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ABSTRACT

The emergence of trust as a key link between users in social networks has been
shown to provide an effective means of enhancing the personalization of on-
line user content. However, the availability of such trust information remains
a challenge to the algorithms that use it, as the majority of social networks do
not provide a means of explicit trust feedback. The first part of this master
thesis presents an investigation into the inference of trust relations between
actor pairs of a social network, based solely on the structural information of
the bipartite graph typical of many on-line social networks. Using intuition
inspired from real life observations, this work argues that the popularity of
an item in a social graph is inversely related to the level of trust between
actor pairs who have rated it. From an existing bipartite social graph, this
method computes a new social trust graph, linking actors together by means of
symmetric weighted trust relations. Through a set of experiments performed on
a real social network dataset, this method is trained, validated and compared
to a naive structural trust inference approach producing statistically significant
results, and showing strong trust prediction accuracy.

Further to this, the use of trust in recommender systems has been shown to
improve the accuracy of rating predictions, especially in the case of “controver-
sial” items, where a user’s rating significantly differs from the average. Many
different techniques have been used to incorporate trust into recommender
systems, each showing encouraging results. However, the lack of trust infor-
mation available in public datasets has limited the empirical analysis of these
techniques and trust-based recommendation in general, with most analysis
only being performed on a single dataset. The second part of this work pro-
vides a more complete empirical analysis of trust-based recommendation and
a further test of the trust inference formula developed in part one. By mak-
ing use of the trust inference formula developed in the first part of this work,
we are able to apply trust-based recommendation techniques to three separate
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datasets by incorporating the resulting trust metrics computed between users
by the trust inference formula into various trust-enhanced recommendation
techniques. These techniques are then analysed and compared to the standard
collaborative filtering techniques widely in use today. For this analysis and
comparison, we measure the overall accuracy of each technique in terms of the
Mean Absolute Error (MAE), the Root Mean Square Error (RMSE) as well
as measuring the prediction coverage of each technique (i.e percentage of pre-
dictions made). We thus provide a comparison and analysis of each technique
on all three datasets, showing the applicability and performance of each tech-
nique under differing circumstances, such as a sparse dataset, a well connected
dataset, a dataset with ratings of uniform distribution, and finally a dataset
containing large differences of opinion between users.
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INTRODUCTION

The exponential growth and development of Web 2.0 has brought about a
rapid increase in the availability of on-line user content, as well as creating a
fundamental shift in the way people use and share knowledge. The popularity
and increased usage of blogs and wikis have given rise to new means of on-line
collaboration and information sharing, and have created a virtual platform in
which users can explicitly express their preferences and opinions. Furthermore,
the emergence of social networks has allowed users to connect themselves to any
number of people they know, or who share these preferences and perspectives,
forming vast on-line communities of similar, like-minded users. The Internet,
as such, has itself become a large social network, linking “people, organiza-
tions and knowledge” [6]. With such a vast and ever increasing availability of
knowledge and content, these developments have pushed researchers to develop
techniques to handle this information overload, and to provide certain forms
of personalization of the information and content, which would be of the most
interest to each individual user. One ongoing area of research attempting to
fulfill these needs is that of the incorporation of trust into on-line systems.

The emergence of trust [41, 24, 58, 37] as a key link between users in social
networks is a growing area of research, where trust has been used for the im-
provement and enhancement of the individual personalization of many on-line
activities. In particular, many studies [25, 16, 51, 58] have shown trust to
be greatly effective in improving the prediction accuracy and coverage perfor-
mance of traditional on-line recommendation techniques, as well as providing a
more robust solution to reputation systems for on-line peer-to-peer file sharing
[28]. Such research is generally based on the sociological idea that users of
on-line networks are more inclined to have similar opinions to people that they
know and trust (i.e trusted neighbours), and thus are more likely to appreciate
recommendations made by such neighbours. However, trust has different in-
terpretations depending on the domain of research in which the term is used,
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from the domains of information security and authentication, to content per-
sonalization and recommendation. For the purposes of this master thesis, the
notion of trust is seen as an indication of similarity or commonality between
two users in a social network. More formally, a trust metric from user u to
user v in a social network can be seen as the subjective probability that the
truster, u will have the same preferences and tastes as the trustee v.

Inferring Trust in Social Networks: An Investigation

However, although trust has been shown to improve content personalization
and the clustering of similar users [56, 60, 59, 20], it is necessary to be able
to effectively and efficiently obtain accurate trust information for subsequent
use in such systems. Some previous studies [19, 36] have made use of trust
assertions provided explicitly by users in some social networks, such as Epin-
ions.com as a means for providing such enhancements. Potential drawbacks of
this reliance on explicit user feedback include its lack of availability as well as
its potential unreliability.
The unreliability of this feedback may be caused by the potential reluctance of
users to publicly provide such feedback, as well as potential user indifference
to the system (e.g users providing arbitrary trust ratings, or neglecting it
completely), presenting inconsistencies in the provided trust metrics, which
may subsequently have a negative impact on the success and appropriateness
of the systems using them.
The unavailability of such explicit feedback is also due to the fact that many
social networks do not provide the means for this kind of explicit feedback.
Taking a real world example of the popular social network Youtube.com, an
on-line medium for the distribution of videos, users are able to individually
contribute and watch videos, as well state personal preferences by either rating
videos or subscribing to different groups. In essence, this network represents
a bipartite graph with two distinct sets of vertices, namely users and videos.
The edges in the graph represent explicit user preferences for videos in the
form of ratings or subscriptions to particular groups. However, this site, like
many of its type, does not provide any mechanism for explicit user to user
connections, such as a trust connection that may be used for the enhancement
of the individual user experience.
The first part of this master thesis is thus motivated by the need for a method
for the automatic inference of trust information between users in social net-
works, for subsequent use in the trust-enhanced algorithms proposed to im-
prove personalized recommendations. Based on real life observations, the first
part of this work presents an investigation into how trust connections can be
automatically inferred between users in a social network. The basis for this
investigation is the correlation of user similarity and trust as shown by Ziegler
and Lausen in [65, 21, 64].
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In order to provide a generic methodology, that may be applicable to numerous
social graphs, the proposed trust inference formula uses only the information
contained in the topology and structure of the bipartite graph typical of many
social networks, namely the directed edges from user to item vertices, and not
to use any of the content of the graph, as such content may differ for each
social network. Using this information, the proposed formula focuses on the
items for which a pair of users both have a directed edge.

Trust-based Recommendation: A Further Empirical Analysis

Previous work on trust-enhanced recommendation systems has yielded a num-
ber of different techniques used to incorporate trust information into the rec-
ommendation process. Many of these techniques have been shown to perform
significantly better than traditional recommendation techniques in terms of
overall accuracy and coverage of rating predictions, particularly where a user’s
rating of an item differs significantly to the average rating for this item.
Although there have been some previous empirical comparisons of these dif-
ferent trust-enhanced techniques [57], due to the unavailability of suitable
datasets, which provide explicit trust information between users, such anal-
ysis has usually been restricted to just a single dataset.
The second part of this master thesis thus aims to provide a further empirical
analysis and comparison of some of these different trust-enhanced recommen-
dation techniques proposed, as well as a comparison to traditional collaborative
filtering algorithms. By making use of the trust inference formula proposed in
the first part of this work to automatically infer trust relations between actor
pairs, these techniques are performed on three separate datasets, thus allow-
ing a further analysis of the performance of these techniques under varying
conditions of different datasets.

Publications

During the course of this work, in co-operation with EURA NOVA, two papers
were written and submitted to two workshops:

1. The first paper, based on the first part of this thesis: “Towards trust
inference from bipartite social networks” [39] was accepted for publica-
tion to the “Second ACM SIGMOD Workshop on Databases and Social
Networks: DBSocial”, and was presented in Scottsdale (Arizona, USA),
on the 20th May 2012.

2. The second paper, based on the second part of this thesis: “Trust-Based
Recommendation: an Empirical Analysis” [40] was submitted to the
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“Sixth ACM SIGKDD Workshop on Social Network Mining and Analy-
sis: SNA-KDD” which will take place in Beijing, China. As of the writing
of this work, the reviewer’s decision for accepted paper for this workshop
are is to be made public within the next week.

Outline

This thesis is split into three main chapters. The first chapter will present
an overview of the state-of-the-art from the two main domains from which
this master thesis is based. I will begin by explaining the first domain of
on-line content recommender systems, including the two main approaches
to on-line content recommendation used today, their methods of gath-
ering information to be used in the recommendation process as well as
some of the drawbacks to each approach and the difficulties each of them
face. Further to this, I will provide an overview of the second domain
of trust in on-line systems in which this master thesis is also heavily
based. For this, I will briefly discuss some of the different interpretations
of trust in on-line domains of research, and then explain some of the
approaches developed to incorporate trust into on-line recommendation
and reputation systems.

The second chapter presents the investigation into the automatic infer-
ence of trust connections between users in on-line social networks. This
chapter will begin with an explanation of the motivation for this part of
the thesis, followed by an explanation of the methodology and intuition
used, before outlining and explaining the formula developed and used
to infer this trust information. Following this, the results of the experi-
ments carried out to validate and train this formula are presented. This
chapter represents the main focus and contribution of this master thesis.

The third chapter presents the empirical analysis of trust-based recom-
mendation algorithms performed on three datasets using the trust in-
ference formula developed in the previous chapter. This chapter begins
again with an explanation of the motivation for this analysis, before
presenting the recommendation techniques performed for the analysis.
The datasets, as well as the performance measures used to analyse and
compare the accuracy and coverage of each of the algorithms are then
presented followed by an explanation of the experiments carried out for
the purpose of the analysis. Finally, this chapter presents an analysis
section, showing and analysing the results of the experiments performed.

Finally, the conclusion will present a short overview of the main points
of this work, as well as a short discussion on the possible directions and
future steps which can be taken as part of any future work.



CHAPTER 1

STATE-OF-THE-ART

This chapter provides some background into the state-of-the-art of the
two main research domains upon which the thesis is based. Among a
number of other domains, such as graph similarity and nearest neighbour
discovery, this work can be seen to be based primarily in two research
domains: firstly the field of recommender systems and content personal-
ization, and secondly the domain dealing with the concept of “trust” in
social networks and more particularly in social recommender systems.

I begin by introducing the domain of recommender systems, giving a
formal definition of the recommendation problem, as well as the two
primary methods of extracting information to be used in the recommen-
dation process. I will then provide an outline of two of the main cate-
gories of recommender systems that are most widely used today, that of
Content-based recommendation and Collaborative Filtering recommen-
dation, providing explanations of the techniques and the information of
the social graph they use, as well as the advantages and disadvantages
of both. The material from this recommendation systems relies heavily
on the article: [1].

I then introduce the domain of trust in on-line systems, briefly outlin-
ing the differing interpretations of trust in certain domains of research.
before providing the interpretation of trust used in trust-based recom-
mender systems, which will be the main focus of this work. Finally, some
of the main studies proposed in the area of trust-based recommendation
are then presented, grouped according to the approach and techniques
used in each.
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6 CHAPTER 1. STATE-OF-THE-ART

1.1 Recommender Systems

The primary objective of any recommendation system [48, 47, 13, 50,
14] is to propose or suggest items (or people) to users of an on-line
system that would be of the most interest to them. Many examples
of recommendation applications can be found all over the Internet, from
the friend recommendation systems of Facebook.com and the “who to
follow” recommendation system of Twitter.com to the book and movie
recommendation systems of Amazon.com and IMDb.com to name just
a few. Each recommendation application generally relies on one way or
another to extract information regarding items or people that each user
may want to be recommended. In essence, there are two categories of
methods of gathering such information:

a) Intrusive
These kind of systems can be seen as intrusive in the sense that
they require explicit item feedback from the users of the system to
indicate which items or types of items that the user tends to like or
dislike. The most common basis of recommender systems is based
on explicit feedback of items by users in the form of ratings. The
general idea is simple; a system provides a ratings scale (e.g. 1-10
out 10, 1-5 stars, etc) from which a user can provide a rating for an
item to indicate their general preference for a particular item.

b) Non-intrusive
Unlike the intrusive systems, non-intrusive systems do not require
direct item feedback from the user in to indicate the items that they
like or dislike, but more implicit methods are used to gather such
information. Methods like this could be based on many aspects,
such as the items that a user has interacted with within the system,
and how many times the user has interacted with it. Examples
could be the type of news articles that a user reads in a news fo-
rum, or the books that a user actually purchases, like in the case of
Amazon.com.

A common form of information extraction for recommendation systems
is that which relies on explicit ratings from the users, as explained above.
The idea of item recommendation for these systems is to use the ratings
of the items that a user has previously interacted with (i.e their ratings
history) to estimate the ratings of the other items in the system for which
the user has not yet provided a rating or interacted with (i.e unseen
items). Having estimated ratings for unseen items, a common strategy
is for the system to then recommend the top n items of this estimation
process to the user, or in other words the items which were estimated to
have the best ratings for each individual user.
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More formally the recommendation problem can be written as follows,
as given in [1]:

Let C be the set of all users and let S be the set of all possible items that
can be recommended (e.g books, movies, etc). The space S of possible
items and the space C of users can both be very large. Let u be the utility
function that measures the usefulness of item s to user c. Then for each
user c ∈ C, we want to choose such item s′ ∈ S which maximizes the
user’s utility. This utility is mostly represented by a rating, given by the
user to indicate the user’s preference for a particular item.

