
Université catholique de Louvain
Ecole Polytechnique de Louvain
Computing Science and Engineering Pole

A Model-Based Approach for Dynamically
Distributing Graphical User Interfaces Based on

their Properties, Graphs, and Scenarios

Jérémie Melchior

Thesis submitted
in partial fulfillment of the requirements

for the Degree of Doctor in Computer Science

Examination committee:

Prof. J. Vanderdonckt, Co-supervisor (UCL-Louvain School of Management &
ICTeam, Belgium)
Prof. P. Van Roy, Co-supervisor (UCL-Computing Science and Engineering Pole &
ICTeam, Belgium)
Prof. K. Mens, (UCL-Computing Science and Engineering Pole & ICTeam, Belgium)
Prof. K. Coninx, (Hasselt University, Hasselt, Belgium)
Prof. J. Coutaz, (Université Joseph Fourier, Grenoble, France)
Prof. C. Pecheur, President of the jury (UCL-Computing Science and Engineering Pole
& ICTeam, Belgium)

January 4, 2016

2

Acknowledgments

This thesis has been made possible thanks to my advisors Jean Vander-
donckt and Peter Van Roy. I would like to thank them for their motivation,
ideas and for all their contributions. I would also like to thank the other
members of the jury: Professors Joëlle Coutaz, Karin Coninx and Kim Mens.

Many thanks to all my colleagues at the Operations and Information
Management (OI) Department of the Louvain School of Management (LSM)
and at the Computing Science and Engineering Pole (INGI) for their help,
comments and friendship, especially Boriss Mej́ıas and Ruma Paul for the
great help and devotion around my usage of Beernet, Yves Jaradin who
ported Mozart to Android and worked on the Mozart 2 DSS, Sébastien
Doeraene, Anthony Gégo, Guillaume Derval and Benoit Daloze for the help
regarding Mozart2. I am also greatly thankful to Tanguy Lepoutre for his
help with the demonstrations and for his support until the end of the thesis.

Finally I would like to thank my friends and my family, especially my
dear love Émilie and my daughter Élise.

The thesis has been supported by:

� The UsiXML project standing for USer Interface eXtensible Mark-up
Language. ITEA2 European Project ITEA2-2008-0026. January 2010
- March 2013.

� The SELFMAN project standing for Self Management for Large-Scale
Distributed Systems based on Structured Overlay Networks and Com-
ponents. European FP6 (Sixth Framework Programme, Priority 2, In-
formation Society Technologies) Project under convention No. 034080.
September 2008 - September 2009.

� The SERENOA project. European FP7 (Seventh Framework
Programme) Project under grant agreement No. 258030 (FP7-ICT-
2009-5).

� The Usidistrib FIRST SpinOff Project under convention
No. 1217843. May 2013 - May 2016.

3

4

Contents

1 Introduction 17

1.1 Distributed Tasks . 18

1.2 Models, Approaches, Software supports 25

1.2.1 Models . 26

1.2.2 Approach . 28

1.2.3 Software support . 28

1.3 Thesis Statement . 29

1.3.1 Single VS Multiple distributions 29

1.3.2 Scope . 30

1.3.3 Contributions . 32

1.4 Support for mobile devices . 33

1.5 Organization of the Thesis . 33

2 Related Work 37

2.0.1 Meta-UI for Ambient Spaces[COU06] 42

2.0.2 Mobile and Intelligent Environments[DEE10] 44

2.0.3 The Fiaa Platform Model 44

2.0.4 An AUI model to support DUIs 46

2.0.5 FRESCO . 46

2.0.6 CESAM . 46

2.0.7 Windows snipping in MME[HUT07] 48

2.0.8 ARIS . 48

2.0.9 IMPROMPTU . 49

2.0.10 GUMMY . 49

2.0.11 Light-weight Services 51

2.0.12 MASP . 51

2.0.13 Web sites and applications 53

2.1 The related work along the three dimensions 54

2.1.1 Modeling for Distributed Systems 54

2.1.2 Tools for creating DDGUIs 59

2.2 Summary . 60

2.2.1 List of shortcomings 60

2.2.2 Comparison of software support 62

5

6 CONTENTS

2.3 Survey on User Preferences for additional UI 63

2.3.1 Experimental study 64

2.3.2 Results and discussion 68

2.4 List of requirements . 73

3 Conceptual modeling of a DS 75

3.1 Architecture of a distributed system 75

3.1.1 Non-distributed and distribution-aware applications . 77

3.1.2 JayTk’s architecture 78

3.1.3 Example of a non-distributed application: Painter’s
palette . 79

3.2 Model-based approach for DDGUIs 80

3.2.1 Modeling in software engineering 80

3.2.2 Core models . 81

3.2.3 User Model . 81

3.2.4 Device Model . 82

3.2.5 The selection mechanism 82

3.2.6 EBNF grammar . 83

3.3 Distribution Graph . 84

3.3.1 Graph . 85

3.3.2 Attribute-Value Pair pattern 85

3.3.3 Vertices . 86

3.3.4 Arcs . 87

3.3.5 Distribution Graph . 88

3.3.6 Environment . 89

3.4 Behavior of a Distributed System 89

3.4.1 Events . 89

3.4.2 Execution trace of the distributed system 90

3.4.3 Event-Condition-Action pattern 90

3.5 Graphical representation . 91

3.6 Application Graph . 92

3.7 Distribution Primitives . 97

3.7.1 Local User Interface actions 97

3.7.2 Global UI actions . 98

3.7.3 Distributed actions . 103

3.7.4 Behavior behind the User Interface 108

3.7.5 Distribution mechanisms 109

4 Specifications of the toolkit 111

4.1 Definition of a DDUI . 111

4.2 Specification of JayTk . 112

4.2.1 Distribution primitives 114

4.2.2 Events . 114

4.3 Specification of Beernet[MEJ10] 115

CONTENTS 7

4.3.1 P2P network . 115

4.3.2 Coherent storage . 116

4.3.3 Atomicity . 118

4.3.4 Failure Detector . 119

4.4 Applications . 121

4.4.1 Mozart applications 121

4.4.2 JayTk applications . 122

4.5 Conclusion . 122

5 Implementation of JayTk 125

5.1 Structure of the toolkit . 126

5.2 Running as a daemon . 127

5.3 Mozart Environment . 127

5.3.1 Communication between devices 128

5.3.2 Mozart for all . 130

5.4 Implementation of the actions 131

5.4.1 Using actions through different ways 131

5.5 Porting Mozart to Android 133

5.6 Implementation of JayTK on other OS’s 134

5.6.1 Mozart . 134

5.6.2 Android . 136

5.6.3 Windows Phone . 137

5.6.4 Windows . 137

5.7 Conclusion . 138

6 Case Studies 141

6.1 DistribuChat . 141

6.1.1 Specification . 141

6.1.2 Implementation . 141

6.2 DeTransDraw - DeTransDrawid 142

6.2.1 Specification . 143

6.2.2 Implementation . 144

6.2.3 Evaluation . 145

6.3 Mobictionary . 147

6.3.1 Specification . 147

6.3.2 Implementation . 149

6.3.3 Evaluation . 158

6.4 CarReservation . 161

6.4.1 Specification . 161

6.4.2 Implementation . 161

6.4.3 Evaluation . 162

6.5 Conclusion . 163

8 CONTENTS

7 Validation of JayTk 165
7.1 Potential benefits . 165
7.2 SpinOff: Usidistrib . 166
7.3 Validation of the Toolkit . 166
7.4 Fulfillment of the requirements 166
7.5 Conclusion . 169

8 Conclusion 171
8.1 Summary of the contributions 171
8.2 Progress and Shortcomings 173
8.3 Future Work . 173
8.4 Final Word . 174

9 Appendices 175

List of Figures

1.1 Evolution in capability of computing devices 17

1.2 Quarterly sales market share in combined tablet and PC cat-
egory. 18

1.3 Graph of the situation in which a tablet, an eReader and a
smartphone are used by US inhabitants.[NIE11] 19

1.4 Natural world vs. digital world [GRO05] 19

1.5 An example of application molding 20

1.6 The Scoop-and-Spread technique of HyperPalette 21

1.7 WinCuts allows users to only display the areas they want to
see. 22

1.8 Children playing pictionary on a white board. 22

1.9 A picture of the board of Pictionary. 23

1.10 An example of board for the GotG[GotG]. 25

1.11 Schema of the dimensions. 26

1.12 JayTk based on Beernet and implementing the concepts of
the thesis. 32

1.13 Outline of the thesis . 34

1.14 Thesis roadmap . 35

2.1 Comparison between toolkits supporting DUIs[ROU06] 43

2.2 The ergonomic aspect of the User Interface[DEE10] 44

2.3 The Fiaa Platform Model resource model from [QIU09] . . . 45

2.4 Their AUI model with the DUIs perspective from [PENA11B] 46

2.5 A print screen of the CESAM prototype with two devices
connected[ROU06B]. 47

2.6 An application cut into parts 47

2.7 Example of simplicity gains from research on DUIs[HUT07] . 48

2.8 The iconic map in ARIS[BIE04] 48

2.9 Screen shot of the IMPROMPTU’s UI[BIE08] 49

2.10 IMPROMPTU’s extra-UI for windows sharing (a) and dis-
playing (b) [BIE08]. 50

2.11 The three main dialogues of the Gummy tool[MESK08]. . . . 50

9

10 LIST OF FIGURES

2.12 A UIML vocabulary relates generic terms to concrete repre-
sentations [MESK08]. 51

2.13 Example of distribution with Light-weight services 52

2.14 The additional UI associated with the task play music 53

2.15 A screen shot of MASP’s UI[MASP]. 53

2.16 A screen shot of the description of the context[MASP]. 54

2.17 The distributed system set and the other sets 55

2.18 The 4 principal components in HCI[SHAC09] 56

2.19 Possible distribution with two users, two displays and two tasks 57

2.20 A workflow representing the life cycle of a task[RUS05]. . . . 58

2.21 A workflow representing the life cycle of a distributed task. . 58

2.22 Comparison of software support 62

2.23 Update of the comparison of Meta-UI[COU06]. 63

2.24 Comparative Analysis of additional UIs: Their Interaction
Styles . 65

2.25 Example of metaphors for MOVE and MERGE operations . . 67

2.26 Platform experience of participants. 69

2.27 Preferred interaction styles 69

2.28 Distribution of participants’ comments for all distribution
primitives . 70

2.29 Distribution of participants’ comments for all interaction styles 71

2.30 Examples of some possible touch and multi-touch gestures. . 72

2.31 Links between shortcomings and requirements. 74

3.1 The structure of common distributed applications 76

3.2 The structure of a distributed application 76

3.3 An example of a non-distributed application with and without
distribution support. 77

3.4 An example of a distribution-aware application 78

3.5 The structure of an application using the JayTk 79

3.6 Modeling in software engineering and in HCI 80

3.7 Device model . 82

3.8 EBNF grammar for the main terms 84

3.9 Example of distribution graph for the example of the Painter’s
Palette . 85

3.10 Evolution of the distribution graph when a second device has
appeared . 85

3.11 An example of distribution graph with 2 users and 3 devices . 88

3.12 The graphical representation of the Event-Condition-Action
pattern[PAS07] . 90

3.13 Representation of a distribution graph with two users and two
devices . 91

3.14 Representation of a distribution graph with two users and two
devices . 91

LIST OF FIGURES 11

3.15 Representation of the same DG after disappearance of u2 and
d2 . 92

3.16 Representation of the same DG after disconnection of user
vertex u1 . 92

3.17 Representation of the same DG after disappearance of u1 . . 92

3.18 Simple example of Distribution Graph. 93

3.19 Simple Application Graph from the Distribution Graph of
Figure 3.18 . 93

3.20 Concepts of the thesis . 110

4.1 Global view of Beernet’s architecture[MEJ10] 116

4.2 Consensus atomic commit on a DHT. 118

4.3 How mozart applications usually create their GUI. 121

4.4 How mozart applications create their GUI with JayTk. 121

4.5 Comparison of an application created without and with JayTk122

5.1 Structure of the toolkit . 126

5.2 An example of GUI created with QTk 127

5.3 Example of a command-line user interface. 133

6.1 DG of the DistribuChat demonstration 142

6.2 The GUI used for the DistribuChat’s example 142

6.3 The GUI of DistribuChat has been split into pieces: 1) the
status of the chat, 2) the send button, 3) the chat window, 4)
the typing window . 143

6.4 DG of DTD and DTDid demonstration 143

6.5 The basic UI of the DTD application 144

6.6 The basic UI of the DTDid application 145

6.7 On the left, the user is in Asking for locks state and the
handles of the big square are red. On the right, the user is in
Got locks state with the handles in black. 146

6.8 The state diagram of a user 146

6.9 The structure of DeTransDraw and DeTransDrawid applica-
tions . 147

6.10 Distribution Graph of the Mobictionary demonstration. . . . 148

6.11 User Interface of the observers. 150

6.12 User Interface of the drawer. 150

6.13 User Interface of the guessers. 151

6.14 Creation of a game when no game is already started. 151

6.15 Pseudo-code for creating initial UI. 152

6.16 Second state. Player 1 and 2 are connected. 153

6.17 Pseudo-code for updating UI after game creation. 153

6.18 Creation of a game when no game is already started. 153

6.19 Pseudo-code for updating UI after game creation. 154

12 LIST OF FIGURES

6.20 State diagram of the current system. 155
6.21 Player 1 becomes the drawer and stays observer. 155
6.22 Pseudo-code for updating UI from Obs. to Obs.-Draw. 156
6.23 Player 2 becomes the guesser. 156
6.24 Pseudo-code for updating UI for Player 2 becoming a guesser. 157
6.25 Simplified diagram of the whole system. 157
6.26 Pseudo-code for switching players’ role. 158
6.27 Complete diagram of the whole system. 160
6.28 DG of the CarReservation demonstration 161
6.29 The GUI of the CarReservation form on the Windows tablet 162
6.30 The GUI of the CarReservation form on the Windows phone 162

List of Publications

Journal article

[MEL12-IJHCI] Melchior, J., Vanderdonckt, J., and Van Roy, P.
A Comparative Evaluation of User Preferences for
Extra-User Interfaces, In the International Jour-
nal of Human-Computer Interaction (IJHCI), 28:11,
Taylor & Francis, pp. 760-767, 2012.

[MEL11dui2] Melchior, J., Vanderdonckt, J., and Van Roy, P. Dis-
tribution Primitives for Distributed User Interfaces,
In Distributed User Interfaces: Designing Interfaces
for the Distributed Ecosystem, Human-Computer In-
teraction Series, Springer-Verlag, London, pp. 23-
31, 2011.

Conference papers

[MEL09] Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy,
P. A Toolkit for Peer-to-Peer Distributed User Interfaces:
Concepts, Implementation, and Applications, In Proceedings
of the 1st ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems (EICS 2009), ACM Press, New
York, pp. 69-78, Pittsburgh, PA, USA, July 15-17, 2009.

[MEL11] Melchior, J., Vanderdonckt, J., Van Roy, P. A Model-Based
Approach for Distributed User Interfaces, In Proceedings of
the 3rd ACM SIGCHI Symposium on Engineering Interac-
tive Computing System (EICS 2011), Pisa, Italy, June 13-16,
2011.

13

14 LIST OF FIGURES

[MEL12] Melchior, J., Vanderdonckt, J., Van Roy, P. Modelling
and Developing Distributed User Interfaces based on Dis-
tribution Graph, In Proceedings of the Sixth International
Conference on Research Challenges in Information Science
(RCIS 2012), Valencia, Spain, May 16-18, 2012.

Workshop papers

[MEL11dui] Melchior, J., Vanderdonckt, J., Van Roy, P. Distribution
Primitives for Distributed User Interfaces, In Proceedings
of the Distributed User Interfaces CHI 2011 Workshop
(DUI 2011), ACM Press, New York, pp. 29-32, Vancou-
ver, British Columbia, Canada, 2011.

[MEL12dui] Melchior, J., Mej́ıas, B., Jaradin, Y., Van Roy, P., and
Vanderdonckt, J. Improving DUIs with a decentralized
approach with transactions and feedbacks, In Proceedings
of the Distributed User Interfaces CHI 2011 Workshop
(DUI 2012), ACM Press, New York, pp. 65-68, Austin,
Texas, USA, 2012.

Doctoral consortium

[MEL11dc] Melchior, J. Distributed User Interfaces in Space and Time,
In Proceedings of the 3rd ACM SIGCHI Symposium on En-
gineering Interactive Computing System (EICS 2011), Pisa,
Italy, June 13-16, 2011.

Recommandation to W3C

MBUI - Abstract User Interface Models,
W3C Working Group Note 08 April 2014,
Vanderdonckt, J., Tesoriero, R., Mezhoudi, N., Motti, V., Beuvens, F.,
Melchior, J.,
W3C, 08 April 2014,
http://www.w3.org/TR/abstract-ui/

Deliverables

LIST OF FIGURES 15

SELFMAN Self Management for Large-Scale Distributed Systems
based on Structured Overlay Networks and Components.
D5.9: Distributed mobile application on gPhone.

USIXML USer Interface eXtensible Mark-up Language.
D1.3: UsiXML definitions.

USIXML USer Interface eXtensible Markup Language
(UsiXML), W3C Working Group Submission
1 February 2012, Vanderdonckt, J., Beuvens,
F., Melchior, J., Tesoriero, R., W3C,
1 February 2012,
http://www.w3.org/wiki/images/5/5d/
UsiXML submission to W3C.pdf

16 LIST OF FIGURES

Chapter 1

Introduction

The days when the desktop computer was the only computing device used
by one single user at a time to work and play are over. The more compact
a computing device is, the less capable it will be. A few years ago, the
difference in capability between a phone and a PC was very constraining as
depicted in the left-hand image of Figure 1.1.

Figure 1.1: Evolution in the capability of computing devices compared to
their size.[PIE04]

The use of a cell phone was restricted to very basic games and appli-
cations. Nowadays, computing devices offer more capabilities than in the
past, even for the most portable ones (Figure 1.1) which are more frequently
purchased over time (Figure 1.2).

In the right-hand image of Figure 1.1 we can see that the evolution of
computing devices reduces the difference in capability between the more
portable computing devices.

In a few years this difference may completely disappear if the trends
keep going. The term luggability is used in this figure to describe the ease of
portability of a computing device. Although these evolutions are considered
significant, applications are still designed for a single computing device to
be used by only one person at a time.

17

18 CHAPTER 1. INTRODUCTION

Figure 1.2: Quarterly sales market share in combined tablet and PC
category.[VMDE13]

This assumption is becoming less and less true: a single user shares the
time across different computing devices (Figure 1.3) and the same computing
device can be used by different users. Users also more frequently carry out
distributed tasks in many domains of human activity (e.g., management,
finance, accounting, learning, gaming, ...).

1.1 Distributed Tasks

Applications created for desktop computers allow a human called the user to
use a computing device to accomplish a certain goal called a task. However
certain tasks can be very complex and can require more than one computing
device or more than one user. A task that requires or benefits from more
than one computing device is called a distributed task. The computing de-
vices can either be used at different times, sequentially, or at the same time,
concurrently. The definition of a distributed task is now provided.

Definition 1. A distributed task [DT] is a task that is accomplished with
the help of more than one computing device.

To illustrate distributed tasks, we will give three running examples which
will help the reader to understand the benefits of using multiple computing
devices to accomplish a task. The first use case is a drawing tool that can
be distributed in space. The second use case is the Pictionary game, which
is naturally distributed in space and among users. And the last use case
is a game based on the concept of the Game of the Goose and the Snakes
and Ladders because it can show how distribution can be added to a non-
naturally distributed game.

1.1. DISTRIBUTED TASKS 19

Figure 1.3: Graph of the situation in which a tablet, an eReader and a
smartphone are used by US inhabitants.[NIE11]

Use Case 1: the Painter’s Palette

Here is a very basic drawing tool such as Microsoft Paint. Let us call it: the
Painter’s Palette. Such applications are almost always designed for a single
user with only one computing device: a desktop computer or a laptop. The
common interaction for such applications is with a mouse: to choose the
type and color of the pen, and to choose a shape (e.g., rectangle, ellipse,
square, ...). However in the natural world we need several objects in order
to create a painting. Figure 1.4 compares how to paint in the natural world
and on a computing device.

Figure 1.4: Natural world vs. digital world [GRO05]

20 CHAPTER 1. INTRODUCTION

Someone who has several computing devices may want to separate the
palette from the painting itself. There are two ways to distribute the appli-
cation: on only one or across several computing devices. An example is to
display the toolbars on a smartphone while drawing with a pen on a tablet.
There are currently no drawing applications that can use several comput-
ing devices at the same time. An example of this separation is depicted in
Figure 1.5.

Figure 1.5: An example of application molding

Definition 2. Distributed User Interfaces [DUIs] enable end users
to distribute any user interface element at design- and/or run-time across
different users, across different computing platforms, and across different
physical environments.[VDD10]

There are very few solutions allowing an application to use several com-
puting devices simultaneously. Most of these solutions have not been re-
leased for developers to create their own applications. The current situation
is to create several applications (one per computing device) and allow them
to communicate together. Even such inter-applications communication is
not easy to implement for a developer. So today, we think that there is no
tool that allows developers to create distributed graphical user interfaces
(DGUI) in a straightforward manner. Here is a definition of a DGUI as a
specific DUI.

Definition 3. A Distributed Graphical User Interface [DGUI] is a
DUI in which all components are only graphical components.

DGUIs and other DDUIs are said to be dynamic if the distribution occurs
at run-time, and static if the distribution occurs at design-time. We will
refer to Dynamic Distributed Graphical User Interfaces (DDGUI) if it is

1.1. DISTRIBUTED TASKS 21

dynamically distributed as opposed to Static Distributed Graphical User
Interfaces (SDGUI). The thesis focuses on DDGUIs.

Definition 4. A Dynamic Distributed Graphical User Interface
[DDGUI] is a DGUI that can be dynamically distributed at run-time. The
whole distribution is not established at design-time.

Definition 5. A Static Distributed Graphical User Interface
[SDGUI] is a DGUI where the whole distribution is established at design-
time and cannot be changed at run-time.

To allow this kind of distribution we would like to create a software sup-
port that will connect computing devices together, and support distribution
across them, e.g., to allow the UI to move from one computing device to
another.

There are indeed applications such as Paint.NET [Paint.NET], Microsoft
Visual Studio [VS], TeXnicCenter [TeXnicCenter] making it possible to sep-
arate toolbars from the main window and to move them within the desktop,
which itself could be decomposed into several viewpoints, such as in Compiz
Fusion for Linux[Compiz], nVidia nView for Windows [nView], AMD/ATI
Hydravision which is now AMD Eyefinity[HydraVision, Eyefinity]

These applications force the distributed elements to stay on the same
computing devices and do not allow these toolbars to move from one com-
puting device to another.

HyperPalette [AYA00] connects a small computing device which is a
pointing device acting like a gesture command related to a real world action
such as copy. The Scoop-and-Spread technique (Figure 1.6) allows users to
cut some elements from a virtual drawing board and paste them somewhere
else.

Figure 1.6: The Scoop-and-Spread technique of HyperPalette[AYA00]

22 CHAPTER 1. INTRODUCTION

WinCuts [TAN04] is a novel interaction technique which allows users
to replicate regions of windows into independent windows called WinCuts.
The new windows are live views of the corresponding regions (Figure 1.7).

Figure 1.7: WinCuts allows users to only display the areas they want to see.

Use Case 2: Pictionary

Pictionary [Pictionary] is a guessing word game invented in 1985 by Robert
Angel. An illustration of people playing Pictionary is depicted in Figure 1.8.

Figure 1.8: Children playing pictionary on a white board.

1.1. DISTRIBUTED TASKS 23

The game is designed for at least 4 players and can be played in teams.
A player receives a word which the other players have to guess. The drawer
can use a pen to draw sketches on paper. The other players attempt to say
the correct word. The first player to guess the word gets a point for the
team and the turn is over.

The board game

Pictionary was released as a board game and is sold by Hasbro and Mattel.
The board is constituted of sequence of squares. Each square has a letter
identifying the type of picture to be drawn (Figure 1.9).

Figure 1.9: A picture of the board of Pictionary.

Each team or player gets a piece that is placed on the first square of the
board.

The objective of the game is to reach the last square of the board. At
each turn the players from one team must guess the word or phrase being
drawn by their current player. The role rotates with each word.

The drawer gets a card out of a deck. and draw sketches that help
other players to guess the word that is on the card. The drawings cannot
contain any numbers or letters, and no verbal clues can be given to help the
other players guess. Their teammates try to guess the word the pictures are
intended to represent and shout their proposals out loud.

There are five types of squares: P, O, A, D and AP.

� P: draw a person, a place or an animal

� O: draw an object

� A: draw an action

� D: draw a word that is difficult to represent in a drawing

24 CHAPTER 1. INTRODUCTION

� AP: one player from each team attempts to illustrate the same concept
simultaneously

In P, O, A and D, there is only one player drawing.

In AP (All Play), one player from each team plays simultaneously. The
first player to guess correctly wins the turn.

A one-minute timer, usually a sand timer, prevents a turn from lasting
too long. If the timer runs out, then no point is given and the teams rotate.

Mobictionary

We have decided to choose this case study because the game is naturally
distributed across these players. Depending on the role, the player is given
a task to accomplish. A player is either the drawer or the guess player.

Each player has a different UI depending on the role. There are three
roles: game manager, drawer and observer.

The game manager gives the word to the drawer and starts the timer.
The drawers see the word which they need to make other players guess.
They can use a pen on a drawing area. The other players can see the
current drawing without the ability to draw anything.

There can be observers to the game. They can also see the drawing but
they cannot play.

A timer is available on any UI for players and observers to see the time
remaining before the end of the turn.

Use Case 3: Game of the Goose

Finally we will introduce another use case based on the Game of the Goose.

Game of the Goose

The Game of the Goose[GotG] is a board game created during the 16th
century as family entertainment. The board consists of a sequence of 63
consecutively numbered squares (Figure 1.10).

They are usually arranged in a spiral. There are one or two dice. The
current player throws the dice to move forward on the board.

Some squares have a goose depicted on them. The player who lands
on a square with a goose is allowed to move again by the same distance.
Some other squares have a different action associated to them: a bridge or
a penalty. A bridge moves the player forward to another square. A penalty
brings the player back to a previous square, or makes the player skip one or
more turns.

1.2. MODELS, APPROACHES, SOFTWARE SUPPORTS 25

Figure 1.10: An example of board for the Game of the Goose[GotG].

The distributed game

For our case study we would like to get inspiration from the Game of the
Goose.

In our distributed game, every square of the board is a different game.

We have added one role: the manager of the board. The manager can
change the game affected to a square during the game itself. We think that
this will create more fun to keep the competition alive.

1.2 Models, Approaches, Software supports

There are initiatives in which a software application allows some particular
distribution. However, there is no way, either synthetic or organized, to
specify and design a DDGUI

In order to foster an approach that is not tied to a particular distributed
task or to a particular distribution, let us introduce three dimensions to help
us organize the research and analyze related work: The first dimension is the
models that describe and define the concepts of interest. Then there is the
approach which can be followed to use the models efficiently. And finally,
comes the software support which can be either a toolkit or a software
application.

The software support uses the approach which is itself based on the
models (Figure 1.11).

These dimensions are investigated further in this section.

26 CHAPTER 1. INTRODUCTION

Software Support

Approach

Models

supports

supports

Figure 1.11: Schema of the dimensions.

1.2.1 Models

There are several entities that are part of a computing system and can
communicate with each other. In order to understand, use, and support the
whole computing system, we need to describe these entities to reason about
them.

The main entities of a computing system are the computing devices.
The evolution goes from one to many computing devices, leading to new
capabilities. We need to model the different kinds of computing devices
according to their size, their weight, their format, their capabilities and
other aspects. Or, in short, any physical property of interest.

Computing devices range from a digital alarm clock or household appli-
ances to cell phones and computers. Any domestic element could virtually
be controlled from a smartphone or a computer (e.g., a television, some light,
an audio player, a fridge, a microwave oven or the curtains of a window).
According to research there are now more than one computing device per
person[DEA08]. Instead of a single personal computer, people use several
computing devices including desktop computers, laptops, mobile phones,
digital cameras and media players. Applications could be made aware of all
these computing devices and be able to manage information and activities
across them. The next evolution could be the interconnection of all these
computing devices wherever they are, in private, public or work spaces.

A closer look at the evolution of the market shows that the world tends
to a full-interconnection of any physical objects, which is promoted by the
concept of Internet Of Things (IOT). This makes it possible to create smart
homes where people can listen to music and change songs, print a document,
and control lights and room temperatures, from any remote computing de-
vice: physical (e.g., a switch) or digital (e.g., a software application) devices.

We also need to model the communication mechanisms that can be used
along with computing devices and to describe how they work. This will
allow us to choose what kind of communication mechanism we are going to
use and support, with their advantages and drawbacks.

There is a plethora of communication mechanisms that allow these com-
puting devices to inter-operate. Most of them rely on two types of addresses:
IP and MAC addresses.

1.2. MODELS, APPROACHES, SOFTWARE SUPPORTS 27

IPv6’s onset brought more than 300 undecillion (300 ∗ 1036) addresses,
which at the moment, seems to be enough to address the whole world of
computing devices.

The primary communication mechanisms are Ethernet, WiFi and Blue-
tooth. But there are lots of other communication protocols and they all
have their specific properties. Ethernet and WiFi allow devices to access
routers and internet with or without wires. Bluetooth allows the transfer of
information (e.g., sound, files, ...) from one computing device to another.
NFC [NFC] is a near-field communication mechanism that can exchange a
small amount of information when two computing devices are put against
or close to each other. The primary use of NFC is to establish a Bluetooth
connection between two computing devices but it can also send commands
(e.g., with NFC tags) from one computing device to another. Today cloud
computing appears as a solution to exchange or synchronize data across all
the computing devices that are connected to it [cloud computing]. How-
ever, only data can be stored in the cloud and there is no direct interaction
between computing devices.

We will use the term distributed system to refer to a system of intercon-
nected computing devices that will appear to the users as a coherent whole
to accomplish the tasks that users want to carry out. The main reasons for
using this term are that it is largely used and commonly accepted in the
field of Distributed computing [AND00, PEL00], it is sufficiently expressive,
and it encompasses all other possible terms [EMM98, 1].

Definition 6. A distributed system [DS] consists of a collection of au-
tonomous computers, connected through a network and distribution middle-
ware, which enables computers to coordinate their activities and to share
the resources of the system, so that users perceive the system as a single,
integrated computing facility [EMM98].

In the Painter’s Palette example, the distributed system contains all the
computing devices that will be used by the drawing application and the user
that will interact with the application and with these computing devices.

Distribution mechanisms provided by the domain of Distributed Com-
puting can be a solution for managing the complexity of a DS. There are
several DS properties to consider [EMM98]: the physical distribution of the
computing devices and users, the problem of tasks running in parallel, the
failure of a computing device or the failure of the communication between
two computing devices, the lack of global knowledge and the dynamic as-
pect of computing devices joining and leaving the network. Such complex
algorithms would allow developers to support the distribution of the UIs.

Because of all these aspects, it is not possible to exactly know what
happens in the system. Some computing devices are in a certain state while
giving information, but as soon as the information goes through the network,
it is not sure how long this information will stay valid or persistent.

28 CHAPTER 1. INTRODUCTION

Some delays can lead to weird situations like turning on a light and wait
for two minutes before the light is really turned on. There is a need to
synchronize information between the computing devices for consistency.

These problems have already been addressed in the domain of Dis-
tributed Computing , therefore inviting us to re-use their underlying al-
gorithms. The whole complexity of the DS would then be encapsulated into
these algorithms and not in the applications.

In the remainder of the thesis we will refer to a computing device as a
device.

The models should help us describe the devices that are part of the
DS. It should also be possible to see and understand the relationships and
communications between devices, and how to distribute a DDGUI across
these devices.

1.2.2 Approach

We have been looking for any form of methodological guidance such as
guides, methods or approaches that define the aspects to consider. However
these have proven to be very rare.

What we have found was either unavailable, or not sufficiently docu-
mented to enable us to use it for our approach.

1.2.3 Software support

The last step is to create any kinds of software support for the method and
the models.

Apple, Google and Microsoft have recently released services to allow
users to display photos or to play music and videos on any connected de-
vice, using technologies like AirPlay[AirPlay], AirPrint for Apple and Xbox
SmartGlass[Xbox SmartGlass] for Microsoft. Lately, Apple has also intro-
duced Continuity[Continuity] which allows people to connect an iPhone o an
iPad to a MacBook in order to execute a few basic operations. For instance,
an Apple TV can be controlled from any device such as a remote control, a
smartphone, a tablet, or any compatible laptop or desktop.

Recent technologies like Miracast [Miracast], Air Display [Air Display]
and Project My Screen [Project My Screen] allow people to display the
screen of a smartphone, a tablet or a computer wirelessly to a compatible
device, e.g., a T.V., an external screen or a compatible computer.

There are also a few brands that work together to simplify connection
between a smartphone and their devices for home automation. This is a
short-term solution to this problem, but they will never support all possible
devices. They also use closed protocols which prevent them from extending
their solution with others.

1.3. THESIS STATEMENT 29

All these solutions have been created by different groups of people and
these efforts have not been integrated into a single development tool. There
is therefore a need for a software support that would allow developers to ben-
efit from these results without having to learn how to use all these solutions
separately.

1.3 Thesis Statement

The problem to be addressed in this thesis is to enable designers and de-
velopers to create applications that support dynamic distributed graphical
user interfaces (DDGUIs) and that can be used on all the available devices.
DDGUIs enable end users to distribute any user interface element, rang-
ing from the largest to the smallest, across one or many devices at both
design-time and run-time. Using this world of fully interconnected devices
will allow people to arrange and mold the applications according to their
needs. In brief to support Distributed User Interfaces.

To create the software support that will allow us to create such appli-
cations we first need to define conceptual models and to create our own
approach based on these models. With this approach we want to hide the
complexity of a distributed system inside distribution mechanisms.

Here is the thesis that we want to address:
In order to provide designers and developers with a model, an ap-
proach and a toolkit to support dynamic distributed graphical user
interfaces of interactive applications, we introduce the concepts of
distribution graphs, distribution scenarios, in a model-based ap-
proach that supports the properties of distributed systems and is
implemented by a toolkit.

A DDGUI is not just the ability to move the UI from one device to
another (migration). It also allows the use of several devices, the exploitation
of their different sizes and characteristics, and their integration. Several
users can fully interact together thanks to the support of distribution.

Along with DDGUI we want to support the properties of a DS such as
the observation of devices joining and leaving, delays, and failures.

Facing a lack of definitions and models to support the creation of a
DDGUI, we have decided to introduce some concepts that allow us to model
and manage the distribution of UIs in a DS. Upon these concepts we have
created a toolkit that demonstrates the possibilities offered by DDGUIs.

1.3.1 Single VS Multiple distributions

There are two ways to distribute the user interface (UI) across devices: single
and multiple distributions.

A single distribution of the UI means that the features offered by an
application can be migrated to other devices. It does not matter if the

30 CHAPTER 1. INTRODUCTION

devices are used by the same user or not. It means that a feature is only
instantiated once. If the feature is available on a device, it is not available
on other devices. There is no concurrency between devices as they cannot
use the same feature at the same time. An example of single distribution
is an application that controls lights in a house and that would not let two
computing devices control the same light.

A multiple distribution of the UI allows the distribution of all the features
on all the devices at the same time. This can lead to multiple instantiations
of the same features. Indeed a feature can be reproduced on several de-
vices. When there are multiple instances of a feature, we need to handle the
concurrency between them. An example of multiple distribution is an appli-
cation that controls room temperatures in a house. If two devices attempt
to change room temperatures at the same time, this leads to a conflicting
situation. How can the system know which of the change should take place?

1.3.2 Scope

Although DUIs could be applied to many domains of human activity and
various contexts of use, this thesis states a series of assumptions (Ai) to
focus on a specific scope and leave other problems for future work. Let us
start by introducing the general assumptions (GAi):

� GA1: DDGUI only: no other modality of interaction
The thesis only focuses on visual modality. Vocal, taptic, haptic, or
any multimodal systems are not addressed directly in the thesis.

� GA2: No complex or safety critical system
The thesis will only focus on interactive applications which can be rep-
resented as a simple system. These applications are not safety critical
(e.g., neither an unmanned aerial system, a train control/management
system, nor health critical applications, ...).

Here are the assumptions regarding the model dimension (MAi):

� MA1: No coverage of DDGUI usability ergonomic aspects
Since this thesis is intended to introduce a principle-based way to de-
sign DDGUI, we do not assume that any GUI resulting from a distri-
bution issued by the method is usable. Further references on DDGUI
usability include [DEE10].

� MA2: No coverage of DDGUI security
The security of the whole DS and its applications is left for future
work. However it is possible to add this concept to the distribution
method introduced. Anyway, the security for the DDGUI is less critical
than for the functional core. An example of security issue is someone
pretending to be a user who he is not , also known as identity theft.

1.3. THESIS STATEMENT 31

To cover this issue, we need to guess who is using a device with some
recognition (e.g., face, voice recognition, biometrics, ...).

And regarding the approach (AAi):

� AA1: handling 2 reference use cases
The concepts have been evaluated on a small number of case studies.
We wanted to validate our concepts and approach on real case studies.
The same reasoning can be applied on other case studies. We want
to select a few case studies that will help us understand the concepts
and the way we can apply them to the case studies. Any kind of
applications could have been used as a case study. The first case
study we have selected is Pictionary because this game is naturally
distributed across several players that have different roles and these
roles change depending on who wins. The second case study selected
is an adaptation of an existing application: Transdraw, which is a
drawing tool using transactions. This will prove how easy it is to
adapt an existing application in order to support DDGUI.

