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École Polytechnique de Louvain
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“Loving a baby is a circular business, a kind of feedback loop. The more you give the more

you get and the more you get the more you feel like giving.”

Dr. Penelope Leach

“A president on a feedback loop”

George W. Bush
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quitté il y a 20 ans.
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Chapter 1

Introduction

The idea of automatic computing is not new. In 2001, an IBM manifesto described “a

looming software complexity crisis” as the “main obstacle to further progress in the IT

industry”.[1]

“Systems manage themselves according to an administrator’s goals. New com-

ponents integrate as effortlessly as a new cell establishes itself in the human body.

These ideas are not science fiction, but elements of the grand challenge to create

self-managing computing system. [...] As systems become more interconnected

and diverse, architects are less able to anticipate and design interactions among

components, leaving such issues to be dealt with at runtime. Soon systems will

become too massive and complex for even the most skilled system integrators

to install, configure, optimize, maintain, and merge. And there will be no way

to make timely, decisive responses to the rapid stream of changing and conflict-

ing demands. The only option remaining is automatic computing – computing

systems that can manage themselves given high-level objectives from adminis-

trators.” [2]

1
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1.1 The SELFMAN project

The SELFMAN project[3] – Self Management for Large-Scale Distributed Systems based on

Structured Overlay Networks and Components – is an IST project launched in June 2006

to build self-managing applications on the internet based on peer-to-peer technology, whose

aim is to build internet applications that do not break and that do not need a team of

specialists to keep them running. This project uses two technologies: structured overlay

networks (SONs) and advanced components models. SONs are “peer-to-peer systems that

provide robustness, scalability, communication guarantees, and efficiency”.[4] On the other

hand, “component models provide a framework to extend the self-managing properties of

SONs over the whole application”.[4]

1.2 Self-management

Self-management is the core of autonomic computing. That is, systems that can manage

themselves following some rules defined by an administrator. Four main characteristics or

aspects can be used to define self-management (see below). All four self-* characteristics

have been approached in the SELFMAN project. In [5], guidelines for building self-managing

applications have been drawn up. These guidelines include tips to make applications self-

tuning (self-optimising), self-protecting, self-healing, and self-configuring.

1.2.1 Self-configuration

The basic idea is that adding a new component to an existing system can be extremely

complex and error-prone. Self-configuration can allow a component to be aware of the

existing environment and to adapt itself to it. The system must also become accustomed to

this new presence. This incorporation of a new component follows high-level policies that

can be related to business objectives, for example.

Figure 1.1, taken from [6], represents the self-configuration control loop used in YASS (see

[6] for more details). In this case, YASS has to maintain its total storage capacity and

total free space to meet functional requirements (policies). This control loop consists of

three elements: a Component Load Watcher (CLW), a Storage Aggregator (SA), and a

Storage Manager (SM).

CLW receives information from the sensors about the storage group in order to evaluate the

free space available. If a change in this value is greater than a certain delta value, CLW

triggers an event understandable by SA. SA also receives information from the sensors, that is,
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Figure 1.1: Self-configuration control loop

’fail’, ’leave’, and ’join’ events. SA also has the responsibility to warn SM if the total capacity

or the total free space drops below a predefined threshold. Whenever SM receives an event

from SA about the problem, it allocates more resources and deploys storage components on

these resources.

Self-configuration is thus an “automated configuration of components and systems that

follows high-level policies. The rest of the system adjusts automatically and seamlessly”.[2]

1.2.2 Self-healing

Automatic computing systems use their knowledge to detect, diagnose, and repair problems

from bugs or failures. The self-healing characteristic consists thus of agents that monitor

log files or data from the system, compare it with their knowledge about problems, and

if necessary, apply known solutions to the problem or warn an administrator if no solution

exists for this problem.

Figure 1.2, taken from [6], depicts the self-healing configuration used in YASS. This self-

management characteristic is used for maintaining a certain degree of replication of files.

This self-healing control loop consists of two agents: a File Replica Aggregator (FRA)

and a File Replica Manager (FRM).

FRA receives ’fail’ or ’leave’ events from a file group about its members. FRA then warns

FRM about this problem. FRM will then find the corresponding replica of the file that ’fail’

or ’leave’ and will restore the replica.

Self-healing consists of “systems that automatically detect, diagnose, and repair localized

software and hardware problems”.[2]
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Figure 1.2: Self-healing control loop

1.2.3 Self-protection

[2] explains that automatic systems can be self-protective in two possible ways: “they will

defend the system as a whole against large-scale, correlated problems arising from malicious

attacks or cascading failures that remain uncorrected by self-healing measures. They will also

anticipate problems based on early reports from sensors and take steps to avoid or mitigate

them”.

1.2.4 Self-optimisation

Self-optimisation is also called self-tuning. This characteristic is only for software where a

certain number of parameters exists each of these can have multiple values. The optimal

choice for the value of parameters can be very complex and impossible to obtain by hu-

man tuning. By consequence, “automatic systems will continually seek ways to improve

their operation, identifying and seizing opportunities to make themselves more efficient in

performance or cost”.[2]

For example, [6] proposes a self-optimisation control loop used for a File Availability

system. That is, popular files should have more replicas in order to increase their availability

(see Figure 1.6 in Section 1.3.2.3).

1.3 Automatic elements

Automatic systems consists of automatic elements that interact with other automatic ele-

ments.
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1.3.1 Definition

“[Automatic elements are] individual system constituents that contain resources

and deliver services to humans and other automatic elements. Automatic el-

ements will manage their internal behavior and their relationships with other

automatic elements in accordance with policies that humans or other elements

have established”.[2]

Figure 1.3, taken from [2], represents the structure of an automatic element that consists

of one or several managed elements coupled with an ’automatic manager’. An automatic

element is also called a control loop.

Figure 1.3: Structure of an automatic element

The automatic manager, also called the MAPE-loop[7], has five main components (another

feedback structure closely related to the MAPE-loop will be defined and used throughout

this dissertation: ’feedback loops’):

One that monitors the managed element and collects data via aggregation or filtering.

One that analyses the collected data regarding management policies.

One that plans if needed, a set of actions that can be executed and placed in a reaction

plan.

One that executes the plan built in the previous component.

Knowledge that can be used to detect problems and that contains solutions to such

problems.
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1.3.2 Coordinating multiple control loops

An application is composed of multiple control loops that interact with each other. They are

not independent due to the fact that they manage the same system. Interaction has three

possible forms described in [6] and in the following points.

1.3.2.1 Stigmergy

In this case, both control loops explained in the self-healing and self-configuration charac-

teristics are combined. Stigmergy is a kind of communication between agents. One agent

applies a change in the system and this change is perceived by other agents via their sensors.

This perception of change by the others implies more change to come.

For example, one can observe in Figure 1.4, taken from [2], that the Storage Manager plans

to de-allocate (via a ’leave’ command) some resources because the use of storage components

drops (i.e. the total capacity is greater than initial requirements and free space is more than

a predefined ratio). This action will be perceived by the File Replica Manager that will

take further action to move the file components from the leaving resource to other resources.

Figure 1.4: The stigmergy effect

1.3.2.2 Peer-to-Peer Management Interaction

This configuration is the same as in the previous point. When two control loops manage

the same resource, non expected behaviours may occur. These kinds of behaviours may be

avoided if a link exists between the two control loops (see Figure 1.5 taken from [2]). “P2P

management interaction is a way for managers to cooperate to achieve self-management. It

does not mean that a management controls the other”.[6]
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“For example, when a resource fails, the Storage Manager may detect that more storage

is needed and start allocating resources and deploying storage components. Meanwhile the

File Replica Manager will be restoring the files that were on the failed resource. It might

fail in restoring the files due to space shortage since the Storage Manager did not have

time to finish. This may also prevent the user temporary from storing files.

If the File Replica Manager waited for the Storage Manager to finish, this problem

could be avoided. [...] Before restoring files, the File Replica Manager informs the

Store Manager with the amount of storage it needs to restore files. The Storage Manager

checks available storage and informs the File Replica Manager that it can proceed if

enough space is available or ask to wait until more storage is allocated”.[6]

Figure 1.5: Peer-to-Peer management interaction

1.3.2.3 Hierarchical Management

In this case, control loops can be embedded in other control loops as a resource. For

example, the control loop used for self-optimisation (Figure 1.6 taken from [2]) consists

of a File Access Watcher (FAW) and a File Availability Manager (FAM). “FAW

monitors the file access frequency. If a file is popular and accessed frequently then it issues

a ’frequency change’ event. The FAM may decide to increase the value of the replication

degree parameter in the File Replica Manager that will start storing more replicas and

then maintaining the new replication degree”.
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Figure 1.6: Hierarchical Management

1.4 What’s next?

After this introduction to the state of the art in self-management applications, we need to

introduce the content of this dissertation.

“A self-managing application consists of a set of interacting feedback loops. Each

of these loops continuously observes part of the system, calculates a correction,

and then applies the correction. Each feedback loop can be designed separately

using control theory or discrete systems theory. This works well for feedback

loops that are independent. If the feedback loops interact, then your design

must take these interactions into account. In a well-designed self-managing

application, the interactions will be small and can be handled by small changes

to each of the participating feedback loops. [...] It can happen that parts of the

self-managing application do not fit into this ’mostly separable single feedback

loops’ structure. [...] In the case where the feedback loop structure consists

of more than one loop intimately tied together, the global behavior must be

determined by analyzing the structure as a whole and not trying to analyze each

loop separately. To our knowledge, no general methodology for doing this exists.

We have made progress on two fronts: design rules for feedback structures and

patterns for common feedback structures. [...] We are preparing a comprehensive

survey of feedback loop patterns”.[5]

And this is where my dissertation brings its contribution to the self-management of appli-

cations. My work consists in analysing feedback structures from widely different disciplines,
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such as management, biology, etc. This analysis tries to extract feedback patterns and de-

sign rules to help the design of self-managing applications. These patterns and rules may

help developers to find solutions to unexpected behaviours and may give tips to designers

who are building feedback structures.

The structure of this dissertation is as follows:

• Chapter 2 presents general information about system dynamics and systemic feedback.

Applications evolve over time, therefore dynamic behaviours and diagramming repre-

sentation of feedback structures must be introduced. A modelling methodology is also

introduced to help modellers to create models of the system being studied.

• Chapter 3 gives the basis of feedback systems. One-loop and two-loop systems are

presented alongside their behaviour. A proposition for the decomposition of large

systems is also introduced. This chapter provides building blocks that can be combined

to obtain global behaviour patterns presented in Chapter 4.

• Chapter 4 depicts more complex feedback structures that are mostly used in System

Thinking to solve problems encountered in organisations. These patterns are explained

in detail with structure diagrams and possible behaviours.

• Chapter 5 presents the simulator that was developed to simulate feedback structures

presented in Chapters 3 and 4. This simulator uses two different approaches: one

based on a synchronous engine and one based on an asynchronous engine.

• Chapter 6 gives some results from simulations produced by the simulator explained in

Chapter 5. These results are interesting cases that are described in this chapter.

• Chapter 7 is the conclusion of this dissertation. Several applications of the feedback

structures and design rules observed in a wider variety of domains than the field com-

puter sciences domain are given.

• Appendix A presents examples related to the feedback patterns presented in Chapter

4.

• Appendix B gives examples of several feedback structures that are examples of the

feedback building blocks presented in Chapter 3 but with more loops that intensify the

effect of regulation for example.

• Appendix C lists the code used to build the engines of the simulator defined in Chapter

5.

• Appendix D contains all the simulations carried out by the simulator for different

models described in Chapters 3 and 4.





Chapter 2

System dynamics and systemic

feedback

2.1 System dynamics

“System dynamics is an approach to understanding the behaviour of complex systems over

time. It deals with feedback loops and time delays that affect the behaviour of the entire

system.”[8]

The definition given above contains important notions such as “complex systems”, “time”,

“feedback loop”, “delay”, and “behaviour”. These notions will be explained in the following

sections. They are very important and must be understood in order to follow the rest of this

dissertation.

Dynamic: change over time

System: “collection of interrelated elements, forming a meaningful whole” [9]

Complex: dynamic systems are complex especially in the case of non-linear feedback systems

involving human actors. But the complexity of a dynamic system comes from a list of

reasons [9, 10] (see below).

Here is a non exhaustive list of reasons why a dynamic system can be complex:

Dynamics: as opposed to static systems, elements in a dynamic system change over time

due to their interaction with other elements. These changes are not always predictable.

Changes also occur in different time scales that may interact: for example, a star

11
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evolves over billions of years burning its fuels but it explodes in seconds as a supernova.

Finally, time delays between the cause and the effect and between actions and reactions

exist.

Tight coupling: “everything is connected to everything else”. Actors in a system interact

with other actors and with their environment.

Feedback: due to the tight coupling between actors of a system, actions from an actor

influence the world, changing the nature and triggering other actors to react. Thus,

multiple feedback loops may interact together and mental simulation of such configu-

ration may be very difficult to predict intuitively.

Non-linearity: the effect of an action on a variable may not be proportional to the action

taken. That is, the same action may not have the same effect one a range as it may on

another range. For example, comparing the effect of doubling the amount of money

spent on the advertising campaign on two products A and B: the effect of this increase

may produce an increase of 20% for product A that costs 100 euros but produce an

increase of only 5% for product B that costs 200 euros. Non-linearity is very hard to

predict intuitively but also mathematically.

History-dependency: some actions may not be reversible and can have dramatic effects on

a system.

Self-organisation: “The dynamics of systems arise spontaneously from their internal struc-

ture. Often, small, random perturbations are amplified and modelled by internal feed-

back structures, generating patterns in space and time”.[10]

Scale: non-linearity is not always associated with effect, this notion also co-exists with the

notion of scale. The complexity of a system is non-linear with regards to the number

of elements in a system.

Human dimension: this dimension makes the system more complex due to the nature of a

human being. Unlike physical laws, the behaviour of human beings is not “constant”.

There are no laws about how human reacts to a phenomenon. The modeller has to

make assumptions about the human behaviour.

Trade-offs: time delays mean that the long-run response is different from the short-run

response. For example, “high leverage policies often cause worse-before-better be-

haviour, while low leverage policies often generate transitory improvement before the

problem grows worse”.[10]

Cause and effect separated in time and space: “in non-linear dynamic feedback models

with several variables, the cause-effect relations become detached in time and space.
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When an action is applied at point A in the model with an expected immediate result

at point B, this result may never be obtained and furthermore, some unintended effect

may be observed at a distant point C, after some significant time delay.”[9]

Counterintuitive: this separation in time and space is counterintuitive to the normal be-

haviour of human beings who try to look for causes near the variables that they want

to observe.

2.2 Systemic feedback or the system dynamics study

In general, system dynamics studies are carried out to discover and understand the causes

of a dynamic problem and to find alternatives in the system to try to eliminate the problem.

To do so, modellers must follow a certain philosophy of modelling, analysis and design

called systemic feedback.[9] This philosophy has a systems theory that combines cybernetics

(developed by Nobert Wiener in 1948 [11]) and feedback control theories (developed by

Gordon S. Brown in 1948 [12]).

This philosophy contains five principles that are explained in the following sub-sections.[9]

2.2.1 Importance of causal relations

This notion of causal relations is opposed to simple correlations. System dynamics studies

differ from simple forecast based on variables that are statistically correlated (this correlation

being non-causal). For example, a negative correlation between rainfall and skin cancer exists,

that is, in regions where it often rains, there is less skin cancer than in regions with sunny

weather. This does not mean that rain does not cause skin cancer.

A causal relation means that “an input variable has some causal influence on the output

variable”. That is, if the cause variable changes, one can expect a change in the effect

variable. But as already mentioned in the reasons why a dynamic system is complex, whether

the change occurs or not, and the nature of the change if it does occur, depend on many

other factors.

2.2.2 Importance of circular causality (feedback causation) over time

The causal relations described in the previous sub-section are one-way relations. The next

step is to identify the dynamics of circular causalities over time, that is, feedback loops. For

example, if it is true that births has a causal influence on population (births → population),

it is also true that, dynamically over time, the population has a causal influence on births.
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In fact, these two relations have no meaning if they are taken statically, that is, at a precise

moment in time. At this precise moment, “births cannot determine population and be

determined by it”.[9] Thus, circular causality is only possible if the time is taken into account.

The notion of “direct causality” is used to express the fact that X→Y, meaning that they

are directly causally related, given the other variables in the model.

2.2.3 Dynamic behaviour pattern orientation

The dynamic behaviour pattern orientation is the contrary of event-orientation. Modellers

have to keep in mind that “dynamic problems are characterised by undesirable performance

patterns, not by one or more isolated events”.[9] These problems need to be analysed and

understood with regards to their past dynamics. If this is not the case, these events seem

to be random and are meaningless.

2.2.4 Internal structure as the main cause of dynamic behaviour

Internal structure as the main cause of dynamic behaviour is also called the endogenous

perspective. As mentioned before, a system is “a collection of interrelated elements, forming

a meaningful whole”. How can this structure be represented? By a causal loop diagram

(see next section). This diagram depicts the causal links and loops between variables. “The

interaction of the feedback loops in a system is the main engine of change for the system:

the structure causes the behaviour of the system”.[9] The importance of this sub-section is

explained in the next section (“Causality”).

2.2.5 Systems perspective

The aim of the system is to have an internal structure with causal links and causal loops that

are large enough so that it has an endogenous aspect. The more external forces influence

the system the more this system is exogenous. But the more the system is endogenous,

the less it is possible to apply correction in order to solve the problem. In general, dynamic

problems arise from the fact that the system structure cannot cope with unfavourable external

conditions. Thus, the dynamic problem is not the fault of one element in the system, but

of the structure of the system itself. The model boundary determination is thus an issue in

the system dynamics methodology.
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2.3 Feedback representation

Two different types of feedback lead to two different representations of diagramming:

Information feedback: this kind of feedback, that is very important when building models,

will lead to the causal loop diagrams where causality between variables is be repre-

sented.

Material feedback: this kind of feedback where “material” flows between stocks leads to

the stock-and-flow diagrams where these stocks, flows and converters are be repre-

sented.

Three kinds of feedback loops are present in systems. The two first ones are described

above, the third one is called monotonic feedback loop where there are quantities but where

no conservation laws about these quantities like in the stock-and-flow systems exist.

In this section, the three kinds of feedback loops will be defined.

2.3.1 Causal loop diagram

Information feedback, causality, positive and negative causal effects, and an general example

will be discussed in this subsection.

2.3.1.1 Causality

Since primary school, pupils are taught that every action has an effect, that is, one event or

cause is related to another event or effect which is the direct consequence of the first event.

This relationship is called causality.[13]

Goals

Situation

Problem Decision Results

Figure 2.1: Event-oriented view of the World

For example, Figure 2.1 taken from [10] represents an “open-loop view of the world that leads

to an event-oriented, reactionary approach to problem solving”. An organisation establishes

goals and compares these goals with the current situation. The difference or gap between
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these two variables creates the problem that the organisation will have to solve by taking

decisions and obtaining results whether they are good or bad.

In real systems however, the actions an organisation takes will have an effect on its future,

thus bringing new problems and new decisions. The left-hand side of Figure 2.2 taken from

[10] shows that the decisions an organisation takes “alter its environment, leading to new

decisions”.

Goals

Decision

Environment

Goals

Decision

Environment

Side effects

Actions of 
others

Goals of 
other agents

Figure 2.2: Feedback view of the World

A more realistic feedback view of the world is depicted in on the right-hand side of Figure 2.2,

where side effects that are often unexpected and actions of others are represented. These

actions and side effects influence the environment of an organisation. The latter has to take

them into account when modelling its system.

2.3.1.2 Positive and negative causal effects and feedback loops

As mentioned in the previous section, x → y means that the variable x has a causal effect

on the variable y. Also, a “feedback loop is a succession of cause-effect relations that start

and end with the same variable”.[9] A feedback loop is positive or negative depending on

the number of negative causal effect arrows in the cycle.

Positive causal effect “A change in x, ceteris paribus, causes y to change in the same

direction”[9] For example Motivation→+Productivity, therefore an increase in the mo-

tivation will influence the productivity in the same direction, which entails an increase

in the productivity. Conversely, a decrease in the motivation will also influence the

productivity in the same direction, which will lead to a decrease in the productivity.

Negative causal effect “A change in x, ceteris paribus, causes y to change in the opposite

direction”[9] For example Frustration→−Studying, therefore an increase in a student’s
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frustration will influence its number of study hours in the opposite direction, which

will lead to a decrease in the number of study hours. Conversely, a decrease in the

frustration will also influence the number of study hours in the opposite direction,

which will entail an increase in the number of hours when the student studies.

Positive feedback loop Zero or an even number of negative causal effects in a cycle means

that the loop is positive (see Figure 2.3).

A

CB

+ +

+

+

Figure 2.3: Positive feedback loop

Negative feedback loop An odd number of negative causal effects in a cycle means that

the loop is negative (see Figure 2.4).

A

CB

+ +

-

-

Figure 2.4: Negative feedback loop

Both positive and negative feedback structures will be described in more details in the next

chapter.

2.3.1.3 Example

Here is another example to understand the difference between the traditional representa-

tion of cause and effect, and the system dynamics representation of causality: the student

performance.

In Figure 2.5 taken from [14], the traditional linear representation of student performance

is depicted. This example is the representation made by educational researchers interested

in student performance in a classroom. This model assumes that the variable Student

Performance does not influence the variable that causes effect on this variable.
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Teacher's perception 
of Student needs

Teacher time 
allocation

Student's perceived 
need for help

Student Performance

Figure 2.5: Traditional representation of student performance

A real world process is likely to have recursive relationships among the variables. System

dynamics modellers will close the loop(s) (see Figure 2.6 also taken from [14]).

In this example, one can observe that the student performance is affected positively (in

the same direction) by the help given by the teacher through the allocation of its time to

help students. This allocation is affected by two variables: the teacher’s perception of the

student’s needs and the student’s need for help. These two variables are in turn influenced

by the student’s performance (if the student’s performance increases, then the teacher’s

perception of this need will decrease and the student’s need for help will also decrease).

Teacher's 
Perception of 

Student Needs

Student's 
Perceived Need 

for Help

Teacher Time 
Allocation

Student's 
Performance

Help Given- -
- -

++

+

+

Figure 2.6: System dynamics feedback loops (non-linear) representation of student per-
formance

The variables affecting the student’s performance from Figure 2.5 are also present in Figure

2.6. The difference resides in the fact that the student’s performance will in turn influence

these variables.

2.3.2 Stock-and-flow diagram

Quantities in a system may be subject to conservation laws, that is, quantities flow from one

stock to another (or from a source to a stock, or from a stock to a sink).
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2.3.2.1 Diagram elements

In Table 2.1 taken from [15], the basic elements used in the stock-and-flow diagramming

system are represented.

Element Representation Description

Stock

A stock is an accumulation over time. It can
serve as a storage device for material, energy,
or information. Contents move through stocks
via inflow and outflow rates. They represent
the state variable in a system and are a func-
tion of past accumulation of flows.

Source/Sink

Sources and sinks indicate that flows come
from or go to somewhere external to the pro-
cess. Their presence means that real-world ac-
cumulations occur outside the boundary of the
modelled system. They represent infinite sup-
plies or repositories that are not specified in
the model.

Flow

Flows are the “actions” in a system. They af-
fect the changes in stocks. Flows may repre-
sent decisions or policy statements. They are
computed as a function of stocks, constants,
and converters.

Converter

Converters help to elaborate the detail of stock
and flow structures. A converter must lie in
an information link that connects a stock to a
flow.

Information link

Information linkages are used to represent in-
formation feedback. Flows, as control mech-
anisms, often require connectors from other
variables (usually stocks or converters) for de-
cision making. Links can represent closed-path
feedback loops between elements.

Table 2.1: Stock-and-flow diagram elements

2.3.2.2 Diagram construction

It is important to start with stock as they are the key variables of the system modelled.

“Stocks represent where accumulation or storage takes place in the system”.[16] To discover
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what variable should be stocked, the modeller has to think of quantities that remain the

same if the flows (in and out) are reduced to zero.

When the stock variables are chosen, the next step is to add flows that are the “actions” of

the system. These flow will influence the stock for the next time step. The modeller also

needs to double check the units used in the model. They should be the same as between

flows and stocks modulo the unit of time. Flow directions are the following: one stock to

another, one stock to a sink, and one source to a stock.

After that, the model will have strong bases but it will need more information. “If the stocks

and flows are the nouns and verbs of a model, then the converters are the adverbs”.[16]

They are, for example, the rates of flows, time, etc. They are information added to describe

flows.

When a well-structured model is built, the final task is to write down equations for the

model. These equations are easy in system dynamics due to the nature of the stock-and-

flow structures (see Example).

2.3.2.3 Example

Here is an example taken from [16]. The stock-and-flow diagram (with the equations) will

be depicted as well as the corresponding causal loop diagram.

Figure 2.7 shows the model for a plot of land where flowers grow and disappear. This area

is limited to a certain number of acres of land that are suitable for flowers. Later in this

dissertation, the behaviour of such a system will be described (see Section 4.2.1).

Figure 2.7: Flowered area: stock-and-flow diagram

A stock “area of flowers” represents the accumulation over time of flowered acres. This

stock will be filled by the growth of new flowers and emptied by the decay of old flowers

(these are the two flows). Further information is represented, such as the fact that the area

is limited, etc.
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Here is the list of equations related to the stock-and-flow diagram depicted in Figure 2.7

taken from [16]:

area_of_flowers(t) = area_of_flowers(t - dt) + (growth - decay) * dt

INIT area_of_flowers = 10.0

INFLOW: growth = area_of_flowers * actual_growth_rate

OUTFLOW: decay = area_of_flowers * decay_rate

actual_growth_rate = intrinsic_growth_rate * growth_rate_multiplier

growth_rate_multiplier = - fraction_occupied + 1.0

fraction_occupied = area_of_flowers / suitable_area

decay_rate = 0.2

intrinsic_growth_rate = 1.0

suitable_area = 1000.0

Figure 2.8 depicts the same model but represented with the causal loop diagramming system

where only information feedback is represented. There are thus less variables than in Figure

2.7. In this case, one can observe the fact that if the area of flowers increases, then the

growth and the decay increases as well but the observer does not know by how many.

area of flowers

growth decay

growth rate decay rate
fraction occupied

suitable area

+ -

-

+ -

++

- -

+

Figure 2.8: Flowered area: causal loop diagram

The difference between the causal loop diagramming (CLD) system and the stock-and-flow

one (SFD) lies in the fact that the CLD’s quantities can increase or decrease, this can be

observed but the exact amount that is put or withdraw from a variable is not visible. The

SFD’s represent this kind of information (material feedback) where one can observe the stock

where material is added via inflows and withdrawn via outflows.

2.3.3 Monotonic feedback loop

Some systems have loops where quantities are represented. These quantities are not subject

to conservation laws like the stock-and-flow systems. But they can be affected by saturation

effects.
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2.3.3.1 Hill equations

Researchers have analysed biological systems consisting of two interacting feedback loops.[17]

One way of modelling non-linear monotonic interactions with saturation effect is to use the

Hill equations. These equations are first-order non-linear differential equations capable of

“modelling time evolution and mutual interaction of molecular concentrations”.[4] Here is

an example of the Hill equations using two molecular concentrations X and Y (taken from

[17]):

dY
dt = VX(X/KXY )H

1+(X/KXY )H −KdY Y +KbY

dX
dt = VY

1+(Y/KY X)H −KdXX +KbX

A description of the above equations and of the following example are taken from [4]: “Here

we assume that X activates Y and that Y inhibits X. The equations model saturation (the

concentration of a molecule has an upper limit) and activation/inhibition with saturation

(one molecule can affect another, up to a certain point). We see that X and Y , when left

to their own, will each asymptotically approach a limit value with a exponentially decaying

difference. Figure 2.9 shows a simplified system where X activates Y but Y does not affect

X. X has a discrete step decrease at t0 and a continuous step increase at t1. Y follows

these changes with a delay and eventually saturates. The constants KdY and KbY model

saturation of Y (and similarly for X). The constants VX , KXY and H model the activation

effect of X on Y . We see that activation and inhibition have upper and lower limits.”

Figure 2.9: Biological system where X activates Y

2.3.3.2 Example

In this example, taken from [4], molecule concentrations are subject to saturation. One can

observe in Figure 2.10 that the diagramming convention is the same as for the causal loop

diagrams because there is no need to represent stocks and flows.
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Figure 2.10: The hypothalamus-pituitarytarget organ axis

“The system contains two superimposed groups of negative feedback loops going through

the target tissues and back to the hypothalamus and anterior pituitary. A third short negative

loop from the anterior pituitary to the hypothalamus, and a fourth loop from the central

nervous system.

The hypothalamus and anterior pituitary act as master controls for a large set of other regu-

latory loops. Furthermore, the nervous system affects these loops through the hypothalamus.

This gives a time scale effect since the hormonal loops are slow and the nervous system is

fast. Letting it affect the hormonal loops helps to react quickly to external events.”[4]

2.4 Modelling methodology

Most of the time, models are created to first simulate an existing system and then to observe

what the behaviour of the system is if a change is applied to it (if the study is about a dynamic

problem, the aim of studying the change in the behaviour of the system is to try to solve

the problem). In this section, an eight-step modelling approach will be described. This

approach comes from three articles [9, 15, 16] that have been put together to build it. The

contribution of each article is mentioned in the corresponding points.

This methodology is partially done in group sessions where experts from the domain, systemic

experts, and facilitators work together in order to develop the model. These are standard

steps, variations may appear due to the nature of the problem. The modelling process is also

iterative: a step might sometimes not be completely finished when the system modeller goes
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to the next one. Thanks to the new ideas that emerge in the following steps, the modeller

may go back to previous steps to change certain things, and so on.

This process is also specific for models where a stock-and-flow diagram can be built, that

is the quantitative representation of a given system. Other kinds of models exist (described

in previous sections) where quantities are neither preserved through the process nor is it

possible to monitor them over time. Thus, some of the steps have to be adapted to the kind

of system that the modeller wants to study.

2.4.1 Problem identification

The first step to be taken by a system modeller is to get acquainted with the system [16].

For example, a company asks a system modeller to model the system that is working in this

company but that is not performing well, in order to find a solution to their problems. The

model expert will first be introduced to the company and will then observe the behaviour of

the surrounding environment. This person will analyse how people communicate with each

other, how the system performs and why the company is performing poorly. The expert will

also study the proposals that were made to solve the problem and why they did not work.

If some dynamic data about the company exists, it might be interesting to try to plot the

data to observe the behaviour.

Being specific about the dynamic problem is very important. Once the modeller has observed

the system, he/she can draw what is called a reference mode [9, 16] where the time is

represented on the horizontal axis and where an important variable is represented on the

vertical axis. The time horizon should be long enough to represent the dynamic behaviour

that summarises the problem. This graph should be recognised by the members of the

organisation. This behaviour will probably correspond to one pattern described in the next

chapters or maybe to the combination of two or more of these patterns.

Here is a summary of some sub-steps taken from [9]:

• Plot all the available dynamic data and examine the dynamic behaviours.

• Determine the time horizon (into the future and into the past) and basic time unit of

the problem.

• Determine the reference dynamic behaviour: What are the basic patterns of key vari-

ables? What is suggested by data and what is hypothesised if there is no data? What

is expected in the future?
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• Write down a specific, precise statement of what the dynamic problem is and how the

study is expected to contribute to the analysis and solution of the problem. Keep in

mind that this purpose statement will guide all the other steps that will follow.

2.4.2 Model conceptualisation and dynamic hypothesis

The second step consists in developing hypotheses to explain the causes behind the prob-

lematic dynamics also called the conceptual model [9]:

• Examine the real problem and/or the relevant theoretical information in the literature.

• List all variables playing a potential role in the creation of the dynamics of concern.

• Identify the major causal effects and feedback loops between these variables.

• Construct an initial causal loop diagram and explore alternative hypotheses.

• Add and drop variables as necessary and fine-tune the causal loop diagram.

• Identify the main stock and flows variables.

• Finalise a dynamic hypothesis as a concrete basis for formal model construction.

2.4.3 Formal model construction

Once the causal loop diagram is built with sufficient confidence, and that the main stocks

and flows are spotted, then the modeller can construct the stock-and-flow diagram and find

the equations describing the cause-effect relations for all variables.

Depending on the modeller, the two previous steps can be interchanged. Some people have

difficulties in describing a system with words and arrows like in the causal loop diagrams

but work more easily with stocks and flows. The modelling methodology described in [9]

recommends starting with the causal loop diagram and deriving the stock-and-flow diagram

from the first one. On the other hand, [16] starts with the stock-and-flow diagram and

explains in another chapter how to translate a stock-and-flow diagram into a causal loop

diagram.

2.4.4 Estimation of the parameter values

Once the modeller has established the equation of the model, he/she has to estimate the

values of the parameters and the initial value of stocks. In order to do so, the expert can
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look into the existing data to find some coherent values, but sometimes this data does not

exist and the modeller has to estimate it.

Generally, if the data does not exist, the expert will test the model with some initial values

and try to find the ones that correspond the best to the hypotheses made earlier. In fact,

what is important here is to move step-by-step in the estimation via the information spectrum

[16] (see Table 2.2):

physical controlled uncontrolled social social expert personal
laws physical physical system system judgement intuition

experiments experiments data cases

Table 2.2: The information spectrum

2.4.5 Model credibility testing

This step is an important one in order to confirm that model is a coherent representation of

the real problem with respect to the study purpose. In [9], two kinds of credibility tests are

described:

Structural: Is the structure of the model a meaningful description of the real relations that

exist in the problem of interest? For example, the modeller can ask experts to evaluate

the model structure, the dimensional consistency with realistic parameter definitions

and the robustness of each equation under extreme conditions.

Behavioural: Are the dynamic patterns generated by the model close enough to the real

dynamic patterns of interest? These tests are designed to compare the major pattern

components in the model behaviour with the pattern components in the real behaviour.

For example, one can examine the slopes, maxima, minima, periods and amplitudes of

oscillations, inflection points, etc.

One has to keep in mind that if the structure of the model is not validated, then the

behaviour validity is meaningless and the comparison between the behaviour of the model

and the behaviour of the reality is not a point-to-point comparison but a pattern comparison.

If the results of the simulation do not match the reality, it is necessary to go back to previous

steps to redefine some parts of the diagrams.
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2.4.6 Sensitivity analyses

The tests that are run in this step try to make the modeller understand the important

dynamic properties of the system. Tests with different values for the main parameters are

conducted in order to learn whether the basic pattern of results is “sensitive” to changes in

the uncertain parameters. The aim is to obtain the reference mode after each test, in this

case the model can be called robust, that is, ”when it generates the same general pattern

despite the great uncertainty in parameter values”.[16]

But if the model is not robust, the modeller needs to go back to the estimation of values

for the parameters of the system.

2.4.7 Impact of policies testing

Now that the model is fully tested and the properties are understood, the modeller may try

alternative policies in order to possibly improve the dynamics of the system. “A policy is a

decision rule, a general way of making decisions”.[9] Thus the modeller can test alternative

policies, and if they produce interesting results, then the modeller might go to the previous

step and run sensitivity tests on the policies. These policies can, in a certain way, improve

the design of the model.

“How can experts know when a simulation is good or bad?” This question can be answered

by [16]:

“A system dynamics model may be used to simulate changes in dynamic behaviour due to

a change in policy. The question of whether the simulated changes are good or bad is not

amenable to system dynamics analysis. Such questions are best addressed with evaluation

tools from the field of decision analysis. Formal evaluation tools are designed to reveal trade-

offs between competing goals and the possibility that different groups may assign entirely

different priorities to the goals.”

