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Nonlinear systems engineering is regarded not just as a difficult and confusing

endeavor; it is widely viewed as dangerous to those who think about it for too long.

Wilson J. Rugh

in Nonlinear System Theory: The Volterra/Wiener Approach [39]

This book of mine has little need of preface, for indeed it is “all preface” from

beginning to end.

D’Arcy Wentworth Thompson

in On Growth And Form [45]



Remerciements
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“A building is conceived when designed, born when built, alive while standing, dead

from old age or an unexpected accident.” Mathys Levy and Mario Salvadori[27]

Based on this sentence, we can make an analogy with software development phases:

design, implementation and maintenance. But what doesn’t sound good is the dead.

In fact a software is designed as he will live forever, he doesn’t die from old age. But

if we are interested at the historical reality, we see that software actually dies.

By dead, we don’t speak about program failure (such as the famous Ariane 5

software bug) but the fact that the requirements and specifications are no longer

met, due to the changing environment or changing expectations. Have you ever

check the amount of money spent by companies to overcome their software problem

just because there is a new environmental parameter to be considered? So huge for

simple adjustments and reconfigurations.
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Figure 1.1: Typical distribution of total production efforts/costs[47]

Can we remove or, softly, reduce these problems by increasing the software’s change

tolerance? Yes, by introducing a new qualitative way of reasoning. It’s the goal of

my thesis : designing robust adaptive software with feedback structures.

1.1 Autonomic Computing and Self-management

Today, we are increasingly dependent on computer systems and high-tech, and

these systems take more and more space in our day-to-day life (Intelligent Parking

Assist System, Home Automation, Networked Systems, etc..). In addition, there is a

runaway technology and it continues to grow, Moore’s Law illustrates this situation.

This problem poses a great challenge for both science and industry because this in-

crease implies a strong growth of the complexity of modern systems. This complexity

becomes the primary factor limiting the expansion of such systems. Indeed, the sys-

tems are such as that a human person could not have the required skills to manage

them in a reasonable time.

It implies that more and more efforts are spent to overcome this problem. One of

the most famous pioneer approaches is IBM’s autonomic computing initiative, in 2001

[15]. The goal is the creation of selfmanagement networks to overcome the increasing

complexity of Internet and other networks.

In this paper, there’s a biological analogy between “autonomic computing” and “ner-

vous system” that protects and regulates our body continuously and unconsciously:

if I’m playing chess, I can focus fully on my game without thinking about the activity

is going on inside my body. This example illustrates the fact that the nervous system

manages our heartbeat, our body temperature,... in an inconsciously way. While

the system takes care of vital tasks (low-level) our conscious mind can handle high-

level tasks. The analogy with the autonomic computing is obvious: the idea is that

computer systems can themselves manage routines tasks while system administrators

would handle real tasks instead of troubleshooting or repair systems. All this waste

- 6 -
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of time that we could devote to improving the system itself and moving forward to-

wards new innovative applications. In addition, human intervention can be lengthy,

incorrect, and often non-optimal.

In this paper, the notion of self-management was also introduced. Even today, many

people find it difficult to distinguish the notions of self-management and autonomic

computing. Actually self-management is part of the autonomic computing.

Figure 1.2: Autonomic Computing characteristics hierarchy

This work aims to provide a hierarchy according to the characteristics of the auto-

nomic computing[32].

We can now consider that the self-management is an emerging field in computer

science, a new way of thinking, a new paradigm. As stated above, this paradigm

allows, according to administrator’s goals and given high-level objective, computer

systems and applications to manage their own operations without human intervention,

which will cause reducing administrative overhead. These costs increase dramatically

for distributed applications that are deployed in volatile environments such as peer-

to-peer overlays which aggregate heterogeneous, poorly managed resources on top of

relatively unreliable networks[14].

- 7 -
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This passage comes from an article called The Vision of Autonomic

Computing [21]:

Systems manage themselves according to an administrator’s

goals. New components integrate as effortlessly as a new cell

establishes itself in the human body. These ideas are not sci-

ence fiction, but elements of the grand challenge to create self-

managing computing system. [...] As systems become more in-

terconnected and diverse, architects are less able to anticipate

and design interactions among components, leaving such issues

to be dealt with at runtime. Soon systems will become too mas-

sive and complex for even the most skilled system integrators to

install, configure, optimize, maintain, and merge. And there will

be no way to make timely, decisive responses to the rapid stream

of changing and conflicting demands. The only option remain-

ing is automatic computing: computing systems that can manage

themselves given high-level objectives from administrators.