� AA2: focus on the distribution of the UI part of an application
We have focused the research on user interface (UI). The logic part of
an application is already widely covered in distributed computing and
their solutions still work with our conceptual solutions.

� AA3: the logic part is supposed to be always running, active
and reliable
This logic part is supposed to be always running, active and reliable.
If an application needs some warranty about the reliability of the core
(where the logic is), it can still distribute the logic part using methods
of distributed computing. Thus, if the logic is always running, the UI
of a device can always be recreated in case of a crash.

Finally we also have assumptions for our software support (SAi)):

� SA1: handling a set of supported devices
We support a subset of operating systems. The reason is that with a
small number of operating systems we can cover more than 95 percent
of the common smartphones, tablets, laptops and desktop computers.
For this we have selected the most commonly used operating system.
The choice of the operating systems supported does not influence the
solutions proposed in this thesis. The potential candidates are all the
operating systems. For computers we will support: Linux, Mac OS X
and Windows. We also target mobile devices through the main operat-
ing systems on tablets and smartphones: Android, iOS and Windows
Phone.

32 CHAPTER 1. INTRODUCTION

� SA2: focus on the visual modality
In Human-Computer Interaction domain, there are several modalities:
vocal, visual, tactile and haptic. The thesis only focus on the main
modality for software applications: visual. The main aspects of other
modalities are already covered in other papers. Thus the distribu-
tion will only be for Graphical User Interfaces (GUI). Note that our
research may probably be adaptable to multimodality.

1.3.3 Contributions

There are several contributions that are brought by the thesis. Let us intro-
duce them according to each dimension.

Models

Regarding the models, we introduce the concept of Distribution Graph to
model a DS. It is a graph where all the computing devices and users are rep-
resented as vertices, and their connections as arcs. Then we use the EBNF
grammar to define formally the language expressing distribution primitives.

Approach

We have also created a model-based approach based on the concepts of
distribution graphs, distribution scenarios and distribution primitive.

Software support

One of the results of this thesis is a software support in the form of a toolkit
that allows the creation of distributed user interfaces. We have called this
toolkit JayTk. It implements the concepts introduced during the thesis and
is built on top of Beernet as depicted in Figure 1.12.

Figure 1.12: JayTk based on Beernet and implementing the concepts of the
thesis.

1.4. SUPPORT FOR MOBILE DEVICES 33

JayTk is the main contribution brought by the thesis. It allows develop-
ers to create applications with DDGUIs and to support the main properties
of a DS. There are two different kinds of applications: distribution unaware
and distribution-aware applications.

� Distribution unaware applications do not need any information about
distribution. They can use the toolkit with no or little modification
of the code. They get the power of distribution through the toolkit
which manages the distribution automatically or manually through an
additional interface provided.

� Distribution-aware applications take full power of the toolkit and the
distribution mechanisms. These applications can be notified if one of
the devices crash and react to it. They can also manage how the GUI
is distributed when a device joins the network.

1.4 Support for mobile devices

The way our toolkit will allow applications to be distributed across mobile
devices is different from how they are distributed across computers. Indeed,
mobile devices will be used as a destination of distribution but will not
create applications. The main reason is because Mozart and Beernet are
not yet available on the operating systems that run on these devices. To our
knowledge, there is no standard or well known way of supporting distribution
mechanisms on these devices either.

However these mobiles devices can be used as weak-node in the peer-
to-peer network. This means that they are not responsible and part of the
distribution but they can receive and interact with applications that are run-
ning in the network. This is how the toolkit supports mobile devices without
offering a full compatibility. In the future, this limitation will be removed
because these devices will become as efficient and powerful as computers.

1.5 Organization of the Thesis

Figure 1.13 describes the structure of the research. It clarifies the relations
between the concerns, the shortcomings and the requirements of the thesis.
The concerns have been defined in this chapter. The shortcomings and the
requirements will later be derived from the concerns.

This chapter introduced the thesis topic by explaining the motivations.
It describes what a DS is and all the important concepts that come with it.
Then the scope of the thesis is set. And a summary of the main contributions
is given.

In Chapter 2, we establish the related work of research related to the
thesis. One of the aspects in the comparison is how a DS is modeled. Then

34 CHAPTER 1. INTRODUCTION

Figure 1.13: Outline of the thesis

we explore the existing tools that support the distribution of the application
UI. Finally, we discuss other methods and studies on specific aspects covered
here.

The method is then described in detail in Chapter 3. We first formally
define the concept of distribution graph. Then, we select some operations
that provide a sufficiently representative set of the possibilities offered by
the distribution. The last part is the description of the method to create,
support and manage DDGUIs in distribution scenarios.

The implementation of the toolkit with all the questions and choices that
have been raised by using the method are provided in Chapter 4.

In Chapter 5, we use the toolkit to create a solution for several case
studies. We also demonstrate a solution for some case studies: a Pictionary
with three devices, a distributed transactional drawing tool using more than
three devices and running on Android devices, and other small examples.

Chapter 6 evaluates and compares the results of the method with some
important results in the related work. It is also the validation of the toolkit
built during this thesis.

The last chapter concludes the thesis with a list of all the contributions.
A list of the ongoing work is also provided.

The structure of the whole system is summarized on top of JayTk’s
architecture (Figure 1.14).

1.5. ORGANIZATION OF THE THESIS 35

Figure 1.14: Thesis roadmap

36 CHAPTER 1. INTRODUCTION

Chapter 2

Related Work

In this chapter we compiled the related work by first listing them all and
then we evaluate their impacts on each dimension.

In order to create a list of the related work we first started from a pa-
per classifying several papers on DUIs[ROU06]. We have been through its
references and iterated in each paper’s references when we found them as
interesting for the thesis. We also included papers that have been submit-
ted at the DUI workshop of the CHI conferences. The main topics used as
criteria for the selection of a paper are UI and DUI, distributed comput-
ing, models, approach and software supports. We will use these criteria as
categories to discuss about these paper’s contributions through this chapter.

Here is the expanded list of the related work we have built. The most
important contributions will be detailed after the list. Other references can
be described by analogy to them.

Models

There have been lots of papers on models. Software engineering is an
important domain[DAM05, DAM06]. Mandviwalla[MAND94] has worked
on requirements for groupware systems. Letier[LET01] has written a the-
sis about agents in goal-oriented requirements engineering. Puerta and
Eisenstein[EIS01, PUE02] have worked on XIML, a representation for in-
teraction data.

There have been several papers on task models, and migratability. Bar-
boni and co. [BARB10] have introduced a new notation for bridging the gap
between tasks and systems models. Dittmar[DIT11] has worked the support
of task migratability. Penichet and co.[PENI07] have worked on task mod-
eling for Collaborative Systems. Wurdel and co.[WUR09] have worked on
task modeling for smart environments.

Some papers have concentrated on the context model. Brdiczka and
co.[BRD07] have worked on models for context-aware services. Shackel
[SHAC09] has worked on the definition of usability. Terosiero, Vanderdon-

37

38 CHAPTER 2. RELATED WORK

ckt and co.[TES10, TES10B] have worked on extending UsiXML. Zaidenberg
and co.[ZAI06] have worked on extracting context models from scenarios.

The other papers have focused on other models. Biswas and Robin-
son [BISW10], McTear [MTE93] have made surveys on existing modeling
techniques. Salay and co.[SAL09] have worked on macromodels to manage
collections of models. Wagelaar[WAG08] has written a thesis about plat-
form ontologies. Still and Masciocchi[STI10] have worked on a model for
predictions of web interfaces.

Approaches

Although we have been through lots of papers we have only found one ap-
proach to help developers to create applications. Martinie and co.[MART10]
have worked on a model-based development approach to embed requirements
at design time. The papers about software supports for DUIs describe their
solution without providing the methodology they used.

User Interface

In order to address the problem of designing and developing a DDGUI we
have reviewed the literature in HCI. This review has proven that there exist
lots of references about UI. We first list them and will describe them later
in the section.

In model-driven UI development, Breiner and co.[BRE10] have realized
an evaluation of the UI adaptation. Caffiau and Girard[CAF10] have intro-
duced a process for using model-driven approach in UI design. Gonzáles-
Calleros, Guerrero-Garćıa, Vanderdonckt, and co.[GON09, GUE06, GUE09,
VDD01] have worked on conceptual modeling of UIs. Griffiths and co.
[GRI01] have worked on Teallach, a model-based UI development environ-
ment for object databases. Ladry and co. [LAD10] have worked on usability
evaluation of interactive techniques. Pastor and Molina [PAS07] have worked
on a software production environment based on conceptual modeling. Rich
[RIC09] has worked on building task-based UIs with the ANSI/CEA-2018
standard. Sousa [SOU09] has worked on the model-driven approach for UI
in business process modeling. Wolff and Forbrig [WOL10] have worked on
the development with the Eclipse Modeling Project. Zhang [ZHA10] has
worked on an aspect-oriented UI Modeling.

Howell and co.[HOW03] have evaluated the runtime performance of GUI
creation frameworks. Miah and Alty [MIA99] have realized an empirical
study of an adaptive window management. Rashid and co. [RASH12] has
compared the cost of display switching with mobile, large display and hy-
brid UI configurations. Vrazalic [VRA03] has realized an evaluation of dis-
tributed usability in an activity systems. Xiaojun and Balakrishnan [XIA09]

39

have presented a study comparing usage of a large display to single/dual-
monitor configurations.

Moscovitch [MOS09] have worked on the use of the contact area instead
of the contact point with touch UIs. Vanacken and co. [VAN08] have worked
on additional UI for Multi-touch Interaction. Aslan and co.[ASL10], Avra-
hami and co.[AVR89], Beaudouin-Lafon and co.[BEAU00, BEAU01], and
Barralon and co.[BARR04, BARR07] have also written about additional UI
to control the UI itself, commonly called meta-UI or extra-UI.

Other researchers have focused their work on more specific UI. Ali and
co.[ALI01, ALI02], Bishop[BISH06], Ding and Litz[DIN06] have written
about multi-platform UI. Kortuem and Kray [KOR05] have studied the
HCI issues in multi-display environments (MDEs). Bickmore and co.[BIC99]
have worked on a web page filtering for mobile devices. Pierce and Mahaney
[PIE04] have also worked on mobile devices. Kavaldjan and co. [KAVA10]
have worked on an automated optimization of UIs for screens with lim-
ited resolution. Hutchings and Pierce[HUT06] have worked on divisible UIs.
Hill[HIL92] has studied the abstraction-link-view paradigm to connect UIs
to applications. Lorenz [LOR10] has studied the application of MVC in
ambient computing environments. Vernier and Nigay [VERN99, VERN00]
have worked on multi-modal UIs. Schlegel [SCHL10] and Schwartze and co.
[SCHW10] have worked on the adaptation for UI at runtime.

There are groups of research that have already spent time on the next
generation and the future of UIs. Shaer and co .[SHAE08] have worked on
the use of UIDL with them. Myers and co. [MYE00, MYE01] have discussed
about the future of software tools.

The work on UI for multi-device systems has led to the domain of Dis-
tributed User Interfaces (DUIs).

Distributed User Interfaces

There are plenty of papers about DUIs which aim reaching Mark Weiser’s
dream of Ubiquity[WEIS99, WEIS03]. Aksenov and co. have worked on
reasoning over spatial relations for DUIs[AKS08, AKS09]. Balme and co.
have worked on a reference model for DUIsband[BAL04].

There are teams of researchers that spent several years on this topic.

Bang, Berglund, Fröberg, Sjölund and co.[BANG05, BER02, FRO11,
SJO04] have been among the first to work on DUIs. They have realized a
prototype with a smartphone used as a remote for a computer.

Bandelloni, Ghiani, Manca, Mori, Paternò, Santoro and co. have written
several papers on DUIs [GHI10, PAT02, PAT07]. Their research has led to
the development of TERESA (Transformation Environment for inteRactivE
Systems representAtions)[BAND04, MOR03, MOR04, PAT01, PAT08]. An
authoring tool which provides designers and developers automatic support
for transformations of UIs. It has later led to the development of MARIA

40 CHAPTER 2. RELATED WORK

(Modelbased lAnguage foR Interactive Applications)[MANC11, MANC11B,
MANC11C, PAT09, PAT09B, PAT10, PAT10B]. A novel model-based lan-
guage for UIs.

Bailey, Biehl and co. have worked on multi-display, multi-device and DUI
systems [BAI04, BIE04]. Their work has first led to the development of ARIS
[BIE04, BIE05, BIE05B, BIE06C], SEAPort (Scalable, Enhanced Aware-
ness, Portal-based) [BIE06, BIE06B, BIE06C] and later to IMPROMPTU
[BIE08].

Blumendorf, Feuerstack, Roscher, Weingarten and co. have been work-
ing on the runtime aspects of DUIs [BLU11, ROS10]. They have defined a
Smart Home Energy Assistant (SHEA)[FEU07, WEIN10].
Their research has led to the development of MASP (Multi-Access Service
Platform) [BLU10, FEU07, ROS09, ROS09B, WEIN10] which is a model-
based run-time system for the creation of DUIs.

de la Guia, Gallud, Garrido, Lozano, Marco, Peñalver, Penichet, Se-
bast́ıan, Tesoriero, Villanueva, and co.[DLG10, GAR11, MARC11, SEB11,
VIL11] is currently active on formally defined DUIs with models. Their work
has led to the definition of an AUI model[PENA11, PENA11B, PENA12].

Coninx, Luyten, Meskens, Vanderhulst, Vandervelpen and co. [LUY02,
LUY04, VDH07, VDV04] have also been working a lot on DUIs. Van-
derhulst has written a thesis about Dynamic Distributed User Interfaces
(DDUI) [VDH05]. They have also worked on models[VDH08C, VDH09].
Their work has led to the development of Light-Weight Distributed Web
Interfaces[LUY05, LUY06, VDV05, VDV05B]. And it has also led to the de-
velopment of GUMMY[MESK08, MESK09], a multi-platform GUI builder.
They have also worked on ReWiRe and pervasive environments[VDH08,
VDH08B, VDH08C, VDH10, VDH10C], and on software support[VDH09B,
VDH10B].

Finally Grolaux, Lepreux, Vanderdonckt and Van Roy [GRO04, GRO05,
LEP06, LEP06B, LEP11, VDD10] have worked on migratory UIs. Their
work has led to the development of the AttachMe, DetachMe demonstration
which is based on EBL/Tk (Enhanced Binding Layer/Toolkit), a middleware
that interfaces with one or more graphical toolkits. This tool has led to this
thesis.

Lots of small teams have also worked on DUIs:
Bardram and co. [BARD11], Barth and co. [BART11], Bharat and co.

[BHA95], Cagle [CAG05], Chang and Li [CHA11], Chen and co. [CHE11],
Dadlani and co. [DAD11, DAD11B], Ens and co. [ENS11], Fardoun and co.
[FAR11], Lambropoulos and Danis [LAM11], Larsson, Ingmarsson and co.
[LAR06, LAR07], Linten and Price [LIN93], Löchtefeld, and co. [LOC11],
Marquardt and Greenberg [MARQ07], Molina and co. [MOL06, MOL06B],
Qiu and Graham [QIU09], Rodden and co. [ROD04], Seifried and co.
[SEI11], Sendin and López [SEN11, SEN11B], Shen and co .[SHE04], ,
Yanagida and Nonaka [YAN08], and Zöllner, and co. [ZOL11]. Bell [BEL05]

41

has written a doctoral thesis on DUIs. Recently, Elmqvist [ELM11] has
listed the state of the art of DUIs.

There are also lots of papers talking about multi-display and multi-device
systems.

Hutchings, Stasko and co. have worked a lot on multiple monitors
[HUT02, HUT02B, HUT03, HUT04, HUT04B, HUT04C, HUT04D, HUT05,
HUT05B, HUT05C, HUT05D, HUT07, HUT07B] and on QuickSpace which
provides new operations for computers[HUT02].

Ashdown and Sato [ASH04], Grudin [GRU01], Inkpen and Mandryk
[INK05], Kaviani and co. [KAVI11], Lee and co. [LEE08], Mansoux and
Nigay [MANS05] have also worked on multiple monitors.

Beale and Edmondson [BEAL07], Cardinaels and co. [CAR06], Dearman
and Pierce [DEA08] have worked on multi-device and multi-screen systems.

Applications

Along with all these more theoretical papers, there are some applications
that have grown up from these topics. Air Display [Air Display] and AirPlay
[AirPlay] are applications to turn a device into a monitor. Ayatsuka and
co. have worked on HyperPalette[AYA00]. Benôıt and co. have worked on a
multimodal driving simulator[BEN07]. Englebert and Heymans have worked
on MetaCASE tools[ENG07]. Black, Edwards and co. have worked on the
Speakeasy approach[BLA02, EDW02]. Eychaner has developed a UI frame-
work for controlling DS[EYC03]. Etherpad is a website where a user can
create a text document and share it with other users[Etherpad]. Han and co.
have worked on WebSplitter[HAN00]. Drag&Share is a shared workspace for
distributed synchronous collaboration [MARC11]. Rekimoto and co. have
worked on Pick-and-Drop and Proximal interactions software applications
[REK97, REK03]. Rey and Coutaz have worked on the Contextor, an appli-
cation for dynamic distribution of contextual information[REY04, REY06].
Multi is a multi-user laser table interface[STU04]. Wincuts allows the ma-
nipulation of window regions[TAN03, TAN04].

Distributed computing

When writing about DUIs it is hard to avoid writing about Distributed
computing. There are already many papers on distributed computing to
list them all but here are the main litterature we have been through to
understand and benefits from this topic. Andrews [AND00], Attiya and
Welch [ATT98], Collet [COL07], Coulouris and co. [COUL05], Elmqvist
[ELM15], Emmerich [EMM98], Ghosh [1], Peleg [PEL00], Tel [TEL95] have
written about distributed computing.

A subtopic of distributed computing is the Peer-to-Peer architecture
which has been covered by the following papers. Loeser and co.[LOE03],

42 CHAPTER 2. RELATED WORK

Mesarov and co.[MESA04] have worked on peer-to-peer networks. Chung
and Dewan have worked on dynamic collaboration architectures[CHU04].
Recently, Fisher and co.[FIS14] have worked on P2P DUIs.

Pen-based UI

While a bit off topic we have also look at how a pen could be used with
UI. There is an ISO standard for pen-based interfaces[ISO99]. Long and co.
have also worked on pen-based interfaces[LON00, LON01].

Others

Some teams of researchers have worked on many of these topics together
and cannot be put in one of these.

Calvary, Coutaz, Demeure, Frey, Graham, Lachenal, Roudaut, Sottet,
Thevenin, Vanderdonckt and co. have worked on models [CAL97, COU05,
COU05B, DEM05, SOT07], on plastic UI [CAL01, CAL04, COU10, SOT07,
THE99, THE02, VDD08B], on ambient space [COU06, COU07, COU07B],
on multi-device [COU03, COU03B, GRA00, LAC03], on DUI [DEM05B,
DEM08, FRE09, ROU06, ROU06B] and on gestures [ROU09].

Dewan and co. have worked on multi-user systems[DEW98, DEW98B].
Dey and Abowd have worked on context-aware systems[DEY00, DEY01].
Jourde and co. have worked on multimodal systems[JOU10]. Robertson
and co. have worked on a flexible task management[ROB04]. Hyper-
space is a high resolution display[SCREEN]. Seifried and co. have worked
on CRISTAL, a collaborative home controller[SEI09]. Tullis and Albert
have worked on usability metrics[TUL08]. Vanderdonckt has worked on a
knowledge-based system for interaction styles[VDD97].

2.0.1 Meta-UI for Ambient Spaces[COU06]

In their paper on Meta-UI for Ambient Spaces[COU06]. They compare the
tools that exist in 2006 such as ARIS [BIE04], Jigsaw [ROD04], AttachMe
[GRO05] and SpeakEasy [BLA02, EDW02]. The dimensions used for the
comparison were the discoverability, the coupling, the ability to redistribute
and to remold the UI. The main conclusion is that researchers should be
careful about the development of automatic systems for scientific challenge
instead of involving and considering the level of control left to end-users.
You can find their classification of related work in Figure 2.1. This table
shows the different capabilities offered by the toolkits according to several
axis: discovery, coupling, re-distribution, re-molding, parametrization and
extensibility.

43

Figure 2.1: Comparison between toolkits supporting DUIs[ROU06]

44 CHAPTER 2. RELATED WORK

2.0.2 Mobile and Intelligent Environments[DEE10]

Walter Dees has worked on mobile and intelligent interaction environments
[DEE10]. He studied the importance of the usability and compared the dif-
ference of perception between partial and total distribution and with consis-
tency or inconsistency. The figure 2.2 shows the results of his study. It shows
that ergonomic is also an important aspect in Human-Computer Interaction.

Figure 2.2: The ergonomic aspect of the User Interface[DEE10]

2.0.3 The Fiaa Platform Model

Another paper on modeling is the Fiaa Platform Model[QIU09]. The Fiia
Platform Model described is based on a publish and subscribe architecture.
Each devices may subscribe to information it is able to use or display. Less-
powerful devices may only get partial and more specific information from
parts of the application while more-powerful ones will user the complete
application with the information related to it. Each device which is repre-
sented as a node of the Fiaa Platform Model which stores its own platform
information. The resource model of this Fiaa Platform Model is depicted in
Figure 2.3.

45

Figure 2.3: The Fiaa Platform Model resource model from [QIU09]

46 CHAPTER 2. RELATED WORK

2.0.4 An AUI model to support DUIs

An new Abstract User Interface (AUI) model has been developed in order
to support DUIs[PENA11B]. They define the Status of a UI as the temporal
point in which the UI lies after using part of the UI’s elements. They also
define the State of a DUI as being the combination of all the status of UIs
that composed the DUI. Their AUI model provided in Figure 2.4 allows the
separation of interactionElement along with their subTarget.

Figure 2.4: Their AUI model with the DUIs perspective from [PENA11B]

Although the research is at an early stage, this model supporting DUIs
is the base of an approach that they are currently building.

2.0.5 FRESCO

FRESCO[LIN93] is a set of programming interfaces that expand the X win-
dow system in Linux. It models UI components as objects in order to allow
users to run an application on a remote machine. It allows the partial man-
agement a DS. While X provides network-transparent access to some user’s
display remotely; Fresco allows the distribution of components from UIs
across several devices.

2.0.6 CESAM

CESAM[ROU06B] is a prototype to show how a UI could be extended to
support some operations to distribute the UI.

47

In CESAM prototype, it is possible to provide the following information
about a device: a name and, the width and the height of the screen resolution
as in Figure 2.5. There is also other information such as a place, and the
interconnection between devices. The two devices that are in the example
have a different form factor: there is a laptop and a PDA.

Figure 2.5: A print screen of the CESAM prototype with two devices
connected[ROU06B].

Via a drag&drop gesture of an item from the upper-left part to the right
part of the window you can assemble devices together. In the example the
two devices are linked together which is visible thanks to the red border
that encapsulates them. For devices to be assembled they have to be in the
same logical space. In this case the PDA and the laptop are in the space
called Maison. CESAM also allows users to cut the UI into several parts.
An example is provided in Figure 2.6.

Figure 2.6: A print screen of an application that has been cut into
parts[ROU06B].

48 CHAPTER 2. RELATED WORK

2.0.7 Windows snipping in MME[HUT07]

Hutchings and co. have worked on gaining simplicity in multi-monitor en-
vironments (MME) [HUT07]. In Figure 2.7, there are two different rep-
resentations of four windows. The left part shows a MME without any
improvement. In the other image there is free space in about half the screen
size. The free space allows users to improve readability to find the right
information. Windows are snipped to avoid displaying uninteresting part of
the windows.

Figure 2.7: Example of simplicity gains from research on DUIs[HUT07]

2.0.8 ARIS

The ARIS[BIE04] interface allows users to relocate applications across a
fixed disposition of devices.

In their setup, they have 5 screens hold by walls, with a PDA and two
tablets. The tool provides an iconic map as a visualization of the static DS
as in Figure 2.8.

Figure 2.8: The iconic map in ARIS[BIE04]

49

2.0.9 IMPROMPTU

ARIS has been extended to an interaction framework in 2008. They renamed
it to IMPROMPTU[BIE08]. It is a simplification of the interactive space as
in Figure 2.9.

Figure 2.9: Screen shot of the IMPROMPTU’s UI[BIE08]

Users have the ability to share a view (read-only or editable) of their
windows. Applications can be used remotely and each device is a server for
its own applications. IMPROMPTU brings a specific UI (Figure 2.10) to
support collaboration between several users.

There is a view on the windows shared by any user (Figure 2.10a), and
there is a view on the windows shared by a user from the device where it
is displayed (Figure 2.10b). The windows sharing is possible by capturing
application window’s pixel data and reproducing it on other devices.

2.0.10 GUMMY

Gummy[MESK08] is a tool for building generic multi-platform GUIs. It
starts with an initial GUI on a device. Then it adapts and combines its
features into a new GUI for another device. It allows people to target new
devices and keep UI consistent without requiring designers to start from
scratch. A screen shot of Gummy is depicted in Figure 2.11.

In order to generate a Final User Interface, Gummy starts with a UI
description which is converted thanks to a UIML vocabulary into the Final
User Interface (Figure 2.12).

50 CHAPTER 2. RELATED WORK

Figure 2.10: IMPROMPTU’s extra-UI for windows sharing (a) and display-
ing (b) [BIE08].

Figure 2.11: The three main dialogues of the Gummy tool[MESK08].

51

Figure 2.12: A UIML vocabulary relates generic terms to concrete represen-
tations [MESK08].

2.0.11 Light-weight Services

Light-weight Services [VDV05] supports multi-user collaboration thanks to
an HTTP-based daemon allowing the distribution of web applications. It
offers distribution of web applications through services. In Figure 2.13, there
is an example of a website that is distributed across three devices. The zoom
services is currently distributed on the device on the left.

This toolkit allows the full control of the distribution through user-driven
distribution and support automatic distribution through system-driven dis-
tribution. They allows automatic redistribution in case of changes in the
interaction space [VDH08C, VDH09]. The data and the UI of a discon-
nected device will not be lost, thanks to the redistribution of this part. The
figure 2.14 shows an additional UI to control the application’s UI, one of the
UI and the list of tasks provided by the example.

2.0.12 MASP

The Multi-Access Service Platform (MASP)[ROS09, ROS09B, BLU10] is
an additional UI to control Smart Environments. It allows the control of
the UIs from their SHEA assistant (Smart Home Energy Assistant) through
an additional UI (Figure 2.15) based on a graphical representation of the
different tasks that a user can display on a screen. Supported distribution
primitives are involved in four services: migration for transferring a ser-
vice from one interaction resource to another, adaptation to an interaction
resource, distribution of UI elements across interaction resources, and multi-
modality. It allows the distribution of a task on a screen. They also support
a dynamic environment and support multimodal interactions with devices.

It is based on services to allow a lot of flexibility. The main goal of the

52 CHAPTER 2. RELATED WORK

Figure 2.13: An example of website distributed across 3 devices thanks to
the Light-weight services[VDV05].

53

Figure 2.14: The additional UI and the UI associated with the task play
music[VDH08C].

Figure 2.15: A screen shot of MASP’s UI[MASP].

application is the distribution of User Interface to allow the move of some
services UI from a device to another.

The description of the context with the room, and each users, is depicted
in Figure 2.16.

2.0.13 Web sites and applications

Web sites and applications have been particularly investigated through the
angle of distribution primitives with the Migration project [MOS09],
Cameleon-RT [BAL04]. Most of the time, the extra-UI is separated [ROU06]
from the UI subject to remolding or distribution.

54 CHAPTER 2. RELATED WORK

Figure 2.16: A screen shot of the description of the context[MASP].

2.1 The related work along the three dimensions

2.1.1 Modeling for Distributed Systems

The first dimension we have explored is the model dimension. There are sev-
eral concepts that can be modeled (e.g., users, tasks, context, environment,
devices, connections).

Distributed Systems

The concept of a DS has been widely used in the related work however there
are several terms that refer to it.

It was first introduced as ubiquitous computing in this famous state-
ment: ”Specialized elements of hardware and software, connected by wires,
radio waves and infrared, will be so ubiquitous that no one will notice their
presence” [WEIS99].

Many papers instead used the term Interactive Space. An Interactive
Space is a DS where users can interact with all the devices. But today there
are DS where users cannot directly interact with all the devices (e.g., inter-
net, cloud computing). They can only remotely access them. An interactive
space is the subset of devices in a DS that users can interact with.

Later, the concept of Interactive Space has been replaced by Multiple
Display Environments (MDEs) or Multiple Monitor Environments (MMEs)
as in IMPROMPTU[BIE08]. The concept of user disappears and the only
remaining concepts are the displaysand applications’ GUIs. An MDE is also
a subset of a DS where the users are not represented and devices are only
represented as displays. A device that has two displays will be considered
as two different entities in this concept.

There is also a concept called Multi-Surface Interaction. It has been
introduced in [COU03B]. Public walls, blackboards, desks and tables, the
back of an envelope are some of the surfaces that can be used. In com-

2.1. THE RELATED WORK ALONG THE THREE DIMENSIONS 55

puting science, these words define the same areas. However they can be
augmented with computational capabilities. Each surface has its own inter-
action properties. To define the concept, they first introduce the concept
of an information surface which represents a physical surface able to dis-
play information such as digital information. They call it a multi-surface
interaction, when the information surfaces can be manipulated through a
UI.

These concepts are also very close to our definitions of a device and a
DS. Information surfaces as well as multi-surface interactions are some kind
of devices. A device is an information surface if it has the ability to show
information (i.e., the device has a display). The multi-surface interaction is
the set or a subset of all the devices that support interactions in the DS.

In Figure 2.17 the distributed system set is represented as a super-set of
all the other terms.

Figure 2.17: The distributed system set and the other sets

Lack of support for the dynamic aspect

Most of the papers consider the DS as something static and already known.
In ARIS[BIE04], they have a iconic map with one PDA and two tablets.
What will happen with their iconic map if we want to add another device in
the DS? They do not support the dynamic aspect of a natural environment:
users and devices can appear and disappear at run-time.

Also in all the papers we have been through, the connection between
devices is considered as perfect. This means that the connection is assumed
as permanent but in a real world there are failures and delays. None of the
existing studies provide a tool to deal with these failures and delays.

56 CHAPTER 2. RELATED WORK

Representation of a Distributed System

There have been several attempts to represent the configuration of a DS.
Since the early years of computing science, the basic configuration was one
user on one device in one environment. A basic scenario for this configura-
tion is that a user wants to accomplish a task with the help of a tool. This
is the model of the four principal components: the user, the task, the tool
and the environment[SHAC09] (Figure 2.18).

Figure 2.18: The four principal components in a human-machine system
[SHAC09]

Later the term tool has been replaced by the term device which encap-
sulates the applications that run on top of it. The task has been dropped
since it is a goal to achieve and not an agent in the system. This has led to
the definition of the context of use[CAL04, COU05B, DEY00, DEY01]. The
context of use has been defined as a triplet C = (U,P,E) where there is one
user, one platform and one environment. In this definition a platform can
be a cluster of platforms (e.g., a desktop computer with a tower, a monitor,
a keyboard and a mouse). A context of use is always attached to one and
only one user.

To deal with today’s reality there is a need to extend this highly-used
concept to take care of all the components of a DS. In a DS, there can be
several users, several devices and they can dynamically appear, disappear,
join and leave at any time. The term platforms and devices are equivalent.

In the Painter’s Palette example there is only one user and one device at
the beginning. The current definition of the context of use does not allow us
to represent a second device, or another user. Multi-device and multi-user
scenarios appear more often than in the past. The support of both kinds of
scenarios could be added to the representation.

At first we wanted to extend the definition of the context of use to a
distributed context of use. A distributed context of use would have been
Cd = (Ud, Pd, Ed) where Ud is the set of Users, Pd a set of Platforms and
Ed is the environment that contains all the users and platforms. Each user
would have got his/her own context of use and environment.

Configurations like in Figure 2.19 would have then be possible.

2.1. THE RELATED WORK ALONG THE THREE DIMENSIONS 57

Figure 2.19: Possible distribution with two users, two displays and two tasks

This extension would allow the representation of the user with more than
one device in the environment. However this definition does not support any
dynamic behavior and there is no way to model the interactions between
users and devices.

Thus we wanted to add the concepts of events and actions that happen
between all the entities that are in the environment. For this reason we have
decided to introduce the concept of a DS which contains all the contexts of
use and allows the representation of events and actions. Each user has still
his/her own context of use where the device can be a cluster of devices (e.g.,
a desktop computer with a laptop and a smartphone). This allows each user
to have a set of devices and choose how he/she wants to interact with them.

Task life cycle

Russel and co.[RUS05] have introduced a workflow based on a classical task
life cycle. A task corresponds to a single unit of work. The classical task
life cycle is a task having the following states: created, offered, allocated,
started, suspended, failed, completed. As depicted in Figure 2.20 a task first
need to be created. Then the task can be offered to one or several resources.
The task can then be allocated to one and only one resource. After being
allocated, the task is then started and will go to completion if not canceled
or failed. While started a task can be suspended and resumed at any time.

A distributed task is a task whose resources are not centralized in a single
device. We have extended this task life cycle to support distributed tasks.
The corresponding workflow is depicted in Figure 2.21.

In this workflow, we have introduced three types of nodes:

� Initial state as a white oval, that represents any state where the life
cycle could be initiated.

� Active state as a blue oval, that represents any state where the task is

58 CHAPTER 2. RELATED WORK

Figure 2.20: A workflow representing the life cycle of a task[RUS05].

Figure 2.21: A workflow representing the life cycle of a distributed task.

active or in progress which could lead to any terminal state.

� Terminal state as a red oval, that represents any state where the life
cycle could be terminated.

A distributed task can also be offered to a single or several resources.
All these resources can allocate a distributed task. This leads to a task
being allocated to multiple resources. If a task has been allocated to only
one resource, the task is centralized. However if a task has been allocated
to several resources then the task is decentralized. As soon as the task
is started the task will reach the corresponding status of distribution. A
centralized task can become decentralized if it becomes allocated to other
resources. The opposite is also possible if other resources gives the allocation
back to a single recourse.

The distribution of the task becomes more complex when the task is
either:

2.1. THE RELATED WORK ALONG THE THREE DIMENSIONS 59

� replicated, several resources get a copy of the task;

� migrated, the task is moved from the allocated resources to other re-
sources;

� distributed, the task is spread across all the resources but is not strictly
replicated or migrated.

2.1.2 Tools for creating DDGUIs

In this section we come back to the tools that partially support DDGUIs and
that were previously described. We will explain what are their limitations
and what we are going to support from their work.

FRESCO

FRESCO[LIN93] is an old tool. In FRESCO it was already possible to
distribute the UI. Unfortunately it has had a limited availability. Indeed it
was only compatible with X which is only present in some Unix operating
systems.

CESAM

CESAM[ROU06B] is a prototype which means that there is no available
version of CESAM. This prevented us from testing how the tool would work.

In CESAM it is possible to use different form of devices running different
operating systems. However no information about the operating system is
be provided.

The connection between devices is a manual process. It is not possible
to know the status of the real connection between the devices.

IMPROMPTU

IMPROMPTU[BIE08] also has a limited availability. It only supports one
operating system (Windows).

The way IMPROMPTU works does not cover distribution. It only en-
ables sharing capability of windows with several users.

There is also no support for failures and delays. However this would not
be useful as each device always keeps its applications.

This tool is interesting for collaboration but has a few drawbacks that
prevent it from being the solution for our Painter’s Palette example. Indeed
it is not possible to independently manipulate the view within a shared
application. It is also not possible to separate a window into several windows
or merge two windows into one single window. In the case of multi-touch
drawing area, this would remove the multi-touch capability of the device
using the shared view of the drawing area.

60 CHAPTER 2. RELATED WORK

GUMMY

GUMMY[MESK08] is a multi-platform user interfaces designer. The goal
of this tool is not to distribute UIs.

We think that the choice of using UIDL in GUMMY is really important.
Adding the ability to distribute their UI description would easily extend the
tool and allow the creation of DDGUIs.

MASP

MASP[ROS09] is the most advanced tool for migrating UIs across devices.
However this tool does not give any choice of the UI that will be displayed.
It is not possible to control the distribution in finer granularity. It only
focuses on one single task and has a limited multi-user interaction.

There is also no support for collaboration. MASP is an application. It is
not a toolkit that developers can integrate into their own applications.There
is no way to separate, copy, create UI at run-time.

Light-weight services

In Light-weight services[VDV05], each element can be distributed on only
one device at a time. It is not possible to display on another device without
moving it from the current device.

2.2 Summary

After a thorough reading of the related work, we did not find any toolkit
managing the dynamic aspect of the environment while offering a vast way of
controlling the distribution of the applications. There is almost no support
for devices and users entering and leaving the system at run-time and for
dynamic evolution of the environment. Either it is a static environment or
with pre-programmed and known evolution.

In this section we will summarize the lacks we found in the related work
in order to use it as a base for specifying requirements that our tool should
take care of.

2.2.1 List of shortcomings

Here is the list of shortcomings for the model dimension (MSi):

� MS1: Lack of ontological understanding of DDGUIs: Fundamental
concepts that are underlying to DDGUIs are rarely defined or are not
solid enough for defining an ontology. When such concepts exist, they
often appear as heterogeneous from one implementation to another.
For example, the concept of user may sometimes refer to a human

2.2. SUMMARY 61

person in front of a computer, sometimes to a computing service. The
concept of device is confused: is it the hardware part, the software
part or both parts together?

� MS2:Lack of DDGUI modeling : Few DS have been modeled. The
way it is often modeled is not sufficient and too dependent on the case
study researchers put their focus on. Many papers have been using
the definition of context of use[COU05B]. However this definition
limits the system to at most one device and one user which is no more
sufficient in a DS.