2.4.8 Model validation

One may wonder whether the model that he/she has built is valid and may want to prove

that it is valid. This sub-section will discuss model validation and propose concrete tests to

build confidence in the model.[16]
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2.4.8.1 Validity or usefulness?

Once a modeller has gone through all the steps described in the previous sub-sections, and

the model has generated the expected behaviour, as depicted in the reference model, and

that he/she has also found policies that can improve the system, then the expert is faced

with one remaining question: “Can you prove the model is valid?”.

The fact that the modeller uses formal mathematical methods with sophisticated software

and fast computers might give the impression that the model is the perfect match with the

reality. But the problem is always the same: “models are simplifications of the system under

study”.[16] The question should be “Is the model useful?”. What can the expert do? Specify

the purpose of the model and alternative ways to achieve this purpose. This is therefore no

longer about validation but rather about building confidence in the new model.

2.4.8.2 Concrete tests to build confidence

This point describes five tests that deserve some attention[16] and then three tables that are

presented with a non exhaustive summary of all possible validation tests. They consider the

model’s suitability for purpose, consistency with reality, utility and effectiveness from both

structural and behavioural perspectives.[15]

Verification: “A model may be verified when it is run in an independent manner to learn

if the results match the published results. The goal is simply to learn if the computer

model runs as intended”.[16] What the modeller can do is to give his/her model to

another modelling group and ask them to run it. If the results correspond, then the

model can be flagged as verified. But the task can sometimes be complicated by the

fact that there is no documentation or because the model is too large.

Face validity: This test is the simplest one to carry out. It consists in verifying the structure

and the parameter values. For example, an arrow pointing in the wrong direction or

a parameter that is negative and must be positive, etc. This is common sense but in

large organisations, models can be so large that no one carries out these face validity

tests.

Historical behaviour: Sometimes when a modeller models a system where historical data

is available, a test to build confidence in the model he/she is building is to set inputs

of the model to their historical values and observe whether the output matches the

historical behaviour.

Extreme behaviour: This test consists in making major changes in model parameters and

observing whether the response is plausible.
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Detailed model check: “If the modeller is working on an important topic within a large

organisation, it is quite possible that there are several models describing different

aspects of the system. In some cases, the other models may provide a more detailed

and accurate representation of some aspect of the system. If it is true, the modeller

should take advantage of these models and provide benchmark simulations that may

be used to check his/her own model.”[16]

Table 2.3: Model validation tests - suitability for purpose

Focus Test Passing Criteria

Structure Dimensional consistency Variable dimensions agree with the computation
using right units, ensuring that the model is
properly balanced

Extreme conditions in Model equations make sense using extreme
equations values

Boundary adequacy Model structure contains variables and
Important variables feedback effects for purpose of study
Policy levers

Behaviour Parameter (in)sensitivity
Behaviour characteristics Model behaviour sensitive to reasonable

variations in parameters

Policy conclusions Policy conclusions sensitive to reasonable
variations in parameters

Structural (in)sensitivity
Behaviour characteristics Model behaviour sensitive to reasonable

alternative structures

Policy conclusions Policy conclusions sensitive to reasonable
alternative structures
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Table 2.4: Model validation tests - utility and effectiveness of a suitable model

Focus Test Passing Criteria

Structure Appropriateness of model Model simplicity, complexity and size
characteristics for audience is appropriate for audience
Size
Simplicity / complexity
Aggregation / detail

Behaviour Counterintuitive behaviour Model exhibits seemingly counterintuitive
behaviour in response to some policies
but is eventually seen as implication of
real system structure

Generation of insights Model is capable of generating new
insights about system



Chapter 2. Systemic feedback and system dynamics 31

Table 2.5: Model validation tests - consistency with reality

Focus Test Passing Criteria

Structure Face validity Model structure resembles real system to
Rates and levels persons familiar with system
Information feedback
Delays

Parameter values Parameters recognisable in real system and
Conceptual fit values are consistent with best available
Numerical fit information about real system

Behaviour Replication of reference Model endogenously reproduces reference
modes (boundary adequacy behaviour modes that initially defined,
for behaviour) the study including problematic behaviour,
Problem behaviour observed responses to past policies and
Past policies conceptually anticipated behaviour
Anticipated behaviour

Surprise behaviour Model produces unexpected behaviour under
certain test conditions: (1) model identifies
possible behaviour, (2) model is incorrect and
must be revised

Extreme conditions Model behaves well under extreme conditions or
simulation policies, showing that formulation is sensible

Statistical tests Model output behaves statistically with
Time series analyses real system data; shows same characteristics
Correlation and regression





Chapter 3

Feedback systems - building blocks

Introduction

Whenever a system changes, inputs and outputs are always present. The inputs reflect the

influence of the environment on the system, and the outputs reflect the influence of the

system on the environment. Inputs and outputs are separated by time, as in before and

after.

SYSTEM

FEEDBACK

INPUT OUTPUT

Figure 3.1: A system with feedback

But, if the output (the information about the change of the system) is sent back to the

system as an input, we can call this kind of loop a feedback loop.

In this chapter, basic ideas about feedback loops such as negative and positive feedback

loops, coupling, management, stigmergy, dominant loop shift, etc. will be discussed.

33
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3.1 Single loop systems

In this section, three types of single feedback loops, and some features like delays and

oscillation will be described.

3.1.1 Feedback loop

A feedback loop consists of three elements that interact together with a subsystem (see

Figure 3.2): [18]

• Monitoring agent: monitors the state of the subsystem and sends this information

to the “calculating agent”.

• Calculating agent: calculates a corrective action to apply to the system and sends

this correction to the actuating agent.

• Actuating agent: applies the corrective action to the subsystem.

Actuating agent

Calculating agent

Monitoring agent

Subsystem

Figure 3.2: Basic structure of a feedback loop

Not all feedback loops that can be observed have the same structure as this one, especially

in system dynamics where we only have variables.

3.1.2 Reactive loop versus proactive loop

Two ways of ’triggering’ a loop exist: a loop can respond to an event (stimulus) or a loop

can anticipate this event (stimulus) and triggers itself.

A reactive loop reacts to an event triggered by the system. Examples of such configurations

have been defined in Section 1.2. For example, in the self-healing case, the sensors detect

’failure’ or ’leave’ events from a file group in the resource (events are triggered). The

File Replica Aggregator receives these events and creates another event that will be
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perceived by the File Replica Manager. This component will take actions according to

the event. Thus, the ’failure’ or the ’leave’ event from a file group triggers a chain reaction.

A proactive loop has an extra agent that anticipates events. That is, instead of receiving an

event, this agent can query the state of the resource and if necessary create events for the next

agent. Figure 3.3, taken from [6], depicts an example where a proactive manager is described.

In this example, the Load Balancing Manager queries the Storage Aggregator every x

minutes to know the most and least loaded storage components. When the manager receives

the answer from the other agent, it can act and move files if this is deemed necessary (i.e.

from the most to the least loaded component).

Figure 3.3: A proactive monitor

3.1.3 Positive feedback loop

When the feedback is reintroduced into the system as new data, if this data facilitates and

accelerates the transformation in the same direction as the previous change, then the loop

is called a positive feedback loop.

In system dynamics, if the algebraic product of all signs of all the cause-effect relations that

start and end with the same variable is positive, then the loop is positive or compouding or

reinforcing.

Births Population
+

+
+

Figure 3.4: Births: a single positive feedback loop (CLD)



Chapter 3. Feedback systems - building blocks 36

In Figure 3.4 taken from [9], one can observe that more births means a higher population,

which in turn means more births and then an increase in the population, and so on. This

loop creates an exponentially growing population. This example is not realistic on its own,

the stable state of this system would be an infinite population. We will discuss the same

example later, coupled with other examples to build a more realistic system.

Figure 3.5: Births: a single positive feedback loop (SFD)

The similarity between the two kinds of representations is very clear. Figure 3.4 represents the

qualitative aspect of the system whilst Figure 3.5 depicts the quantitative aspect. The only

difference between these two diagrams is the presence of Birth fraction in the stock-and-

flow diagram. In fact this notion of “what is the percentage of new arrivals in the population

at time t+1” is implicit in the the causal loop diagram.
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Figure 3.6: Births: a single positive feedback loop (Behaviour)

This model was tested with an initial population of 100 people and a percentage of newborns

equal to 6% over a period of 25 cycles. The results are plotted in Figure 3.6 where the real

behaviour of a positive linear feedback loop can be observed, that is, an exponential growth.

But not all positive feedback loops have the same behaviour, some can create exponential

decay. For example, if we consider the value of a stock in a stock market and the fact that

a critical value for this stock exists (below this value, people sell this stock). So, the more

the value drops, the more people sell, the more it drops, and so on. This behaviour is called

crash or collapse or vicious loop.[9]
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Some studies in cellular networks [17] have shown that a positive feedback loop tends to

slow down the response to a stimulus. That is, it does not help to make instantaneous

decisions for critical or lethal decisions but it helps to avoid careless decisions. Thus, one

other possible utility of a positive feedback loop is to make good decisions.

3.1.4 Negative feedback loop

When the feedback is reintroduced into the system as new data, if this data produces a

result in the opposite direction to the previous change, then the loop is called a negative

feedback loop.

In system dynamics, if the algebraic product of all the signs of all the cause-effect relations

that start and end with the same variable is negative, then the loop is negative or balancing

or goal-seeking.

Population Deaths

-

+
-

Figure 3.7: Deaths: a single negative feedback loop (CLD)

In Figure 3.7 taken from [9], one can observe that more deaths means a lower population,

which means more deaths and then even less population, and so on. This loop creates an

exponential decay of the population. This example is also not realistic as the stable point

would be a zero-population. A more realistic example will be discussed later.

Figure 3.8: Deaths: a single negative feedback loop (SFD)

As has already been seen in the previous point, there is no great difference between the

causal loop (Figure 3.7) diagram and the stock-and-flow (Figure 3.8) diagram, except for

the Death fraction, which is once more implicit in the CLD.
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This model was tested with an initial population of 300 people and a percentage of deaths of

6% over a period of 25 cycles. The results are plotted in Figure 3.9 where the real behaviour

of a negative linear feedback loop can be observed, that is, an exponential decay.
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Figure 3.9: Deaths: a single negative feedback loop (Behaviour)

Another typical example of a negative feedback loop is the regulation of the temperature in

a room with a thermostat.[9] The desired temperature is entered into the thermostat. If it is

cooler in the room, then the thermostat will activate the heating system. If it is hotter, then

it will activate the cooling system. The resulting behaviour is a goal-seeking one, where the

aim is to reach the desired temperature in the room.

In Figure 3.10, one can observe the causal loop diagram for the system described above.

Some causal effects can be explained: Room temperature →− Discrepancy is a negative

effect because the equation of discrepancy is the difference between the desired temperature

and the actual temperature in the room. Thus, if the room temperature increases, then the

discrepancy will decrease. The adjustment time has a negative impact on the temperature

change, due to the fact that this change is defined by the discrepancy divided by the time.

If the time is increased, then the change will be smaller for two same discrepancies.

Temperature change

Adjustment 
time

Room temperatureDiscrepancy

Desired 
temperature

-
+

-
+

+

-

Figure 3.10: Room temperature regulation via a thermostat (CLD)
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The corresponding stock-and-flow diagram depicted in Figure 3.11 is the direct translation

of the CLD. The temperature in the room is represented as a stock, and temperature change

is represented as the inflow, due to the definition of “change” which can be positive or

negative.

Figure 3.11: Room temperature regulation via a thermostat (SFD)

Tests were carried out using different values for the parameters of the system. The desired

temperature was set at 20.0 (degrees celcius) and the adjustment time at 5.0 (units of time).

Only the value for the initial temperature was changed (to 30.0 and to 10.0). In fact, had

the adjustment time been changed, then the two curves would have been steeper at the

beginning (for a shorter time) or less steep (for a longer time). Results are plotted in Figure

3.12
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Figure 3.12: Room temperature regulation via a thermostat (Behaviour)

The behaviour pattern is indeed the decay. One can observe such a behaviour if the initial

temperature is higher than the desired one. But this observation is less obvious if the opposite

happens. In this case, what decays exponentially is the discrepancy.
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3.1.5 Time delays

Time delays often play an important role in the dynamic of systems. Significant time lags

may intervene between causes and their effects.[9] Their influence on the system may have

enormous consequences, frequently accentuating the impact of other forces.

”This happens because delays are subtle: usually taken for granted, often ignored altogether,

always under-estimated. In reinforcing loop [positive feedback loop], delays can shake our

confidence, because growth doesn’t come as quickly as expected. In balancing loop [neg-

ative feedback loop], delays can dramatically change the behaviour of the system. When

acknowledged delays occur, people tend to react impatiently, usually redoubling their efforts

to get what they want. This results in unnecessarily violent oscillations.”[19]

In a regulation system where negative feedback loops and time delays are present, oscillations

in the behaviour are more likely to appear. For example, ”long after sufficient corrective

actions have been taken to restore a system to equilibrium, decision makers often continue

to intervene to correct apparent discrepancies between the desired and actual state of the

system”.[10]

3.1.6 Oscillation

Growth and decay may be associated with some oscillation patterns, generally due to time

delays. Oscillations can be characterized by their amplitude (the height of the variable at its

peak) and their period (length of time before the oscillation repeats itself). Four types of

oscillations exist[19] :

Sustained oscillations: oscillations where neither the amplitude nor the period change.

For example, if a pendulum is in an environment where no frictional forces exist, its

movements will draw “perfect” oscillations in its dynamics.

Damped oscillations: oscillations where the period is fixed but where the amplitude de-

creases continuously to eventually make the system come to a stop. One can for

example consider a pendulum in an environment where friction forces exist: the am-

plitude of the pendulum will progressively decrease until the oscillations stop.

Growing oscillations: oscillations where the period is fixed but where the amplitude grows

from one oscillation to another. This kind of oscillation can be found in an unstable

system. Due to its behaviour, this type of oscillation, that tends to lead the system to

its self-destruction, is not normally observed in natural systems.
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Limit cycles: when a limit is encountered, the oscillations can grow into a limit cycle and

may remain stable, like the rhythmic beating of a human heart.

3.2 Two-loop systems

How do feedback loops interact? How can feedback loop systems be coupled? What are the

dangers? What types of coupling exist? All these questions will be answered in this section.

3.2.1 Stigmergy

The first kind of interaction between two loops is stigmergy : two loops monitor and affect

a common subsystem.

In an example taken from Norbert Wiener [11] and shown in Figure 3.13, one can observe

a tribesman in a hotel lobby where the temperature is regulated by a thermostat. The

tribesman is cold and as he is primitive, he starts a fire. His behaviour is represented by the

outer loop. On the other hand, the room is air-conditioned (the inner loop). Thus, as the

tribesman stokes the fire, the room temperature increases, causing the air-conditioning to

work harder. The final result is that the more the tribesman stokes the fire, the lower the

temperature will be.

The two loops affect interdependent system parameters: the temperature in different parts

of the room.

Tribesman
(stoke fire if too cold)

Thermostat
(run aircond. if too warm)

Run 
airconditioning

Stoke 
fire

Measure temperature 
near fire

Measure 
temperature in lobby

Hotel lobby

Figure 3.13: Tribesman: two feedback loops interacting through stigmergy

In this example, the loops taken separately are negative feedback loops and are stable. But,

if the whole system is taken into account, the loops are unstable. Even if a negative loop is

added to an existing system with the aim of ensuring stability, this is insufficient. The new

result could be unstable because of the new interaction of the loop with the old system.



Chapter 3. Feedback systems - building blocks 42

“Stigmergy should then be used with care”[5]. The example depicted above is an example

of ’uncontrolled stigmergy’: “the two loops will compete and this may lead to a runaway

situation” (i.e. the hotel being set on fire).

3.2.2 Management

The second kind of interaction between two loops is called management: one loop directly

controls another loop.

The correct solution to the example depicted in Figure 3.13 is presented in Figure 3.14. The

tribesman can evolve and learn his lesson. Instead of starting a fire to keep warm, he now

knows that he must adjust the thermostat to the desired temperature. The outer loop is

now managing the inner one and the system tends to a stable state. This is the illustration

of a design rule: “to modify a system’s behaviour, the right way is to work with the system

and not to try to bypass it”.[18] This example with the tribesman shows that sometimes

management is preferable to stigmergy.

Tribesman
(adjust thermostat)

Thermostat
(run aircond. if too warm)

Run 
airconditioning

Measure temperature 
near fire

Measure 
temperature in lobby

Hotel lobby

Figure 3.14: Tribesman: two feedback loops interacting through management

Management can be seen as a ’data abstraction’[5] where a complex component can manage

an inner loop without having to know or to understand the details of this inner loop. It just

has to know some of the parameters to interact with it.

Management should also control a ’natural parameter’[5]. The outer loop of the management

pattern should adjust a simple parameter of the inner loop and no other interaction should

be needed.

3.2.3 Coupling two positive feedback loops

Studies have shown that in cellular networks where signals are sent all the time, positive

feedback loops amplify signals but elongate the time needed to make a decision.[17] Such



Chapter 3. Feedback systems - building blocks 43

results may impair the decision making process for critical or lethal stimuli, but it avoids

careless decisions being made. The main role of a positive feedback loop is thus to make

important decisions.

Coupling two positive feedback loops induces a slower but amplified signal response and

enhances bistability.

3.2.4 Coupling two negative feedback loops

Also in cellular networks, negative feedback loops maintain the homeostasis (the property

of a system that regulates its internal environment and tends to maintain a stable, constant

condition) of cellular systems.[17] Because of the signal reduction, they are also considered

as noise filters. They help to make a prompt decision for strong and critical stimuli.

If two negative feedback loops are coupled, their behaviours are further enhanced. The

response time is also accelerated. These two coupled negative feedback loops enhance

sustained oscillations and homeostasis.

3.2.5 Coupling a linear positive feedback loop with a linear negative feed-

back loop

In the description of single positive and single negative feedback loops, it was concluded

that both examples of births and deaths are worthless because their stable state is infinite or

zero-population respectively. No real quantity can grow forever, there will always be natural

limits to such growth. The nature of the negative feedback loop is to counteract change.

If we couple the two kinds of loops (as linear feedback loops), the result is more interesting

but still useless (see Figure 3.15 taken from [9]). In this case, the two fractions (birth and

death) are explicitly added to the causal loop diagram.

Births Population Deaths

Death fractionBirth fraction

+

+ -

+

+
+

+ -

Figure 3.15: Population model: simple case (CLD)

Let us suppose that the population is calculated every year, the resulting behaviour will

depend on which loop is dominant. A loop is dominant in this example if its fraction is

higher. The fractions are constant in this example. If the births loop is dominant (birth
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fraction > death fraction), then the population will increase exponentially but if the deaths

loop is stronger, then the population will decrease. If both loops have the same effect on

the population, then the latter will not change. An example with non-linear coupling of

population loops will be discussed in the next chapter.

Figure 3.16: Population model: simple case (SFD)

Figure 3.16 is the direct translation of Figure 3.15 in a stock-and-flow diagram. This model

was tested with different values for the birth and death fractions. The initial population was

fixed at 1.000 people and the following values were set for the fractions (all behaviours are

plotted in Figure 3.17:

• Birthfraction = 0.6 and Deathfraction = 0.6: in this case neither of the loops

is dominant. The population will not change because at any given time t, the exact

same number of people will be added and withdrawn. (red line)

• Birthfraction = 0.6 and Deathfraction = 0.3: the positive feedback loop is now

the dominant one and an exponential growth of the population can be observed. The

stable point is an infinite population. (blue line)

• Birthfraction = 0.3 and Deathfraction = 0.6: the negative feedback loop is now

dominant causing the population to decrease progressively until it reaches the limit of

a zero-population. (black line)

In cellular networks, studies have shown that coupling a positive and a negative feedback loop

results in obtaining the advantages of both kind of loops, and that it is the most common

regulatory motif.[17]

3.2.6 Loop dominance shift

In the example depicted in Figure 3.15, tests were carried out on the model and different

behaviours were extracted. The birth and death rates were fixed. For example, an initial

population of 200 was chosen. The linearity of the loops and the fact that the fractions are

fixed means that the dominant loop will be known before the test.
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Figure 3.17: Population model: simple case (Behaviour)

Here, a more realistic example is analyzed, taken from [10], where the loop dominance shift

can be observed. In this case, a firm that is about to launch a new product that creates an

entirely new category with substantial market potential, but for which no market yet exists.

The managers want to know how the market will develop, how they can stimulate adoption,

when and how the market will saturate, etc. All these questions can be answered with a

causal loop diagram and the corresponding stock-and-flow diagram that can be run through

simulation.

Potential 
Adopters

Adoption 
Rate

Adopter 
Population

Word of 
Mouth

- +
Market 

Saturation Contagion-

+ + +

+

Figure 3.18: New product on a market: loop dominance shift

Here is the conclusion taken from [10]: “The overall dynamics of the system depend on which

feedback loops are dominant. [...] For a sufficiently attractive innovation, the self-reinforcing

word of mouth loop dominates initially, and the adoption rate and adopter population grow

exponentially. The growing rate of adoption, however, drains the stock of potential adopters,

eventually constraining the adoption rate due to market saturation. The dominant feedback

loop shifts from the positive contagion loop to the negative saturation loop. The shift in loop

dominance is a fundamentally nonlinear process, which arises in this case because adoption

requires a word of mouth encounter between an adopter and a potential adopter. The shift

in loop dominance occurs at the point where the adoption rate peaks. The behaviour of
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the system shifts from acceleration to deceleration, and the system gradually approaches

equilibrium.”

3.2.7 Coupling fast and slow positive feedback loops

In the cell signaling domain, some researchers have found the way to create an optimal

bistable switch.[20] The two most important aspects when evaluating the performance of a

bistable switch are the sensitiveness and the robustness.

Their research showed that for a single-loop switch, the “one-fast-loop” switch is sensitive

to stimuli but unstable against noise, but the “one-slow-loop” switch is more robust to noise

but slowly inducible. They also demonstrated that for two-loop switches

• the “two-fast-loop” switch is rapidly inducible but may undergo frequent transitions

between two states driven by noise.

• the “two-slow-loop” switch is resistant to noise but is slowly inducible.

• the “dual-time” switch exhibits a sensitive robustness, capable of yielding a fast yet

robust response.

They concluded that the dual-time switch is the optimal one. The fast loop is responsible

for the speed of switching between two states, while the slow loop is crucial for the stability

of steady states.

Modellers should take advantage of different time scales.[5] To illustrate this sentence, an

example from [11] will be explained. A man drives his car on a slippery road but he does

not know how slippery it is. The man will then ’test’ the road by small and quick braking

attempts. The reaction of the car will provide information for the human to adjust his braking

attempts. The process of gathering information can be seen as a quick feedback loop that

provides information to a slower regulation loop. In this case, the fast loop manages the

slower one.

3.2.8 Complex components should be sandboxed

This idea comes from [5] where an example is explained about the human respiratory system

(see Section 3.3). They conclude that complex components are introduced to stabilise

unstable systems but they can also introduce instability. This is why the introduction of

complex components triggers the need for a monitoring system (an outer feedback loop)

that can take action if the system becomes unstable.



Chapter 3. Feedback systems - building blocks 47

3.2.9 Use push-pull to improve regulation

[5] gives two examples from biology where hormones are used to regulate a substance. For

example, the glucose level in the blood stream: this substance is regulated by glucagon and

insulin. The pancreas produces the two hormones (α cells produce glucagon and β cells

produce insulin). If the level of glucose increases then the glucagon level decreases and the

insulin level increases, and vice versa. Both hormones act on the liver to release glucose in

the blood stream.

The two hormones act in opposite directions in order to regulate a substance. Thus, in order

to improve the regulation usually done with one negative feedback loop, the idea is to add

another feedback loop that works in the opposite direction to the first one. This pattern

allows a parameter to change quickly in both directions. It is either ’pushed’ or ’pulled’ in

one direction.

3.2.10 Reversible phase transitions

The behaviours of feedback structures can show abrupt changes that can be seen as phase

transition.[5] It is important that these phase transitions are reversible. If this is not the

case, the system could stay in an unstable state forever. This concern has been studied in

the SELFMAN project where structured overlay networks could be in three different phase

(liquid, solid or gaseous).

3.2.11 1 + 1 = 3?

In general, feedback loops are associated with a policy in lots of domain. Sometimes, one

might think of combining these policies because, taken into account separately, they are very

efficient. But at times, the result of this combination is not the expected one and to find

the source of the problem might be interesting. More specifically, in large software systems

where adaptive components are more frequent than ever, the performance is one of the

most important criteria when developing a big application. This criterium calls for adaptive

capabilities to reduce the need for manual tuning or maintenance.

Researchers suggest a way to discover incompatibilities between adaptation policies through

the use of what they call adaptation graphs.[21] In fact, their adaptation graphs are syn-

onymous with causal loop diagrams because nodes also represent key variables, in the same

way that directed arcs represent the direction of causality. These arcs are labelled with their

policy name. What is innovative here is their check for potential incompatibility.
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Sometimes, when two policies are combined, a new loop may emerge from nowhere and this

loop is unexpected but may also have dramatic effects on the system. It is better to avoid

this kind of loop, and, in order to do so, researchers suggest carrying out these two checks

on the new directed graph. A key requirement for them is that all cycles in the adaptation

graph must be negative as it stems directly from stability conditions in control theory.

Positive feedback: as mentioned above, only negative feedback loops are allowed in an

adaptation graph. Thus any positive loop can combine two policies that are potentially

incompatible. Positive loops are unsafe by nature because a change reinforces itself by

causing more changes in the same direction.

Unstable negative feedback: even if a negative loop in a single policy tends to be well-

tuned and hence stable, emergent loops raised by the combination of two or more

policies must be analyzed for stability. In fact, every loop where not all the arcs have

the same policy label, are flagged as potentially unintended interactions.

After this check, some loops may be flagged. They must be analyzed to establish whether

their behaviour is intended. If not, the two or more policies are incompatible.

3.3 Example with several basic patterns

In Figure 3.19 taken from [4], one can observe four feedback loops: three of them are

interacting through management and the last one interacts through stigmergy. This model

represents the human respiratory system. Some design rules can be extracted from observing

the whole system.

Fail-safe: this pattern contains two feedback loops: a negative loop and a complex loop

(neither positive nor negative) - the conscious control of body and breathing. These

two loops interact through management: the negative loop manages the complex one.

In fact, if the complex loop makes a mistake, the negative loop takes control and

makes the person faint, for example.

Data abstraction: these are also two feedback loops that interact through management. In

this case, a complex loop manages another loop that can be either positive or negative.

The complex loop does not need to know how the other loop works, it just manages

it. In this example, a negative loop is responsible for the breathing movements and

the complex loop controls the breathing speed.
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Management tower: this pattern is the combination of the two patterns described above.

The previous patterns are both kinds of management interactions, so the combination

gives a tower of management which is observable on Figure 3.19 (the three outer

loops). In this example, the conscious control is secured by the fail-safe system and

implements the breathing system via an abstraction pattern.

Event inhibiter: this pattern is the combination of two patterns described earlier in this

chapter: management and slow and fast combination. In this case, a slow negative

loop controls a fast positive loop. When something bad occurs, the fast positive loop is

triggered but after a few seconds the negative loop deactivates the positive one. In this

case, laryngospams (positive loop) is triggered if something obstructs the airway and

after a few seconds the breathing reflex (negative loop) takes over and re-establishes

a normal breathing.

Figure 3.19: The human respiratory system: a feedback loop system

3.4 Decomposition of big systems

Sometimes systems can be very large and complex to understand. In this section, two ways

of simplification are presented.
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3.4.1 Reduction method to lower high-dimensional ODE

This first method is used in the analysis of genetic switches [22]. Researchers in this domain

have proved that “networks with only positive feedback loops have no stable oscillations

but stable equilibria whose stability is independent of the time delays. In other words, such

systems have ideal properties for switch networks and can be designed without consideration

of time delays”.[22]

To do so, they propose a method to simplify complex systems. First they had to prove

that genetic networks with only positive feedback loop converge to stable equilibria and do

not have any dynamic attractors that modify their expected behaviour. Then, they proved

that equilibria are stable in these special networks. Finally, they gave a reduction method to

simplify high-dimensional ordinary differential equations (ODE) to lower-dimensional ones.

The basic idea of the reduction procedure is to obtain a graph with only self-feedback edges,

that is, edges coming and going from the same node. Figure 3.20 shows how to remove a

non self-feedbacked node from the graph. Two possible situations exists. In both case, the

node 2 is the node to be removed.

“Then for all nodes from which an edge goes out to the target node, we create

new edges from the nodes to all nodes to which an edge goes in from the target

node. The sign of each new edge is the same as that of the path from the start

node of the new edge to the end node of the new edge through the target node

in the original graph.”[22]

In Figures 3.20(A) and (B) from [22], one can observe two edges going to the target node

from nodes 1 and 5 and three edges coming from the target node to the nodes 1, 6, and 7.

The new edges will be from node 1 to nodes 1, 6, and 7 and from node 5 to nodes 1, 6, and

7. In both case the edge from 1 to 1 will be a positive self-feedback loop.

In Figure 3.20(A), the edge between nodes 1 and 2 was positive, therefore the new edges

are 1→+1, 1→−6, 1→+7. On the other hand, in Figure 3.20(B), the sign of the new edges

will be changed because the edge between nodes 1 and 2 was negative.

Figure 3.21 from [22] depicts an example where a four-node network can be reduced to

a one-node network with the same reduction procedure. “The original network with four

components is reduced step by step to one network with one component and two feedback

loops. First, the 4th node is removed and edges e43 and e14 are merged. Then, the 2nd and

the 3rd nodes are removed in turn. Finally, we obtain a network with only the 1st node and

two positive self-feedback loops.
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Figure 3.20: A reduction procedure (A) positive loop with two positive edges (B) positive
loop with two negative edges

3.4.2 Strongly connected components

Another technique consists in representing a feedback loop by a node and the influence of a

loop on another by an edge. The system with n loops becomes an acyclic graph where each

node is a SCC.

”A directed graph is called strongly connected if there is a path from each

vertex in the graph to every other vertex. In particular, this means paths in each

direction; a path from a to b and also a path from b to a.

The strongly connected components (SCC) of a directed graph G are its max-

imal strongly connected subgraphs. If each strongly connected component is

contracted to a single vertex, the resulting graph is a directed acyclic graph, the

condensation of G”.[23]

In most cases each feedback system can be reduced to one node. A need is to relax the hy-

pothesis is therefore perceived: several SCCs may exist when systems are quasi independent.

Here is a list of examples with multiple SCCs:
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Figure 3.21: Example of reduction from a four-component network to a single-component
network

• S1 ↔ S2: a driver in his/her car.

• S1 → S2: the atmospheric system that acts on a human being.

• S1 → S2: the sun that acts on the Earth.

• S1 → S2 → S3: the sun that acts on the Earth that acts on a human being.

• S1 → S2 ↔ S3: the atmospheric system that acts on a car that contains a human

being.

• S1→ S2↔ S3: the atmospheric system that acts on a building that contains a human

being.

• S1 → S2 ↔ {S3,S4}: the atmospheric system that acts on a building that contains

two humans beings in the same room.

• ...



Chapter 4

Feedback systems - global behaviour

patterns

Introduction

This chapter will introduce a certain number of examples of feedback patterns, which also

known as feedback archetypes. These archetypes are used in System thinking to solve

problems in organisations. That is, system experts use them to find problems in a organisation

and to create strategies to solve these problems. They use these archetypes as a kind of

debugging system. Several patterns presented in this chapter come from a book called “The

Fifth Discipline, Fieldbook”[19] writen by System Thinkers who present strategies and tools

for building a learning organisation.

53
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4.1 Success to the Successful

When two positive feedback loops act like a bigger reinforcing loop, the “Success to the

Successful” pattern takes place (see Figure 4.1). The Allocation to A instead of B results in

more Resources to A. More Resources to A enhances the Success of A which in turn enhances

the perception that there should be an Allocation to A Instead of B. With the increase of

Allocation to A instead of B, fewer Resources to B are allocated. Fewer Resources to B

impedes the Success of B which further reinforces the perception that there should be an

Allocation to A instead of B.

Success to A Resources to A

Success to B Resources to B

Allocation to A 
instead of B

+

+

-
-

+

+
+

+

Figure 4.1: Success to the Successful: template (CLD)

On comparing the two successes, one can observe that as resources are allocated to A instead

of B, the success for A is increased and as resources are diverted from B, the success of B

is decreased (see Figure 4.2).

For example, in Figure 4.3 adapted from [24], the success at work and the success with

family are compared. At the beginning of the simulation, there is an equal allocation of time

to both work and family. But progressively, as more and more time is spent at work instead

of with the family, the success at work will grow exponentially at the expense of the success

with family.

An application of this pattern as mentioned in [25] is to ”avoid competency traps”. It is

suggested that the success or the failure of an organisation is more probably due to the initial

conditions than intrinsic merits. Organisations should unlearn what they know about what

they are best and to look for alternatives rather than always focusing on their knowledge.
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Figure 4.2: Success to the Successful: behaviour
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Figure 4.3: Success to the Successful: self-fulfilling prophecies (CLD)

4.2 Limits to Growth

”There is growth (sometimes dramatic growth), levelling off or falling into decline.”[19]

4.2.1 The S-shaped growth

The S-shaped growth pattern is the first of two patterns that appears in a limited growth

environment. After an exponential growth, a certain limit is reached where the growth

stabilises to a certain equilibrium forming a plateau in the behaviour picture.
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The limited population growth

In the previous chapter, several examples about population were developed. The conclusion

was reached that these examples were not very realistic because their stable points were

either infinity or zero-population. All growth has to eventually have a limit of some sort.

In the population case, we could introduce a capacity limit. Imagine for example, an island

with an initial population of 200 people. Food and water are unlimited (not very realistic

but keeps the model simple). There exists a time in the future when the population will not

grow anymore because of the size of the island (maximum capacity).

The notion of “crowding” can now be defined: population divided by the maximum capacity.

Let’s see what happens in this new model depicted in Figure 4.4 taken from [9]. Capacity

and crowding are now variables of the model and they form a negative feedback loop with

the population and the births. In this example, the death fraction is still a constant but the

birth fraction is now a function of crowding (the higher the crowding, the lower the birth

fraction). What happens now is that a higher population means a higher crowding which

decreases the birth fraction, which in turn has a negative effect on the population via births.

The effect on population is indeed negative because of the two positive effects Birth fract

→+ Births →+ Population. The birth fraction is decreased, the same effect will therfore

be applied on births and then population.

Births Population Deaths

Death 
fraciton

CrowdingBirth fraction

Capacity

+

+ -

+

+

--

+

+

+

-

-

Figure 4.4: Population model: density-dependent growth (CLD)

The translation between the causal loop (Figure 4.4) and the stock-and-flow (Figure 4.5)

diagram is direct. We can see that the population acts like a stock and that births and

deaths are in and out flows respectively.

The model was tested with different configurations. A maximum capacity of 200 people

with a death fraction of 0.6. One can observe three possible cases in the dynamics of this

system (see Figure 4.6).



Chapter 4. Feedback systems - global behaviour patterns 57

Figure 4.5: Population model: density-dependent growth (SFD)

1. Initial population greater than 200: the crowding fraction is greater than 1 meaning

that the birth fraction is lower than the death fraction, which in turn means that the

population will decay progressively to 200. Here, the initial population is of 400 people

(red line).

2. Initial population of 100: the crowding fraction is lower than 1 meaning that the birth

fraction is greater than the death fraction. The population will progressively grow to

200 - goal-seeking phase (blue line).