A common problem for recommendations systems however is that the
utility function u is usually not defined on the entire search space C ×
S. As stated earlier, for explicit user ratings, these ratings are usually
only defined for the items that a user has already explicitly rated, and
naturally the number of items rated by an individual user u is usually
only a very small subset of the total number of items S in the system.
Such sparseness makes it more difficult for a recommendation algorithm
to provide accurate estimates for all of the unseen items for which u
has not yet given a rating, as the system has limited information of the
user’s preferences on which to base an estimation. This is also the case
for users generally termed cold start users, who have either just joined
the network, or have simply not rated many items in the graph. For
users like this, there is of course less information for the algorithm to use
to accurately predict if an item would be appreciated by this user or not.

1.1.1 Categories

Depending on the method used, as well as the type of information from
the network that is used to generate estimations for unseen items, rec-
ommendation systems can generally been seen to fall into two main cat-
egories, namely Content-Based systems, and Automatic Collaborative
Filtering (ACF) systems.

1.1.1.1 Content Based Recommendations

The first main category of recommender systems is that of content-based
systems. The main idea of content based approaches [29, 45, 38, 7] is
that users will be recommended items that are similar to the items pre-
viously preferred by the user. The utility u(c, s) of item s for user c is
estimated based on the previous utilities (e.g ratings) assigned by the
user c to items si ∈ S that are similar to item s. The heuristics used
to measure this similarity of items are often based on techniques used in
the domain of information retrieval, particularly those keyword analysis



8 CHAPTER 1. STATE-OF-THE-ART

[49], and information retrieval [4].

Profiling
One technique for such content-based systems is to use user and item
profiling, as done in [44]. The profile of an item can contain keywords
and other information that may broadly characterize the nature of the
item, or the interests and preferences of the user. For example, if we take
a system that recommends films in a social network:

a) The profile of individual users could contain preference information,
such as the types of films that the user prefers, or favorite actors,
directors, genres, favorite films etc. These profiles can be created
by either explicitly asking the user to fill out a questionnaire or
by using keyword analysis techniques to analyze the content of the
items for which the user has previously had interaction (e.g buying,
rating, watching, etc). Using this information, the recommendation
system can recommend unseen items that are similar to previously
seen items, or matching the profile preferences of the user.

b) As well the user profile information, the content of the item profiles
in the network can contain information and attribute of the item
itself (genre, main actor, director, etc) likewise this information can
be used in the process to estimate the utility of items for individual
users based on the similarities of the content of items profiles using
to the items previous preferred by the user, as discussed. So for ex-
ample, if the user has previously given a high utility (e.g rating) to
a film with Tom Cruise as the main actor, the system could perhaps
recommend more films with Tom Cruise to the user.

Text-based items
Content-based systems are most commonly used for text-based items
such as news articles [29] and web pages [5] and the techniques used
for the recommendation, as stated above, are largely based in the do-
mains of information and text retrieval [49, 4]. For example, the two
techniques given above used profiles for items, but for text-based items
such as news articles or web pages, the system could associate weights
to certain keywords for individual users, based on some term frequency
measures calculated on articles or web pages that have already been read
by the user. So if a user has a passion for modern Chemistry, they may
read many Chemistry articles, and the system would thus associate high
preference weights to more chemistry orientated terms than say sport
related terms, and could estimate the utility of new articles based on
the frequency of such words and terms that would be contained in these
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articles.

Drawbacks of content-based systems
The main drawback to content-based approaches is the fact that the re-
sulting recommendations are very much limited by the features that are
explicitly associated with the objects in the systems. That is, the content
of the profile of a non-textual item is the only information available to
relate this item to any other item in the graph, or indeed to the profile
of any user. If this content does not contain a sufficient set of features
of data, or perhaps misrepresents the item (e.g the genre of a film is
debatable) then the accuracy and effectiveness of the resulting recom-
mendations can decrease. As well as this, keyword frequency techniques
only work on text based items, such as books or news articles. For movies
and music for example these techniques can again only be applied to the
descriptions of the items.

On top of this, another drawback for systems that can only recommend
items relating to a user profile’s is that the user is always limited to being
recommended items that are similar to those already rated by the user, or
genres specifically mentioned in the user’s profile. This is quite a limited
characteristic, where the user may never discover anything new beyond
what is already known, and so the diversity of the recommendation can
be limited. One possible method of mitigating this problem could be
the introduction of some form of randomness into the recommendation
process. For example, one might introduce one random recommendation
for every ten previous recommendations.

1.1.1.2 Collaborative Filtering Recommendations

The second main type of recommender system is that of Collabora-
tive Filtering systems. The main idea behind collaborative filtering ap-
proaches [15, 46, 8, 26] to recommending items to user is to go beyond
using solely the ratings history and profile information of the individual
user in question, and estimate the utility of items for individual users
based on the interaction and ratings history of other users deemed to be
similar to the user. A formal definition of collaborative filtering is given
in [1]:

The utility u(c, s) of item s for user c is estimated based on the utilities
u(cj , s) assigned to item s by those users cj ∈ C who are deemed to
be “similar” to user c. Taking the example of the movie recommender
system as above, the system would try to find the neighbour of “peers” of
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user c that have similar tastes in movies as c, and thus recommend the
movies most liked by these similar peers to c. Each implementation of a
collaborative filtering system differs slightly in the way that they use the
ratings of similar users to derive an overall rating estimation for a par-
ticular user. The most common of these methods are grouped together
as memory-based algorithms as explained in [1].

Memory Based Algorithms
For memory based algorithms, the value of the estimated rating rc,s for
user c of item s is usually computed as an aggregate of the ratings of
the N most similar users to c who have previously rated item s. Some
common techniques used for this aggregation are:

rc,s =
1

N

∑
c∈Ĉ

rc′,s (1.1)

rc,s = k
∑
c∈Ĉ

sim(c, c′) × rc′,s (1.2)

rc,s = r̄c + k
∑
c′∈Ĉ

sim(c, c′) × (rc′,s − r̄c′) (1.3)

where multiplier k serves as a normalizing factor, usually selected as:

k = 1/
∑

c′∈Ĉ |sim(c, c′)|

and where the average rating of a user c: r̄c in the Adjusted Weighted
Mean technique 1.3 is defined as:

r̄c = (1/|Sc|)
∑

s∈Sc rc,s, where Sc = {s ∈ S|rc,s 6=}.

Technique 1.1 shows a simple arithmetic mean of all of the ratings that
have previously been given to this item. This is quite a common tech-
nique, and gives the global average rating of this item. Although this
technique does not provide any form of personalization, we will see in
Chapter 3 how this technique can actually outperform the more sophis-
ticated and personalized techniques in terms of prediction accuracy, de-
pending on the dataset in question and the distribution of the ratings in
the dataset.

Technique 1.2 shows a weighted mean of the ratings given to the item s,
weighted with the similarity score sim(c, c′) computed between the rater
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c′ and the user for whom the prediction is for c. Thus using this tech-
nique, the higher the similarity measure computed between two users, the
more contribution the rater’s rating for item s will have to the estimated
rating rc,s for user c.

Finally, technique 1.3 shows an adjusted weighted mean, whereby the
way in which the rater c′ usually assigns ratings to items (i.e the average
rating r̄c′) is taken into account. Instead of using the absolute value of
the rating assigned to item s by user c′ as was the case for the weighted
mean technique (Equation: 1.2) this technique uses the deviation of the
rating rc′,s given by user c′ to item s from the average rating r̄c′ of the
user c′. Furthermore, this technique also weights this deviation using
the similarity measure computed between users c and c′ in the same way
that was described for the weighted mean technique (Equation: 1.2).

As shown above, the similarity measure sim(c, c′) computed between
two users c and c′, is used as a weight in the aggregation of the ratings
previously assigned to a target item s (i.e the more similar users are,
the more contribution their opinion (rating) will have on the outcome of
the estimated rating of item s for user c). To calculate this similarity,
the most common approach is to base the similarity of two users on the
ratings they have previous assigned to the items that they have both rated
(shared items). This similarity measure is most commonly computed
using an adjusted version of Pearson’s correlation coefficient [46] as shown
in 1.1.1.2 between two users x and y.

sim(x, y) =

∑
s∈Sxy(rx,s − r̄x) (ry,s − r̄y)√∑

s∈Sxy(rx,y − r̄x)2
∑

s∈Sxy(ry,s − r̄y)2

Similarity Measure: Pearson’s Correlation Coefficient

where Sxy is the set of all items co-rated by both users x and y, i.e
Sx,y = {s ∈ S|rx,s 6= & ry,s 6=}

1.2 Trust in On-line Systems

The second research domain in which this master thesis is based is that of
the incorporation of trust into online systems and more particularly, its
usage in social networks. The concept of trust has been used in various
on-line contexts, each with differing usages and interpretations of trust.
Two of the main domains for which the notion of trust has become promi-
nent are those of of on-line security and authentication as well as that
of content personalization and recommendation and reputation systems.
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For each domain, trust has been used to enhance the effectiveness of the
systems by using the knowledge of “trusted peers”.

In the domain of recommender systems, as we will see in further detail,
trust has been used to enhance the prediction accuracy of rating estima-
tions by filtering the information available for items previously unseen by
a user by considering only the information provided by the user’s trusted
neighbours.

In the domain of authentication and security, on the other hand, trust
can be seen to constitute a reliance on and a belief in another party, with-
out which the system which relies on the trusted party cannot operate
correctly (e.g PKI systems, chain of certificates [53, 52, 61]).

As we can see from these brief descriptions, and as introduced earlier, the
definition of trust and its usage differs significantly for each domain in
which it is used. For the purposes of this work, I will concentrate solely on
the interpretation of trust from the domain of content personalization and
recommendation, which sees trust as metric that can be used to improve
the accuracy of content personalization and item recommendation. I will
begin by introducing the two main types of trust used in this main, local
trust, and global trust.

1.2.1 Local & Global Trust Metrics

As mentioned in [63], one of the main distinguishing characteristics of
all of the trust inference algorithms is whether they propose the use of a
local trust metric, or a global trust metric.

• Local Trust Metrics are personalized for every user in the net-
work. They take into account the personal opinions and bias of the
individual user. Algorithms that use local trust inference compute
different trust values for a node, depending on who the source the
trust is. These sort of algorithms can be seen to be more appropriate
for opinion based applications, where there is no shared opinion of
what is good or bad, but everybody has their own different opinions.

• Global Trust Metrics on the other hand take into account the
opinions of all peers and trust edges in the network connecting them.
Algorithms using this metric compute one single trust value for ev-
ery node in the system, so that the trust a node a has for another
node b will be the exact same trust value that another node c has
for b. Algorithms using global trust inference can be seen to be
more appropriate to applications where trust reflects behavior that
is universally considered good or bad..trustworthy or non trustwor-
thy.
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For the reasons given above, local trust metrics generally tend to be
involved in the proposals for trust-based recommender systems for items
such as books or movies, which are more based on the opinion or taste
of individual users, like that proposed by [65]. On the other hand, global
trust metrics are more generally proposed for systems such as peer to
peer, file sharing applications, where the measure of trust can be more
difinitive, and does not depend on the individual tastes of users. For the
file sharing site for example, it can be seen that a node can be either
good and reliable at providing files or not reliable and malicious.

1.2.2 Social trust graph

As described in [25], social trust graphs are weighted directed graphs,
whose nodes represent agents or users of a system, and whose directed
edges represent trust relations between these agents. The weights of the
directed links between nodes represent the trust values from one node to
the other. So, an edge from user u to user v with trust value t means
that u trusts v to the extent of t.

This model of social graph can be extended to model almost all existing
social networks. Apart from the social graph which we use for our exper-
iments, one real life example of such a network is Twitter.com, with each
vertex representing users, and the directed edges being the relationships
“follows” whereby one user u may follow another user v , thus building
a follows social graph.

1.3 Trust-based Recommender Systems

The area of trust-based recommender systems has been a growing area
of research for the past number of years. The incorporation of trust
into recommendation algorithms has been shown to provide significant
improvements to the classical collaborative filtering techniques [46, 1].
The main difference between most of these trust-enhanced methods is
the acquisition of the trust values themselves between actor pairs. Many
algorithms have been developed to acquire trust in social graphs, of these
here we present a few.

1.3.1 Obtaining Global Trust

One example of a method that has been proposed to infer global trust
metrics users in a peer to peer file-sharing system is the EigenTrust al-
gorithm presented by Kamvar et al in [28]. This algorithm presents a
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method for the inference of global trust values where trust is seen as an
overall measure of reliability and performance. According to the authors,
EigenTrust aims to decrease the number of downloads of inauthentic files
in a peer to peer file sharing application and reduce the effectiveness of
malcious users in the network by assigning each peer in the network a
unique global trust value. This global reputation value is based on the
peer’s history of file uploads, and the experiences that the other peers in
the system have had with this peer, and the files uploaded by this peer.
As stated in the paper, the algorithm was designed for the following:

a) Minimal Overhead: In terms of computation, infrastructure, stor-
age, and message complexity

b) Not Profit Newcomers: Reputation is only obtained through con-
sistent good behavior

c) Distributed and Self Policing
d) Robust to Malicious Collectives who try to collectively subvert the

system

Each peer thus maintains a level of trust for each of the other peers with
which it has interacted. This local trust score, assigned by individual
peers, is based on the proportion of good files that the assigning user
has received from the other peer in the network for which it is providing
a local trust value. As well as this local trust value, each peer in the
network is also associated with a global reputation score, assigned to each
peer by the EigenTrust algorithm. In its essence, the global reputation
score assigned by EigenTrust to a peer i in the system is computed using
the local trust values that have been assigned to peer i by the other peers
in the network, weighted by the global reputations of the assigning peers.
I will now give a brief overview of the EigenTrust algorithm.