And then the shortcomings for the approach dimension (ASi):

� AS1: Predefined or limited distribution: The scenarios of distribution
are often created at design-time preventing distribution from happen-
ing at run-time. It is specific and limited to the domain of the scenarios
[AYA00, GRO05, HAN00, NEW02, SJO04, TAN04].

� AS2: Limited systematical approach in DDGUI development : DDGUIs
are rarely developed in a principle-based way, they are developed in an
opportunistic way that results into a complex DDGUI like in [BIE08].

� AS3: Limited re-usability of existing tools and approaches: As a con-
sequence of the shortcoming MS2, DDGUIs are implemented for very
specific circumstances (e.g. specifically for an application, a task, a do-
main, or on a specific device) that gives rise to little or no re-usability
of these development efforts for another application. This means that
neither the models, the concepts and fragments of code are available
for other projects.

� AS4: Lack of basic distribution operations: DDGUIs are not necessar-
ily implemented on a RISD (Reduced Instruction Set for Distribution),
thus allowing little or no reuse of these basic distribution operations
and limited possibility of incrementation for their development.

� AS5: Difficult extensibility : Since DDGUIs are implemented with lim-
ited re-usability in mind, it is also hard to expand an existing DDGUI
in order to support a new user, a new device, a new task, etc.

� AS6: Little or no separation of concerns: When different aspects of a
DDGUI are subject to distribution, e.g., task, user, and device, these
concerns are too often intertwined.

� AS7: Lack of integration: DDGUIs are rarely integrated with them-
selves, thus limiting composition or decomposition.

Shortcomings with respect to the software support dimension (SSi):

62 CHAPTER 2. RELATED WORK

� SS1: Limited availability of DDGUI : UI elements stay in initial con-
text. It is not possible to merge two applications created with the
same toolkit. They communicate with each other but without any
possibility to be rearranged[VDV05, BIE04, BIE08].

� SS2: Coarse grain distribution: When they are effectively developed,
DDGUIs provide a distribution granularity that is often limited in
scope and coarse grain[BIE04, BIE08].

� SS3: Lack of repeatability : Some tools do not allow anyone to change
the way the UI is distributed or to redistribute it. E.g., the distribu-
tion of an visual element is possible but can only happen once or one
element at a time, or the element cannot be distributed on two devices
at the same time[VDV05].

2.2.2 Comparison of software support

Based on the shortcomings we have just listed we have made a comparison of
the main software support for building GUI, DUI, DGUI, DDUI and DDGUI
(see Figure 2.2.2).

Softawre support Working Availability Models Approach DDGUI
FRESCO DGUI
CESAM DGUI

Windows snipping DGUI
ARIS DGUI

IMPROMPTU DDGUI
GUMMY GUI

Light-weight services DGUI
ReWiRe DGUI
MASP DGUI
JayTk DDGUI

Figure 2.22: Comparison of software support

A software support is considered as fully working () if there are demon-
strations that have been accomplished with the software support. It is only
working half () if the concept is pretty clear but there is no proof of a
working demonstration behind the concept. Prototypes are not considered
as working () as they are not really software.

A software support is either available (), or close to release () or not
available ().

A software support may have some models or an approach that is rec-
ommended and use along with it (). If not this means that there is no
models and approach support ().

Along with the state of each software support we also wanted to reuse
the table from Meta-UI for Ambient Spaces[COU06]. We propose an update
of this table which expresses the possibility to display, undisplay, replicate,
move, move back, migrate and distribute the GUIs (see Figure 2.23).

2.3. SURVEY ON USER PREFERENCES FOR ADDITIONAL UI 63

In this table we can see the state of each possibility where the numbers
correspond to these states:

Figure 2.23: Update of the comparison of Meta-UI[COU06].

2.3 Survey on User Preferences for additional UI

The dissemination of the related work lead us to conclude that there is a
common ground that would benefit from both a theoretical and empirical
analysis. Dearman & Pierce [DEA08] report in their US study how 27 peo-
ple from academic and industrial research were using their devices: they re-
vealed that on average they employ more than five computing devices in four
different configurations. Participants reported managing information across
their devices as the most challenging aspect of multiple devices[DEA08],
thus encouraging improvements for an additional UI that effectively and
efficiently supports these capabilities.

These results suggest that functions should be provided for the end user
on how to share UI portions. They could share them across several devices
and contexts. It is also important to show them how to divide them[HUT06].

64 CHAPTER 2. RELATED WORK

In order to address the aforementioned shortcomings and the problem in-
dependently of the application domain as possible, we have described a
comparative evaluation of user preferences for additional UIs in a journal
paper[MEL12-IJHCI].

Roudaut & Coutaz [ROU06] has established a state of the art for the
domain of DUIs. In this article the term Meta-UI is used for additional UI.
They compared 25 additional UIs in ambient intelligence against criteria
representing: (i) the objects manipulated by the additional UI (i.e., their
nature and manipulation), (ii) the additional UI external presentation (i.e.,
embedded or not in the final UI, offering observability and/or predictability),
(iii) capability to ensure services (i.e., resource discovery, assembly, distri-
bution, remolding, and parameterizing), and (iv) their expandability. This
survey revealed that many additional UIs exist that provide similar or dis-
similar capabilities, but with very different metaphors and interaction styles,
thus suggesting a further study. Their survey compared high-level services,
which suggests that also low-level services could be used as new comparison
criteria to complement the survey. Vanderhulst et al. [VDH09] pioneered
the field by conceptualizing the first reference framework for additional UIs
for pervasive systems. In this framework, an additional UI runs on devices
that offer services depending on tasks executed by users. The environment,
the interaction resources, and the domains resources are then characterized
and mapped. Based on this framework, we would like to further examine the
services offered and the way they are offered to determine whether there are
some aspects affected by the users carrying out these corresponding tasks.

2.3.1 Experimental study

We have defined and applied a procedure for conducting a comparative
analysis of the state of the art in order to identify which basic services
are supported by each tool/toolkit, which interaction styles are used and for
these services in order to discuss the rationale behind these usages.

This procedure consists of the following steps:

1. Literature review: All references identified in [ROU06] were initially
selected and complemented with related work (only references taken
from DataBase systems and logic programming (DBLP)).

2. Classification of references: We listed all basic services found and clas-
sified them into four categories:

(a) Simple primitives [Set, Display, Undisplay, Expose]

(b) Basic primitives [Copy, Move, Switch, Permute]

(c) Advanced primitives [Merge, Split, Replace, Distribute, Reset,
Append]

2.3. SURVEY ON USER PREFERENCES FOR ADDITIONAL UI 65

(d) Management primitives [Save, Restore, Import, Export]

3. Reduction of scope: The criteria used for selection is any article rec-
ognizing the need for distribution of any kind, describing explicitly an
implementation, and working at the user interface level (other levels
are relevant to distributed computing). A final comparative analysis
was obtained in Figure 2.24. In this figure, P stands for partial support
and T stands for total support.

Figure 2.24: Comparative Analysis of additional UIs: Their Interaction
Styles

From this comparative analysis of related work, we could draw this con-
clusion: distribution primitives are effectively implemented in some studies,
in many different ways, with different interaction styles and techniques.

We do not know today which one is prevalent depending on the distri-
bution primitive for an additional UI to become widely acceptable.

Work on additional additional UIs has proven to be very rare (according
to Chapter 2) since nothing was found for supporting the manipulation of
the abstract UI, the context model, the task model or the domain model
with direct implication on the lower levels. One notable exception concerns
COMETS [SOT07, CAL04], a toolkit that supports manipulating the models
required for running the final UI, either at design-time or at run-time.

Due to the heterogeneity of distribution primitives and their implemen-
tation demonstrated in the previous section, this section aims to conduct an
experimental study in order to determine the user preferences for particu-
lar interaction styles for each major distribution operation. The goal is to
provide us information about how users perceive each distribution primitive

66 CHAPTER 2. RELATED WORK

and which are the interaction styles that are well understood and which are
the ones that lead users to confusion.

Method and protocol

� Participants and apparatus. We conducted a user trial of 14 par-
ticipants (8 female, 6 male) who were recruited from a database of
volunteers coming from different disciplines (e.g., marketing, finance,
medicine, management) and having different ages (22% between 19 and
25-year old participants, 57% between 26 and 40-year old participants,
and 21% of more than 40-year old participants). Participants do not
have any prior knowledge of an additional UI. The physical setup was
similar for all participants. The computer used for the experiment was
equipped with an Intel Pentium M 1.6GHz CPU, 2Gb DDR of RAM
and a 15 inches LCD screen with a resolution of 1400 x 1050 pixels.
This apparatus was selected as it was considered representative.

� Task and procedure. Each participant received a detailed explana-
tion of the experimental study that was uniformly conveyed through
an interactive presentation (implemented with the animation language
of Microsoft PowerPoint 2010): to express their preference for interac-
tion styles for distribution primitives. Following the short introduction
to the test procedure and test purpose, they performed some training
with the tool. Following the training session, the 14 participants were
presented 6 distribution primitives (i.e. Set, Copy, Move, Replace,
Merge, and Split), each with four different interaction styles for each
operator (i.e., A=form filling with iconic interaction, B=direct manip-
ulation with drag & drop, C=command language, and D=menu selec-
tion). Each interaction style was implemented as animated examples
thanks to Microsoft PowerPoint 2010 macro-command language. Each
participant received a different sequence of interaction styles in order
to avoid the order influencing the results. Each participant therefore
provided an answer to the following questions:

– Which devices have you already used or owned? (desktop, mobile
phone, tablet PC, interactive kiosk)

– What is your experience level with a computer/laptop, mobile
phone/smartphone, tablet PC? Interactive kiosk? (preference on
a 5-point Likert scale)

– What is your favorite style for each distribution primitive (A, B,
C, or D)?

– What are the aspects that you found the most interesting, if any?
(open question)

2.3. SURVEY ON USER PREFERENCES FOR ADDITIONAL UI 67

– What are the aspects that you found the less interesting, if any?
(open question)

– What do you think of using pen-based gestures for some distri-
bution primitives? (open question)

Two examples of metaphors that were presented to the participants
for the MOVE and MERGE operations are shown in Figure 2.25.

Figure 2.25: Example of metaphors for MOVE and MERGE operations

The dependent variables used to assess the participant task perfor-
mances were twofold: the preferences for an interaction style for each
distribution primitive (i.e., A, B, C, or D) and the comments gath-
ered for each interaction style (i.e., number of positive and negative
comments for each interaction style).

All the relevant data captured from the presentation were captured
in a log file to be imported in a statistical software package. We now
justify these main choices of this setup.

� Justifications. When it comes to evaluate alternative UI designs,
Tullis & Albert [TUL08] report that a couple of self-reported metrics
are particularly relevant. One is asking each participant to choose
which alternative interaction style they would most like to use in the
future for a distribution primitive as a forced choice comparison. An-
other one is asking each participant to provide comments on each al-
ternative interaction style dived into two classes: what were the most

68 CHAPTER 2. RELATED WORK

positive aspects that you appreciated (if any), what were the most
negative aspects that you regretted (if any). This is what we did. In
order to consistently analyze all verbal comments, Tullis & Albert’s
protocol for verbal analysis was used that classifies any comment into
three classes: positive (when a clearly positive tone is expressed), neg-
ative (when a clearly negative tone is expressed), or neutral (when no
clear tone is expressed or in any other case).

The six distribution primitives selected were the most frequently found
ones in the literature that were considered fundamental for an additional UI
and because of their associated spectrum of interaction styles. Indeed, we
did not find all interaction styles possible for each primitive. SET was the
first primitive selected for its simplicity and its largest scope of possible in-
teraction styles. COPY and MOVE were also selected for the same reasons
in the set of basic primitives. SWITCH and PERMUTE are less interest-
ing because they could be obtained as a composition of other primitives
such as MOVE. The three last operations were REPLACE, MERGE, and
SPLIT because of their large coverage and representativeness of the aims and
goals of an additional UI. The DISTRIBUTE and RESET primitives require
too much implementation effort, APPEND primitive is a sub-primitive of
MERGE, they were not selected. The four interaction styles were selected
based on their intrinsic properties and because some interaction styles are
typically combined with others. For instance, the command language is as-
sumed to be appropriate when the task prerequisites are moderate, the task
productivity should be high, and so forth.

2.3.2 Results and discussion

The survey was based on a 14x6x4 factorial design: 14 participants were
involved, 6 distribution operators were selected and 4 different interaction
styles for each operator. All the fourteen participants completed the 24
trials, thus giving a total sampling of 336 trials. No outlier was removed
since all tasks have been completed without any problem and interruption.
Figure 2.26 summarizes the participants’ experiences regarding their usage
of various devices, ranging from no experience to expert.

Figure 2.27 graphically reproduces the results obtained for the user pref-
erences:

� Form filling with iconic interaction (A) was considered globally as the
most preferred interaction style for advanced primitives taken together
(i.e., Replace, Merge, and Split) in terms of occurrences

� a percentile analysis revealed the 50% percentile (x50%) is also in favor
of iconic interaction, followed by menu selection, and direct manipu-
lation.

2.3. SURVEY ON USER PREFERENCES FOR ADDITIONAL UI 69

Figure 2.26: Platform experience of participants.

Figure 2.27: Distribution of preferred interaction styles for each distribution
primitive (color figure available online).

� Direct manipulation (e.g., with drag and drop - B) is the most pre-
ferred interaction style (B) for the Set primitive belonging to the set
of simple primitives, probably because of the visual counterpart of the
UI element property. This was assessed in terms of occurrences and of

70 CHAPTER 2. RELATED WORK

the 90%-percentile (x50%) which is in favor of this interaction style.

� Direct manipulation is also the preferred interaction style for Copy and
Move, belonging to the set of advanced primitives. This was assessed
in terms of occurrences and of the 55%-percentile (x55%) in favor of
this alternative

� Command language (C) remains the least preferred interaction style.
However, a one-way ANOVA procedure (F=1.6933, p=0.1588) sug-
gests that only highly experienced participants appreciated this inter-
action style in general. No other statistically significant correlation
was found. Command language was only appreciated for the Split
primitive since it involves several complex parameters as opposed to
more obvious parameters for other primitives.

Figure 2.28 and 2.29 graphically reproduces the distribution of comments
gathered from the participants regarding the overall usage of the 6 distribu-
tion primitives (Figure 2.28) and regarding the overall usage of interaction
styles for all primitives (Figure 2.29).

Figure 2.28: Distribution of participants’ comments for all distribution prim-
itives.

All the tested primitives are considered vital by participants (in terms of
occurrences and a 50%-percentile (x50%) which is in favor globally speak-
ing). Participants’ feedbacks are mostly positive for the primitives. Each
primitive has always at least one interaction style that makes it easy to use
and natural to understand, particularly Drag & Drop.

The styles can vary depending on the context of use, such as the SET
operation. There is a question about how precise a primitive like SET should
be if we use direct manipulation or Drag & Drop.

2.3. SURVEY ON USER PREFERENCES FOR ADDITIONAL UI 71

Figure 2.29: Distribution of participants’ comments for all interaction styles,
explicit or implicit.

The diversity of styles proposed for each operation is well appreciated. If
the SET has to be precise, they will use direct values by command language,
modifying code or changing values of a property. The results for each style
taken individually are less mitigated.

While Drag & Drop is widely the most interesting and natural one for the
participants, command language and code modification are again the less
interesting and less natural. Participants have approved the other styles but
seem less convinced by them. The menu selection has been criticized because
it was less intuitive than direct manipulation and Drag & Drop. The ability
to simulate virtual reality is very interesting for the MOVE operation.

Participants said that it is nice to have Drag & Drop features in virtual
reality. It allows the user to see what she is going to do and to specify
exactly where she moves the UI elements. The reactions for pen-touch-
multitouch interactions are separated. About a half of the participants likes
these interactions because it is more natural and because we have fingers
that can be used for that.

There are more positive feedbacks for single-touch than multitouch be-
cause participants found multitouch a little less precise and easy to use.
The negative feedbacks got for both interactions are the complexity and the
feeling of using fingers as interaction mechanisms.

Thanks to this study we have realized that at the time of this study
(in 2010) there were very few people who own or use a touch screen. Most
people had a computer (desktop PC or laptop). It was not very clear what
was the best metaphor for each distribution primitive. The clearest thing

72 CHAPTER 2. RELATED WORK

for us was that there is no perfect metaphor for all the primitives.
Another important point raised by the survey is that users do prefer

to directly interact with the visual representation of the object rather than
using an icon or a menu. Drag&drop and Pen-Touch interactions got the
best results while iconic command line interface and code modification got
the worst preferences.

We have also tried to see what would be the impact if these primitives
were realized thanks to touch or multitouch gestures such as the ones de-
picted in figure 2.30.

Figure 2.30: Examples of some possible touch and multi-touch gestures.

For each primitive we have provided them with a proposition of possible
touch and multitouch interactions. When we found no obvious way to trigger
a primitive (e.g., for Display, Expose, Distributed and Reset), we offered the
ability to pop up a menu with the list of other available primitives.

While half of the users did like touch and multitouch gestures, some
didn’t like it at all. This is very important to consider for the future where
almost all the device will be touch or multitouch enabled. Applications
should not only work with a touch screen but also with a keyboard and a
mouse.

2.4. LIST OF REQUIREMENTS 73

As we only focus on GUIs we have not tested other modalities such as
using voice to interact with the computer.

2.4 List of requirements

Based on the shortcomings we have identified in section 2.2.1 and with the
results of the survey we have conducted in section 2.3. We have created a list
of the requirements that we want a toolkit to fulfill. Several shortcomings
may lead to only one requirement.

Requirements for the model dimension (MRi):

� MR1: Description of the concepts of a DS : The fundamental concepts
of a DS should be clearly defined. They should be independent of any
implementation.

� MR2:Establishment a model-based approach for DDGUI : Describe the
models needed for the representation of a DS.

Requirements for the approach dimension (ARi):

� AR1: Support of dynamic distribution: DDGUI can be dynamically
created and distributed at runtime without predefined scenarios.

� AR2: Based the approach on models: The approach must rely on
models.

� AR3: Basic distribution operations: The distribution operations must
be defined and independent of the implementation.

� AR4: Transparent distribution: The distribution mechanisms should
be transparent to the applications.

� AR5: Simple distribution mechanisms: DDGUI should be easily cre-
ated and manipulated.

Requirement with respect to the software support dimension (SR):

� SR1: Availability of the toolkit : The toolkit should be easy-to-use and
available widely.

� SR2: Support of different levels of granularity : The distribution should
be possible at several levels of granularity.

The requirements are directly derived from the shortcomings (Figure
2.31).

74 CHAPTER 2. RELATED WORK

Shortcomings Requirements

MS1 → MR1

MS2 → MR2

AS1 → AR1

AS2 → AR2

AS3 → AR2

AS4 → AR3

AS5 → AR2

AS6 → AR2, AR4

AS7 → AR2, AR4, AR5

SS1 → SR1

SS2 → SR2

SS3 → SR1

Figure 2.31: Links between shortcomings and requirements.

Chapter 3

Conceptual modeling of a
Distributed System

In this chapter we introduce a formal model of a distributed system, which
we call a distribution graph. This model lets us design Dynamic Distributed
Graphical User Interfaces (DDGUI) and reason about their behaviors. We
first discuss about the way applications are usually created and how dis-
tribution can be applied to them. We first give a formal definition of the
Distribution Graph and then we give it an example of graphical representa-
tion. Then we give a list of events and actions that we are interested into.
We end this chapter with a discussion about the possible behaviors that may
happen with distribution.

3.1 Architecture of a distributed system

According to the presentation-abstraction-control (PAC)[COU87], there are
three parts in a software support: one for the core (control), one for the
data (abstraction) and one for the UI (presentation). This pattern allows
us to separate the development of the UI from the rest. We could consider
that there are two different kinds of parts: the application logic and the
user interface. The abstraction and the control components represent the
application logic while the presentation is for the UI. The control is the
mean to ensure that the abstraction and the presentation components can
communicate.

In the domain of distributed computing the application logic can be dis-
tributed onto several devices. A distributed application is started on one
computer but is processed on several computers. This is pretty interest-
ing for time consuming computations. Work can be processed on several
computers which is faster than one computer and then saving time.

Some applications also support distribution using the Peer-to-Peer tech-
nology. The most famous examples are Skype and torrents. These ap-

75

76 CHAPTER 3. CONCEPTUAL MODELING OF A DS

plications have information about the distribution which means they are
distribution-aware. However the user interface is not part of this distribu-
tion. In Skype, each computer has its own application.

Figure 3.1: The structure of common distributed applications

The structure of these applications is depicted in Figure 3.1. While the
application needs to run on all the devices it does not always need to have
a user interface. In the figure, you can see that application use the UI
Local module to create the user interface. The communication between all
the devices happens at the Applications layer. The user interface modules
are local and never communicate together. At time of writing the thesis
cloud computing appears as an evolution where there are a lot of computers
available and shared. They offer a lot of computing power. The logic can now
be fully processed outside the computer where the application was started.
The only limitation to a fully distributed application is the user interface
that is stick to the device where it has been created.

Figure 3.2: The structure of a distributed application

To create a toolkit that allows the distribution of Graphical User Inter-

3.1. ARCHITECTURE OF A DISTRIBUTED SYSTEM 77

faces (GUI) we first need to model a distributed system and an application.
Based on this we want to create a toolkit in order to define, implement and
test our new concepts. We think that an application should use existing
distribution mechanisms to support the distribution of the GUI. A mod-
ule, represented as a black box, is added between the application and the
UI Local module as in Figure 3.2. This black box represents a group of
interconnected modules which we will consider as a single module to keep
our structure simple. The communication mostly happens between these
black boxes. They allows applications to react to delays, failures and other
special behaviors that happen in a network of computers. Thanks to the
toolkit and the distribution mechanisms a device will be able to distribute
the user interface to all the devices connected to it.

3.1.1 Non-distributed and distribution-aware applications

Figure 3.3: An example of a non-distributed application with and without
distribution support.

Most of current applications are not distributed. They are simply run-
ning on one device and use the UI Local module to create the UI. These
applications can simply use the added black box in the same way as they
were using the UI Local module to support distribution without any change
in the code and in its behavior. The distribution is managed by the black box
which can communicate and distribute the user interface to other devices
without the need of the application to run on these devices. The structure
of such application with and without the black box is depicted in Figure 3.3.

If these applications want to be aware of distribution they can use dis-
tribution operations to interact with the distribution mechanisms. They

78 CHAPTER 3. CONCEPTUAL MODELING OF A DS

Figure 3.4: An example of a distribution-aware application

will not only use the same interface as for the UI Local module but also
use another interface to interact with the distribution mechanisms. They
can register for events (e.g., device joining, device leaving), they can ask
for information regarding the distribution (e.g., how many devices are con-
nected?, are there devices supporting touch interaction?). These apps are
called Distribution-Aware Applications because they are aware of the distri-
bution and can react to events in the distributed system. Their structure is
depicted in Figure 3.4.

3.1.2 JayTk’s architecture

The final organization of all the modules is represented in Figure 3.5. The
black box has now been exploded to show the three main modules that
were encapsulated. We have added information regarding the layer for each
module. This is the structure of an application created in Mozart and using
our toolkit and Beernet. We propose this solution for supporting the creation
of applications with a DDGUI.

There are two kinds of applications: distribution-aware and unaware
applications. Both will use the UI operations to interact with our toolkit
JayTk as they would with QTk or Tk. Distribution-aware applications will
also use distribution operations to handle distribution events and manage
the distributed system.

The distribution mechanisms module represents all the mechanisms that
currently exist for creating and managing the distribution of a system. This

3.1. ARCHITECTURE OF A DISTRIBUTED SYSTEM 79

Figure 3.5: The structure of an application using the JayTk

module brings the ability to create, join and leave a peer-to-peer network, to
send messages to other peers through communication protocols such as the
reliable broadcast (referred later as RB). For this module we have chosen to
use Beernet. Beernet is a peer-to-peer network for building self-managing
scalable systems with transactional and robust storage. Thanks to Beer-
net, it is easy to use transactions, be notified when a failure is detected in
the network and react to it. It also supports basic functionalities such as
creating, joining and leaving the network.

The module distribution mechanisms is not mandatory but we recom-
mend to use distribution mechanisms to fully support distribution. Without
this module it is possible to distribute the UI but there is no guarantee and
no possible management on the distributed system. This may be sufficient
for a very short distribution (i.e., if all the devices are in the same room).

3.1.3 Example of a non-distributed application: Painter’s
palette

The Painter’s palette is an example to explain how a non-distributed ap-
plication may be distributed while not being aware and not supporting it
natively. What would happen if a smartphone or a tablet becomes available
to the user? As the application is not aware of the distribution, it is not
notified that a new device is available and nothing happens. However the
toolkit is aware that the distributed system is now composed of two devices
and that the new device has a touch screen which could be interesting for
both the drawing area and for the palette. A default behavior could be
to move the palette to the new device while the drawing area stays on the
desktop computer. The application is not aware that the palette will not be
displayed on the desktop computer anymore. The application will react as

80 CHAPTER 3. CONCEPTUAL MODELING OF A DS

if the palette was still there.

There are several ways to enable the distribution. Another user interface
provided by the toolkit could let the user choose where each part of the UI
will be displayed. The toolkit could react to the appearance of a new device
and automatically distribute the user interface.

This shows how a non-distributed application can be easily transformed
into a distributed application without being aware of the distribution.

3.2 Model-based approach for DDGUIs

We still need to model the state of the whole system. The reason we want to
use a model-based approach is to find a solution to the shortcomings listed
in Chapter 2. Especially the shortcomings MS1 (lack of ontological under-
standing of DDGUIs), MS2 (lack of DDGUI modeling) and AS3 (limited
re-usability of existing tools and approaches).

3.2.1 Modeling in software engineering

Before trying to model the system, let us take inspiration from software
engineering which allow people to model things.

Figure 3.6: Modeling in software engineering and in HCI

In Figure 3.6, there is a comparison between the macromodel from
Model-Driven Engineering (MDE) and what we called the megamodel for
Human-Computer Interaction (HCI). The level 0 (M0) is the instantiation
of the whole system. In MDE, the result is an interactive system based on
models from level 1 (M1). For HCI, the result is the Final User Interface,

3.2. MODEL-BASED APPROACH FOR DDGUIS 81

which is the UI the application provides to the user. In MDE, when we
work on top of models, we are in the meta-modeling level (M2). The results
from meta-modeling is a model. In HCI, a UI that controls the UI is an
extra-UI, and a model that can generate a UI is a model for the UI (task
model, domain model, ...). The level 2 (M2) in HCI is the meta-UI, this
means that there is a UI that will control the models or the extra-UI. The
level M3 in both domain is pretty rare. This means that there are models
that control the meta-models, or a UI that controls the meta-UI. The whole
structure is called the megamodel for HCI and the macromodel for MDE.

3.2.2 Core models

We now need to model precisely the entities of a DS. We thus need a model
for the users and for the devices. There already exist several user and device
models however we are not reusing one of these. The reason is that we want
to create a model that is generic and independent of the other models.
It needs to be expressive enough for our approach and to allow us to be
compliant with the models that have already been defined in other research.

3.2.3 User Model

The first concept that we have defined in this chapter is the user. In order
to adapt the system according to the user needs and characteristics, it is the
first and important piece in the system. It is also the only human part in a
computing system. The whole system should be able to adapt itself to the
user.

Each user is a set of pairs of properties and values. Here are some
examples of properties the user can have:

� Id of the user (cannot change)

� Name of the user (can change)

� Title of the user (can change)

� Location (with or without GPS, so dynamic)

� Tracks (music, video, can change)

� Dropbox (some links to personal files, can change)

� Comments (additional infos, can change)

� Connections (between users, can change)

� Experience (can change)

A User Model is divided into four stereotypes:

82 CHAPTER 3. CONCEPTUAL MODELING OF A DS

� a teenager: between 8 and 14 years old

� a student: from 18 to 24 years old

� an adult: from 25 to 60 years old

� a senior: more than 61 years old

3.2.4 Device Model

The second concept we modeled is the device. It is the tool for the user to
interact with the system. The more the system knows about the device, the
better it can adapt to the device constraints.

A device is also a set of pairs of properties and values. The properties
available for the device are part of the device model of Figure 3.7. Each
property is a class in the diagram. The possible values for each property are
the attributes of each class.

Figure 3.7: Device model

3.2.5 The selection mechanism

For our selection mechanism we will introduce the concept of selector. A
selector consists of a selection of UI element types of a particular CUI model

3.2. MODEL-BASED APPROACH FOR DDGUIS 83

that satisfy a first-order predicate logical formula. In this way, it will be
possible to apply a template for a selector instead of a (potentially long)
sequence of widgets. Four types of selectors are defined that will be later
on used for addressing UI elements and for specifying source and targets
elements of distribution primitives:

� universalSelector: applies the template to all UI elements belonging
to a particular CUI, whatever they are.

� elementTypeSelector: applies the template to all UI elements belong-
ing to a particular CUI which correspond to the selector’s type (e.g.,
all containers, all list boxes).

� classSelector: applies the template to all UI elements belonging to a
particular CUI which correspond to the selector’s type whose definition
makes them part of the class (e.g., all containers having an id greater
or equal to 10, all list boxes having more than 10 items).

� idSelector: applies the template to only one UI element belonging to a
particular CUI: the one whose id property matches the string contained
in the parameter.

3.2.6 EBNF grammar

In order to formally define the language expressing distribution primitives,
an Extended Backus Naur Form (EBNF) grammar has been defined. EBNF
has been selected because it is widely used to formally define programming
languages and markup languages (e.g., XML and SGML), the syntax of the
language is precisely defined, thus leaving no ambiguity on its interpretation,
and it is easier to develop a parser for such a language, because the parser
can be generated automatically with a compiler (e.g., YACC). EBNF only
differs from BNF in the usage of the following symbols: ? means that the
symbol (or group of symbols in parenthesis) to the left of the operator is
optional, * means that something can be repeated any number of times, and
+ means that something can appear one or more times. In this notation,
brackets indicate an optional section, while parentheses denote a simple
choice in a set of possible values. We use our selection mechanism in order
to specify the widgets that will be affected.

Instances of distribution primitives are called by statements. The defi-
nitions of an operation, a source, a target, a selector and some other ones
are defined in Figure 3.8. The definitions can be extended later to support
more distribution primitives.

84 CHAPTER 3. CONCEPTUAL MODELING OF A DS

� statement = operation , source , ”TO” , target ;

� operation = ”SET” | ”DISPLAY” | ”UNDISPLAY” | ”EXPOSE” |
”COPY” | ”MOVE” | ”SWITCH” | ”PERMUTE” | ”MERGE” |
”SEPARATE” | ”REPLACE” | ”DISTRIBUTE” | ”RESET” |
”APPEND” | ”TRANSFORM” | ”SAVE” | ”RESTORE” |
”IMPORT” | ”EXPORT”;

� source = selector ;

� target = displays | selector , ”ON” , displays ;

� displays = display platform , { ”,” , display platform};

� display platform = display , [, ”OF” , platform] ;

� selector = identifier , { ”,” , identifier } | universal ;

� display = identifier ;

� platform = identifier ;

Figure 3.8: EBNF grammar for the main terms

3.3 Distribution Graph

As previously defined, a distributed system is dynamic. There are devices
that join and leave it, users that appear and disappear, and links between
devices that can fail.

To support the representation of a DS we have introduced the concept of
Distribution Graph. An example of metaphor used for a Distribution Graph
is an iconic map but there are other ways to represent it. All the devices
that are in the DS are also in the DG. When another device appears in the
DS a new distribution graph is produced. The iconic map should then be
updated to display the device that has appeared.

Definition 7. A distribution graph [DG] is the representation of a dis-
tributed system in a directed graph where vertices are either devices or users
and arcs are links between them.

In the Painter’s Palette example there are only one device and one user.
The distribution graph that represents it has two vertices (i.e., one for the
user and one for the device) and an arc linking the vertices together. An
example of this DG can be found in Figure 3.9.

The distribution graph is static and thus cannot represent this dynamic
behavior. However vertices and arcs can be added or removed. This is ex-
actly what happens in our example when another device is now available. A

3.3. DISTRIBUTION GRAPH 85

u1

d1

a1

Figure 3.9: Example of distribution graph for the example of the Painter’s
Palette

third vertex appears which leads to a new distribution graph. The appear-
ance of this new device is depicted in Figure 3.10. As soon as the user will
be logged into it, an arc will link the user to this second device in a new
distribution graph.

u1

d1 d2

a1

Figure 3.10: Evolution of the distribution graph when a second device has
appeared

Thus in order to represent the distributed system and its dynamic be-
havior we need a sequence of distribution graphs called an execution.

We now formally defined it based on graph theory. In this section, we
are going into detail for all these concepts. For this let us first start by
the mathematical definition of a graph and then define the concept of a
distribution graph as a special kind of graph.

3.3.1 Graph

A graph is a mathematical concept that describes links between pairs of
objects. A graph G = (V ,E) is defined by a finite set of Vertices V and a
finite set of pairs E ⊆ V × V called edges. Typically V = {v1, ..., vnv} and
|E| = me.

A directed graph D = (V , A) is a graph where A is a set of ordered pairs
of vertices that are called arcs. In the remainder of the thesis we will only
consider directed graph and refer to links as arcs.

3.3.2 Attribute-Value Pair pattern

The pattern Attribute-value pair is a data representation that is commonly
used in computing science. This allows us to create a link between an

86 CHAPTER 3. CONCEPTUAL MODELING OF A DS

attribute and its value. The attribute is often represented as a name. An
example of this pattern can be found in machine learning[AN02].

The main advantages of this pattern is that it is a fundamental data
representation. It offers some flexibility thanks to its open data structure
which allows extensions. It is straightforward to model a physical entity as
a record using this pattern. A record is a value that contains other values,
here values are attribute-value pairs as in Figure 3.3.1

Definition 3.3.1. (Record): R = {(ai,vi)}i=1,..,na

In this definition ai represents an attribute and vi the value associated
with it. For the thesis we will use this pattern to model our data as a record.
It is very easy to compute and sufficient to represent our concepts.

3.3.3 Vertices

The first concept we need to model is the user. Each user has his/her own
characteristics. A child will not use the computer in the same way than an
adult. There also exist certain persons with disabilities that need a system
adapted to them. The more the system knows about the user, the more
it can be adapted to it. Every physical entity can be considered as a user
depending on the importance of his/her interactions. An observer does not
need to be considered as a user. A user is generally defined by an account.

Each user is represented by a unique constant, an identification, that is
part of the set of constants UTotal. The set of users U is a subset of UTotal

and is defined in Definition 3.3.2.

Definition 3.3.2. (Set of Users):
U = {ui}i=1,...,nu

A record is associated with this constant/identification that character-
ized it. The function U associates a constant/identification with a record as
defined in Definition 3.3.3. For example, a user record may have the pair
(Experience, High). It means that the experience of the user is high.

Definition 3.3.3. (User function):
U : UTotal → Ru : ui ∈ UTotal 7→ ri ∈ Ru

We have defined the concept of devices as the combination of the hard-
ware and the software (the Operating System). It means that it is the
combination of the possible restrictions brought by the device and the in-
teraction capabilities brought by the OS. Both are needed for most of the
common questions we could have about a device such as : ”Is is touch-
sensitive?”. It depends if both the hardware and the software support it.
Or ”What are the possible resolutions and what is the current?”. This latter
question depends on the native resolution provided by the hardware (the

3.3. DISTRIBUTION GRAPH 87

screen, the display) but also by the drivers running on the operating system
that can allow more than the native resolution. As for the user, a device is
represented by a unique constant, an identification, that is part of the set
of constants DTotal. The set of devices D is a subset of DTotal as defined in
3.3.4.

Definition 3.3.4. (Set of Devices):
D = {di}i=1,...,nd

The function D associates a constant/identification with a record. This
function is defined in Definition 3.3.5. For example, a device record may have
the pair (Resolution, 1366x768). It means that the device has a resolution
of 1366 by 768 pixels.

Definition 3.3.5. (Device function):
D : DTotal → Rd : di ∈ DTotal 7→ ri ∈ Rd

Applied to the domain of the thesis, there are two kinds of vertices: a
user vertex and a device vertex. Let us define U as the set of user constants
and D as the set of device constants. Consequently the set of vertices applied
to the DDGUI domain is V = U ∪D as in Definition 3.3.6.

Definition 3.3.6. (Set of DDGUI Vertices):
V = {vi | vi ∈ (U ∪ D)}i=1,...,nv

This definition allows us to model several users and devices of a dis-
tributed system. This multiplicity is needed to extend the definition of the
context of use which allows only one device and one user.

