware (GRiSP 2!)
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(short video of person tracking)
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BIG DATA ON THE 
EXTREME EDGE
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Motivation
� Internet of Things is growing faster than cloud, so 

computation needs to move out of the cloud and 
toward the edge

� One possibility is to use local computing nodes 
near the edge, but this is expensive because of 
the cost of the node

� The least expensive solution would be to use the 
sensor nodes themselves to do the computation 
(this is called the extreme edge)

� In this project we did just that: we made an 
experiment to see whether big-data-style 
computations can be done on the extreme edge
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Big data on the extreme edge
� We made a proof of concept to do big-data 

computations on the extreme edge
� Lynkia open-source library
◦ Provides a MapReduce computation model with task 

management, running on a network of GRiSP nodes
◦ Built for the hostility of an extreme edge 

environment: tolerates node crashes, network 
partitions, and various communication problems

� Evaluation
◦ Reliability test with fault injection using different 

network topologies
◦ Load balancing for multiple nodes
◦ Benchmarks for computation-intensive tasks
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MapReduce capsule summary

� MapReduce is a primitive operation that allows performing massively 
parallel computation in a distributed environment
◦ It was the first important big-data operation in the cloud, invented in the 

1990s, later generalized and used as inspiration for many extensions in 
today’s big-data frameworks

� Computations consist of three phases: Map, Shuffle, and Reduce
◦ Map and Reduce functions are specified by the user
◦ The phases are repeated until a fixpoint is obtained
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design an algorithm that will be able to process as much data as possible
given the technical limitations of the GRiSP boards.

• We will assume that the nodes can leave and join the network at any time
for many di�erent reasons. In that conditions, the system is very exposed to
network partitioning. As part of this project, we tried to design an algorithm
that will be fault and partition tolerant. The algorithm should be able to
tolerate up to n ≠ 1 failures while ensuring the correctness of the result.

• We will assume that the communication between the nodes is not reliable:
The messages can be reordered, duplicated and deleted. As part of this
project, we tried to design algorithm that will not be sensitive to that.

4.1.2 Overview

Figure 4.1: MapReduce - Phases

In our implementation, a MapReduce takes place in several rounds. In round 0,
the map function provided by the programmer will be applied to the raw data to
produce key-value pairs. This round corresponds to the map phase. The other
rounds are composed of two phases: the shu�e phase and the reduce phase. During
the shu�e phase, the pairs will be split in sub-groups. During the reduce phase, the
reduce function provided by the programmer will be applied on each sub-group.
Each sub-group will produce new key-values pairs. The output pairs will become
the input pairs of the next round. The shu�e phase and the reduce phase will
be repeated successively until they no longer produce any changes on the given pairs.

We distinguish two roles: the leader role and the observer role. The leader will
oversee the execution of the MapReduce. The leader will be responsible of the
division and the distribution of tasks. The observers will observe the progress of
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Lynkia requirements
� Lynkia is designed with respect to the 

constraints of the extreme edge
� The extreme edge imposes strong 

requirements:
◦ Tolerance of reduced memory size to stay within 

limited memory of the nodes
� Extreme edge nodes have limited resources
◦ Tolerance of churn, where nodes can leave and 

join the network at any time
� Extreme edge nodes can crash (e.g., power loss)
◦ Tolerance of unreliable networks, with message 

loss, delay, reordering, or duplication
� Extreme edge networks live in hostile environments
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Lynkia architecture
� Lynkia library consists of two parts:
◦ Task model: Work is divided into “tasks”, which can be 

distributed across nodes
◦ MapReduce: A big-data computation that uses the task model

� Lynkia is designed for the extreme edge
◦ It is fault tolerant and partition tolerant
◦ It tolerates message loss, delay, reordering, and duplication

� Lynkia is built on top of two underlying libraries
◦ Partisan: a communication library that uses hybrid gossip to keep 

connectivity despite node churn (node fails and joins)
◦ Lasp: a replicated key/value store that is based on CRDT data 

structures to guarantee consistency despite message loss, delay, 
reordering, and duplication

38

Partisan and Lasp software is designed and written by Christopher Meiklejohn 
and others in the context of the SyncFree and LightKone European projects



Algorithm operation
� Data is stored at all nodes for redundancy
◦ This limits the size of the MapReduce computation but enables reliability

� Nodes have two roles, leader and observer
◦ In normal operation there is one leader and others are observers
◦ Because of unreliability, there may temporarily be none or more than one 

leader; in that case the system converges to one leader

� Each computation round has three phases
◦ During the map phase, the leader broadcasts checkpoint information to all 

observers for reliability
◦ During the shuffle phase, the leader splits the data into batches and creates 

tasks for computing on each batch
◦ During the reduce phase, the leader waits for all results, and either 

continues to the next round or terminates

� Task distribution
◦ The task model manages task distribution according to each node’s load, to 

optimize performance and balance load

39



RESULTS FOR 
MAPREDUCE
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Single node test (base case)

� The system is tested in the base case of one GRiSP 
node with no network
◦ Synthetic benchmark that requires 12 rounds
◦ The node becomes leader and executes all the rounds

41

Figure 7.4: Single node

Analysis of the results The node was leader during the whole computation
of the MapReduce. It executed the twelve rounds and finished the computation
normally and it got the final result.