To begin with, the algorithm normalizes the local trust values in order to
stop malicious users assigning arbitrarily high local trustvalues to other
malicious users, as well as arbitrarily low values to honest users. For this,
they define a normalized local trust value: ci,j as:

cij =
max(sij , 0)∑
j max(sij , 0)

thus ensuring that all values will be between 0 and 1. The algorithm
then aggregates these local trust values: peer i asks its neighbors about
their opinions about other peers, and then weights these opinions by the
trust peer i has in them:

tik =
∑

j cijcjk
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where tikrepresents the trust that peer i places in k based on the opinions
of its trusted neighbors.

In its simplest form, the algorithm uses a matrix representation of these
trust values, where C is the local trust adjacency matrix [cij ] and ~tiis
the vector containing the values tik, then ~ti = CT~ci, and over a series of
iterations: t = (CT )nci,it converges to a globally accepted trust rating
for each peer. If n is large, vector ~ti will converge to the left principle
eigenvector of C, that it quantifies how much trust the system as a whole
places in peer j.

1.3.2 Propagating Local Trust using explicit trust

1.3.2.1 Using Propagation Rules

One of the most common ways to infer trust relationships between users
in a social graph who have not yet interacted with each other or provided
trust values for each other is to use a method of propagating of trust
through the network based on a set of trust propagation rules. The basis
for these propagation rules is to view trust values to hold some form of
transitivity property.

One example of a set of propagation rules for trust values in a network
is that present in by Guha et al in [24]. Although other methods of
trust inference use slightly differing forms of trust propagation rules, the
set of propagation rules proposed here was one of the first to make a
major contribution to this field, and was the stepping stone for many of
the path inference algorithms that were to follow, some of which I will
present in the next section.

In this paper, trust relationships between two users are represented as
values between the interval of 0 and 1 in a matrix of trust C, where Cij
represents the current inference of i′s trust for j. As well as this, they
also introduce the idea of distrust to be modeled as negative trust. From
these matrices, they then use a “basis set” of techniques, as shown in
Table 1.1, by which the system may infer that one user should trust or
distrust another.

Direct Propagation M A trusts B, so trust(A) propagates to B
Co-citation MTM A trusts B,C, so trust(B) propagates to C

Transpose Trust MT A trusts B, so trust(B) propagates to A
Trust Coupling MMT A,B trust C, so trust(A) propagates to B

Table 1.1: Basis Set of Inference Techniques
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Each technique from the basis set of Table 1.1 thus extends a conclusion
of trust through a constant length sequence of forward and backward
steps through the trust graph. Using these techniques, at each step of
the propagation, the trust matrix C is replaced by a new matrix C.M
representing one step of propagation. Thus, M is an operator that en-
codes one of the propagation techniques in the matrix.

Then, using the vector α = (α1, α2, α3, α4), representing weights for
combining the atomic propagation techniques above, RM,α = α1M +
α2M + α3M + α4M captures all atomic propagations into one matrix.

Then, trust is propagated through a series of applications of the basis set,
before arriving at a final belief matrix P (k) whose ijth entry represents
the propagation from i to j after k applications.

1.3.2.2 Path Inference

Using trust propagation rules similar to those presented above, one of the
more common methods of inferring trust through a social trust graph has
been that of path inference. To infer such trust values between two users
a and b who have not yet interacted with each other in the graph , the
main focus of path inference algorithms is firstly to discover a trust path,
consisting of trust assertions between intermediate users, linking user a
to user b. This path would thus link the user a to user b through the
users that have previously been trusted by a.

Figure 1.1: Trust Path
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If a path is found between these two users (users a and b), the trust value
to be inferred between them is generally inferred through some sort of
aggregation of the trust values that exist between the intermediate users
in the path. For example, one possible way which has been used to
aggregate these values, is simply to weight the trust value received by
a from a neighbour n for a target user b by the amount of trust a has
attributed to n, this process is also carried out by each intermediate
user along the discovered trust path. Thus, using this aggregation, trust
values are propagated and discounted through the graph.

Figure 1.2: Trust Aggregation

Many algorithms of this nature have been proposed [58, 35, 37, 19], each
of which relies on the assumption that trust is in some way transitive,
and therefore can be propagated through a trust graph.

In [19], Golbeck introduces an algorithm called TidalTrust to estimate
trust values between actor pairs in a social network. This algorithm uses
trust values that are explicitly provided by the users of the network,
and trust estimates are thus propagated through the network using a
modified breadth-first search and propagation rules similar to those of
[24] presented above. The resulting estimate of the trust value from user
u to user v is thus the weighted average of the trust scores attributed to
v by users which u has already trusted (i.e u′s trusted neighbours) along
a trust path.

The basic concept of the algorithm is that if a user u wishes to obtain
an estimated value of trust for another unseen user in the network v,
the user issues a request for a trust estimate (a trust query) to all of its
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trusted neighbours. If one of u’s trusted neighbours has a direct trust
value for v, this value is returned directly to u, if they do not have a direct
trust assertion for v, each neighbour forwards the trust request received
from u to all of their trusted neighbours. Each trust value returned
to u by a trusted neighbour n is then weighted according to the trust
value that u has attributed to n. This same weighting process occurs
when trusted neighbours receive answers from their neighbours to trust
queries they have forwarded along the trust path. An additional feature
to this general aggregation process is that TidalTrust eventually uses the
strongest trust path from the requesting user u to the target user v.

Massa et al [35, 37] developed a very similar approach to that of Golbeck’s
TidalTrust, which they call MoleTrust. MoleTrust also incorporates the
use of explicit user trust assertions and uses this information to propa-
gate trust through the network in two phases. Firstly, all cycles in the
graph are removed, thus turning the trust graph into a directed acyclic
graph. Then, similar to the propagation process used by TidalTrust,
trust values are propagated to a source user u for another user v using
a trust-based weighted mean of the trust values attributed to v by the
trusted neighbours of u. As well as this, MoleTrust incorporates an extra
parameter into the propagation phase called the trust propagation hori-
zon. This parameter specifies the maximum hop distance in the graph
from the source user u for which trust is propagated, meaning that the
length of trust path used to infer trust between two users is limited to
the specified trust propagation horizon. This parameter is used for two
reasons, firstly to reduce computational cost, but also, as they say, be-
cause the reliability of the propagated trust decreases with every new
trust propagation hop.

1.3.3 Automatically Inferring Local Trust

In this section, I present some of the methods that have been proposed
to automatically infer trust between users.

1.3.3.1 Trust Clustering

Drawing upon the conclusions of [65], which shows a correlation between
the trust one user has in another and the similarity between the two,
as well as the results from such papers as [51], that the use of trust
can have a positive impact on the accuracy of recommendation systems,
[16] propose a method of improving the accuracy of of recommendation
systems by using a trust clustering algorithm, to cluster the users in a
social network according according to trust.
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The solution proposed is based upon a probabilistic trust inference al-
gorithm used on a network of trust as explained above, and based on
Bayesian chains. From this inference of trust, they then create a trust
distance metric space, where the more trust that exists between a pair of
users, the closer they are in the space. Thus grouping users in this metric
space according to their trust metrics. To illustrate their idea they use
the example:

a) Alice knows Bob and thinks he has a Pa,b chance of being trustwor-
thy

b) Bob knows Eve and think that she has a Pb,e chance of being trust-
worthy, and he tells this to Alice if he is trustworthy. If he is not
trustworthy, he may lie and give any value to Alice

c) Alice reasons that Eve is trustworthy if Bob is trustworthy and gives
her the correct value Pb,e and Eve is trustworthy with respect to Bob

d) This combination happens with probability Pa,bPb,e if Bob’s and
Eve’s trustworthiness are independent

They then illustrate that if trust is a proxy for similarity, then Alice and
Bob’s mutual trust can be a measure of similar tastes for any sort of item,
like movies. Therefore, if trust is interpreted as the probability of liking
the same film, then Alice will agree with Eve about a movie if Alice and
Bob each agree on it and Bob and Eve agree too.

Using this inference they claim to easily estimate trust between indi-
viduals in a highly complicated graph, one with exponentially many,
highly correlated paths, by viewing every trust path as a Bayesian chain.
Such that, if there exists a path from Alive to Eve in a random network
constructed from trust values, then this path is a chain of people from
Alice to Eve who each trust their successor, and Alice can thus trust Eve.
Therefore, Alice trusts Eve with the probability that there is a path from
Alice to Eve in the random graph. From this edge assigned between two
pairs based on some probability, they choose a mapping a function f
from trust value to probabilities and create a random graph where each
edge (u, v) exists with some probability f(tu,v) where tu,v defined to be
the direct trust between u and v. They then use this graph to generate
inferred trust values Tu,v such that f(Tu,v) is the probability that there
is a path from u to v in the random graph.

Using this graph created from the probabilistic trust inference, they then
performed a correlation clustering algorithm over the graph, grouping
people together who have more trust for one another. The goal of a cor-
relation clustering algorithm is to find clusters that maximize agreement
within, and minimize agreement between clusters. For this application
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however, the trust value from one node to the other is used as the mea-
sure of similarity, with high trust indicating agreement, and low trust
indicating disagreement.

From the resultant clusters, they then produce a series of tests using
different recommendation algorithms, using higher weights for ratings
from nodes that are in the same cluster as the requesting node. Their
results show a statistically significant improvements between non cluster-
ing techniques and alternatives, using the Mean Absolute Error as well
as the Root Mean Squared Error as comparisons.

1.3.3.2 Trust based on recommendation history

O’Donovan and Smith [51], developed another method to automatically
generate trust between users based on ratings history between the two
users. The resulting trust metric can be seen as a reliability metric be-
tween two users. In this work, the authors distinguish between two types
of trust, item-level trust and profile-level trust. Trust is then built up
between users u and v, by measuring the reliability of v′s past recom-
mendations for u, which is seen as the percentage of predicted ratings v
has made for u which have been within a certain threshold of u′s actual
rating for the recommended item. This trust is then seen in two levels,
as a general reliability score for v dubbed the profile level or at a finer
grained item level which measures reliability of v to recommend item i.

1.3.3.3 Trust based on user tastes

Wang et al [59], develop a method to generate trust between users based
on their common tastes. By first grouping items into different classifi-
cations, the authors use a frequency measure of the number of ratings
each user asserts to different classifications of items, and thus build up a
personalized taste set for user and infer trust based on the common taste
sets between users.

1.4 Empirical Analysis of Trust in
Recommender Systems

All of these methods presented above have been used to generate trust
estimates between users, and subsequently use these trust relationships
in various collaborative filtering techniques to generate personalized pre-
dictions of items to users. Each study has shown that the incorporation
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of trust into recommendation techniques improves the accuracy of recom-
mender systems in comparison to basic collaborative filtering, especially
where the user’s rating for an item differs from the average rating for this
item.

For the second part of this master thesis, I compare some of these different
techniques proposed to incorporate trust information into recommender
systems, in order to analyse and compare these techniques, as well as to
attempt to validate the claims of the trust-based recommender system
community. Previously some papers have also dealt with such analysis.

An empirical comparison of some of the more used methods of incorpo-
rating trust into collaborative filtering techniques was made by Victor et
al in [57]. This analysis compares a number of different trust-enhanced
recommendation techniques in terms of prediction coverage, and average
error rate. These techniques were applied to a set of controversial reviews
from the Epinions.com dataset, for which they develop an algorithm to
identify controversial reviews based on the level of disagreement between
the ratings in this set.

In a similar work, Victor et al [55] also compared the different algorithms
for generating and propagating trust values, TidalTrust, MoleTrust and
O’Donovan et al. Again, this comparison was based on the application of
these methods again to controversial items in the network. However, this
comparison was performed on only one dataset, that of the Epinions.com
dataset.





CHAPTER 2
STRUCTURAL TRUST INFERENCE

2.1 Introduction

This chapter presents an investigation into the development of a method
to infer trust between user pairs of a social network graph. This repre-
sents the main focus and contribution of this master thesis. As we will
see, the trust inference method developed herin represents a reusable and
generic method using only the structural and topological information of
the graph typical of many online social networks, and incorporates a
novel methodology based on the items shared between user pairs in the
graph.

I begin by introducing the motivation for this trust trust inference for-
mula, before giving a formal definition of the bipartite structure typical
of many social graphs, which will be the basis for the inference formula.
I then present the main methodology of the popularity of shared items
that is used in the trust inference formula. For this, I provide some real
life observations that inspire the intuition behind this methodology giv-
ing examples from real life social networks. I then introduce and explain
the final formula used, as well as the structural features of the bipartite
graph that it uses before presenting the method followed and the exper-
iments undertaken to firstly train and then validate the formula using a
social dataset taken from an on-line social network.

Following this training and validation phase, I then compare the proposed
approach to a naive approach which also uses similar structural features
of the network as the proposed method. For this, I provide a comparison
of results based on the prediction rate for both trust edges between users
in the graph, and the prediction rate of distrust edges between users. As

23
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well as this, I plot the structural properties of the new graph computed
from our formula to check their validity against those properties typical
of social networks by comparing these properties to those of the real
graph of the dataset used.

2.2 Problem Formulation

Previous studies [57, 20, 34, 35, 60] have shown that the use of trust in
the context of social networks and content recommendation can provide
a number of benefits. Trust has been shown to improve the accuracy
performance for content recommendation [37, 55, 51, 59, 33], as well as
file-sharing peer-to-peer systems [28]. With such advantages, it is clear
that the availability of such connections is invaluable to the enhancement
of on-line social recommendation systems and on-line user experience in
general.