3.3.4 Arcs

The set of arcs A is defined as a 2-element subset of DDGUI vertices so that

Definition 3.3.7. (Set of Distribution Arcs):
A = { ai | ai = (x, y) & x, y ∈ V }

A distribution arc represents a connection between two DDGUI vertices.
Here are the possible distribution arcs : ui → dj and di → dj There are two
kinds of DDGUI vertices and two kinds of arcs. An arc between a user vertex
and a device vertex is labeled as logged. One between two device vertices
is labeled as connection. A user vertex can only have arcs towards device
vertices. These arcs are neither reflexive, nor symmetric, nor transitive. A
user can log into several devices at the same time. This relation between a
user vertex and a device vertex is defined as a the logging relationship L:

Definition 3.3.8. (Logging relationship):
L : U → D :
∀i ∈ 1..nu, ∃j ∈ 1..nd|∀ui ∈ U, dj ∈ D : ui ∈ U 7→ dj ∈ D

denoted by L(ui, dj) =̂ ui
l→ dj

88 CHAPTER 3. CONCEPTUAL MODELING OF A DS

A device vertex can only have arcs going to other device vertices or com-
ing from other DDGUI vertices, both user and device vertices. An arc from
a device vertex di towards a device vertex dj means that di can commu-
nicate to dj through at least one communication protocol (e.g., Bluetooth,
WiFi, NFC). Some protocols may allow more than one channel between
two devices. However we only represent the ability to communicate from
one device to another no matter what is the communication protocol used.
These arcs can be transitive: if a device vertex dx can communicate with
vertex dy and dy can communicate to dz, dx can communicate to dz without
a link. However a link between dx and dz is correct if they are directly con-
nected through at least one communication protocol too. It is nonetheless
not guaranteed that the transition is always possible (i.e., it may depends on
the way communication is implemented). This relation between two device
vertices is defined as a the connection relationship C:

Definition 3.3.9. (Connection relationship):
C : D → D :
∀i ∈ 1..nd, ∃j ∈ 1..nd|∀di ∈ D, dj ∈ D : di ∈ D 7→ dj ∈ D & di 6= dj
denoted by C(di, dj) =̂ di

c→ dj ⇒ ∃ak ∈ A so that ak = (di, dj)

3.3.5 Distribution Graph

A Distribution Graph (DG) is defined as a pair of the set of vertices V and
the set of arcs A. It allows people to represent a snapshot of a Distributed
System at a certain time. Formally:

Definition 3.3.10. (Distribution Graph): DG = (V , A) where V is the
set of vertices and A is the set of arcs.

An example of a distribution graph is depicted in Figure 3.11. There are
two users and three devices. We will now refer to user vertex as user and
device vertex as device. The user u1 is logged into the three devices d1, d2
and d3 while user u2 is not logged into any device. There is a connection
between devices d1 and d2, and between d2 and d1. The device d3 is not
connected to any other device.

u1 u2

d2d1 d3

a1
a2

a3

a4

a5

Figure 3.11: An example of distribution graph with 2 users and 3 devices

3.4. BEHAVIOR OF A DISTRIBUTED SYSTEM 89

Even if u2 is not linked to any vertex it is still in the DG. It means that
u2 was previously logged into a device but this is not the case anymore. The
device the user u2 was logged into may be d1, d2, d3 or another device. A
device that has no arc anymore cannot interact with the distributed system.

Each vertex has its own view of the distribution graph. It is only a
partial view as it does not know all the views of each vertex. Formally :

Definition 3.3.11. (Partial Distribution Graph): DGvi = (Vvi, Avi)
where Vvi ⊆ V and Avi ⊆ A

To process the complete DG it is necessary to use a distribution algo-
rithm that will create a snapshot of the DS. The source vertex needs to
ask other vertices their own view in order to collect all the information .
Each vertex will then share it back to the source vertex. Thanks to the
information collected the source vertex can create a global DG. There is
no guarantee that this global DG will be the real distribution at a certain
time because while collecting information, some views may change. E.g.,
some devices may have joined or left after the information was shared to the
source vertex.

3.3.6 Environment

In Human-Computer Interaction, the environment is often defined to include
aspects of the physical world, such as placement of objects and persons, and
sensory characteristics such as visual imagery, temperature, sound and so
forth. In our formal model we consider the environment only as a source
of events. Any event that is not triggered by a user is considered to have
been triggered by the environment. This formalization is done without loss
of generality because any physical embodiement of an environment must
interact with the system in terms of events. It also has the advantage of
not making any premature choices about the representation of the physical
world.

3.4 Behavior of a Distributed System

The Distribution Graph allows people to model the elements and relation-
ships that constitute a distributed system. In order to model the behavior
of each of these elements we need to model its dynamic aspects.

3.4.1 Events

The communication between all the devices, and between a user and a device
are represented by events. An event is defined as a triple of two vertices
and the content of the event which is a record. This is defined in Definition
3.4.1.

90 CHAPTER 3. CONCEPTUAL MODELING OF A DS

Figure 3.12: The graphical representation of the Event-Condition-Action
pattern[PAS07]

Definition 3.4.1. (Event): ek = (v, w, r) where v, w ∈ V & r ∈ Re

An event is a communication of the content r from v to w. We introduce
the special value environment for v when the event comes from the envi-
ronment. The appearance of a device or a user in the distributed system,
as well as the login of a user into a device or the connection between two
devices are examples of an event that could trigger a modification in the
distribution graph.

3.4.2 Execution trace of the distributed system

A Distribution Graph is a snapshot of a distributed system at a certain
moment of time. To model the dynamic aspect of a distributed system we
need to allow the distribution graph to change with time. An execution
trace is an alternate sequence of distribution graphs and events that starts
with the initial distribution graph dg0. Formally:

Definition 3.4.2. (Execution trace): E = ({dg0,e0,dg1,e1,. . . })

3.4.3 Event-Condition-Action pattern

The Event-Condition-Action pattern (ECA) allows people to describe a dy-
namic concept. It is commonly used in Software Engineering, Database
Management and in HCI. The structure is defined as: ON event IF condi-
tion THEN action. It means that when something happen, the event, under
a certain condition, a set of actions is triggered. Graphically it is an optional
conditional and the set of actions as in Figure 3.12.

We will now introduce a similar pattern for distributed systems. There
are three kinds of events: graph events, distribution events and interaction
events. The appearance of a device or a user in the distributed system, as
well as the login of a user into a device or the connection between two devices
are example of events that could trigger a modification in the distribution
graph. We will call these events: graph events. As we already introduced
in the introduction a distributed system may have crashes, failures or other
complex behavior. The information about the quality of the communica-
tion between devices will be through distribution events. Users while
being logged into devices can interact with them: click on button, fill text
boxes, press a key on the keyboard, These interactions are interaction

3.5. GRAPHICAL REPRESENTATION 91

events. The two first categories are events triggered by the environment.
The last category is for events triggered by users.

The condition is a predicate as in mathematical logic: a boolean-valued
function P : X → {true, false}. An example of condition is to check if
an attribute of the device or the user is set to a certain value (e.g., de-
vice.isMultiTouch == true). This will allow us to automatically adapt the
Graphical User Interface according some rules.

The last category is the set of actions that are triggered for a certain
event. There are two possible actions in this set: distribution operations
and graph modifications. The graph modifications are transitions from one
distribution graph to another (i.e., appearance of a vertex, disappearance
of a vertex, connection between two devices, user logging into a device or
disconnection between two devices).

3.5 Graphical representation

Figure 3.14 is an example of DG with two users, u1 and u2, and two devices
d1 and d2. The device d1 is currently connected to user u1. The other device
and user, u2 and d2, are not connected together or to anything else.

u1 u2

d1 d2

a1

Figure 3.13: Representation of a distribution graph with two users and two
devices

Figure 3.14: Representation of a distribution graph with two users and two
devices

Several changes can happen in the DG. The first example is a vertex
that disappears. Figure 3.15 shows the disappearance of the user u2 and the
device d2. The visual feedback that allows us to show the disappearance of

92 CHAPTER 3. CONCEPTUAL MODELING OF A DS

a vertex is to remove it from the distribution graph. In the figure, we only
see the user u1 and the device d1.

u1

d1

a1

Figure 3.15: Representation of the same DG after disappearance of u2 and
d2

Another example of change in the distribution graph is the disconnection
between two vertices. For example, in Figure 3.16 the user u1 has left the
session on the device d1. They are then left not connected to any other
vertex. The disconnection between two vertices is only possible if they were
connected together, graphically it means that there was an arc between the
vertices. The disconnection will remove this arc.

u1

d1

Figure 3.16: Representation of the same DG after disconnection of user
vertex u1

And finally, the disappearance of the user u1 left the device d1 alone in
the DG. As depicted in Figure 3.17 the device d1 is not anymore in the DG.
A disappearance could happen with one vertex connected to another one. If
one of theses vertices disappear the arcs between them will also be removed.

d1

Figure 3.17: Representation of the same DG after disappearance of u1

3.6 Application Graph

Another concept that we are introducing in the thesis is the Application
Graph (AG). Instead of a complete definition of the concept as made for
DG in Section 3.3 this section only gives an introduction to the concept.

3.6. APPLICATION GRAPH 93

u1 u2

d1 d2

a1

Figure 3.18: Simple example of Distribution Graph.

The AG is a more fine-grained view of the DG. It focus on the distribu-
tion of applications inside devices.

An example of DG can be found in Figure 3.18. In this example, there is
one user u1 currently connected to two devices d1 and d2. The two devices
are not connected together.

Figure 3.19: Simple Application Graph from the Distribution Graph of Fig-
ure 3.18

From this DG, Figure 3.19 shows a possible Application Graph. This
AG shows that the are currently three applications running on device d1
and another running on the device d2. The applications A1 and A2 are
conntected together and can communicate and exchange UI elements. The
application A3 is currently not connected and then working alone. The figure
also shows that it is not possible for applications A1 and A4 to connect or
communicate to each other. In fact, the connection between two applications
is possible if and only if:

� The two applications are on the same devices

� The devices where are the two applications located are connected to-
gether in the DG.

As seen in the previous figure, the DG has no connection between d1 and
d2. Thus, A1 and other applications from device d1 cannot communicate
with application A4.

94 CHAPTER 3. CONCEPTUAL MODELING OF A DS

Distribution State

The distribution graph allows a graphical representation of the relationships
between users and devices. We also wanted to provide a view on the actual
state of the elements that composed the distributed system. We thus propose
to model this through a new concept: the distribution state. A Distribution
State is a snapshot of what constitutes the DG at a certain moment of time
in which the distributed system is stable.

Distribution Initial State

There is a distribution initial state. We will write DSi for the ith Distribu-
tion State. In this initial state the set of vertices (users and devices) and set
of arcs are all empty.

Formally:

DIS = DS0 =


V = ∅
A = ∅
U = ∅
D = ∅

(3.1)

Other Distribution States

From this distribution initial state there is only one possible event that can
happen: APPEAR. In this case, only a vertex can appear at this stage.
Even if vertices can either be users or devices we assume that a user always
connects to the system through a device. This means that a device should
first appear and then a user. A sequence of distribution states will help us
clarify the possible transitions. The sequence is neither total nor complete.
There is only one possible state for DS1 which is a device appears in the
system.

Formally the next state can be reached with event : e0 = (env, d1,
APPEAR). It means that a device has shown up.

DS1 =


V = {d1}
A = ∅
U = ∅
D = {d1}

(3.2)

From DS1 it is now possible for the vertex to disappear and the situation
comes back to DIS. If another device appears in the environment we stay
in a state equivalent to DS1. What is new here is the ability for a user to
log into a device leading to DS2.

Formally the next state can be reached with: e1 = (env, u1, APPEAR).
The previous state can be reached with the event : e1 = (env, d1, DISAP-
PEAR).

3.6. APPLICATION GRAPH 95

DS2 =


V = {d1, u1}
A = ∅
U = {u1}
D = {d1}

(3.3)

The state DS2 should not be visible as the user appears by logging into
a device, the next event is : e2 = (u1, d1, LOGIN). It leads to DS3 :

DS3 =


V = {d1, u1}
A = {a1(u1, d1)}
U = {u1}
D = {d1}

(3.4)

From DS3 it is still possible for a vertex to disappear. We only consider
that devices can leave the distribution graph. A user that logs out of a device
is kept in the system. A user needs to be connected to a device to enter in
the environment but can stay in the environment without any connection to
a vertex. The appearance of another vertex will be equivalent to DS2 and
DS3. The last possibility is to connect two devices together which leads to
DS4.

Formally the next state can be reached with: e3 = (d1, d2, CONNECT).
It leads to DS4 :

DS4 =


V = {d1, d2}
A = {a1(d1, d2)}
U = ∅
D = {d1, d2}

(3.5)

And finally, the last possibility is that two vertices disconnect from each
other. Formally the disconnection can be reached with: e4 = (d1, d2, DIS-
CONNECT).

Application State

In the previous section we have defined and exemplified the distribution
state and all the actions that can happen in the distributed system around
users, devices and environment. However this concept does not cover any
application state. For this reason we introduce the concept of Application
State(AS). As for the distribution state an application state is a snapshot
of what constitutes the application graph without repeating what is already
specified in a distribution state.

A basic application in computing science is a process executed on one
device for a certain user. It can be separated in two parts: the application
logic and the user interface. With distributed applications, the application
logic is distributed across several devices with the user interface kept in
the device where the application has been created. In any case, we have a

96 CHAPTER 3. CONCEPTUAL MODELING OF A DS

very basic configuration of an application that is started on a device. An
application starts on only one device and depends on this device. This leads
to the first application state. The application initial state has no application
at all.

Application Initial State

The application state is a function that for each application gives the set of
devices in which the application is distributed and the set of applications
that are started in the distributed system. Let us concentrate our efforts in
a simple distribution graph with two devices and one user as in figure 3.18.

Formally, the application initial state (AIS) is:

AIS = AS0 = App = ∅ (3.6)

At this time, no application is running and the distributed system is
stable. But with the start of an application, the dynamic behavior of a
distributed system appears again.

Other Application State

From the IAS the only way to leave the state is that an interaction happens
in the distributed system. This interaction is a user or a device starting
an application. No matter if the application starts on device d1 or d2 it is
equivalent.

Formally, the application state (AS1) is:

AS1 =

{
App = {A1}

f(A1) = {d1}
(3.7)

We have decided to use an uppercase notation for the application to
differentiate the AG elements from the DG elements. With this state, there
is one application, A1, which has been started. The function allows us to
know on which device is the application running. It returns the set of devices.
From this application state, it is possible to start another application or
to stop the one that was running. The first possibility will lead to the
application state AS2 while the other will come back to IAS.

This may raise a question: is it possible to have the same application
running on the same device or on two devices? The answer is complicated. If
the application A1 is running on d1 it is possible to also run the application
on d1 and connect them together. However for A1 to start on d2 it needs
d1 and d2 to be connected together. If there exist two versions of the same
application running on two devices that are not connected, they are two
different applications.

3.7. DISTRIBUTION PRIMITIVES 97

Formally:

AS2 =


App = {A1, A2}

f(A1) = {d1}
f(A2) = {d2}

(3.8)

or


App = {A1, A2}

f(A1) = {d1}
f(A2) = {d1}

(3.9)

or

{
App = {A1}

f(A1) = {d1, d1}
(3.10)

With the concept of application states we allow the application to be dis-
tributed across several devices. Before going into details of the distribution
we need to introduce the possible actions.

3.7 Distribution Primitives

Let us talk about the actions with a finer granularity. In this section, we will
formally define some possible actions. As described in section 3.4.3, actions
are part of the Event-Condition-Action pattern. An action is thus either a
reaction to an event or it is triggered when a condition is fulfilled.

It is not possible and useful to support and list all the possible actions.
The thesis defines a set of actions relative to a DS. Moreover, the thesis only
covers a subset that was necessary for the case studies or already provided in
the related work. We also think that this subset is sufficiently representative
to support the DS properties.

3.7.1 Local User Interface actions

Several actions can happen between vertices in a distribution graph. It
means between several users, several devices and both kind of vertices. How-
ever local actions can only happen in one and only one device. They do not
support distribution in any way. Even if they can be triggered by a user we
assume that these actions are directly triggered by the device itself and does
not even need a user.

There are a lot of possible actions allowed by applications and operating
systems. We do not cover all these actions because they are already sup-
ported by the graphical toolkits and the operating systems that we used in
the thesis. For example, the creation of a window with buttons to minimize,
maximimize and close it are often provided by the environment and oper-
ating system APIs. For mobile and modern UI there exists other ways to
support these actions such as hardware buttons.

We do not currently cover mouse, keyboard and gesture actions. They
are already provided by APIs.

98 CHAPTER 3. CONCEPTUAL MODELING OF A DS

Creating a button and reacting to a click on this button, and recognizing
some gestures are also available in the environment itself. Thus we will reuse
these technologies to only focus on more complex aspects of a distributed
system. The main actions that are needed by any application is to display
and hide elements in a UI. While it is provided by all the environments to
create a UI at design stage; it is not provided to display and hide elements
at run-time. For this reason we will now specify these interactions.

These action are called local User Interface actions. Some examples of
local User Interface actions are: a user moving, minimizing or maximizing
a window.

3.7.2 Global UI actions

The Global UI actions is the set of actions that interact with the user in-
terface without the need of any information from the distribution graph.
The actions will not change the distribution graph however they can use
some distribution mechanisms. They are based on the Local User Interface
actions and can be seen as a unification of all the set of local User Interface
actions provided by each operating system API.

Display - Undisplay

As the devices and users have an appear and disappear event, the actions
display and undisplay exist for the user interface elements. Let us first take
an example of what it can be and separate this action through the whole
concept of displaying elements.

A user is currently at home with his smartphone, a computer and a tele-
vision. He would like thanks to his smartphone to remotely play a game
from his computer while displaying it on his television. This first step to ac-
quire this is to already have the user and the three devices in the distributed
system. Then to connect the user to all these devices and all the devices
together. If we assume that we already have this DS we then need to start
the game on the computer and display the interface on the television.

Let us then assume that the game is started on the computer without
any user interface. In order to display some elements the computer needs
an action that will ask the television to display the elements and then the
television will need an action to display the elements. This is the latter
action that we care about because it is the local action of displaying an
element.

These actions are very important because they allow the application
to show and hide elements on all the devices. It is based on the local
actions that allow the creation of UI elements. Thanks to these actions the
application can dynamically show and hide things on each screen of the DS.
Not only it can display things on one device but it can also display things

3.7. DISTRIBUTION PRIMITIVES 99

to other devices without any knowledge of distribution. These actions are
already provided in some toolkits [AVR89, REK03, GRO05, MEL09].

The statement for this DISPLAY action is:
DISPLAY list element [IN element [AS position]]

There are two possible actions with DISPLAY: either we create a new
element independently from other elements or we insert this element into an
existing element.

A small and simple example is to an empty window which would be:
DISPLAY window

The concept of window depends on the device it will be displayed. It is
the root of any user interface displayed on a device. There can be several
windows on a device if the device allows it which is not always the case.

Here is a more complex example which needs to display several complex
elements in another element:
DISPLAY label(text:”Here is a pop up windows”), lr(button(text:”Cancel”),
button(text:”Ok”)) IN win AS top

This example show how to display a label and two buttons inside the
windows we have already created. It also specifies that the label is upon the
buttons and that the buttons will be beside each other. The new elements
will be put at the top of the existing ones if there are already elements in it.

The statement for the UNDISPLAY action is:
UNDISPLAY list element [IN element]

It can either hide all the elements from list element found on the device
or inside element.

Some feedback can be provided for these actions. The display action
may have an increasing opacity or size. The undisplay action may have a
decreasing opacity or size.

Get - Set

When some elements have already been displayed, it is possible to get or
change information from them. The local action get reads the value of a
property without modification. This action allows us to directly access or
change properties of elements in DS. Without these actions each modification
would require to undisplay the elements and display a new one with the
modification. These actions are only provided in one toolkit[AVR89].

The statement for GET action is:
GET p FROM id OF element

The action will get the value from the property p. The action set allows
us to change the value of a property.

The statement for SET action is:
SET p TO value FROM id OF element

The action will set a new value to the property p of element. This value
can either be dependent or independent from the previous one. Let us the

100 CHAPTER 3. CONCEPTUAL MODELING OF A DS

old value be vold and the new value be vnew.

� vnew = p, if p is a value independent from the old one (e.g. 10, 100,
”tablet”).

� vnew = p ∗ vold, if p is a percentage (e.g. 10%, 20%, 50%,...).
i.e. if p = 10%, vnew = 0.1 ∗ vold.

� vnew = vold + sign(p) ∗ value(p), if p is either −X or +X.
i.e. if p = −5, vnew = vold - 5.

For each property there is a possible range of values call the type. For
example, boolean property like isVisible can only have value FALSE and
TRUE. If there is a type violation, the result of the action gets a FAIL
result. If the action succeeds the result of the action gets the new value as
result.

Move

Thanks to the ability to display and undisplay graphical elements on each
device we are able to perform some actions that we use to do locally. For this
we will create a scenario of actions that will be executed sequentially. This
action is the one that is mostly supported by all the existing toolkits. It is
totally supported in [AVR89, REK03, BIE04, GRO05, MEL09] and partially
in Jigsaw and Cesam[COU06] and in [VDV05, BIE08, ROS09, ROS09B,
BLU10].

An example is a move operation. Any movement of graphical elements is
a combination of hiding the element (undisplay) and showing it somewhere
else (display).

The statement for the MOVE action is:
MOVE list element [IN element1 [AS position1]] FROM device1 TO device2
[IN element2 [AS position2]]

The scenario asspciated with this action is then:
Send(UNDISPLAY list element [IN element1 [AS position1]] , device1)
Send(DISPLAY list element [IN element2 [AS position2]] , device2)

Some feedback is needed to understand what is happening. What we
recommend for this is to set the opacity as decreasing for the undisplay
action and increasing for display action.

Copy

The action copy is also possible thanks to the display action. While the
display action creates the user interface in a predefined state, the copy action
needs to get the current state of the user interface and display the user
interface according to this state.

3.7. DISTRIBUTION PRIMITIVES 101

This action is already provided in few toolkits[REK03, GRO05, MEL09].
It is also interesting to note that this action could allow us to create a copy
of a UI and then modify it. It would allow us to compare them quickly and
choose which suits best the users.

The statement for the COPY action is:
COPY list element [IN element1 [AS position1]] FROM device1 TO device2
[IN element2 [AS position2]]

The scenario associated with this action is then:
Send(DISPLAY list element [IN element2 [AS position2]] , device2)

A feedback for this interaction is also recommended. It is not easy how
to represent this operation. What we suggest is to create the copy upon the
original and then move the copy thanks to an animation. It will allow the
user to understand that the element has been copied.

Here is the algorithm to copy an element to a device:

Algorithm 1: Copy to a device

PRE : The id ID refers to an element that already exists in the
system.
POST: The element with id ID is now copied to the device Target.

f unc t i on Copy(id : ID dev i ce : Target)
Element e l = new Element ()
d i s p l ay (e l , Target)
for each property in ID−>p r o p e r t i e s
do

e l−>s e t (property , ID−>get (property)
end

end

Here is the algorithm for the same ditribution primitive but in a con-
tainer:

Algorithm 2: Copy in a container of a device

PRE : The id ID refers to an element that already exists in the
system.
POST: The element with id ID is now copied to the device Target in
the element Container.
f unc t i on Copy(id : ID id : Container dev i c e : Target)

Element e l = new Element ()
d i s p l ay (e l , Container , Target)
for each property in ID−>p r o p e r t i e s
do

e l−>s e t (property , ID−>get (property)
end

end

102 CHAPTER 3. CONCEPTUAL MODELING OF A DS

Finally, here is the algorithm to copy several elements to a device:

Algorithm 3: Copy several elements to a device

PRE : The list of ids List id refers to a list of elements that already
exist in the system. POST: All the elements of the list are copied to
the device Target.

f unc t i on Copy(l i s t : L i s t i d <ID> dev i ce : Target)
for each element in L i s t i d
do

Element e l = new Element ()
d i s p l ay (e l , Target)
for each property in ID−>p r o p e r t i e s
do

e l−>s e t (property , ID−>get (property)
end

end
end

Merge - Separate

These actions allow developers to merge or separate some elements. I.e., the
creation of bars with buttons or the split of these buttons. These actions
consist of a spatial grouping or degrouping of UI elements.

The separate action has been first introduce in CESAM’s prototype in
the form of a scissor [ROU06]. The merge action has already been provided
in JigSaw and CESAM[ROU06] and in [REK03].

This action is the one that would be useful for our Painter’s palette
example. It will allows us to separate the palette and the drawing area in
two parts. The GUI of the application is composed of a lot of graphical
elements. A nice way to create this GUI is to create two containers, one for
the palette and one for the drawing area. Typically the drawing area is a
canvas and the palette is a set of buttons arranged in a sort of layout (e.g.,
a grid, a bar).

Each graphical element is a record which is represented by an id: can-
vas(id:”drawingarea”), td(id:”palette”). The generic statement for the SEP-
ARATE action is:
SEPARATE list element1 [from element] [to list element2]

The number of elements in list element2 should either be one or equal
to the number of elements in list element1. If list element2 has only one
element, all the elements in list element1 will be placed into it. If there
are several elements in list element2, each element of list element1 will be
placed into the element of list element2 that is at the same position.

For our example, the statement will be :
SEPARATE drawingarea, palette from win to win,win2

3.7. DISTRIBUTION PRIMITIVES 103

In this case, we start with an element with id win which currently con-
tains drawingarea and palette. They are undisplayed from win and then
drawingarea is placed back into win while palette is placed into win2. If
win2 already exists, palette will be added to the end of the children of win2.
If it does not exist then a new element will be created and its id will be
win2.

There are three possible scenarios regarding where win2 exists or will
be created. If it does not exist it will be created in the device where it was
displayed before. If it does exist on the same device it will be displayed on
this local element. The last possible scenario is that win2 exists on another
device. This means that not only the two elements will be separated but
also that palette will be distributed to the device(s) where win2 exists.

The SEPARATE action is a composition of the DISPLAY and UNDIS-
PLAY actions. The same result is possible by composing this sequence of
actions : UNDISPLAY drawingarea, palette IN win
DISPLAY drawingarea IN win
DISPLAY palette IN win2

A shortcut is also possible because it is not mandatory to undisplay
drawingarea from win. This leads to the following sequence of actions :
UNDISPLAY palette IN win
DISPLAY palette IN win2

Some feedback can also be provided for this action. Either we reuse
the feedback from both UNDISPLAY and DISPLAY actions or we create
another feedback. An idea is to show the two elements going out of win and
then moving to their destination. The shortcut sequence would only show
palette going out of win and moving to win2 or disappearing.

3.7.3 Distributed actions

Appear - Disappear

We have already defined the distribution initial state (DIS) and its transition
to DS1 through an action. When a device or a user appears in the system,
the change appear happens. It is the creation of a vertex corresponding to
the device or the user in the DG.

The opposite change may happen when a vertex (either a device or a
user) is not anymore in the system. This change is disappear. It is the
suppression of the vertex in the DG.

The statement for the APPEAR change is:
APPEAR id [AS new name]

We recommend to use the optional name in order to simplify how a
vertex can be identified in the system:

� APPEAR device id AS new name

104 CHAPTER 3. CONCEPTUAL MODELING OF A DS

� APPEAR user id AS new name

In both case it corresponds to a vertex entering the distributed system.
The device may notify its presence with some kind of HELLO or PING
messages. A user notifies its presence by logging with an existing or creating
some user profile. The device used by the user to connect have to already
been appeared in the DG.

Algorithm 4: Appearance of a device

PRE : The id ID refers to a device that exists in the environment.
POST: A vertex corresponding to the device with id ID is created
in the DG.
f unc t i on Appear (id : ID)

i f (ID−>type == Device . type)
then Device . add (ID)
end

end

Algorithm 5: Appearance of a user

PRE : The id ID refers to a user that exists in the environment.
POST: A vertex corresponding to the user with id ID is created
in the DG.
The User is connected to the device he/she just logged in.

f unc t i on Appear (id : ID)
i f (ID−>type == User . type)
then

User . add (ID)
p ID<−I d en t i f y D ev i c e ()
Connect (User . ID , Device . p ID)

end
end

Connect - Disconnect

When a device appears in the distributed system, it is not connected to any
other vertex. In order to be able to perform communications between two
vertices they need to connect together. Two vertices need a connect change.
This change will create a directed edge with a source vertex and a target
vertex. If both direct edges exist, they are merged into a non-directed edge.
If several connections exist there is still only one edge representing it. An
edge represents the ability of a vertex to communicate with another one.

When a user appears in the DS it directly connects to the device used
for the login.

3.7. DISTRIBUTION PRIMITIVES 105

The statement for the CONNECT change is:
CONNECT vertex1 TO vertex2

The opposite change disconnect can happen if a vertex close a connection
with another vertex. All the possible communication between both vertices
are then stopped and the edge in the distribution graph is removed.

The statement for the DISCONNECT change is:
DISCONNECT vertex1 from vertex2

Process

The distributed action process brings the ability to perform a set of actions
on a set of devices. These action may fail or succeed. There is no guarantee
that they all succeed or failed.

The statement for the PROCESS action is:
PROCESS list actions ON list devices

The algorithms for this action are:

Algorithm 6: Process a list of actions on a list of devices

f unc t i on Process (L i s t a c t i o n <Action> act ions ,
L i s t d e v i c e <Device> d ev i c e s)

for each dev i ce in de v i c e s
do

for each ac t i on in a c t i o n s
do Process (act ion , dev i c e)
end

end
end

Algorithm 7: Process a list of actions on a device

f unc t i on Process (Action act ion , Device dev i ce)
i f (this−>dev i ce equa l s dev i c e)

Execute (ac t i on)
else

Send (act ion , dev i c e)
end

end

Transaction

The action transaction allows developers to force one or more actions to be
performed atomically. The transaction can either succeed or fail.

The statement for the TRANSACTION interaction is:
TRANSACTION sequence of actions

106 CHAPTER 3. CONCEPTUAL MODELING OF A DS

Algorithm 8: Transaction of several interactions without freezing re-
sources.

PRE: -
POST: All the interactions succeed or fail
f unc t i on Transact ion (a c t i o n s : L i s t a c t i o n <Action>)

L i s t<Action> succeed = empty
for each ac t i on in L i s t a c t i o n
do

perform (ac t i on)
i f succeed (ac t i on)
then succeed union ac t i on
else break
end

end
i f s i z e (L i s t a c t i o n) > s i z e (succeed)
then for each ac t i on in succeed
do

undo (ac t i on)
end
else

return succeed
end
return f a i l

end

Crash - Suspect - Resume

When a device is not reachable anymore, the vertex is suspected to be
crashed. This is possible thanks to a failure detector available in the set of
distribution mechanisms. A suspect action happens to give suspission.

The action does not induce a change in the DG because it is not a
disappearance of a vertex. In a disappear change, the device has left the
environment and is not available anymore while in a suspect action, the
device is still in the enviroment but is not reachable.

When the device is available again, the action resume tells the applica-
tion that the device is not suspected anymore.

Sometimes a device is recognized as permanently crashed. In this case,
the action crash happens.

Delay

An action also happens when something takes longer than expected. The
delay action notifies the application that there is a delay before the action
ends. The application can give feedbacks to the users to ensure the applica-
tion keeps being responsive and does not seem to be crashed.

3.7. DISTRIBUTION PRIMITIVES 107

Algorithm 9: Transaction of several interactions by freezing resources.

PRE: -
POST: All the interactions succeed or fail
f unc t i on Transact ion (a c t i o n s : L i s t a c t i o n <Action>)

try
block (r e s o u r c e s (L i s t a c t i o n))

catch f a i l
then

f r e e (r e s o u r c e s (L i s t a c t i o n))
return f a i l

end
List<Action> succeed = empty
for each ac t i on in L i s t a c t i o n
do

perform (ac t i on)
i f succeed (ac t i on)
then succeed union ac t i on
else break
end

end
i f s i z e (L i s t a c t i o n) > s i z e (succeed)
then

for each ac t i on in succeed
do

undo (ac t i on)
end

else
return succeed

end
return f a i l

end

108 CHAPTER 3. CONCEPTUAL MODELING OF A DS

List of vertices

This action will list all the users and/or devices that are currently in the
distributed system.

Snapshot

This action will take a snapshot of the distribution graph at a certain mo-
ment of time in the past.

Update all widgets

This action will try to update all the widget. If the action fails no widget
should have been updated. This action is possible thanks to the use of the
transaction action.

3.7.4 Behavior behind the User Interface

When we introduced the actions we only focused on what happened with
the UI. This is good for local actions but it is not the case for distributed
actions. The problem is that there is a behavior associated with an action.
When the action os local the behavior is also local.

When executing a distributed action we need to know where the behavior
of the action should be: locally, remotely or hybrid (mainly copied).

This was a huge question that was raised when doing the thesis even with
very small examples. In fact there is no real study on this topic. Taking
small examples shows that this is not possible to know what the user expect.
Here are a few examples which cover all the different behaviors:

� Example 1: a presentation with a computer attached to a projector
and with a smartphone used as a remote for changing slides.

� Example 2: a slide-show of pictures from a remote computer with a
smartphone or another display

� Example 3: the number of the current slide in a presentation

� Example 4: a presentation with a computer displaying the current
slide, the number of the slide, and the smartphone remotely changing
the slides (with navigation buttons), while the next slide is changed
locally and the number of the slides is synchronized both locally and
remotely

We just need to look at the example 4 to notice that the behavior behind
the UI running on the smartphone is quite common but pretty difficult to
guess from the UI itself.

3.7. DISTRIBUTION PRIMITIVES 109

This example has already been the focus of a research[VDV05]. They
tried to solve the problem by creating web services with a predefined scenario
and a fixed behavior. However in real life it is not the same behavior that
is expected by all the users.

3.7.5 Distribution mechanisms

In order to support actions between vertices we need some distribution mech-
anisms. The complexity of such mechanisms have already long been study
in the domain of distributed applications. In this thesis we wanted to reuse
such algorithms developed for distributed applications to adapt them for
distributed systems.

As we have already said about in the document there are several prob-
lems that happen once we try to distribute the system. While connecting
and sending messages from device to device may seem quite straight for-
ward it has some unpredictable behaviors. Indeed a message that has been
sent may not be received or received later or even received more than once.
There already exist algorithms that ensure that a message sent is received
once and only once by a device.

The devices are often connected with unstable communication mecha-
nisms and the device itself can be unstable or crash. The dynamic distri-
bution that we face in distributed system also allows devices to join and
leave at run-time. This leads to the need of other mechanisms to detect
and maintain such behaviors. There also exist mechanisms for this. They
are called failure detectors. They detect when failures or important delays
happen between two devices.

Another important point is how and where the data are stored. In an
usual non distributed system or in a client-server architecture the data are
stored in one and only one device. If this device crashes or leaves these
data are then unavailable and sometimes lost. Using technologies such as
peer-to-peer have solved this issue by creating replication and by running
independently of a server. This is for sure something that we are really
interested to see in distributed system.

This solution is also interesting to support such a simple situation as a
user starting an application or a game and then leaving. Without distri-
bution mechanisms the system will be stopped when the user leaves while
distribution mechanisms can allow the system to go on living normally with-
out even noticing the creator left it.

Reliable Broadcast

Sending a message through a network is not that difficult. If we know the
target ip, we can create a connection and then send our message. If we want
to be sure that the target get the message, we can send back a message to

110 CHAPTER 3. CONCEPTUAL MODELING OF A DS

acknowledge the reception of the message.
When you want to send a message to all the peers that are in your

network and you want to ensure that each peer receive once and only once the
message, you need to use a more complex algorithm: the Reliable Broadcast.

The definition of the reliable broadcast is: Events

� Request: 〈rbBroadcast|m〉

� Indication: 〈rbDeliver|src,m〉

Properties

� RB1. Validity: if correct di broadcasts m, di itself eventually delivers
m

� RB2. No duplication: no message delivered more than once

� RB3. No creation: no message delivered unless broadcast

� RB4. Agreement: if a correct vertex delivers m, then every correct
vertex delivers m

Concepts of the thesis

Figure 3.20: Concepts of the thesis

Chapter 4

Specifications of the toolkit

In the previous chapter we have introduced a formal model of a distributed
system and have formally defined the concept of distribution primitives.
Based on these formal definitions we want to create a toolkit that implements
them.

In this chapter we first define the concept of Dynamic Distributed User
Interfaces. Then we give the specification of the toolkit: JayTk. We explain
what JayTk offers, how it instantiates the concept of Dynamic Distributed
User Interfaces and what are the limitations with respect to this definition.
After the specification of JayTk, we give the specification of Beernet which
is an implementation of distribution mechanisms that we use for JayTk.

Finally we explain how applications can integrate the toolkit based on
these specifications.

4.1 Definition of a Dynamic Distributed User In-
terfaces

A Dynamic Distributed User Interface (DDUI) is a user interface that can
be partitioned and distributed at run-time over multiple devices. There is
a protocol that defines what UI event reaches the application when there is
an event on any of the devices.

DDUI is an extension of the concept of UI by adding the ability to
distribute it across multiple devices and allowing this distribution to happen
at run-time without requiring a predefined distribution scenario.

The User Interface (UI) of an application is the interface offered to the
user in order to interact with the application. This UI is usually limited to
the device where the application is executed and is strongly integrated into
it. Applications do not offer a way to display the whole or parts of the UI
to any other devices.

A Distributed User Interface (DUI) as defined in Definition 2 allows
end users to distribute any user interface element across different users and

111

112 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

devices. By allowing distribution, another device can control the application
remotely without requiring that the core of this application is running on
the remote device. When an event occurs on a DUI, this event is forwarded
to the application which processes the action linked to this event.

A User Interface is dynamic if it is possible to remold it during the
execution of the application. By opposition, a UI is static if it offers the
same features in the same form during any execution of the application. A
dynamic UI allows the users or the application itself to split parts of the UI
into new UIs and to recombine UIs into a single UI.

A DDUI is a UI that can be dynamically remolded at run-time and any
UI, and parts of UI, can be displayed, migrated, copied, on any other devices.
When a device connects to the application, the UI of the application can
partially or totally extends its interactions to it. If a device disconnects,
the application can dynamically redistribute the UIs across the remaining
connected devices in order to react to this disconnection. A dynamic UI also
allows the users to change at run-time on which devices the UIs and their
parts are displayed.

4.2 Specification of JayTk

JayTk allows applications to support, create and manage DDUIs. In this
section we explain how we offer dynamics and distribution to UIs, what
parts can be distributable and how dynamic, consistent and fault tolerant
it can be.

In the section 3.1 we described two kinds of applications: distribution-
aware and unaware applications. Almost all existing applications are non-
distributed applications. We would like to offer developers a toolkit to ex-
tend current applications or create new applications that support DDUIs.
By using the toolkit, an application is able to distribute parts or whole of
any UI to other devices.