3. Initial population of 10: the crowding fraction is near 0 meaning that the population

will grow exponentially. But after a certain time, it will grow progressively and no

longer exponentially, until the 200-people limit is reached. This is the effect of the

non-linear negative loop (green line).
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Figure 4.6: Population model: density-dependent growth (Behaviour)

This last case is thus the more interesting of the three because the dynamics of the population

growth look like an S, which indicates that there are two phases. The first phase is an
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exponential growth phase following by a goal-seeking phase as a certain limit is approached.

This behaviour is caused by the shift in loop dominance from the simple positive feedback

loop to the negative density dependence loop.

Word of mouth

In the previous chapter, the loop dominance shift was explained with an example of the

introduction of a new product on a market[10]. It was concluded that, depending on the

dominant loop in the system, the growth is more or less fast. This is exactly the behaviour

we observed in the S-shaped growth.

Potential 
Adopters

Adoption 
Rate

Adopter 
Population

Word of 
Mouth

- +
Market 

Saturation Contagion-

+ + +

+

Figure 4.7: New product on a market: S-shaped growth (CLD)

First the “Contagion” loop – positive – is dominant and creates an exponential growth until

a certain point is reached, when the second phase starts. This second phase consists in

a goal-seeking growth where the “market saturation” loop – negative – leads the growth

progressively to its limit.

Figure 4.8: New product on a market: S-shaped growth (SFD)
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Figure 4.8 depicts the stock-and-flow diagram where two stocks are represented: one for the

potential adopters and one for the adopter population. In this case, there is no source nor

sink. So when all of the initial potential adopters flow from their stock to the one for the

adopter population, the system has no longer a reason to exist. The limit of the system lies

in the level of the potential adopters.
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Figure 4.9: New product on a market: S-shaped growth (Behaviour)

Figure 4.9 shows that the adopter population grows like the S-shaped pattern. If the state

of the potential adopters had been plotted for the corresponding situation, we would have

observed the opposite behaviour. As already mentioned before, there are no sources or sinks

for the stocks. Thus, all the potential adopters flow to the adopter population.

4.2.2 Overshoot-and-decline

The overshoot-and-decline pattern is the second pattern encountered in the limited growth

environment. After the exponential growth, variables have gone over their natural constraint

and have crashed completely.

Population limited growth

In the previous section, an example where the limiting variable was actually a constant was

described. The interesting case was the S-shaped growth where the population increases in

two phases: the first one is an exponential growth and the second one was a goal-seeking

growth until the capacity is reached. Now, a system where the limiting factor is itself a

variable depleted by the population, will be analysed. Also in this example, the limiting

factor is not on the positive feedback loop but on the negative one. The population will not

be limited in the growth but will decrease more or less rapidly depending on the food.
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The overshoot pattern is as follows: the population can grow so rapidly that it shoots past

its limit and its size is no longer sustainable. The decrease in population is thus a simple

adjustment that is necessary to drive the system to a stable state. One has to keep in mind

here that the population is not limited by a maximum capacity but by the food factor.

One consequence of this overshoot can be observed on the food level: the population grew so

rapidly that it consumed all the available resources, which in turn creates a delayed reaction

on the population. People that were over the limit disappear but also cause more death due

to the extra consumption of food. That is the decline behaviour.

The loop Population →− Food per capita →− Death Fraction →+ Deaths →−

Population plays the role of the density-dependent limit. So what will happen? Firstly, the

population will grow exponentially until it reaches a certain point where the consumption

rate is so high that the stock of food collapses. Secondly, due to this high consumption,

starvation will appear and the death rate will increase causing the population to decay until

it reaches the complete annihilation of the human specie.
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Figure 4.10: Population model: a population-food interaction model (CLD)

The transition between the qualitative and the quantitative diagram is not straightforward.

Two new variables appear in Figure 4.11 compared to Figure 4.10: Effect of food on

consumption and Effect of food on df. These variables are implicit in the arrow joining

the Food per capita and Consumption on one side, and Food per capita & Death

fraction on the other side. These are also the non-linear factors of the system.

In Figure 4.12 taken from [9], one can observe the evolution of the two stock variables that

are Population and Food. Thanks to a certain level of food, the population can begin its
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Figure 4.11: Population model: a population-food interaction model (SFD)

exponential growth and create more food. But, after a certain point, the food available is

not enough and the consumption is much more important than the regeneration, causing

the food to fall down to zero. Just after this point, starvation begins to appear and more

and more people die until the population reaches its minimal capacity of zero.

Figure 4.12: Population model: a population-food interaction model (Behaviour)

Epidemic dynamics

Here is another example of the overshoot-and-decline pattern: the epidemic dynamics.[9]

Let us suppose that there is a contagious disease which means that when two people meet

(one susceptible and one infected), there is a chance that the infected person will infect the

susceptible person.
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In this model, a constant flow of incoming people is used. That is, in the global population,

each month, a constant number of people are susceptible to contract the disease. Also, the

removal factor contains the notion of infected people who have died and infected people who

have been cured. Let us also suppose that people who have recovered from the disease are

now permanently immunized against this disease and will not return directly into the group

of susceptible people.
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Figure 4.13: Epidemic dynamics (CLD)

Figure 4.14 is the direct translation of Figure 4.13. With an initial set of 500 susceptible

people and 10 infected ones, and a contact fraction of 1 %, an infection rate of 1 %,

a removal fraction of 1 % and a constant inflow of 1 person per month in the pool of

susceptible people, the following behaviour depicted in Figure 4.15 was observed.

Figure 4.14: Epidemic dynamics (SFD)

We observe that the pool of susceptible people is flowing into the pool of infected people.

But, because the resource for the disease in decreasing dramatically, the number of infected

people grows exponentially at first. But when the susceptible people are reduced to a handful
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of individuals, then the disease disappears progressively either because the infected people

recover or because they die.
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Figure 4.15: Epidemic dynamics (Behaviour)

Something interesting emerged from this model when different values are assigned to vari-

ables. For example, if we change the infection rate to 2%, the contact fraction and the

removal fraction to 10%, oscillations in the dynamics of epidemics were observed (see Figure

4.16).
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Figure 4.16: Epidemic dynamics - oscillation

In this case, the growth of the infected population is steeper than in the other case because

the contact percentage is greater. But when the susceptible population dramatically falls

down to zero, which leads the infected population in the same direction. But during the

disappearance of ill people, the constant flow of new susceptible people makes this population

grow slowly. With a certain delay, the infected population will grow progressively but not as

high as the susceptible one. This oscillation movement will vanish after a certain lapse of

time when the two pools will stabilize.
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4.3 Tragedy of the Commons

‘The Tragedy of the Commons always opens with people benefiting individually by sharing

a common resource. But at some point, the amount of activity grows too large for the

commons to support. In many cases, the commons seems immeasurably large and bountiful

at first, but is either non renewable or takes a great deal of time and effort to replenish.”[19]
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Figure 4.17: Tragedy of the Commons: All for One & None for All (CLD)

For example, in Figure 4.17, the Carrying Capacity is the common resource between the two

populations (A and B). The loop P1 for A is a positive feedback loop that generates growth

thanks to the common resource. The loop N1 is a negative feedback loop that limits the

gain of each individual due to the natural limit of the shared resource. The behaviour of the

pair (P1,N1) was described in the “The S-shaped growth” pattern where the population A

would stabilise to an equilibrium. Unfortunately for them, a third loop N2, also negative,

provokes the erosion of the common resource. The tragedy point of view comes from the

crash dynamic, that is, the erosion of the shared resource means that it becomes unable to

regenerate itself.

In the case studied here, even if the two demands on the common resource are increasing

(see Figure 4.18), a certain declining behaviour may appear. The populations will increase

their demand, because they do not understand why their previous demands are not bring

met, until the common good collapses.

There is a link between this pattern and the “Limits to Growth” pattern: the “Tragedy of the

Commons” consists of multiple “Limits to Growth” patterns sharing a common constraint

or finite limit. In fact, the collapse in this pattern is steeper than the one in the overshoot-

and-decline pattern due to the fact that there are more than one growth loops – positive

feedback loops.[19]
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Figure 4.18: Tragedy of the Commons: behaviour

4.4 The Attractiveness Principle

The “Attractiveness Principle” consists in making choices. This pattern is essentially the

“Limits to Growth” pattern with multiple limits that can not be addressed equally.
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Figure 4.19: Attraction Principle: template (CLD)

In Figure 4.19 taken from [26], one can observe a positive feedback loop that represents the

growth of the system and produces results that tend to create more growth actions. These

results are in two negative feedback loops that limit the growth action by slowing down

the growth process. The two limiting factors are different but their corresponding slowing

actions are combined before withdrawing any results from the results variables.
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Figure 4.20: Attraction Principle: behaviour

One can observe in Figure 4.20 that the performance (results in the CLD) is increased

with a small amount of effort (growth action) but, due to the slowing action which is the

accumulation of the two slowing actions, the performance will stop its growth and start

declining even if the efforts are still increasing.

4.5 Growth & Under Investment

The pattern “Growth & Under Investment” is a variation of the “Limits to Growth” pattern,

but in this case the limiting factor is in a negative feedback loop that contains a delay and

an external standard. In fact, the two negative feedback loops form a positive feedback loop

which inhibits the growth (see Figure 4.21 taken from [26]).
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Figure 4.21: Growth & Under Investment: template (CLD)

The growth action increases the growth that simply influences positively the same growing

action producing the characteristic exponential growth. But, as it was said in the “Limits
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to Growth”, nothing can grow forever. The increase in the growth influences the growth

inhibitor that decreases the growth.
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Figure 4.22: Growth & Under Investment: behaviour

If the growth inhibitor is reduced then the growth can increase. As this inhibitor interacts

with a standard, a perceived need emerges and a movement to avoid this inhibitor is created.

This inhibitor avoidance will decrease the inhibitor which in turn will increase the growth (see

Figure 4.22). But the delay in this inhibitor avoidance loop is disturbing the need to avoid

the inhibitor: the inhibitor slows down the growth which in turn decreases the inhibitor. This

decrease in the growth inhibitor will also decrease the perceived need. In this configuration,

the growth is limited because the perceived need is undermined by the system’s own actions

and, by the time the system realises that the inhibitor avoidance is needed, the need is

already decreasing and the growth levels off at a lower level than it could have reached.

4.6 Balancing with Delay

The pattern “Balancing with Delay” is a derivation of a negative feedback loop where delay

is added. This delay is responsible for oscillation in the behaviour of this pattern.

When someone wants to have a shower, he/she has a desired water temperature. The first

drops of water coming out of the shower handle are therefore either too hot (if the hot water

is turned on first) or too cold (if the cold water is turned on first). Depending on the desired

temperature, this person will increase the hot water or the cold water. But, in general, the

change is too important and, for example, if the water was too hot, it is now slightly cold.

So the water will be progressively adjusted until the desired temperature is reached. The

behaviour of the temperature will be characterised by damped oscillations (see Figure 4.24).
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Figure 4.23: Balancing with Delay: template (CLD)
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Figure 4.24: Balancing with Delay: behaviour

4.7 Escalation

When two balancing loops (negative feedback loops) act like one big reinforcing loop (positive

feedback loop), the “Escalation” pattern takes place (see Figure 4.25). An increase in the

Results of A relative to B influences more Action by B. An increase in Action by B enhances

B’s Results. As B’s Results increase, it tends to reduce the Results of A relative to B. This

reduction implies more Action by A. Additional Action by A increases A’s Results. The

increase in A’s Results then increases the Results of A relative to B, and the cycle then

repeats itself.

In Figure 4.26, one can observe the simple behaviour of the Escalation pattern where the two

growths are parallel. Because of the increase of the actions taken by A and interpreted as

a thread for B, B takes the same actions. One thing that is not expressed by the behaviour

analysis is the possibility of collapse if the escalation goes to high.
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Figure 4.25: Escalation: template (CLD)
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Figure 4.26: Escalation: behaviour

For example, in Figure 4.27 adapted from [24], x and y are compared. When x takes actions,

buying guns or missiles for examples, y perceives these actions as a threat and takes the

same actions. The combined infinity-shaped loops form an exponential tension between the

two parties (see Figure 4.27).

De-escalation is also possible, if one of the two parties decides to step back. In this case,

one can observe a slightly delayed reaction where the other party will also step back and

stop the escalation of tension (see Figure 4.28 taken from [24]).
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Figure 4.27: Escalation: the arms race (CLD)

Figure 4.28: Escalation: the arms race (behaviour)

4.8 Indecision

The “Indecision” pattern consists of two negative feedback loops with delays (see Figure

4.29). Due to the delays, when a value arrives at its destination, this will already have

already changed therefore the value changes again. Here is an example taken from [26]:

supply price demand- -
+

- +

-||

||

Figure 4.29: Indecision: template (CLD)

In a market, the price is fixed by the supply and the demand. Therefore, if the demand

increases, the price will rise, this rise will have a direct effect on the demand and a long-term
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effect on supply. That is, the demand will slightly decrease and the supply will increase (the

companies will produce more according to the increase in demand).

But, as the supply increases, the price will decrease due to the direct effect that supply has

on price. But at the same time the demand that went through its delay, adds less to the

price. The supply being more than appropriate for the demand, the price decreases. This

decrease will increase the demand and after some time will decrease the supply.

In this way, by the time the effect of the increase on the demand reaches the price, the

supply will have decreased. The supply and the demand will once more be out of sync.

Because of the delays, the supply and the demand will never be synchronised and the price

will oscillate endlessly.

4.9 Fixes That Backfire

The pattern “Fixes That Backfire” can be explained by a simple example: take the case of

a person who knows next to nothing anything about mechanics and hears a strange noise

coming from the wheel of his/her bike. This person, who has been told that, to repair a

squeaky wheel he/she needs oil, will pick up a can of water instead and put it on the wheel.

The noise will disappear but only for a brief lapse of time. It will then return more loudly

than before, air and water combining to rust the joint of the wheel. Thus the person grabs

another can of water and splashes it on the wheel again, making the noise disappear once

again for a short time. Eventually, the noise will come up again more loudly and will quickly

be fixed by water until the wheel stops turning.
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Unintended 
consequences

||

+

-

+

+
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+

Figure 4.30: Fixes that backfire: template (CLD)

”The central theme of this archetype is that almost any decision carries long-term and

short-term consequences, and the two are often diametrically opposed. As shown in Figure

4.30, the problem symptom cries out (squeaks) for resolution. A solution is quickly imple-

mented (the fix - water) which alleviates the symptom (in the balancing loop). But the
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unintended consequences of the fix (the vicious cycle of the reinforcing loop) actually worsen

the performance or condition which we are attempting to correct.”[19]
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Figure 4.31: Fixes that backfire: behaviour

In Figure 4.31, the general behaviour of this pattern is depicted. The problem symptom

increases continuously while the fixes that are applied reduce the problem for a short time,

thus creating gaps in the growth of the problem. ”A problem symptom alternatively im-

proves (the problem variable goes down) and deteriorates (the problem goes up, worse than

before).”[19]

4.10 Accidental Adversaries

When groups of people decide to work together on a project that they want to build together,

the end result may not be as nice as they might have thought. The local activity used to

improve the partnership, even with the best intentions, can limit the overall development of

the alliance and this will in turn decrease the local activity as well.

The “Accidental Adversaries” pattern consist of four positive feedback loops and two negative

feedback loops [26]:

• A’s success →+ A’s activity toward B →+ B’s success →+ B’s activity toward A →+

A’s success: represents a co-operative reinforcing loop between A and B.

• A’s success →+ A’s activity toward A →+ A’s success: A taking actions to enhance

its success.

• B’s success →+ B’s activity toward B →+ B’s success: B taking actions to enhance

its success.
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• A’s success →+ A’s activity toward B →+B’s success →+ B’s activity toward B →−

A’s success →+ A’s activity toward A →− B’s success →+ B’s activity toward A →+

A’s success: the overall system growth driven by this global reinforcing loop.

• A’s activity →+A’s activity toward A →− B’s success →+ B’s activity toward A →+

A’s success: an increase in A’s activity means a decrease in B’s activity which in turn

mean a decrease in A’s activity.

• B’s activity →+B’s acitivity toward B →− A’s success →+ A’s activity toward B →+

B’s success: an increase in B’s activity means a decrease in A’s activity which in turn

means a decrease in B’s activity.
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++ +
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Figure 4.32: Accidental Adversaries: template (CLD)

This typical collaboration pattern shows in Figure 4.33 that the partnership which is normally

beneficial for both parties due to the synergy of their actions, can also be detrimental to

them. If one of the two parties misunderstands the action of the other party, suspicion or

mistrust may erode the relationship. If none of the parties takes hindsight and thinks about

the reason of the actions taken by the other partner, they may loose the benefit of their

“contract”. Thus, one will drag its new adversary into the spiral of losing impact on each

other.
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Figure 4.33: Accidental Adversaries: behaviour

4.11 Shifting the Burden

The pattern “Shifting the Burden” begins like the pattern “Fix That Backfire” with a problem

symptom that needs to be solved. Easy and immediate solutions are rapidly found and applied

to the problem, thus shifting the attention away from the real roots of the problem.
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Figure 4.34: Shifting the Burden: template (CLD)

”The basic Shifting the Burden template has two reinforcing loops (positive feedback loops).

Each represents a different type of fix for the problem symptom. The upper loop [in Figure

4.34] is a symptomatic quick fix; the bottom loop represents measures which take longer

(hence the delay) and are often more difficult, but ultimately address the real problem.”[19]
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Figure 4.35 depicts the three behaviour patterns that coexist in “Shifting the Burden”:

Symptomatic solution: grows due to the addiction loops.

Problem symptoms: oscillates like in the “Fix That Backfire” pattern.

Fundamental solutions: declines also due to the addiction loops.
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Figure 4.35: Shifting the Burden: behaviour

4.12 Addiction

When a problem reoccurs repeatedly and when the “easy” solution is chosen to solve this

problem again and again, the “Shifting the Burden” pattern becomes the “Addiction” pattern

where the side effects of the symptomatic solutions promotes some sort of addiction which

inhibits the fundamental solution.

4.13 Drifting Goals

The Drifting Goals pattern is identified when two balancing loops interact in such a way that

the activity of one loop actually influences the intended goal of the other one in a negative

way (see Figure 4.36). The Desired State interacts with the Current State to produce a

Gap. This Gap influences Action intended to move the Current State in the direction of

the Desired State. At the same time, the Gap influences Action and creates a Pressure to

Adjust Desire. This pressure essentially acts as an influence to reduce the Desired State. As

the Desired State is undermined, it works to reduce the Gap, thus lessening the influence
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toward Action. The final result of this structure is that it reaches an equilibrium other than

what was the initial Desired State.
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Figure 4.36: Drifting goals: template (CLD)

For example, in Figure 4.37 taken from [26], a company situation is depicted where the

company fixes a revenue goal at the beginning of year for the end of the year. There is a gap

between the revenue goal and the current revenue that will be reduced during the year via

the sales. But the revenue at the end of the year appears to be less than the goal revenue.

For the following year, the company will decide to establish a lower revenue goal (via the

pressure to adjust the goal) but the revenue at the end of the year will still be less than the

goal one. The company will continually decrease the revenue. One can observe that one

loop is drifting away from the goal of the other loop.
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Figure 4.37: Drifting goals: Declining Sales Goals (CLD)
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Figure 4.38 depicts the behaviour of this pattern Drifting Goals also called Eroding Goals

due to the fact that in general, organisations prefer to lower the goal that is not achieved

rather than taking corrective actions without changing the target goal. One can observe that

the goal is lowered progressively and that the current state (actual) is oscillating downwards

below the goal that is never met. The gap between the desired state and the gap is also

oscillating.

The reason why the actual state is oscillating downwards below the desired goal is as follows:

as the gap decreases between the desired and the actual goals, the actions taken to improve

the current state are diminished and the actual state will also decrease. Then, when the

desired goal decreases, the gap will also decrease and the actual state will increase but, due

to the delay between the actions taken and the actual state, the behaviour of this state is

an oscillatory one.
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Figure 4.38: Drifting goals: behaviour

4.14 Growth & Under Investment with a Drifting Standard

The “Growth& Under Investment with a Drifting Standard” pattern is the same as the

“Growth & Under Investment” pattern, the only difference being that in the first case the

growth inhibitor induces a decline of the standard over time (see Figure 4.39 taken from

[26]).

The explanation is exactly the same as for the “Growth & Under Investment” pattern, plus

the additional influence where the inhibit growth subtracts from the standard implies an even

less perceived need for the inhibitor avoidance.
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Figure 4.39: Growth & Under Investment with a Drifting Standard: template (CLD)

4.15 The Archetype Family Tree

All the patterns or archetypes that are described in this chapter are in fact related to each

other. In general, moving down the tree is adding a loop or combining two patterns. Figure

4.40 summarises the situation where each link between patterns is described by a sentence.

This tree was first developed in [19] but was modified to take into account new patterns

also defined in this chapter.
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Figure 4.40: The Archetype Family Tree





Chapter 5

Simulator - definition

Introduction

To help the analysis of feedback systems, a framework prototype has been developed in

order to better understand the behaviour of such systems. The basic idea is to define

agents, create links between them, and then to simulate the behaviour with one of the two

available simulator engines. Also, the feedback systems that will be simulated are all systems

with quantities.

The engines, agents and graphs were implemented in Oz[27, 28] and a graphical interface

was built in Java in order to help the user to define the agents and the graphs and to run

tests on them.

In this chapter, the definition of agents, of the graphs and of the two simulator engines will

be explained.

81
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5.1 Definition of agents

An agent is an event-driven piece of code. That means that an agent has several input links

coming from other agents as well as several output links going to other agents. An agent is

thus typically a variable in a feedback loop.

One can observe in the equations of a model that there are two kinds of equations: ordinary

differential equations (ODE) and simple equations. These ODEs represent variables that

need a notion of variation over time, that is, for the population example, the population in

time t is equal to the population in time t − 1 plus the difference between the births and

the deaths. In a stock-and-flow system, ODEs describe stocks and simple equations give the

computation to be done in flows and auxiliaries/converters.

Both kinds of equations are very important and must be taken into account when creating

correct simulations. These simulations will be carried out using the discretization of the

differential equations.

In order to model an agent in an event-driven software, a base agent with several features

needs to be built.

5.1.1 Base agent

An agent will be represented as a class in Oz. Thus the base agent will also be a class

with several methods as basic features. The code of a base agent is shown in Listing 5.1

The description of the attributes and the methods are explained just below:

• name: an atom that represents the name of the agent.

• ins: a list of variables that represents input agents.

• outs: a list of variables that represents output agents.

• out stream: a list of all output values created by the agent.

• monitored: true if the out stream needs to be printed in the console to be used by the
graphical interface; false otherwise.

• stock: true if the agent is dependant on time.

• delta: a value of the delta used in the simulation.

• init(Id): initialises the base agent and sets the attribute name to Id.

• is stock($): returns true if the agent is dependent on time.

• ins($): returns the list of input agents.
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• name($): returns the name of the agent.

• monitored(Boolean): sets the attribute monitored to Boolean; true if the agent needs
to be monitored - false otherwise.

• set ins(Agents): sets the attribute ins to Agents, the list of incoming agents.

• set outs(Agents): sets the attribute outs to Agents, the list of outgoing agents.

• otherwise(Msg): prints a message to the user to warn him that Msg is not understood
by the agent.

• stop(?End): stops the agent, if it is monitored then it prints the output stream and
binds End to unit.

1 c l a s s BaseAgent

2 a t t r name ins outs out_stream monitored stock delta

3 meth init(Id)

4 name := Id

5 stock := f a l s e
6 delta := 1.0

7 end
8 meth is_stock($)

9 @stock

10 end
11 meth ins($)

12 @ins

13 end
14 meth name($)

15 @name

16 end
17 meth monitored(Boolean)

18 monitored := Boolean

19 end
20 meth set_ins(Agents)

21 ins := Agents

22 end
23 meth set_outs(Agents)

24 outs := Agents

25 end
26 meth otherwise(Msg)

27 {System.show ’Message unknown ’#Msg}

28 end
29 meth stop(?End)

30 i f @monitored then
31 Stream i n Stream = {Reverse @out_stream}

32 for X i n Stream do

33 {System.show @name#X}

34 end
35 end
36 End = u n i t
37 end
38 end

Listing 5.1: Base Agent
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5.1.2 Generic agents

The generic agent is the agent that will be modified by the user to fit the system he/she

wants to create. This agent extends the class BaseAgent and has only one method called

meth m(In ?Out) that will be invoked during the simulation. This method m takes as input

the record In with features corresponding to the name of the incoming agents. An agent

has the possibility to have an attribute that can be a stock value or a change rate for a flow

(converters), etc.

If a variable in a causal loop diagram is linked to another that is part of a loop but that the

first variable is not part of any loop (like the birth_fraction or the death_fraction in

Figure 3.15), then it is more likely to be used as an attribute in the definition of an agent.

In Listing 5.2, an agent without attribute is represented. The method m only contains the
instruction Out = f(In) where the output of the method is a function of its input(s).

1 c l a s s AgentName from Agent.baseAgent

2 meth m(In ?Out)

3 Out = f(In)

4 end
5 end

Listing 5.2: Agent without attribute

In Listing 5.3, an agent with one attribute is represented. In this case, the method init
needs to be rewritten to take into account this/these attribute(s). Then the method m works
as described above.

1 c l a s s AgentName from Agent.baseAgent

2 a t t r attribute

3 meth init(Name Value)

4 Agent.baseAgent ,init(Name)

5 attribute := Value

6 end
7 meth m(In ?Out)

8 Out = f(In)

9 end
10 end

Listing 5.3: Agent with attribute(s)

In Listing 5.4, an agent dependent on time is listed, typically a stock. In this case, the

attribute stock is set to true and the equation in the method m shows that the value in

time t is equal to the value in time t − 1 plus the difference between the inflows and the

outflows multiplied by a delta fixed by the user at the beginning of the simulation.
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1 c l a s s AgentName from Agent.baseAgent

2 a t t r attribute

3 meth init(Name Value)

4 Agent.baseAgent ,init(Name)

5 attribute := Value

6 stock := t r u e
7 end
8 meth m(In ?Out)

9 attribute := @attribute + (In.inflow - In.outflow) * @delta

10 Out = @attribute

11 end
12 end

Listing 5.4: Agent dependent of the time

5.1.3 Example

To illustrate the use of Oz classes to represent agents, the equations from the example about

flowers developed in Chapter 2 have been translated into agents in Listing 5.5.

area_of_flowers(t) = area_of_flowers(t-dt) + (growth-decay) * dt

INIT area_of_flowers = 10.0

INFLOW: growth = area_of_flowers * actual_growth_rate

OUTFLOW: decay = area_of_flowers * decay_rate

actual_growth_rate = intrinsic_growth_rate * growth_rate_multiplier

growth_rate_multiplier = - fraction_occupied + 1

fraction_occupied = area_of_flowers / suitable_area

decay_rate = 0.2

intrinsic_growth_rate = 1.0

suitable_area = 1000.0
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1 c l a s s Area_flower from Agent.baseAgent

2 a t t r area

3 meth init(Name Value)

4 Agent.baseAgent ,init(Name)

5 area := Value

6 stock := t r u e
7 end
8 meth m(In ?Out)

9 area := @area + (In.growth - In.decay) * @delta

10 Out = @area

11 end
12 end
13 c l a s s Growth from Agent.baseAgent

14 meth m(In ?Out)

15 Out = In.area * In.growth_rate

16 end
17 end
18 c l a s s Decay from Agent.baseAgent

19 a t t r rate

20 meth init(Name Value)

21 Agent.baseAgent ,init(Name)

22 rate := Value

23 end
24 meth m(In ?Out)

25 Out= In.area * @rate

26 end
27 end
28 c l a s s Actual_growth_rate from Agent.baseAgent

29 a t t r rate

30 meth init(Name Value)

31 Agent.baseAgent ,init(Name)

32 rate := Value

33 end
34 meth m(In ?Out)

35 Out = @rate * In.multiplier

36 end
37 end
38 c l a s s Growth_rate_multiplier from Agent.baseAgent

39 meth m(In ?Out)

40 Out = ~1.0*In.fraction_occupied + 1.0

41 end
42 end
43 c l a s s Fraction_occupied from Agent.baseAgent

44 a t t r suitable_area

45 meth init(Name Value)

46 Agent.baseAgent ,init(Name)

47 suitable_area := Value

48 end
49 meth m(In ?Out)

50 Out = In.area / @suitable_area

51 end
52 end

Listing 5.5: Flowers agents
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5.2 Definition of the graph

The basic idea was to be able to represent a graph in a record. To do so, a record with

several features has been created. The different features will be explained in this section.

5.2.1 Agents

First of all, after defining all the agents as explained in the previous section, variables to

represent these agents need to be initialised. The feature agents: is thus a list of tuples

Variable#Agents.class name#init(agent name <value(s)>)#init output value

An example is listed in Listing 5.6 from the same example about flowers.

1 agents:

2 [Area_flower#Agents.area_flower#init(area 10.0)#10.0

3 Growth#Agents.growth#init(growth )#9.9

4 Decay#Agents.decay#init(decay 0.2)#2.0

5 Actual_growth_rate#Agents.actual_growth_rate#init(growth_rate 1.0)#0.99

6 Growth_rate_multiplier#Agents.growth_rate_multiplier#init(multiplier )#0.99

7 Fraction_occupied#Agents.fraction_occupied#init(fraction_occupied 1000.0)#0.01]

Listing 5.6: Feature loop.agents

5.2.2 Graph

When all the agents are initialised, the links between them can be established. To do so

for every agent, the links from input agents and to output agents will be written as follows:

Variable#[list of input variables]#[list of output variables].

For example, the Listing 5.7 gives the graph representation for the same flowers problem.
The corresponding graph generated by the simulator is depicted in Figure 5.1.

1 graph:

2 [Area_flower #[ Growth Decay ]#[ Growth Decay Fraction_occupied]

3 Growth #[ Actual_growth_rate Area_flower ]#[ Area_flower]

4 Decay#[ Area_flower ]#[ Area_flower]

5 Actual_growth_rate #[ Growth_rate_multiplier ]#[ Growth]

6 Fraction_occupied #[ Area_flower ]#[ Growth_rate_multiplier]

7 Growth_rate_multiplier #[ Fraction_occupied ]#[ Actual_growth_rate ]]

Listing 5.7: Feature loop.graph
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Figure 5.1: Flowers: causal loop diagram from the Simulator

5.3 Simulator engines

In parallel with the analysis of a non exhaustive list of feedback systems, the idea was

to create a simulator to analyse the behaviour of these feedback structures. Two kinds

of simulation strategies have been discussed and implemented in Oz: a synchronous en-

gine and an asynchronous one. In the record filled by the user, the label corresponds to

the choice of engine. The user has to type sync(Delta) for the synchronous engine and

async(Time Boolean Delta) where Delta represents the delta used during the discretiza-

tion of the model, that is, if delta is set to 0,1, it means that 10 computation steps are

needed to represent simulated time units; Time corresponds to the number of milliseconds

between two computations and Boolean corresponds to the possibility of randomly adding

or removing between 0 and 10% of Time to/from the number of milliseconds between two

computations. The two engines will be explained in detail in this section.

If Delta equals 1, each computation done by the stock agents represents one simulated time

unit. If Delta is greater or less than 1 then 1/Delta computations are needed to compute

one simulated time unit. A Delta of 0.1 means that 10 simulation steps are needed per time

unit and a delta of 10 means each step will represent 10 time units (in this case, if 60 steps

are required, only 6 will actually be computed).

Two kinds of agents appear: one that depends on the simulated time and one that does not.

That is, stocks, for example, need the information to update their value but this information

goes through a certain number of agents that have to be ’instantaneous’ in order to avoid

implicit delays in the simulations. Each engine is designed (with different techniques) to

take into account this difference between both types of agents.

5.3.1 Synchronous engine

Agents have input agents and output agents. The output of an agent is function of its

inputs. Thus, the basic idea of the synchronous engine is that at every time step each agent
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of the loops computes the output corresponding to its inputs and puts the result on its

output stream.

Practically, an agent is implemented by an active object in Oz, that is, “a port object whose

behaviour is defined by a class. It consists of a port, a thread that read messages from the

port’s stream, and an object that is a class instance. Each message that is received will

cause one of the object’s methods to be invoked”.[28]

One agent receives messages from its input agents with their new value. This value is then

stored in a stack that represents an input stream. When an agent computes its new value

from its inputs, it then puts it in a stack and sends a message to its output agents. This

technique corresponds to the push method where the information is pushed to the agents

(see Figure 5.2).

Input Agent 1 Input Agent n Agent Output Agent 1 Output Agent n

{Agent new_value(@name Value)}

send_value(Value)

new_value(Name Value)

send_value(Value)

{Agent new_value(@name Value)}

new_value(Name Value)

Simulator

{Agent compute}

record creation

{self m(In NewValue)}

{self send_value(NewValue)}

puts new value in memory 

{Output Agent 1 new_value(@name Value)}

{Output Agent n new_value(@name Value)}

new_value(Name Value)

new_value(Name Value)

Figure 5.2: A synchronous agent sequence diagram

The synchronous engine uses a sequence of ticks to simulate time. Each step t corresponds to

1/Delta units of simulated time for each agent. The idea here is that every agent computes

its new value ’at the same simulated time’ (agents’ computations will be interleaved by

the Oz scheduler). As explained above, there are two types of agents (depending on the

simulated time or not). To avoid the creation of implicit delays that can make the system

oscillate, agents must be executed in a certain order. Stock agents must be executed first

before their value is propagated to all the instantaneous agents so that they can update their

value. This process has to be done in one computation step. This is done by an execution

sequence given by a topological ordering organised in layers so that all the agents in a layer

can be executed in parallel.
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The intuition for the topological sort organised in layers is as follows:

Dico← empty set that will contain visited nodes

Layers← empty list of layers

Nodes← set of all agents

/* Computation of the first layer */

Layer1 ← empty list of agents

for each agent n in S do

if n is a stock then

insert n into Dico

insert n into Layer1

add Layer1 to Layers

/* Computation of the following layer */

Layeri ← empty list of agents

for each agent n in S do

if n is not a stock then

if each input agent in of n is in Dico and n is not in Dico then

insert n into Layeri

insert each agent from Layeri into Dico

add Layeri to Layers

(iterate the computation of the following layer until the resulting Layeri is empty)

This algorithm gives for the example given in Figure 5.1 the following list of lists of agents:

[Area flower]|[Fraction occupied Decay]|[Growth rate multiplier]|

[Actual growth rate]|[Growth]

The fact that Decay is executed before Growth has no influence on the Area_flower

because this agent will receive both values before the next time step where it will compute

its new value.

For each simulated time step, the simulator will execute each layer in order and will wait

until each agent of one layer has finished before moving on to the next layer. This technique

is done by a double synchronisation on each agent of a layer: each agent receives a message

compute(X Y) where X and Y are unbounded variables; when all the agents of a layer

have received this message, X is bound to unit thus allowing the agents to start their

computation and to send their value to their output agents (they have been waiting on X);

when they are done, they bind Y to unit and tell the simulator that they have finished their
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work, when the simulator knows that every agent in the layer has finished its work, it can

proceed to the next layer.

In Listing 5.8, the code for a synchronous agent is listed. This synchronous agent is also a

class and extends the class defined by the user that itself extends the base agent explained

before.