Five nodes in the network

For this evaluation, we have connected five GRiSP boards to each other in di�erent
topologies. The purpose of the following tests is to show that our system works
correctly in a network of five nodes in di�erent topologies. We want to make sure
that all nodes get the final result of the MapReduce.

Expected behavior The node that started the MapReduce remains leader until
the end. The leader computes the MapReduce in twelve rounds and the observers
receive four checkpoints because the leader broadcasts the result of one in three
rounds. The leader broadcasts the result of the MapReduce to other nodes of the
network.

Observed behavior - full-mesh We have run the synthetic test on node 1.

49

Notation:
- Orange: leader
- Blue: observer
- Line: end of round
- Kill: successful end



Five node test (no crashes)

� The system is tested with five GRiSP nodes in a full 
mesh topology
◦ Note that some checkpoint messages were lost or delayed 

(node 3 in round 0, node 4 in round 9), but redundancy 
ensures that all nodes reach the final result 
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Figure 7.5: Full mesh topology

Analysis of the results The leader was the node 1 and it remained it until the
end of the MapReduce. It finished the MapReduce in twelve rounds. We observe
that some checkpoint messages were not received by some observers: node 3 did
not receive the checkpoint of round 0 and node 4 did not receive the checkpoint
of round 9. The checkpoints messages have been lost or delayed. At the end, we
observe that all the nodes got the result of the MapReduce.

Observed behavior - butterfly We have run the synthetic test on node 1
which is the node at the center of the network. Node 1 is connected to the four
other nodes.

Figure 7.6: Butterfly topology
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Notation:
- Orange: leader
- Blue: observer
- Line: end of round
- Kill: successful end



Five node test (leader crash)

� The leader (node 1) crashes just after broadcasting the initial data
◦ Nodes 3 and 4 time out and become leaders, then they compete and 

node 3 retires because node 4 is more advanced
◦ Node 5 gets a time out (because of delayed message) and becomes 

leader, then it retires because node 4 is more advanced
� At the end, all correct nodes reach the final result 
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The crash of the leader could create a network partition. In this case, there
will be one leader per partition and they will resume the MapReduce at the last
checkpoint they received. When the MapReduce is computed the leader(s) will
broadcast the result to other alive nodes of the network.

Observed behavior - full-mesh We have run the synthetic test on node 1.

Figure 7.8: Full mesh topology, the leader crashes

Analysis of the results The leader was the node 1 because it started the
MapReduce. It crashed right after broadcasting the initial pairs to other nodes.

Nodes 3 and 4 are the first two nodes to have timeout and they became leaders,
they competed against each other to become the single leader and it was node
4 that won: it finished the round 3 before node 3. The new leader finished the
MapReduce in twelve rounds. Node 5 received the checkpoint of round 3 from the
node 4 but soon after it has timeout and became leader because its timer timeout
probably because it did not receive some heartbeat messages and it resumed the
MapReduce at checkpoint 3 and remained leader until the round 8. Then it became
observer again because it received the checkpoint of round 9 from node 4 which is
a more advanced leader. At the end, all the nodes got the result of the MapReduce
except the node 1 that crashed.

Observed behavior - line We have run the synthetic test on node 1 which is
the node at center of the network. There are nodes 2 and 3 to its left and nodes 4
and 5 to its right.

53



Five node test (4 nodes crash)

� Purpose of this test is to show that the system is 
resilient to n-1 crashes
◦ At the end, node 4 is the only correct node

� Correct operation with temporary network 
partitioning was also tested
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be idle time during the transition period. In addition to that, the new leader may
resume the MapReduce from an oldest checkpoint. It means that the node may
have to redo part of the completed work.

N ≠ 1 crashes in a five nodes network

For this evaluation, we have connected five GRiSP boards to each other in a
full-mesh topology. We start the synthetic test on a node that become the leader
and we crash the leader and 3 other nodes at di�erent times. The purpose of the
following test is to show that our system is resilient and it resist to N ≠ 1 crashes.

Expected behavior If the leader crashes before it could broadcast the initial
pairs to at least one another node, the MapReduce disappear and is never computed.
If the leader crashes after the broadcast of the initial data, another node (an
observer) will timeout because it will not receive any message from the leader and
in turn will become leader. The new leader will resume the MapReduce at the
last checkpoint it received. The last remaining node will compute the result of the
MapReduce. The N ≠ 1 crashed nodes will not receive the result.

Observed behavior We have run the synthetic test on node 1

Figure 7.10: Full mesh topology, N ≠ 1 crashes

Analysis of the results The leader was the node 1 because it started the
MapReduce. It crashed after the round 3. The timers of nodes 2 and 4 timeout
and they became leaders. They resume the MapReduce at round 3 but node 2
crashed. Nodes 3 and 5 crashed too, they were observers. Node 4 was the single
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Task model test (one node)

� We analyze the state of the task model: the number of tasks as 
function of time
◦ We use the synthetic benchmark as before, which generates 50 tasks 

per round
◦ Green line gives number of tasks in the run queue
◦ Each round is one sawtooth pattern
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leader in the network and it remained until the end because it did not crash. At
the end it was the only node to have the result of the MapReduce.