Extract

By staying in the analogy of the human body, the great challenge for the future would

be that eventually we can integrate new components into a self-managing computing

system as easily as a cell in the human body.

Thus purpose of self-management is not to replace humans entirely but rather

to enable systems to adjust and adapt themselves automatically to reflect evolving

policies and general behaviours defined by humans.[2] In concrete terms, the self-

management initiative advocates self-configuring, self-healing, self-optimization and

self-protection. We will call this by self-*. The fact that the environment in which

takes place the autonomic computing is dynamic adds a difficulty to the design of the

application.

Coming back to the analogy, we can clearly see the robustness of the human body

adapts and reacts depending on the environment. This is what should be autonomic

systems by maintaining and adjusting their operations to a multitude of parameters:

external conditions, demands, components, workloads, ... to prevent the software and

hardware failures, which can either be innocent or malicious.

The approach for designing such systems is to create components that continuously

monitor and manage subsystems which they are granted, this is called the control

loops. From this observation, we can apply control theory. The disadvantage is that

control theory is a quantitative approach and requires a large number of calculations

and a big mathematical reasoning coupled with a mastery of optimization. This begs

the question: is there a qualitative and rigorous reasoning for the design of such

- 8 -
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systems?

Regarding the architectural point of view, we shall look at systems with a high

level of abstraction. Techniques and design rules of such architectures, for autonomic

systems but also for other software and for some no IT-oriented exemples, will be

discussed in this paper.

By feeling, we realize that the autonomic systems must themselves be composed of

autonomic elements. These elements can be seen as individual and independent sys-

tems, with weak interactivity between them. These elements will manage themselves

their behavior, we will introduce it in the next chapter.

1.2 Feedback thinking

Before going further, we must introduce the notion of feedback. Actually, all complex

systems around us can be seen as a set of feedback strutures. Let introduce it by a

small example:

In 1948, in his book Cybernetics: or Control and Communication in the

Animal and the Machine[30], Norbert Wiener describes a thermostat like a

feedback chains in which no human element intervenes:

There is a setting for the desired room temperature; and if

the actual temperature of the house is below this, an apparatus

is actuated which opens the damper, or increases the flow of fuel

oil, and brings the temperature of the house up to the desired

level. If on the other hand, the temperature of the house exceeds

the desired level, the dampers are turned off or the flow of fuel

oil is slackened or interrupted. In this way the temperature of

the house is kept approximately at a steady level. Note that

the constancy of those level depends on the good design of the

thermostat, and that a badly designed thermostat may send the

temperature of the house into violent oscillations[. . . ].

Example: thermostat

According to the dictionary feedback is a process in which information about the past

or the present influences the same phenomenon in the present or future.

This is a simple example which illustrates that the notion of feedback is present in

our everyday life. In biology (eg ecosystem, organism), electronics (eg amplifiers) in

population analysis (eg demography growth), in economics (eg stock market bubble),

or simply in our bathroom (tank water level in the flush toilet).

- 9 -
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Figure 1.3: A thermostat as a feedback loop

We can control feedback to regulate certain quantities: here it is to control the

temperature but there are other uses such as cruise control in an automobile or

the human sensorimotor system.

Even unconsciously, we use it, as illustrated by the following example.

Another Wiener example from [30]:

Another interesting variant of feedback systems is found in

the way in which we steer a car on an icy road. Our entire

conduct of driving depends on a knowledge of the slipperiness

of the road surface, that is, on a knowledge of the performance

charachteristics of the system car-road. If we wait to find this

out by the ordinary performance of the system, we shall discover

ourselves in a skid before we know it. We thus give to the steering

wheel a succession of small, fast impulses, not enough to throw the

car into a major skid but quite enough to report to our kinesthetic

sense wheter the car is in danger of skidding, and we regulate our

method of steering accordingly.

Example : icy road

Despite being old, this example is very relevant because feedback systems really shape

our world. And as said before, we use it every day, even when we do not pay attention.

But what exactly is a feedback system? Actually we need different levels of ab-

straction to illustrate it.