An application UI can offer several modalities: graphical, vocal, and their
combination [PAT07]. A Graphical User Interface (GUI) is a UI where all
the interaction elements are graphical. This is the standard UI to most of
computing systems, as well as distributed systems. Our toolkit focuses on
Graphical User Interfaces (GUIs). Thus JayTk offers the support for Dy-
namic Distributed Graphical User Interface (DDGUI), the subset of DDUIs
only constituted of GUIs.

Most of applications have a graphical user interface (GUI) that is not
distributable. It means that the actions that are triggered by events are
always affecting the device where the graphical component is displayed. All
these graphical components are displayed on the same device that runs the
application. A DDGUI is a GUI that is decentralized from the application
itself. It allows a device to trigger an event on another device.

4.2. SPECIFICATION OF JAYTK 113

GUIs elements are usually of the WIMP type (Window, Icon, Menu,
Pointing device). Here is an non-exhaustive list of common graphical ele-
ments: button, label, check box, text box, radio button and canvas.

Each graphical element has several properties that are attached to it.
E.g. for a button, although it may differ with the operating system and the
toolkit, they usually have:

� content: the text that will be put inside the button

� action: the reaction to an event that has been triggered (e.g., when
the button is pressed).

There can be other events supported by a graphical component. They
do not all trigger an action.

JayTk offers a coherent and consistent storage where the GUI data will
be stored. Each device connected to the application have a partial view of
this storage. A device may only have a partial view of this storage.

In order to offer consistent storage, JayTk uses transactions to ensure
that:

� either the whole transaction succeed, all the changes have been applied

� or the whole transaction is aborted, all the changes are canceled and
the storage is left unmodified.

This allows JayTk to handle concurrent access to the storage in order to
ensure consistency. If two events are concurrent, at least one of them will
be aborted.

JayTk offers a mechanism that allows an event happening on another
device through a DDGUI to reach the application and triggers the actions
resulting from it. When an event occurs on a remote device:

� either the device attempt to modify the storage

� or the device forwards the event to the application

It depends from the nature of the event.
The text contained in a text box is a value in the storage. Changing

this value through the DDGUI will lead to a modification of the value in the
storage through a transaction.

However the action linked to a button is not a value in the storage. The
event must be forwarded to the application which will trigger the action.
We use message passing to forward the action from a remote device to the
application.

Finally JayTk offers the ability to distribute any GUI across all the de-
vices through distribution primitives. This distribution can be automatically
triggered by the application or manually triggered by a user.

114 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

4.2.1 Distribution primitives

Based on the definition in the previous chapter we will now explain how
JayTk instantiate the distribution primitives. To demonstrate this we will
use the Display primitive has an example.

The statement for the display primitive is:
DISPLAY list element [IN element [AS position]]

This means that there are 3 parameters for this procedure: a list of
components to display, a container component where to display them, and
the position.

Without parameters the Display primitive only occurs on the device
where the application is running. A GUI will be created and will contain
the list of elements contained in list element.

If there is a parameter for element and element exists in the storage
then all the elements in list element are added into the container. This
will trigger a transaction to modify the value of element. Any device that
currently displays element will be notified that element has been updated
and will change its GUI to fit with this change.

If there is a parameter for element but element does not exist in the stor-
age then JayTk creates a GUI that contains all the elements in list element,
create a value element associated to this GUI and add element to the stor-
age.

4.2.2 Events

JayTk allows applications to register for events. Here are the events related
to devices joining and leaving the distributed system.

� join: every time a device joins the application, JayTk notifies the
application

� left : every time a device leaves the application, JayTk notifies the
application

To support the left event JayTk uses a failure detector mechanism. If a
device is suspected of being crashed the failure detector notifies the appli-
cation that the device may be crashed. A crash is considered as leaving the
network while being back alive is considered as joining the network. When
a suspicion is detected the device is removed from the application and the
left event is triggered.

In order to support the joined event each device registers itself in the list
of available devices. When a device is added to the list of available devices
a joined event is triggered. This happens if a new device connects to the
application or if a device that was suspected of being crashed is now back
alive.

The specification for both events are:

4.3. SPECIFICATION OF BEERNET[MEJ10] 115

Event:

upon event 〈 Crash, di 〉 do
trigger 〈 Left, deviceId 〉

end

This event notifies the application that the device deviceId correspond-
ing to di has left the network.

Events:

upon event 〈 Alive, di 〉 do
trigger 〈 Join, deviceId 〉

end

This event notifies the application that the device deviceId correspond-
ing to di has joined the distributed system.

4.3 Specification of Beernet[MEJ10]

The choice for supporting distribution mechanisms brought us to Beernet.
Beernet is a peer-to-peer network implementation that comes with distri-
bution mechanisms that we want to use in our toolkit. Using it allows us
to separate the complexity of the distribution from the toolkit. It fulfills
all the requirements regarding we set in the section 3.7.5. It deals with all
the connections, disconnections, communication delays and communication
failures. It is implemented on top Mozart; a multi-platform environment
supporting Windows, Mac OS X and Linux.

4.3.1 P2P network

Beernet offers a peer-to-peer network communication.
Each peer of Beernet is called a node. Several nodes can connect together

to form a network, the ring. Each node can connect and send messages to
other nodes.

Its architecture is depicted in Figure 4.1.
The architecture is organized in layers. Let us read them from bottom to

top. The first layer handles the network communication and uses TCP-IP
protocol. It also ensures that the exchange of messages is reliable and check
if failures happen.

The layer above is responsible for the ring. This is used for nodes to
create and maintain the network and react if a node joins, leaves or fails.

The third layer stores data in a distributed hash table (DHT) with the
primary operations: PUT and GET.

116 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

Figure 4.1: Global view of Beernet’s architecture[MEJ10]

The upper layer is the transaction manager which handles more com-
plex algorithms to ensure that all nodes always see the DHT as a coherent
database. It also supports replications to ensure that no data is lost if less
than 4 nodes crash at the same time.

4.3.2 Coherent storage

As already mentioned, Beernet provides a Distributed Hast Table (DHT)
as a coherent storage. Every node is identified with a key that is produced
through a hashing mechanism.

The DHT offers a robust and coherent storage which can resist to at
least one failure without any problem. As we already discussed each data
is stored in four replicas. To create replicas, the network is separated in
groups of four nodes. Each object in the DHT is stored in one and only one
group. The four nodes of this group are the replicas for the object.

Here is the failure model which guarantees the following results depend-
ing on the number of failures:

� If 1 replica fails, the DHT is not interrupted. The network will fix the
failure by creating a new replica.

� If 2-3 replicas fail, transactions will be temporary interrupted until the
network fixes the failures. This might not be noticed as this happens
really fast.

� If the 4 replicas fail, all the data stored by these replicas might be lost.

In case of partitions in the network, it is still possible to read value from
the DHT but not to change the DHT. It will stay in a read-only mode until
there is no partition anymore.

Beernet also provides a registration mechanism which allow us to register
as a reader of a key in the storage. If this key is modified, all the readers
for this key will be notified that the value has been updated.

Here is the specification for the DHT:

4.3. SPECIFICATION OF BEERNET[MEJ10] 117

Algorithm 10: Interface of the Beernet’s DHT

Module:
Name: BeernetDHT (BDHT)
Events:
Operation: 〈 Get | key 〉
Returns the value stored with key key. It returns the atom
’NOT FOUND’ in case that no value is associated with such key.
Operation: 〈 Put | key, value 〉
Stores the value value stored with the key key, only in the node
responsible for the key resulting from applying the hash function to
key key.
Operation: 〈 Delete | key 〉
Delete the item associated with key key.
Properties:
D1: Validity
Any value stored is a value proposed.
D2: Coherence
All the nodes always have the same value.
D3: Termination
Every transaction eventually ends with a commit or abort decision.
D4: Atomicity
Either all operations take place or none of them

118 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

Figure 4.2: Consensus atomic commit on a DHT.

4.3.3 Atomicity

An important property of a distributed system is the atomicity. If an op-
eration is atomic it means that either the whole operation succeed or that
it fails. It is a guarantee to prevent some modification from happening
partially and let the application in an incoherent state.

For example, an operation that can modify the size of all the buttons.
If the operation is atomic it means that all the buttons either keep their
current size (the operation fails) or they all get the new size (the operation
succeed). The atomicity is not difficult to ensure on a local device but it is
much more complicated on several devices. The delay and the reliability of
the communication between all the devices lead to some uncertainty.

A way to ensure that all the devices get the modification is to use a
reliable broadcast protocol which ensures that each device that is still avail-
able will be notified about the change. But there is a problem with devices
that may have crashed before or during the broadcast. Even if the broad-
cast is reliable some devices may have crashed or some communication may
fall down and some devices may never be notified about this modification.
This leads the whole system in an incoherent state. The use of distribution
mechanisms allows us to correctly handle this kind of situation.

To ensure atomicity Beernet provides a transactional replicated storage.
Each data is replicated in different nodes and in order to change a value the
majority of the replicas needs to be updated instead of all the nodes.

Beernet implements a consensus protocol to achieve the majority. Figure
4.2 describes how the consensus protocol works.

The client is the node which starts a read or a write transaction. This
node becomes the transaction manager (TM) for the current transaction.

4.3. SPECIFICATION OF BEERNET[MEJ10] 119

In order to write a value, it first starts by a read phase and then a commit
phase. During the read phase, the TM contacts all transaction participants
(TPs) involved in the transaction (i.e. holding a replica of an item in the
transaction). The modification to the data is done without asking for a
lock. When the client decides to commit the transaction, the commit phase
starts. This means that it needs to get the lock of the majority of TPs
for all the items involved in the transactions. But first a set of replicated
transaction managers (rTMs) are registered. They will backup the TM in
case it crashes. Then a vote is made by all the TPs and when the decision
is achieved, it is sent to the client. The locks are released when all the TPs
have received the decision.

Using transactions allows us to reach atomicity if there is no crash during
the transaction. If the TM crashes after the vote but before taking the
decision, one of the rTM can take over the transaction.

Here are the specifications for the transaction mechanism used in Beer-
net:

4.3.4 Failure Detector

A distributed system contains several computing devices that communi-
cates together. These devices can appear, disappear and sometimes crash
randomly.

When a device is trying to communicate with another one it is important
to know if the communication is reliable and efficient. A message sent from
a computing device to another one can be lost, received once or received
several times, and the order of the messages is not always guaranteed. For
an application to stay coherent in such a complex system it needs to get
guarantees and acknowledgment that messages are correctly received only
once and in the right order. It also needs to know what will happen in case
of a device disappear and suddenly reappear in the system.

There are also issues regarding the sharing of data across several de-
vices. If two computing devices want to modify the status of an object at
the same time, there is a conflict that can lead to incoherence, mistakes
and even failures. There is a need for a mechanism that will prevent the
computing devices from accessing and modifying the same thing at the same
time. In distributed computing they use transactions to guarantee that the
modification either succeeds or fails.

It means that applications need distribution mechanisms to efficiently
support the properties of a DS. Instead of creating new mechanisms we
wanted to reuse existing mechanisms. Thus we recommend as part of a
new methodology to use algorithms from distributed system to handle the
inter-devices communications.

Here is the specification for Beernet’s failure detector:

Events:

120 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

Algorithm 11: Paxos Consensus’s API

Module:
Name: Paxos Consensus (TM)
Events:
Operation: 〈 RunTransaction | trans, client 〉
Run the transaction trans using the paxos protocol. The answer,
commit or abort is sent to the port client.
Operation: 〈 Read | key 〉
Returns the latest value associated with key key. Strong consistency
is guaranteed by reading from the majority of the replicas.
Operation: 〈 Write | key, value 〉
Write value value using key key. The new value is stored at least in
the majority of the replicas. Updating the value gives a new version
number to the item.
Operation: 〈 Delete | key 〉
Remove the item associated to the key key from the majority of the
replicas.
Properties:
D1: Validity
Any value stored is a value proposed.
D2: Strong Consistency
Strong consistency is guaranteed by reading from the majority of the
replicas.
D3: Termination
Every transaction eventually ends with a commit or abort decision.
D4: Atomicity
Either all operations take place or none of them

Algorithm 12: Interface of Beernet’s failure detector

Module:
Name: BeernetFailureDetector (BDF)
Events:
Indication: 〈 Crash | pi 〉
Notifies that node pi is suspected to have crashed
Indication: 〈 Alive | pi 〉
Notifies that node pi is not suspected anymore
Properties:
PFD1: Strong completeness
Eventually every node that crashes is permanently detected by every
correct node.
PFD2: Eventual strong accuracy
Eventually, no correct node is suspected by any correct node.

4.4. APPLICATIONS 121

4.4 Applications

We consider two different kind of applications which can use our toolkit:
mozart applications, and JayTk applications. Mozart applications are un-
aware of the toolkit running behind them. They are extended without any
change to the functional core, which we will refer to as the logic in the
remaining of this chapter. JayTk applications are distribution-aware appli-
cations that take advantage of being aware of the distribution to efficiently
react to failures and connections.

4.4.1 Mozart applications

Figure 4.3: How mozart applications usually create their GUI.

Applications that have already been developed with Mozart can use QTk
to create graphical user interfaces as in Figure 4.3.

Figure 4.4: How mozart applications create their GUI with JayTk.

JayTk extends QTk in order to provide distribution capabilities to wid-
gets. QTk is encapsulated inside JayTk. JayTk is the module that allows
developers to create GUI as in Figure 4.4.

The applications still run on the device where it has been started but the
GUI will be separated from the logic. All the devices are connected together
as a large virtual space for GUI without overlapping. Figure 4.5 is a simple
example of an application created without and with JayTk.

On the left, you can see that you have the application with its own logic
that uses QTk to create its GUI. This GUI is displayed on the same device.

122 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

Figure 4.5: Comparison of an application created without and with JayTk

On the right, the same application, logic unmodified, now uses JayTk to
create the same GUI.

This configuration allows any device to be aware of the existence of the
application’s GUI. Any other node can now get the whole GUI in order to
create its own GUI which can be the same or a different GUI than the one
displayed on the other device. In the example the numbers correspond to
an id of the device. There are two devices in the example but there can be
an infinite number of devices connected to Device1.

4.4.2 JayTk applications

Unless Mozart application in section 4.4.1 applications that are aware of
JayTk can use more advanced features: notifications if a device joins or
leaves the application, save current state of distribution, load a previous
state of distribution, create distribution scenarios, and other features.

First let us talk about what can change with the current Build procedure.
As previously discussed with Mozart applications it was not possible to add
information inside widgets. With JayTk we want to allow applications to
add a name into widgets in order to be able to distribute them.

This has an important consequences: widgets that are sent to JayTk are
no more compliant with QTk. It is the reason why we process QTk GUI
from Jay GUI. This is a way to purify Jay GUI from information added
inside widgets.

4.5 Conclusion

In this chapter we have defined what is a DDUI. Then we have instantiate
this concept by giving the specification of JayTk, a software support to build
DDGUI. We have then described Beernet that we use to create a Peer-to-
Peer network that allows us to build a self-managing and scalable system

4.5. CONCLUSION 123

with transactional and robust storage. Beernet brought us the solution
for several properties of a DS: concurrency, partial failure, lack of global
knowledge and dynamic. It also allows JayTk to support Linux, Windows
and Mac OS X which are the operating system for desktop computer that
we have targeted. Finally we have explained how application can use JayTk
to support DDGUI.

124 CHAPTER 4. SPECIFICATIONS OF THE TOOLKIT

Chapter 5

Implementation of JayTk

This chapter describes the different phases and aspects covered by the im-
plementation of JayTk, a toolkit to support Dynamic Distributed Graphi-
cal User Interfaces (DDGUIs). The most difficult aspect with JayTk is to
support all the operating systems. We will briefly describethe results we
achieved for each operating system.

As described in Chapter 3.1 there are two kinds of applications:
distribution-aware and non-distributed applications. Both are supported
by JayTk. Non-distributed applications are not aware that their UIs can be
accessed from other devices. On the contrary distribution-aware applications
can take advantage of the distribution capabilities. JayTk provides an API
that allows these applications to react to connection, disconnection and
failures of devices.

It was not possible to provide the toolkit on all the existing operating
systems. We have selected a subset of operating systems to cover a maximum
range of devices that is sufficient to represent most of the market. The
selected operating systems are the following:

� Android: 3 phones + 1 tablet

� iOS: 1 iPod, 1 iPhone and 1 iPad

� Windows Phone 7 and newer: 4 phones

� Windows 7 and newer: 1 computers + 4 tablets

� Linux: 1 computer

� Mac OS X: 2 computers

To simplify the realization of the toolkit and maximize the compatibility
with all these operating systems, we have decided to use an environment
that already supports most of them. Our choice is the Mozart environment
because it already supports: Windows, Linux and Mac OS X.

125

126 CHAPTER 5. IMPLEMENTATION OF JAYTK

5.1 Structure of the toolkit

The thesis has been realized with a goal of separation of concerns. There
are several layers that communicate together in a complex structure as in
figure 5.1.

Figure 5.1: Structure of the toolkit

In the structure used for the thesis, the application runs on top of JayTk
which encapsulates the creation of UIs and extends it with the ability to
manage the GUI in real-time as described in Chapter 3 and specified in
Chapter 4.

JayTk has been tested with two network communication mechanisms:
Peer-to-peer and sockets. JayTk uses TCP-IP sockets for communications
between devices that are not supported by Mozart. Each operating system
supports TCP-IP sockets to use with native applications. TCP-IP is the
standard used for communication between devices.

For peer-to-peer (P2P) communications, we use Beernet[MEJ10] which
works on top of the Mozart environment. Beernet is also based on TCP-IP
sockets. It allows us to connect devices together while hiding the complexity
of TCP-IP sockets and also supports distribution algorithms to manage and
maintain the network.

To connect devices together, one of the devices offers a ticket that al-
lows other devices to communicate with it. Other devices use this ticket to
establish a TCP connection no matter which of the network mechanism is
used. With Beernet this TCP connection allows devices to join the network.
Other communication applications using TCP-IP could also be used.

5.2. RUNNING AS A DAEMON 127

5.2 Running as a daemon

An application will be installed and run on only one device. The other
devices will connect to this device through a daemon. The application can
make part or whole GUIs available for other devices which will turn these
GUIs into a DDGUIs. Thanks to this daemon a device can either retrieve
part or whole of the DDGUI.

Each daemon will support:

� communication to other devices

� a rendering engine to create and manage GUIs

5.3 Mozart Environment

The Mozart Programming System is an advanced development environment
for intelligent and distributed applications[Mozart]. It is available from the
Mozart’s website [Mozart] via the download link. The current version of
Mozart is 2.0 and is still under development. There is also a version of
Mozart 1.4 that has been ported to Android.

Mozart uses a multi-paradigm Oz language which supports declarative
programming, object-oriented programming, constraint programming, and
concurrency as part of a coherent whole. The GUI is created using the
open-source widget toolkit called Tk. This toolkit is supported on Linux,
Windows and Mac OS X. Mozart provides a module called QTk which helps
people use Tk with a high-level windows programming interface.

Each widget in QTk is a record with a label being the type of widget
and the parameters being the inner widgets and the widget’s parameters.
An example of a window created in QTk thanks to Mozart is provided in
Figure 5.2.

Figure 5.2: An example of GUI created with QTk

The code to create this GUI is provided in Listing 5.1.

declare
QTk={Module . l i n k [’ x−oz :// system/wp/QTk. o z f ’] } . 1
D=td (button (tex t : ”Show”

128 CHAPTER 5. IMPLEMENTATION OF JAYTK

ac t i on : proc{$$} {Show ’ He l l o World ’} end)
button (tex t : ”Close ”

ac t i on : t o p l e v e l#c l o s e))
Win={QTk. bu i ld D}
{Win show}

Listing 5.1: The code for creating Figure5.2.

5.3.1 Communication between devices

In order to support communications between all the devices it was important
to use a standard communication protocol. There are two possible protocols:
UDP or TCP. We have chosen to use TCP. In Mozart, there are also two
possibilities to connect and communicate from one application to another:
either by port or by socket.

A port is an asynchronous many-to-one channel that respects FIFO for
messages sent from within the same thread. The messages are appended to
a stream on the port’s site. Messages from the same thread appear in the
stream in the same order in which they were sent in the thread.

The sockets are standards TCP sockets. This allows us to use TCP
sockets with other devices. Now we will describe how we could use both
solutions in Mozart.

Ports

The creation of a port is very easy as depicted in Listing 5.2.

declare
% Stream of the por t :
% Msg1 |Msg2 | . . . |MsgN |
Str
% Creation o f the PORT bound to the stream Str
ThisPort = {NewPort Str }

Listing 5.2: Creation of a port in Mozart.

To create a port, we first need to create an empty stream which is passed
to the function NewPort as a parameter. Note that NewPort function is
a variable that references the Port.new function. This new port, stored in
ThisPort variable, can then be used as a destination.

We now have created the port. By default, we are not notified if the
port receives any message. We need to use the stream to see if new messages
arrive. The code to listen to new messages is depicted in Listing 5.3.

% A po in t e r to the t a i l o f the stream
Tai l = {NewCell Str }
proc{Li s t en }

case @Tail
% The por t i s now c l o s ed .

5.3. MOZART ENVIRONMENT 129

% We stop l i s t e n i n g
of n i l then skip
[] Msg | Future then

% Set the po in t e r to the new t a i l o f the stream
Tai l := Future
% Process the message
% (through an e x t e r na l method)
{Process Msg}
{Li s t en }
% Loop to l i s t e n to next messages

end
end

Listing 5.3: Creation of a loop which listen to new messages received in the
port in Mozart.

In order to listen to new messages we first create a pointer, Tail, to
the tail of the stream. This pointer will be updated each time a message is
received to directly point to new messages and forget older ones. Its format
is a list where the first element is the next message to be received and the
second element is a list to the unknown future of the stream. The pointer
can either be the list nil which means that we have closed the port or a new
message and the list to future messages. In case the port is closed there is
nothing to do. The procedure is then terminated. If there is a message, we
process the message Msg through another procedure called Process and we
then loop in order to listen to upcoming messages.

An example of a Process procedure is depicted in Listing 5.4.

proc{Process Msg}
{System . show ’Message rcvd : ’#Msg}

end

Listing 5.4: An example of procedure to process a message received from
the port in Mozart.

It is possible to send a message through the port (see Listing 5.5).

declare
SenderId = node1000
Msg= ’ h e l l o world ’
{Port . send ThisPort packet (id : SenderId msg : Msg)}

Listing 5.5: Sending a message through the port in Mozart.

The Post.send procedure allows developers to send a message to the first
parameter, ThisPort, which is the destination. In the example we build a
message in the form of a record packet(id : SenderIdmsg : Message) but
it can simply be ′HelloWorld′. The first feature of the record allows us to
quickly find which node has sent the message. In this example the sender’s
id is the value node1000. The second feature is the message itself which in
this case is ’hello world’.

130 CHAPTER 5. IMPLEMENTATION OF JAYTK

Sockets

ServSocket={New Open . socke t i n i t ()}
TCPPort={ServSocket bind (port : $$)}
{ServSocket l i s t e n ()}

Listing 5.6: Creation of a TCP Socket and starting to listen to the port.

The creation of a socket is realized in 3 steps (see Listing 5.6): The first
step is to create the socket with the operation New and using the method
init on the newly created socket. The socket must then be bound to a TCP
port which in this case is an integer (e.g. 50000). Then all that is needed is
to listen to this port waiting for a connection request.

The next steps are the acceptance of a connection and then the estab-
lishment of a bi-directional connection. The socket can then be used to send
or receive messages.

5.3.2 Mozart for all

Using Beernet allowed us to develop for all the operating systems supported
by the Mozart Environment while offering a wide set of features thanks to
distribution mechanisms. Our first goal was thus to port Mozart on other
operating systems.

One of the thesis contribution is the porting of Mozart to Android. As
Android is also based on a unix kernel, it was interesting to run Mozart on
smaller devices. For the porting, we first needed to cross-compile Mozart
for linux on an ARM-processor. Although Android is based on Linux kernel
the user space where applications are executed are in Dalvik, a custom JVM
(Java Virtual machine) designed by Google. Mozart cannot be run in Dalvik.
It needs to be executed below the user space, directly in the Linux part of
the android operating system.

Mozart for Android is a pre-compiled archive which is brought to the
device by a custom Android application, that we have developed in Java.
This archive is then opened and run by the same application to start the
Mozart emulator. The main issue with this Mozart archive was that no
graphical output was possible in the Linux part of Android. The output
is in Java only through Dalvik. We have solved this problem by binding
the Android application and the Mozart emulator. We have successfully
run some prototypes on Mozart for Android but the whole system was slow
and hard to use. Thus we have decided to stop working on porting Mozart
to Android.Mozart for Android is not compatible anymore with the recent
versions of Android and the prototypes we made are not fully functional
anymore.

Due to these issues and time consumed in porting Mozart to Android, we
have decided not to port Mozart to other operating systems. Instead we have

5.4. IMPLEMENTATION OF THE ACTIONS 131

decided that the toolkit will support other operating systems through native
applications.These applications are able to connect to and communicate with
other devices. However they do not support yet all the aspects implemented
in JayTk. This is left for future work.

5.4 Implementation of the actions

The first part of the toolkit was to implement the actions. In order to
support main features of the toolkit, one important action to implement is
DISPLAY.

With this action it is possible to display some UI element to a device
wherever the device is located. Almost all the other actions can be deduced
from this one. E.g. a copy action is just a display of an existing element, a
move action is a display action of an existing element followed by a undisplay
action of the element from the source device.

5.4.1 Using actions through different ways

The actions may be either triggered by the application itself, by the user or
by the developer itself. As we never know who will manage the distribution
of the application we wanted to provide several ways of using the actions.

Distribution scenarios

The concept of distribution scenario has been added in order to auto-
matically trigger a predefined sequence of actions. This becomes interesting
when there are a lot of actions to execute in a predefined sequence or when
a sequence of actions may happen several times.

A distribution scenario is a script that will execute all the actions se-
quentially. These scenarios can be triggered in the same way as the actions.

An application that needs to modify the distribution regarding to some
change in the distribution graph can trigger a distribution scenario. A simple
example is an application running on several computers and then a computer
becomes unavailable. To react to this loss the UI elements that was displayed
on this computer can now be displayed on the remaining devices.

An example of scenario coded in Mozart is depicted in Listing 5.7.

% Cal l ed by JayTk when an Event occurs
proc {ReactTo Event}

case Event
of connect (Device)
then
{Display Device mainUI}
{Copy Device manageUI}

[] d i s connec t (Device)
then

132 CHAPTER 5. IMPLEMENTATION OF JAYTK

{RestoreFrom Device}
[] . . .
. . .
end

end

Listing 5.7: Example of scenario.

This example of scenario allows the application to receive parameters
and react as precise as possible to the event that occurs. Scenarios can also
be written into files but this will not allow us to use parameters.

Automatic distribution

Along with the distribution scenario we have the automatic distribution.

This is the execution of one or several scenarios. The scenarios are
created by the developer and loaded when the application starts. It is a
sequence of distribution primitives that will executed in the given order.
The developer can either defines the scenarios inside the applications or
load a file containing these scenarios at run-time.

The scenarios and actions will be triggered by the application at a cer-
tain moment. There is no way to cancel or undo the actions that have
been triggered by this mechanism. However other distribution mechanisms
makes it possible to repair or redistribute the application through manual
distribution.

Manual distribution

When an application is running it is still possible to manage the distribution.
This allows users to distribute the UI according to their own needs. There
is no need for a device to join or leave the network to trigger distribution
manually. Someone responsible for the application can fix, undo, reset the
distribution if automatic distribution went wrong.

An example of a manual distribution is a drawing tool in which you can
manually choose which device will be used to draw. This can be set by
automatic distribution but if the result does not fit with the user needs, or
if the user decides to go on drawing on another device, then the user can
manually change where the drawing tool is displayed.

In order to allow this we need to give some ways for developers and end-
users to perform the possible actions. The choice of enabling the user to
have such power is let to the designer and the developer.

The manual distribution can be triggered thanks to an additional UI or
through a command-line interface as in Figure 5.3.

A command-line interface is a good way to allow the developer of an
application to keep full control on its distribution.

5.5. PORTING MOZART TO ANDROID 133

Figure 5.3: Example of a command-line user interface.

5.5 Porting Mozart to Android

As Android was based on a unix kernel, it seemed to be a good idea to
port Mozart on Android in order to support the toolkit without efforts. We
successfully ported Mozart to Android but with some important drawbacks.

The first issue is the fact that the Mozart emulator runs as a unix pro-
cess which is in the low-level part of Android. Thus, the environment has
been deployed, unzipped and installed thanks to a specific application that
we have made. After the application is installed, it still needs to run and
stay running. It is not possible to maintain, pause or stop the environ-
ment. This drawback leads Android to be running slower because there is
an environment switch between Android and Mozart which leads to a lot of
environment save and load which is time consuming.

Another drawback is the lack of QTk implementation in Android. In-
deed, QTk has been dropped from Unix kernel and Mozart uses QTk. The
solution we have provided in the port is an interface in Java that communi-
cates to the Mozart environment. Instead of creating UI elements in QTk,
the elements are created in Java using native elements.

However using native elements from Android has a big drawback. The
way Android displays elements is not the same way that we have been used
to in Mozart and in some other environments. Instead of asking to draw

134 CHAPTER 5. IMPLEMENTATION OF JAYTK

something in the display, Android needs to redraw everything a few times
by second. This leads to a lot of communication between Mozart engine and
the Android run-time. Unfortunately, it also leads to a huge slowdown of the
system and the application when too much communication happens between
both engines. A solution for this problem would be to create a cache of all
the graphical elements and communicate less often with the Mozart engine
while creating a maximal time delay that is known and could be adapted.

5.6 Implementation of JayTK on other operating
systems

We have decided to support distribution on other operating systems through
a limited set of features and quality of service. The reason why we think
that this solution is acceptable is that Beernet framework has proven that
our method is working.

Native development allows us to quickly develop and use as much as
possible native features (such as memory management, user interface API,
and other interesting features provided by the device. It would not have
been to support them directly in the Mozart environment. Native develop-
ments also allow other researchers to reuse and extend them to later support
distribution mechanisms.

5.6.1 Mozart

The creation of the rendering engine is the hardest part of implementing
JayTk. Each operating system has its own way to create user interface
elements. In Mozart, the graphical toolkit used is QTk which is an extension
of Tk. The graphical elements are records and a simple button can be
written as simply as button(text:”Hello”).

Thanks to pattern matching, programming with records in Mozart is
very simple and it is easy to handle all the events of the user interface
outside the description of the user interface. There is a special widget, the
placeholder, which can change what it contains.

The power of records is that the label gives the information which kind of
widget it is, the attributes can be tested and are always available under the
same name and attributes in type of integer are the children of the widget.
The structure of a user interface is a tree where each node can have several
children and some attributes.

The code of the main function for the rendering engine on Mozart is
depicted in Listing 5.8.

fun{JTHelper Wid in i t } % td , l r or bu t ton
L = {Label Wid in i t }
ToAdjoin = {NewCell n i l }
fun{CommonForTDandLR W}

5.6. IMPLEMENTATION OF JAYTK ON OTHER OS’S 135

f o r I in {Arity W}
do

i f { Int . i s I } then
Res = {JTHelper W. I }

in
i f Res == i n v a l i d then

ToAdjoin := i n v a l i d
else

ToAdjoin := {Append @ToAdjoin [I#Res]}
end

else
ToAdjoin := {Append @ToAdjoin [I#W. I]}

end
end
i f @ToAdjoin == i n v a l i d then

i n v a l i d
else

case {Label W}
of td then {Adjo inL i s t td @ToAdjoin}
[] l r then {Adjo inL i s t l r @ToAdjoin}
end

end
end

in
case L
of td then {CommonForTDandLR Wid in i t }
[] l r then {CommonForTDandLR Wid in i t }
[] button then

f o r I in {Arity Wid in i t }
do

ToAdjoin := {Append @ToAdjoin [I#Wid in i t . I]}
end
{Adjo inL i s t button @ToAdjoin}

else
i n v a l i d

end
end

Listing 5.8: Rendering engine on the Mozart environment.

The function navigates through the tree and process all the children until
the leaves are reached. Then go back to the parents and create the whole
record which represents the root of the user interface.

The root is a special widget in Mozart. It is either a top-down (td) or a
left-right (lr) widget. It has a special property title which allows developers
to give a name to the windows. Other widgets cannot be used as the root.
However, the rendering engine can implicitly create the root widget if it is
not provided.

We have implemented a simple function for this which will be called
before the creation of the user interface as depicted in Listing 5.9.

fun{NotTopLevel Wid}

136 CHAPTER 5. IMPLEMENTATION OF JAYTK

Res = {JTHelper Wid}
in

i f Res == i n v a l i d then i n v a l i d
else td (Res)
end

end

Listing 5.9: Small trick to create UI without a root widget.

To support existing applications without additional coding we wanted
JayTk to be fully compatible with QTk. The UI can then be created with the
exact same code as without JayTk. The widget provided by our rendering
engine is directly sent to QTk in only two lines of codes as depicted in Listing
5.10.

Win = {QTk. bu i ld JT}
{Win show}

Listing 5.10: User interface is created with QTk and extension are hidden.

5.6.2 Android

The porting of Mozart to Android allows us to use the logic of applications
developed in Mozart without any modification. However there was a big
problem with the UI: no Tk support.

This was a problem that we have solved by creating a bridge between
the Mozart environment on Android and the java library for creating user
interface elements. The reflection provided by Java allowed the Mozart
environment to create each object of the user interface in the Mozart code
itself. For this, we had to use each class of widget. The classes currently
used in our implementation are depicted in Listing 5.11.

ButtonC = {J . c ’ android . w idge t . Button ’}
FrameC = {J . c ’ android . w idge t . FrameLayout ’}
LLayoutC = {J . c ’ android . w idge t . LinearLayout ’}
RLayoutC = {J . c ’ android . w idge t . Re la t i veLayout ’}
ViewC = {J . c ’ android . view . View ’}
WindowC = {J . c ’ android . view .Window ’}

Listing 5.11: Java widget classes stored as Mozart variables.

We can then find the Button, the Frame (which is equivalent to the top-
level widget in mozart), the LinearLayout (which either is a top-down or left-
right widget depending on the direction of the layout), the RelativeLayout
for other type of layout, the View (which works for several widgets) and the
Window is the application view itself.

In order to create a left-right widget all we need to do is to create the
linear layout and set the orientation as horizontal as depicted in Listing 5.12.

5.6. IMPLEMENTATION OF JAYTK ON OTHER OS’S 137

LLLR = {LLayoutC . new i ({ContextC . ca s t This })}
{LLLR. p s e t O r i e n t a t i o n ({LLayoutC . get ’HORIZONTAL’ })}

Listing 5.12: Creating a LR widget in Mozart for Android.

This is equivalent as the code in JAVA depicted in Listing 5.13.

LinearLayout LLLR = new LinearLayout () ;
LLLR. s e t O r i e n t a t i o n (LinearLayout .HORIZONTAL) ;

Listing 5.13: Creating a LR widget in native Android java.

5.6.3 Windows Phone

Windows Phone is not based on Unix and is using a very different pro-
gramming language and user interface protocol. Unlike other frameworks,
in Windows Phone there is only one package from which each widget comes:
System.Windows.Controls. All the classes in this package inherits from
the class System.Windows.UIElement.

The classes used for creating the rendering engines are depicted in Listing
5.14.

Button
Grid
(Panel)
(RadioButton)
Sc ro l lV i ewer
StackPanel
TextBlock
TextBox

Listing 5.14: Classes used for creating widgets in Windows Phone.

In order to create a left-right widget all we need to do is to create a
StackPanel and set the orientation as horizontal. This is depicted in Listing
5.15.

StackPanel sp = new StackPanel () ;
sp . Or i entat i on = Or ientat i on . Hor i zonta l ;

Listing 5.15: Creating a LR widget in Windows Phone.

In Windows Phone the use of the native framework allow us to directly
modify the instances. The variable sp is an instance of a StackPanel and we
set the value of the attribute Orientation to the value of the enumeration
Orientation.Horizontal.

5.6.4 Windows

Windows 7 and Windows 8 are very similar to Windows Phone. Thanks to
the homogeneity of the operating systems from Microsoft, it is very simple

138 CHAPTER 5. IMPLEMENTATION OF JAYTK

to create a Windows Phone, Windows 7 or Windows 8 applications with
most of the code being common. Even if it is not the same class than for
Windows Phone, there is also one package from which each widget come
from: System.Windows.Forms. All the classes in this package inherits from
the class System.Windows.Forms.Control.

The classes used for creating the rendering engines are depicted in Listing
5.16.

Button
DateTimePicker
GroupBox
Label
Panel
PictureBox
RadioButton
RichTextBox
TabControl
TabPage
TextBox
TrackBar

Listing 5.16: Classes used for creating widgets in Windows 7.

The creation of a left-right widget is more complex when using Windows
Forms. There is no special widget that will add the next widget next or
below the other. We need to create a panel and then to add the correction
x and y position of the widget to be displayed beside or below the previous
one. The code is depicted in Listing 5.17.

// i n i t the l e f t p o s i t i o n
int l e f t = 0 ;
/* . . . code removed . . . */
Panel l r = new Panel () ;
// s e t a d e f a u l t s i z e
l r . Width = 300 ;
// s e t a d e f a u l t h e i g h t
l r . Height = 70 ;
// s e t the new l e f t p o s i t i o n o f the widge t
widget . Le f t = l e f t ;
// add the widge t to the pane l
l r . Contro l s . Add(r e s u l t) ;
// proces s the l e f t p o s i t i o n f o r the next widge t
l e f t += r e s u l t . Width + 2 ;

Listing 5.17: Creating a LR widget in Windows 7.