As stated in the introduction of this document, trust information be-
tween users is most often provided through explicit feedback from the
actors in a social network themselves. But of course, users are only able
to provide such explicit feedback in just a few on-line social networks,
with the large majority of social networks not explicitly providing such
functionality. Previous studies [32, 18, 62, 17] have been made to predict
such trust relations based on probabilistic models. However, to the best
of our collective knowledge, no algorithm yet exists that allows for the
automated inference of such trust based solely on the topological infor-
mation of a bipartite graph. This investigation is thus motivated by the
need for a generic method for the automatic inference of trust connec-
tions between actor pairs in a social graph. These trust metrics should
be fit to be used by trust aware algorithms that have been designed to
enhance on-line user experience, such as trust aware social recommenda-
tion systems, thus allowing their application without the need for explicit
user feedback, nor any knowledge of the content of the graph.

2.2.1 Structure of social networks

Many on-line social networks and recommendation systems [1, 46] can
be seen to deal with a bipartite graph representing a set of actors (e.g.
users) connected to a set of items (e.g. books), as shown in figure: 2.1.
Each connection corresponds to an act through which an actor performs
an operation on an item (rating, buying, commenting, etc).

Formally, let G = (A∪ I, E) be a bipartite graph where A and I are two
disjoint sets, the set of actor and the set of item vertices respectively,
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Figure 2.1: Bipartite Social Graph

and E ⊆ A × I is the set of edges (i.e. interactions between actors and
items). The difference with a classical graph lies in the fact that edges
only exist between actor vertices and item vertices. Recommendation
algorithms aim to predict a set of edges e ∈ E that are relevant to the
individual actors.

Trust aware social recommendation provides a prediction by means of
the trust information between actors, consisting of a set of relations be-
tween actors within the set A (Figure: 2.2).

As stated in the introduction, this investigation follows the notion of
trust as an indication of similarity or commonality between two users
in a network. Based on this, this work aims to provide a measure that
computes the trust between actors based on the whole bipartite graph.

Formally speaking, from a bipartite graph G = (A ∪ I, E) describing
interactions between actors and items, we want to create a graph g =
(A, T ) where A is the set actor vertices and T ⊆ A×A is the set of edges
representing the trust relations between actors (Figure: 2.2).

2.3 Trust inference

This section presents the methodology, based on intuition inspired from
real life observation, used in this work for the inference of trust relations
between users in a social graph. I will then introduce and explain the
formula, based on the described methodology, which was chosen for the
implementation of this trust inference.
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Figure 2.2: Inferred Trust Relations

2.3.1 A methodology for inference of trust

From the structural information of the social bipartite graph presented
above in section 2.2, to infer trust connections between users this inves-
tigation focuses on the common relationships between vertices in set A
to those in set I. For a social bipartite graph consisting of two distinct
sets of vertices, set A and I (section 2.2), a shared item between two
vertices in A is defined to be any vertex in set I for which both vertices
in set A have a directed edge. This work distinguishes these shared items
according to their relative popularity in the graph, defined as the inde-
gree of each item, or the number of directed edges from vertices in set
A to this vertex in I. Based on real life observations, this work follows
the intuition that the higher the indegree of a vertex in set I, the less
that can be deduced about the similarity between two vertices in A who
both have a directed edge to this vertex, and thus, the less we can say
about the potential trust relationship between them. This intuition is
inspired from real life observations of the popularity of items and people
in a social context. Considering a real life example of the book “Harry
Potter”, which has been the subject of widespread popularity and at-
tention for more than a decade, if two users of a social network such as
Amazon.com, were to provide a positive rating for “Harry Potter” (figure:
2.3), we argue that there is little that we can deduce about their relative
similarity, as the approval of such a popular and widely known item may
well be partially due to the popularity and widespread appeal of the item
in general and does not constitute a distinguishing character trait.

However, this intuition is not limited solely to books or items. If we
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Figure 2.3: Intuition of Popular Items

were to take the “follows” graph of the social network Twitter.com, we
can consider a famous singer or actor and apply the same intuition. For
example, the English actor Stephen Fry is a popular and well known
public figure, who happens to be an avid user of Twitter.com. At the
time of the writing of this document, Mr. Fry is followed by 4,348,328
users on Twitter.com. Using the same intuition, we argue that there is
little we can deduce about the similarity or potential trust connection
between two users of Twitter.com who both “happen” to follow Stephen
Fry. As before, such a connection may well be more likely based on the
popularity of the public figure more than a strong similarity or character
trait between the two followers.

Following the same methodology, and based on the proposed correlation
of user similarity and trust [65, 21, 64], this work states that the lower
the indegree of a vertex in I, meaning the less popular a particular item
is in the graph (figure: 2.4), the more that can be deduced about the
similarity between two vertices of set A who have an edge to this vertex,
and thus, the probability that they will have similar tastes will be greater.
As such, a connection is more likely to be based on a genuine interest
in such an item and not on coincidence or on the popularity of the item
itself.

Further to this intuition, we also take into account the concept that
trust can be built through other means within social networks. To take
a concrete example common to most social networks, users may access
publicly available comments from other users in the network and may
agree or disagree, thus a user may subsequently trust the user who issued
this comment directly through such means with a certain probability.
This is also taken into account in our inference of trust, as will be seen
in the following section.
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Figure 2.4: Intuition of Rare Items

2.3.2 Deriving a formula for trust inference

Building upon the methodology of shared items presented above, we be-
lieve that there are two main structural factors that need to be taken
into account in order to infer trust connections between two users in our
social bipartite graph. Firstly, we believe that it is necessary to take into
account the Relative Diversity between the two users, which we define as
the number of neighbours that both users can reach through two hops
in the graph. Using only the topological information of the graph, we
follow the approach of structural similarity as presented in [30], using
the Jaccard Index to compute a distance measure between vertices in set
A based on the neighbourhood of each vertex. As we are dealing with a
bipartite graph, each vertex does not have a direct connection to a vertex
in the same set.

Figure 2.5: Two-hop Neighbourhood

Thus, this work considers the neighbourhood of a vertex u ∈ A as the
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set of vertices S ∈ A through which vertex u has an indirect connection
in the graph through the vertices in set I for which u has a directed
edge. We define this as the two-hop neighbourhood of u, connecting u to
vertices in the same set, through u′s interaction with vertices in set I.
To compute this relative diversity between two vertices u and v, we thus
consider both of their two-hop neighbourhoods as two sets, and we apply
the Jaccard Index between these sets. The Jaccard index [27] is a well
known statistic, widely used to compare the similarity and diversity of
sample sets and perfectly suits our need to compute the relative diversity
between two vertices in our bipartite graph. This formula is presented
below in equation 2.1, where Nu represents the neighbourhood of vertex
u and Nv represents the neighbourhood of vertex v.

J(u, v) = |Nu∩Nv |
|Nu∪Nv | (2.1)

The second structural factor we believe to contribute to social trust is
that of the intuition of shared items presented above in section 2.3.1.
Based on this intuition, we need to provide the distance between two
vertices in set A in relation to the popularity of the vertices in set I for
which they both have a directed edge. The formula used to compute
this distance value based of shared vertices is presented in equation 2.2,
where deg(i) represents the indegree of the shared item i. The more
highly connected a shared vertex, the higher the resulting distance value
will be, and consequently, the less connected a shared vertex is, the lower
the distance value will be. Thus, this equation rewards low connected
shared items, and penalizes highly connected shared items.

D(i) = ( 2
1+e(−deg(i)σ+2σ) − 1) (2.2)

Figure 2.6 shows the behavior of this formula as a function of the de-
gree of an item and the constant parameter σ. As we can see from this
curve, as the degree of the item i increases, the output value D(i) also
increases exponentially. This perfectly fits our methodology of reward-
ing low connected items while penalizing highly connected items. The
resulting values D(i) are normalized in the interval [0, 1]. Moreover, the
parameter 0 < σ < 1 is incorporated into the equation in order to pro-
vide a way to adjust the slope of the curve. Concretely, this parameter
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Figure 2.6: Formula for Shared Items

allows to modify the distribution of the values D(i) over [0, 1]. In prac-
tical terms, the increase of σ causes D(i) to rapidly reach high values,
meaning that in the case of σ = 0.8, when the degree of the item is near
to 10, the computed D(i) values will be very near to 1. However, in
the case of σ = 0.2, the D(i) values reach 1 with items having degrees
≥ 1000. In other words, this parameter is used to define from which
degree value an item is considered as popular. This will depend on the
data sets involved. In addition, the minimum value 0 of D(i) is obtained
when the degree of the involved item is set to two, whatever the value of
σ. In practical terms, this corresponds to the case where an item is only
rated by the users involved in the computation themselves.

By combining these two aspects, both the relative diversity and the dis-
tance based on shared vertices, the proposed trust inference formula is
presented as a whole in the below equation 2.3.

Trust(u, v) = α+ βJ(u, v) + γ(1−
∑i∈SI
i D(i)
|SI| ) (2.3)

where SI is the set of shared items between the users involved, as well
as the parameters α+ β+ γ = 1. The constant α defines the probability
that a pair of users trust each other through any other form of external
information (i.e. recommendation, search engine, etc). This parameter
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is inspired by the “teleportation” parameter used in the PageRank al-
gorithm [9, 43] which defines the probability of the direct access to a
web page (without following hyperlinks). The constants β and γ define
the contribution of each proposed factor to the computation of the trust
between a pair of users.

2.4 Experimental Evaluation

2.4.1 Data set

In order to test the proposed methodology, it was necessary to be able to
compare the results of the tests performed on the trust inference formula
against meaningful real life trust assertions. For this, we needed real life
test data consisting of:

a) A real life social bipartite graph containing two sets of vertices, A
and I, representing a set of actors, and a set of items respectively.
This graph should also contain directed edges from actor vertices in
set A to item vertices in set I, representing explicit ratings of items
by users. This graph, hereon referred to as the ratings graph, will
be used for the application of our trust inference formula.

b) A corresponding real life social trust graph, containing explicit trust
assertions between the user vertices in set A. This trust graph must
belong to the same social network and be complementary to the
ratings graph.

For the purpose of these experiments, I used the Epinions dataset avail-
able from trustlet.org. Epinions.com is an on-line social network where
users contribute reviews and share their opinions on any number of items
or topics, from books and DVDs to holidays and restaurants. Users can
also provide ratings on a scale of 1 to 5 for these items. In addition
to this rating system, epinions also provides a “Web Of Trust” facility,
whereby users can explicitly provide “trust” assertions, indicating their
individual trust for other users in the network. These ratings, as well as
the web of trust service are used to provide recommendations for item
reviews deemed to be most applicable to individual users. Importantly,
these ratings are also used to designate the top ranked reviews for each
item. The more highly rated a review is, especially if these reviews are
provided by highly trusted users, the more prominent position this review
will take.

This dataset provides all aspects of a dataset necessary to evaluate our
methodology. Epinions is also a well known dataset and has been used in
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numerous previous studies [24, 37] using trust. One drawback of the use
of the trust graph of this dataset, is that the trust assertions it contains do
not provide any weight of trust between users on any scale, and indeed do
not provide any information of possible “distrust” between users, whereby
a particular user may explicitly not like or not trust another user in
the network. The trust assertions can be seen as simple directed edges
between users, where the existence of an edge indicates a trust assertion
from one user to another, while the absence of an edge does not indicate
whether these users explicitly do not trust each other, or if these users
have not yet come into contact in the graph, or indeed if these users have
just failed to provide any explicit feedback to the system.

2.4.2 Setup

For the remainder of this chapter, the ratings graph of the Epinions
dataset is considered to be a bipartite graph G = (A ∪ I, E), with ver-
tices in set A representing the users of epinions and the vertices in set
I representing the items of the dataset, and E ⊆ A × I representing
the edges of ratings of items in I from users in A. To set up the test
data, I first removed all users in the trust graph that had not rated any
items in the corresponding ratings graph. These users are not essential to
this experiment and they go against the intuition of shared items behind
our methodology. This elimination however had almost no effect on the
experiments, as the number of users who had not rated any items was
insignificant. I then split the experiments into two separate phases: a
training and validation phase, and a comparison phase whereby I com-
pare the proposed trust inference approach to a naive approach based
loosely on the structural methodology in order to provide a further vali-
dation of the formula.

Firstly, for the training and validation phase, I began by following a
classical holdout style validation and applied the proposed formula to an
independent training set of the Epinions dataset to create a new trust
graph, which consisted of trust links between the users computed by the
trust inference formula.

By comparing the resulting weighted edges of the generated trust graphs
computed from the formula with the corresponding real trust assertions
provided in the real epinions trust graph I was able to determine local
optimal values of each of the parameters of the formula as well as to
validate it along two key axes as will be explained later in section 2.4.3.

For the comparison phase, I first compare our method of trust inference
against a similar but naive trust inference method which is loosely based
on the same methodology. Following this comparison, I then analyze the
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structural properties [2, 31] of the computed trust graph and compare
these properties to the corresponding properties of the real trust graph
of the epinions dataset. I thus base this comparison on the following
structural properties typical of on-line social networks:

a) degree distribution

b) hop plot

c) clustering coefficient properties of the graphs.

2.4.3 Validation & Training

The aim of the validation phase was to both validate the methodology
proposed in section 2.3.1, as well as to optimize the parameters α, β, and
γ which weight the different features of trust inference formula.

To do this, I needed to discover the relative contribution of each aspect
of the formula (Eq. 2.3) to the overall accuracy of the computed trust
edges of the generated trust graph. Firstly, I chose the value of param-
eter σ = 1

3 , as this value gave a balanced distribution of the resulting
metrics for this dataset, making sure that the resulting trust metrics
computed by the formula did not increase too quickly for items with an
average indegree, but also so that they are also in line with the proposed
methodology, as presented in section 2.3.1 of penalizing highly connected
items. This, of course, would depend on the dataset in question, and may
indeed change over time, as the network evolves and the items in the net-
work become more and more connected as users continue to rate more
items.