We’ll start with the basic component and illustrate it in parallel with an example

on the respiratory system (developed by peter van roy [35] [38]). Afterwards we will

- 10 -
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increase the complexity and the abstraction. This is an overview, we will go deeper

and formalize this in chapter 3.

Single component Also called concurrent component, this is an active entity com-

municating with its neighbors through asynchronous messages.

Note that this entity can operate without any message, not just like a port object who

works only on receipt of a message, this is more than that! We see this as an entity

which has its own behavior and that, when it receives messages, processes them by

causing the appropriate action or by changing its behavior. To make an analogy, it’s

a bit like a beehive that although it is influenced by the coming and going of foraging

bees continues to produce honey and to have its internal activity.

Figure 1.4: A single component

A single component can be a subsystem, as it is the case with the breathing system.

Finally note that we can have intelligence concentrated in core components such as

conscious control of body and breathing.

Feedback loop A feedback loop in its general form consists of three parts, a moni-

tor, a corrector, and an actuator, attached to a subsystem[35]. Each of these parts is

an agent. The agents and the subsystem are concurrent components that interact by

sending each other messages. A feedback loop has the characteristic of continuously

maintaining one local goal.

Figure 1.5: General diagram of a feedback loop

- 11 -
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Each part can perform either a local or a global action. The corrector component con-

tains an abstract model of the subsystem and the local goal. The feedback loop runs

continuously, monitoring the subsystem (Monitoring agent) and applying corrections

(Actuating agent) in order to approach these goal (Correcting agent).

We can apply this general diagram in our respiratory system example:

Figure 1.6: A feedback loop in the respiratory system

This is the normal scenario in humans respiratory, it’s a passive process.

Feedback structure Each feedback structure consists of a set of interacting feed-

back loops that together maintain one desired global system property[35]. This prop-

erty is maintained through the feedback loop of the goals that constitute this feedback

structure. It is often organized as a hierarchy where each feedback loop may control

an inner loop and be controlled by an outer loop.

- 12 -
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Figure 1.7: A feedback structure representation of the human respiratory system

As you can see, all feedback loops are not active at the same time: for example, in your

state normal breathing you do not realize that you breathe. But if your environment

changes, let’s say you fall into the water, you realize the need to hold your breath

so that the water floods into your lungs. We will see later that the feedback loops

of feedback structures activate and deactivate themselves depending on the current

state. This state is determined by the environment as well as internal parameters of

the structure. In a feedback structure, each combination of active feedback loops is

a state, we will develop it in the section on the state diagram (section 3.3).

Weakly Interacting Feedback Structures Based on the fact that a complex

system can be seen as a conjunction of global properties, and the fact that we have

seen above that a feedback structure maintains a property, we can infer that all

complex system can be seen as weakly interacting feedback structures (WIFS). Each

of the system property is implemented by one feedback structure.

Interaction between feedback structures is limited and well-defined (hence weakly).

In a well-designed system, no part exists outside of a feedback structure.[35]

- 13 -
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Figure 1.8: Schematic view of weakly interacting feedback structure

The whole human body can be seen as WIFS with these components: respiratory

system, immune system, heart, digestion, etc.. The chapter 6 is devoted to introduce

this concept with Hypothalamus example. Organizations such as human societies, as

the Catholic University of Louvain, for example, can also be seen as WIFS.

We will see in chapter 3 that in weakly interacting feedback structures, the feed-

back structures are relatively independent, but not completely. However, they are

independent enough to make their own regulation.

Now that we have an overview of what are the feedback systems, a question arises:

What is the relationship between this section and the previous section on the auto-

nomic computing and self-management?

By way of introduction, we will illustrate this with a text about the Selfman Project,

a 3-years European research project that incubates self-managing internet applica-

tions1.[36]

1More info: www.ist-selfman.org/

- 14 -
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This text is from Self Management for Large-Scale Distributed Systems

based on Structured Overlay Networks and Components - European Sixth

Framework Programme Priority 2, Information Society Technologies : The

Adventures of Selfman - Year Three:

A self-managing application consists of a set of interacting

feedback loops. Each of these loops continuously observes part of

the system, calculates a correction, and then applies the correc-

tion. Each feedback loop can be designed separately using control

theory or discrete systems theory. This works well for feedback

loops that are independent. If the feedback loops interact, then

your design must take these interactions into account. In a well-

designed self-managing application, the interactions will be small

and can be handled by small changes to each of the participating

feedback loops. [...] It can happen that parts of the self-managing

application do not fit into this ’mostly separable single feedback

loops’ structure. [...] In the case where the feedback loop struc-

ture consists of more than one loop intimately tied together, the

global behavior must be determined by analyzing the structure

as a whole and not trying to analyze each loop separately. To

our knowledge, no general methodology for doing this

exists. We have made progress on two fronts: design rules for

feedback structures and patterns for common feedback structures.