1 c l a s s Sync from Class

2 a t t r time ins_stream monitored

3 meth init(Init Out Delta)

4 Class ,Init

5 delta := Delta

6 out_stream := [Out]

7 end
8 meth start

9 @ins_stream = stream ()

10 for Agent i n @ins do

11 Name i n Name = {Agent name($)}

12 ins_stream := {Adjoin @ins_stream {Record.make stream [Name ]}}

13 @ins_stream.Name = {NewCell nil}

14 end
15 end
16 meth send_value(Value)

17 for Agent i n @outs do

18 i f Value == init then
19 {Agent new_value(@name Out)}

20 e l s e
21 {Agent new_value(@name Value)}

22 end
23 end
24 end
25 meth new_value(Name Value)

26 {Assign @ins_stream.Name Value |{ Access @ins_stream.Name}}

27 end
28 meth compute(X Y)

29 {Wait X}

30 In NewValue i n
31 In = {Record.make ins {Arity @ins_stream }}

32 for Name i n {Arity @ins_stream} do

33 List i n List = {Access @ins_stream.Name}

34 case List

35 o f X|nil then In.Name = X

36 [] X|_ then In.Name = X

37 e l s e In.Name = 0.0

38 end
39 end
40 { s e l f m(In NewValue )}

41 out_stream := NewValue|@out_stream

42 { s e l f send_value(NewValue )}

43 Y = u n i t
44 end
45 end

Listing 5.8: Synchronous agent

init(Init Time Out): initialises the agent with the method Init meant for the agent cre-

ated by the user then sets the attributes delta and out_stream to their initial values.

start: starts the agent by creating the cells for the incoming streams.

send value(Value): sends a message new_value(@name Value) with the new value freshly

computed or with the initial value that the user indicated in the graph definition.
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new value(Value): stores the new value in the corresponding cell representing the incoming

stream. In this case, the stream is represented as a stack.

compute(X Y): at every computation step the simulator sends a message that enables

this method to compute the new value that is a function of the input streams. The

results are put onto the output stream and then sent to all the output agents. Both

parameters are there to guarantee the synchronous characteristic.

5.3.2 Asynchronous engine

The idea of the asynchronous engine is that every agent works ’alone’ and does not depend

on the simulator to compute its new value. Once the agents have started, they compute

their new value whenever they need to. The technique used to propagate values is not the

push method but the pull method. That is, if an agent needs to compute its new value, it

will ask its input agents to give it their current value. When the agent has received all of the

necessary information, it will then proceed and compute the new value, and store it. This is

shown in Figure 5.3.

Input Agent 1 Input Agent n Agent

{Input Agent 1 state_request(self)}

construct_msg

{Input Agent n state_request(self)}

send_requets

state_request(Agent)

state_request(Agent)

{Agent state_answer(@name @out_stream.1)}

{Agent state_answer
(@name @out_stream.1)}

All answers received

{self m(@msg Out)}
computation of the new result

storing the new result
wait t ms and 

reiterate the process

Figure 5.3: An asynchronous agent sequence diagram

The asynchronous engine does not use a sequence of ticks to simulate the time. It actually

uses physical time to represent time. That is, agents that do depend on time will first

compute their new value and will then wait for Time milliseconds before computing the next

value. Also this time is waited in a thread to allow the agent to answer requests from other

agents. The other agents that need to be ’instantaneous’ will not wait and will continuously

update their value. The waiting time is the same for all the time-dependent agents, it gives
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approximatively the same amount of observation. This is because agents do not have the

notion of how many computation steps they have done. So basically, they do not know when

to stop. Another thread is thus waiting for the number of observations asked by the user

times the time also set by the user. Once this time has passed, this thread sends messages

to all the agents to stop them at the same time. The only problem is that this thread does

not take into account the time consumed by the computations that should have been added

to the total time it needed to wait. The number of real computations does not correspond

to the one asked by the user but for a more convenient analysis, the resulting behaviour is

plotted to correspond to the exact number of computations.

In this case, the topological ordering will not be used. Instead, the fact that physical time

is used to simulate time is enough to allow the instantaneous agents to ’propagate’ the new

value from a stock as fast as possible before the agent depending on the time finished waiting

and computes its new value. This technique may create implicit delays in the behaviour

of models if the time indicated by the user is not enough for the instantaneous agent to

propagate the new value from stocks to flows. That is, if there are four agents in a loop (the

loop starting with a stock) then the information from the stock needs to propagate onto the

three other agents. This process needs at least three computation steps, depending on the

ordering of the agents given by the Oz scheduler and at most seven if the scheduler is fair.

So, the Time set by the user should be of at least approximately 100 ms in order to allow

the system to propagate the information from a stock to all the dependent ’instantaneous

agents’.

The Oz scheduler defines the sequence in which the agent will be executed. Once this

sequence is set, it will not change because of the use of the round robin system. To add the

aspect of complete randomness to the simulation, an agent can pass and leave the sequence

to position itself at the end of the queue. This process is only applied to stock agents (the

application to non time depending agents is useless due to the fact that they compute new

values all the time).

Another feature for tweaking the simulation has been added in order to allow the agents

to wait for different times. This allows there to be stocks that work faster than others or

vice versa. If the parameter Boolean is set to true then, when the asynchronous agent is

created, a maximum of 10% of Time is added or withdrawn from it. This characteristic will

change the behaviour of the system (see next Chapter).
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In Listing 5.9, the code for an asynchronous agent is listed. This asynchronous agent is also

a class and extends the class defined by the user that itself extends the base agent explained

before.

1 c l a s s Async from Class

2 a t t r time msg insName

3 meth init(Init Time Out Random Delta)

4 Class ,Init

5 delta := Delta

6 i f Random then
7 Ten Sign i n
8 i f Time d i v 10 < 1 then Ten = 1

9 e l s e Ten = Time d i v 10 end
10 Sign = {OS.rand} mod 2

11 i f Sign == 0 then time := Time + ({OS.rand} mod Ten)

12 e l s e time := Time - ({OS.rand} mod Ten) end
13 e l s e time := Time end
14 out_stream := [Out]

15 insName := nil

16 end
17 meth start

18 for Agent i n @ins do

19 Name i n {Agent name(Name)}

20 insName := Name|@insName

21 end
22 { s e l f construct_msg}

23 end
24 meth construct_msg

25 msg := {Record.make state @insName}

26 msg := {Adjoin @msg {Record.make state [1]}}

27 @msg.1 = {NewCell 0}

28 { s e l f send_requests}

29 end
30 meth send_requests

31 for Agent i n @ins do

32 {Agent state_request( s e l f )}
33 end
34 end
35 meth state_request(Agent)

36 {Agent state_answer(@name @out_stream .1)}

37 end
38 meth state_answer(Name Info)

39 @msg.Name = Info

40 {Assign @msg.1 ({ Access @msg .1} + 1)}

41 i f {Access @msg .1} == {Length @ins} then
42 Out i n
43 i f @stock andthen {OS.rand} mod 2 == 1 then
44 {Thread.preemt {Thread.this}}

45 end
46 { s e l f m(@msg Out)}

47 out_stream := Out|@out_stream

48 i f @stock then thre ad {Delay @time} { s e l f construct_msg} end
49 e l s e { s e l f construct_msg} end
50 e l s e s k i p end
51 end
52 end

Listing 5.9: Asynchronous agent

init(Init Time Out Random Delta): initialises the agent with the method Init meant for

the agent created by the user then sets the attributes delta, time, out_stream, and

ins_name to their initial values. The attribute time corresponds to the time entered

by the user with a delta of maximum 10% depending on the value of Random. If this
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boolean is true then a maximum 10% of Time is added or withdrawn to/from this

time, nothing is changed if Random equals false.

start: starts the agent by collecting the names of the input agents. Their names are used

to construct the message that will be filled progressively by requests sent to the input

agents.

construct msg: constructs a message state(1: 0 InputName1: _ ... InputNameN: _)

send requests: sends the requests to all the input agents.

state request(Agent): when a request is received from Agent, the agent sends a message

to this same agent with its current state.

state answer(Name Info): this is the answer received by the original agent with the Name

of the input agent and its current value (Info). When all the answers are received,

the agent computes its new output value and stores it. Then if stock is set to true

then it will wait for Time ms before computing the next value. If it is set to false, then

the next computation is carried out directly.

5.4 Graphical interface

To facilitate the use of the simulator, a graphical interface has been developed. This interface

is implemented in Java using the Swing libraries. Two other libraries have been used to

implemented the graph representation[29] and the chart representation[30].

5.4.1 Main panel

A main panel (see Figure 5.4) has been developed to facilitate the user input. This panel

contains three main parts:

menu bar: to facilitate the access to commands such as the creation of a new project,

opening an existing project, saving the current project, showing the graph or chart

panel, etc.

agents left sub-panel: this sub-panel is dedicated to the definition of agents: the user can

create new agents, edit existing agents, save their definition, delete agents, or simply

look at the definition of an agent chosen from the list on the top of the panel.
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Figure 5.4: Simulator main panel

graph right sub-panel: this sub-panel is used to put information about the graph defini-

tion. First the user has to choose the engine of the simulator, then create the agents as

explained earlier, then construct the links between the agents and finally add informa-

tion about which agents need to be monitored during the simulation and the number

of times they have to be monitored. Each agent name put in the list: feature will

be represented in the chart.

More practically, a hashtable is used to store the agent definitions. This data structure is

very convenient for this type of situation where access to an agent definition, or the creation

or the deletion of an agent could be frequent.

When the user wants to save the current project, a folder is created with a name entered by

the user in a folder projects. Then, two files are copied in this folder with the definition

of a base agent and of the simulator. Finally, the content of the hashtable is copied in a

file where agent definitions will be stored and the graph definition will also be copied in a

separate file.
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5.4.2 Graph representation

This tool was designed to give the user the possibility of observing the links he/she has

created between agents. A library created by three researchers has been used to represent

the graph. This library - Java Universal Network/Graph Framework - consists of vertex and

edges, it also allows for the manipulation of the vertex in the panel in order to obtain the

best disposition for the user. Thus, when the user chooses to get the graph representation,

the text from the Graph text field is used to create the graph. An example of a graph is

depicted in Figure 5.5.

Figure 5.5: Simulator graph panel

This example consists of five vertices and six edges. The user can click on a vertex and move

it corresponding to his/her convenience. To access this panel, the user can either go via the

menu bar Tools->Graph or use the shortcut Alt+g

5.4.3 Chart representation

This other tool takes the output of the simulation and plots it on a chart. The user can use

the record info in the text field Monitor to set the parameters of the monitoring. That

is, the user can choose the agent(s) to be observed and the number of observations. An

example is depicted in Figure 5.6

After the simulation has been undertaken, the output is captured and plotted in a chart. To

access this panel, the user can either go via the menu bar Tools->Behaviour or use the

shortcut Alt+b
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Figure 5.6: Simulator chart panel



Chapter 6

Simulator - results

Introduction

Feedback systems have been tested using the simulator to observe whether there are differ-

ences between them and the results presented in articles I have read. In this section, such

differences will be explained.

In parallel with the simulator that I developed, I used another simulator called Stella[31]

that uses stock-and-flow representation. For each result presented below, I tested the same

model with the same equations and values, with Stella and then with my simulator. The

synchronous engine developed here corresponds to the Stella engine where stocks (or agents

depending on time) are computed first then their new value is used to calculate the value of

the ’instantaneous’ agents. Also, very few examples with a complete set of equations were

found in all the articles that I read. Thus sometimes, I had to find the right parameters to

remain close to the depicted behaviour.

99
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6.1 Delta time

The delta time – dt – is the interval of time between calculations. The dt is the answer to the

question: do I have to re-calculate the numerical values of the model once every time unit,

twice, three times, . . . ? For example in the population model, if one time unit represents a

year and that the user asks for 100 observations, the simulation will show the evolution of

the population for a century. When the population is evaluated depends on the dt value.

Sometimes, the dividing into smaller fragments of a time unit might be interesting in order

to analyse the change in the model’s behaviour. In general, a smaller dt means smoother,

more continuous changes. A greater dt means rougher changes that can disrupt the expected

behaviour of the studied model.

Also, the choice of dt can create ’artefact oscillations’ (see Section 6.2.7). Sometimes the

change is too important due to large values of dt, which means that a value can go under or

over its limit. This process often implies that the value needs to go in the other direction but

once again due to the late change, the value goes on the other side of the limit which means

that it needs to be redirected to its limit. This process creates oscillations where the value

overshoots or undershoots its limit instead of progressing towards it. In this case, a good

practice is to cut the delta value in two and to re-simulate the model until the oscillations

disappears. The modeller has to find out whether these oscillations are real or artefacts

created by the choice of dt. In general though, real oscillations due to delay persist even

with small dt values.

In summary, if the dt is set to a value less than 1, it makes the analysis of change that

occurs within a time unit possible. In general the trade-off is speed against smoothness and

numerical precision. If the dt is small then changes are smoother and the results are more

precise numerically but more calculations are needed which takes up more time to complete

the simulation. Large values of dt give less precise results but, in some cases, can give a

good approximation of the model’s behaviour in a faster simulation.

6.2 Results

Results of the simulations with both engines and different values for the engines parameters

will be presented in this section. All the result graphs will be put in the Appendix dedicated

to these results.
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6.2.1 Population

In Section 3.2.5, an example of coupling a negative feedback loop and a positive feedback

loop was explained. Depending on the dominant loop, the behaviour of the combination of

both loops is either an exponential growth or a exponential decay.

This model of the evolution of the population was tested in the simulator with both engines

and both configurations for the asynchronous engine. The simulation used the following set

of equations where the birth rate is fixed at 6% and the death rate at 3%. The resulting

behaviour should therefore be an exponential growth. Results from the Stella simulation

(with dt = 1) are depicted in Figure 6.1

Figure 6.1: Stella: the population model (delta = 1)

Population(t) = Population(t - dt) + (Births - Deaths) * dt

INIT Population = 100.0

INFLOW: Births = Birth fraction * Population

OUTFLOW: Deaths = Death fraction * Population

Birth fraction = 0.06

Death fraction = 0.03

6.2.1.1 Synchronous engine

The population model has been simulated with three different values for the delta time

parameter of the synchronous engine. Results are depicted in Figure 6.2 One can clearly

observe the facts about the delta value.
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(a) delta = 1

(b) delta = 0.1 (c) delta = 10

Figure 6.2: Simulator: the population model – synchronous engine

Figure 6.2(a) corresponds to the simulation done with Stella depicted in Figure 6.1. Both

simulations give a resulting population of about 1900 people after 100 periods. This result

uses exactly 100 computations of the population value (once a year during a century).

Figure 6.2(b) shows the results of the population where the simulations are made ten times

a year. This configuration gives better accuracy in the final results (final population of 2000

people), but it took ten times longer to compute these results (100/0.1 = 1000 instead of

100). This model already gives good approximation of the model behaviour with a delta

equal to 1. Lower value of delta will only give the ’same’ approximation but using slower

simulations.

Figure 6.2(c) depicts the situation where dt is equal to 10 which means that a computation

will represent ten time units, that is, ten years. One can observe that the final population

is of around only 1400 which is a lower than the two other simulations. This result has

been obtained in a really fast simulation. It does not give the exact result but a good first

approximation of the behaviour of the population model.
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6.2.1.2 Asynchronous engine

As observed in the results from the synchronous engine, a delta value of 1 gives good

approximation of the behaviour and also gives good approximation of the final value of the

population after 100 years. Only the results for dt equal to 1 will be discussed here. The

same conclusion may be applied in the two other cases. Results are depicted in Figure 6.3.

(a) time = 10, random speed = false (b) time = 10, random speed = true

(c) time = 100, random speed = false (d) time = 100, random speed = true

(e) time = 500, random speed = false (f) time = 500, random speed = true

Figure 6.3: Simulator: the population model – asynchronous engine (delta = 1)

Figures 6.3(a)–(b) show the results from the simulation with a time set to 10 milliseconds.

That is, each calculation will be carried out every 10 milliseconds. The final population in

Figure 6.3(a) is of around 450 people. This can be explained as follows: because of a low

time between each calculation for the population agent, its new value does not have time to
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propagate to all the instantaneous agents before its next value is computed, which means

that this new computation is based on an older value. That is, the resulting growth is lower

than it should normally be. On the other hand, in Figure 6.3(b), a delta of maximum 10%

of the time has been added or withdrawn to/from it. This means that the population is

slightly slower which allows the instantaneous agents to better propagate the new value from

the population agent. Then the new population value will be computed with better values.

This gives a better approximation of the final population (around 1700 people) and of the

model’s behaviour.

Figures 6.3(c)–(d) depict the same simulation but with a time of 100 ms. This allows

the instantaneous agent to better propagate new values from the population agent. In

the first case, the results give a good approximation of the behaviour but a slightly worse

approximation of the final population (less than 1500 people). When the population has a

random speed between 90 ms and 110 ms, then the results could be the same as for the

synchronous engine with a dt of 0.1 (’could’ because this is one of the possible results of the

asynchronous simulation engine).

The final population with a time period between 9 and 11 ms is better approximated than

with a time period of 100 ms. Because of the asynchronous characteristic of the engine,

the agents have to be stopped after a certain time because they do not know when to

stop. In the case where all agents have the same speed, a thread is waiting for a number of

observations times the time set by the user before stopping the agents. This generally gives

less observations than required by the user. On the other hand, if the time must be random,

the thread waiting will wait for the number of observations times the time + 10% given

by the user. As the time is randomly changed at the creation of the asynchronous agent

and the thread always wait for the case where 10% is added, the number of observations

can be greater than the one required if the agent is faster than the original time. This fact

can also be observed in Figure 6.3(f) where the final population is greater than the correct

approximation given by the synchronous engine.

Figures 6.3(e)–(f) represent the results of the simulation with a time of 500 ms. In this case,

Figure 6.3(e) gives good approximations of both the behaviour and the final population

value. But as just explained above, one can observe that in Figure 6.3(f) the population is

faster than the time set by the user and due to the waiting thread that will stop the agents,

there are more observations. This gives a higher value of the final population that is not

correct.
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6.2.2 Drifting goals

This example was explained in detail in Section 4.13. This model consists of an expected

situation defined by an organisation whose their current situation is lower than the one ex-

pected. Actions are therefore taken in order to increase the current situation whilst emotional

tension decreases the expected situation. As the emotional tension is stronger than the ac-

tions taken, the expected situation decreases faster than the current situation increases until

the both meet just above 25 (if dt = 1). The resulting behaviour of the model from the

Stella simulator is depicted in Figure 6.4. The following set of equations was used.

Figure 6.4: Stella: the drifting goals model (delta = 1)

Current situation(t) = Current situation(t - dt) + (Action) * dt

INIT Current situation = 10.0

INFLOW: Action = 0.02 * Gap

Desired situation(t) = Desired situation(t - dt) + (- Emotional tension) * dt

INIT Desired situation = 100.0

OUTFLOW: Emotional tension = 0.1 * Gap

Gap = Desired situation - Current situation

6.2.2.1 Synchronous engine

The drifting goals model has been simulated with three different values for the delta time

parameter of the synchronous engine. Results are depicted in Figure 6.5. Once again,

one can observe the facts about the delta values. This time, artefact oscillations are also

observable.

Figure 5(a) shows the same simulation results as the ones produced by Stella (see Figure

6.4). Both simulations give a dynamic equilibrium of just above 25 after 60 periods of time.
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(a) delta = 1

(b) delta = 0.1 (c) delta = 10

Figure 6.5: Simulator: the drifting goals model – synchronous engine

Figure 5(b) represents the same simulation results as for a dt of 1. This means that the

model already gives good approximation of the behaviour and of the dynamic equilibrium

value with only 60 computations (compared to the 600 calculations of the 0.1 dt).

Figure 5(c) depicts the situation where artefact oscillations appear in the model. These

oscillations come from the delta in the equations of stocks. In this case, the delta is equal to

10 meaning that at every computation the effect of flows will be multiplied by 10. After 10

time units (simulated time) or the first computation, the emotional effect is more important

than in the case where delta equals 1. This affects the desired situation that will go below the

current situation. In this case, the gap is now negative, implying that the two situations will

go in the opposite direction: the current situation will now decrease and the desired situation

will increase due to their definition (it will inverse the direction of both flows). During the

next step, the change still being to important, both situations will return to their ’normal

situation’ (the current one under the desired one). This process will happen until they both

reach their dynamic situation at about 25. This value of dt gives a good approximation of

the dynamic equilibrium’s value but not a good approximation of the model’s behaviour due

to the ’big steps’ in the simulation.
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6.2.2.2 Asynchronous engine

Three interesting conclusions have been drawn from the analysis of the behaviours resulting

from different configurations of the asynchronous engine for the drifting goals model.

(a) delta = 1, time = 10, random speed = false (b) delta = 1, time = 10, random speed = true

(c) delta = 1, time = 100, random speed = false (d) delta = 4, time = 100, random speed = false

(e) delta = 4, time = 10, random speed = false (f) delta = 4, time = 10, random speed = false

Figure 6.6: Simulator: the drifting goals model – asynchronous engine

Figures 6.6(a)–(b) shows that the dynamic equilibrium is obtained earlier in the simulation

when stock agents have different time. They produce more observations than in the situation

where they all have the same time because of the total time waited by the thread that stops

the agents.

Figures 6.6(c)–(d) represents the variation of the value of dt. One can observe that if dt

equals 1 then the curves are smooth and that if dt is equal to 4 then the results give the
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same approximation for the model’s behaviour as for the value of the dynamic equilibrium

but that the curves are not as smooth as for a dt equal to 1. This is due to the number of

calculations done per simulated time unit.

Figures 6.6(e)–(f) depict three facts. The first one is the creation of artefact delays as

explained in the results of the synchronous engine. The second one is due to the low time

assigned to the agents. The 10 ms between calculations of new value for stock agents is

not enough to propagate this information to the ’instantaneous agents’. The stock agents

base their calculations on older values that are translated by a higher dynamic equilibrium

value. The third one is the earlier equilibrium due to the different speed of the stock agents

creating more observations than required.

6.2.3 Epidemic

The dynamic behaviour of epidemic was explained in Section 4.2.2. An initial population

of people susceptible of falling ill meets another population of ill people. This contact will

progressively drain the susceptible people to the infected population until it reaches a value

near 0 where the infected will progressively decay due to the lack of susceptible people.

One can observe that the illness will disappear and that the susceptible population will grow

again. Results from the Stella simulator are presented in Figure 6.7.

Figure 6.7: Stella: the epidemic model (delta = 1)

The following set of equations was used:

Infected(t) = Infected(t - dt) + (Infection rate - Removal) * dt

INIT Infected = 1.0

INFLOW: Infection rate = Infection fraction * Contacts

OUTFLOW: Removal = Removal fraction * Infected
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Susceptible(t) = Susceptible(t - dt) + (In - Infection rate) * dt

INIT Susceptible = 500.0

INFLOW: In = 1.0

OUTFLOW: Infection rate = Infection fraction * Contacts

Contacts = Contact fraction * Susceptible * Infected

Contact fraction = 0.1

Infection fraction = 0.01

Removal fraction = 0.1

6.2.3.1 Synchronous engine

The drifting goals model has been simulated with three different values for the delta time

parameter of the synchronous engine. Results are depicted in Figure 6.8. Once again, one

can observe the facts about the delta values.

(a) delta = 1

(b) delta = 0.1 (c) delta = 5

Figure 6.8: Simulator: the epidemic model – synchronous engine

Figure 9(a) shows the same simulation results as the ones produced by the Stella simulator

(see Figure 6.7). Both simulations give a dynamic equilibrium of 60 for the susceptible

population and 0 for the infected population.
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Figure 9(b) represents the situation where dt equals 0.1. In this case, this dt value gives a

better value for the successive changes in both populations. The decrease of the susceptible

population is less steep due to the increased number of computations for each time unit.

This implies a lower maximum for the infected population.

Figure 9(c) depicts the situation where dt is set to 5. This configuration gives rougher

approximations of the model’s behaviour: the curves are not as smooth as for the two other

dt values. The maximum of infected people is also higher because changes appear less often

and are more important than in the other configurations. One can also observe that the

susceptible population becomes negative between 20 and 30. These negative values are

not possible for a population model: population cannot be negative. This raises a question:

could non linearity be added in the equations of flows to limit stocks to their ’natural values’?

During the construction of the simulator, such a technique was used in order to restrict the

stocks to their physical values. If a stock agent has a negative value, this technique consists

in considering the stock as a zero value stock if it is negative. This gives a qualitatively

better approximation of the model shape. Moreover, limiting stock in their equations is not

a good technique as it can break the conservation law.

6.2.3.2 Asynchronous engine

Three observations can be extracted from the simulation results of the asynchronous engine

with different parameter values. These are presented in Figure 6.9

Figures 6.9(a)–(b) show two interesting facts. Firstly, when all of the agents have the same

time, the illness is not eradicated. This is due to the low time value that implies the non

correct propagation of new values of stock agents to the instantaneous agents (stocks will

thus base their calculations on old values). Second, when agents have different time, the

final value of the susceptible population is higher than in the synchronous equilibrium. The

susceptible population seams to be faster than the infected one and as the inflow of the

susceptible population is constant, it reaches a higher final value. On the other hand, the

peak in the infected population is lower than in the synchronous situation.

Figures 6.9(c)–(d) represent the situation where delta equals 1. As the time is set to a low

value (in both cases), the propagation is also not done properly. This gives a less steep

decrease of the susceptible population. But the decrease is too important (because older

values are used) which means that the susceptible population once again goes below its

natural limit. When the agents are set with different time, the change appears earlier in the

simulation. This process happens because there are more observations than required (also

implying a higher final value of the susceptible population).
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(a) delta = 0,1, time = 10, random speed = false (b) delta = 0,1, time = 10, random speed = true

(c) delta = 1, time = 10, random speed = false (d) delta = 1, time = 10, random speed = true

(e) delta = 5, time = 10, random time = false (f) delta = 5, time = 10, random time = true

Figure 6.9: Simulator: the epidemic model – asynchronous engine

Figures 6.9(e)–(f) depict the combination of two phenomena: firstly, the fact that the time

between computations is only 10 ms does not allow the propagation of new values from

stocks to be correctly propagated throughout all of the dependent instantaneous agents. In

addition to this ’bad’ effect, computations will only be carried out every 5 simulated period

implying more ’drastic’ changes. These phenomena can be observed in Figure 6.9(e) where

the agents all have the same time. The susceptible population goes under its natural limit

due to computations with older value and the multiplication of changes by 5. On the other

hand, in Figure 6.9(f), values for the infected population converge to minus infinity. The

model does not support high delta values and small time.
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6.2.4 Crowding

In Section 4.2.1, an example of limited growth was explained. It was said that the S-shaped

growth was the more interesting part because it consists of two phases: an exponential

growth and a goal-seeking phase to the limit. Results from the Stella simulator are depicted

in Figure 6.10. Simulations have been run with the following equations and values:

Figure 6.10: Stella: the crowding model (delta = 1)

Population(t) = Population(t - dt) + (Births - Deaths) * dt

INIT Population = 10.0

INFLOW: Births = Birth fraction * Population

OUTFLOW: Deaths = Death fraction * Population

Birth fraction = 0.08 - 0.000028561 * Crowding - 0.02 * Crowding^2.0

Capacity = 200.0

Crowding = Population / Capacity

Death fraction = 0.06

6.2.4.1 Synchronous engine

The crowding model has been simulated with three different values for the delta time pa-

rameter of the synchronous engine. Results are depicted in Figure 6.8.

In this case, because the dynamic equilibrium is obtained after 250 simulated time unit,

the value of dt does not really influence the approximation of the model’s behaviour nor

the final value of the population. One can observe that the smaller the dt value, the later

the transition between the two phases appears: the exponential growth followed by the

goal-seeking phase.
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(a) delta = 1

(b) delta = 0.25 (c) delta = 10

Figure 6.11: Simulator: the crowding model – synchronous engine

6.2.4.2 Asynchronous engine

Two observations can be made from the analysis of the simulation results. They are depicted

in Figure 6.12

Figures 6.12(a)–(b) show the results of the simulation with a dt of 1 and a time of 10 ms.

In the case where agents have the same time (Figure 6.12(a)), the new values from stock

agents are not correctly propagated due to the low value of the time. Computations are

therefore based on older values that are in fact lower than they should be, which creates a

less steep growth. Because of the lowers values, the second phase is not triggered and only

the exponential growth is observable. If the agents have different speeds (Figure 6.12(b))

then the two phases are observable and the final value of the population is well approximated

even with a low time (more computations than required have been carried out which allows

for the model to be correctly simulated).

Figures 6.12(c)–(d) represent the same situation as described above but with a delta of 10.

In this case, in addition to the observations made for Figures 6.12(a)–(b), one can observe

several kinds of oscillations that are artefact oscillations made by the configuration of the

asynchronous engine. They are due to the combination of a high delta value and a low time

value. In Figure 6.12(c), only the ’exponential growth’ is observable. In Figure 6.12(d), the
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(a) delta = 1, time = 10, random time = false (b) delta = 1, time = 10, random time = true

(c) delta = 10, time = 10, random time = false (d) delta = 10, time = 10, random time = true

Figure 6.12: Simulator: the crowding model – asynchronous engine

final value of the population is more or less correctly approximated but the behaviour is not.

It looks like an exponential growth that is as not steep as it should be. The second phase –

goal-seeking – is not observable in both cases.
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6.2.5 Flowers

In the example explained in 2.3.2.3, it was said that the flowers model has the same behaviour

as the S-shaped pattern. With the same equations as in Section 2.3.2.3, simulations were

carried out with both engines. The results from the Stella simulator are depicted in Figure

6.13.

Figure 6.13: Stella: the flowers model (delta = 1)

area_of_flowers(t) = area_of_flowers(t - dt) + (growth - decay) * dt

INIT area_of_flowers = 10.0

INFLOW: growth = area_of_flowers * actual_growth_rate

OUTFLOW: decay = area_of_flowers * decay_rate

actual_growth_rate = intrinsic_growth_rate * growth_rate_multiplier

growth_rate_multiplier = - fraction_occupied + 1.0

fraction_occupied = area_of_flowers / suitable_area

decay_rate = 0.2

intrinsic_growth_rate = 1.0

suitable_area = 1000.0

6.2.5.1 Synchronous engine

Three possible values for the synchronous engine have been used to test the model.

Figure 17(a) represents the case where one computation is done by simulated time unit.

The model reaches its dynamic equilibrium after 13 time units, this is therefore a good

approximation of the shape of the model’s behaviour and of the final value of the area of

flowers.
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(a) delta = 1

(b) delta = 0.1 (c) delta = 2

Figure 6.14: Simulator: the flowers model – synchronous engine

In Figure 17(b), one can observe the same approximation as in the first case but thanks to

a smaller value of dt, the second phase – goal-seeking – is smoother than when only one

computation is done per simulated time unit.

Figure 17(c) shows two characteristics of the variation of the dt value. Firstly because a

computation is done every two simulated time units, the curve is not smooth at all. Secondly,

artefact oscillations appear when the model reaches its limit of 800 flowers. This is due to

the fact that changes are less frequent and are more important. The value thus overshoots

its limit before being redirected under its limit too brutally and so on until it reaches the

correct value.

6.2.5.2 Asynchronous engine

Three interesting behaviours can be spotted from the analysis of the simulation results. They

are presented in Figure 6.15

Figures 6.15(a)–(b) represent the situation where a time of 10 ms is used. The propagation

of the new values from the stock agent is not carried out correctly. This results in the use

of older values for the computation of new values for the area of flowers. Because of the
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(a) delta = 1, time = 10, random time = false (b) delta = 1, time = 10, random time = true

(c) delta = 0.1, time = 10, random time = false (d) delta = 0.1, time = 10, random time = true

(e) delta = 2, time = 100, random time = false (f) delta = 2, time = 100, random time = true

Figure 6.15: Simulator: the flowers model – asynchronous engine

model’s S-shaped behaviour with its exponential phase, and the computations of new values

with older values than required, the model overshoots its limit to aim a total area of more

than 2000 acres. Moreover, due to the delta of time added or withdrawn to/from the stock

agents, the number of observations is greater than those required (see Figure 6.15(b)). This

results in the brutal change of direction between step 11 and 12 where the model shoots

under its natural limit of 0.

Figures 6.15(c)–(d) show that even with a low time that forces the stock agents to use older

values than they should use, the model can be well approximated for both the behaviour

and the final value. This is because 10 computations are carried out per time unit, allowing

the model to avoid artefact delays. One can observe the difference between the two figures,
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on one hand, the dynamic equilibrium is obtained at the end of the 20 simulated time units

and on the other, it is obtained after only 9 steps. This is due to the different speed of the

stock agents that implies more observations than required by the user.

Figures 6.15(e)–(f) depict the same situation described for the same delta value for the

synchronous engine. The propagation can be done efficiently due to a correct value of time.

The artefact oscillations come from the frequency of computations (1 every 2 simulated time

unit). Changes are thus more brutal, the area overshoots its limit before being redirected

below it and so on until the stock agent eventually reaches it.

6.2.6 Balancing loop

The balancing loop problem is the same example as in Section 4.6 but with no delay between

the action and the current state. This pattern is also called the goal-seeking pattern

where the current value tends to evolve towards the desired value. Results from the Stella

simulation are depicted in Figure 6.16.

Figure 6.16: Stella: the balancing loop model (delta = 1)

This model has been tested with the following equations:

Current value(t) = Current value(t - dt) + (Action) * dt

INIT Current value = 50.0

INFLOW: Action = Gap / 2.0

Desired value = 150.0

Gap = Desired value - Current value
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6.2.6.1 Synchronous engine

Three different delta values have been used to configure the synchronous engine. Results

are depicted in Figure 6.17

(a) delta = 1

(b) delta = 0.1 (c) delta = 2

Figure 6.17: Simulator: the balancing loop model – synchronous engine

One can observe that for a dt of 1, the curve is not smooth. If the dt is smaller than 1

then the curve becomes smoother and smoother because more and more computations are

carried out per time unit. If dt equals 2, then the equilibrium is obtained in only 2 simulated

time units. In this case the approximation of the model’s behaviour is quite rough but it

gives the correct final value.

6.2.6.2 Asynchronous engine

Two observations can be made from the analysis of the simulation results for the asyn-

chronous engine (see Figure 6.18).

Even with a delta of 1, the correct shape of the model’s behaviour could not be obtained.

This is due to a low value of the time allowing the stock agent to compute twice with

the same value (the propagation did not change the value of the instantaneous agent soon

enough). This can be observed in Figures 6.18(a)–(b).
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(a) delta = 1, time = 10, random time = false (b) delta = 1, time = 10, random time = true

(c) delta = 2, time = 10, random time = false (d) delta = 2, time = 10, random time = true

Figure 6.18: Simulator: the balancing loop model – asynchronous engine

Artefact oscillations can also appear for a higher value of dt and a smaller time value. In

this case (see Figures 6.18(c)–(d)), the changes are computed once every two simulated

time units, thus creating a more brutal change and allowing the model to overshoot its limit.

This is due to the change computation frequency and the good values not being propagated

to all the instantaneous agent. Oscillations are more frequent in the right-hand side figure

because agents compute their changes more often due to a withdrawal of maximum 10%

and because of the waiting thread that waits too long allowing the model to have more

observations than required.

6.2.7 Knowledge diffusion

The knowledge diffusion is a kind of limited growth. There are two stocks: people with and

without knowledge. But there are no sources or sinks which means that the initial amount

of people without knowledge is progressively flowing towards the people with the knowledge

thanks to the knowledge diffusion and the word of mouth factor. The results from the Stella

simulation are depicted in Figure 6.19

This model, which was taken from [15], uses these equations:
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Figure 6.19: Stella: the knowledge diffusion model (delta = 1)

People without knowledge(t) = People without knowledge(t - dt) +

(- Knowledge infusion rate) * dt

INIT People without knowledge = 99.0

OUTFLOW: Knowledge infusion rate = (Word of mouth factor

* People with knowledge) * Gap to fill

People with knowledge(t) = People with knowledge(t -dt)

+ (Knowledge infusion rate) * dt

INIT People with knowledge = 1.0

INFLOW: Knowledge infusion rate =

(Word of mouth factor * People with knowledge) * Gap to fill

Gap to fill = (People with knowledge + People without knowledge)

- People with knowledge

Word of mouth factor = 0.02

6.2.7.1 Synchronous engine

Three possible values for the synchronous engine have been used for the simulations. Results

are presented in Figure 6.20.