Following a classical k-fold method of cross-validation, I split the Epinions
ratings dataset into two independent subsets:

• Training set

• Test set

I subsequently took the training set and split it further into subsets of
1000 users. For each subset, I then applied the trust inference formula as
proposed in equation 2.3 which computed the trust links between each
user. Taking this resulting computed trust graph I thus observed the
effect on the resulting computed trust metrics in the generated trust
graph by comparing these edges to the corresponding edges in the real
trust graph provided with the Epinions dataset.

As the edges of the Epinions trust graph only indicated the existence of
trust or not as discussed in section 2.4.1, and did not provide any scale
of the level of trust (e.g 0.7), we chose a threshold for this comparison
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to indicate whether the computed trust metrics were to be considered
as a trust of not. If the weight of a computed trust edge was less than
this threshold, this edge was considered to indicate no trust, and thus
if the weight was greater than or equal to the threshold, this edge was
considered to be a trust edge. The threshold that was chosen for these
experiments was the arithmetic mean of all of the trust values computed
by the formula in the computed trust graph, thus edges with values above
the mean value were taken to be trust edges, and those with values below
were taken to be no trust edges, as above.

By comparing each edge in the computed graph to the corresponding one
in the real graph we validated our formula by computing the following
metrics:

• True positives (TP)
The number of edges in the computed trust graph considered to
indicate trust (i.e with value above the mean value), corresponding
to an existing trust assertion edge in the real trust graph

• False positives (FP)
The number of edges in the computed trust graph considered to
indicate trust (i.e with value above the mean value), but where no
corresponding trust edge existed in the real trust graph

• True negatives (TN)
The number of edges in the computed trust graph considered to
indicate no trust (i.e with value below the mean value) for which
no corresponding trust edge was present in the real graph

• False negatives (FN)
The number of edges in the computed trust graph considered to
indicate no trust (i.e with value below the mean value), but where
a corresponding trust assertion existed in the real trust graph

From these four metrics, in order to find the correct measures allowing us
to quantitatively validate our formula we focused on four key questions:

a) How many real trust assertions contained in the real graph can we
predict?

b) How many real no trusts or absence of trust in the real graph can
we successfully predict?

c) What is the ratio of the number correct trust assertions prediction
compared to the number of trust assertions predicted that do not
correspond to a real trust assertion?

d) What is the ratio of the number of correct trust assertions predicted
to the real number of trust assertions in the real trust graph?
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Taking measurements inspired from the domain of information retrieval
[42, 54], we thus calculated the following metrics:

• Trust prediction rate: The fraction of the real trust assertions
in the graph correctly identified, as the number of true positives
divided by the sum of the number of the true positives and the
number of false negatives:

( TP
TP+FN ) (2.4)

• Distrust prediction rate: The fraction of correctly predicted dis-
trust assertions, or the number of metrics computed to indicate the
lack of trust in the real graph, as the number of true negatives (TN)
divided by the sum of the number of true negatives and the number
of false positives:

( TN
TN+FP ) (2.5)

As part of the training of the formula was to find good values for param-
eters α, β, γ, these measurements were calculated for each of the subsets
of the training set as described above, with different combinations of val-
ues for each parameter. The final results for each combination of values
was computed using a simple arithmetic mean of the results computed
for each of the subsets. By repeating this step and applying different
weights to the different aspects of the formula we were able to retrieve
local optimal values of the parameters α, β and γ.

2.4.3.1 Training & Choosing local optimum parameter values

Figure 2.7 shows partial results for the k-fold cross-validation training
phase performed on the subsets of the training set. As we can see from
the figure, the combinations of values for each parameter were validated
using the Trust Prediction Rate measurement (Eq: 2.4) which is shown
in blue in figure 2.7, as well as the Distrust Prediction Rate measurement
(Eq: 2.5) shown in red in figure 2.7.

As opposed to making a choice on the combination of parameter values
based solely on one of these two measurements, I also added the results of
these two measurements together to take into account the performance
in relation to the combined results shown in green in figure 2.7. This
was done in order to make sure that the chosen combination of param-
eter values did not overly emphasize either one of the measurements,
and gave a balance between the two. More plainly, we did not want to
choose a combination of values which may have a high number of True
Positives and therefore have a high Trust Prediction Rate, but also give
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α β γ σ

0.1 0.4 0.5 1
3

Table 2.1: Selected parameters

too many False Positives and therefore having a low Distrust Prediction
Rate. Taking into consideration all three of these measurements resulted
in the choice of the combination of values for the parameters that gave
the best balance between the number of True Positives predicted by the
formula as well as True Negatives.

Table 3.3.2 illustrates the selected parameters resulting from the vali-
dation and training phase described above. As we can see from figure
2.7, the chosen combination of parameter values has both a high trust
prediction rate, and a higher distrust prediction rate. As well as this
however, it is the top performing combination of values in terms of the
combination result.

Here we remark that theD(i) term in Eq. 2.3, weighted by the parameter
γ, corresponding to the aspect of the formula related to the methodology
of the popularity of shared items as indicated in section 2.3.1, has the
most important contribution to the computation of trust in these ex-
periments. This validates the proposed intuition based on the fact that
the popularity of the shared items has an important impact on the trust
between the users involved in the trust calculation.

2.4.4 Comparison to a naive approach

To the best of our collective knowledge, no other method exists for the
inference of trust based solely on the structural information of a social
bipartite graph. As a result, to compare the performance of the proposed
formula to a similar methodology, I compare the trust inference method
proposed to a naive trust inference method.

2.4.4.1 A naive approach to structural trust inference

This naive method also uses only the structural information of the graph,
as well as the concept of shared items, and which is also based on the
correlation of trust and user similarity.
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Based on the underlying nature of many current collaborative filtering
recommendation systems, as well as the correlation of similarity and trust
proposed in [65, 21], the corresponding naive methodology states that:

• users with similar tastes will have rated the same items

• thus users with shared items should trust each other

Using this methodology, the method infers trust between user pairs if
they have both rated at least one of the same items.

Trust relation Distrust relation

Our method 65.00 % 80.50 %
Naive method 35.62 % 80.05 %

Table 2.2: Prediction rate

To compare these two approaches, another experiment was carried out
in a k-fold cross-validation style very similar to that performed for the
training and validation phase above. For this experiment however, the
test set of the Epinions dataset was used, and split into subsets of 1000
randomly chosen users. Both formulae were then applied to each of these
subsets, and the trust prediction and distrust prediction measurements
described above were computed for each. The final results for each were
taken as the arithmetic mean of the results for all subsets performed by
each approach.

Table 2.2 shows a comparison between the mean of the results of the
trust inference method proposed in section 2.3.2 against those of the
naive method performed on the subsets of 1000 randomly chosen users
from the test set in a similar k-fold cross-validation style as described
above.

From these results, we remark that the trust inference method proposed
in this work outperforms the naive method for both the prediction of trust
relations as well as the prediction of distrust relations. With mean values
of 0.65, and 0.356, and standard deviations of 0.0829, and 0.06979 for
the proposed method and the naive method respectively, a standard two
tail, paired t-test of these results returns a P-value of less than 0.0001,
showing the difference in results of the two methods to be statistically
extremely significant to the 99% confidence level.

Given the potentially suboptimal nature of the parameters used for this
comparison, due to the incomplete nature of the training phase at this
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time as mentioned above, the likely discovery of a more optimal set of
values for the parameters can only result in a further improvement to
these results.

Indeed, one can conclude that the existence of shared items between
prospective users alone is not necessarily a discriminant feature to infer
a trust between them. On the other hand however, I remark that the two
methods perform very similar in terms of the the rates of prediction of
distrust relations, with a slight superiority of on the part of the proposed
trust inference method. This can be explained by two possible facts;

a) Firstly, the fact that the existence of a distrust relation is not ex-
plicitly provided by the Epinions dataset.

b) Secondly, due to the shrinking diameter aspect of social networks,
the data used will evolve over time and with it, new trust relations
will be created.

This means that the results of our formula, especially the FP, can be
improved if we take a more evolved version of the graph.

2.4.4.2 Secondary Comparison and Validation

As a secondary validation of our trust inference formula, we have ana-
lyzed the structural properties of the graph computed with our formula,
to check its validity to the structural properties typical of social networks.
To do this, we compared the properties of the computed graph to those
of the real trust graph of the epinions dataset. For this comparison, we
have plotted the following three structural properties.

• degree distribution (Figure: 2.8)

• the hop plot (Figure: 2.9)

• clustering coefficient of both graphs (Figure: 2.10)

All three of these structural properties were plotted for the same subset
of 1000 users, considering only the edges in the computed graph which
correspond to a trust assertion according to the chosen threshold.

As we can see, all three structural properties are very similar for both
the real trust graph and the computed trust graph. Figure 2.8 shows
the degree distribution plots of both the constructed trust graph 2.8(a),
computed from the proposed trust inference formula, and the ground
truth graph 2.8(b) from the real trust graph of the Epinions dataset.
From these plots we can see that both distributions hold very similar
properties to those typical of most on-line social networks as shown in
[2, 31]. We can also see that the degree distribution of the constructed
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graph 2.8(a) is more dense than that of the ground truth graph 2.8(b),
meaning that there are more users who are highly connected and highly
trusted in the constructed graph than in the ground trust graph. The
explanation for this is quite straightforward. As mentioned above in
section 2.4.4, the trust graph computed from our formula computes more
trust edges between users than those that are currently existing in the
real trust graph. This means that the computed trust graph can be seen
in fact as a more evolved version of the real trust graph, containing trust
edges that have not yet been asserted by the users in the real graph.
These trust edges can thus potentially be used to recommend to users
other user who they may trust.

Figure 2.9 shows both hop plot properties again of the computed trust
graph 2.9(a) and the ground truth graph from the Epinions dataset
2.9(b). Once again, these plots show hop plot properties typical of social
networks. As well as this, both of these plots are almost identical, with-
out almost all of the users in the graph reachable through 4 hops of the
graph.

Figure 2.10 shows the clustering coefficient plots for the computed trust
graph 2.10(a) and the ground trust graph 2.10(b). Again both of these
plots show properties similar to those typical of social networks. It is also
worth noting the much increased clustering of the users in the computed
trust graph 2.10(a) to that of the actual trust graph in the Epinions
dataset 2.10(b). This can once again can be attributed to the fact that
the trust inference formula computes trust edges that do not yet exist in
the real trust graph. The clustering coefficient plot resulting from this
formula is very typical of social and small-world networks [3], and adds
worth weight to the idea that the computed trust graph can be seen as
a more evolved version of the real trust graph.

From this comparison, we can conclude that our trust inference formula
contains the principle properties typical of social networks [2, 31, 3],
and thus, as intended, our formula computes a new social trust graph
connecting users by means of weighted trust edges.

2.5 Conclusion

Based on the correlation of trust and similarity, as empirically shown
in [65], this chapter presents a methodology focusing on the popular-
ity of shared items between users in a social graph for the inference of
trust between users in a social network. Using this methodology, a for-
mula is developed to infer trust information between users using only the
structural information available from the bipartite graph typical of many
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on-line social networks. From a real-life dataset, this formula computes a
new trust graph, linking users together by means of weighted trust links.
By comparing these computed trust edges to the corresponding edges in
the real trust graph, and using measurements inspired from the domains
of information retrieval and data mining [42, 54] the proposed formula
is validated and its parameters, weighting each structural aspect of the
formula, are trained following a k-fold cross-validation process.

Following a similar cross-validation approach on a separate test set, the
formula is then compared to a similar, naive structural trust inference
method showing the proposed method to have a statistically extremely
significant superiority. Finally, as a further validation of the proposed
formula the degree distribution, hop plot and clustering coefficient struc-
tural properties of the trust graph resulting from this formula are plotted
and compared to those of the real trust graph. These tests show the for-
mula to have a strong trust prediction rate, as well as having structural
properties typical of most social networks.
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CHAPTER 3

EMPIRICAL ANALYSIS

3.1 Introduction

This chapter presents a further validation of the trust inference formula
developed in section 2.3.2, as well as a more complete empirical analysis
of trust-based recommendation techniques. The trust inference formula
is applied to the ratings information of three separate datasets, each of
which have previously been used for the purpose of testing recommender
systems. Each of these datasets differ in their respective connectivity
properties, the distribution of ratings in the graph, as well as their overall
use. The trust metrics computed between user pairs by the trust inference
formula are subsequently used by a number of different techniques which
have previously been designed and proposed for the incorporation of
trust into recommendation algorithms, and the accuracy of each of these
techniques is analysed and compared.

I begin by outlining the motivation for the second part of this work,
before presenting the different recommendation techniques used in this
analysis. These techniques include those proposed in previous work to
incorporate trust into recommendation algorithms, as well as two of the
standard collaborative filtering recommendation techniques commonly
used in many social networks.

The three datasets chosen for this analysis are then presented, before
the process undertaken to carry out the experiments for the analysis
is outlined. Finally, detailed results performed by each algorithm on
each of the datasets are presented, followed by an in-depth analysis and
comparison of all recommendation techniques on all three datasets.

45
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3.2 Recommendation Techniques

Each of the trust-enhanced recommendation algorithms described in sec-
tion 1.2 above all use slightly different techniques to incorporate the trust
information existing between users into the final recommendation pro-
cess used to predict the utilities (e.g ratings) of unseen items to users.
In this section I will present some of these techniques as well as some of
the standard collaborative filtering techniques based on Pearson Corre-
lation Coefficient (PCC) which will then be the subject of the analysis
and comparison section later in this chapter.