5.7 Conclusion

In summary we have implemented JayTk in the Mozart environment. This
allows us to reuse complex distribution algorithms with no effort thanks

5.7. CONCLUSION 139

to Beernet which manages the whole network configuration and provides
transactions upon a distributed hash table and is resistant to failures. A
limited subset of JayTk’s features have been implemented on Android, iOS
and Windows apps in order to support more operating systems and prepare
for the mobile revolution.

140 CHAPTER 5. IMPLEMENTATION OF JAYTK

Chapter 6

Case Studies

During the thesis, we wanted to test the method and the toolkit on some
case studies. Instead of complex applications depending on a huge amount
of data, we wanted simple applications with several users and small amount
of data.

This chapter describes the case studies that have been studied during
the thesis. The first case study is a small chat application which has been
extended with a migration capability. The second case study is an efficient
collaborative distributed drawing application. An example of Pictionary
has then been implemented to demonstrate the multi-user and DDGUI sup-
port in JayTk. Another small example has demonstrate the possibility of
distributing parts of a UI across several kind of devices.

6.1 DistribuChat

DistribuChat is a small chat application that supports the migration of part
of the UI to another device. This demonstration has been presented at EICS
2009.

Complexity Nb. Users Nb. Devices

Low 2 2

Table 6.1: Information about the complexity of case study DistribuChat

6.1.1 Specification

DistribuChat is peer-to-peer application that allows users to send a message
from one user to another.

6.1.2 Implementation

DistribuChat has been implemented on Mozart for Linux (see Figure 6.2).

141

142 CHAPTER 6. CASE STUDIES

Jeremie

LPC1 LPC2

main

secondary

connection

Figure 6.1: Distribution Graph of the DistribuChat demonstration.

Figure 6.2: The GUI used for the DistribuChat’s example

The GUI can be decomposed into pieces (see Figure 6.3).

6.2 DeTransDraw - DeTransDrawid

DeTransDraw (DTD) is a drawing tool that allows several users to col-
laborate on a drawing area. The goal is to handle the concurrency in an
efficient way. This demonstration has been presented at the final review of
the SELFMAN project.

Complexity Nb. Users Nb. Devices

Low 1-n 1-n

Table 6.2: Information about the complexity of case study DTD

6.2. DETRANSDRAW - DETRANSDRAWID 143

1) 2)

3)

4)

Figure 6.3: The GUI of DistribuChat has been split into pieces: 1) the status
of the chat, 2) the send button, 3) the chat window, 4) the typing window

Jeremie Boris Yves

WPC ASP LPC

P2PS

main main main

comm1 comm2
comm3

Figure 6.4: Distribution Graph of DTD and DTDid demonstration.

6.2.1 Specification

DTD is an application that allows users to draw and edit drawing while
keeping coherence between all the views of the drawing. If a user creates a
blue circle, all users can edit the circle by moving it somewhere else in the
area or delete it. To support coherence it is important that if someone is

144 CHAPTER 6. CASE STUDIES

currently editing the circle, others should not be able to edit it.
The main property of DTD is to allow collaborative edition of a drawing

such that two properties are satisfied:

1. each user can perform instantaneous edits without delays caused by
the network

2. the editor maintains a single coherent drawing

To simultaneously satisfy these apparently conflicting properties, the editor
allows local edits to be done speculatively. These edits will eventually be
accepted by the editor if they are not in conflict. Speculative edits that are
in conflict with other edits may be canceled by the editor. The user interface
distinguishes not-yet-accepted edits from accepted edits.

6.2.2 Implementation

There are two implementations of DTD. On Linux and Windows, DTD
uses QTk. The Android version uses a native GUI and is called DeTrans-
Drawid(DTDid).

It starts with the creation of the UI. This UI is the same on all the de-
vices. It is a very basic UI which allows users to create and select rectangles
and ovals. The color of the inner bound and outer bound can also be cus-
tomized. The screen shot of the prototype of DTD with the basic UI can be
found in Figure 6.5 and the one of DTDid in Figure 6.6.

Figure 6.5: The basic UI of the DTD application

To support collaboration when editing elements DTD uses transactions.
The user first select the object to lock it and prevent other users from being
able to edit it. Then he can edit the object until he clear the selection of
the object to commit the changes and release the lock. The selection of the
object will initiate a transaction for this object and will keep it locked. If
two users try to select the same object, at most one can get the selection.

6.2. DETRANSDRAW - DETRANSDRAWID 145

Figure 6.6: The basic UI of the DTDid application

The locking mechanism is more efficient than waiting for the selection before
starting to edit.This means that users do not need to wait for the result of
the transaction before starting to edit the object. There is no major delay
if communications become slow or fail. Users can start editing the object as
soon as the object is selected. A visual feedback is given when a user asks
for a lock. While waiting for the lock, the object selected has red handles.
When the lock is achieved the handles are colored in black as in Figure 6.7.
The modifications are not guaranteed until the lock is granted. When the
lock is granted the modifications are guaranteed to succeed.

The state diagram of a user is depicted in Figure 6.8.

The structure of the application created with the toolkit is depicted in
Figure 6.9. Each DTD application is a node in a peer-to-peer network while
DTDid applications are connected to one of the node in the network. A
DTDid application is composed in two parts: the logic and the GUI. While
the logic has been implemented in Oz based on the same code of DTD, the
GUI is created in JAVA thanks to a bridge implemented for the toolkit.

The whole network is based on Beernet and uses the Distributed Hash
Table (DHT) to store the data across all the nodes. While DTD has a direct
access to the DHT, DTDid asks a node to get access to it.

6.2.3 Evaluation

Thanks to JayTk we have build a demonstration to show that it was pos-
sible to create a collaborative drawing tool between several devices running

146 CHAPTER 6. CASE STUDIES

Figure 6.7: On the left, the user is in Asking for locks state and the handles
of the big square are red. On the right, the user is in Got locks state with
the handles in black.

Figure 6.8: The state diagram of a user

different operating systems and which does not suffer from network latency.
A description of the demonstration is available in Appendix 1.

The coherence between all the devices is ensured by using transactions
for each modification. The eager-locking mechanism allows us to lock an
object in the drawing which prevent two devices from modifying the same
object at the same time. The transactions and the eager-locking mechanisms
are directly provided by Beernet which means that JayTk does not need to
know which algorithm is used for the locking and transactions systems.

The porting of Mozart to Android has allowed us to use the same code
on both operating systems. This proves how easy it is to port an application
on all the operating systems supported by the Mozart Environment.

6.3. MOBICTIONARY 147

Figure 6.9: The structure of DeTransDraw and DeTransDrawid applications

6.3 Mobictionary

Mobictionary is a distributed Pictionary as described in 1.1. The adaptation
of this game to a digital game is not simple. While it is clear that there is
only one drawer, it is not clear to know who are the guessers, who chooses
the word and who decides who and how to say that a player guess the word.

This demonstration has been presented at several conferences and events.

Complexity Nb. Users Nb. Devices

Medium 2-n 2-n

Table 6.3: Information about the complexity of the case study

6.3.1 Specification

Before going into the implementation of the Mobictionary, we need to clearly
specify the way it will work. For this, we are going to define what is the
initial state of the Mobictionary and the evolution of the game according to
the connection of users, devices and with the game advance.

Initial state

Complexity Nb. Users Nb. Devices

Low 1-2 1-2

Table 6.4: Information about the initial state of the Mobictionary

148 CHAPTER 6. CASE STUDIES

Jeremie Boris Yves

WPC1 WT1 MPC1 LPC1

Beernet

main1

secondary1 main2 main3

comm1 comm2
comm3 comm4

Figure 6.10: Distribution Graph of the Mobictionary demonstration.

As most applications, the Mobictionary is not created when there is no
player. In order to take part of the game, a user has to create a new game
or connect to an existing game.

When there are at least two players, it is then possible to start playing
the Mobictionary. In this scenario, there is a role for each user: the drawer
and the guesser. As neither the drawer nor the guesser should choose the
word that they will have to guess, it is the application that will provide
random words to the drawer.

Two main roles: drawer and guesser

Complexity Nb. Users Nb. Devices

Low 2 2-4

Table 6.5: Information about the complexity with 2 players

The drawer will have a specific UI that will allow him to draw something,
to choose the color in which he is going to draw and to see the word that
he needs to make the other guess.

The guesser has another UI that will allow him to see what the drawer
is currently doing and to say what he thinks that is the current word to be
guessed.

6.3. MOBICTIONARY 149

The game should alone switch the roles every time the guesser finds the
right word. When the word has not been found, the drawer keeps his role.
When there is only two players, it is not possible to choose who is the winner.
Every time the guesser finds a word he earns one point. If the word has not
been guessed, the drawer loses one point.

Mobictionary in team

Complexity Nb. Users Nb. Devices

Medium 4-n 2-n

Table 6.6: Information about the complexity of the whole case study

The game becomes more interesting when other players join the game.
There is only one drawer and other players become guessers. The guesser
who finds the word still earns a point but also becomes the drawer. The
other guessers keep their role and the drawer becomes a guesser too. After
10 rounds, the player with highest score wins the game.

During each 10 rounds, it is not possible to join a game. It will only be
possible to join the game before or after the 10 rounds to start a fresh new
game.

When there are more than 3 players, it is possible to create teams. Each
team should at least have two players and the smallest should only be smaller
than the biggest one by one player (4-4-5 is ok, 3-5-5 is not). At each round,
one team will be selected to draw. There will only be one drawer by round.
If another team finds the word, this team will now get the drawing board
and will choose one player that will become the drawer. If the active team
finds the words, another player of the team will become the drawer and other
teams stays as guessers. Any player that guesses a word makes the team
earning one point. If no guesser finds the word, the team that is currently
drawing loses one point. The first team earning 10 points will become the
winner of the game.

6.3.2 Implementation

The Mobictionary example supports two way of distribution: automatic and
manual. When roles changes the distribution is automatically triggered.
Users have also the ability to manually trigger some distribution. They can
split their UI across all the devices they own.

Here are the key roles and their Graphical User Interfaces (GUI):

� Observer : a person that is not currently trying to guess the word.
This role is for opponents to the playing team. When there are only
two players, the drawer will also have the observer UI. For observers,

150 CHAPTER 6. CASE STUDIES

the UI is mainly the ability to start, end the current round and to
enter the word to guess. The round is ended when a guesser has found
the right word. This UI is depicted in Figure 6.11.

Figure 6.11: User Interface of the observers.

� Drawer : a person that helps other players find the word to guess by
drawings. The minimum UI needed for this role as in Figure 6.12 is
the drawing tools and information about the game. The user sees the
word he has to draw about and has the tool to draw on the shared
area.

Figure 6.12: User Interface of the drawer.

� Guesser : a person that has to guess the word. If there are teams,
guessers are in the same team as the drawer. The drawer may not be
a guesser and his associated UI is in Figure 6.13.

Depending on the role associated to a player, he will get the appropri-
ate GUI for his role. When roles change, the distribution of the UIs is
reprocessed to keep a coherent state.

6.3. MOBICTIONARY 151

Figure 6.13: User Interface of the guessers.

Simplified Mobictionary

Complexity Nb. Users Nb. Devices

Low 2-n 2

Table 6.7: Information about the complexity of the simplified Mobictionary

The first case study is a simplified variant of the Mobictionary, where
there is no team. Observers are players waiting for next game to begin.
Each person is a single player as the drawer or a guesser. There is only one
drawer at the same time but there may be several guessers.

The game starts with an initial state where the application is not started,
the current state is empty. When the first user starts the application, he
needs to create a room for the game. Other players will then join this room
to play.

The UI for this first player allows him to create a new game as in Figure
6.14.

Figure 6.14: Creation of a game when no game is already started.

In Figure 6.15, we can see the pseudo-code to create this UI.

The first steps create and display a button and an entry in a new window.
These two widgets will then be associated in a new widget arranging them
from left to right. The last step is the creation of the window with all widgets
arranged in the desired order. The td widget created by the main Display
contains the widgets create game, status and zero to several bX. The name

152 CHAPTER 6. CASE STUDIES

{Display

td(name:p1

button(name:b_c glue:e text:"Create:")

)

}

{Display

entry(name:e_c glue:w bg:white

init:"Own game"

handle:HEntry return:R)

#p1}

{Display lr(name:create_game b_c e_c)#p1}

{Display

td(name:p1

create_game

td(name:join)

label(name:status glue:swe

text:"Waiting for a game"

bg:white)

)

}

for I in {DiscoverGames} do

{Display

button(name:b#I glue:nswe

text:"Join "#I}

#join}

end

Figure 6.15: Pseudo-code for creating initial UI.

used when we create widgets is the key to use the widget later. As we can
see, the button named bc appears in the creation of the lr widget.

As there is currently only one player, the game cannot be started. The
application still needs a player before being able to start. The next state is
the connection of a second player.

Two players are now connected as Observers waiting for the game to
begin. Figure 6.16 shows the current state of the application for the different
roles;

To create the UI of the Player 2, it only needs to copy Player 1 UI with
code 6.17

As the game is created, both players got an update with their UI looking
like in Figure 6.18.

The code to update the UI is presented in Figure 6.19.

Now, both players are waiting for the game to begin. Their UI is the

6.3. MOBICTIONARY 153

Drawer: {}

Guessers: {}

Observers : {P1,P2}

Figure 6.16: Second state. Player 1 and 2 are connected.

{Copy p1 td(name:p2)}

Figure 6.17: Pseudo-code for updating UI after game creation.

Figure 6.18: Creation of a game when no game is already started.

same until one of the players chooses to start the game. As the minimum
number of players is reached, the game can start and each player will now be
assigned to a role. In Figure 6.20 Player 1 becomes the drawer and Player
2 a guesser.

When Player 1 becomes the drawer, the UI has to be redistributed to this
new role assignment. The result of this redistribution appears in Figure 6.21.
This UI slightly differs from 6.12 because Player has to stay an observer.
As Player 2 is the guesser, he is not allowed to have the Start and Found!
buttons. This role should be assigned to observers, if there were any. The
only solution is to assign this role to the drawer itself.

Thanks to the UI he is already playing with, the adaptation of the UI
is only a small piece of code. In three statements, the UI is adapted. The
code can be found in Figure 6.22.

Thanks to the UI he is already playing with, the adaptation of the UI
is only a small piece of code. In three statements, the UI is adapted. The
code can be found in Figure 6.22.

The UI of the second player also has to be adapted to the new role
assignment. He now has the guesser UI as in 6.23.

The code for this adaptation can be found in Figure 6.24.

154 CHAPTER 6. CASE STUDIES

{Undisplay create_game#p1}

{Update status "Running game: "#Name}

{Display

td(name:observer

lr(name:enter_word glue:nwe bg:white

label(bg:white text:"Enter word: ")

entry(glue:w bg:white

init:"House"

handle:HEW)

)

lr(name:start_found bg:white glue:nwe

button(glue:e text:"Start")

button(glue:w text:"Found !")

)

lr(name:remaining_time bg:white glue:swe

label(glue:e bg:white

text:"Remaining time: ")

label(glue:w bg:white text:"02:00")

)

)

#p1}

{Display td(name:p1 create_game observer status)}

Figure 6.19: Pseudo-code for updating UI after game creation.

Here, the transition triggered by the connection of a new player can be a
loop from the current state. The only modification happening when a new
player connects is an update in the observer list. It is exactly the same if
Player 1 leaves the game.

Every time the word to guess is found, the winner becomes the drawer
while the drawer becomes a guesser. If the word is not found in the time
let for the game, the current drawer wins and stays the drawer. The game
needs at least two players.

In the state where Player 1 is the drawer, two transitions can be trig-
gered. If P1 wins, the system stays in the same state. Otherwise, the system
has to redistribute the UIs.

In Figure 6.25, the winner is Player 2. As he won, he becomes the new
drawer and Player 1 becomes a guesser. The merging of the two first states
is represented by a dashed red loop.

6.3. MOBICTIONARY 155

Drawer: {}

Guessers: {}

Observers : {P1}

Drawer: {}

Guessers: {}

Observers : {P1,P2}

Drawer: {P1}

Guessers: {P2}

Observers : {}

Player1
connects

Player2
connects

Game
starts

Figure 6.20: State diagram of the current system.

Figure 6.21: Player 1 becomes the drawer and stays observer.

156 CHAPTER 6. CASE STUDIES

{Undisplay enter_word#observer}

{Display

td(name:drawing_tool

label(name:word bg:white

text:"Word: House")

{Record.adjoin CD lr(name:colors

glue:n

relief:sunken

bg:white)}

)

#p1}

{Display

td(name:p1

drawing_tool

observer

canvas(name:drawing area

bg:white glue:nswe)

status

)

}

Figure 6.22: Pseudo-code for updating UI from Observer to Observer-
Drawer.

Figure 6.23: Player 2 becomes the guesser.

6.3. MOBICTIONARY 157

{Undisplay enter_word#p2}

{Undisplay start_found#p2}

{Display canvas(name:drawing_area

bg:white glue:nswe)#p2}

Figure 6.24: Pseudo-code for updating UI for Player 2 becoming a guesser.

Drawer: {}

Guessers: {}
Observers :
{P1,P2}

Drawer: {P1}

Guessers: {P2}

Observers : {}

Drawer: {P2}

Guessers: {P1}

Observers : {}

Player1
connects

Player2
connects

Game
starts

Player1
wins

Player2
wins

Player1
wins

Player2
wins

Figure 6.25: Simplified diagram of the whole system.

158 CHAPTER 6. CASE STUDIES

The last step remaining is the redistribution of the UI when role are
exchanged. This means that we want to switch the upper part of Player 1’s
UI to Player 2’s UI.

This can be done with the code in 6.26. Here we introduce the ability to
choose the position of the widget. The drawing tool widget will be placed
first in widget p2.

{Move drawing_tool p2 pos:first)}

Figure 6.26: Pseudo-code for switching players’ role.

Extended Mobictionary

Complexity Nb. Users Nb. Devices

Medium 4-n 2-n

Table 6.8: Information about the complexity of the extended Mobictionary

In this section, we introduce a dynamically extended version of the Mo-
bictionary as a real case study. As the number of player increases, the sim-
plified version may be extended to support teams. The minimum required
for this variant is four players separated in two teams with two players.

A team is composed by at least two players. The team that is currently
drawing needs a drawer and at least one guesser. The members of the other
teams are observers.

The distribution graph for two teams is presented in Figure 6.27 based
on the one in Figure 6.25.

If a guesser finds the word within the guessing time, he becomes the
drawer and the team stays playing. If the guessing time is passed and no
guesser found the word, another team is given the ability to play the same
word. If the team finds the word, this team becomes the new team playing. If
not, another team takes the turn until every team has played with the word.
Every time a word is found, it increases the points of the team currently
playing.

6.3.3 Evaluation

Thanks to the toolkit it has been possible to create the whole game on one
computer and distribute it on several computers. The real power of the
toolkit is the ability to assign each role a UI. This allows us to distribute
the UI according to the role. The UI assigned to a role can also be merged
into the application UI to offer only one UI to each user. A description of
the demonstration is available in Appendix 2.

6.3. MOBICTIONARY 159

The UI of the drawer is more adapted for a device supporting touch than
for a computer with a mouse and a keyboard. The distribution allows us to
distribute the UI to smartphones and tablets. This will allow the drawer to
use a pen or his fingers.

If we wanted to build this Mobictionary without the toolkit we would
need to create one application for each operating system. Then we would
need to connect this applications together and exchange information about
the current state of the game. If one of the device crashes this would lead
the game to an incoherent state or the application of the device that has
crashed should be smart enough to save the state and recover it.

The toolkit allows the UI to be redistributed when something wrong
happen. The UI that was distributed on the device that has crashed can
easily be recovered and be displayed back too one of the other devices.

Another important difference is the change that would need to be made
if we wanted to have two drawers instead of one. With the toolkit, it is very
simple. We only need to copy the UI of the drawer and display it to the
second drawer. This copy can either be with a synchronized behavior (if
someone draws, the other drawer sees the current drawing) or with disjoint
behavior (they can both draw but they do not see what the other is currently
drawing). This would have been very hard without the tool. It would first
mean to change the whole game rules, create an entire new UI for the second
drawer and then create the code for the synchronization between them in
case we want a synchronized behavior.

These small examples show that the toolkit allows us to easily create
and manage the game. It is also possible to easily modify the rules of the
game without creating a whole news application or without needing heavy
changes.

160 CHAPTER 6. CASE STUDIES

Drawer: {}

Guessers: {}
Observers :
{TA={P1,P2},
TB={P3,P4}}

Drawer:
{TAd={P1}}
Guessers:
{TAg={P2}}

Observers :
{TB={P3,P4}}

Drawer:
{TBd={P3}}
Guessers:
{TBg={P4}}

Observers :
{TA={P1,P2}}

Drawer:
{TAd={P2}}
Guessers:
{TAg={P1}}

Observers :
{TB={P3,P4}}

Drawer:
{TBd={P4}}
Guessers:
{TBg={P3}}

Observers :
{TA={P1,P2}}

Player1
connects

Player2
connects

Player3
connects

Player4
connects

Game starts with
Team A

Team A wins

Team
A loses

Team
B loses

Team B wins

Team
A loses

Team
B loses

Figure 6.27: Complete diagram of the whole system.

6.4. CARRESERVATION 161

6.4 CarReservation

CarReservation is a small demonstrator realized during the UsiXML project.
This demonstration has been presented at the final review of the UsiXML
project.

Complexity Nb. Users Nb. Devices

Low 1-n 1-n

Table 6.9: Information about the complexity of case study CarReservation

Jeremie

WTWP IP

main
secondary

third

connection

connection

Figure 6.28: Distribution Graph of the CarReservation demonstration.

6.4.1 Specification

CarReservation is a small application that allows a user to fill a form. The
GUI of the form is created from a model describing the content of the GUI.
No data is contained in this model. Once the GUI has been created, other
devices can connect to it to retrieve parts or whole of the GUI.

6.4.2 Implementation

This demonstration has been realized using TCP-IP sockets. Three devices
are first connected together with a Windows tablet used as the master and
two small devices used as its slaves. The master acts like a server to which
the other devices connect to as clients.

Any component of the GUI that has been created on the tablet can be
displayed on the two other devices. The resulting widget is sent to each
device and then recomposed with native graphical elements to the Windows
Phone device and the iOS device.

A screenshot of the form on the Windows tablet is depicted in Figure
6.29.

While the same on the Windows phone is depicted in Figure 6.30.

162 CHAPTER 6. CASE STUDIES

Figure 6.29: The GUI of the CarReservation form on the Windows tablet

Figure 6.30: The GUI of the CarReservation form on the Windows phone

6.4.3 Evaluation

Thanks to the method we have been able to demonstrate that it was possible
to use the same concepts with a different implementation.

6.5. CONCLUSION 163

In this demonstration there are three different operating systems used:
Windows Phone, Windows and iOS. This adds to the demonstrations with
Linux, Mac OS X and Android.

We have also been able to demonstrate that only a pre-defined GUI could
be distributed but also that any GUI created at run-time, based on a file
storing an instantation of a model.

With this DDGUI, we have also demonstrate the granularity of the dis-
tribution. It can happen at the window level but also at any graphical
widget level.

6.5 Conclusion

With these case studies we have demonstrated how it was possible to use
JayTk and Beernet to implement several scenarios. All the specifications
have been reached using the toolkit and the distribution mechanisms offered
by Beernet.

Thanks to these demonstration we have demonstrated that it was not
mandatory to install an application on several devices in order to use it on
them. An application started on a PC can easily distributed itself across
several devices with the help of the toolkit.

This success has led to a FIRST SpinOff project funding which is cur-
rently preparing the creation of the SpinOff. The core business of the SpinOff
is the ability to remotely applications that are started on a device with other
devices no matter the size and the operating system of the devices.

164 CHAPTER 6. CASE STUDIES

Chapter 7

Validation of JayTk

While we were creating the new concepts and the toolkit associated with
the method we also wanted to evaluate the work done during the thesis.

All the distribution primitives of the toolkit have not been developed.
We mainly focused on the display and undisplay primitives which can be
combined to produce some of the other distribution primitives. These prim-
itives are then distributed to the right device and then executed locally.

As we made a survey as introduction of the thesis we wanted another
method to evaluate and validate the thesis. Our evaluation was mainly based
on the demonstrations that we have realized during the thesis. The next step
is to validate our results with another survey. For the last evaluation process
we will pass through all the requirements listed in 2.4 and see how the toolkit
respond to them.

7.1 Potential benefits

The method and toolkit developed during the thesis allow developers to cre-
ate complete applications that support distribution and adapt dynamically
to the environment. One of the shortcomings of the solution proposed in the
related work is that none of them is publicly available. We want our toolkit
to be publicly available in the form of an API provided along with Mozart.
Everyone can use it and give feedback to us. With JayTk we will soon offer
the first toolkit that allows developers to create and manage DUIs across
recent devices.

The model-based approach used in this thesis allows us to precisely de-
fine all the concepts that are important to distributed systems. Everyone
can reuse these concepts with their own toolkit. The toolkit has also been
created in a modular way so that it is easily possible to change the graph-
ical user interface language, the distribution mechanisms used or the core
between the network and the UI.

165

166 CHAPTER 7. VALIDATION OF JAYTK

7.2 SpinOff: Usidistrib

Thanks to these demonstrations building DDGUI is now possible and can be
integrated in commercial applications. This led us to the idea of creating a
company that could offer this ability to extend current applications to sup-
port distribution and mobility across several devices and different operating
systems.

We have started working on a FIRST Spin-Off project since May 2013
and we are close to create a company which use the results of the thesis. This
has validated that our technology was indeed working but also interesting
for other companies.

7.3 Validation of the Toolkit

In order to validate the method we allow users to test the system.

We have prepared these devices for the testers:

� a smartphone running Windows Phone 8

� a tablet running Windows 8

� a Macbook running Mac OS X

� a tablet running Linux

� a projector that was attached to the tablet or to the Macbook

These following scenarios are offered to the users:

� A small tutorial (5min max) shows how the system works

� Play with the system during 5 minutes to test and get used of it

� Distribute the UI for their own configuration

� Accomplish the same task with 3 different devices

� Accomplish the same task running 2 devices at the same time

7.4 Fulfillment of the requirements

One way to validate the contributions offered by the thesis consists of as-
sessing its characteristics regarding some criteria. We have already listed
the requirements that we wanted our work to take into account. We will
use these requirements for the criteria. Thus we will refer to the list that
have been defined earlier in the section 2.4. For all these requirements,

7.4. FULFILLMENT OF THE REQUIREMENTS 167

we have proposed some contributions. We will now see in how much each
contribution contributes to the requirements.

First, let’s remember what are the contributions of the thesis. We have
already listed them in the section 1.3.3. These contributions can be classified
in two categories: extension of concepts, and new concepts.

Here is the list of all these contributions according to the three pillars:

� Models and languages

– MC1: A user model allows us to describe some properties of who
will interact with the system. i.e. the system should act in a
different way with blind people and experts.

– MC2: A device model allows us to define important characteris-
tics about the device and the platform. e.g. the resolution and
the interaction mechanisms provided by the device are important
data needed for good adaptation of the UI.

– MC3: A distribution graph helps us to see how the devices and
users are distributed in the space. It is a quick view of the users,
the devices and the environment they evolve in.

� Approach

– AC1: An EBNF grammar has been defined in order to use a
common language for the distribution mechanisms.

– AC2: A catalog of distribution primitives/operations described
all the primitives/operations that can be performed with the
DUIs. This catalog is based on the knowledge from research
that have been done in this topic. The goal of this catalog is to
support any kind of distribution that have been proven useful in
other studies and some other primitives/operations that we think
they are interesting to support.

– AC3: Distribution scenarios allow us to manually or automati-
cally trigger several distribution primitives in order to distribute,
adapt or manage the UIs in the system.

– AC4: Some feedback have been defined in order to provide users
with some visual notifications on what the system is currently
doing or not able to do. i.e. the states : idle, in a distribution
mechanism, successful and failed are differently notified to users.

� Software support

– SC1: Allow the creation of User Interfaces

– SC2: Allow the distribution of User Interfaces

– SC3: Multi-platform (from desktop to mobile operating systems)

168 CHAPTER 7. VALIDATION OF JAYTK

– SC4: Platform and device discovery for automatic visualisation
of the system

– SC5: Feedback mechanisms for multi-user and multi-platform
distributions

– SC6: Transparent distribution and communication mechanisms

– SC7: Reliable distribution mechanisms with support for failures

The requirement MR1 is the description of concepts of a Distributed
System. The contribution MC1, MC2 and MC3 allow us to satisfy this
requirement. Indeed, the user and the device are described in a model while
the distribution graph is the representation of the distributed system itself.
The same contributions are part of the model-based approach created during
the thesis. This satisfies the requirement MR2. For the requirement AR1,
we provide distribution primitives and distribution scenarios which allows
developers and users to modify the current state of distribution. Changes in
the DS can also be modeled in the DG and the AG. The requirement AR4

is the need for the distribution to be transparent. Thanks to choice of using
Beernet as the distribution mechanisms this requirement is satisfied without
the need of a contribution. We have added transparency in the use of the
toolkit with the contributions AC3 and SC6. It also fulfill the requirement
AR5 which was to provide simple distribution mechanisms. The requirement
SR1 is the availability of the toolkit. It will be available for developers in
2016. Usidistrib is going to provide services for companies to make these
features more broadly available. For the easy of use, we have described how
easy it was for a non-distributed application to support distrubtion without
being aware of it. This satisfies this requirement. JayTk provides different
levels of granularity: action/service, widget, windows, application. This
satisfies the SR2 requirement.

Id. Name Fulfillment (/5)

MR1 Description of the concepts of a DS 4

MR2 Model-based approach for DDGUI 3

AR1 Support of dynamic distribution 3

AR2 Based the approach on models 3

AR3 Basic distribution operations 4

AR4 Transparent distribution 4

AR5 Simple distribution mechanisms 5

SR1 Availability of the toolkit 4

SR2 Support of different levels of granularity 4

Table 7.1: Fulfilment of the requirements

The summary of how these requirements have been met can be found
in the table 7.1. The score is a subjective evaluation according to our own

7.5. CONCLUSION 169

expectation. The scale goes from 0 to 5 where:

� 0 means that work has not started

� 1 means we have not got any good result

� 2 means that we fail fulfilling the requirement but we are close to it

� 3 means that we have a good base but we still have work to do

� 4 means that we fulfilled the requirement but there is still room for
improvements or some validation is still needed

� 5 means that we fulfilled the requirement and finished working on it

7.5 Conclusion

In this chapter we have briefly discussed how we handle the validation and
evaluation process. We mainly focused on demonstrations to validate and
evaluate rather than surveying lots of people.

With the project that could lead to a company we think that this is
an important step to evaluate and validate, our ideas, our method and our
software support.

Through the translation of shortcomings into requirements which we
attempted to fulfill with our contributions, we have been able to demonstrate
the feasibility and the potential of using DDGUIs in applications.

170 CHAPTER 7. VALIDATION OF JAYTK

Chapter 8

Conclusion

Throughout the thesis, the concepts have been introduced, exemplified and
finally evaluated and validated. This leads us to summarize the work done
during the thesis.

We have introduced some concepts in a model-based approach for man-
aging DUIs and a toolkit that supports it. The goal is to provide a common
base for researchers on DUIs. They now have the same set of primitives and
can follow a common approach. It allows them to share the same possibilities
regardless of the UI implementation.

Thanks to the use of distribution mechanisms from the domain of Dis-
tributed Programming, the existing applications and the new applications
can both support distributed user interfaces. They both get a strong basis
allowing them to react to delays, failures and other behaviors of a distributed
system.

The conclusion is divided into two parts. First, we have all the contri-
butions and then we consider the possibilities for future work.

8.1 Summary of the contributions

Like in the whole document, the contributions are divided into the three
pillars.

Model

In order to deploy a complete approach for creating and managing DUIs,
we needed to define the ontology and the language of the topic. We have
created some models to represent the various agents that are used with the
system. These models are the user model described in section 3.2.3 and the
device model from section 3.2.4.

Thanks to these definitions, we have introduced the concept of a dis-
tributed system in section 1.2.1, a distribution graph in section 3.3 and an

171

172 CHAPTER 8. CONCLUSION

application graph in section 3.6. The distributed system includes the users
and the devices related to it, it is also constituted of an environment which
contains all the users and devices. The distribution graph is a model of the
interactions between the users and the devices through actions. The appli-
cation graph is a more specific model of an application running on several
devices. It allows users to see how the user interface is distributed across
these devices.

Basing ourselves on these contributions, we have established a language
to define the way each action can be defined and triggered. This is a very
important contribution to simplify the reusability and the availability of the
method.

Approach

This dissertation introduced the notion of distribution graph in section 3.3 as
a way of modeling and developing Distributed User Interfaces. The graph
is a state diagram where states represent the current distribution of the
system. It also describes the implementation of two case studies, a simple
and an extended Pictionary. This new methodology needs to be validated,
i.e. with these case studies applied as real game. A more complex kind
of game could be developed with the idea of the snakes and ladders game.
Each square would be a different game and an additional UI would enable
users to change the game inside it at running time.

Basing ourselves on the language that we have defined we have listed and
detailed with algorithms the main actions that we wanted our method to
support in section 3.7. These actions can also be grouped into distribution
scenarios. The distribution scenario is a concept we have introduced to allow
the execution of several actions in a predefined order. This is very interesting
to support dynamic distribution or to repeat a sequence of actions.

Thanks to the use of complex distribution mechanisms, our method is
able to support the complex aspect of a distributed system as detailed in
section 3.7.5. It adds the support for crashes, failures, delays, and users and
devices leaving at run-time.

Software support

A toolkit based on this approach has also been created. It allows developers
to see the power of this catalog. This toolkit is multi-platform and will be
released publicly. You can read more details about it in section 5.

The toolkit makes it possible to create applications that support the
distribution of their user interfaces across several devices ranging from a
mobile phone to a desktop computer, a projector or a kiosk, and it allows
the creation of a real distributed system.

8.2. PROGRESS AND SHORTCOMINGS 173

Thanks to the distribution mechanisms used and detailed in section 4.3
the toolkit provides device discovery and supports feedback, multi-user col-
laboration, failure detection and other important aspects of distributed sys-
tems.

8.2 Progress and Shortcomings

The toolkit created during the thesis does not fully implement all the con-
cepts and all the primitives we have defined. As discussed before, the goal
was to test the toolkit on sufficient case studies to prove the concepts in-
troduced in the thesis. We are aware that conducting the survey without
being able to use the toolkit is not sufficient to validate the toolkit itself. In
the near future we want to create several applications with the help of the
toolkit and carry out a larger experiment.

8.3 Future Work

One of the first steps after the thesis will be to test the toolkit with a lot
of users. For this reason, the toolkit will be released publicly.

A larger case study has already been decided for the future of the toolkit.
The toolkit will be used by the CyborgOS. It is an entire ecosystem that
runs as an executable on Windows, Linux and Mac OS X. The application
allows the creation of the user interface from an editor which triggers the
actions defined in the toolkit. All the devices get the same UI and thanks
to the toolkit the UI can be created and modified at real-time. If a device
becomes unavailable the CyborgOS will still work and nothing is lost.

The thesis provides some models, an approach and a software support
for designers and developers to manage distributed systems and allow the
distribution of the user interfaces at run-time. There is no added support
for end-user programming. Developers can allow the end-users to manage
the distribution but it is up to them to offer this.

In the thesis, we have selected the version of each operating system
that we wanted to support. These operating systems have or will have
newer versions in the future. We will update the toolkit to stay compliant
and use these systems as efficiently as possible. This will be part of the
SpinOff UsiDistrib that will be created soon after the thesis, whose goal is
to commercialize and update the toolkit created in the thesis.

The concept of Distribution Graph has been defined precisely in the
thesis. We think that it would be interesting to see the Distribution Graph
in real-time. This means that we could provide an implementation of a
graphical representation of the DG. The actions that have been defined
would then be translated into some representation in the DG. When a device
would appear in the DS, a node representing thise device will be created in

174 CHAPTER 8. CONCLUSION

the DG. When two devices are connected together, we would see the edge
created between both nodes.

In Chapter 3, the concept of Application Graph is just introduced with-
out details. It would be interesting to develop this concept more deeply and
test it with some other applications.

8.4 Final Word

The work done during the thesis has opened the doors to a completely new
kind of applications which can work seamlessly inside a distributed system
constituted of several computers and mobile devices. This embraces the
mobile vision which is the future already knocking at our doors.

With the power of mobility increasing every year, and the number of de-
vices launched every year and multiplying, there is a high need of supporting
such technology so that people are not obliged to duplicate their work each
time they need to use another operating system.

Chapter 9

Appendices

175

176 CHAPTER 9. APPENDICES

177

178 CHAPTER 9. APPENDICES

179

180 CHAPTER 9. APPENDICES

181

182 CHAPTER 9. APPENDICES

183

184 CHAPTER 9. APPENDICES

Glossary

computing device

A device that can be programmed to accomplish automatic com-
putation tasks. It includes a hardware architecture and a soft-
ware framework (including application frameworks), where the
combination allows software applications to run. Typical com-
puting devices include a computer architecture, at least one op-
erating system, programming languages and a related user inter-
face (run-time system libraries or graphical user interface).e.g.,
desktop computers, laptops, tablets, mobile phones (features
phones and smartphones), video game consoles, televisions.

distributed user interface [DUI]

Any application UI whose components can be distributed across
different computing devices that can be used by different users.

distributed user interface [DDUI]

Any DUI whose components can be dynamically distributed.

distributed graphical user interface [DGUI]

Any application UI whose only graphical components can be dis-
tributed across different computing devices that can be used by
different users.

dynamic distributed graphical user interface [DDGUI]

Any application UI whose only graphical components can be dy-
namically distributed across different computing devices that can
be used by different users.

environment

185

186 CHAPTER 9. APPENDICES

It covers objects, persons, and events that are peripheral to the
current task but that may have an impact on the distributed
system and/or the user’s behavior[THE99].

interaction

An action that occurs between a user and a computing device.
e.g., clicking on a button, writing down your user name or pass-
word, touching an icon to start an application on your tablet or
smartphone.

user

It can either be a human, an animal, a robot or any mechanical
entity that is able to use or interact with the computing devices.

user interface [UI]

An interface provided by an application to allow interactions
with the users. It can either let the users control or observe
the application. The most common UI is the Graphical User
Interface [GUI] which is often represented in the windows, icons,
menus, pointer (WIMP) style of interaction.