In this case, only delta time values of 1 or less have been used. The Stella simulation does not

give any artefact oscillations for a delta of 1 but this is not true in the case of the simulator

that has been built for this project. The dynamic equilibrium should be obtained at step 5,

the fact that the approximation of the behaviour in the three cases is well simulated can

be observed. In the last step, too many people are withdrawn from the population without

the knowledge which means that the model undershoots below its natural limit (population

under 0). In this model no sources or sinks are used. There are therefore 100 people at the
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(a) delta = 1

(b) delta = 0.6 (c) delta = 0.1

Figure 6.20: Simulator: the knowledge diffusion model – synchronous engine

beginning of the simulation. This is why having a negative population does not make sense.

A dt of 0.1 is needed to avoid these artefact oscillations (other simulations have been carried

out with other dt values and 0.1 is the first one to avoid oscillations).

6.2.7.2 Asynchronous engine

Only a few comments will be made about the results of the simulations. All the simulations

produced interesting behaviours but they all have the following points in common. Figure

6.21 illustrates the following points in common:

• A small value of time allows the stock agents to compute with a ’wrong value’ (propa-

gation not quick enough), which creates brutal changes if an exponential characteristic

is present (see Figure 6.21(a)).

• Different speeds for stock agents can create non regular artefact oscillations if they

are present (see Figure 6.21(b)).

• Different speeds and small time values can create large non regular oscillations even

for a small dt value (more computations are done by simulated time unit). This can

lead to results like in Figure 6.21(c).
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• Different speeds can add simulated people or withdraw people (NB: no sources or

sinks are used, the conservation law must be respected). In this case, as the two stock

agents do not compute their new values at the same time, some people may disappear

from the system like in Figure 6.21(d) where the equilibrium for the population with

the knowledge is 90 (it stays at 90 because the other population equals 0).

(a) delta = 1, time = 10, random time = false (b) delta = 1, time = 500, random time = true

(c) delta = 0.1, time = 10, random time = false (d) delta = 0.1, time = 500, random time = true

Figure 6.21: Simulator: the knowledge diffusion model – asynchronous engine
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6.2.8 Escalation

The escalation pattern explained in Section 4.7 shows a behaviour where the success of B

follows the success of A with a certain delay. Results from the Stella simulator are depicted

in Figure 6.22

Figure 6.22: Stella: the escalation model (delta = 1)

The simulations used the following set of equations:

A’s results(t) = A’s results(t - dt) + (Activity by A) * dt

INIT A’s results = 101.0

INFLOW: Activity by A = Results of A relative to B + 1.0

B’s results(t) = B’s results(t -dt) + (Activity by B) * dt

INIT B’s results = 100.0

INFLOW: Activity by B = Results of A relative to B

Results of A relative to B = A’s results - B’s results

6.2.8.1 Synchronous engine

Three different values for the delta time parameter were used in order to simulate the model

with the synchronous engine. Results are depicted in Figure 6.23.

One can observe what has been said about the variation of the dt value. The smaller the

delta, the smoother the curve. For a dt of 5, the final values of both results are lower

than in the two other cases due to changes that are less frequently computed (once every

5 simulated time units). In the three results, the approximation of the model’s behaviour is

good except for in the case of the final values.
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(a) delta = 1

(b) delta = 0.1 (c) delta = 5

Figure 6.23: Simulator: the escalation model – synchronous engine

6.2.8.2 Asynchronous engine

Interesting behaviours appeared in the simulation results for the asynchronous engine. They

are presented in Figure 6.24.

Figures 6.24(a)–(b) show artefact oscillations that are due to a low time that do not allow for

a good propagation of new values from the stock agents. These agents therefore compute

values on older values that should have been replaced by the propagation.

Figures 6.24(c)–(d) depict a strange behaviour. On the left-hand side the expected behaviour

of the model appears when the stock agents have the same time. But on the other hand, on

the right-hand side where both agents have different speeds, a phase change appears. That

is, the model is supposed to have a quadratic behaviour, the difference between both agents

is added to both agents but one of them receives an extra 10 (it has a larger success). If

this extra had not been there, then the model would have been linear. Due to the different

speeds, it appears that at a certain moment B catches up with A which gives relative results

of 0. Both agents then stay together with a constant difference. One has to keep in mind

the fact that in the worst case, both agents can have a time difference of 100 ms (one with

500 - 10% = 450 and one with 500 + 10% = 550). The quadratic phase will then re-appear

and once again becoming linear.
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(a) delta = 1, time = 10, random time = false (b) delta = 1, time = 10, random time = true

(c) delta = 1, time = 500, random time = false (d) delta = 1, time = 500, random time = true

(e) delta = 5, time = 500, random time = false (f) delta = 5, time = 500, random time = true

Figure 6.24: Simulator: the escalation model – asynchronous engine

Figures 6.24(e)–(f) represent the situation where on one side both agents have the same

time value and even if only 5 real computations have been carried out, the correct behaviour

appears (propagation is done properly with a time of 500 ms). But on the other hand,

when they have a different time, a strange and unknown behaviour appears about which

only hypotheses can be formulated, a solution having not yet been found.
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6.2.9 Success to the successful

This pattern was presented in Section 4.1. Two people start with the same amount of

resources but progressively the success of one of them will decrease the success of the other

one. Results from the Stella simulator are depicted in Figure 6.25.

Figure 6.25: Stella: the success to the successful model (delta = 1)

The following set of equations was used.

A resources(t) = A resources(t - dt) +

(Resource allocation to A instead of B) * dt

INIT A resources = 50.0

INFLOW: Resource allocation to A instead of B =

0.1 * Success of A relative to B

B resources(t) = B resources(t - dt) +

(- Resource allocation to A instead of B) * dt

INIT A resources = 50.0

OUTFLOW: Resource allocation to A instead of B =

0.1 * Success of A relative to B

Success of A = A resources + 1.0

Success of A relative to B = Success of A - Success of B

Success of B = B resources

6.2.9.1 Synchronous engine

Three different values were used for the delta time parameter of the synchronous engine.

Results are presented in Figure 6.26.



Chapter 6. Simulator - results 128

(a) delta = 1

(b) delta = 0.1 (c) delta = 5

Figure 6.26: Simulator: the success model – synchronous engine

A dt of 0.1 gave a good approximation of the model’s behaviour and of the final values of

both results. If dt equals 1, both approximations are good but lower values are found. The

same can be said for a dt equal to 5 where only one observation is made every 5 simulated

time unit.

6.2.9.2 Asynchronous engine

Two observations have been made from the analysis of the simulation results with asyn-

chronous engine.

Figures 6.27(a)–(b) show that if stock agents have different time, they can make more

observations than required by the user. This results in a higher value than in the case where

they have the same speed. In this case, both agents seem to have been withdrawn with

about 10% and due to the waiting thread that waits for too long here, there a many more

observations than actually required.

Figures 6.27(c)–(d) present the same situation as described above where more observations

are present but in addition the two agents have different speeds. This results in one that

grows faster than the the decay of the other one.
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(a) delta = 0.1, time = 10, random time = false (b) delta = 0.1, time = 10, random time = true

(c) delta = 5, time = 10, random time = false (d) delta = 5, time = 10, random time = true

Figure 6.27: Simulator: the success model – asynchronous engine





Chapter 7

Conclusion

As an introduction to this conclusion, an example of an application of the theory on feedback

loops presented in this project is given. Let us consider a protocol used every day by

millions of people all over the world. The ’Transmission Control Protocol’ known as TCP

can be considered as an application using feedback loops. The heart of the TCP has two

interacting feedback loops (through management) that implement a reliable byte stream

transfer protocol with congestion control (see Figure 7.1).

Send

Inner loop (reliable transfer)

Outer loop (congestion control)

Calculate policy modification

Actuator
(send packet)

Monitor Monitor
throughput

Calculate bytes to send

(modify throughput)

(sliding window protocol)

destination and receives ack)

(network that sends packet to

Subsystem

(receive ack)

Send
stream acknowledgement

Figure 7.1: TCP as a feedback system

The inner loop controls the reliable transfer of a stream of packets. This loop sends packets

and monitors the acknowledgements that these packets have arrived successfully to their

destination. It also controls the sliding window that is a sort of a negative feedback loop

using monotonic control.[32]
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The outer loop is responsible for the congesting control. It looks at the throughput of the

system and can act in two different ways: it can change the policy of the inner loop (if the

rate of acknowledgements decreases then it reduces the size of the sliding window) or it can

change the inner loop itself (if the rate drops to zero then it terminates the inner loop and

aborts the transfer).

7.1 Modelling a feedback system for software applications

When an IT team is asked to build a new application that consists of multiple components

that interact with each other, they should apply the methodology described in Chapter 2

and build a representation of the system with the different elements and their interaction.

This methodology must be adapted to the needs of this IT team but the guidelines are quasi

identical, that is, they need to identify all of the required components in order to formulate

hypotheses on the dynamic of the system, to construct a formal representation of this model

thanks to the causal loop diagrams, to test the credibility of the model, to test the sensitivity

of the model, to test the impact of policies, and to try to validate their model.

This modelling technique can be used at every level of the architecture of the software.

That is, from the high-level modules to the implementation of components of these modules.

Feedback loops are not pieces of code that you put straight into your application. They are

high-level design rules to help the designer to understand the behaviour of his/her application.

For example, feedback loop structures have been used in the project SELFMAN to build

applications with self-management characteristics. The gPhone application developed by

the UCL proposed several feedback loop structures used to built automatic behaviours.[7]

The gPhone application is built on top of structured overlay networks (SON) providing

distributed hash tables (DHT - relaxed ring). The relaxed-ring is related to self-healing and

fixes the ring when a peer leaves the network. The three feedback loops present in Figure

7.2 depict the feedback loop structures that represent automatic behaviours and that are

embedded in a peer. In this example, the joining process of a peer is described. At least

three different peers are needed for this process: a successor, a predecessor, and a new peer.

The sequence is as follows: the new peer asks the successor to join the ring, the successor

accepts this offer. At this moment, the new peer tells its predecessor that it is its new

successor, then this predecessor sends to the successor of the new peer an acknowledgement

that the new node has joined the system. Figure 7.2(a), from [7], represents the successor ’s

automatic behaviour, Figure 7.2(b) the new node’s automatic behaviour, and Figure 7.2(c)

the predecessor ’s automatic behaviour.
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(a) New peer joins as new predecessor of the current responsible of its key

(b) New peer joins as new predecessor of the current responsible of its key

(c) New peer joins as new predecessor of the current responsible of its key

Figure 7.2: Ring maintenance as a feedback system
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Figure 7.3, taken from [7], represents the feedback loops of the failure recovery where when a

peer p crashes, its predecessor reacts to the crash event and sends an event to the successor

of the crashed peer to create a link. This successor responds with an acknowledgment. The

numbers of the figure represent the sequence corresponding to the scenario just described.

Figure 7.3: Failure recovery as a feedback structure

Figure 7.4, taken from [7], shows the automated behaviour set to manage the finger table

for routing on the relaxed-ring. The two feedback loops represent the failure handling and

the correction-on-use.

Figure 7.4: Finger maintenance with failure detection and correction-on-use

The SELFMAN project also proposed guidelines to evaluate qualitatively and quantitatively

the autonomic features of applications.[7, 33]

7.2 Feedback structures and design rules

In Chapters 3 and 4, a non exhaustive list of feedback structures with multiple interacting

feedback loops were studied. These patterns could help the IT team to understand the

behaviour of the system they have created.

The patterns in Chapter 4 are especially used in System Thinking where systemic specialists

analyse problems in organisations and confront the members of the organisation with these

patterns. They work with these patterns like a debugging system. The archetype tree,
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presented in Section 4.15, is a kind of debugging tree where, by following the branches, one

can reach a special feedback structure and understand its dynamic.

System thinkers have also proposed solutions for sorting out the problem caused by the

patterns presented in Chapter 4. For example, for the ’Shifting the Burden’ they proposed:

“In trying to understand a ’Shifting the Burden’ situation, start the same way

as you would with ’Fixes that Backfire’: What is the problem symptom which

you tried to fix? What is the fix you tried? What were the unexpected results,

and how did they affect the original source or root cause of the problem?

Then comes the leap: What alternative solutions might you have tried, if the

quick-fix avenue were not available to you? Would any of those alternatives

have been more fundamentally satisfying? And how do you know that these

corrective actions would truly address the source of the problem?

Use the archetype as a tool for inquiry, not as a tool for advocacy. There is

a temptation to assume that your preferred solution, whether you tried it or

not, is the ’right’ solution – and to simply write that solution into the slot. In

many cases, top management sees one solution as fundamental, while front-line

workers see another, and marketing sees a third. Each ’fundamental solution’

would suggest a different sense of appropriate leverage. That’s why, especially

in teams, it’s important to suspend your preconceptions about which ’solution’

fits the slot, and instead try to explore, as an interfunctional group, the deeper

sources of the problem. This type of sustained dialogue often unearths mental

models and cultural assumptions as the real root causes of problem.”[19]

Some patterns are just pure common sense, like this ’Shifting the Burden’ pattern, but others

can be very useful in analysing problems. For example, imagine two threads sharing the same

resources. Monitoring these two threads reveals the following behaviour: both activities are

growing but their performance is decreasing. This situation corresponds to the ’Tragedy of

the Commons’ where the common activity eventually is too large for the common resources

to support.

7.3 Further work

What should be done now is, for example, to start from an existing program and to analyse it

on order to discover whether strange behaviours occur or not. If possible, it might be inter-

esting to apply what has been discussed in this project in order to construct the application

model following the modelling techniques and to try to match this model’s behaviour with
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the actual application behaviour. Then, if problems arise, it would be possible to identify

the corresponding pattern(s) and to find a solution if necessary.

Another kind of classification of the feedback structures can be done. That is, feedback

structures with the ’same behaviour’ can have a different number of feedback loops. It

might be interesting to see if it is possible to find a certain number of ’canonical’ patterns

within feedback loops (the minimal number of loops necessary to obtain a given behaviour).

For example, the regulation pattern can be found in 1-loop systems (negative feedback loop)

as well as structures with more loops. In general, these extra loops reinforce the regulation

(the push-pull pattern). Nevertheless, the number of loops and the number of elements in

loops is left to the modeller and to the level of abstraction used in the study.

Yet another classification process might be interesting in order to be able to quickly classify

feedback structures in three categories: stable, unstable, unknown stableness systems. For

example, in the feedback structures simulated in Chapter 6, one can observe that the es-

calation pattern is very sensitive to the parameter value: the model’s behaviour is at times

very unexpected and only hypotheses can be made. This model could be clearly identified

as unstable (two negative feedback loops that can act as a big positive feedback loop). On

the other hand, a pattern like the limited growth can be seen as a stable system that resists

variations of parameters values (a negative and a positive feedback loop where the positive

one is regulated by a negative feedback loop). It might be interesting to find a way to classify

feedback patterns by looking at their structure without simulating them.
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Appendix A – Pattern examples

In this appendix, examples for the different patterns presented in Chapter 4 are presented:

Examples for the following patterns:

• Success to the Successful

• Limits to Growth

• Tragedy of the Commons

• The Attractiveness Principle

• Growth & Under Investment

• Balancing with Delay

• Escalation

• Indecision

• Fixes that Backfire

• Accidental Adversaries

• Shifting the Burden

• Addiction

• Drifting Goals

141
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Success to the Successful

Self-Fulfilling Prophecy

Tina's
success

+

+

support 
to Tina

perceived 
talent of Sue 

relative to Tina

Sue's
success

support
to Sue

+

+

+

-

-

+

Number of loops 2
Pattern Success to the Successful

Type Stock-and-flow
Origin Model from existing model

Validation No
Context how easy it is to influence a result based on an initial belief,

without ever realizing the result is being influenced by the belief.
Reference [26]

”Being that I am responsible for two individuals, Sue and Tina, it may be that I perceive that

Sue is more talented and capable than Tina. Realize that I may or my not be consciously

aware of this belief. Because of this perceived talent of Sue relative to Tina I tend to provide

more support to Sue. This support may be in terms of planning, coaching, etc. This support

of Sue enhances the success of Sue, which simply serves to reinforce the perceived talent

of Sue relative to Tina. While this perception influences me to provide enhanced levels of

support of Sue it influences me to provide less support to Tina. This reduced support to

Tina hinders the success of Tina, which simply serves to further enhance the perceived talent

of Sue relative to Tina.

This situation results in two reinforcing loops both driving the system in the same direction,

the success of Sue relative to the success of Tina. And, isn’t it interesting how the situation

turned out to prove that my initial perception was in fact true!”
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Self-fulfilling prophecies

dissipation time 
work

multiplicative 
factor for work

Increase in 
success at work

Success at 
work

Success 
dissipation at work

Success with 
family

Success dissipation 
with family

Increase in success 
with family

multiplicative 
factor for family

dissipation time 
family

percentage of time 
spent at work instead 

of with family

Effort devoted 
to work

Effort devote to 
family

Initial percentage 
at work Initial success 

with family
Initial success 

at work

+

+

-

+-

+

-

-
+

+

-
+

-

-+

+

+
+

+ -

+ +

+

Number of loops 3
Pattern Success to the Successful

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
(success at work vs success with family)

Context Development of a mimetic crisis, as the violence of everyone
against everyone is perceived as doomed to happen.

Reference [24]

”Simple personal case where a conflict exists between allocating the resources in time between

work and family (three reinforcing positive loops, including the combined eight-shaped loop).

The expectation that some evolution will follow some suspected path strengthens this ex-

pectation by taking away resources from equally possible and perhaps more favorable or less

dramatic alternatives.

The good and ethical decision is here to think of co-operation rather than competition.”
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Call Centres

Success of Call 
Centre A

+

+

Resources to 
Call Centre A

Growth 
Funding to A 
instead of B

Success of Call 
Centre B

Resources to 
Call Centre B

+

-

-

+

+

+

Number of loops 2
Pattern Success to the Successful

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Call centres success

Reference [25]

”Two call centers are established in different parts of the country. Some rationale for resource

allocation results in one of them experiencing better performance than the other. Not only

is the lesser performer looked down upon, but its lack luster performance is cited as a sound

rationale not to put any more resources into it.

Managers should exercise caution before quickly concluding that intrinsic merit is a complete

explanation for good performance. This archetype may also reveal in depth the axiom that

we manage what we measure. Stated otherwise, are the measurements that have historically

been used to assess performance still relevant? Are they still accurate? Is there an increased

level of noise in the data that is used for decisions making? Have delays in information caused

managers to reach conclusions that appear to favor one person, department or product over

another, when in fact refining measurements to better reflect what customers think, want

and/or need would offer a different view of performance?

Finding itself bogged down in this archetype can also lead to the erosion of innovation and

change. Concluding that this is our best product and we have to stay with it because it is

the best performer (at present) can obscure a long, slow decline in the products position in

the market. Taking a fresh look at marginal performers, in a new light, may lead to insights

that can rejuvenate an organizations approach to its internal management, its products or

to its customers.”
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Limits to Growth

Failure of Success

marketing

revenue

demand

sales

addressable 
market

market 
size

+ -

+

+

+

+
+

-

+

Number of loops 2
Pattern Limits to Growth

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Point out how success can deceive us into believing that we have found

the answer to success, an answer which often eventually leads to failure
Reference [26]

”We begin with a marketing effort which interacts with the addressable market to add to

demand. Since the marketing effort does in fact produce an increase in demand we make

the assumption that it represents a viable marketing effort.

The point of concern here is whether the marketing activity is actually increasing the market

size or simply interacting with the addressable market influencing it to purchase sooner than

it would have. This is often the case with promotions, and that will be considered to be

happening in this example.

As marketing interacts with the addressable market to add to demand the increased demand

adds to sales. Sales then adds to revenue which adds to marketing. As such, as marketing

appears to increase demand resulting in more sales and more revenue, the tendency is to do

even more marketing. This reinforcing loop drives the growth of revenue.

While the reinforcing loop drives the increase in sales, sales is subtracting from the ad-

dressable market. The addressable market continues to interact with marketing and add to

demand, yet to a smaller and smaller extent as the addressable market decreases. At some

point the decrease in addressable market will be such that there will no longer be a growth

in demand. At this point the addressable market has been addressed, and there’s nothing

left to address.

Yet, since marketing has continue to increase demand the natural tendency is to increase the

marketing effort even more to spur demand. Continued success has fostered a belief that

marketing is the answer to generating demand. When this increase in marketing doesn’t

increase demand the marketing organization is often quite confused. It has been said that

you can lead a horse to water but you can’t make them drink. Well you can’t lead a

nonexistent horse anywhere.”
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When They’re Down, Keep ’em Down

international 
development 

programs

level of 
economic 
prosperity

economic 
elite 

repressive 
actions

elite 
dependence 

on cheap 
labor

+ -

+ -
+

+ +

Number of loops 2
Pattern Limits to Growth

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Limits to Growth in international development policy

Reference [26]

Condition: level of economic prosperity in a rural region.

Growing Action: international development programs (UN, religious groups, USAID, etc)

As more development programs come in, the level of economic prosperity of the region

begins to improve.

Slowing Action: repressive actions on the part of the economic elite against the coopera-

tives that the rural people have formed.

Limiting Condition: The economic and political elite of a country (this was certainly true

for Guatemala) actually depend upon the people in rural areas staying ”underdevel-

oped”. These rural people provide a cheap labor force to the city businesses, the

plantations, and the city elite as housemaids, cooks, etc. The LAST thing the political

elite want is for the rural villages to become prosperous and stop providing a cheap

labor force. In Guatemala, the Army eventually went out into the villages with lists of

all the heads of cooperatives and killed them for being ”communists”.

This is all very well documented in Cultural Survival and other areas.

How to get around the ”limiting condition”? We need international pressure to be brought

to bear on the national elite along with some assistance in making the activities of this elite

more productive so that they can compete in national and international markets without the

repressive policies against ethnic groups within their borders.”
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Adoption of a new product

Potential 
Adopters

Adoption 
Rate

Adopter 
Population

Word of 
Mouth

- +
Market 

Saturation Contagion-

+ + +

+

Number of loops 2
Pattern Limits to Growth - S-shaped growth

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis and
comparison with reality through simulation

Context Adoption of new product
Reference [10]

”If the new product is sufficiently attractive, the early adopters will generate favorable word

of mouth, stimulating further adoption, increasing the adopter population, and leading to

still more word of mouth. This self-reinforcing loop is named the contagion loop to capture

the process of social contagion by which the innovation spreads.

But, no real quantity can grow forever. There must be limits to growth. These limits are

created by negative feedback (self-correcting). They counteract change. Growing adoption

of the innovation causes various negative loops to reduce adoption until use of the innovation

comes into balance with its carrying capacity in the social and economic environment.”
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Density dependent growth

Births Population Deaths

Death 
fraciton

CrowdingBirth fraction

Capacity

+

+ -

+

+

--

+

+

+

-

-

Number of loops 3
Pattern Limits to Growth - S-shaped growth

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
Context Non-linear coupling of negative and positive feedback loops

Reference [9]

”In linear coupling, the exponential growth caused by the positive would continue indefinitely.

This is of course not realistic, as all growth must eventually face some limits (area, food,

water, resource, air,...). To model such a limiting process, we can introduce crowding as a

population/maximum capacity. Thus crowding has a negative effect on birth fraction, that

is a balancing loop: it suppresses indefinite growth of population.

Due to this non-linearity, the population growth in a density-dependent model can have two

different phase: an exponential growth phase, followed by a goal-seeking growth phase. The

first phase is caused by the dominance of the simple positive loop and the second phase is

caused by the shift of dominance to the negative density dependence loop.”
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Growth generated by contacts between two groups

Susceptible

In

Infection 
rate Infected Removal

Removal 
fraction

Infection 
fraction

Contacts

Contacts 
fraction

- +
-

+

+

+

+

-

+

+
+ +

- +

Number of loops 3
Pattern Limits to Growth - Overshoot-and-decline

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
Context Dynamics of epidemics

Reference [9]

”Imagine a contagious disease that can spread by contact between two groups of people

(Susceptible and Infected).

There is an outflow from the Infected population (Removal), representing both deaths and

recoveries. It is also assumed that the susceptible group has a constant inflow (such as a

net immigration).

Thus, in the case where a epidemic outbreaks, it will eventually settle down to an equilibrium

level (of a relatively few number of people).

With certain values, we can observe epidemic oscillations.

And with lower infectivity values and/or higher initial values of the infected stock, there

would be no epidemics at all (Infected would decline monotonically over time).”
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A population-food interaction model

Deaths Population Births

Brith fraction

Normal consumption 
per capita

Consumption

FoodFood per 
capita

Normal death 
fration

Death fraction

Regeneration

Regeneration 
fraction

- +

+

-

-
-

+ + +

+-
+

+ -

-

+

+ +

+ +

+
+

-

Number of loops 6
Pattern Limits to Growth - Overshoot-and-decline

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis (Population and food)
Context Density-dependent structure with a variable limiting factor

Reference [9]

”In the Density dependent growth example, we assumed the limiting capacity to be constant.

But in many situations, the limiting factor is itself some resource stock (food) that growth

variable (population) depletes. Here the density-dependent effect is on death fraction. Thus,

Population → Food per Capita → Death fraction → Population loop acts as a density-

dependent limit, but here the capacity (Food) is a variable, being depleted by Population.

As the population grows exponentially, the consumption rate increases so much that at

some point it causes a collapse in the food stock. Shortly after the food stock collapses, the

population collapses too, due to increased death rates caused by starvation. NB: The big

- in the middle represents the loop Deaths → Population - Consumption → Food → Food

per capita → Death fraction → Deaths”
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Picking the low-hanging fruit

Resources to 
quality 

improvement
Improvements Complexity of 

quality issues

Organization's 
capacity to 

improve

+||
-

++

+

+ -

Number of loops 2
Pattern Limits to Growth

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Quality improvement campaign

Reference [19]

”At the beginning of a quality improvement campaign, the first efforts (such as training

in the statistical process control tools) lead to significant gains in the quality of products,

services, and processes. This lends cachet, support, and impetus to the quality efforts. But

as the easy changes (known as ”low-hanging fruit” among quality veterans) are completed,

the level of improvement plateaus, much to everyone’s disappointment. The next wave of

improvements are more complex and tougher to manage; they involve co-ordinating several

different parts of the organisation. The lack of organisation-wide support, and the attitudes

of senior management, now become limits. Unless the company makes more widespread

changes at higher levels, its quality gains will be limited.”

Other examples from [19]: ”The software artists: computer hardware continues getting

”faster, cheaper, and better,” at an astonishing rate, virtually without limits. However,

the production of software for these increasingly complex machines lags behind, often years

behind. Without sufficiently sophisticated software, there are limits to the usefulness and

popularity of computers. Faced with this limit, hardware producers push to make even faster,

better, and cheaper machines.”

”Reformers creating distance: school administrators and teachers in a community develop an

innovative ”restructuring” education reform effort. However, as the number of restructured

schools goes up, the increased community awareness generates a backlash from parents and

other community members who do not want innovation and reform. This is aggravated by

the fact that the community perceives it had little to say in the reforms. The educators

begin to fight harder to get their point across...”
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Collapse of the Maya civilisation

average lifetime with 
normal food supply

Maya deaths per year

Maya Population

max available 
surface

land surface used 
for agriculture

food per head 
and year

ratio food level 
with normality

normal food level 
per head and year

food production

percentage of 
commons 

engaged on 
construction

Monuments in 
construction

Prestige of Maya 
elite

prestige lookup

Number of 
Monuments to 

the gods desired 
by the elite

number of 
monuments 

desired per loss 
of prestige unit

Monuments to be 
built each year

monument 
completions

average number 
of workers per 

monument

average 
construction time 
of a monument

Monuments to 
the Mayas gods

Falling down 
monuments

Mayas birth per 
year

birth rate

average monument 
decay time

specific food 
production per ha 

and year

-
-

-
-

-

-

+

+

++

-

- +
-

+ +

+

-

+
-

-

+

+

-

+

+
-

+
+

-

+

-
+ +

-

-

+ +

+

++

+ -

+
+

Number of loops 9
Pattern Limits to Growth - Overshoot-and-decline

Type Stock-and-flow
Origin Model from existing model

Validation No
Context The collapse of the Maya civilisation

Reference [24]

”It assumed that the Maya elite tried to recover their lost prestige after recurrent food crises,

possibly due to local climate changes, by erecting huge monuments to their gods. The large

percentage of commoners and the important space needed in the construction may have

aggravated the crisis in a vicious circle causing a further reduction in the food production.”
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America On Line

cut prices, 
heavy promotion sales

demand 
exceeding 

capcity

access

+ -

+
- +

+ +

Number of loops 2
Pattern Limits to Growth

Type Stock-and-flow
Origin Model from existing model

Validation No
Context The success of a fee-per-minute business model

Reference [25]

”America-On-Line experienced initial success on a fee-per-minute business model. Their

competition offered a flat-rate for connecting and accessing the internet. In an effort to

both recapture their eroding market share and grow subscribers, AOL began an aggres-

sive marketing campaign, flooding the market with CDs designed to make subscribing and

connecting easy and attractive.

The campaign was an enormous success, so much so that the demand completely over-

whelmed their technical capacity to deliver service. Not only were new subscribers alienated,

so too were existing subscribers who left in significant numbers.

Managers are encouraged to be action oriented and proactive, constantly engaged in the

process of pushing on people and situations to make them change or move. Typically, they

focus their attention on the sphere of activity in the organization that coincides with their

title and job description.

The Limits to Growth archetype (or Limits to Success as it applies) reminds managers to take

the time to examine what might be pushing back against their efforts. The counter-force

may come, and most likely will come, from either (a) parts of the organization not under

the control of the manager or (b) from the external environment. Expansionistic thinking is

a key competency for locating Limits to Growth.

By focusing their attention on these limits, managers may find opportunities to either con-

tinue the improvement curve they were on, or identify the elements in the system that

represent the counter-force and devise new improvement initiatives that would reduce or

remove the limits.”
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Tragedy of the Commons

If It’s Free I Want All I Can Get

dept A's 
activity

dept A's 
results

total resources 
requested

dept B's 
activity

dept B's 
results

MIS 
resources 
available

MIS
Resources

+

+

-

-

+

+
+

+-

+
+

+

+

+

||

Number of loops 4
Pattern Tragedy of the Commons

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Departments within an organisation using MIS resources

Reference [26]

”As departments employ MIS resources the use contributes to their success, i.e. dept A’s

results and dept B’s results. As each department likes its results they develops plans to use

even more MIS resources increasing the total resources requested.

At some point the total resources requested exceeds the MIS resources available. When the

happens projects and support becomes more and more delayed. As the individual groups had

planned developments which were contingent on their use of MIS resources they begin to

experience a decrease in their results, A’s results and B’s results, because they have exceeded

the capacity of the resources.

If the individual groups had to pay for the services they used they probably wouldn’t use

so much, and we’d probably be back to a Growth and Underinvestment dilemma. Nothing

comes for free!”
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When Fair is Unfair

John's hockey 
practice

John's
success

total
activity

Anne's skating 
practice

Anne's 
succes

dollars 
budgeted per 

acitivity

money 
budgeted for 

sports

+

+

-

-

+

+
+

+-

+
+

+

+

+

||

Number of loops 4
Pattern Tragedy of the Commons

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Family history

Reference [26]

”My uncle and aunt deeply believed that one should give their kids all the chances they

could to develop their talents. They have two children (let’s call them John and Anne, to

keep the names short) that fortunately for their parents are really gifted in sports. John is a

very good hockey player and Anne is an beautiful figure skater.

Their parents always invested a lot of money for their kids to progress in their respective

sports. And as the caliber in which they evolve involves more dollars, both John and Anne

had to quit the highly competitive level they reached.

The ”Resource Limit” would be the total budgeted money for sports (and - that’s not in

the archetype, the family was blowing it year after year). The ”Gain per Individual” would

be the dollars budgeted per activity (hockey vs. figure skating). The ”Total Activity” could

then be the total money spent on sports by the family.

Now, say A is John and B is Anne... A’s gain could be John’s practice of hockey, which, as

the competitive level increases, gets more and more expensive (travel, more equipment...I

guess this would be shown in the arrow going from ”A’s activity ”- competitive level - to

”Total Activity”). Another point is that as John perseveres in playing hockey at better levels,

he gets better at it, and wants to play more — Reinforcing loop...

The same could be said about Anne’s gain is Anne’s practice of figure skating, which increases

as the competitive level increases. She’s getting better and better, wants to practice even
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more, and cost goes up (again, an element between ”B’s activity” and ”Total Activity”) as

now on top of a coach, she needs a choreograph and to rent an ice rink for herself...

This is how the story ended.

As the parents could not find sponsors for Anne (a friend of hers told me she would be

good enough for the National Team) and since no such thing exists for individual hockey

players (at least not too easily in Canada), money dried up. They already had taken a second

mortgage on the house, my uncle had found himself a second job...

The day of their parent’s 20th Anniversary, the kids announced their parents they were both

quitting the competitive side of their sport - Anne became coach herself, and John left home

to go to university. This was originally a shock to the parents, but after a while, all the

family recognized it was the best thing to do...

Anne and John’s talent didn’t bloom in sync. At one point, when it became apparent that

Anne was really gifted for figure skating, John was just an ”above the average” hockey

player. It was time to take a decision for Anne’s future - hiring of a choreographer, big

expenses to be foreseen. Their parents took a fair decision to make sure both of their kids

had access to similar resources (money) - that’s when the second mortgage was taken on

the house - and John was sent to a special hockey school. That year, he quickly became the

best player in his league...

They might not know, but by avoiding to go in a ”Success to the Successful” archetype -

all the sports budget could have been used by Anne, they got caught in the Tragedy of the

Commons...”
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The Tragedy of the Commons

Gain per 
individual activity Total activity

consumption and 
erosion of the 

Carrying Capacity
Carrying Capacity

Net increase rate 
of A's activity

Net increase rate 
of B's activity

B's activity

A's activity

Net Gains for A

Net Gains for B

-

-
-

-

+

+

N1 N2

P1

-

+

+

+

+

+

+
-

+

+
+

+
+

+

+

Number of loops 2 + 2n (where n>1 (# of competitors), no tragedy otherwise)
Pattern Tragedy of the Commons

Type Stock-and-flow
Origin Model from existing model

Validation Influence graph: influence of food resource on population
Context All for One & None for All

Reference [24]

”Collapse of a population with the destruction of its renewable food supply. Only two

competitors for the common good (A,B) represented in a symmetrical diagram but they are

in reality many of them.