7.2 Task model
In this section, we will analyze the state of the task model according to the load
balancing strategy used. We will run the synthetic test describe in section 7.1 on
the GRiSP boards. We will show the graphs and discuss the results.

The task model’s state is composed of a queue containing the identifiers of the
scheduled tasks, a dictionary running_tasks containing the process id and
the task id of the tasks that are running and a dictionary forwarded_tasks
containing the forwarded task id and the node to which the task has been
sent.

Single node

Figure 7.11: State of the task model on one node

Analysis of the result We started the test on a single node. The green line
represents the number of elements in the queue is a triangle wave. Each triangle
is the activity of the node during a round of the reduce phase: at the beginning
of the round, the task model adds the batches one by one in the state, this is the
ascending phase. The synthetic test generates 100 pairs and the maximum size of
a batch is 2. So, there are 100

2 = 50 batches in the queue. Then, the queue empties
as the tasks are computed, this corresponds to the descending phase.
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Load balancing test (pull strategy)

� We test the pull strategy on 5 nodes, where 
nodes steal tasks from their neighbors

� Note that workload is reasonably well distributed
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The blue line is constant and represents the size of the running_tasks: it is
always equal to 1. As explain in section 4.2, the number of concurrent process is
limited to 1. As soon the result of a task is computed by its process, a new process
is spawned and a new task is executed.

The orange line is constant and represents the size of the forwarded_tasks: it
is always equal to 0 because the node did not have any neighbors, so it did not
forward any tasks.

Pull strategy

Figure 7.12: States of the task model using the pull strategy

Analysis of the results We started the test on node 1. The task model used
the pull strategy with the following configuration:

• stealing threshold = 5

• maximum stolen tasks = 100.
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Load balancing test (push strategy)

� We test the push strategy on 5 nodes, where the 
leader forwards tasks to its neighbors

� Node 1 has unusual behavior between 40 and 70 
seconds, probably due to overloading
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The green line represents the number of elements in the queue is a triangle
wave. Each triangle is the activity of the node during a round of the reduce phase.

The orange line represents the number of elements in forwarding_tasks. With
the pull strategy, the neighbors stole tasks from the leader. In fact, the neighbors
send a message to the leader asking to send to them some tasks. And the leader
forward them tasks if the number of tasks exceeds the forwarding threshold. By
looking the orange line of node 1, we observe that the sender forwarded more than
40 tasks per round to its neighbors. The observers stole tasks to the leader but
also to other observers. For example, the node 2 received about 40 tasks (green
line) but it forwarded about 30 tasks to other nodes.

From a general point of view, the workload is well distributed among all the
nodes. Considering all the rounds, the four observers had on average the same
number of tasks in their queue.

Push strategy

Figure 7.13: States of the task model using the push strategy
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Computation test (pull vs. push)

� We simulate tasks that do large computations; this can give speedups 
because communication overhead is less important
◦ Each node does 100 tasks with computation time given
◦ For 10ms to 50ms, forwarding is not effective (tasks should be done locally)
◦ For 100ms, pull is clearly more effective than push (better when computation-intensive)
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Comp. Average Std. Dev. Min Max

10 7203 351 6523 8280

20 7477 514 6745 8837

50 7633 433 6708 8223

100 8203 657 7202 9936

Comp. Average Std. Dev. Min Max

10 12582 307 12099 13190

20 12676 223 12327 13794

50 12778 172 12428 13044

100 12820 289 12156 13387

Pull

Push



MapReduce conclusions
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� We show that it is possible to do MapReduce at the extreme edge
◦ On small unreliable sensor boards with an unreliable communication network

� This is the cheapest solution and in many cases it may be sufficient
◦ No hardware is needed other than the sensor boards themselves
◦ Of course, it cannot compete in performance with a cloud framework!  That is 

not our goal.  But the fact that it is both possible and cheap opens the door to 
many IoT applications that would otherwise be impractical.



GENERAL 
CONCLUSIONS
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General conclusions
� Internet of Things is the Next Big Thing™ !
◦ It is growing exponentially and at a much faster rate than the cloud
◦ (Together with the other Next Big Thing, Machine Learning J )

� Big companies (GAFA) are jumping on the IoT bandwagon, 
but they all see IoT as extending their cloud infrastructures
◦ This leaves a wide-open opportunity for independent developers

� IoT is ripe for exploration by the little guys in their garages
◦ GRiSP and Erlang are an ideal platform for this
◦ We give two case studies, namely sonar-based person tracking and 

MapReduce, both running on the extreme edge

� We invite you to download and run the software, and do 
your own experiments and extensions
◦ For example, it’s a great basis for interesting class projects
◦ At UCL we will continue our experiments with GRiSP for IoT, 

extending functionality, using more sensors, and building applications
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