Bibliography

[AKS08] Aksenov, P., Luyten, K., and Coninx, K. Reasoning Over Spatial
Relations for Context-Aware Distributed User Interfaces, In Fifth Inter-
national Workshop Modeling and Reasoning in Context (MRC 2008),
Delft, The Netherlands, 9-12 June 2008.

[AKS09] Aksenov, P., Vanderhulst, G., Luyten, K., and Coninx, K. Ambient
Compass: One Approach to Model Spatial Relations, 2009.

[Air Display] Avatron Software, Air Display turn your iPad or Android
tablet into a computer monitor https://avatron.com/applications/air-
display/,
Last visited on July 11, 2015.

[AirPlay] AirPlay: Play content from your iPhone, iPad, iPod touch, or
Mac on your HDTV, https://www.apple.com/airplay/, Last visited on
January 11, 2015.

[ALI01] Ali, M.F., Pérez-Quinones, M.A., and Abrams, M. A Multi-Step
Process for Generating Multi-Platform User Interfaces using UIML,
CoRRcs.HC/0111025, 2001.

[ALI02] Ali, M.F., Pérez-Quinones, M.A., Abrams, M. and Shell, E. Build-
ing Multi-Platform User Interfaces with UIML, In Proceedings of the
4th International Conference on Computer-Aided Design of User Inter-
faces (CADUI 2002), Kluwer Academics Publisher, Dordrecht, 2002, pp.
255-266, Valencienne, France, 15-17 May 2002.

[AN02] An, A. Learning Classification Rules from Data, Computers and
Mathematics with Applications 45 (2003), pp. 737-748, 2003.

[AND00] Foundations of Multithreaded, Parallel, and Distributed Program-
ming, Andrews, G. R., AddisonWesley, 2000, ISBN 0-201-35752-6.

[ASH04] Ashdown, M., and Sato, Y. Attentive Interfaces for Multiple Mon-
itors, 2004.

187

188 BIBLIOGRAPHY

[ASL10] Aslan, I., Menon, D., Brauer, R., Albert, K., and Maugg, C. E-
Composer: Enabling the Composition of Mobile Assistants, In Proceed-
ings of MDDAUI2010 & CHI2010, pp. 37-40, 2010.

[ATT98] Attiya, H., Welch, J. Distributed Computing: Fundamentals, Sim-
ulations and Advanced Topics, McGraw-Hill Publishing Company, UK,
ISBN 0-07-709352 6

[AVR89] Avrahami, G., Brooks, K.P., and Brown, M.H. A Two-View
Approach to Constructing User Interfaces, In Proceedings of SIG-
GRAPH’89 (Boston, USA), ACM Computer Graphics, vol. 23, no. 3,
pp. 137-146, July 31 - August 4, 1989.

[AYA00] Ayatsuka, Y., Matsushita, N., and Rekimoto, J. HyperPalette: a
Hybrid Computing Environment for Small Computing devices. In Pro-
ceedings of CHI’00 (The Hague), ACM Press, New York, pp. 133-134,
April 1-6, 2000.

[BAI04] Bailey, B.P. A Distributed Display System for Interactive Sketch-
ing, 2004.

[BAL04] Balme, L., Demeure, A., Barralon, N., Coutaz, J., and Calvary, G.
Cameleon-RT: A software architecture reference model for distributed,
migratable, and plastic user interfaces, In Proceedings of 2nd European
Symposium on Ambient Intelligence EUSAI’2004, Springer, Heidelberg,
LNCS, vol. 3295, pp. 291-302, 2004.

[BAND04] Bandelloni, R., and Paternò, F. Migratory user interfaces able to
adapt to various interaction platforms, International Journal of Human-
Computer Studies 60, 5-6, pp. 621-639, 2004.

[BANG05] Bang, M., Larsson, A., Berglund, E., and Eriksson, H. Dis-
tributed user interfaces for clinical ubiquitous computing applications,
International Journal of Medical Informatics, Elsevier, 2005.

[BARB10] Barboni, E., Ladry, J.-F., Navarre, D., Palaque, P., and Winck-
ler, M. Beyond Modelling: An Integrated Environment Supporting Co-
Execution of Tasks and Systems Models, In Proceedings of EICS’10,
Berlin, Germany, June 19-23, 2010.

[BARD11] Bardram, J., Doryab, A., Gueddana, S. Activity-Based Comput-
ing Metaphors and Technologies for Distributed User Interfaces, In ...
ACM Press, New York, pp. 67-74, 2011. DOI 10.1007/978-1-4471-2271-
5 8

[BARR04] Barralon, N. Meta UI: vers un Desktop++,
In Proceedings of Rencontres Jeunes Chercheurs en Interaction Homme
Machine RJHCI’2004, 2004.

BIBLIOGRAPHY 189

[BARR07] Barralon, N., and Coutaz, J. Coupling Interaction Resources in
Ambient Spaces: There Is More Than Meets the Eye!. In Engineer-
ing interactive Systems: EIS 2007 Joint Working Conferences, EHCI
2007, DSV-IS 2007, HCSE 2007, Salamanca, Spain, Selected Papers, J.
Gulliksen, M.B. Harning, P. Palanque, G.C. Veer, and J. Wesson, Eds.
Lecture Notes in Computer Science, vol.4940. Springer-Verlag, Berlin,
Heidelberg, pp. 537-554, March 22-24, 2007.

[BART11] Barth, T., Fielenbach, T., Bourimi, M., Kesdogan, D., Vil-
lanueva, P.G. Supporting Distributed Decision Making Using Secure Dis-
tributed User Interfaces, In ... ACM Press, New York, pp. 177-184, 2011.
DOI 10.1007/978-1-4471-2271-5 20

[BEAL07] Beale, R., Edmondson, W. Multiple Carets, Multiple Screens
and Multi-Tasking: New Behaviours with Multiple Computers, In Pro-
ceedings of HCI’2007 (Lancaster, England), British Computer Society,
Swinson, pp. 55-64, September 3-7, 2007.

[BEAU00] Beaudouin-Lafon, M., and Lassen, H.M. The architecture and
implementation of CPN2000, a post-WIMP graphical application, In
Proceedings of the 13th ACM Symposium on User interface Software
and Technology UIST’2000, ACM Press, New York, pp. 181-190, 2000.

[BEAU01] Beaudouin-Lafon M., Novel Interface Software and Technology
for Overlapping Windows, In Proceedings of 14th ACM Symposium on
User Interface Software and Technology UIST’2001, ACM Press, New
York, pp. 153-154, 2001.

[Beernet] Programming Languages and Distributed Computing
Research Group, UCLouvain Beernet: pbeer-to-pbeer network,
http://beernet.info.ucl.ac.be

[BEL05] Bell, B.A. View Management for Distributed User Interfaces, Doc-
toral Thesis. UMI Order Number: AAI3174746, Columbia University,
2005.

[BEN07] Benôıt, A., Bonnaud, L., Caplier, A., Jourde, F., Nigay, L., Ser-
rano, M., Damousis, I., Tzovaras, D., and Lawson, L. Multimodal Signal
Processing and Interaction for a Driving Simulator: Component-based
Architecture., Journal of Multi. UIs, vol. 1, no. 1, pp. 49-58, 2007.

[BER02] Berglund, E., Bang, M. Requirements for Distributed User Inter-
faces in Ubiquitous Computing Networks, In Proceedings of ACM Con-
ferences on Mobile and Ubiquitous MultiMedia. MUM’02 (Oulo, Fin-
land), ACM Press, New York, NY, December 11-13, 2002.

190 BIBLIOGRAPHY

[BHA95] Bharat, K.A., and Cardelli, L. Migratory applications, In Proceed-
ings of the 8th Annual ACM Symposium on User interface and Software
Technology (Pittsburgh, ennsylvania, USA). UIST’95, ACM Press, New
York, NY, pp. 132-142, November 15-17, 1995.

[BIC99] Bickmore, T., Girgensohn, A., and Sullivan, J.W. Web Page Fil-
tering and Re-Authoring for Mobile Users, Computer Journal, Oxford
University Press for British Computing ociety, vol. 42, No. 6, pp. 534-
546, 1999.

[BIE04] Biehl, J.T., and Bailey, B.P. ARIS: An Inferface for Application
Relocation in an Interactive Space, In Proceedings of Graphics interface
2004 (London, Ontario, Canada), GI’2004, ACM International Confer-
ence Proceeding Series, vol. 62. Canadian Human-Computer Commu-
nications Society, School of Computer Science, University of Waterloo,
Waterloo, Ontario, pp. 107-116, May 17-19,2004.

[BIE05] Biehl, J.T., and Bailey, B.P. Interfaces for Managing Information
in Distributed Display Environments, 2005.

[BIE05B] Biehl, J.T., and Bailey, B.P. A Toolset for Creating Iconic Inter-
faces for Interactive Workspaces, 2005.

[BIE06] Biehl, J.T., and Bailey, B.P. Improving Scalability and Awareness
in Iconic Interfaces for Multiple-Device Environments, In Proceedings of
AVI’06, Venezia, Italy, May 23-26, 2006.

[BIE06B] Biehl, J.T., and Bailey, B.P. Improving Interfaces for Manag-
ing Applications in Multiple-Device Environments, In Proceedings of
AVI’06, Venezia, Italy, May 23-26, 2006.

[BIE06C] Biehl, J.T., and Bailey, B.P. Interfaces for Managing Applications
and Input in Multi-Device Environments, In ..., 2006.

[BIE08] Biehl, J.T., Baker, W.T., Bailey, B.P., Tan, D.S., Inkpen, K.M.,
and Czerwinski, M. IMPROMPTU: A New Interaction Framework for
Supporting Collaboration in Multiple Display Environments and its
Field Evaluation for Co-located Software Development, In Proceedings
of the Twenty-Sixth Annual SIGCHI Conference on Human Factors in
Computing Systems (Florence, Italy). CHI’08, ACM Press, New York,
NY, pp. 939-948, April 05-10, 2008.

[BISH06] Bishop, J. Multi-platform User Interface Construction -
a Challenge for Software Engineering-in-the-Small, In Proceedings of
the 28th international Conference on Software Engineering (Shangai,
China).ICSE’06, ACM, New York, NY, pp. 751-760, May 20-28, 2006.

BIBLIOGRAPHY 191

[BISW10] Biswas, P., and Robinson, P., A Brief Survey on User Modelling
in HCI, 2010.

[BLA02] Black, J.A., Hong, J.I., Newman, M.W., Edwards, W.K., Izadi,
S., Sedivy, J., Smith, T.F. Speakeasy: A Platform for Interactive Public
Displays, In Community and Situated Displays (Workshop at CSCW
2002), New Orleans, L.A., USA. November 16-20, 2002.

[BLU10] Blumendorf, M., Roscher, D., and Albayrak, S. Dynamic User In-
terface Distribution for Flexible Multimodal Interaction, In Proceedings
of the International Conference on Multimodal Interfaces and the Work-
shop on Machine Learning for Multimodal Interaction (ICMI-MLMI’10),
ACM Press, New York, Article 20, 8 pages. November 8-10, 2010.

[BLU11] Blumendorf, M., Roscher, D., and Albayrak, S. Distributed User
Interfaces for Smart Environments: Characteristics and Challenges, In
Proceedings of CHI2011 workshop on DUI, ACM Press, New York, pp.
25-28, May 7-12, 2011.

[BRD07] Brdiczka, O., Crowley, J.L., and Reignier, P. Learning Situation
Models for Providing Context-Aware Services, Lecture Notes in Com-
puter Science, pp. 23-32, 2007.

[BRE10] Breiner, K., Gauckler, V., Seissler, M., and Meixner, G. Evalu-
ation of User Interface Adaptation Strategies in the Process of Model-
driven User Interface Development, In Proceedings of MDDAUI2010 &
CHI2010, pp. 17-20, 2010.

[CAF10] Caffiau, S., and Girard, P. A Global Process for Using Model-
driven Approaches in User Interface Design, In Proceedings of MD-
DAUI2010 & CHI2010, pp. 33-36, 2010.

[CAG05] Cagle, K. Distributed User Interfaces: Toward SVG 1.2, In the
book Visualizing Information Using SVG and X3D, pp. 119-152 (Chapter
6), 2005.

[CAL97] Calvary, G., Coutaz, J., and Nigay, L. From Single-User Architec-
ture Design to PAC*: a Generic Software Architecture Model for CSCW,
In Proceedings of CHI’97, 1997.

[CAL01] Calvary, G., Coutaz, J., and Thevenin, D. A unifying Reference
Framework for the Development of Plastic User Interfaces, In Proceed-
ings of EHCI’01, pp. 137-192, 2001.

[CAL04] Calvary, G., Coutaz, J., Dâassi, O., Balme, L., and Demeure, A.
Towards a New Generation of Widgets for Supporting Software Plastic-
ity: The ”Comet”, Engineering Human Computer Interaction and In-

192 BIBLIOGRAPHY

teractive Systems, Joint Working Conferences EHCI-DSVIS 2004, Ham-
burg, Germany, Revised Selected Papers, Springer, pp. 306-324, July
11-13, 2004.

[CAR06] Cardinaels, M., Vanderhulst, G., Wijnants, M., Raymaekers, C.,
Luyten, K., Coninx, K. Seamless Interaction Between Multiple Devices
and Meeting Rooms, In Proceedings of CHI’06, 2006.

[CHA11] Chang, T.-H., and Li, Y. Deep shot: a framework for migrating
tasks across devices using mobile phone cameras. In Proceedings of the
2011 annual conference on Human factors in computing systems (CHI
’11). ACM, New York, NY, USA, pp. 2163-2172.
DOI=10.1145/1978942.1979257
http://doi.acm.org/10.1145/1978942.1979257

[CHE11] Chen, N., Guimbretiere, F., and Sellen, A. Distributed User In-
terface for a Multi-Tablet Active Reading System, In Proceedings of
CHI2011 workshop on DUI, ACM Press, New York, pp. 73-76, May 7-
12, 2011.

[CHU04] Chung, G., and Dewan, P. Towards Dynamic Collaboration Ar-
chitectures, In Proceedings of the 2004 ACM Conference on Computer
Supported Cooperative Work (Chicago, Illinois, USA). CSCW’04, ACM,
New York, NY, pp. 1-10, November 06-10, 2004.

[cloud computing] http://aws.amazon.com/what-is-cloud-computing/

[COL07] Collet, R. The Limits of Network Transparency in a Distributed
Programming Language, Thesis, 2007.

[Compiz] Compiz: an OpenGL compositing manager to texture object,
http://www.compiz.org,
Last visited on July 10, 2015.

[Continuity] iPhone, iPad, and Mac. Connected like never before,
https://www.apple.com/ios/whats-new/continuity/,
Last visited on January 11, 2015.

[COUL05] Coulouris, G. F., Dollimore, J., Kindberg, T. Distributed Sys-
tems: Concepts and Design, Addison Wesley, 2005.

[COU87] Coutaz, J. PAC: an Implementation Model for Dialog Design,
In Proceedings of Interact’87 (Stuttgart, Germany), H-J. Bullinger, B.
Shackel ed., North Holland, pp. 431-436, September 1987.

[COU03] Coutaz, J., Barralon, N., Lachenal, C., Rey, G. Final Reference
Framework for Interaction Surfaces, GLOSS Project. 2003.

BIBLIOGRAPHY 193

[COU03B] Coutaz, J., Lachenal, C., and Dupuy-Chessa, S. Ontology
for Multi-surface Interaction, In Proceedings of IFIP INTERACT’03:
Human-Computer Interaction 2003, pp. 447, 2003.

[COU05] Coutaz, J., Borkowski, S., and Barralon, N. Coupling interaction
resources: an analytical model, In Proceedings of the 2005 Joint Confer-
ence on Smart Objects and Ambient intelligence: innovative Context-
Aware Services: Usages and Technologies (Grenoble, France). sOc-
EUSAI’05, vol. 121, ACM, New York, NY, pp. 183-188, October 12-14,
2005.

[COU05B] Coutaz, J., Crowley, J.L., Dobson, S., and Garlan, D. Context
is key, Commun, ACM 48, 3, pp. 49-53, Mars, 2005.

[COU06] Coutaz, J. Meta-User Interfaces for Ambient Spaces, In Proc. of
the 5th International Workshop on Task Models and Diagrams for Users
Interface Design, TAMODIA’2006 (Hasselt, Belgium), LNCS, Vol. 4385.
Springer, Berlin, pp. 1-15, October 23-24, 2006.

[COU07] Coutaz, Balme, L., Alvaro, X., Calvary, G., Demeure, A., and
Sottet, J-S. An MDE-SOA Approach to Support Plastic User Interfaces
in Ambient Spaces, In Proceedings of the Universal Access in Human-
Computer Interaction. Ambient Interaction, 4th International Confer-
ence on Universal Access in Human-Computer Interaction, UAHCI 2007
Held as Part of HCI International 2007 Beijing, China, Springer, pp.
63-72, July 22-27, 2007.

[COU07B] Coutaz, J., Meta-User Interfaces for Ambient Spaces: Can
Model-Driven-Engineering Help?, 2007.

[COU10] Coutaz, J. User Interface Plasticity: Model Driven Engineering to
the Limit! In Proceedings of 2nd International Conference on Engineer-
ing Interactive Computing Systems, EICS’2010, pp. 1-8, 2010.

[DAD11] Dadlani, P., Emparanza J.P., and Markopoulos, P., Exploring Dis-
tributed User Interfaces in Ambient Intelligent Environments, In Dis-
tributed User Interfaces: Designing Interfaces for the Distributed Ecosys-
tem, Human-Computer Interaction Series, Springer-Verlag, London, pp.
161-168, 2011. DOI 10.1007/978-1-4471-2271-5 18

[DAD11B] Dadlani, P., Emparanza, J.P., and Markopoulos, P. Distributed
User Interfaces in Ambient Intelligent Environments: A Tale of Three
Studies, In Proceedings of CHI2011 workshop on DUI, ACM Press, New
York, May 7-12, 2011.

[DAM05] Damas, C., Lambeau, B., Dupont, P., and van Lamsweerde, A.
Generating Annotated Behavior Models from End-User Scenarios, IEEE

194 BIBLIOGRAPHY

Transactions on Software Engineering, Special Issue on Interaction and
State-based Modeling, Vol. 31, No. 12, pp. 1056-1073, 2005.

[DAM06] Damas, C., Lambeau, B., and van Lamsweerde, A. Scenarios,
Goals, and State Machines: a Win-Win Partnership for Model Synthe-
sis, In Proceedings of SIGSOFT’06/FSE-14, Portland, Oregon, USA.
November 5-11, 2006.

[DEA08] Dearman, D. and Pierce, J.S. It’s on my other computer!: comput-
ing with multiple devices, In Proceedings of the Conference on Human
Factors in Computing Systems, CHI’08, pp. 767-776, 2008.

[DEE10] Dees, W. Lecture Notes in Computer Science, Volume 6763,
Human-Computer Interaction. Towards Mobile and Intelligent Interac-
tion Environments, pp. 195-204, 2011.

[DEM05] Demeure, A., Sottet, J. and Calvary, G. A Model-Driven Home
Heating Control System. Presented at Plastic Services for Mobile De-
vices (PSMD), Workshop hel in conjunction with Interact’05. Rome,
September 12, 2005.

[DEM05B] Demeure, A., Calvary, G., Sottet, J., and Vanderdonckt, J. A ref-
erence model for distributed user interfaces, In Proceedings of the 4th in-
ternational Workshop on Task Models and Diagrams (Gdansk, Poland).
TAMODIA’05, vol. 127, ACM, New York, NY, pp. 79-86, September
26-27, 2005.

[DEM08] Demeure, A., Sottet, J., Calvary, G., Coutaz, J., Ganneau, V.,
and Vanderdonckt, J. The 4C Reference Model for Distributed User In-
terfaces, In Proceedings of the Fourth international Conference on Au-
tonomic and Autonomous Systems. ICAS’08 (Gosier), IEEE Computer
Society, Washington, DC, pp. 61-69, March 16-21, 2008.

[DEW98] Dewan, P., and Choudhary, R. Coupling the User Interfaces of a
Multiuser Program, ACM Transacations on Computer-Human Interac-
tion, pp. 34-62, 1998.

[DEW98B] Dewan, P., and Shen, H. Controlling access in multiuser inter-
faces, ACM Transactions on Computer-Human Interaction, 5, 1, pp.
34-62, 1998.

[DEY00] Dey, A.K., and Abowd, G.D. CybreMinder: A Context-Aware
System for Supporting Reminders, Proceedings of the 2nd International
Symposium on Handheld and Ubiquitous Computing (HUC2K), Bristol,
UK, pp. 172-186, September 25-27, 2000.

[DEY01] Dey, A.K. Understanding and Using Context, Personal and Ubiq-
uitous Computing Journal, Volume 5 (1), pp. 4-7, 2001.

BIBLIOGRAPHY 195

[DIN06] Ding, Y., and Litz, H. Creating Multiplatform User Interfaces by
Annotation and Adaptation, In Proceedings of the 11th international
Conference on intelligent User Interfaces (Sydney, Australia). IUI’06,
ACM, New York, NY, pp. 270-272, January 29 - February 01, 2006.

[DIT11] Dittmar, A., and Forbrig, P. Selective Modeling to Support Task
Migratability of Interactive Artifacts, In Proceedings of Interact 2011,
pp. 571-588. 2011.

[DLG10] de la Gúıa, E., Lozano, M.D., and Penichet, V.M.R. Co-Interactive
Table: a New Facility Based on Distributed User Interfaces to Im-
prove Collaborative Meetings, In Proceedings of the 12th Confer-
ence on Human-Computer Interaction with Mobile Devices and Ser-
vices, Mobile HCI 2010, Lisbon, Portugal, September 7-10, 2010. DOI:
10.1145/1851600.1851702

[EDW02] Edwards, W.K., Newman, M.W., Sedivy, J., Smith, T., and Izadi,
S. Challenge: Recombinant Computing and the Speakeasy Approach, In
Proceedings of MOBICOM’02, Atlanta, Georgia, USA, September 23-26,
2002.

[EIS01] Eisenstein, J., Vanderdonckt, J., and Puerta, A. Applying Model-
Based Techniques to the Developments of UIs for Mobile Computers,
In Proceedings of the 6th international Conference on intelligent User
interfaces (Santa Fe, New Mexico, USA). IUI’01, ACM Press, New York,
pp. 69-76, January 14-17, 2001.

[ELM11] Elmqvist, N., Distributed User Interfaces: State of the Art, In Dis-
tributed User Interfaces: Designing Interfaces for the Distributed Ecosys-
tem, Human-Computer Interaction Series, Springer-Verlag, London, pp.
1-12, 2011. DOI 10.1007/978-1-4471-2271-5 1

[ELM15] Badam, S.K., Fisher, E., Elmqvist, N. Munin: A Peer-to-
Peer Middleware 10.1007/978-1-4471-2271-5 1for Ubiquitous Analytics
and Visualization Spaces, In IEEE Transactions on Visualization &
Computer Graphics, vol.21, no.2 pp. 215-228, Febryary, 2015. DOI
10.1109/TVCG.2014.2337337

[EMM98] Emmerich, W. Distributed System Principles,
http://www0.cs.ucl.ac.uk/staff/ucacwxe/lectures/ds98-99/dsee3.pdf,
1997.

[ENG07] Englebert, V., and Heymans, P. Towars More Extensible Meta-
CASE Tools, In Proceedings of CAiSE2007, Springer-Verlag, Berlin Hei-
delberg, pp. 454-468, 2007.

196 BIBLIOGRAPHY

[ENS11] Ens, B., Eskicioglu, R., Irani, P. Visually Augmented Interfaces
for Co-located Mobile Collaboration In Distributed User Interfaces:
Designing Interfaces for the Distributed Ecosystem, Human-Computer
Interaction Series, Springer-Verlag, London, pp. 169-176, 2011. DOI
10.1007/978-1-4471-2271-5 19

[EYC03] Eychaner, G. An Extensible Java User Interface Framework for
Controlling Distributed Systems. July 08, 2003.

[Eyefinity] AMD Eyefinity,
http://www.amd.com/en-us/innovations/
software-technologies/technologies-gaming/eyefinity#,
Last visited on July 10, 2015.

[Etherpad] EtherPad: Realtime collaborative text editing,
http://www.etherpad.com

[FAR11] Fardoun, H.M., López, S.R., Villanueva, P. G. , Improving E-
Learning Using Distributed User Interfaces, In ... ACM Press, New York,
pp. 75-85, 2011. DOI 10.1007/978-1-4471-2271-5 9

[FEU07] Feuerstack, S., Blumendorf, M., and Albayrak, S. Prototyping of
Multimodal Interactions for Smart Environments based on Task Mod-
els, In European Conference on Ambient Intelligence: Workshop on
Model Driven Software Engineering for Ambient Intelligence Applica-
tions, Darmstadt, Germany, 2007.

[FIS14] Fisher, E.R., Badam, S.K., Elmqvist, N. Designing peer-to-peer
distributed user interfaces: Case studies on building distributed applica-
tions, In the International Journal of Human-Computer Studies (IJHCS),
72(1), pp. 100110, January 2014. DOI: 10.1016/j.ijhcs.2013.08.011

[FRE09] Frey, A.G., Calvary, G., and Dupuy-Chessa, S. Self-Explanatory
User Interfaces by Model-Driven Engineering, In Proceedings of CHI
2009, ACM Press, New York, April 4-9, 2009, Boston, Massachussets,
USA.

[FRO11] Fröberg, A., Eriksson, H., Berglund, E., Developing a DUI Based
Operator Control Station, In Distributed User Interfaces: Designing In-
terfaces for the Distributed Ecosystem, Human-Computer Interaction
Series, Springer-Verlag, London, pp. 41-49, 2011. DOI 10.1007/978-1-
4471-2271-5 5

[GotG] Game of the Goose - Wikipedia,
https://en.wikipedia.org/wiki/Game of the Goose
last visited on October 5th, 2015.

BIBLIOGRAPHY 197

[GAR11] Garrido, J.E., Penichet, V. M. R., Lozano, M.D., Improving Ubiq-
uitous Environments Through Collaborative Features, In Distributed
User Interfaces: Designing Interfaces for the Distributed Ecosystem,
Human-Computer Interaction Series, Springer-Verlag, London, pp. 59-
66, 2011. DOI 10.1007/978-1-4471-2271-5 7

[GHI10] Ghiani, G., and Paternò, F. Supporting Mobile Users in Selecting
Target Devices, In Journal of Universal Computer Science, vol. 16, no.
15, 2010.

[1] GHO07 Distributed Systems: An Algorithmic Approach, Ghosh, S.,
Chapman & Hall/CRC, 2007, ISBN 978-1-58488-564-1.

[GON09] Gonzáles-Calleros, J.M., Muños-Arteaga, J. Towards Canonical
Task Types for User Interfaces Design, In Latin American Web Congress,
2009.

[GRA00] Graham, T.C., Watts, L.A., Calvary, G., Coutaz, J., Dubois, E.,
and Nigay, L. A dimension space for the design of interactive systems
within their physical environments, In Proceedings of the 3rd Conference
on Designing interactive Systems: Processes, Practices, Methods, and
Techniques (New York City, New York, United States). D. Boyarski,
and W.A. Kellogg, Eds. DIS’00, ACM Press, New York, pp. 406-416,
August 17-19, 2000.

[GRI01] Griffiths, T., Barclay, P.J., Paton, N.W., McKirdy, K., Kennedy, J.,
Gray, P.D., Cooper, R., Goble, C.A., and Pinheiro, P. Teallach: a Model-
based User Interface Development Environment for Object Databases,
Interacting with Computers 14, 1, pp. 31-68, December 2001.

[GRO04] Grolaux, D., Van Roy, P., and Vanderdonckt, J. Migratable User
Interfaces: Beyond Migratory User Interfaces, In Proceedings of 1st
IEEE-ACM Annual Int. Conf. on Mobile and Ubiquitous Systems: Net-
working and Services MOBIQUITOUS’04 (Cambridge, England), ACM
Press, New York, pp. 422-430, August 22-26, 2004.

[GRO05] Grolaux, D., Vanderdonckt, J., and Van Roy, P. Attach me, De-
tach me, Assemble me like You Work, In Proceedings of the 10th IFIP
TC 13 International Conference on Human-Computer Interaction, IN-
TERACT’05 (Rome, Italy), Springer-Verlag, Berlin, LNCS, Vol. 3585,
pp. 198-212, September 12-16, 2005.

[GRO07] Grolaux, D. Transparent Migration and Adaptation in a Graphical
User Interface toolkit, Ph.D. dissertation, Department of Computing
Science and Engineering, Université catholique de Louvain, 2007.

198 BIBLIOGRAPHY

[GRU01] Grudin, J. Partitioning Digital Worlds: Focal and Peripheral
Awareness in Multiple Monitor Use, In Proceedings of the ACM Confer-
ence on Human Factors in Computing Systems CHI’01 (Seattle, USA),
ACM Press, New York, pp. 458-465, 2001.

[GUE06] Guerrero-Garćıa, J. Conceputal Modeling of User Interfaces to
Workflow Information Systems, Master thesis, 2006.

[GUE09] Guerrero-Garćıa, J., Vanderdonckt, J., and Gonzáles-Calleros,
J.M. Towards a Multi-User Interaction Meta-Model, Working Paper 2008
- 2009, 2009.

[HAN00] Han, R., Perret, V., and Naghshineh, M. WebSplitter: A Unified
XML Framwork for Multi-Device Collaborative Web Browsing, In Pro-
ceedings of the 2000 ACM Conference on Computer Supported Cooper-
ative Work (Philadelphia, Pennsylvania, USA). CSCW’00, ACM Press,
New York, pp. 221-230, December 2-6, 2000.

[HydraVision] Hydravision,
https://en.wikipedia.org/wiki/AMD Catalyst#HydraVision,
Last visited on July 10, 2015.

[HIL92] Hill, R.D. The Abstraction Link-View Paradigm: Using Constraints
to Connect User Interfaces to Applications, In Proceedings of CHI’92,
1992.

[HOW03] Howell, C.J., Kapfhammer, G.M., Roos, R.S. An Examination of
the Run-time Performance of GUI Creation Frameworks, In PPPJ 2003,
Kilkenny City, Ireland, June 16-18, 2003.

[HUT02] Hutchings, D.R., and Stasko, J. QuickSpace: New Operations for
the Desktop Metaphor, In CHI’02 Extended Abstracts on Human Fac-
tors in Computing Systems (Minneapolis, Minnesota, USA). CHI’02,
ACM Press, New York, pp. 802-803, April 20-25, 2002.

[HUT02B] Hutchings, D.R., and Stasko, J. New Operations for Display
Space Management and Window Management, Technical Report, Au-
gust, 2002.

[HUT03] Hutchings, D.R., and Stasko, J. An Interview-Based Study of Dis-
play Space Management, Technical Report GIT-GVU-03-17, 2003.

[HUT04] Hutchings, D.R., Smith, G., Meyers, B., Czerwinski, M., and
Robertson, G. Display Space Usage and Window Management Oper-
ation Comparisons between Single Monitor and Multiple Monitor Users,
In Proceedings of the Working Conference on Advanced Visual interfaces
(Gallipoli, Italy). AVI’04, ACM Press, New York, pp. 32-39, May 25-28,
2004.

BIBLIOGRAPHY 199

[HUT04B] Hutchings, D.R., and Stasko, J. Revisiting display space manage-
ment: understanding current practice to inform next-generation design,
In Proceedings of Graphics interface 2004 (London, Ontario, Canada).
ACM International Conference Proceeding Series, vol. 62. Canadian
Human-Computer Communications Society, School of Computer Sci-
ence, University of Waterloo, Waterloo, Ontario, pp. 127-134, May 17-19,
2004.

[HUT04C] Hutchings, D.R., Czerwinski, M., Meyers, B., and Stasko, J.
Exploring the Use and Affordances of Multiple Display Environments,
2004.

[HUT04D] Hutchings, D.R., and Stasko, J. Shrinking Window Operations
for Expanding Display Space, In Proceedings of the working conference
on Advanced Visual Interfaces, AVI’04, 2004.

[HUT05] Hutchings, D.R. M5: Making Multiple Monitors More Manage-
able, In Proceedings of UIST’05, Seattle, Washington, USA. October
23-27, 2005.

[HUT05B] Hutchings, D.R., and Stasko, J. mudibo: Multiple Dialog Boxes
for Multiple Monitors, In Proceedings of CHI 2005, Portland, Oregon,
USA. April 2-7, 2005.

[HUT05C] Hutchings, D.R., Czerwinski, M., Robbins, D., and Robertson,
G. TaskZones: A Task Manager for Multiple-Monitor Systems, In Pro-
ceedings of UIST’05, Seattle, Washington, USA. October 23-27, 2005.

[HUT05D] Hutchings, D.R., Stasko, J., and Czerwinski, M.
http://facstaff.elon.edu/dhutching/dde.
CHI 2005 Workshop on Distributed Display Environments, Sunday,
April 3rd, 2005.

[HUT06] Hutchings, H.M., and Pierce, J.S. Understanding the whethers,
hows, and whys of divisible interfaces, In Proceedings of the Working
Conference on Advanced Visual Interfaces (Venezia, Italy). AVI’06, ACM
Press, New York, pp. 274-277, May 23-26, 2006.

[HUT07] Hutchings, D.R., and Stasko, J. Quantifying the Performance Ef-
fect of Window Snipping in Multiple-monitor Environments, In Human-
Computer Interaction - INTERACT 2007: 11th IFIP TC 13 Interna-
tional conference Rio de Janerio, Brazil Proceedings, Part II., Springer,
pp. 461-474, September 10-14, 2007.

[HUT07B] Hutchings, D.R., and Stasko, J. Consistency, Multiple Monitors,
and Multiple Windows, 2007.

200 BIBLIOGRAPHY

[INK05] Inkpen, K.M., and Mandryk, R.L. Multi-Display Environments for
Co-located Collaboration, 2005.

[ISO99] ISO/IEC 14754: Pen-based interfaces - Common Gestures for text
editing with pen-based system, International Standard Organization,
Geneva, 1999.

[JOU10] Jourde, F., Laurillau, Y., Nigay, L. COMM Notation for Specifying
Collaborative and MultiModal Interactive Systems, In Proceedings of
EICS2010, 2010.

[KAVA10] Kavaldjian, S., Raneburger, D., Popp, R., Letiner, M., Falb, J.,
and Kaindl, H. Automated Optimization of User Interfaces for Screens
with Limited Resolution, In Proceedings of MDDAUI2010 & CHI2010,
pp. 13-16, 2010.

[KAVI11] Kaviani, N., Finke, M., Lea, R., Fels, S. Investigating the Design
Space for Multi-display Environments, In Distributed User Interfaces:
Designing Interfaces for the Distributed Ecosystem, Human-Computer
Interaction Series, Springer-Verlag, London, pp. 103-112, 2011. DOI
10.1007/978-1-4471-2271-5 12

[KOR05] Kortuem, G., and Kray, C. HCI Issues of Dispersed Public Dis-
plays, 2005.

[LAC03] Lachenal, C., and Coutaz, J. A Reference Framework For Multi-
Surface Interaction, In Proceedings of HCI International 2003 (Crete,
Greece), pp. 424-428, 2003.

[LAD10] Ladry, J., Palanque, P., Barboni, E., and Navarre, D. Model-Based
Usability Evaluation and Analysis of Interactive Techniques, In Proceed-
ings of MDDAUI2010 & CHI2010, pp. 21-24, 2010.

[LAM11] Lambropoulos, N., and Danis, S. Humane Machine Interaction
Design: DUIs Design Thinking for Social Innovation, In Proceedings of
CHI2011 workshop on DUI, ACM Press, New York, May 7-12, 2011.

[LAR06] Larsson, A., and Ingmarsson, M. Ubiquitous Information Ac-
cess Through Distributed User Interfaces and Ontology-based Service-
discovery, In Proceedings of MU3I’06, Sydney, Australia, 2006.

[LAR07] Larsson, A., Ingmarsson, M., and Sun, B. A Development Platform
for Distributed User Interfaces, In Proceedings of the Nineteenth Inter-
national Conference on Software Engineering & Knowledge Engineering
(SEKE’2007), Boston, Massachusetts, USA, July 9-11, 2007.

[LEE08] Lee, J.C., Hudson, S.E., and Tse, E. Foldable Interactive Displays,
In Proceedings of UIST’08, Monterey, California, USA, October 19-22,
2008.

BIBLIOGRAPHY 201

[LEP06] Lepreux, S., Vanderdonckt, J., and Michotte, B. Visual Design
of User Interfaces by (De)composition, In Proceedings of DSVIS2006,
LNCS 4323, pp. 157-170, 2007.

[LEP06B] Lepreux, S., and Vanderdonckt, J. Toward a Support of The De-
sign of User Interfaces by Using Composition Rules, CADUI 2006, pp.
231-244, 2006.