• The unique positive loop P1 generates growth thanks to the resource usage;

• A first negative loop N1 limits the gain of each individual due to the limits in the shared

resource. (P1,N1) would bring the system to the well-know stable logistic trajectory;

• But, a second negative loop N2 (erosion loop) brings the progressive disappearance of

the resource and its eventual collapse because of its use beyond the carrying capacity.”
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The Tragedy of the Power Supply

Total electrical load 
requirement for 

vehicule

Battery power 
available per 
component

Electrical 
requirement of 
component A

Desire to improve 
functionality of 

component

Component A's 
functionality

Electrical 
requirement of 
component B

Desire to improve 
functionality of 

component

Component B's 
functionality

Total battery 
capacity

+

+

-

-

||

+

+

+

+

+

+

+

+

-

+

+

+

Number of loops 4

Pattern Tragedy of the Commons

Type Stock-and-flow

Origin Model from existing model

Validation No

Context Power supply problem

Reference [19]

”In Ford’s 1994 Lincoln Continental project, the number of electricity-draining components

designed for the car overloaded the battery power available. Non of the component designers

would back down and reduce their power consumption, because it was in their interest to

design electrical components with high functionality. Recognising limits, each design team,

within its own group, added even more functionality, to justify being allotted as much battery

as possible from the common good. As Nick Zeniuk, business planning manager for the

project, tells the story, the team member finally realised that ”each person would still look

out for his or her own interest unless a) somebody discovered new technology, which wasn’t

going to happen in the next few months, or b) somebody from the outside came in and

dictated. What did we do? I came from the outside and dictated.” ”Dictating from the

outside” worked here only because of the effort Ford’s team make to discover the ”Tragedy

of the Commons” dynamic. Everyone had seen themselves that the system encouraged them

to pursue their own individual rewards, not the optimisation of the whole.”
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IT Project Requests

Admin's 
Demands

Net Gains for 
Admin

Total 
Demands

Medicine's 
Demands

Net Gains for 
Medicine

Gain per 
Individual 
Demand

IT FTEs, 
Resources & 

Skills

+

+

-

-

+

+
+

+-

+
+

+

+

+

||

Number of loops 4
Pattern Tragedy of the Commons

Type Stock-and-flow
Origin Model from existing model

Validation No
Context IT resources organised into a ”commons” department

Reference [25]

”IT resources are typically organized into a commons department, with each part of the

organization seeking their support on an as-needed basis. Since separate parts of the orga-

nization typically do not keep track of the IT problems in other parts of the organization,

it is fairy common for each part of the organization to see the IT department as its own.

When the IT department is crushed under the weight of all the demands placed upon it, its

performance for every department begins to erode or fail.

In many respects the Tragedy of the Commons is a classic example of reductionistic thinking.

By remaining unaware of the effect of the parts on the whole, people continue to think and

behave as though there are no connections within the organization that affect their ability

to meet goals and objectives. Focused on their own part, behaving as though it depended

on no other, demands on the commons are issued with only the present in mind.

Sustainability is increasingly put forward as a guiding principle for the planet we inhabit.

Sustainability has applications within organizations, with respect to their structure and prac-

tices, with an eye on the long-term future. Structures that create commons and policies

and practices that govern them (leading to depletion or replenishment) are critical success

factors.

Ultimately, firms may conclude that structures that include a commons are ineffective means

of distributing and allocating resources. Alternately, they may gain insight into how commons

have to be governed, and recognize that structures and policies, other than the commons

itself, all interact and have a pronounced effect upon the utility the commons bring to

organizations.”
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The Attractiveness Principle

Consulting Firm

Promotional 
campaign Client base

Problem 
solving 

capability

Effectiveness

Efficiency

IT capabilities

Knowledge 
generation

-

+ +

++

+

+

+

+

+

-

-

Number of loops 3
Pattern Growth & Under Investment

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Consulting firm that faces a decision problem

Reference [25]

”A consulting firm is faced with the decision/dilemma on how to improve its overall perfor-

mance for clients, choosing between shoring up its IT capabilities or growing its knowledge

base, both of which are under attack from existing clients, and are acting as deterrents to

acquiring new clients.

The Attractiveness Principle pits managers against growing complexity and the interactions

between parts that are increasingly difficult to anticipate. Although implied with many of

the archetypes, it makes a strong case for dynamic modeling to reveal the synergies that

may emerge from the firms response to growth engines as complexity increases.

At its core is expansionistic thinking; the requirement that managers seek to solve systems

of problems in the largest system to which they have access. The archetype reinforces the

distinction between understanding and knowledge. Knowledge, the know-how managers rely

on to make decisions, precedes from the contained parts of the whole to the containing

whole, while understanding precedes from the containing whole to its parts.”
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Growth & Under Investment

Creating the Future, Undesirably

marketing demand delivery 
time+ -

+
-

+ +

perceived 
capacity need

-
-

capacity

+

||||

delivery 
standard

+

+

Number of loops 3
Pattern Growth & Under Investment

Type Stock-and-flow
Origin Model from existing model

Validation No
Context This pattern is simply a Limits to Growth pattern

with some implications in terms of the minimising of the limits
Reference [26]

”In a business context marketing can generate demand. When the marketing effort succeeds

in this fashion the normal inclination is to do more marketing. If some works more should

work better.

The difficulty comes into play when the demand runs into the limiting aspect of capacity.

Greater demand will result in a requirement for more product to be shipped, and when

the demand approaches and finally exceeds capacity it will result in longer product delivery

time. Longer delivery time is fine as long as it’s less than what’s acceptable to the market.

If delivery time exceeds acceptable delivery time (not shown) then it will begin to impact

demand. As delivery time interacts with the delivery standard, and there should be such a

thing, it will add to the perceived capacity required. Since capacity is something that usually

requires substantial investment and takes time to develop there is a delay associated with

its increase. Because of this delay it is quite possible that by the time capacity has been

increased the increases in delivery time will have negated the increase in demand created by

the marketing effort.

Thus, as the organization ponders action, which quite often it does, for far too long, the

demand will dissipate and they will say, ”See, we didn’t really need the added capacity after

all.” And I guess they didn’t need the extra sales that would have resulted from the capacity

increase either.”
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The Shareholders Problem

promotion, word 
of mouth

patient 
visits

patient 
satisfaction, 
health status

+ -

+
+

+

perceived 
need to invest

-

+ capacity +

||

delivery 
standard

+

-

investment in 
plant, people 
& technology

+

demand for 
shareholders 

dividends
+

-

-

Number of loops 3
Pattern Growth & Under Investment

Type Stock-and-flow
Origin Model from existing model

Validation No
Context The Shareholders problem

Reference [25]

”In private practice, shareholders historically treat the business firm as a wealth generator

for their families. There is typically a tension between the desire to remove profits from

the practice and the need to invest in infrastructure, especially technology. Over time,

performance slips so far, that patients find it increasingly difficult to receive care at the

practice, mostly for operational reasons (though clinical equipment and technology could

likewise be affected.)

Growth and Underinvestment is the archetype that brings special attention to planning

for limits. In this case, it is the capabilities and core competencies that give firms their

competitive advantage. This is part and parcel of strategic planning as well as internal

policy formation.

It also draws attention to the insidious nature of the failure to meet customer demands over

long periods of time - the constant (albeit hard to notice in any one period) decline in the

firms opinion of itself and in its commitment to, and ability to perform at, customer demands

and expectations.”
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Balancing with Delay

Adjusting the Shower

gap

ratio of hot 
water to cold

-+

+

desired water 
temperature

current water 
temperature

+||

-

Number of loops 1
Pattern Balancing with Delay

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Having a shower

Reference [26]

”When the current water temperature is less than the desired water temperature it influences

me to add to the ratio of the hot water to cold. I can do this by increasing the hot water

or decreasing the cold water. Because changing the faucet position doesn’t result in an

immediate change in the current water temperature there is a tendency to believe that the

ratio isn’t correct so I turn the faucets more in the same direction. When the delay finally

catches up I find that the current water temperature is much hotter than the desired water

temperature so I adjust the faucets in the opposite direction. This action still adds to the

ratio of hot water to cold, just less than before. Depending on how impatient I am, and how

much I overreact to the situation, it could take some time before I get the water temperature

to where I really want it.

The real problem in this structure is based on my not understanding the structure coupled

with my impatience for what I want. The strategy for dealing with this structure is, first

understand the structure, and then exercise patience. This is an example in support of the

statement, ”Patience is a virtue.””
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Escalation

The Niagara Effect

inept 
management 

action
health of the 

business
employee 

compensating 
action

|| - +

|| -+

- -

Number of loops 2
Pattern Escalation

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Business environment in which the management

of the organisation is substantially less capable than it needs
to be and the employees are very astute

Reference [26]

”Inept management action over time subtracts from the health of the business. The health

of the business the subtracts from employee compensating action to maintain the health

of the business. If the health of the business is good then there is little need for employee

compensating action. You might say it’s business as usual. Yet as the health of the business

declines it subtracts less from the employee compensating action. Employee compensating

action increases.

Employee compensating action adds to the health of the business essentially compensating

for management ineptness. The health of the business then adds to inept management

action. That is, since the business is healthy, the ineptness of management is compensated

for by employee compensating action and management is deceived into thinking things are

fine. This situation simply promotes management’s continued ineptness.

If something within the system is not changed sooner or later inept management action will

subtract from the health of the business to a point where employee compensating action will

no longer be able to compensate for it. When this happens employees essentially reach their

limit and give up and the system crashes, meaning the health of the business will decline

very rapidly. When this happens management is most apt to be quite puzzled as to how

things got to be so bad so quickly. This is often referred to as the Niagara Syndrome where

everything seems relatively calm, and when the falls are finally perceived it’s already too late

to recover.”
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Punished for Success

Tom's poor 
performance

performance of 
Sue relative to 

Tom

work to Sue

||++

+ - work to Tom

Sue's good 
performance

- +

||||

- -

Number of loops 2
Pattern Escalation

Type Stock-and-flow
Origin Model from existing model

Validation No
Context How people get rewarded with more work to do

Reference [26]

”How many times have you seen situations where the most productive people are rewarded

with more work, or when a segment of a process doesn’t deliver the value is should you go

around it. Although these actions seem sensible in the name of immediacy they actually lead

to the longer term decline of the whole structure. There are probably numerous appropriate

alternative labels for this example. A few that come to mind are: Failure by Success,

Overworking the Overworked, Punishing the Gifted, Rewarding Mediocrity, etc.

Consider the following example in which Sue is a superior performer and Tom is quite a

mediocre performer. This is really an example of a viscous escalation structure in which the

overall results decline over time.

Because of the performance of Sue relative to Tom, Tom is rewarded with less work to Tom.

Since Tom is a poor performer this work simply adds to his poor performance which in turn

adds to the performance of Sue relative to Tom.

Since the performance of Sue relative to Tom is in Sue’s favor the next critical, urgent, or

essential assignment of work will add to the work to Sue. This will happen over and over

until Sue is essentially overloaded. At this point the work to Sue will subtract from Sue’s

good performance. As Sue’s good performance declines it will add less to the performance

of Sue relative to Tom, yet she will still out perform Tom.

The continued positive performance of Sue relative to Tom will continue to subtract from

the work to Tom and the structure repeats.”



Appendix A. Pattern examples 166

The ’Arms race’ archetype

x arms lifetime

x spontaneous

x arms increase

x amplif factor x reduction

obsolete x arms

x arms

x discrepancy

x max

x reduction time

y arms

obsolete y arms

y arms lifetime

y spontaneous

y arms increase

y amplif factor

x compared to y

+
+

+ +

+

+

--

+

-+

-
+

+ +

+
+ -

+

-

- -

+

-

- - ++

- -

Number of loops 7
Pattern Escalation

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis (x arms vs y arms)
Context Escalation process, typical for the onset of mimetic crisis

(conflict situations)
Reference [24]

”The eight-shaped loop traced by the combination of the two central negative loop increases

tension in an exponential way.

De-escalation can only be obtained if one party accepts stepping back, diminishing the source

of threat (To make the first step is more than often a courageous decision, because of the

risk of loosing face). In this case, x stepped back.”
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HCO Expansion

HCO B's 
capital 

spending & 
expansion

Results of A 
relative to B

Threat to 
HCO A

||++

+ -

Threat to 
HCO B

HCO A's 
capital 

spending & 
expansion

+
+

- -

HCO B's 
results

+
HCO A's 
results

-

Number of loops 2
Pattern Escalation

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Market competitions

Reference [25]

”In the health care industry, especially in a geographically defined market, it is not uncommon

for competitors to engage in a campaign of erecting buildings as a tactic for securing market

share. Each facility is seen as a threat by the competitor, who after some delay, will respond

in kind. This can continue for some time until the cost of doing so becomes prohibitive and

the escalation stops. This may result in one competitors eventual market dominance (if it

had the resources to support the construction boom) or in one competitors collapse due to

overextending itself financially.

This archetype is difficult to apply - it appears to strike at the heart of the core tenets of

free enterprise. Thinking and/or behaving any other way could have ramifications for the

manager and the firm - engaging in anti-trust practices for example.

It may be that this archetype may find its value in the public policy arena, or in indus-

try and/or community based assessments of the needs, expectations and requirements of

customers and other stakeholder constituencies.”
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Indecision

Supply and demand

supply price demand- -
+

- +

-||

||

Number of loops 2
Pattern Indecision

Type Stock-and-flow
Origin Model from existing model

Validation No
Context How supply and demand operate through price

Reference [26]

”Demand and supply interact to establish the price. If demand rises, after some delay, it will

add more to price. This increase in price will have a short term effect on demand, subtracting

from it, and after some time it will add to the supply. If the product is worth more then

there is a tendency to produce more. As supply increases it subtracts more from price, just

at the time demand is made it through the delay to add less to the price. As such supply is

more than appropriate for the demand and price decreases.

The decrease in price subtracts less from demand, increasing it, and after some time will

produce a reduction in supply. So, by the time the increased demand reaches price supply

has been reduced and they’re out of sync one more time. This induces price to go back up.

Because of the delays in this structure supply and demand never seem to be what is appro-

priate for each other and price oscillates up and down, endlessly.”
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Fixes that Backfire

Tax Revenue Pressure

current tax 
revenue

cigarette 
tax

smuggling 
industry

+

+

-

||

- +tax gap

desired tax 
revenue

+
+

-

Number of loops 2
Pattern Fixes that Backfire

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Tax revenue problem

Reference [26]

”The Canadian Government was facing a tax gap due to the difference between their desired

tax revenue and their current tax revenue. Their solution to this situation was to increase

cigarette tax with the intent of increasing current tax revenue. As it turned out current tax

revenue actually declined.

It seems the increase in cigarette tax was enough so Canadian cigarettes were more expensive

than American cigarettes. This fostered the development of a smuggling industry between

the US and Canada. This reduced the sale of taxed cigarettes thus reducing the current tax

revenue. When asked why they didn’t police the smugglers the border police commented

that they were carrying hand guns while the smugglers were carrying machine guns.

When the situation was understood and the cigarette tax reduced so Canadian cigarettes

cost less than American cigarettes the smuggling industry died of its own accord within 5

days.”
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Road Congestion

current 
congestion

build 
roads

people 
travelling 

roads
-

+

+

||

- +congestion 
gap

acceptable 
congestion

+
+

+

Number of loops 2
Pattern Fixes that backfire

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Road Congestion

Reference [26]

”Here’s but one more fixes that backfire example of how the initially most sensible answer

leads to exactly what isn’t desired, and costs money besides.

As the number of vehicles on the road increases the amount of congestion also increases.

The difference between the current congestion and acceptable congestion creates a conges-

tion gap. As people complain more and more about the congestion the appropriate agency

finally decides they need to do something to get people off their back. The short term

(not so short) response to this situation is to build roads which serves to reduce the current

congestion. The unintended consequence of this is that more roads adds to people traveling

roads which only serves to increase the current congestion. This also serves to increase the

congestion gap necessitating just another cycle of build roads.

A better solution would be to provide more effective mass transit systems which would get

people out of their cars thus reducing the current congestion and alleviating the need to build

roads. Which implies this example could be elaborated into a shifting the burden structure

as the burden for addressing the congestion situation is shifted from the fundamental long

term solution using mass transit to road building.”
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Quest for Water

current water 
supply

drill 
wells

water
table

+

+

-

||

- +water 
gap

required 
water 
supply

+
+

-

Number of loops 2
Pattern Fixes that Backfire

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Water problem for agriculture development

Reference [26]

”The following is a fixes that fail structure associated with an initial problem perceived as

farmers need more water for agriculture development.

As a short term resolution to the water gap it is decided to drill wells. In the short term the

additional wells increase the current water supply, thus reducing the water gap. The longer

term affect is that as water is used it draws down the water table eventually decreasing the

available water which results in the need to drill more deeper wells.

Specific examples of this are the state of the Ogallala Aquifer in the Midwest and current

conditions in China.”
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Perpetuating Poverty

poverty level

foreign 
aid

program 
failure and 

indebtedness
-

+

+

||

- +
political 

and social 
unrest

deisire

+
+

+

Number of loops 2
Pattern Fixes that Backfire

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Poverty in rural area

Reference [26]

”Problem: poverty in a rural area in the Less-developed-country (LDC) which is causing

political and social unrest . Another example of fixes that fail.

Quick Fix: the government (often with USAID or the World Bank) designs a development

program for the poor farmers of the region which often times involves making loans to farmers

to implement the ”development” program – to buy equipment, fertilizer, seeds, whatever.

Unintended consequence: Because the program was designed from the outside and did not

involve local input, it is nearly always inappropriate to the ecological and social conditions of

the region. As a result, the project fails and the people are even more in debt to the banks

and there has also been a significant degradation of the natural landscape because of the

introduction of inappropriate technology. The people are unhappy and there is even more

social and political unrest which means we need another FIX.”
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Downsizing to improve profits

Current 
profits Staff cuts

Productivity||

+

+

+

-

-

+

Number of loops 2
Pattern Fixes that Backfire

Type Stock-and-flow
Origin Model from existing model

Validation No
Context A company reduces staff to reduce costs and raise profitability

Reference [19]

”The most leverage seems to come from encouraging older workers, who generally have

higher wages, to take early retirement. To everyone’s delight, profitability immediately

improves. However, the staffing cuts also eliminate some of the older, more experienced staff.

Morale problems from layoffs drain enthusiasm. Production costs increase through error and

overwork. These factors contribute to lowered productivity (the unintended consequence)

and drain away all the added profitability from the “layoff fix”, and then some. Management

decides, with a heavy heart, that it has no choice but to make more staffing cuts ...”

Other example from [19]: ”Expediting customer orders: a large semiconductor manufacturer

experiences production problems and runs behind schedule on some shipments. The company

knows its customers (computer makers) will have to shut down production lines until the chips

are delivered. The Moon Computer Company calls demanding that its chips be delivered

immediately, so the semiconductor manufacturer assigns an expediter to track down Moon’s

order and push it through the line (the fix). Of course, it’s not simply a matter of finding

the right chip and escorting it to the loading docks; expediting Moon’s order means wading

through the entire factory, and repeatedly disrupting the production line, at great extra cost

and effort. Unfortunately, no sooner has Moon’s order left the warehouse when the LaSt

Computer Company calls, demanding its shipments. Another department, meanwhile, is

expediting for Conneq Computers. As a result, the production line is continually disrupted -

leading to more missed delivery dates, and more customer calls.”
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Tobacco Industry

Number of 
Tobacco 
Lawsuits

Public Denial 
of Problem

Scientific 
Research

+

-

+

+

||

- +

Number of loops 2
Pattern Fixes that Backfire

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Ill health effects from smocking

Reference [25]

”For years the tobacco industry steadfastly denied that there were any ill health effects from

smoking, pouring vast amounts of money into advertising and a pattern of denials. The

tactic served the industry well. However, each time it denied that smoking caused health

problems, it stiffened the resolve of scientists, and research into the effects of smoking on

health steadily grew. Ultimately, the amount of evidence grew so large that no amount of

PR or advertising could overcome the industrys claims.

The key to appreciating the Fixes that Fail archetype is the delay in the balancing loop. The

time that elapses between the fix and the worsening problem symptoms frequently makes

the connection between the fix and the deteriorating problem symptoms hard to identify.

Managers tend to attribute the worsening problem symptom to something other than the

prior decision(s) they made in their efforts to fix the problem symptom(s).

Despite its apparent simplicity, Fixes that Fail can be devilishly hard to unravel. It requires a

deep commitment to setting aside mental models that may strongly influence managers not

to see, or even consider, that there may be a connection between the problem symptoms that

are visible and the fix(es) they are applying in an effort to alleviate the problem symptoms.”
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Accidental Adversaries

Self-Defeating Action

Ed's success Amy's successEd's acitivity 
toward Ed

Amy's activity 
toward Amy

Amy's acitivity 
toward Ed

Ed's acitivity 
toward Amy+

+

+

+
+

+

+

+
-

-

+ ++

-

-

Number of loops 6
Pattern Accidental Adversaries

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Collaborative work

Reference [26]

”This is a rather contrived Accidental Adversaries example consisting of two individuals

working in the same group. Amy is very well organized and methodical, while Ed is very

insightful and creative. Together they could make a great team, yet over time they defeat

each other’s, and eventually their own, success.

The insightful and creative person, Ed, continues to come up with new ideas for improving

things, yet has difficulty figuring out how to present his ideas and how to plan their imple-

mentation. Amy’s activity supporting Ed is then in terms of presentation development and

planning. This leads to Ed’s success for the presentations go very well and the implemen-

tations are perceive as very well planned. Ed’s activity supporting Amy is then in terms of

giving credit to Amy for the assistance in the presentation development and planning. This

contributes to Amy’s success, encouraging Amy to continue to act supportingly toward Ed.

This is very definitely a virtuous reinforcing cycle.

All this works well until Ed becomes wrapped up in his own glory and begins to take credit

not only for the concepts and ideas but for the presentation and planning of them. This

is Ed’s activity toward Ed which detracts from Amy’s success. This also acts to decrease

Amy’s activity supporting Ed. At the same time this is happening Amy becomes dissatisfied

with Ed getting credit for all the creative thought and Amy’s activity toward Amy tends to

be in terms of beginning to take some measure of credit for the development of the ideas.

This action in fact detracts from Ed’s success thereby diminishing Ed’s Activity Supporting

Amy as Ed is likely to start looking for someone else to assist him with presentation and
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planning, or even worse Ed may begin to believe his own lies and consider he is quite capable

of doing his own presentation development and planning.

As it turns out the two balancing loops that are created tend to negate the reinforcing nature

of the initial cooperative activities. We are most certainly our own worst enemies.”

Sales & Service: a Marriage Made in Hell

Sales' 
success

Service's 
success

Sales' selling 
focus

Service's 
evangelism

Service's account 
Sales positioning

Sales' account 
Services positioning+

+

+

+
+

+

+

+
+ ++

-

-

-

-

+

+

+

+

Number of loops 7
Pattern Accidental Adversaries

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Collaborative work

Reference [26]

”This Accidental Adversaries example consists of two groups, Sales and Service, which work-

ing in the collaborative fashion have tremendous potential. Yet, operating from their own

myopic unenlightened self-perspective, over time they defeat each other’s, and eventually

their own, success.

Sales’s success leads to appropriate Sales’s account Services positioning. What this means is

that the appropriate expectations regarding services are established within the account when

it’s sold, which then supports Service’s success. Service’s success then leads to appropriate

Service’s account Sales positioning. This means preparing the account for further sales. This

action leads to further Sales’s success. This sequence represents a virtuous reinforcing loop

promoting a continued increase in the success of both Sale and Service.

Service’s evangelism essentially ensure successful customer implementation and Service’s

success, which further promotes Service’s evangelism. Sale’s selling focus, promoted by

the fact that they’re only compensated for sales and not service, essentially ensures Sale’s

success, which in turn promotes Sales’s selling focus.
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Now when we look a little deeper we find that Sales’s selling focus detracts from Sale’s

account Services positioning by discounting the level of effort and time required for imple-

mentation. Sales’s selling focus also serves to promote Service’s evangelism to compensate

for Sales’s selling focus. On the other side of the coin, since there are no one sided coins,

Service’s evangelism detracts from Service’s account Sales positioning by extending the im-

plementation cycle. Let’s face it, it takes a long time to create converts. Service’s evangelism

also promotes Sales’s selling focus to compensate for Service’s evangelism.

As it turns out, the interactions described above also create two additional insidious balancing

loops and two viscous reinforcing loops. These loops simply serve to further degrade the

overall result of the structure.

Reality depends on who believes it, while truth doesn’t care who believes it.”

Employee/Company Relationship: The Failure of Short Sighted Pursuit

Employee's
 success

Company's 
success

Employee's activity 
toward Employee

Company's activity 
toward Company

Company's activity 
toward Employtee

Employee's activity 
toward Company+

+

+

+
+

+

+

+
-

-

+ ++

-

-

Number of loops 6
Pattern Accidental Adversaries

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Collaborative work

Reference [26]

”This Accidental Adversaries example consists of two groups, Employees and the Company,

which working in the collaborative fashion have tremendous potential. Yet, operating from

their own myopic unenlightened self-perspective, over time they defeat each other’s, and

eventually their own, success.

The external loop of this structure forms a virtuous reinforcing structure where the Em-

ployee’s activity toward the Company adds to the Company’s success. The Company’s

success then adds to the Company’s activity toward the Employee which in turn adds to the

Employee’s success. The Employee’s success then adds to the Employee’s activity toward

the Company. This structure actually supports the premise that the customer comes second
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(Rosenbluth, 2002) as employees are unlikely to treat customers any better than they’re

treated by the company.

Because of myopic short-sighted unenlightened self-interest, flawed mental models, and lack

of trust, both employees and the company pursue actions which end up derailing this virtuous

structure.

Employees engage in gamesmanship, more often political than otherwise, to promote their

own success, and to the extent they perceive that it succeeds, it promotes them to engage in

even more of the same activity. This activity actually detracts from the amount of activity

employed toward the company’s success. Even worse is the fact that the environment all the

gamesmanship creates actually detracts directly from the company’s success.

The company on the other hand tends to focus on growth, rather than development, which

is perceived to improve the company’s success. To the extent that this appears to result in

company success it encourages even more focus on growth. This focus on growth detracts

from the efforts toward employee development and even has a direct negative impact on

employee success. Organizations though their own actions become much like cemeteries in

that they grow each year though don’t develop. This eventually leads to their demise.

As it turns out, in the long run, neither group can benefit from unilaterally attempting to

enhance their own success as it degrades the entire structure. If the situation were a zero-

sum game the current situation would represent a Nash Equilibrium. Though, since it’s not a

zero sum game, because of the virtuous nature of the outside reinforcing cycle, the individual

positioning seems to work. And, as it generally takes quite a while for the activity to negate

the reinforcing portion of the structure, the dynamic complexity of the environment escapes

the participants. When the structure fails everyone is in a quandary as to what caused the

problem, when in fact they all did.”
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Retailing companies

P&G's ability to  meet 
Wal-Mart needs for 
products services

Wal-Mart's ability to  
meet P&G's needs for 

products services

P&G's profitability Wal-Mart's 
profitability

Price promotions 
by P&G

"Stocking up" by 
Wal-Mart

More product 
sold at discount; 
manufacturing 

variability

Additional costs 
of handling 

promotional items

- -+

+

+

-

+

+

-

+

+

+

+

+

-

-

Number of loops 4
Pattern Accidental Adversaries

Type Stock-and-flow
Origin Model from existing model

Validation No
Context The largest consumer products and retailing companies in the world

Reference [19]

”One classic case, where this structure was first recognised and articulated, concerned the

largest consumer products and retailing companies in the world. Procter & Gamble and

Wal-Mart both had the same goal - improving the effectiveness and profitability of their

production/distribution system - but they each felt the other was acting (perhaps deliber-

ately) in self-serving ways that damaged the industry. These perceptions were not unique to

Procter & Gamble and Wal-Mart; they were rampant in the industry

As two of the most capable corporations in the world, Procter & Gamble and Wal-Mart

had long been aware of the advantages of co-operating closely with (respectively) their

distributors and their suppliers. (This co-operation, which genlty reinforced itself, forms the

outer reinforcing loop in the diagram). In the mid-1980s, however, both companies realised

that their relationships had deteriorated, partly as a result of a fifteen-year-long pattern of

behaviour. Manufacturers (like Procter) had learned through the 1970s and 1980s to heavily

discount their goods and use lots of price promotions in marketing, to boost market share

and value, and thereby improve profits. (This is shown in Procter & Gamble’s balancing

loop, the small circle at upper left).

But price promotions created extra costs and difficulties for distributors (like Wal-Mart),

which coped by ”stocking up”, also known as ”forward-buying” - buying large quantities

of the product during the discount period, selling it at regular price when the promotion



Appendix A. Pattern examples 180

ended, and using that extra income to improve their margins. (This strategy is shown in

Wal-Mart’s balancing loop at lower right). This of course, deeply undermined the manufac-

turer’s profitability, because the retailer discounted many times the manufacturer’s intended

amount of product. Worse still, it created swings in manufacturing volume, adding to cost,

because distributors (being already stocked up) wouldn’t order more product for months. To

improve their results, the manufacturers pushed even more heavily on promotions, blaming

the distributors for their troubles; and the distributors, blaming manufacturers, stocked up

even more.

Eventually, consumer products companies found themselves putting effort into promotions

at the expense of new product development, while distributors concentrated on buying and

storing promoted products instead of basic operations. Much of the short-term profits from

promotions were drained away in long-term costs. A reinforcing loop had formed in the

middle, causing a death spiral of mutually detrimental actions.

Each of the partners recognises that they could mutually support each other’s success - as

shown by the large outer loop. However, as they take independent action to improve results,

they respond more attentively to their local needs than their partner’s. Each partner’s

”solution” turns out to be unintentionally obstructive to their counterpart’s success. Often

widely separated, the two partners do not communicate well. They tend to be unconscious

of their effects on each other. One partner feels it is merely pulling an opportunity closer,

but the other partner feels as if it is being flung through the air recklessly, flailing around at

the end of the first partner’s scope.

Later, as the unintended obstructions are felt more strongly, each remains confident that

the solution is to convince the other partner that its strategy is the correct way to improve

results. In general, at this stage, each partner has almost forgotten its original purpose in

collaboration. It is much more aware of the things its purported partner - that traitor! - has

done to block it. This makes the partner even more unlikely to talk, and it becomes even

more unlikely that either side will ever learn the effect it is having on the other.”
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PPMC and Group Practice

PPMC's 
success

GP's 
success

PPMC's fixes to 
improve PPMC's 

results

GP's fixes to 
improve GP's 

results

GP's activity with PPMC 
(in PPMC's favour)

PPMC's activity with 
GP (in GP's favour)+

+

+

+
+

-

-

+
+

+GP's unintended obstruction 
of PPMC's success

PPMC's unintended 
obstruction of GP's success

--
-

+

+-

Number of loops 4
Pattern Accidental Adversaries

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Collaboration

Reference [25]

”In the early 1990’s the Physician Practice Management Corporation industry emerged.

PPMCs purchased the hard assets of a practice in return for a percent of revenue for op-

erational services rendered. Initially the relationships fared well. Eventually however, when

performance and growth lagged, physicians became uneasy with the relationships and began

to interpret every move by the PPMC as potentially (or actually) injurious to theirs interests.

The result was the downward spiral of both parties interests.

The lesson of Accidental Adversaries lies in the power of mental models to supply all too

ready explanations of situations. Unless judgement is suspended these mental models can

drive one, both or all parties to conclusions that bear remote resemblance to the underlying

reason the breach in the relationship occurred in the first place, if indeed any breach actually

took place.

There is also a lesson on Shared Vision in this archetype. The degree to which the parties hold

a vision in common and have articulated their deep needs and expectations is a significant

contributor to tempering reactions of the parties when breaches are perceived.

Breaches in the agreement(s) may happen; the probability of deteriorating into Accidental

Adversaries is decidedly lower when the parties believe there are overarching values and

objectives that unite them in Shared Vision.

Shared Vision will contribute insight to the extent that partners actually engage in helping

fix problems (or problem symptoms) in their partners organization because of their under-

standing of the long-term impact their efforts will have on their own firms success. This

suggests that Shared Vision is connected to a sense of mission higher than money, that a
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sense of purpose to customers and an underlying, shared sense of organizational values and

culture must be the bedrock of the partnership in the first place.

The archetype also draws attention to Team Learning. If the partners in the venture adopt a

principle of continuous joint improvement and learning, the probability that breaches to the

partnership will happen in the first place is diminished, as well as a higher probability that

if and when misunderstandings, unrealistic expectations or performance problems do occur,

the parties will have mechanisms in place to meet each other half way and work them out.”

Shifting the Burden

Newt’s Zoo

build
zoo

endangered 
species

integrated 
resource mgnt

perception of 
non 

endangement

||
||

||

+

-

-

-

+

+
-

-

+

Number of loops 3

Pattern Shifting the Burden

Type Stock-and-flow

Origin Model from existing model

Validation No

Context Building zoos for endangered species

Reference [26]

”It seems that on Earthday 1996 there was a newspaper article in which Newt Gingrich was

claiming he was in favor of the environment, after all he had helped raise funds for a zoo!

If the problem is perceived as endangered species then building zoos is an apparent quick fix

because it will provide an environment which protects the endangered species. This solution

is much more timely than the longer term solution of doing integrated resource management

wherein the habitat of the species is protected, thus enabling the species to survive.

The side effect of this approach is that people will visit the zoos, see the animals, and develop

a perception of nonendangerment, thus reducing the support for doing integrated resource

management.”
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Perpetuation by Self-Deception

political 
pacification

organisational 
tension

structural 
correstions

no problem 
perception

||
||

||

+

-

-

-

+

+
-

-

+

Number of loops 1
Pattern Shifting the Burden

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Organisational tension between two groups

Reference [26]

”The following example of a Shifting the Burden structure is based on the existence of an

organizational tension between two individuals, groups, or organizations. By organizational

tension it is simply meant that the two entities are constantly at odds with each other over

lots of things, all related to their day to day operation.

The problem is perceived in terms of the visible organizational tension. There are two

approaches to resolving this organizational tension.

The short term expedient approach is for one group to work extra hard to smooth the tensions

that exist with the other group. This reduces the visible symptoms of the organizational

tension.

The longer term more difficult approach is to perform the structural corrections that are

the foundation of the organizational tension in the first place. This approach is probably

more difficult because the structure creating the tension is probably created by some other

part of the organization and neither group involved is in a position to effect the appropriate

structural corrections. This situation actually promotes the adoption of the first approach.

The side effect of the political pacification is that the diminished visibility of the organiza-

tional tension promotes the no problem perception on the part of the organization that is

in a position to effect the appropriate structural corrections that would dissolve the organi-

zational tension. As it turns out the political pacification action only serves to ensure the

appropriate structural corrections will never happen.”
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Rewarded with Limitations

hire presales 
support

sales requires 
presales 
support

develop sales 
product 

expertise

no problem 
perception

||
||

||

+

-

-

-

+

+
-

-

+

Number of loops 1
Pattern Shifting the Burden

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Sales environment

Reference [26]

”Consider the following Shifting the Burden structure with a sales environment where it

is perceived that interaction with the customer and closing the sale is very contingent on

pre-sales support personnel that are very familiar with the product being sold. The problem

being perceived as sales requires pre-sales support then offers two approaches for a solution.

One approach is to hire pre-sales support personnel which can be trained to perform the

pre-sales support function. This approach most definitely resolves the perceived problem.

The alternative approach is to develop sales product expertise so sales is able to perform

their own pre-sales support. This approach would also solve the problem.