The trust-enhanced techniques presented and analysed are mainly en-
hancements of the memory-based recommendation algorithms for item
recommendation presented in section 1.1 and as discussed in [1]. As such,
the main focus of this chapter is to perform an analysis and comparison
of these trust-enhanced techniques, as well as comparing them to the
standard memory-based recommendation techniques.

3.2.1 Standard Techniques

In this section we present two of the well-known collaborative filtering
techniques widely used in many recommender systems: Resnick’s [46]
algorithm for collaborative filtering, and a standard weighted mean. To
generate a recommendation for an item i to user u both of these algo-
rithms use a similarity measure between u and a user v who has already
rated i to weight the rating that v gave to i in the computation. This
similarity measure is generally given by Pearson’s Correlation Coefficient.
As well as these two algorithms, we also present a very simple and naive
method of item recommendation called a simple mean.

r(u, i) = 1
|R|

∑v∈R
v rv,i (3.1)

Equation 3.1 shows a simple mean of all of the ratings for item i, where
N is the total number of raters for this item. This is a simple method
that is still used in some recommender or popularity systems.

r(u, i) =
∑v∈R+

v wu,vrv,i∑v∈R+

v wu,v
(3.2)

Equation 3.2 shows the standard weighted mean algorithm for rating
prediction. Like the simple average formula above, this formula uses the
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the average of the ratings of other users for item i but personalizes the
prediction for a target user u by weighting the ratings according to how
similar the rating user v is to the target user u. This weighting is usually
calculated using Pearson’s Correlation Coefficient.

r(u, i) = r̄u +
∑v∈R+

v wu,v(rv,i−r̄v)∑v∈R+

v wu,v
(3.3)

Equation 3.3 shows Resnick’s formula [46] for correlation based Collab-
orative Filtering, where wu,v represents the weight of similarity between
users u and v. This similarity weight is again usually calculated by using
Pearson’s Correlation Coefficient. A prediction for an item i for user u is
based on the mean rating r̄u of user u and the sum of the ratings of other
users for item i. As described in [1], this algorithm is a form of adjusted
weighted sum, which takes into account the fact that different users may
use the ratings scale in different ways, by using the deviations of a user’s
rating for item i from the user’s average rating overall. These ratings are
thus weighted using the results of the similarity measure wu,v calculated
using Pearson’s Correlation Coefficient. As stated in [57], in practice,
only the ratings of users with a positive correlation to u are considered
in the prediction process. This is represented in 3.3 by the set R+.

3.2.2 Trust-enhanced techniques

In this section we present some of the techniques used to incorporate trust
into recommender systems. These algorithms are generally enhancements
of the standard techniques seen above, and others have been developed
to follow the natural idea that users are more inclined to appreciate
recommendations based solely on the ratings of their trusted peers.

r(u, i) =
∑v∈RT
v tu,vrv,i∑v∈RT
v tu,v

(3.4)

Equation 3.4 shows an enhanced version of the Weighted Mean formula
shown in equation 3.2. This formula uses the trust value present be-
tween users u and v as a weight for the ratings of other users in place
of the similarity measure. This is the technique used by the TidalTrust
algorithm [19] presented above to incorporate their trust metrics into the
recommendation process.

r(u, i) = r̄u +
∑v∈RT
v tu,v(rv,i−r̄v)∑v∈RT

v tu,v
(3.5)
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Equation 3.5 shows a refined version of Resnick’s formula which incor-
porates trust. In this method, the similarity weight wu,v attributed to
ratings by user v for user u, calculated using Pearson’s Correlation Co-
efficient is replaced with the value of trust tu,v present between u and v.
This is technique used by the MoleTrust algorithm [33] presented above
to incorporate their trust metrics into the recommendation process.

r(u, i) = 1
|RT |

∑v∈RT
v rv,i (3.6)

Equation 3.6 shows a trust filtering method, whereby the raters of item
i are filtered according to their trust values, where only the raters who
are trusted above a certain threshold are used in the computation of the
predicted rating. Using these raters, we then take a simple mean of their
ratings for item i. This method provides results according to the simple
idea that “users are more likely to accept recommendations from their
most trusted friends”. We use this method in our comparison to evaluate
the applicability of these claims.

r(u, i) = r̄u +
∑v∈RT+

v wu,v(rv,i−r̄v)∑v∈RT+

v wu,v
(3.7)

Equation 3.7 shows the Resnick collaborative filtering technique refined
to include the trust value tu,v as a further filtering mechanism to choose
only the item raters who are trusted above a certain threshold of trust.
In this formula the weight wu,v is still used in the weighting process of the
rating values, and is calculated using Pearson’s Correlation Coefficient.
This technique is that used by O’Donovan and Smith [51].

r(u, i) = r̄u +
∑v∈R+

v wu,v(rv,i−r̄v)∑v∈R+

v wu,v
(3.8)

wu,v =
simu,v+tu,v

2 (3.9)

Equation 3.8 shows another refined use of the Resnick collaborative fil-
tering technique, which combines both the similarity of users and the
respective trust values between. In this formula, the weight wu,v as-
signed is in fact a combination of the similarity score simu, v which is
computed between users u and v by Pearson’s Correlation Coefficient,
and the trust score tu,v that exists between them. This technique is
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again inspired by the first technique used by O’Donovan and Smith in
[51]. However, the technique shown here differs slightly from that of [51]
in the fact that here the combination of similarity and trust is made up
using an arithmetic mean as shown in equation 3.9 as opposed to the
harmonic mean of the two results as used by O’Donovan and Smith.

r(u, i) = r̄u +

∑v∈RT
v tu,v(rv,i − r̄v)∑v∈RT

v tu,v +
∑v∈R+\RT

v wu,v

+

∑v∈R+\RT
v wu,v(rv,i − r̄v)∑v∈RT

v tu,v +
∑v∈R+\RT

v wu, v

(3.10)

Finally, equation 3.10 shows the Ensemble Trust collaborative filtering,
as proposed by Victor et al [57]. In this work, the authors explain that
this technique is designed to be able to take into account all possible
ways to obtain a positive weight for a user who has rated an item. Using
this rationale, trust relations are favored over similarity measures. This
method aims to increase the percentage of predictions that the recom-
mender system can make, which they call the coverage, a term which we
follow in this work.

3.3 Experiments

3.3.1 Datasets

The purpose of this work is to provide an analysis and comparison of
the recommendation techniques presented in section 3.2, on a number of
different datasets. To this end, I have selected three publicly available
datasets previously used for the study of recommendation systems. Each
dataset differs in their intended purpose and properties, such as the con-
nectivity and size of the graph, as well as the sparsity and distribution
of ratings. These datasets thus provide the perfect basis for the analysis
of the performance and behavior of the different techniques in different
circumstances.

3.3.1.1 MovieLens

MovieLens is an on-line social network where users can rate and dis-
cover movies. The MovieLens dataset [46] is a widely used dataset for
the study of recommender systems, and was publicly distributed by the
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GroupLens Research at the University of Minnesota. 1 The dataset used
is a commonly used version of the network and is available directly from
the GroupLens website. It contains 6, 040 users, 3, 900 different movies,
and 1, 000, 209 ratings collected from registered users as of the year 2000.
Movie ratings are on a discrete scale from 1 to 5 stars, and this version of
the dataset is well connected with each user in the set having at least 20
ratings encoded. The distribution of these ratings can be seen in Figure:
3.1(a).

3.3.1.2 LibimSeTi

LibimSeTi 2 is an on-line dating service, where users are able to store
personal profiles, as well as rate the profiles of other users. The dataset
3[10] used in this study contains 17, 359, 346 anonymous 4 ratings, on
a discrete scale from 1 to 10, with 168, 791 profiles made by 135, 359
LibimSeTi users as of April 4, 2006. From this dataset, we used 20, 000
randomly chosen profiles as will be explained. Figure: 3.1(c) shows the
distribution of the ratings for this dataset. As can be seen, this dataset
contains a high number of extreme ratings, with a large percentage of the
ratings in the graph being either the lowest possible value of 1 (2, 315, 546
ratings), or the highest possible value 10 (3, 540, 342 ratings).

3.3.1.3 Epinions

The Epinions dataset used for these experiments is the same dataset
presented and used in section 2.4.1. The availability of the explicit trust
information in this dataset has made it very applicable and widely used
dataset in the study of trust-enhanced recommendation systems. How-
ever, for the purposes of this comparison, we do not use this explicit
trust information as we are interested in providing an equal comparison
of trust in recommender algorithms across all datasets, and thus we only
use the ratings information to automatically generate a web of trust, in
the same manner as for the other two datasets. Figure 3.1(b) shows the
distribution of the ratings in this dataset. As can be seen, 74% of the
ratings in the graph are given as either the top value of 5 (45%) or just
below it at 4 (29%).

1http://www.grouplens.org/
2http://www.libimseti.cz/
3http://www.ksi.ms.mff.cuni.cz/ petricek/data/
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(a) MovieLens Ratings Distribution

(b) Epinions Ratings Distribution

(c) LibimSeTi Ratings Distribution

Figure 3.1: Ratings Distributions
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3.3.2 Choosing Parameter Values

For the purposes of this empirical analysis, I wanted to be able to get a
clear comparison of the each recommendation technique, and how they
perform on each dataset. For this, I decided to use the same values for
the parameters of the trust inference formula: α, β, γ and σ and not to
tailor the values of the parameters specifically to any of the datasets to
find values would be most applicable to each specific dataset, but instead
to use the same set of values that would return comparable results for
all.

First of all, taking into consideration the connectivity properties of the
MovieLens, as well as the LibimSeTi datasets, I decided to reduce the
value of parameter σ in the formula, which controls the distribution of
trust values in relation to the indegree of the items, as detailed in section
2.3.2. As the connectivity properties of these datasets was much greater
than those of the Epinions dataset (e.g items in the MovieLens dataset
have an indegree of at least 20 ratings), which was used for the exper-
iments in the previous chapter, it was decided to reduce the value of σ
to 0.2 as opposed to 0.33 as used previously so as not to overly punish
the items in the well connected MovieLens dataset, but at the same time
taking into consideration the sparseness and much lower connectivity
properties of the Epinions dataset also used (52.82% of the population
only expressed less than 5 ratings as shown in figure: 3.1).

As well as this, I decided that I would eliminate the usage of the pa-
rameter α used in the previous section which represents the probability
that users trust each other based on any form of other external infor-
mation in section 2.3.2. Therefore, I wished to concentrate only on the
two structural features of the graph accounted for in the previously de-
veloped trust inference formula and to weight these features accordingly
using only two parameters. The parameter β in this chapter, as before,
is used to weight the first structural feature of the Relative Diversity of
the users according to their two-hop neighbourhoods, and the parameter
γ is used in this chapter to weight the second structural feature repre-
senting our methodology of the popularity of shared items as described
in section 2.3.1.

The choice of these values for the parameters was based on the fact that
having had the time to run more tests before commencing the experi-
ments of this empirical analysis chapter, we were able to train the trust
inference formula more and more using different combinations of values
for the parameters than we initially had time for, and thus we were able
to further train the formula. From these extended training tests using
the Epinions dataset, as well as deciding to no longer use the α in the
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α β γ σ

0 0.4 0.6 0.2

Table 3.1: Selected parameters

computation of trust, we were able to see that these values for β and γ
performed the best following the three criteria.

Figure 3.2 shows partial results for the secondary training phase of the
formula without considering the parameter α. As before in section 2.4.3
in chapter 2, this training phase was performed using a k-fold cross vali-
dation approach using subsets of the training set of the Epinions dataset.
In blue, again we can see the trust prediction rate performed by each of
the combinations of values of the β and γ. In red, as before is the distrust
prediction, and in green the combination of the two.

Table 3.3.2 shows the chosen values for the parameters α, β and σ used
for the experiments and analysis in this chapter.

3.3.3 Performance Measures

To measure the performance of each of the recommendation algorithms
for the purpose of comparison, we follow the common technique of hiding
a certain number of ratings from the graph, and applying each algorithm
in turn to predict the value of this rating. From these predictions, we
measure the accuracy of each algorithm according to two commonly used
accuracy measures in the field of recommender systems [26].

Firstly, we use the Mean Absolute Error (MAE) as shown in Equation
3.11, where N is the total number of ratings to predict, Pu,i is the pre-
dicted value of the rating of item i by user u and Ru,i is the real value
of the rating of item i from user u. The MAE measures the average ab-
solute deviation between the predicted rating Pu,i of the algorithm and
the user’s true rating Ru,i.

MAE =
∑N
i=1 |Pu,i−Ru,i|

N (3.11)

Secondly, we use the Root Mean Square Error (RMSE) shown in Equa-
tion 3.12. We use the RMSE as well as the MAE as it gives us a broader
view of the performance of each algorithm. As discussed in [26, 37],
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while using only the MAE, each error in prediction is treated with equal
value, whereas with the RMSE larger errors in prediction are punished,
as the difference between the predicted rating Pu,i from the real rating
Ru,i is squared. This means that the RMSE punishes predicted values
that deviate further from the real rating value. As a result, lower RMSE
values indicate that an algorithm is more accurate in the sense that its
predicted values do not deviate very far from the true rating.

RMSE =

√∑N
i=1(Ru,i−Pu,i)2

N (3.12)

As well as these accuracy measures, we follow the analysis of perfor-
mance as discussed in [26, 57, 59, 37], and measure the coverage of the
algorithms. The coverage is simply the percentage of the hidden user to
item ratings for which the algorithm was able to produce some sort of
prediction. We compute this by taking the number of ratings for which
the algorithm was able to make a prediction and divided it by the total
number of hidden ratings that were to be predicted, as shown in Equation
3.13, where P is the total number of predictions that were made by the
algorithm, and N is the total number of user to item ratings that were
requested of the algorithm to predict. The coverage of predictions has
been shown to be an important measure of performance for recommen-
dation algorithms, where some techniques have been shown to be unable
to produce predictions for a significant percentage of ratings. This can
happen for example with Resnick’s collaborative filtering formula (Eq:
3.3) when there are no users who have rated an item i who have a positive
pearson correlation with the target user u.