[LEP11] Lepreux, S., Kubicki, S., Kolski, C., and Caelen, J. Distributed In-
teractive Surfaces: A Step Towards the Distribution of Tangible and Vir-
tual Objects, In Distributed User Interfaces: Designing Interfaces for the
Distributed Ecosystem, Human-Computer Interaction Series, Springer-
Verlag, London, pp. 133-143, 2011. DOI 10.1007/978-1-4471-2271-5 15

[LET01] Letier, E. Reasoning about Agents in Goal-Oriented Requirements
Engineering, Thesis, 2001.

[LIN93] Linten, M., and Price, C. Building Distributed User Interfaces with
Fresco, In Proceedings of the Seventh X Technical Conference, pp. 77-87,
1993.

[LOC11] Löchtefeld, M., Gehring, S., and Krüger, A., Distributed User In-
terfaces for Projector Phones, In Distributed User Interfaces: Designing
Interfaces for the Distributed Ecosystem, Human-Computer Interaction
Series, Springer-Verlag, London, pp. 113-123, 2011. DOI 10.1007/978-1-
4471-2271-5 13

[LOE03] Loeser, C., Mueller, W., Berger, F., and Eikerling, H.J. Peer-
to-peer Networks for Virtual Home Environments, In Proceedings of
HICSS-36 (Big Island), IEEE Computer Society Press, Los Alamitos,
pp. 282, January 6-9, 2003.

[LON00] Long Jr, A.C., Landay, J.A., Rowe, L.A., and Michiels, J. Visual
Similarity of Pen Gestures, In Proceedings of SIGCHI’00, 2000.

[LON01] Long Jr, A.C., Landay, J.A., and Rowe, L.A. quill: a Gesture
Design Tool for Pen-based User Interfaces, 2001.

[LOP11] López-Espin, J.J., Gallud, J.A., Lazcorreta, E., Peñalver, A., and
Botella, F. Formal Specification of Distributed User Interface, In Pro-
ceedings of CHI2011 workshop on DUI, ACM Press, New York, May
7-12, 2011.

[LOR10] Lorenz, A. Research Directions for the Applications of MVC in
Ambient Computing Environments, In Proceedings of the 1st Interna-
tional Workshop on Pattern-Driven Engineering of interactive Comput-
ing Systems PEICS’10 (Berlin, Germany), ACM Press, New York, pp.
28-31, July 20, 2010.

202 BIBLIOGRAPHY

[LUY02] Luyten, K., Vandervelpen, Ch., and Coninx, K. Migratable User
Interface Descriptions in Component-Based Development, In Proceed-
ings of DSV-IS’2002 (Rostock, Germany), Lecture Notes in Computer
Science, VOl. 2545. Springer-Verlag, London, pp. 44-58, June 12-14,
2002.

[LUY04] Luyten, K. Dynamic User Interface Generation for Mobile and Em-
bedded Systems with Model-Based User Interface Development, Thesis,
2004.

[LUY05] Luyten, K., and Coninx, K. Distributed User Interface Elements to
support Smart Interaction Spaces, In Proceedings of the 7th IEEE Inter-
national Symposium on Multimedia ISM’2005, IEEE Computer Society
Press, Washington, DC, pp. 277-286, December 12-14, 2005.

[LUY06] Luyten, K., Van den Bergh, J., Vandervelpen, Ch., and Coninx,
K. Designing Distributed User Interfaces for Ambient Intelligent Envi-
ronments using Models and Simulations, Computers & Graphics 30, 5,
pp. 702-713, 2006.

[MTE93] McTear, M.F. User Modelling for Adaptive Computer Systems: a
Survey of Recent Developments Artificial Intelligence Review 7, Kluwer
Academic Publishers, Netherlands, pp. 157-184, 1993.

[MANC11] Manca, M., and Paternò, F. Distributed User Interfaces with
MARIA, In Proceedings of CHI2011 workshop on DUI, ACM Press,
New York, pp. -, May 7-12, 2011.

[MANC11B] Manca, M., and Paternò, F. Flexible Support for Distributed
User Interfaces Across Multiple Devices, In Proceedings of CHI2011,
September 13-16, 2011.

[MANC11C] Manca, M., Paternò, F., Extending MARIA to Support Dis-
tributed User Interfaces, In Distributed User Interfaces: Designing In-
terfaces for the Distributed Ecosystem, Human-Computer Interaction
Series, Springer-Verlag, London, pp. 33-40, 2011. DOI 10.1007/978-1-
4471-2271-5 4

[MAND94] Mandviwalla, M. What Do Groups Need? A Proposed Set of
Generic Groupware Requirements, 1994.

[MANS05] Mansoux, B., and Nigay, L. Distributed Display Environments
in Computer-Assisted Surgery Systems, 2005.

[MARC11] Marco F.A., Penichet, V. M. R., Gallud, J.A. , Drag & Share:
A Shared Workspace for Distributed Synchronous Collaboration In Dis-
tributed User Interfaces: Designing Interfaces for the Distributed Ecosys-

BIBLIOGRAPHY 203

tem, Human-Computer Interaction Series, Springer-Verlag, London, pp.
125-132, 2011. DOI 10.1007/978-1-4471-2271-5 14

[MARQ07] Marquardt, N., and Greenberg, S. Shared Phidgets: A Toolkit
for Rapidly Prototyping Distributed Physical User Interfaces, In TEI’07:
Proceedings of the 1st international conference on Tangible and embed-
ded interaction (Baton Rouge, Louisiana, USA), ACM Press, New York,
pp. 13-20, February 15-17, 2007.

[MART10] Martinie, C., Ladry, J., Navarre, D., Palanque, P., and Winck-
ler, M. Embedding Requirements in Design Rationale to Deal Explicitely
with User eXperience and Usability in an ”intensive” Model-Based De-
velopment Approach, In Proceedings of MDDAUI2010 & CHI2010, pp.
29-32, 2010.

[MASP] MASP.
http://masp.dai-labor.de,
Visited on December 8th, 2015.

[MEJ10] Mej́ıas, B. Beernet: A Relaxed Approach to the Design of Scal-
able Systems with Self-Managing Behaviour and Transactional Robust
Storage, Thesis, 2010.

[MEL09] Melchior, J., Grolaux, D., Vanderdonckt, J., and Van Roy,
P. A Toolkit for Peer-to-Peer Distributed User Interfaces: Concepts,
Implementation, and Applications, In Proceedings of the 1st ACM
SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2009), ACM Press, New York, pp. 69-78, Pittsburgh, PA, USA,
July 15-17, 2009.

[MEL11] Melchior, J., Vanderdonckt, J., Van Roy, P. A Model-Based Ap-
proach for Distributed User Interfaces, In Proceedings of the 3rd ACM
SIGCHI Symposium on Engineering Interactive Computing Systems
(EICS 2011), Pisa, Italy, June 13-16, 2011.

[MEL11dc] Melchior, J. Distributed User Interfaces in Space and Time, In
Proceedings of the 3rd ACM SIGCHI Symposium on Engineering Inter-
active Computing Systems (EICS 2011), Pisa, Italy, June 13-16, 2011.

[MEL11dui] Melchior, J., Vanderdonckt, J., Van Roy, P. Distribution Prim-
itives for Distributed User Interfaces, In Proceeding of DUI 2011, ACM
Press, New York, pp. 29-32, Vancouver, British Columbia, Canada, 2011.
DOI 10.1007/978-1-4471-2271-5 3

[MEL11dui2] Melchior, J., Vanderdonckt, J., Van Roy, P. Distribution
Primitives for Distributed User Interfaces, In Distributed User Inter-
faces: Designing Interfaces for the Distributed Ecosystem, Human-

204 BIBLIOGRAPHY

Computer Interaction Series, Springer-Verlag, London, pp. 23-31, 2011.
DOI 10.1007/978-1-4471-2271-5 3

[MEL12dui] Melchior, J., Mej́ıas, B., Jaradin, Y., Van Roy, P., and Vander-
donckt, J. Improving DUIs with a decentralized approach with transac-
tions and feedbacks, In Proceeding of DUI 2012, ACM Press, New York,
pp. 65-68, Austin, Texas, USA, 2012. DOI 10.1007/978-1-4471-2271-5 3

[MEL12] Melchior, J., Vanderdonckt, J., Van Roy, P. Modelling and De-
veloping Distributed User Interfaces based on Distribution Graph, In
Proceedings of the Sixth International Conference on Research Chal-
lenges in Information Science (RCIS 2012), Valencia, Spain, May 16-18,
2012.

[MEL12-IJHCI] Melchior, J., Vanderdonckt, J., and Van Roy, P. A Com-
parative Evaluation of User Preferences for Extra-User Interfaces, In the
International Journal of Human-Computer Interaction (IJHCI), 28:11,
Taylor & Francis, pp. 760-767, 2012. DOI:10.1080/10447318.2012.715544

[MESA04] Mesarov, V., Carton, B., and Van Roy, P. P2PS: Peer-to-Peer
Development Platform for Mozart, In Proceedings of Second Inter-
national Mozart/Oz Conference MOZ’04, LNCS, Vol. 3389, Springer,
Berlin, pp. 125-136, 2004.

[MESK08] Meskens, J., Vermeulen, J., Luyten, K., and Coninx, K. Gummy
for Multi-Platform User Interface Designs: Shape me, Multiply me, Fix
me, Use me, In Proceedings of the Working Conference on Advanced
Visual interfaces (Napoli, Italy). AVI’08, ACM Press, New York, pp.
233-240, May 28-30, 2008.

[MESK09] Meskens, J., Luyten, K., and Coninx, K. Plug-and-Design: Em-
bracing Mobile Devices as Part of the Design Environment, In Proceed-
ings of EICS’2009, 2009.

[MIA99] Miah, T., and Alty, J.L. Vanishing Windows: an Empirical Study
of Adaptive Window Management, In Proceedings of CADUI99, 1999.

[Miracast] Wi-Fi CERTIFIED Miracast, http://www.wi-fi.org/discover-wi-
fi/wi-fi-certified-miracast,
Last visited on July 11, 2015.

[MOL06] Molina, J.P., Vanderdonckt, J., González, P.,
Fernández-Caballero, A., and Lozano, M.D.
Rapid Prototyping of Distributed User Interfaces, In Proceedings of the
CADUI’2006 (Bucharest, Romania), Springer-Verlag, Berlin, pp. 151-
166, June 6-8, 2006.

BIBLIOGRAPHY 205

[MOL06B] Molina, J.P., Vanderdonckt, J., and González, P. Direct Manip-
ulation of User Interfaces for Migration, In Proceedings of International
Conference on Intelligent User Interfaces, IUI’2006, pp. 140-147, 2006.

[MOR03] Mori, G., Paternò, and Santoro, C. Tool Support for Designing
Nomadic Applications, In Proceedings of the 8th international Confer-
ence on intelligent User interfaces (Miami, Florida, USA). IUI’03, ACM
Press, New York, pp. 141-148, January 12-15, 2003.

[MOR04] Mori, G., Paternò, F., and Santoro, C. Design and Development
of Multidevice User Interfaces through Multiple Logical Descriptions,
IEEE Transactions on Software Engineering, vol. 30, no. 8, pp. 507-520,
August, 2004.

[MOS09] Moscovitch, T. Contact Area Interaction with Sliding Widgets, In
Proceedings of the 22nd ACM Symposium on User interface software
and technology, UIST’2009, ACM Press, New York, pp. 13-22, 2009.

[Mozart] The Mozart Programming System,
http://mozart.github.io/,
Visited on October 13th, 2015.

[MYE00] Myers, B., Hudson, S.E., and Pausch, R. Past, present, and future
of user interface software tools, ACM Trans. Comput.-Hum. Interact. 7,
1., pp. 3-28, Mars 2000.

[MYE01] Myers, B.A. Using Handhelds and PCs Together, Communication
of the ACM 44,11, pp. 34-41, November 2001.

[NEW02] Newman, M.W., Izadi, S., Edwards, W.K., Sedivy, J.Z., and
Smith, T.F. User Interfaces When and Where They are Needed: An
Infrastructure for Recombinant Computing, In Proceedings of the 15th
ACM Symposium on User interface Software and Tehcnology UIST’02
(Paris, France), ACM Press, New York, pp. 171-180, October 27-30,
2002.

[NEW02B] Newman, M.W., and Sedivy, J. Designing for Serendipity: Sup-
porting End-User Configuration of Ubiquitous Computing Environ-
ments, In Proceedings of DIS2002, London, England, 2002.

[NFC] ISO/IEC 18092:2004, Information technology - Telecommunications
and information exchange between systems - Near Field Communication
- Interface and Protocol (NFCIP-1),
http://www.iso.org/iso/home/store/catalogue tc/
catalogue detail.htm?csnumber=38578,
Last visited on July 10, 2015.

206 BIBLIOGRAPHY

[NIE11] http://www.nielsen.com/us/en/insights/news/2011/in-the-u-s
-tablets-are-tv-buddies-while-ereaders-make-great-bedfellows.html,
Last visited on September 4, 2015.

[nView] Display and desktop management, nView desktop management
software,
http://www.nvidia.com/object/nview-display-us.html,
Last visited on July 10, 2015.

[Paint.NET] http://www.getpaint.net

[PAS07] Pastor, O., and Molina, J. C., Model-Driven Architecture in Prac-
tice : A Software Production Environment Based on Conceptual Mod-
eling, 2007, XVI, 302 p. 48 Illus.

[PAT01] Paternò, F., and Santoro, C. A Unified Method for Designing Inter-
active Systems Adaptable to Mobile and Stationary Platforms, In IWC,
2001.

[PAT02] Paternò, F., and Santoro, C. One Model, Many Interfaces, In Pro-
ceedings of CADUI’2002, the 4th International Conference on Computer-
Aided Design of User Interfaces, Valencinnes, France, Kluwer Academics
Publisher, Dordrecht, pp. 143-154, May 15-17, 2002.

[PAT07] Paternò, F., Santoro, C., Scorcia, A., Bandelloni, R., and Mori, G.
Web user interface migration through difference modalities with dynamic
device discovery, In Proceedings of the 2nd International Workshop on
Adaptation and Evolution in Web Systems Engineering, AEWSE’2007,
Vol. 267, CEUR Workshop Proceedings, 2007.
http://sunsite.informatik.rwth-aachen.de/
Publications/CEUR-WS/Vol-267/paper4.pdf,

[PAT08] Paternò, F., Santoro, C., Mäntyjärvi, J., Mori, G., and Sansone,
S. Authoring Pervasive Multimodal User Interfaces, In Int. J. Web En-
gineering and Technology, Vol.4, No. 2, 2008.

[PAT09] Paternò, F., Santoro, C., and Spano, L.D., MARIA: A Univer-
sal Declarative, Multiple Abstract-Level Language for Service-Oriented
Applications in Ubiquitous Environments, 2009.

[PAT09B] Paternò, F., Santoro, C., and Spano, L.D., Model-Based Design
of Multi-device Interactive Applications Based on Web Services, In Pro-
ceedings of the 12th IFIP TC 13 international Conference on Human-
Computer interaction: PART I (Uppsala, Sweden). T. Gross, J. Gullik-
sen, P. Kotz, L. Oestreicher, P. Palanque, R. O. Prates, and M. Winck-
ler, Eds. Lecture Notes In Computer Science, vol. 5726, Springer-Verlag,
Berlin, Heidelberg, pp. 892-905, Auguste 24-28, 2009.

BIBLIOGRAPHY 207

[PAT10] Paternò, F., and Zichitella, G. End-User Customization of Multi-
Device Ubiquitous User Interfaces, In Proceedings of MDDAUI2010 &
CHI2010, pp. 41-44, 2010.

[PAT10B] Paternò, F., and Zichitella, G. Desktop-to-Mobile Web Adap-
tation through Customizable Two-Dimensional Semantic Redesign, In
Proceedings of HCSE 2010, pp. 79-94, 2010.

[PEL00] Peleg, D. Distributed Computing: A Locality-Sensitive Approach,
SIAM, 2000, ISBN 0-89871-464-8.

[PENA11] Peñalver, A., López-Esṕın, J. J., Gallud, J. A., Lazcorreta, E.,
and Botella, F. Distributed User Interfaces: Specification of Essential
Properties, In Distributed User Interfaces: Designing Interfaces for the
Distributed Ecosystem, Human-Computer Interaction Series, Springer-
Verlag, London, pp. 13-21, 2011. DOI 10.1007/978-1-4471-2271-5 2

[PENA11B] Peñalver, A., López-Esṕın, J. J., Gallud, J. A., Lazcorreta, E.,
and Botella, F. An AUI Model to Support Distributed User Interfaces,
In Proceedings of UIDL’2011, 2011.

[PENA12] Peñalver, A., López-Esṕın, J. J., Botella, F., Lazcorreta, E., and
Gallud, J. A. Schema Driven Distributed User Interface Generation, In
Proceeding of the XIII Congreso Internacional de Interacción Persona-
Ordenador, Interacción 2012, 2012.

[PENI07] Penichet, V.M.R., Lozano, M., Gallud, J.A., and Tesoriero, R.
Task Modelling for Collaborative Systems, In Proceedings of TAMODIA
2007, 2007.

[Pictionary] Pictionary - Wikipedia,
https://en.wikipedia.org/wiki/Pictionary
last visited on October 5th, 2015.

[PIE04] Pierce, J.S., Mahaney, H.E., Opportunistic Annexing for Handheld
Devices: Opportunities and Challenges,
In Proceedings of Human-Computer Interface Consortium 2004,
accessible on-line at:
http://wwwstatic.cc.gatech.edu/∼jpierce/papers/OA-HCIC2004.pdf,
2004.

[Project My Screen] Project my phone screen to a TV or PC,
http://www.windowsphone.com/en-us/how-to/wp8/
connectivity/project-my-phone-screen,
Last visited on July 11, 2015.

208 BIBLIOGRAPHY

[PUE02] Puerta, A., and Eisenstein, J. XIML: A Common Representation
for Interaction Data, In Proceedings of, IUI’02, San Francisco, California,
USA, January 13-16, 2002.

[QIU09] Qiu, X.F., and Graham, T.N. Flexible and Efficient Platform Mod-
eling for Distributed Interactive Systems, In Proc. of the 1st ACM
SIGCHI Symposium on Engineering interactive Computing Systems
(Pittsburgh, PA, USA). EICS’09, ACM Press, New York, pp. 29-34,
July 15-17, 2009.

[RASH12] Rashid, U., Nacenta, M. A., and Quigley, A. The Cost of Dis-
play Switching: A Comparison of Mobile, Large Display and Hybrid UI
Configurations, In Proceedings of the International Working Conference
on Advanced Visual Interfaces (AVI ’12), ACM Press, New York, May
21, 2012. pp. 99106 DOI 10.1145/2254556.2254577

[REK97] Rekimoto, J. Pick-and-Drop: a Direct Manipulation Technique for
Multiple Computer Environments, In Proceedings of the 10th Annual
ACM Symposium on User interface Software and Technology (Banff,
Alberta, Canada). UIST’97, ACM Press, New York, pp. 31-39, October
14-17, 1997.

[REK03] Rekimoto, J., Ayatsuka, Y., Kohno, M., and Oba, H. Proximal In-
teractions: A Direct Manipulation Technique for Wireless Networking, In
Proceedings of the 9th IFIP TC 13 International Conference on Human-
Computer Interaction, INTERACT’2003, IOS Press, Amsterdam, pp.
511-518, 2003.

[REY04] Rey, G., and Coutaz, J. Contextor: capture and dynamic distribu-
tion of contextual information, In Proceedings of the 1st French-Speaking
Conference on Mobility and Ubiquity Computing (Nice, France). Ubi-
Mob’04, vol. 64, ACM Press, New York, pp. 131-138, June 01-03, 2004.

[REY06] Rey, G. Context en Interaction Homme-Machine: le contexteur,
Thesis, 2006.

[RIC09] Rich, C. Building Task-Based User Interfaces with ANSI/CEA-
2018, In IEEE Computer Society, 2009.

[ROB04] Robertson, G., Horvitz, E., Czerwinski, M., Baudisch, P., Hutch-
ings, D., Meyers, B., Robbins, D., and Smith, G. Scalable Fabric: Flex-
ible Task Management, In Proceedings of the working conference on
Advanced Visual Interfaces, 2004.

[ROD04] Rodden, T., Crabtree, A., Hemmings, T., Koleva, B., Humble,
J., Akesson, K.P., and Hansson, P. Configuring the Ubiquitous Home,

BIBLIOGRAPHY 209

In Proceedings of International Workshop on Cooperative Systems De-
sign, Scenario-Based Design of Collaborative Systems, COOP’2004, IOS
Press, Amsterdam, pp. 227-242, 2004.

[ROS09] Roscher, D., Blumendorf, M., and Albayrak, S. A Meta User In-
terface to Control Multimodal Interaction in Smart Environments, In
Proceedings of the 13rd International Conference on Intelligent User In-
terface, IUI’2009, ACM Press, New York, pp. 481-482, 2009.

[ROS09B] Roscher, D., Blumendorf, M., and Albayrak, S. Using Meta User
Interfaces to Control Multi-modal Interaction in Smart Environments,
In Proceedings of the 4th International Workshop on Model Driven De-
velopment of Advanced User Intrefaces MDDAUI’2009, Vol. 439, EUR
Workshop Proceedings, 2009. http://ceur-ws.org/Vol-439/paper4.pdf,

[ROS10] Roscher, D., Blumendorf, M., and Albayrak, S. Multimodal
User Interface Model for Runtime Distribution, In Proceedings of
MDAAUI2010 & CHI2010, pp. 5-8, 2010.

[ROU06] Roudaut, A., and Coutaz, J. Méta-IHM ou comment contrôler
l’espace interactif ambiant, In Proceedings of Actes des Troisièmes
Journées Francophones: Mobilité et Ubiquité 2006 (Paris, France). Ubi-
Mob’2006, ACM Press, New York, 2006.

[ROU06B] Roudaut, A. Méta-IHM: Pour le contrôle d’espace interactif am-
biant, Ph.D. dissertation, Ingénierie de l’Interaction Homme-Machine,
Institut National Polytechnique de Grenoble ENSIMAG, 2006.

[ROU09] Roudaut, A., Lecolinet, E., and Guiard, Y. MicroRolls: Expand-
ing Touch-Screen Input Vocabulary by Distringuishing Rolls vs. Slides
of the Thumb, In Proceedings of ACM Conference on Human Aspects
in Computing Systems, CHI’2009, ACM Press, New York, pp. 927-936,
2009.

[RUS05] Russel, N., van der Aalst, W.M.P., ter Hofstede, A.H.M., Edmond,
D. Workflow Resource Patterns: Identification, Representation and Tool
Support. In: Pastor, O., Falcão e Cunha, J. (eds): 17th Int. Conf. Ad-
vanced Information Systems Engineering CAiSE 2005. LNCS, vol. 3520,
pp. 216-232, Springer, Heidelberg, 2005.

[SAL09] Salay, R., Mylopoulos, J., and Easterbrook, S.M. Using Macro-
models to Manage Collections of Related Models, In Proceedings of
CAiSE’2009, Springer, LNCS, vol. 5565, pp. 141-155, 2009.

[SCHL10] Schlegel, T. An Interactive Process Meta Model for Runtime User
Interface Generation and Adaptation, In Proceedings of MDDAAUI2010
& CHI 2010, pp. 9-12, 2010.

210 BIBLIOGRAPHY

[SCHW10] Schwartze, V., Blumendorf, M., and Albayrak, S. Adjustable
Context Adaptations for User Interfaces at Runtime, In Proceedings of
AVI’10, Rome, Italy, May 25-29, 2010.

[SCREEN] Hiperspace Is The World’s Highest Resolution Display,
http://gizmodo.com/5023526/
hiperspace-is-the-worlds-highest-resolution-display, September 2009.

[SEB11] Sebastián, G., Villanueva, P.G. , Tesoriero, R., and Gallud, J.A.
Multi-touch Collaborative DUI to Create Mobile Services, ACM Press,
New York, pp. 145-151, 2011. DOI 10.1007/978-1-4471-2271-5 16

[SEI09] Seifried, T., Haller, M., Scott, S.D., Perteneder, F., Rendl, C.,
Sakamoto, D., and Inami, M. CRISTAL: A Collaborative Home Media
and Device Controller Based on a Multi-touch Display, In Proceedings
of ITS’09, Banff, Alberta, Canada. November 23-25, 2009.

[SEI11] Seifried, T., Jetter, H.-C., Haller, M., and Reiterer H. Lessons
Learned from the Design and Implementation of Distributed Post-
WIMP User Interfaces, ACM Press, New York, pp. 95-102, 2011. DOI
10.1007/978-1-4471-2271-5 11

[SEN11] Send́ın, M., López, J.-M., Software Infrastructure for Enriching
Distributed User Interfaces with Awareness, In Distributed User In-
terfaces: Designing Interfaces for the Distributed Ecosystem, Human-
Computer Interaction Series, Springer-Verlag, London, pp. 51-58, 2011.
DOI 10.1007/978-1-4471-2271-5 6

[SEN11B] Sendin, M., López, J.M. Approach for Enriching Distributed User
Interfaces with Awareness, In Proceedings of CHI2011 workshop on DUI,
ACM Press, New York, pp. 13-16 May 7-12, 2011.

[SHAC09] Shackel, B. Usability - Context, framework, definition, design
and evaluation, In Interacting with Computers 21 (5-6), pp. 339-346
December 2009.

[SHAE08] Shaer, O., Jacob, R.J., Green, M., and Luyten, K. User Interface
Description Languages for Next Generation User Interfaces, In CHI’08
Extended Abstracts on Human Factors in Computing Systems (Florence,
Italy). CHI’08, ACM Press, New York, pp. 3949-3952, April 05-10, 2008.

[SHE04] Shen, C., Ryall, K., and Everitt, K. Facets of Distributed Display
Environments, 2004.

[SJO04] Sjölund, M., Larsson, A., and Berglund, E. Smartphone Views:
Building Multi-Device Distributed User Interfaces, In Proceedings of Mo-
bileHCI’2004 (Glasgow, Scotland), LNCS, Vol. 3160., Springer, Berlin,
pp. 507-511, September 13-16, 2004.

BIBLIOGRAPHY 211

[SOT07] Sottet, J.-S., Calvary, G., Favre, J.-M., and Coutaz, J. Meg-
amodeling and Metamodel-driven Engineering for Plastic User Interface:
Mega-UI, In Seffah, A., Vanderdonckt, J., Desmarais, M. (eds.), Human-
Centered Software Engineering, Vol. II, Springer, pp. 173-200, 2007.

[SOU09] Sousa, K. Model-Driven Approach for User Interface - Business
Alignment, In Proceedings of EICS’2009, Pittsburgh, Pennsylvania,
USA, July 15-17, 2009.

[STI10] Still, J.D., and Masciocchi, C.M. A Saliency Model Predicts Fix-
ations in Web Interfaces, In Proceedings of MDDAUI2010 & CHI2010,
pp. 25-28, 2010.

[STU04] Stuerzlinger, W. MULTI: Multi-User Laser Table Interface, 2004.

[TAN03] Tan, D.S., and Czerwinski, M. Effects of Visual Separation and
Physical Discontinuities when Distributing Information across Multi-
ple Displays, In Proceedings of INTERACT’03 (Zurich, Germany), IOS
Press, pp. 252-260, September 1-5, 2003.

[TAN04] WinCuts: Manipulating Arbitrary Window Regions for More Ef-
fective User of Screen Space, In Proceedings of CHI’2004 (Vienna, Aus-
tria), ACM Press, New York, pp. 1525-1528, April 24-29, 2004.

[TEL95] Tel, G. Introduction to Distributed Algorithms, Cambridge Uni-
versity Press, 1995. ISBN 0-521-47069-2

[TES10] Tesoriero, R., Vanderdonckt, J., Gallud, J.A., and Lozano, M. Ex-
tending UsiXML to Support Location Awareness, 2010.

[TES10B] Tesoriero, R., and Vanderdonckt, J. Extending UsiXML to sup-
port User-aware Interfaces, 2010.

[TeXnicCenter] http://www.texniccenter.org

[THE99] Thevenin, D., and Coutaz, J. Plasticity of User Interfaces: Frame-
work and Research Agenda., In Proceedings of IFIP INTERACT’99:
Human-Computer Interaction, 1999.

[THE02] Thevenin, D., and Coutaz, J. Adaptation des IHM: taxonomies
et archi. logicielle, In Proceedings of the 14th French-Speaking Con-
ference on Human-Computer interaction (Conférence Francophone Sur
l’interaction Homme-Machine) (Poitiers, France). M. Beaudouin-Lafon,
ED. IHM’02, vol. 32, ACM Press, New York, pp. 207-210, November
26-29, 2002.

[TUL08] Tullis, T., and Albert, B. Measuring The User Experience, Col-
lecting, Analyzing, and Presenting Usability Metrics, Morgan Kaufmann
Publishers, San Francisco, 2008.

212 BIBLIOGRAPHY

[VAN08] Vanacken, D., Demeure, A., Luyten, K., and Coninx, K. Ghosts
in the Interface: Meta-user Interface Visualizations as Guides for Multi-
touch Interaction, In Proceedings of IEEE International Workshop on
Horizontal Interactive Human Computer System, TABLETOP’2008,
IEEE Computer Society Press, Los Alamitos, pp. 87-90, 2008.

[VDD97] Vanderdonckt, J. A Small Knowledge-Based System for Selecting
Interaction Styles, 1997.

[VDD01] Vanderdonckt, J., Furtado, E., Furtado, V., Limbourg, Q., Silva,
W., Rodrigues, D., and Taddeo, L. Multi-model and Multi-level Devel-
opment of User Interfaces, In Multiple User Interfaces - Cross-Platform
Applications and Context-Aware Interfaces, John Wiley & Sons, pp.
193-216, 2001.

[VDD08] Vanderdonckt, J., Calvary, G., Coutaz, J., and Stanciulescu, A.
Multimodality for Plastic User Interfaces: Models, Methods, and Princi-
ples, In Multimodal User Interfaces: Signals and Communication Tech-
nology, Springer, 2008.

[VDD08B] Vanderdonckt, J., Mendonca, H., and Molina, J.-P. Distributed
User Interfaces in Ambient Environment, In Proceeding of AmI 2007
Workshop, 2008.

[VDD10] Vanderdonckt, J. Distributed User Interfaces: How to Distribute
User Interface Elements across Users, Platforms, and Environments, In
Proceedings of the XIth Congreso Internacional de Interaccion Persona-
Ordenador Interaccion’2010 (Valencia, Spain), AIPO, Valencia, pp. 3-14,
September 7-10, 2010.

[VDH05] Vanderhulst, G., Dynamic Distributed User Interfaces: Support-
ing Mobile Interaction Spaces, (Thesis), 2005

[VDH07] Vanderhulst, G., Luyten, K., and Coninx, K. Middleware for Ubiq-
uitous Service-oriented Spaces on the Web, 2007.

[VDH08] Vanderhulst, G., Luyten, K., and Coninx, K. ReWiRe: Designing
Reactive Systems for Pervasive Environments, 2008.

[VDH08B] Vanderhulst, G., Luyten, K., and Coninx, K. ReWiRe: Creating
Interactive Pervasive Systems that cope with Changing Environments
by Rewiring, In Proceedings of the 4th IET International Conference on
Intelligence Environment (IE’08), pp. 1-8, 2008.

[VDH08C] Vanderhulst, G., Luyten, K., and Coninx, K. Put the User in
Control: Ontology-driven Meta-level Interaction for Pervasive Environ-
ments, In the First International Workshop on Ontologies in Interactive
Systems, 2008.

BIBLIOGRAPHY 213

[VDH09] Vanderhulst, G., Schreiber, D., Luyten, K., Muhlhauser, M., and
Coninx, K. Edit, Inspect and Connect your Surroundings: A Reference
Framework for Meta-UIs, In Proceedings of 1st Symposium on Engineer-
ing Interactive Computing Systems, EICS’2009, ACM Press, New York,
pp. 167-175, 2009.

[VDH09B] Vanderhulst, G., Luyten, K., and Coninx, K. Photo-Based User
Interfaces: Picture It, Tag It, Use It, In OTM 2009 Workshop, 2009.

[VDH10] Vanderhulst, G., Luyten, K., and Coninx, K. Pervasive Maps:
Explore and Interact with Pervasive Environments, 2009.

[VDH10B] Vanderhulst, G., Luyten, K., and Coninx, K. SemSon: Connect-
ing Ontologies and Web Applications, In Proceeding of the 6th Inter-
national Conference on Web Information Systems and Techonologies,
WEBIST 2010, pp. 163-166, 2010.

[VDH10C] Vanderhulst, G., Luyten, K., and Coninx, K. On a Journey from
Message to Observable Pervasive Application, In the International Con-
ference on Complex, Intelligent and Software Intensive Systems, 2010.

[VDV04] Vandervelpen, C., and Coninx, K. Towards model-based design
support for distributed user interfaces, In Proceedings of the Third
Nordic Conference on Human-Computer interaction (Tampere, Finland),
NordiCHI’04, vol. 82, ACM Press, New York, pp. 61-70, October 23-27,
2004.

[VDV05] Vandervelpen, C., Vanderhulst, G., Luyten, K., and Coninx, K.
Light-Weight Distributed Web Interfaces: Preparing the Web for Het-
erogeneous Environments, In Proceedings of the 5th International Con-
ference on Web Engineering ICWE’2005 (Sydney, Australia), Springer,
Berlin, pp. 197-202, July 27-29, 2005.

[VDV05B] Vandervelpen, C., Vanderhulst, G., Luyten, K., and Coninx, K.
Light-Weight Distributed Web Interfaces: Preparing the Web for Het-
erogeneous Environments, In Proceedings of the 5th International Con-
ference on Web Engineering ICWE’2005 (Sydney, Australia), Springer,
Berlin, 2005.

[VERN99] Vernier, F., and Nigay, L. Interfaces Multimodales: Composition
et Caractérisation des Modalités de Sortie 1999 ou 2000.

[VERN00] Vernier, F., and Nigay, L. Espace de Conception pour les Inter-
faces Multimodales, In Colloque sur les modalités, Mai, 2000.

[VIL11] Villanueva, P.G., Tesoriero, R., Sebastin, G., and Gallud, J.A. Us-
ing Multi-touch Technologies to Perform Collaborative Map Exploration,

214 BIBLIOGRAPHY

In Proceedings of CHI2011 workshop on DUI, ACM Press, New York,
pp. 57-60, May 7-12, 2011.

[VS] http://www.microsoft.com/visualstudio

[VMDE13] Developer Economics Q3 2013,
http://www.developereconomics.com/reports/q3-2013/, 2013.

[VRA03] Vrazalic, L. Evaluating Distributed Usability: the role of user in-
terfaces in an activity systems, Australasian Journal of Information Sys-
tems, Vol.11, No 1, 2003.

[VRO03] Van Roy, P., and Haridi, S. Concepts, Techniques, and Models of
Computer Programming, MIT Press, Cambridge, 2004.

[WAG08] Wagelaar, D. Platform Ontologies for the Model-Driven Architec-
ture, Thesis, 2008.

[WEIN10] Weingarten, F., Blumendorf, M., and Albayrak, S. Towards mul-
timodal interaction in smart home environments: the home operating
system, In Proceedings of the 8th ACM Conference on Designing Inter-
active Systems (DIS ’10), ACM, New York, NY, USA, pp. 430-433, 2010.
DOI=10.1145/1858171.1858255
http://doi.acm.org/10.1145/1858171.1858255

[WEIS99] Weiser, M.
The computer for the 21st century.
SIGMOBILE Mob. Comput. Commun. Rev. 3, pp. 3-11, July 3, 1999.
DOI=10.1145/329124.329126
http://doi.acm.org/10.1145/329124.329126

[WEIS03] Weiser, M. The Computer for the Twenty-First Century, Scien-
tific American, Vol. 265, No. 3., ACM Press, New York, pp. 94-104,
2003.

[WOL10] Wolff, A., and Forbrig, P. Model-driven User Interface Devel-
opment with the Eclipse Modeling Project, In Proceedings of MD-
DAUI2010 & CHI2010, pp. 49-52, 2010.

[WUR09] Wurdel, M., Burghardt, C., and Forbrig, P. Making Task Model-
ing Suitable for Smart Environments, 2009.

[Xbox SmartGlass] Xbox SmartGlass, http://www.xbox.com/smartglass,
Last visited on January 11, 2015.

[XIA09] Xiaojun, B., and Balakrishnan, R. Comparing Usage of a Large
High-Resolution Display to Single or Dual Desktop Displays for Daily
Work, In Proceedings of the 27th International Conference on Human

BIBLIOGRAPHY 215

factors in Computing Systems CHI’09 (Boston, USA), ACM Press, New
York, pp. 1005-1014, April 4-9, 2009.

[YAN08] Yanagida, T., and Nonaka, H. Architecture for Migratory Adap-
tive User Interfaces, In Proceedings of the 8th IEEE International Con-
ference on Computer and Information Technology CIT’2008 (Sydney,
Australia), pp. 450-455, July 8-11, 2008.

[ZAI06] Zaidenberg, S., Brdiczka, O., Reignier, P., and Crowley, J.L. Learn-
ing context models for the recognition of scenarios, FIP International
Federation for Information Processing of Artificial Intelligence Applica-
tions and Innovations, pp. 86-97, 2006.

[ZHA10] Zhang, G. Aspect-Oriented UI Modeling with State Machines, In
Proceedings of MDDAUI2010 & CHI2010, pp. 45-48, 2010.

[ZOL11] Zöllner, M., Jetter, H.-C., Reiterer, H., ZOIL: A Design Paradigm
and Software Framework for Post-WIMP Distributed User Interfaces,
In Distributed User Interfaces: Designing Interfaces for the Distributed
Ecosystem, Human-Computer Interaction Series, Springer-Verlag, Lon-
don, pp. 87-94, 2011. DOI 10.1007/978-1-4471-2271-5 10