What actually makes the hire pre-sales support more expedient than develop sales product

expertise is pretty much wrapped up in a reinforcing Belief and Choice structure, that is, the

structure considered to be the foundation of paradigms (interaction between our choices and

our beliefs). As sales believes its responsibility is sales, as it has been for years, then it looks

very unfavorably on the idea that sales should do pre-sales support. pre-sales support is the

responsibility of an underling techno weenie, or so the thought goes. As such, the great

resistance from sales to the develop sales product expertise idea promotes the hire pre-sales

support approach. Once steps are taken to hire pre-sales support personnel it supports the

no problem perception, which only servers to make the develop sales product expertise less

likely. The real question is can the organization really afford to pay two people to do the job

that one person should be doing?”
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Shifting the Burden to the Intervener

Side Effects
State of the 

System 
(Performance)

Performance 
Shortfall

Desired State of 
the System 

(Desired 
Performance)

Internal 
Capabilities

External 
Intervention

Limits on 
Capabilities

+

+-

+

+

-

+
+

+

||

||

+

-

-side 
effects

External 
control

Internal 
control

Number of loops 3
Pattern Shifting the Burden

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Internal versus external control

Reference [34]

”This generic structure indicates that a decrease in the performance of the system being

studied (which ever one it is) can lead to an external intervention aimed at preserving or

maintaining the systems level of performance (External control) as quickly as possible. Prior

to this intervention, the system maintained its function thanks to internal processes and

its own capacities. This external intervention is effective only in the short term because it

does not solve the fundamental problem which is causing the deficiency. In this case, in

the medium term, this external intervention will progressively reduce the systems internal

capacities to deal with its fundamental problem and to reorganise itself, and it will make the

system increasingly dependant on the external intervention. For example, in an industrial

organisation, this external intervention could be compared to emergency repairs which mo-

bilise all the human resources. If these repairs need to be carried out too frequently, they

will prevent maintenance and prevention operations from being organised and carried out,

despite the fact that they could be the solution to these untimely failures. This reduction in

preventive activities that were already lacking in effectiveness will only worsen the situation

and will eventually lead to an increase in the number of breakdowns. But above all, the

system becomes completely dependant on these emergency interventions and prevents any

further resources from being allocated to proper preventive reorganisation.
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The B1 loop does however indicate that an alternative to this negative spiral exists: work

needs to be carried out on the fundamental problem at the origin of this decrease in perfor-

mance levels. The delay in this loop means that the effects of this work on the improvement

of the system may be delayed. Simulations of this type of archetype may lead to solutions

that, because of this delay, will make the system worse before any improvements can be

made. But when different hypotheses are simulated and solutions to this negative spiral are

found, knowing and understanding why a situation might get worse before it gets better is

essential. Obviously, an archetype of this kind would always take place in larger structures

and would constitute loops amongst many others, but the system simulations can then be

used to understand how the system in its entirety functions and evolves.”

Comment from [19] on the same problem: ”this is a very common variation of “Shifting the

Burden” found in many circumstances. An outside entity is called in to help solve a difficult

problem: a quality consultant to an organisation, a technical trainer to a rural village, a

welfare program to a poor family, or a price subsidy to farmers of a particular crop. The

”intervener’s” role is meant to be temporary, but gradually the people with the problem

become dependent on the intervention, and never learn to solve the problems themselves.

This is not simply a matter of passing the buck. If the outsider could genuinely solve the

problem, that would be acceptable. But the insiders, in the long run, are the only people

who can make the fundamental changes necessary to solve the problem.

The intervener need not be a literal outsider. A quality consultant, for example, might be an

internal expert who may indeed produce some clear gains in quality. But because the ”fires

were quickly put out”, there is no incentive for the non experts to struggle with the quality

problems from arising in the first place. The next time quality issues arise, everyone in the

organisation knows they will once again depend on expert help.”
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Manufacturing Facility

reliance on 
R&D staff

pressure to 
deliver 
product

local 
capability

attrition of 
talented local 

staff

||

+

-

-

-

+

+
-

-

+

Number of loops 1
Pattern Shifting the Burden

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Periodic problem reaching production targers

Reference [26]

”A manufacturing facility experiences periodic problems reaching production targets as a

result of difficulties making adjustments to changing production requirements. Each time

the R&D people, who know the product very well, are called upon to fix the problem.

When the problem symptoms disappear, the incentive to fix the underlying problem likewise

disappear. Additionally, since the production staff has received no training to improve their

ability to respond to the problems, they feel disaffected and leave.

Shifting the Burden is an example of creative tension at work. The archetype draws attention

to the gap between the pressures to perform in the short-term with the insights and long-term

sustaining decisions to which systems managers seek to respond.

It also points to the critical importance of developing patience as one of the skills that systems

managers include in their Personal Mastery of competencies. It illustrates the challenge and

difficulty of demonstrating forward-thinking leadership in the face of mounting pressure to

fix it and get on to the next problem.

Without a clear and convincing picture in the managers minds eye (Personal Vision) as well

as in the collective minds eye of everyone (Shared Vision), the pressure to go for the quick

fix may overwhelm the manager, condemning her/him to a recurring pattern of interventions

that aim to solve the same set of problem symptoms.”
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Addiction

Dependence on Rebates

rebate 
program

declining 
sales

product 
enhancement

dependence 
on rebates

||
||

||
+

-

-

-

+

+
-

-

+

Number of loops 3
Pattern Addiction

Type Stock-and-flow
Origin Model from existing model

Validation No
Context How an apparent right answer can be doubly incorrect

Reference [26]

”We begin with an organization that is facing declining sales. This decline is very apparent

and warrants immediate action. As a solution the organization implements a rebate program

to boost sales, which it in fact does increase sales. When declining sales have been stemmed

the rebate program is terminated and it is considered that there is no action warranted in

the area of product enhancement.

After some period of time the declining sales problem reappears. Now, since a rebate program

solved the problems last time, it is jumped on as the obvious answer. Because the rebate

program worked last time it is figured that it will work this time, so there is still no need to

consider product enhancement.

As it turns out the organization is developing a dependency on rebates as the standard

answer to a declining sales situation. Yet, each time it takes a little bit more of a rebate

and it has to be in effect a little longer to stem declining sales. The situation will eventually

reach a point where a rebate program will no longer resolve the situation. At that time it

may be too late to approach the situation from a product enhancement perspective.”



Appendix A. Pattern examples 189

Addiction

efficiency of 
external experts

External experts

external rate of 
completing

hiring of external 
experts

hiring time

desired external 
experts

<Experts inside>

percentage 
external experts

<External experts>

<Desired time of 
completion>

new tasks

initial task 
backlog

Backlog of tasks

rate of 
completing tasks

internal rate of 
completing

Experts inside

obsolescence 
rate of internal 

knowledge

obsolescence 
time

learning rate of 
internal experts

learning time

desired new 
internal experts

resource 
restrictions for 

training

addiction time

efficiency of 
internal experts

Desired total 
experts

Desired time of 
completion

||

-

+-

SYMPTOMATIC

ADDICTIONFUNDEMENTAL

-

+

+
+

+

+ +

+

+

++

+

+

+
+

+

+ +
-

+
+

+

+

+

+

+-

+

+

+

+

Number of loops 3
Pattern Addiction

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
(external vs internal experts)

Context Short term fixes versus long term fixes
Reference [24]

”Here a company is confronted to sophisticated commitments to its clients. A short-term fix,

hiring outside experts, is shifting the problem away: it eliminates for sometime the symptoms,

but at the same time, it diverts attention away from fundamental and sustainable decisions.

This policy results in a vicious addiction loop: it increases the level of external dependency

while decreasing the available in-house competence. Educating internal experts would fortify

the fundamental solution counteracting this evolution, and allowing the company to survive

in the long term.

NB: <External experts>, <Desired time of completion> and ’<Experts inside> are there

to simplify the diagram. There are just the same variables as External experts...”
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Drifting Goals

Declining Sales Goals

revenue 
goal

pressure to 
adjust goal

gap

sales

current 
revenue

- -
+

+

-

+

+

-
||

Number of loops 2
Pattern Drifting Goals

Type Stock-and-flow
Origin Model from existing model

Validation No
Context How accomplishments can decline over time

due to drifting goals,
possibly without much awareness of what is happening

Reference [26]

”In this situation a company establishes a revenue goal at the beginning of the year. This

immediately produces a gap because of the difference between the revenue goal and the

current revenue. Sales activity during the year produces a level of current revenue at the

end of the year, which just happens to be less than the revenue goal.

For the next year the company establishes a revenue goal which is somewhat less than the

previous year. When sales for this year produce current revenue less than the revenue goal

the goal is again reduced for the next year.

In this manner, over time, the company experiences continually declining revenue, most likely

with little awareness of what is happening over the long term. Organizations seem to have

even shorter memories than people.”
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Air quality

air quality 
standard

pressure to 
lower 

standard

gap

reduce 
pollution

current air 
quality

- -
+

+

-

+

+

-
||

Number of loops 2
Pattern Drifting Goals

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Air quality

Reference [26]

”Goal: Air Quality

Gap: A region is in non-attainment

Pressures to adjust goal: businesses and local governments want the goals lowered – In Las

Vegas, we have a problem with Carbon Monoxide being over the standard at one of the

stations. The pressure is to move the station to another location in the Valley – CO is

heavier than air, so if all the stations are in the higher levels of the Valley – there won’t be

a problem.”
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Internal Quality Standards

quality goal

pressures 
to lower 
quality

gap

TQI 
program

actual 
quality

customer's 
expectations 

of quality
competitor's 

quality

- -

+

+
-

+

+-

+

+

+ +

||

Number of loops 2

Pattern Drifting Goals

Type Stock-and-flow

Origin Model from existing model

Validation No

Context Quality standards

Reference [25]

”Quality standards are common in organizations. If a gap occurs between what the organi-

zation targeted and its actual performance, a tension develops between pressure to live up

to standards and the pressure to roll the standards back to something achievable. If the

quality standard is anchored to an internal perception of customer expectations rather than

an industry standard (what the competition is doing) there is the risk that the pressure to

scale back the standard will prevail.

Eroding Goals has two important ramifications for systems managers. First, the immediate

short-term effect is the failure to critically examine the underlying causes that explain why

1) performance is lacking and 2) managers feel pressure to revise goals to match what the

organization is currently capable of achieving. Second, repeatedly falling into the trap of

Eroding Goals eventually becomes embedded in the organizations culture as a justifiable and

even reasonable thing to do. Over time, the organization falls farther and farther behind the

expectations of its customers and eventually fails altogether.

On the other hand, how do managers assess whether the original goals were attainable?

What about managers who repeatedly set goals that everyone knows are unattainable and

uses them as catalysts to prod people into higher and higher levels of performance?

What about events in the external environment that could not have been predicted and that

may be legitimate grounds for revising goals downward? What about goals that turn out to be

mistakes in judgement or weaknesses in the forecasting process? Since there are (potentially)

legitimate reasons to adjust goals downward, systems managers must take extreme caution

when considering an adjustment to goals. The two most important considerations are 1) an

honest and rigorous examination of the organization itself and 2) an equally candid look at

competitors and their performance, and at customers and their expectations.”
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Acceptance of System Dynamics

desired 
acceptance 

of SD

questions 
about SD 
viability

acceptance 
gap

actions to 
solve real 
problems

actual 
acceptance 

of SD

- -

+

-

+

+

understanding 
of value of SD

more internal 
SD community 

focus

+

-

+

+

-

||

Number of loops 2
Pattern Accidental Adversaries

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Acceptance of System Dynamics

Reference [26]

”Based on a dialogue on the System Dynamics e-mail list regarding the current level of

acceptance after it has been promoted for over 40 years I dredged up the following set of

influences as a thought exercise. This is an example of a drifting goals structure.

Given that there is some Actual Acceptance of SD, which is perceived to be somewhat less

than the Desired, or Expected, Acceptance of SD, the two should interact to produce an

Acceptance Gap. This Acceptance Gap should influence two results.

First, it should add to and increase Actions to Solve Real Problems, the kind that would

add to an increased Understanding of the Value of SD. This increased Understanding of the

Value of SD should then add to the Actual Acceptance of SD, thus serving to decrease the

Acceptance Gap. Second, the Acceptance Gap would seem to influence SD practitioners

to have some doubts, or raise Questions About SD Viability. These Questions About SD

Viability should then tend to produce More Internal SD Community Focus attempting to

strengthen the position and foundations of SD. Then, because there is More Internal SD

Community Focus there is less focus on the Desired Acceptance of SD. And, what makes this

situation even worse is that with energies being focused on More Internal SD Community

Focus there is even less effort spent on Actions to Solve Real Problems that would add to

the Understanding of Value of SD.

What we end up with is not only a drifting goals structure in terms of Desired SD Acceptance,

but a situation that is additionally hindered from attaining the desired result by a viscous

reinforcing loop which misdirects actions from what would actually move the community in

the direction of its goal.”
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Las Vegas water system

indoor 
water use

treated 
wastewater flow

return flow 
credits

total 
supply

water 
withdrawn 

(=MIN(supply,
demand)

total water 
demand

per capita 
water use population

other 
supply

Nevada's 
CO River 
allocation

+

+

+

+

+ +
++

++

+

Number of loops 1
Pattern Exponential growth

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
Context Return flow credit mechanism

Reference [35]

This diagram shows the major variables affecting supply and demand and their connections.

Supply changes in response to external sources, but also in response to changes in water

use, through the mechanism of return flow credit. Demand increases as population in-

creases. When water use increases, treated wastewater flow increases. Return flow credit

also increases, increasing supply. But when demand increases faster than supply, demand

eventually equals, the exceeds supply.

195
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Technological development in Waste Management System

Min Feasible AirPoll 
Per Waste 

(Incineration)

Improvement in 
AirPoll Per Waste 

(Incineration)

Inv Resources for 
Incineration 
(Provider)

Demand for 
Incineration

Priority of Air 
Pollution

Air Pollutant 
Emissions

AirPoll Per Waste
(Incineration)

Waste to 
Incineration

-

-

+

+ +

+

-

+

+

-

+

Number of loops 2
Pattern Success-to-successful and regulation

Type Decision-making
Origin Model from existing model

Validation Yes
Context Feedback between the social and the technological/physical components

Reference [36]

More investment in the incineration option triggers faster performance improvement. This,

in turn, puts incineration to a cleaner position compared to other options. Increasing demand

for cleaner incineration triggers further investment to the option. This feedback depicts the

success-to-successful type of feedback loop in this specific context.

This feedback is coupled with another feedback loop that controls the development process

and leads to decreasing returns in technological development.



Appendix B. Other examples 197

General stock adjustment problem applied to inventory manage-

ment

Supply line Acquisition rate

Stock

Shipments

Stock level factor

Desired stock

Expected 
shipments

Stock adjustment 
fraction

Stock adjustment

Desired supply 
line

Supply line 
adjustment

Order decision

SI adj. frac. Acquisition delay

+ +
+

+

-

+ - +

-

-

+
- +

+

+

+-

-

-
-

+

+
+

Number of loops 3
Pattern Regulation

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
Context General stock adjustment in the context of

inventory order management
Reference [9]

Depending on the policy used (goods in supply line are ignored in the order decision or not),

the simulation of the model will show oscillations or not.

If they are ignored, the oscillations are caused by the existence of the material delay (Supply

Line) between orders and the inventory.

If they are not, they prevent unnecessary over-ordering, hence yielding an improved, and

more stable inventory system.

NB: the big - represents the loop Supply line → Acquisition rate → Stock → Stock adjust-

ment → Order decision → Supply line.



Appendix B. Other examples 198

Socio-political and economics subsystem in river management

Per Capita Water 
Demand

Population 
Growth Rate

Residents' 
Utility

Watershed Economic 
Development Rate

Per Capita Water 
Consumption

Watershed Water 
Consomption

Water Demand

Water Supply

Population

+

+

+
+

+

+

+

+

+

-

+

+

-

Number of loops 3
Pattern Regulation

Type Stock-and-flow
Origin Model from existing model

Validation Yes
Context Problem for the Socio-Political and Economic Subsystem

Reference [37]

If only the two reinforcing loops are considered, without interference of the balancing loop,

residents utility, population, per capita water demand, watersheds water demand, water

consumption and per capita water consumption grow or decline one after another as a result

of rise or fall in the value of any of them.

However, the balancing loop interferes and changes the situation. An increase in population

induces a decrease in per capita water consumption, which lower residents utility.

NB: In natural systems, balancing loops always seek neutralization of the effects of reinforcing

loops, which bring an unsustainable behavior to the system and reinforcing loops rarely remain

unchecked. However, in search of benefits, humans have changed the sustainable behavior of

many natural system by weakening the functionality of natural-balancing systems in favor of

humans without considering the disastrous effects of such actions on those natural systems.

After a long period of unbalancing natural systems for various purposes, in todays world

various environmental groups are struggling to bring back the original behavior of these

systems by eliminating or minimizing the effects of human activities on the system and

strengthening the functionality of natural balancing loops.
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Transport model in the Metropolitan Activity Relocation Simu-

lator (MARS)

Employed 
population

Workplaces

Attraction

Population Car 
availability

Car 
ownership

Commute cost 
other modes

Attractiveness 
by car

Total commute 
trips

Commute trips 
by car

Time per 
commute trip

Total commute 
time

Time for other 
trips

Time per 
commute trip by 

other modes

Speed by car

Parking search 
time

Time in car 
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Commute cost 
by car

Fuel cost

Attractiveness of 
other zones
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+
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-
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-

+

-
+

-
-

+
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+

+

-

+

+

- 1

- 2
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+

Number of loops 4
Pattern Regulation

Type Stock-and-flow
Origin Model from existing model

Validation Yes
Context Transport model

Reference [38]

Commute trips by car increase as the attractiveness by car increases which in turn increases

the search time for a parking space which ten decreases the attractiveness of car use - hence

balancing nature of the loop -1.

-2 represents the effect of congestion - as trips by car increase speeds decrease, times increase

and so attractiveness is decreased.

-3 shows the impact on fuel costs, in our urban case as speeds increase fuel consumption is

decreased.

The only reinforcing loop represents the effect of congestion on other modes. As trips by car

increase, speeds by car and public transport decrease which increases costs by other modes

and all other things equal would lead to a further increase in attractiveness by car.
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Development of housing in the Metropolitan Activity Relocation

Simulator (MARS)

Land available 
for development Land price

Attractiveness to 
develop

RentNew Housing

Housing Stock Excess demand 
for housing

Population Green areas Accessibility

||

||

+

+++

+

+

-

-+
-

+

-

+

- 3

+- 2

- 1

Number of loops 4
Pattern Regulation

Type Stock-and-flow
Origin Model from existing model

Validation Yes
Context Development of housing

Reference [38]

Loop -1 shows that the attractiveness to the developer to develop in a given zone is de-

termined by the rent which can be achieved. The level of the rent is driven by the excess

demand for housing which in turn is related to the housing stock and new housing devel-

opments. As new houses are developed, the stock is increased which reduces the excess

demand which then reduces the rent achievable which reduces the attractiveness to develop.

The only reinforcing loop shows that as new housing reduces the excess demand which

reduces rent and hence land price which in turn makes development more attractive all other

things being equal.

-2 represents the restriction of land available for development as land available is reduced

then the attractiveness to develop is reduced.

-3 extends -2 to represent the effect of land availability on land price.

Finally the drivers of demand for housing are shown to be population, amount of green space

and accessibility to activities from that zone.
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Regulator’s behavior in Waste Management System

Air Pollution Per 
Incinerated Waste

Improvements in Air 
Pollution Performance 

(Incineration)

Importance of Air 
Pollution Objective 

(Regulator)

Air Pollution 
Emissions Total Waste

Soil Pollution
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Additional Soil 

Pollution

Average Air Pollution 
Generated Per 

Waste
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Incineration
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Waste to Incineration 
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Relative Value of 
Incineration Option 

(Regulator)

Importance of Soil 
Pollution Objective 

(Regulator)

Average Soil 
Pollutant Generated 

Per Waste

L4 (-)

L5 (-)

L2 (-)
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L1 
(-)

-

-
-

+

+
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+ -

+
+

+

+

+
+

+
- +

+

||

+
||

||

Number of loops 5
Pattern Regulation

Type Information synthesis
Origin Model from existing model

Validation Yes
Context Influence of the observed behavior of the regulator

Reference [36]
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At the beginning, the loop L1 exerts some control over the level of soil pollution, which can

be seen as a balancing act against the increase of the soil pollution level. However, as a

consequence of the increase in the total waste to be handled, the growth in the soil pollution

exceeds the levels that can be suppressed via degradation mechanism.

The observed increase in soil pollution triggers L2, the second balancing loop. According to

this loop, an actor changes its priorities with a time delay following the recognition of the

increase in the soil pollution. The actor therefore changes the assessment of the options,

and incineration becomes more favorable. This induces further changes for other actors. In

the absence of other loops, the expected consequence would be that L2 will drive the system

to a point where the desired percentage of land-filling for the regulator is zero without losing

any pace. However, before that point is reached other feedback loops are triggered in order

to balance the shift to incineration driven by L2.

This shift results in a significant increase in the air pollution emissions. This triggers L3,

which tries to balance the dynamics caused by L2 through increased priority of the regulator

for air pollution. The consequence of this activation is worsening of the evaluation of the

incineration option and a decrease in pace of the shift in the regulators preferences towards

incineration.

However, the activation of L3 initiates other counteracting loops; L4 and L5. They are both

related to the performance improvement mechanism, activated as a consequence of the air

pollution issue that is gaining importance in the regulatory arena. These loops can also be

interpreted as the defensive mechanism of the incineration niche to keep itself as a favorable

option in the system. L4 balances the rise of air pollution level that was increasing due to

the shift towards incineration. On the other hand, L5 attempts to balance the decrease in

the assessment score of the option due to a gain in priority of the air pollution issue.
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Service delivery

priority of staying 
within target 

backlog

pull to increase 
reactive resource

performance 
against target

target clear time clear times

reactive 
resource
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resource

proactive 
investment 

work
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target backlog
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target clear time
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+
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+
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-
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-

+

- -+

+

Number of loops 4
Pattern Regulation and vicious circle

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Service delivery model

Reference [39]

The loop on the left drives how resource levels associated with reactive work are adjusted to

drive the clear time towards a target value. The clear time period is the period from when

a task enters the system to when it is completed. The lower the resource level, the longer

the clear times - hence poorer performance against target and an increased pull for more

resources, on which in turn wold shorten the clear times and so on.

On the right of the picture, there is a similar balancing loop related to proactive work.

Because reactive and proactive share a lot of resources, the reactive and proactive loops are

joined by a reinforcing loop in the middle of the figure. (More resource on reactive work

means less resource on proactive work and vice versa).

However, the two loops are also connected by the reinforcing loops at the bottom of the

figure related to the impact of proactive investment work. The lower the proactive resource,

the less proactive maintenance work gets done. Since one of the major benefits of proactive

work is to lower the network fault rate, less maintenance means higher faults rates and hence

more reactive repair work to be done. And since more reactive work leads to a greater pull

of resources away from proactive to reactive, this in turn means even less proactive work is

possible. This can become a vicious circle of increasingly poor performance. However, it can

be turned around to a virtuous circle if the direction of change is driven the other way.
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Student learning problems and teacher turnover

Students with 
Learning Problem

Learning Problems 
Remedied

Teaching 
Effectiveness

Average 
Experience of 

Teachers

Teacher Turnover
Teachers

Teacher Hiring

Desired Number 
of Teachers

Teacher Workload

+
-

+

- -

+

+

+

-

+

-

+

-

-

Number of loops 2
Pattern

Type Decision-making
Origin Model from existing model

Validation No
Context Model of how to help students with learning problems

while maintaining a supply of effective teachers
Reference [14]

The negative loop is just a simple regulation of the number of teacher with a certain limit

(desired number of teachers).

The positive loop shows how the system deal with students with learning problems and how

this problem affects the teacher turnover.
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Factors affecting teacher motivation

Level of 
Expected 

Impact
Stress on 
Teachers

Awareness of 
Innovation 
Elsewhere

Teacher 
Motivation

Perceived Need 
for Innovation

Students Capacity 
for Learning

Impact of 
Innovation

Measured Impact 
of Innovation

Mode of Sudent 
Evaluation

Experience 
with 

Innovation

Curriculum 
Innovations 

Adopted

Structural 
Flexibility

+
+

+

+

+
+

+

-

+

+ -

+

+

+

-

Number of loops 2
Pattern Slow but efficient decision maker

Type Decision-making
Origin Model from existing model

Validation Yes - see Factors affecting curriculum innovation
Context Relationships among experience with innovation

teacher motivation, and curriculum innovations are presented
Reference [14]

The big loop form a reinforcing loop, in which a high level of teacher motivation will improve

the chances of innovations being adopted and lead to a better experience with innovation

and a continued high level of motivation and receptivity to innovations in the future.

Conversely, poor experience with innovation will reduce motivation and make it difficult to

sustain effort on those innovations or have future innovations adopted.
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Factors affecting curriculum innovation

Level of 
Expected Impact

Curriculum 
Innovations Initiated

Experience with 
Innovation

Curriculum 
Innovations in 

Process

Teacher 
Motivation

Curriculum 
Innovations 

Adopted

Hours Available 
for Curriculum 

Innovation

Impact of 
Innovation

Structural 
Flexibility

Mode of Student 
Evaluation

Trust Between 
Schools and 
Community

Measured Impact 
of Innovation

+

+

+

+

+

+

+

+

+

++

+

+
+

+

+

+

+

+
+

+

Number of loops 5
Pattern Decision maker with amplified impact of failure

Type Decision-making
Origin Model from existing model

Validation Yes - analysis of impact on innovation with other variables
Context How trust between schools and the community

interacts with the other variables
Reference [14]

Additional reinforcing loops through this trust variable enable success to build on success

and cause failure to initiate a downward spiral that becomes and impediment to future

innovation.
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Elementary 2-stock negative loop oscillator

Inflow 1

Coefficient 1

Stock 1

Inflow 2 Stock 2 Outflow 2

Coefficient 2

Outflow 1

Constant

+

+ -

+

+

-

+ ++

-
-

Number of loops 2
Pattern Oscillator

Type Stock-and-flow
Origin Model from existing model

Validation Yes - behavior analysis
Context Consequences of having delays in structures

Reference [9]

A very typical managerial application of delays is in the context of the standard goal-seeking

structure.

The behavior of the model is pure exponential goal seeking. But if delays exist anywhere

around the goal-seeking loop, then the system has the potential to oscillate.
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Water quality dynamics

Enforcement and 
Administrative Effort 

Needed

Total Waste 
Assimilation 

Capacity

Shortfall in 
Capacity

Construction of 
Treatment Facilities

Pollution Rate

Water Users and 
Polluters

Waste Assimilation 
Capacity Needed

Pollution

Stream 
Discharge Rate

Perceived Excess 
Capacity

Lobbying 
Effectiveness

Legislation and 
Policy Levels

Public Awareness
Enforcement and 

Administrative Effort

Shortfall in 
Enforcement and 

Administrative Effort

Available Funding

-

-
-

-

+

+

-

+

+

+

+

+

+

- +

+

-
+

+

+

-

-

+

-

+

+||

+

Number of loops 4
Pattern Regulation and oscillation

Type Stock-and-flow
Origin Model from existing model

Validation No
Context Water resources management

Reference [40]

The big loop in thick dark arrows explains how an increase in water pollution over time leads

to an increase in water treatment. Due to system delays (double line), this balancing loop

is likely to result in oscillating pollution levels over time.

The other big loop, in thick light arrows, shows how lobbyists (polluters) use the existing

waste assimilation capacity to affect a change in public policy to their advantage.
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Feedback in Transport Systems: Insulin

Glucose 
metabolism

Intracellular 
glucose

Glucose 
permeability Plasma insulin

Plasma glucose

GLUT 2 
permeability

GLUT 1 
permeability

Insulin 
secretion

Intracellular 
glucose

Glucose 
metabolism ATP

+
+

+

+

+

+

+
++

+ -

-

Insulin-
sensitive cells Blood β-cells

+

-

+

+

Number of loops 2
Pattern Regulation and oscillation

Type
Origin Model from existing model

Validation Yes - to model oscillation pattern
Context Role of feedback in biological control

Reference [41]

Transport processes can regulate the level of agonists that in turn can affect the regula-

tory process, giving rise to feedback effects. The regulation of insulin secretion is a good

illustration of the role of feedback in biological control.

Insulin has the same effect on β-cells that it does on other cells in the body: it alters the

permeability of the β-cell membrane to glucose. The β-cell uses two glucose transporters;

one of them (GLUT 1) is activated by extracellular insulin, while the other (GLUT 2) is

down-regulated.

The activation of GLUT 1 is a form of positive feedback, since the effect of the hormone

on this carrier favors an increase in intracellular glucose, which promotes increased insulin

secretion. Correspondingly, the down-regulation of GLUT 2 constitutes negative feedback.

The combination of positive and negative feedback leads to oscillations in insulin secretion.
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Product Provisioning Process

Lost Revenue

Defections

Customer 
Satisfaction

Enquiries

Corrective 
Action

Work Load

Target 
Productivity

Training HoursKnowledge
Knowledge Gap

Capacity of CSC

CRS Numbers

Unbilled 
Revenue

Errors

Required 
Training

New Products

+

-

-
+

-

+

+ -

+

+

+

+

+-

+

+

+

+
-

-

+

+

+

+

+

Number of loops 4
Pattern Vicious circles

Type Stock-and-flow
Origin Model from existing model

Validation Yes
Context Dynamics between Information process and organizational system

Reference [42]

Focus on the effect of pre-existing policies and practices on an already implemented process.

The interest is the dynamics between Information Services process and the organizational

system into which it has been placed.

It is apparent that although the computer process works as designed a number of other

softer, organizational issues are affecting the behavior of the entire process.

For example, an increase in errors leads to an increase in workload, which leads to a decrease

in available training time, leading to a decrease in knowledge, which leads to an increase in

the knowledge gap, which leads to a decrease in the capability of the CSC which in turn

leads to an increase in errors,... This is an example of vicious circle.

One management policy was to increase Target Productivity in the short term that will trigger

the vicious cycle invalidating managements decision. The immediate effect is a reduction in
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the backlog of work, but due to the time delay involved in the loop, the long term effect is

an increase in errors and the size of the error bucket.

The validation of the system was used to determine which of the policies and practices

are having the most effect on the provisioning process, and which offer the most effective

leverage to gain an improvement in the overall process.

NB: CSC= customer service centers and CSR = customer services representatives
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The inter-relationship between forest laws and rules

Low certaintyStrength of law 
enforcement 

Clarity of forest 
utilization rules

Amount of 
community income

Quality of 
government lawStrength of 

customary law

Quality of law 
making process

Quality of 
implementers

Quality of 
institutions (formal 
and non formal)

Amount of taxes
Amount of money 

to go to non-
forest sectors

+

+

+

+

+

+

+

+

+++
+

+
+

+

+
+

+

+

+

A

B
C

D

Number of loops 4
Pattern Vicious circles

Type Information synthesis
Origin Model from existing model

Validation No
Context Forest management

Reference [43]

Law certainty is the level of transparency, persistence and enforcement of law perceived

by stakeholders. It influences quality of forest utilization rules, community income, and

re-investment of forest taxes in other sectors. Quality of institutions an law-making pro-

cesses need to be improved in order to improve the law certainty. Participants also perceived

that improvements in law certainty would improve the quality of institutions. This leads to

four feedback loops involving Quality of institutions, Strength of law enforcement, and Law

certainty. Any improvement in the Quality of institutions is thought to be a self-sustaining in-

vestment, as any improvement will, after some lag time, tend to lead to further strengthening

of the same institutions.
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Opening of a new Patient Service Centre (PSC)

Patient 
Satisfaction

Send Friends 
and Family

Capacity

Waiting Time

PSC Visits

PSC User 
Population

Incoming PSC 
Users

PSC 
Switchers

Visit Lag Time

- -

-

-

+

+

+

-

-

+
-

+

+

-

-

<Visit Lag Time>

-

Number of loops 3
Pattern Overshoot (due to delay) then oscillation

Type Stock-and-flow
Origin Model from existing model

Validation Yes - combined with the flow of patients to a new PSC
Context Patient Service Centre user population

Reference [44]

The upper left loop is also called the Word of Mouth, the upper right the No Time to Wait

loop.

Word of mouth is very influential when patients make healthcare choices. Further, aspects

of patients care that deal with access to service, such as length of waiting time, are typically

given lower performance ratings by health care consumers than other service attributes and

increasingly play a role in patients site selection. Since PSCs are relatively close together, it

is not difficult for patients who hear that a new PSC has shorter waits to move to a different

location from their nearest or usual site in an attempt to avoid waiting.

The responsiveness of the system to word of mouth is affected by the Visit lag time parameter

in the model. As opposed to customers visiting an overcrowded bank branch, most patients

visit the PSCs relatively infrequently. To incorporate this effect in the system dynamics

model, we assume an average time of six months between visits. Thus people will update

their knowledge of performance at the PSC relatively slow.

When combined with flow of patients in a new PSC, there is new loop. This one is positive

and represents the System Growth or possible Decline. (Not represented on the diagram)
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Hydrologic subsystem

Natural 
Incoming Flow

Natural 
Incoming Flow

Total Incoming 
Surface Flow

Returned 
Surface Flow

Outgoing 
Transferred Flow

Evapotranspiration 
(Surface Water)

Gav-Khuni 
Marsh Inflow

Surface Water 
Withdrawal

Water Supply

Available 
Surface Water

Percolation to 
Groundwater

Seepage from 
Groundwater to 
Surface Water

Available 
Groundwater

Outgoing 
Groundwater

Evapotranspiration 
from Groundwater

Total Incoming 
Groundwater

Returned 
Groundwater 

Flow

Natural 
Incoming 

Groundwater

Watershed 
Water 

Consumption

Groundwater 
extraction

Returned 
Water from 

Consumption
Water 

Demand

+ +

-

+

+

-
+

-
+

-
+-

+

+
+

+

-

+

+
- -

+
+-

+

+

+

+

++++

+

+

-

-

-

-

-

-

--

-

+

Number of loops 10
Pattern Regulation

Type Stock-and-flow
Origin Model from existing model

Validation Yes
Context Problem for the Hydrologic subsystem

Reference [37]

There is one big reinforcing loop Available surface water → Surface Water Withdrawal →
Water Supply → Watershed Water Consumption → Returned Water from Consumption →
Returned Surface Flow → Total Incoming Surface Flow → Available Surface Water that is

regulated with lots of small balancing loops.
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Forest law and rules

Low certaintyStrength of law 
enforcement 

Clarity of forest 
utilization rules

Amount of 
community income

Quality of 
government lawStrength of 

customary law

Quality of law 
making process

Quality of 
implementers

Quality of 
institutions (formal 
and non formal)

Amount of taxes

Amount of money 
to go to non-
forest sectors

+

+

+

+

+

+

+

+

+++
+

+
+

+

+
+

+

+
+

A

B
C

D

Production cost

Amount of forest 
concession 

revenue

Silviculture 
knowledge level

Level of 
community health

Level of 
education

Level of community 
well-being

Amount of 
community logging

Amount of 
communication

Quality of forest 
research

Level of 
ecosystem 

sustainability
Eco-trourism

Amount of forest 
standing stock 

and cover

Amount of soil 
erosion

Amount of clean 
water

Population

Immigration

Migration

Amount of timber 
and non-timber 

production

+
J

+
H

+
F

+
G

-
E
+

-

+
I

+ +

+

+

+

+

+

+

+ -
+

-+

+

+

+

-

-

+

-

-

-

+

+

+
+

+

Number of loops 10
Pattern

Type Information synthesis
Origin Model from existing model

Validation No
Context Forest management

Reference [43]

The Amount of forest standing stock and cover and Amount of community income were

also selected by the participants as key factors within feedback loops. They identified a

negative loop (E) between Amount of timber and non-timber production and Amount of

forest standing stock and cover. They saw scope for this production to be tempered by

Clarify of utilization rules (F) and Amount of communication (G), both of which involve

positive feedbacks.

Participants also noted that community logging influenced the amount of timber and non-

timber production and increased the Amount of community income.

Amount of community income and Amount of taxes were also identified as key indicators.