Coverage = P
N (3.13)

3.3.4 Validation Process

Before beginning the experiments, a sample subset of 20, 000 randomly
chosen users was extracted from both the LibimSeTi and the Epinions
dataset. For the MovieLens dataset, with just over 6, 000 users we used
the entire dataset. In previous studies [19, 34, 57, 51], the performance of
recommender systems is typically assessed using a leave-one-out method,
which entails hiding each rating in the graph one by one, and thus pre-
dicting the value of this rating using the recommendation algorithm.
This process is then repeated a certain number of times to build up a
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measure of accuracy of the algorithm. However, in this work we wish
to measure the performance of each algorithm when there are different
percentages of ratings missing from the ratings graph and thus less infor-
mation available. In order to do this, and to compare each of the different
recommendation techniques on each of the data samples, we followed a
standard k-fold cross validation process, which we will explain in this
section. The following process described was repeated in an identical
fashion for all three datasets.

To begin, the data samples were first split into randomly chosen subsets of
1, 000 users. For each subset, a certain percentage of the ratings was then
randomly removed from the graph, which were then subsequently used
as the ratings for which each recommendation algorithm would provide
a prediction. Once these ratings had been removed, the trust inference
formula was then applied to the remaining ratings subset, as detailed in
section 2.3.2. Doing this thus generated a new trust graph computed by
our formula, linking users of the subset together by means of weighted
symmetric trust links as was the case in section 2.4.3. Following this,
each recommendation algorithm described in 3.2 was then applied to the
resulting subset to predict the ratings that had previously been randomly
selected to be removed.

The trust-enhanced algorithms thus used the trust information contained
in the computed trust graph in the process of computing their predic-
tions. By comparing the resulting predicted ratings of each algorithm
to the corresponding actual rating, it was then possible to compute the
accuracy and coverage measures as detailed in section 3.3.3, and measure
the performance of each recommendation algorithm for each subset.

The final performance results of each algorithm presented in Tables 3.3,
3.4, and 3.2 are thus the mean of the results computed for each subset.
This process was then repeated five times for 10%, 20%, 30%, and 50%
of the ratings randomly removed. As stated above, this procedure was
repeated for each dataset.

3.4 Analysis & Discussion

In this section I present the results of the experiments performed on the
selected datasets. Firstly, I give an overview of the results as a whole
before going a little bit further in depth for the analysis of each dataset.
Tables 3.2, 3.3, and 3.4 report the performance results for each algorithm
performed on the MovieLens, Epinions, and LibimSeTi datasets respec-
tively. Each table presents the performance results (MAE, RMSE and
Coverage) achieved by the algorithms tested, performed four times with
10%, 20%, 30% and 50% of the total ratings hidden from the test set.
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3.4.1 Overview

Overall, we can remark that the trust-based techniques, on average, out-
perform their standard counterparts for all three datasets. This follows
the results of previous studies [20, 34, 57] and thus adds further weight
to the idea that trust can enhance the performance and accuracy of rec-
ommendation algorithms. In terms of the accuracy, we also remark that
the performance of each algorithm differs depending on the dataset on
which it is used.

For example, if we consider the figures for 10% of the ratings hidden in the
results for the Epinions dataset shown in Table 3.3, we can see that the
algorithms using a weighted mean strategy: Trust-based WM (Eq: 3.4)
and Pearson WM (Eq: 3.2), with MAE of 0.919, and 0.951 respectively,
slightly outperform the techniques based on Resnick’s formula: Trust CF
(Eq. 3.5) with a MAE of with 0.927, and Pearson CF (Eq. 3.3) with a
MAE of 0.966.

However, the opposite is true for the LibimSeTi dataset (Table 3.4) and
the MovieLens dataset (Table 3.2) where the Resnick-based techniques
significantly outperform those using a weighted mean. This is demon-
strated by a superiority of 0.56 for the Trust CF algorithm over the Trust
WM algorithm, and a superiority of 0.57 for the Pearson CF algorithm
over the Pearson WM algorithm both in the MovieLens dataset for the
results with 10% of the ratings hidden.

One possible cause of this swing in fortunes could be the different con-
nectivity properties as well as the distribution of the item ratings of each
of the datasets. As discussed by Massa et al in [34] using the same Epin-
ions dataset, and as shown in figure 3.1(b), the vast majority of ratings
(74%) in the Epinions dataset are given a weight of either 4 or 5 stars. Of
these, 45% are given the highest rating of 5, meaning that there is very
little variance in rating values. As the Resnick-based algorithms uses the
variance of a user’s rating for an item to the user’s average rating as part
of their computations, such lack in variance may indeed be hindering
these algorithms.

On the other hand, as shown in figure 3.1(a), the MovieLens dataset is
quite highly connected with all users having rated a minimum of 20 items
each, and as shown in [15] these ratings follow a normal distribution with
a significant degree of variance. This variance thus allows the Resnick-
based algorithms to use more information and outperform the algorithms
based on a weighted mean technique.
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3.4.1.1 Trust Filtered Mean

In terms of the Trust Filtered Mean algorithm (Eq: 3.6), which takes
a simple average of all of the ratings given by only trusted users, and
thus filtering out all other ratings, the results are not as straightforward.
Indeed, for the results performed on the MovieLens dataset, the Trust
Filtering Mean algorithm performs identically to the Simple Mean al-
gorithm (Eq: 3.1) in terms of accuracy, with a slightly worse RMSE
performance for some of the tests.

A possible explanation for such similarity in scores could be the high
connectivity of the items in the MovieLens dataset, meaning that even
when the trust filtered algorithm filters out all of the users who have rated
an item there is perhaps still a relatively high number of raters left, and
an average of their rating values might still give a result very close to the
average rating as computed by the simple mean algorithm. This doesn’t
exactly follow the original motivation laid out for this technique that
users would be more likely to appreciate recommendations from those
whom they trust. Again, for the Epinions dataset, the Trust Filtered
Mean actually performs worse than the simple mean, performing quite
similar accuracy results with only 10% of the ratings hidden but falling
to an inferiority of 0.1 for the test performed with 50% of the ratings
hidden. This may possibly be attributed to both the sparsity of the
Epinions dataset, meaning that the algorithm has less information to be
able to infer trust between users, as well as this as a result of the majority
of the ratings being close to the top of the ratings scale, it seems that
filtering only the trusted information can still not outperform a simple
mean. Again, even though it performs the second best out of all of the
other algorithms it still doesn’t quite fit our methodology.

However, for the LibimSeTi dataset, we can see that the trust filtered
mean algorithm consistently outperforms the simple mean in terms of
both the MAE and the RMSE performance measures, and increases this
superiority as the number of ratings that are hidden increases, with a
superiority of up to 0.37 for the MAE with 50% of the ratings hidden.
As will be discussed in further detail, this increased performance may be
attributed to the distribution of the ratings within the LibimSeTi dataset
as discussed in section 3.1. As can be seen in figure 3.1(c), this dataset
contains a large percentage of extreme ratings of either the lowest rating
of 1 or the highest possible rating of 10.

As will be discussed, previous studies [20, 35] have shown that with such
difference in opinion between the ratings of items (i.e controversial items),
trust can be used to provide a more personalized recommendation to the
individual users. From these results, we can see that this seems to hold
true for this dataset, and indeed seems to follow the motivation of the
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trust filtered mean algorithm, whereby only using the ratings information
provided by trusted users provides better accuracy results when a user’s
rating for an item differs significantly from the average rating of this
item.

3.4.1.2 Combined CF

For the performance of the Combined CF algorithm (Eq: 3.8), again we
see some very interesting results showing how the introduction of trust
into recommendation algorithms can improve the accuracy in relation to
standard similarity techniques. By comparing this algorithm to the two
other algorithms most similar to it, that of the Pearson CF (Eq: 3.3)
which uses the only the Pearson Correlation Coefficient (PCC), and that
of the Trust CF algorithm (Eq: 3.5), we can see that the combination
of trust with the PCC similarity measure improves the accuracy of rec-
ommendations in relation to the pure PCC based algorithm: Pearson
CF, however, this improvement still falls short of the MAE performance
when only trust is used, as is the case with the Trust CF algorithm. This
is demonstrated by the MAE accuracy performance of the Combination
CF of 1.439 with 10% of the ratings hidden for the LibimSeTi dataset,
in comparison to that of 1.444 of the Pearson CF and 1.410 of the Trust
CF algorithm for this same test set. This comparison is also reflected in
the performance the RMSE accuracy measure of the algorithms.

However, for the MovieLens dataset, we see that the Combination CF
algorithm performs exactly the same MAE result as the Pearson CF
algorithm for both 10% (MAE of 0.707 and 20% (MAE of 0.714) of the
ratings hidden. But, by examining the performance results of the RMSE
(Eq: 3.12) accuracy measure, we see a different story. As discussed in
section 3.3.3, while the MAE gives the mean of the absolute deviation of
the prediction values from the actual value, the RMSE accuracy measure
squares this deviation and thus the more a predicted value deviates from
the real value the more this prediction is punished, and thus lower RMSE
measures show an algorithm to be more accurate. From these results
therefore, although the Combined CF algorithm performs the same MAE
accuracy as the Pearson CF for 10% and 20% of the ratings missing in
the MovieLens dataset, we can see that in fact it performs better and
gives predicted values that are closer to those of the Pearson CF formula.

Such results for the accuracy performance underline the notion laid out
by previous works that the incorporation of trust into the recommen-
dation process, even in tandem with previous similarity measures can
improve the overall accuracy of the recommendation algorithms using it.
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3.4.1.3 Trust Filtered Collaborative Filtering

One surprise result in terms of accuracy performance was that of the
Trust Filtered collaborative filtering technique (equation 3.7) proposed
by O’Donovan and Smith in [51]. In comparison to the other algorithms,
this technique performed quite poorly in the experiments, and in fact
it was consistently the worst performer in terms of MAE. This result
goes against previous intuition that users are more inclined to appreci-
ate more recommendations from their trusted neighbours, as well as the
improvement of results as shown in [51].

However, if we take a closer look at the RMSE (Eq: 3.12) performance
results for this technique, we can see that it does not perform as badly in
the more connected datasets: MovieLens and LibimSeTi in comparison
to the standard techniques. One explanation for this performance could
be related to the way in which the technique filters users. From the
users with a positive similarity measure calculated using the PCC, this
technique filters out the users who are also not trusted by the user and
therefore does not include them in the recommendation process. This
constrains the amount of users that can be used in the recommendation
process and may indeed eliminate users from the recommendation process
who are trusted by the user, but who are not positivity correlated with
the user according to PCC. This consequently constrains the amount
of information that the recommendation algorithm can use to make a
prediction, thus leading to a lower number of predictions that are correct.
However, from the performance based on the RMSE, we can deduce that
although the technique gives the correct prediction less often than the
other techniques, the error in prediction is never too high, as the RMSE
punishes large errors in prediction.

In terms of coverage, on the whole we can also see that the trust-enhanced
techniques vastly improve the percentage of prediction coverage of each
of the recommender algorithms, particularly when the dataset itself is
very sparse, as is the case with the Epinions dataset. But as well as
this, in the case of the MovieLens and LibimSeTi datasets which are
more connected, we notice that when the percentage of ratings that are
hidden is increased, the coverage of the standard collaborative filtering
techniques using Pearson’s Correlation Coefficient (PCC) drops consider-
ably, whereas the rate of coverage of the trust-enhanced techniques stays
reasonably stable, and drops at a much slower rate than the standard
techniques. Taking an example from the LibimSeTi dataset, when 50%
of the ratings are removed, the trust-enhanced techniques outperform the
standard techniques in terms of coverage by up to 20%, with the trust-
based algorithms having a coverage rate of 96.69% while the standard
techniques having a coverage rate of only 76.32%. A possible explana-
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tion for this increase in accuracy in this case could be the potential of our
trust inference formula to find trusted neighbours beyond those whom
a user shares an item. As discussed in section 2.3.2, our formula uses
two structural features to infer trust information, and does not only con-
centrate on shared items. The use of the two-hop neighbourhood in this
formula allows our formula to infer trust between users who have not yet
rated one of the same items. Bearing in mind that Pearson’s Correlation
Coefficient (PCC) is primarily based on shared items, this means that
the set of trusted users for a user is more likely to be larger than that of
the set of users for which PCC returns a positive result, especially when
50% of the ratings have been deleted.

We can see that this difference in coverage remains the same for the Epin-
ions dataset with an improvement of almost 40% when 50% of the rat-
ings are removed, but it does not hold for the MovieLens dataset, where
the trust-based techniques only deliver around 0.8% improvement. This
suggests that as both the LibimSeTi dataset and more particularly the
Epinions datasets are more sparse than the highly connected MovieLens
dataset, the likelihood is higher that the increased removal of ratings will
remove all shared items remaining between users. When considering the
fact, as discussed in [34] that more than 50% of the users in the Epinions
dataset have provided less than 5 ratings, this likelihood of separation of
users becomes more evident. However, with each user having a minimum
of 20 rated items in the MovieLens dataset this is less likely to be the
case, as users have rated much more items and thus are thus more likely
to have shared items with other users in the network, even after a high
number of ratings removed.