The feedback loop (I) highlights the role of education in increasing community income. We

can also see that the expectation that better eduction will foster small planned families

rather than unplanned families, as a result of the governments family planning campaign in

schools.
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Drug discovery

Biochemical/ 
Decisions Quality

Biochemical and 
Biological Rules

Assay Type:
1) in vitro

2) cell-based
Assay set up

Statistical Rules 
Reproductibility 
Potency Affinity

Druggable Target 
Space

Target Validation
Assays

Target Selection 
and Identification

Experimental 
Screening Data:

1) primary
2) secondary

3) counter-seen
HTS vHTS Chemical Librairies

Clinical Trials

IND

in silico vHTS data
1) Docking

2) Pharmacophore

High Content 
Information on 

Hit/non-Hit 
Lead/non-Lead

Biochemical 
hypothesis:

1) druggable target

Global hypothesis:
Molecular Recognition 
between chemical and 

biological space

Chemical 
Hypothesis:

1) Small molecules
2) fragment-based

# Hits selected

QSAR models 
Precision

# Leads Selected

Leads quality
Hits selection

Leads Optimization

Animal models

Assess QC 
compounds

Leads Selection

Hits quality

Chemical 
Decisions Quality

Diversity Similarity

Cheminformatics 
and Statistical rules

Drug-like Lead-like

in silico predictive 
profiling of 
molecules/
fragments

In vitro

Admet

Assemble Libraries:
1) Synthesize: 
CombiChem

2) Purchase compounds 
from suppliers

Druggable 
Chemical Space

-2 -4
-6

+1

-15

-14

+2

-16

+20

+19

-17

-12

-10

-9
-8

-5

-3-1

-13

+8+10

+6
+7

+5+3

+4

+12

+17

+18

+14
+15

+16

+ + + +

+

+

+
+

+

+
-

+

+

+

+

+

+
+

+

+

+

+

-

+

+

+

+

+
+

+

+

+

+

++ +

+ +
+

-

+

+
+

-

+

+

+

+

+

+

-

+ - +

+
+

+ - +

-

+
+

++

+

-

+

+ +-

+

+

Number of loops 32
Pattern

Type
Origin Model from existing model

Validation No
Context System dynamic structure (SDS) from hit-to-lead

to optimization to investigational new drug in the HTS process
Reference [45]

The drug discovery process comprises five main steps:

• building of libraries of small molecules

• optimization and validation of biochemical assays

• automation to perform HTS screening

• primary screening to generate data for use in hits identification and confirmation screen-

ing

• secondary screening and counter screening for the selection of leads series from the

initial pool of hits.
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This structure can be split into three categories:

• chemical and biochemical hypotheses feedback loops

• from H2L to IND and molecule attrition feedback loops

• lead series success on attrition rate feedback loops

More information in the article
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1 f u n c t o r
2 import
3 System

4 Application

5 OS

6
7 e x p o r t
8 Start

9
10 d e f i n e
11 {OS.srand 0}

12
13 %% Input: Loop is the record defined in Graph.oz of a project

14 %% Loop has to contain the following features: agents , graph , engine , monitor

15 proc {Start Loop}

16 ListOfAgents i n
17 ListOfAgents = {CreateAgents Loop.agents Loop.engine Loop.monitor}

18 {CreateLinks Loop.graph}

19 {StartAgents ListOfAgents Loop.engine Loop.monitor}

20 end
21
22 %% Creates the topology sort organised in layers

23 %% Input: Agents is list of all the agents of the system

24 fun {Topology Agents}

25 Topo = {NewCell nil}

26 Dico = {NewDictionary}

27 %% Gives the layers of the ’instantaneous ’ agents

28 fun {Loop Agents Acc}

29 %% Agents name are used to be stores in the dictionary

30 LayerName = {NewCell nil}

31 LayerAgent = {NewCell nil}

32 i n
33 for Agent i n Agents do

34 Stock = {Agent is_stock($)}

35 Name = {Agent name($)}

36 Ins = {Agent ins($)} Y

37 i n
38 i f {Not Stock} then
39 Y = for In i n Ins collect:C do

40 InName = {In name($)} i n
41 {C {Dictionary.member Dico InName }}

42 end
43 %% If the agent entries are in the dictionary

44 %% and that the agent is not in the dicitonary

45 %% then it is added to the layer

46 i f {Not {Member f a l s e Y}} andthen
47 {Not {Dictionary.member Dico Name}} then
48 LayerName := Name|@LayerName

49 LayerAgent := Agent|@LayerAgent

50 end
51 end
52 end
53 %% If the layer is empty then all the agents are in the dictionary

54 case @LayerName o f nil then Acc

55 e l s e
56 for Name i n @LayerName do

219



Appendix C. Simulator.oz 220

57 {Dictionary.put Dico Name Name}

58 end
59 {Loop Agents @LayerAgent|Acc}

60 end
61 end
62 i n
63 %% First find all the stocks ...

64 for Agent i n Agents do

65 Stock = {Agent is_stock($)}

66 Name = {Agent name($)}

67 i n
68 i f Stock then
69 Topo := Agent|@Topo

70 {Dictionary.put Dico Name Name}

71 end
72 end
73 %% ... then the other layers are added

74 Topo := @Topo|{ Reverse {Loop Agents nil}}

75 @Topo

76 end
77
78 %% User has to define the agent as follows:

79 %% Var_name#Agents. class_name #init(name [ attributes ])# first_value

80 %% Input: Agents is the list of all the agents

81 %% Engine is sync(Delta) or async(Time Random Delta)

82 %% Monitor is info(list: [list of agent names ]) times: int)

83 fun {CreateAgents Agents Engine Monitor}

84 List i n List = {NewCell nil}

85 for Agent i n Agents do

86 case Agent o f Var#Class#Init#Out then
87 case Engine o f sync(Delta) then
88 Var = {CreateSync Class Init Out Monitor Delta}

89 [] async(Time Random Delta) then
90 Var = {CreateAsync Class Init Time Out Monitor Random Delta}

91 end
92 List := Var|@List

93 end
94 end
95 @List

96 end
97
98 %% Input: Graph is the list of Agents with their input and ouput agents

99 %% Var_name #[ list of input agents ]#[ list of output agents]

100 proc {CreateLinks Graph}

101 for Agent i n Graph do

102 case Agent o f Name#In#Out then
103 {Name set_ins(In)}

104 {Name set_outs(Out)}

105 e l s e {System.show ’Agent connection problem ’}

106 end
107 end
108 end
109
110 %% Input: Agents is the list of all agents

111 %% Engine is sync(Delta) or async(Time Random Delta)

112 %% Monitor is info(list: [list of agent names ]) times: int)

113 proc {StartAgents Agents Engine Monitor}

114 for Agent i n Agents do

115 {Agent start}

116 end
117 case Engine

118 o f sync(Delta) then
119 {System.show times#{Int.toFloat Monitor.times}}

120 Tri = {Topology Agents} i n
121 %% Sends initial values to agents

122 for Agent i n Agents do

123 {Agent send_value(init)}

124 end
125 %% Execute each layer a certain number of times

126 for I i n 1..{ FloatToInt {IntToFloat Monitor.times}/Delta} do

127 for Layer i n Tri do
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128 X Y i n
129 Y = for Agent i n Layer collect:C do

130 {C {Agent compute(X $)}}

131 end
132 X = u n i t
133 {ForAll Y Wait}

134 end
135 end
136 %% Stops the agents

137 for Agent i n Agents do

138 End i n
139 {Agent stop(End)}

140 {Wait End}

141 end
142 [] async(Time Boolean Delta) then
143 {System.show times#{Int.toFloat Monitor.times}}

144 %% Thread that waits before stopping the agents

145 for I i n 1..{ FloatToInt {IntToFloat Monitor.times}/Delta} do

146 i f Boolean then {Delay Time + Time d i v 10}

147 e l s e {Delay Time} end
148 end
149 %% Stops the agents

150 for Agent i n Agents do

151 End i n
152 {Agent stop(End)}

153 {Wait End}

154 end
155 end
156 {Application.exit 0}

157 end
158
159 %% Synchronous agent as an active object

160 fun {CreateSync Class Init Out Monitor Delta}

161 c l a s s Sync from Class

162 a t t r time ins_stream

163 meth init(Init Out Delta)

164 Class ,Init

165 delta := Delta

166 out_stream := [Out]

167 end
168 meth start

169 @ins_stream = stream ()

170 for Agent i n @ins do

171 i f Agent \= none then
172 Name i n Name = {Agent name($)}

173 ins_stream := {Adjoin @ins_stream {Record.make stream [Name ]}}

174 @ins_stream.Name = {NewCell nil}

175 end
176 end
177 end
178 meth send_value(Value)

179 for Agent i n @outs do

180 i f Agent \= none then
181 i f Value == init then
182 {Agent new_value(@name Out)}

183 e l s e
184 {Agent new_value(@name Value)}

185 end
186 end
187 end
188 end
189 meth new_value(Name Value)

190 {Assign @ins_stream.Name Value |{ Access @ins_stream.Name}}

191 end
192 meth compute(X Y)

193 {Wait X}

194 In NewValue i n In = {Record.make ins {Arity @ins_stream }}

195 for Name i n {Arity @ins_stream} do

196 List i n List = {Access @ins_stream.Name}

197 case List

198 o f X|nil then In.Name = X
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199 [] X|_ then In.Name = X

200 e l s e In.Name = 0.0 end
201 end
202 { s e l f m(In NewValue )}

203 out_stream := NewValue|@out_stream

204 { s e l f send_value(NewValue )}

205 Y = u n i t
206 end
207 end
208 Obj = {New Sync init(Init Out Delta)}

209 P

210 i n
211 thr ead S i n {NewPort S P}

212 for M i n S do {Obj M} end
213 end
214 i f {Member {Obj name($)} Monitor.list} then
215 {Obj monitored( t r u e )}
216 e l s e
217 {Obj monitored( f a l s e )}

218 end
219 proc {$ M} {Send P M} {Delay 1} end
220 end
221
222 %% Asynchronous agent as an active object

223 fun {CreateAsync Class Init Time Out Monitor Random Delta}

224 c l a s s Async from Class

225 a t t r time msg insName

226 meth init(Init Time Out Random Delta)

227 Class ,Init

228 delta := Delta

229 i f Random then
230 Ten i n
231 i f Time d i v 10 < 1 then Ten = 1

232 e l s e Ten = Time d i v 10 end
233 i f {OS.rand} mod 2 == 0 then
234 time := Time + ({OS.rand} mod Ten)

235 e l s e
236 time := Time - ({OS.rand} mod Ten)

237 end
238 e l s e
239 time := Time

240 end
241 out_stream := [Out]

242 insName := nil

243 end.
244 meth start

245 for Agent i n @ins do

246 Name i n {Agent name(Name)}

247 insName := Name|@insName

248 end
249 { s e l f construct_msg}

250 end
251 meth construct_msg

252 msg := {Record.make state @insName}

253 msg := {Adjoin @msg {Record.make state [1]}}

254 @msg.1 = {NewCell 0}

255 { s e l f send_requests}

256 end
257 meth send_requests

258 for Agent i n @ins do

259 {Agent state_request( s e l f )}
260 end
261 end
262 meth state_request(Agent)

263 {Agent state_answer(@name @out_stream .1)}

264 end
265 meth state_answer(Name Info)

266 @msg.Name = Info

267 {Assign @msg.1 ({ Access @msg .1} + 1)}

268 i f {Access @msg .1} == {Length @ins} then
269 Out i n
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270 i f @stock andthen {OS.rand} mod 2 == 1 then
271 {Thread.preempt {Thread.this}}

272 end
273 { s e l f m(@msg Out)}

274 out_stream := Out|@out_stream

275 i f @stock then threa d {Delay @time} { s e l f construct_msg} end
276 e l s e { s e l f construct_msg} end
277 e l s e s k i p end
278 end
279 end
280 Obj = {New Async init(Init Time Out Random Delta )}

281 P

282 i n
283 thr ead S i n {NewPort S P}

284 for M i n S do {Obj M} end
285 end
286 i f {Member {Obj name($)} Monitor.list} then
287 {Obj monitored( t r u e )}
288 e l s e
289 {Obj monitored( f a l s e )}

290 end
291 proc {$ M} {Send P M} {Delay 1} end
292 end
293 end
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Population

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Births

7 Deaths

8 Population

9
10 d e f i n e
11 c l a s s Births from Agent.baseAgent

12 a t t r rate

13 meth init(Name Rate)

14 Agent.baseAgent ,init(Name)

15 rate := Rate

16 end
17 meth m(In ?Out)

18 Out = @rate * In.population

19 end
20 end
21 c l a s s Deaths from Agent.baseAgent

22 a t t r rate

23 meth init(Name Rate)

24 Agent.baseAgent ,init(Name)

25 rate := Rate

26 end
27 meth m(In ?Out)

28 Out = @rate * In.population

29 end
30 end
31 c l a s s Population from Agent.baseAgent

32 a t t r popl

33 meth init(Name Popl)

34 Agent.baseAgent ,init(Name)

35 popl := Popl

36 stock := t r u e
37 end
38 meth m(In ?Out)

39 popl := @popl + (In.births - In.deaths) * @delta

40 Out = @popl

41 end
42 end
43 end

Listing 1: Population: Agents.oz

225



Appendix D. Simulation results 226

1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Births

9 Deaths

10 Population

11 i n
12 Graph = loop(agents: [Population#Agents.population#init(population 100.0)#100.0

13 Births#Agents.births#init(births 0.06)#6.0

14 Deaths#Agents.deaths#init(deaths 0.03)#3.0]

15 graph: [Population #[ Births Deaths ]#[ Births Deaths]

16 Births #[ Population ]#[ Population]

17 Deaths #[ Population ]#[ Population ]]

18 engine: async (100 f a l s e 1.0)

19 monitor: info(list: [population] times: 100))

20
21 {Simulator.start Graph}

22 end

Listing 2: Population: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 10

Figure 1: Simulator: the population model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 2: Simulator: the population model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 3: Simulator: the population model – asynchronous engine (delta = 0.1)



Appendix D. Simulation results 229

(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 4: Simulator: the population model – asynchronous engine (delta = 10)
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Drifting goals

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Desired

7 Action

8 Current

9 Gap

10 Emotional

11
12 d e f i n e
13 c l a s s Desired from Agent.baseAgent

14 a t t r attribute

15 meth init(Name Value)

16 Agent.baseAgent ,init(Name)

17 attribute := Value

18 stock := t r u e
19 end
20 meth m(In ?Out)

21 attribute := @attribute + (~ In.emotional) * @delta

22 Out = @attribute

23 end
24 end
25 c l a s s Action from Agent.baseAgent

26 meth m(In ?Out)

27 Out = 0.02 * In.gap

28 end
29 end
30 c l a s s Current from Agent.baseAgent

31 a t t r attribute

32 meth init(Name Value)

33 Agent.baseAgent ,init(Name)

34 attribute := Value

35 stock := t r u e
36 end
37 meth m(In ?Out)

38 attribute := @attribute + In.action * @delta

39 Out = @attribute

40 end
41 end
42 c l a s s Gap from Agent.baseAgent

43 meth m(In ?Out)

44 Out = In.desired - In.current

45 end
46 end
47 c l a s s Emotional from Agent.baseAgent

48 meth m(In ?Out)

49 Out = 0.1 * In.gap

50 end
51 end
52 end

Listing 3: Drifting goals: Agents.oz



Appendix D. Simulation results 231

1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Desired

9 Action

10 Current

11 Gap

12 Emotional

13 i n
14 Graph = loop(agents: [Current#Agents.current#init(current 10.0)#10.0

15 Action#Agents.action#init(action )#1.8

16 Desired#Agents.desired#init(desired 100.0)#100.0

17 Emotional#Agents.emotional#init(emotional )#9.0

18 Gap#Agents.gap#init(gap )#90.0]

19 graph: [Current #[ Action ]#[Gap]

20 Action #[Gap]#[ Current]

21 Desired #[ Emotional ]#[Gap]

22 Emotional #[Gap]#[ Desired]

23 Gap#[ Desired Current ]#[ Emotional Action ]]

24 engine: sync (4.0)

25 monitor: info(list: [desired current] times: 60))

26
27 {Simulator.start Graph}

28 end

Listing 4: Drifting goals: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 10

Figure 5: Simulator: the drifting goals model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 6: Simulator: the drifting goals model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 7: Simulator: the drifting goals model – asynchronous engine (delta = 0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 8: Simulator: the drifting goals model – asynchronous engine (delta = 4)
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Epidemic

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Removal

7 Infection

8 Susceptible

9 Contacts

10 Infected

11 d e f i n e
12 c l a s s Removal from Agent.baseAgent

13 a t t r attribute

14 meth init(Name Value)

15 Agent.baseAgent ,init(Name)

16 attribute := Value

17 end
18 meth m(In ?Out)

19 Out = @attribute * In.infected

20 end
21 end
22 c l a s s Infection from Agent.baseAgent

23 a t t r attribute

24 meth init(Name Value)

25 Agent.baseAgent ,init(Name)

26 attribute := Value

27 end
28 meth m(In ?Out)

29 Out = @attribute * In.contacts

30 end
31 end
32 c l a s s Susceptible from Agent.baseAgent

33 a t t r popl incoming

34 meth init(Name Value In)

35 Agent.baseAgent ,init(Name)

36 popl := Value

37 incoming := In

38 stock := t r u e
39 end
40 meth m(In ?Out)

41 popl := @popl + (@incoming - In.infection) * @delta

42 Out = @popl

43 end
44 end
45 c l a s s Contacts from Agent.baseAgent

46 a t t r attribute

47 meth init(Name Value)

48 Agent.baseAgent ,init(Name)

49 attribute := Value

50 end
51 meth m(In ?Out)

52 Out = @attribute * In.infected * In.susceptible

53 end
54 end
55 c l a s s Infected from Agent.baseAgent

56 a t t r attribute

57 meth init(Name Value)

58 Agent.baseAgent ,init(Name)

59 attribute := Value

60 stock := t r u e
61 end
62 meth m(In ?Out)

63 attribute := @attribute + (In.infection - In.removal) * @delta

64 Out = @attribute

65 end
66 end
67 end

Listing 5: Epidemic: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Removal

9 Infection

10 Susceptible

11 Contacts

12 Infected

13 i n
14 Graph = loop(agents: [Infected#Agents.infected#init(infected 1.0)#1.0

15 Susceptible#Agents.susceptible#init(susceptible 500.0 1.0)#500.0

16 Infection#Agents.infection#init(infection 0.01)#5.0

17 Removal#Agents.removal#init(removal 0.1)#0.1

18 Contacts#Agents.contacts#init(contacts 0.1)#500.0]

19 graph: [Infected #[ Infection Removal ]#[ Contacts Removal]

20 Susceptible #[ Infection ]#[ Contacts]

21 Infection #[ Contacts ]#[ Susceptible Infected]

22 Removal #[ Infected ]#[ Infected]

23 Contacts #[ Susceptible Infected ]#[ Infection ]]

24 engine: async (500 t r u e 0.1)

25 monitor: info(list: [susceptible infected] times: 100))

26
27 {Simulator.start Graph}

28 end

Listing 6: Epidemic: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 5

Figure 9: Simulator: the epidemic model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 10: Simulator: the epidemic model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 11: Simulator: the epidemic model – asynchronous engine (delta = 0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 12: Simulator: the epidemic model – asynchronous engine (delta = 5)
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Crowding

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Crowding

7 Births

8 Deaths

9 Population

10 BirthFraction

11
12 d e f i n e
13 c l a s s Crowding from Agent.baseAgent

14 a t t r capacity

15 meth init(Name Capacity)

16 Agent.baseAgent ,init(Name)

17 capacity := Capacity

18 end
19 meth m(In ?Out)

20 Out = In.population / @capacity

21 end
22 end
23 c l a s s Births from Agent.baseAgent

24 meth m(In ?Out)

25 Out = In.birth_fraction * In.population

26 end
27 end
28 c l a s s Deaths from Agent.baseAgent

29 a t t r rate

30 meth init(Name Rate)

31 Agent.baseAgent ,init(Name)

32 rate := Rate

33 end
34 meth m(In ?Out)

35 Out = @rate * In.population

36 end
37 end
38 c l a s s Population from Agent.baseAgent

39 a t t r popl

40 meth init(Name Popl)

41 Agent.baseAgent ,init(Name)

42 popl := Popl

43 stock := t r u e
44 end
45 meth m(In ?Out)

46 popl := @popl + (In.births - In.deaths) * @delta

47 Out = @popl

48 end
49 end
50 c l a s s BirthFraction from Agent.baseAgent

51 meth m(In ?Out)

52 Out = 0.08

53 - 0.000028561 * In.crowding

54 - 0.02 * {Pow In.crowding 2.0}

55 end
56 end
57 end

Listing 7: Crowding: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Crowding

9 Births

10 Deaths

11 Population

12 BirthFraction

13 i n
14 Graph = loop(agents: [Population#Agents.population#init(population 10.0)#10.0

15 Births#Agents.births#init(births )#0.5

16 Crowding#Agents.crowding#init(crowding 200.0)#0.05

17 BirthFraction#Agents.birthFraction#init(birth_fraction )#0.05

18 Deaths#Agents.deaths#init(deaths 0.06)#0.6]

19 graph: [Population #[ Births Deaths ]#[ Births Deaths Crowding]

20 Births #[ BirthFraction Population ]#[ Population]

21 Crowding #[ Population ]#[ BirthFraction]

22 BirthFraction #[ Crowding ]#[ Births]

23 Deaths #[ Population ]#[ Population ]]

24 engine: async (100 f a l s e 0.25)

25 monitor: info(list: [population] times: 250))

26
27 {Simulator.start Graph}

28 end

Listing 8: Crowding: Graph.oz

(a) delta = 1

(b) delta = 0.25 (c) delta = 10

Figure 13: Simulator: the crowding model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

Figure 14: Simulator: the crowding model – asynchronous engine (delta = 1)

(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

Figure 15: Simulator: the crowding model – asynchronous engine (delta = 0.25)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

Figure 16: Simulator: the crowding model – asynchronous engine (delta = 10)
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Flowers

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Area_flower

7 Decay

8 Multiplier

9 Growth

10 Growth_rate

11 Fraction_occupied

12
13 d e f i n e
14 c l a s s Area_flower from Agent.baseAgent

15 a t t r area

16 meth init(Name Value)

17 Agent.baseAgent ,init(Name)

18 area := Value

19 stock := t r u e
20 end
21 meth m(In ?Out)

22 area := @area + (In.growth - In.decay) * @delta

23 Out = @area

24 end
25 end
26 c l a s s Decay from Agent.baseAgent

27 a t t r rate

28 meth init(Name Value)

29 Agent.baseAgent ,init(Name)

30 rate := Value

31 end
32 meth m(In ?Out)

33 Out= In.area * @rate

34 end
35 end
36 c l a s s Multiplier from Agent.baseAgent

37 meth m(In ?Out)

38 Out = ~1.0*In.fraction_occupied + 1.0

39 end
40 end
41 c l a s s Growth from Agent.baseAgent

42 meth m(In ?Out)

43 Out = In.area* In.growth_rate

44 end
45 end
46 c l a s s Growth_rate from Agent.baseAgent

47 a t t r rate

48 meth init(Name Value)

49 Agent.baseAgent ,init(Name)

50 rate := Value

51 end
52 meth m(In ?Out)

53 Out = @rate * In.multiplier

54 end
55 end
56 c l a s s Fraction_occupied from Agent.baseAgent

57 a t t r attribute

58 meth init(Name Value)

59 Agent.baseAgent ,init(Name)

60 attribute := Value

61 end
62 meth m(In ?Out)

63 Out = In.area / @attribute

64 end
65 end
66 end

Listing 9: Flowers: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Area_flower

9 Decay

10 Multiplier

11 Growth

12 Growth_rate

13 Fraction_occupied

14 i n
15 Graph = loop(agents: [Area_flower#Agents.area_flower#init(area 10.0)#10.0

16 Growth#Agents.growth#init(growth )#9.9

17 Decay#Agents.decay#init(decay 0.2)#2.0

18 Growth_rate#Agents.growth_rate#init(growth_rate 1.0)#0.99

19 Fraction_occupied#Agents.fraction_occupied#init(fraction_occupied 1000.0)#0.01

20 Multiplier#Agents.multiplier#init(multiplier )#0.99]

21 graph: [Area_flower #[ Growth Decay ]#[ Growth Decay Fraction_occupied]

22 Growth #[ Growth_rate Area_flower ]#[ Area_flower]

23 Decay#[ Area_flower ]#[ Area_flower]

24 Growth_rate #[ Multiplier ]#[ Growth]

25 Fraction_occupied #[ Area_flower ]#[ Multiplier]

26 Multiplier #[ Fraction_occupied ]#[ Growth_rate ]]

27 engine: async (10 t r u e 2.0)

28 monitor: info(list: [area] times: 20))

29
30 {Simulator.start Graph}

31 end

Listing 10: Flowers: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 2

Figure 17: Simulator: the flowers model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 18: Simulator: the flowers model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 19: Simulator: the flowers model – asynchronous engine (delta = 0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 20: Simulator: the flowers model – asynchronous engine (delta = 2)
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Balancing loop

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Action

7 Gap

8 Current_value

9
10 d e f i n e
11 c l a s s Action from Agent.baseAgent

12 a t t r attribute

13 meth init(Name Value)

14 Agent.baseAgent ,init(Name)

15 attribute := Value

16 end
17 meth m(In ?Out)

18 Out= In.gap / @attribute

19 end
20 end
21 c l a s s Gap from Agent.baseAgent

22 a t t r attribute dt

23 meth init(Name Value)

24 Agent.baseAgent ,init(Name)

25 attribute := Value

26 end
27 meth m(In ?Out)

28 Out = @attribute - In.current_value

29 end
30 end
31 c l a s s Current_value from Agent.baseAgent

32 a t t r attribute

33 meth init(Name Value)

34 Agent.baseAgent ,init(Name)

35 attribute := Value

36 stock := t r u e
37 end
38 meth m(In ?Out)

39 attribute := @attribute + In.action * @delta

40 Out = @attribute

41 end
42 end
43 end

Listing 11: Balancing loop: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Action

9 Gap

10 Current_value

11 i n
12 Graph = loop(agents: [Current_value#Agents.current_value#init(current_value 50.0)#50.0

13 Gap#Agents.gap#init(gap 150.0)#100.0

14 Action#Agents.action#init(action 2.0)#50.0]

15 graph: [Current_value #[ Action ]#[Gap]

16 Gap#[ Current_value ]#[ Action]

17 Action #[Gap]#[ Current_value ]]

18 engine: async (500 t r u e 2.0)

19 monitor: info(list: [current_value] times: 10))

20
21 {Simulator.start Graph}

22 end

Listing 12: Balancing loop: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 2

Figure 21: Simulator: the balancing loop model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 22: Simulator: the balancing loop model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 23: Simulator: the balancing loop model – asynchronous engine (delta = 0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 24: Simulator: the balancing loop model – asynchronous engine (delta = 2)
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Knowledge diffusion

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Gap

7 Diffusion

8 No_knowledge

9 Knowledge

10
11 d e f i n e
12 c l a s s Gap from Agent.baseAgent

13 meth m(In ?Out)

14 Out = (In.knowledge + In.no_knowledge)

15 - In.knowledge

16 end
17 end
18 c l a s s Diffusion from Agent.baseAgent

19 a t t r attribute

20 meth init(Name Value)

21 Agent.baseAgent ,init(Name)

22 attribute := Value

23 end
24 meth m(In ?Out)

25 Out = @attribute * In.knowledge * In.gap

26 end
27 end
28 c l a s s No_knowledge from Agent.baseAgent

29 a t t r attribute

30 meth init(Name Value)

31 Agent.baseAgent ,init(Name)

32 stock := t r u e
33 attribute := Value

34 end
35 meth m(In ?Out)

36 attribute := @attribute + (~In.diffusion) * @delta

37 Out = @attribute

38 end
39 end
40 c l a s s Knowledge from Agent.baseAgent

41 a t t r attribute dt

42 meth init(Name Value)

43 Agent.baseAgent ,init(Name)

44 stock := t r u e
45 attribute := Value

46 end
47 meth m(In ?Out)

48 attribute := @attribute + In.diffusion * @delta

49 Out = @attribute

50 end
51 end
52 end

Listing 13: Knowledge diffusion: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Gap

9 Diffusion

10 No_knowledge

11 Knowledge

12 i n
13 Graph = loop(agents: [No_knowledge#Agents.no_knowledge#init(no_knowledge 100.0)#100.0

14 Knowledge#Agents.knowledge#init(knowledge 1.0)#1.0

15 Diffusion#Agents.diffusion#init(diffusion 0.02)#1.98

16 Gap#Agents.gap#init(gap )#100.0]

17 graph: [No_knowledge #[ Diffusion ]#[ Gap]

18 Knowledge #[ Diffusion ]#[Gap Diffusion]

19 Diffusion #[ Knowledge Gap ]#[ No_knowledge Knowledge]

20 Gap#[ Knowledge No_knowledge ]#[ Diffusion ]]

21 engine: async (100 t r u e 0.6)

22 monitor: info(list: [knowledge no_knowledge] times: 10))

23
24 {Simulator.start Graph}

25 end

Listing 14: Knowledge diffusion: Graph.oz

(a) delta = 1

(b) delta = 0.6 (c) delta = 0.1

Figure 25: Simulator: the knowledge diffusion model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 26: Simulator: the knowledge diffusion model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 27: Simulator: the knowledge diffusion model – asynchronous engine (delta =
0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 28: Simulator: the knowledge diffusion model – asynchronous engine (delta =
0.6)
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Escalation

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Activity_b

7 Activity_a

8 Results_b

9 Results_a

10 Results_a_rel_b

11
12 d e f i n e
13 c l a s s Activity_b from Agent.baseAgent

14 meth m(In ?Out)

15 Out = In.results_a_rel_b

16 end
17 end
18 c l a s s Activity_a from Agent.baseAgent

19 a t t r attribute

20 meth init(Name Value)

21 Agent.baseAgent ,init(Name)

22 attribute := Value

23 end
24 meth m(In ?Out)

25 Out = In.results_a_rel_b + @attribute

26 end
27 end
28 c l a s s Results_b from Agent.baseAgent

29 a t t r attribute

30 meth init(Name Value)

31 Agent.baseAgent ,init(Name)

32 attribute := Value

33 stock := t r u e
34 end
35 meth m(In ?Out)

36 attribute := @attribute + In.activity_b * @delta

37 Out = @attribute

38 end
39 end
40 c l a s s Results_a from Agent.baseAgent

41 a t t r attribute

42 meth init(Name Value)

43 Agent.baseAgent ,init(Name)

44 attribute := Value

45 stock := t r u e
46 end
47 meth m(In ?Out)

48 attribute := @attribute + In.activity_a * @delta

49 Out = @attribute

50 end
51 end
52 c l a s s Results_a_rel_b from Agent.baseAgent

53 meth m(In ?Out)

54 Out = In.results_a - In.results_b

55 end
56 end
57 end

Listing 15: Escalation: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Activity_b

9 Activity_a

10 Results_b

11 Results_a

12 Results_a_rel_b

13 i n
14 Graph = loop(agents: [Results_a#Agents.results_a#init(results_a 101.0)#101.0

15 Results_b#Agents.results_b#init(results_b 100.0)#100.0

16 Activity_a#Agents.activity_a#init(activity_a 1.0)#1.0

17 Activity_b#Agents.activity_b#init(activity_b )#0.0

18 Results_a_rel_b#Agents.results_a_rel_b#init(results_a_rel_b )#1.0]

19 graph: [Results_a #[ Activity_a ]#[ Results_a_rel_b]

20 Results_b #[ Activity_b ]#[ Results_a_rel_b]

21 Activity_a #[ Results_a_rel_b ]#[ Results_a]

22 Activity_b #[ Results_a_rel_b ]#[ Results_b]

23 Results_a_rel_b #[ Results_a Results_b ]#[ Activity_a Activity_b ]]

24 engine: async (200 t r u e 1.0)

25 monitor: info(list: [results_a results_b] times: 100))

26
27 {Simulator.start Graph}

28 end

Listing 16: Escalation: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 5

Figure 29: Simulator: the escalation model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 30: Simulator: the escalation model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 31: Simulator: the escalation model – asynchronous engine (delta = 0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 32: Simulator: the escalation model – asynchronous engine (delta = 5)
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Success to the Successful

1 f u n c t o r
2 import
3 Agent at ’BaseAgent.ozf’

4
5 e x p o r t
6 Success_a_rel_b

7 Ress_alloc

8 B_success

9 A_success

10 A_resource

11 B_resource

12
13 d e f i n e
14 c l a s s Success_a_rel_b from Agent.baseAgent

15 meth m(In ?Out)

16 Out = In.a_success - In.b_success

17 end
18 end
19 c l a s s Ress_alloc from Agent.baseAgent

20 meth m(In ?Out)

21 Out = 0.1 * In.success_a_rel_b

22 end
23 end
24 c l a s s B_success from Agent.baseAgent

25 meth m(In ?Out)

26 Out = In.b_res

27 end
28 end
29 c l a s s A_success from Agent.baseAgent

30 a t t r attribute

31 meth init(Name Value)

32 Agent.baseAgent ,init(Name)

33 attribute := Value

34 end
35 meth m(In ?Out)

36 Out = In.a_res + @attribute

37 end
38 end
39 c l a s s A_resource from Agent.baseAgent

40 a t t r attribute

41 meth init(Name Value)

42 Agent.baseAgent ,init(Name)

43 attribute := Value

44 stock := t r u e
45 end
46 meth m(In ?Out)

47 attribute := @attribute + In.res_alloc * @delta

48 Out = @attribute

49 end
50 end
51 c l a s s B_resource from Agent.baseAgent

52 a t t r attribute

53 meth init(Name Value)

54 Agent.baseAgent ,init(Name)

55 attribute := Value

56 stock := t r u e
57 end
58 meth m(In ?Out)

59 attribute := @attribute - In.res_alloc * @delta

60 Out = @attribute

61 end
62 end
63 end

Listing 17: Success to the Successful: Agents.oz
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1 f u n c t o r
2 import
3 Agents at ’Agents.ozf’

4 Simulator at ’Simulator.ozf’

5
6 d e f i n e
7 Graph

8 Success_a_rel_b

9 Ress_alloc

10 B_success

11 A_success

12 A_resource

13 B_resource

14 i n
15 Graph = loop(agents: [A_resource#Agents.a_resource#init(a_res 50.0)#50.0

16 B_resource#Agents.b_resource#init(b_res 50.0)#50.0

17 A_success#Agents.a_success#init(a_success 1.0)#51.0

18 B_success#Agents.b_success#init(b_success )#50.0

19 Success_a_rel_b#Agents.success_a_rel_b#init(success_a_rel_b )#1.0

20 Ress_alloc#Agents.ress_alloc#init(res_alloc )#0.1]

21 graph: [A_resource #[ Ress_alloc ]#[ A_success]

22 B_resource #[ Ress_alloc ]#[ B_success]

23 A_success #[ A_resource ]#[ Success_a_rel_b]

24 B_success #[ B_resource ]#[ Success_a_rel_b]

25 Success_a_rel_b #[ A_success B_success ]#[ Ress_alloc]

26 Ress_alloc #[ Success_a_rel_b ]#[ A_resource B_resource ]]

27 engine: async (10 f a l s e 5.0)

28 monitor: info(list: [a_res b_res] times: 25))

29
30 {Simulator.start Graph}

31 end

Listing 18: Success to the Successful: Graph.oz

(a) delta = 1

(b) delta = 0.1 (c) delta = 5

Figure 33: Simulator: the success to the successful model – synchronous engine
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 34: Simulator: the success model – asynchronous engine (delta = 1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 35: Simulator: the success model – asynchronous engine (delta = 0.1)
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(a) time = 10 ; random time = false (b) time = 10 ; random time = true

(c) time = 100 ; random time = false (d) time = 100 ; random time = true

(e) time = 500 ; random time = false (f) time = 500 ; random time = true

Figure 36: Simulator: the success model – asynchronous engine (delta = 5)
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