Apart from the Simple Mean algorithm (Eq. 3.1) which has has the best
coverage performance as it does not filter out any ratings information
but take a simple average of all ratings given to each item, we remark
that Ensemble Trust algorithm (Eq. 3.10) proposed by Victor et al in
[57] leads to the best performance in terms of rating prediction coverage,
providing almost optimal coverage in every dataset regardless of the num-
ber of ratings that are hidden. This again follows the observations made
by the authors themselves. As stated in their work [57], the motivation
for this algorithm was to account all possible ways to obtain a positive
weight for a user to include them in the recommendation process, while
favoring a trust weight over a similarity weight computed by PCC. It is
worth noting here also, that again this benefit in coverage does not come
at the expense of accuracy, with the Ensemble Trust algorithm perform-
ing equally well in terms of accuracy as the Trust-enhanced collaborative
filtering (Eq. 3.5, indeed in the results for the MovieLens dataset in table
3.2 we see that Ensemble Trust returns a slightly better MAE.
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3.4.2 MovieLens Results

Table 3.2 presents the results of each algorithm performed on the Movie-
Lens dataset. Further to that discussed in section 3.4.1, on close inspec-
tion of the results, we see that the standard formulae perform quite well
with the Pearson CF (Eq. 3.3) returning a MAE of 0.707 with 10% of
the ratings hidden. On the other hand, we also notice that the Trust CF
algorithm (Eq. 3.5) performs slightly but not significantly better with a
MAE of 0.70. This is more than likely due to the high connectivity of
the dataset, with many ratings available for the PCC similarity measure
to use.

However, we notice that as the percent of ratings that are removed from
the graph increases, the accuracy measures returned by the trust-based
formulae do not drop as quickly those of the standard formulae. Again
this may be attributed to the fact that our trust inference formula is able
to connect users to a wider range of users, and even though it does not
use the ratings information like the PCC measure does, it seems that it
is still able to gather enough information to perform well, and indeed
slightly better than the standard formulae.

We also remark here that the Ensemble Trust algorithm (Eq. 3.10)
actually performs the best for this dataset, slightly outperforming the
TrustCF technique for both MAE and RMSE accuracy measures. The
increased accuracy performance of the RMSE measure shows, as stated in
section 3.3.3, that even though Ensemble Trust maximizes the coverage
of rating predictions as much as possible it doesn’t seem to compromise
the accuracy of the predictions it returns and also doesn’t seem to suffer
from the previously proposed coverage-accuracy trade-off. As discussed
in section 3.4.1, this can be attributed to the fact that the trust inference
formula developed in this work, unlike previously proposed methods to
infer trust, does not use any form of trust propagation between users
along a trust path but it infers trust directly between pairs of users.
These results show that by using both the PCC information and the
trust information Ensemble Trust is able to maximize coverage as well
as accuracy.

3.4.3 Epinions Results

Table 3.3 shows the results performed by each of the recommendation
techniques on the subset of the Epinions dataset. First of all, from these
results we remark that, counter-intuitively, the naive Simple Mean al-
gorithm (Eq 3.1) actually outperforms all of the other algorithms. Of
course, this is not the case for both MovieLens and LibimSeTi datasets
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and certainly goes against intuition. However, these results are not com-
pletely a surprise and are similar to those observed in [34] for the same
dataset. The main explanation for this result can be attributed to the
fact introduced in section 3.4.1, that the vast majority of ratings (74%)
in this Epinions dataset have a value of either 4 or 5, with (45%) of these
having the highest possible rating of 5. With such little variance in the
rating values, the simple unweighted mean of all the ratings of users will
usually return values close to the real rating value. This is also reflected
in the performance of the Trust Filtering Algorithm (equation 3.6), which
performs equally well as the Simple Mean. This algorithm likewise uses
simply a non-weighted average of the ratings for an item, but this time
only from trusted users. But with such little variance between ratings
we noticed that filtering through trusted users does not improve on the
simple mean, and in fact in terms of coverage performs worse.

However, if we concentrate only on the performance of the trust-based
algorithms in respect to the performance of the standard algorithms,
we can see that the trust-enhanced algorithms again outperform their
standard similarity based counterparts in terms of accuracy, as is the
case for the other datasets.

In terms of coverage, the percentage of rating predictions the trust-based
algorithms were able to make was almost twice as much as those that
are based on the PCC similarity measure. Again, this may be attributed
to the sparsity of this Epinions dataset. As discussed, the calculation of
the PCC measure uses the deviation of ratings for shared items from the
average rating of a user, and with the sparsity and low level of rating
distribution of this dataset as discussed in section 3.4.1, it appears that
the algorithm finds it difficult to compute positive similarity measures
between a sufficient number of users. On the other hand, as discussed in
section 3.4.1, the use of the two-hop neighbourhood structural aspect of
the proposed trust inference formula (Eq. 2.3) allows users to connect
to a larger range of other users in the graph than would be possible
if the existence of shared items is only taken into account. By using
this two-hop neighbourhood, the set of trusted users who have rated an
item (for which a rating value is to be predicted) is more likely to be
larger than the set of users that have a positive similarity measure from
the PCC formula (as the PCC only uses information from shared items),
thus giving much greater coverage to the trust enhanced techniques. The
results from this Epinions dataset show the advantage of this feature of
the proposed formula in very sparse datasets.

As well as this, as was the case for the MovieLens dataset, we remark
that trust-enhanced techniques do not seem to suffer from the so-called
“accuracy-coverage trade-off” described in [57], where a rise in coverage
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is usually at the expense of accuracy, as previously experienced by some
trust-enhanced measures. Again, as stated in the previous analysis of the
MovieLens dataset, one possible explanation for this may be that previ-
ous comparisons have used trust propagation techniques [24] to increase
the coverage of their trust enhanced formulas, and have experienced the
issue whereby shorter propagation paths deliver more accurate results,
and thus increasing the number of hops of propagation delivers less ac-
curate trust estimations, and thus negatively impacting the accuracy of
subsequent rating predictions. The method of inference proposed in this
work however, does not seem to suffer from this drop in accuracy as it
does not use any sort of trust propagation between users, but trust is
inferred directly between users and consequently our resulting trust met-
rics seem to avoid the accuracy trade off experienced as a result of trust
propagation.

3.4.4 LibimSeTi Results

Table 3.4 presents the results for each of the recommendation techniques
performed on the LibimSeTi dataset.

In comparison to the improvement in the recommendation accuracy shown
in the MovieLens dataset, on a close inspection of the results for the Li-
bimSeTi dataset, we can a see particularly larger scale of improvement
in the accuracy of predictions when trust is incorporated into the rec-
ommendation process. This is demonstrated by a superiority of 0.34 for
performance of the the Trust CF algorithm in relation to the MAE per-
formance for 10% of the ratings hidden over its standard counterpart
Pearson CF, with both having a MAE of 1.410 and 1.444 respectively.
Whereas the superiority between these two algorithms for the same test
on the MovieLens dataset was only 0.07.

One possible explanation for this increased superiority over different
datasets may be the increased number of extreme ratings present in the
LibimSeTi dataset, As discussed in [15] and shown in figure: 3.1(c), this
LibimSeTi dataset contains a large proportion of extreme ratings, with
a large percentage of the ratings in the dataset having either the low-
est possible value, 1, or the highest possible value 10. In many of the
previous studies that have incorporated trust into the recommendation
process [20, 35], it has been shown that difference in opinion between the
users in a dataset is where the trust-enhanced techniques perform best
in relation to the standard techniques, where a user’s rating for a partic-
ular item differs significantly from the average rating for this item. Thus
considering these extreme opinions present in the LibimSeTi, the use of
trust in the recommendation techniques, as previous studies have shown,
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seems to provide more personalization to the predicted recommendations
which seems to reflect these differences opinions.

Further to what we have discussed in section 3.4.1, we notice that the
Ensemble Trust (Eq. 3.10) and the Trust CF formulae are almost identi-
cal throughout the results. One possible explanation for this is that the
set of users who have a positive pearson correlation (PCC) to the target
user is similar to the set of users who are trusted by the user.

As for the rest of the results, we see common behavior to that of the
datasets above, as the percentage of ratings that are hidden increases, the
accuracy and the coverage of the algorithms drop, but the trust formulas
do not drop as quickly, particularly in relation to coverage, where the
coverage of the trust based algorithms remains reasonably optimal.

3.5 Conclusion

This chapter presents an empirical analysis of a number of the differ-
ent techniques previously proposed to incorporate trust information into
recommender systems, as well as standard recommendation algorithms
commonly used in recommender systems.

Using the trust inference formula developed in the previous part of this
thesis (section: 2.3.2) to infer trust information between users using only
the structural information of the social graph, these techniques are ap-
plied to three different datasets without the need for explicit trust as-
sertions. Each recommendation technique is then performed on each
dataset to predict the values of ratings with 10%, 20%, 30% and 50% of
the ratings hidden from each graph.

From these experiments, the accuracy of each algorithm is measured us-
ing the Mean Absolute Error (MAE), and the Root Mean Square Error
(RMSE) measurements, and the prediction coverage of each algorithm
is also measured. These measures are thus used to analyse the perfor-
mance of each algorithm on each of the three different datasets with
increasing numbers of ratings removed. From these results, we remark
that the more ratings that are hidden in the graph, the accuracy of the
standard algorithms drop at a quicker rate than those of the trust-based
algorithms. We also remark that the prediction coverage of trust-based
techniques remains relatively high even with 50% of the original ratings
from the graph.

It is clear from these results that the incorporation of trust into recom-
mendation algorithms can increase both the accuracy and the coverage
of personalized recommendations. However, it is important to note the
affect on each algorithm of the connectivity of the network in question.



3.5. CONCLUSION 69

Particularly in the case of a sparse dataset, the use of trust can signifi-
cantly improve both the coverage and the accuracy of recommendations.
On the other hand, when used in a highly connected network where the
ratings of items are reasonably distributed, such as MovieLens the im-
provement is not distinct, with trust showing signs of improvement but
not very significant improvement. However, with a well connected net-
work but where the ratings are more extreme and show disagreement
between users such as the LibimSeTi dataset, we can see that trust can
distinctly improve accuracy and personalization of recommendations.





CONCLUSION

Split into two main parts, this thesis presents a further investigation and
analysis of the domain of trust-based recommender systems.

Using a methodology inspired from real observations, the first part of
this work proposes a new method for the automatic inference of trust
information between users in bipartite social graph using only the struc-
tural information present in the graph. Through a set of experiments
performed on a real on-line social network, the proposed method shows
a high degree of accuracy for the prediction of true trust assertions be-
tween users, performing statistically significant results in comparison to
a similar approach, showing that the existence of highly rated shared
items between two users in a social network does not present a signifi-
cant discriminant feature for the prediction of trust. The resulting trust
graph generated from the proposed trust inference method also shows
structural properties typical of on-line social network, further validating
the proposed method.

The second part of this master thesis presents an empirical analysis of a
number of different techniques designed to incorporate trust information
into the process of content recommendation. Due to the unavailability of
explicit trust information in the majority of on-line social networks, pre-
vious studies presenting a similar empirical analysis have been restricted
to just a single dataset. By using the trust inference method developed
as part of the first part of this thesis, we were able to perform these
techniques on three separate datasets.

The analysis performed shows that the incorporation of trust into the
recommendation process can indeed improve the accuracy of rating pre-
dictions, as well as vastly improve the prediction coverage of standard
recommendation algorithms, as suspected. Notably, we can see that

71
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trust is most effective in situations of extreme rating, where a user’s rat-
ing from an item may significantly differ from the average rating, again
as indicated in previous studies. Further to this, the experiments in this
work also show a new interesting behaviour of trust-enhanced algorithms,
that even as the number of ratings that are hidden from the graph in-
creases, the accuracy and coverage of the trust-based recommendation
techniques does not drop as fast as those of the standard techniques, un-
derlining the advantage of incorporating trust into the recommendation
process. However, most importantly, from this analysis we remark that
the performance of each technique highly depends on the properties of
the dataset on which it is applied. Such properties include the distribu-
tion of the ratings in the graph, the overall sparsity of the graph, as well
as the amount of extreme ratings contained in the graph.

From this work, we can conclude that the method proposed in the first
part of this thesis constitutes a re-usable and generic trust inference
formula, capable of being applied to many different and varying social
graphs containing a bipartite structure. This work also adds further
weight to the benefits of using trust in the recommendation process, by
showing its advantages over standard techniques on multiple and varying
datasets.

3.6 Future Work

The work performed in this master thesis represents just a small step
into this domain. The trust formula developed in the first part of this
work still has much room for much improvement. An interesting direc-
tion for future development and improvement of this formula could be
the consideration of content information of the vertices and edges. One
example of this would be the incorporation of the rating value given by a
user to a shared item. Presently, the formula only considers the structure
of the graph, and infers trust between users using the existence of shared
items. However, if one user has given a high rating to a shared item, and
the other has given a low rating, then this will of course affect the trust
inferred between them. The current form of the formula does not take
this difference in ratings into account.

As well as this, another interesting possible direction which was briefly
touched on in this work, but not included in the final version of the
formula presented here, would be to take into consideration how users
have previously interacted with the graph. For instance, a rating of 3
out of 5 stars for one user may be an average score for one user, but
for a more conservative user, this might be above average, and thus
indicating a preference for this item. As well as this, if one user has
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rated many items and another user has only rated a few this may also
indicate a distinguishing character trait which may be interesting to take
into consideration. If one user likes lots of things, and another only like
a few things, how much can we say about the similarity between them?

In addition to the possible enhancements of the trust inference formula,
this work can be extended by applying it to a much larger scale. In a
computational context, a future step would be to provide a large scale
implementation of the method on top of large scale graph processing
engines such as Apache Giraph.
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