[...] We are preparing a comprehensive survey of feedback loop

patterns

Extract : Selfman Project

Because there is no general methodology, the purpose of this paper is to contribute to

fill this gap. The goal is to establish a first general methodology that allows

us to design systems, and especially self-management systems, based on

feedback structures.

1.3 Contributions

As previously stated, there are not yet rules to design discrete system rigorously

based on a qualitative reasoning. In 1994, Steven Strogatz taught us how to reason

qualitatively and rigorously in continuous system [43]. This dissertation therefore

aims to develop the laws of design in the same way that Strogatz, except that the

application is done in discrete systems. There are considerable prospects in this area,

and just a few insights has been made.

There are already some design methodologies, but these are quantitative: System

Dynamics, Control Theory, Model Checking. We’ll give an overview of these in the

- 15 -
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next section. All these three disciplines are complementary to the WIFS methodology.

The main two goals of this thesis are:

• To present the WIFS methodology (with precise definitions and in tutorial

fashion).

• To show how it can be used in complementary way to three existing quantitative

methodologies. We’ll apply this methodology on various concrete examples.

For an overview of the fields covered by the methodology, we are interested in the

following framework (figure 1.9), derived from [43].

Figure 1.9: A system overview by Steven H. Strogatz

The X-axis of this framework tells us the dimension of the system, e.g. the number of

variables needed to charachterize the state of the system. Note the difference between

the values on X-axis: the two first columns (n = 1 and n = 2) includes systems that

contains exactly one and two variables, respectively. The third columns (n ≥ 1)

are systems that usually contains variables greater or equal to 1, as fractals (2, 3 or

more variables according the dimension) or Lorenz system (3 variables). The fourth

column (n >> 1) includes systems that contains a huge number of variables (like

neural networks [4]) despite being continuous systems.

The Y-axis differentiates linear and nonlinear systems. There is in each classification

a set of system samples.

- 16 -
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Let analyze two of them: exponential growth and pendulum. These examples are

also taken from the Steven Strogatz ’s book : Nonlinear Dynamics and Chaos.

For this first example, let consider the exponential growth of a population of

organisms. This is a first order differential equation

ẋ = rx

where x is the population at time t and r is the growth rate. This system is

classified in the column labeled n=1 because one piece of information -the

current value of the population x- is sufficient to predict the population at

any later time. The differential equation ẋ = rx is linear in x, so finally the

system is classified in the upper left-hand corner of the framework.

Population growth

This second example is governed by

ẍ+
g

L
sinx = 0

There is an additional parameter compared to the previous example. The

state of the system is given by two variables : the current angle x and the

angular velocity ẋ. Because these two variables are needed to find the state,

the pendulum swinging is placed in the n=2 column. And because this

system is nonlinear, this system is placed in the lower half of the second

column.

Swinging of a pendulum

We can deduce that the simplest systems are located in the upper left-hand corner.

The upper right-hand corner is the domain of classical applied mathematics and

mathematical physics. There is a region circumscribed by the frontier. In this region

this is really the jungle. The topics are only partially explored and according to

Strogatz they lie at the limits of current understanding. These problems are nonlinear

and contains a large number of parameters.

As said previously , the scope of this work is the set of all discrete systems, including

nonlinears. Most of the examples covered are nonlinear because we can better appre-

ciate the power of these methodology. Based on the figure 1.9 we can deduce that

the methodology covers the four first columns.

- 17 -
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1.4 Relationships with complementary techniques

We are driven to ask the following question : Why not use an already existing ap-

proach? There are two models to which the question refers: System Dynamics and

Control Theory. Both have advantages and drawbacks. Firstly we will briefly present

them.

1.4.1 System Dynamics

The great advantage of this modeling is that it considers the notion of feedback loops.

Using this methodology, we can precisely know the evolution of a parameter through

a variation of others.

According to Wikipedia, System Dynamics is a methodology and mathematical mod-

eling technique for framing, understanding, and discussing complex issues and prob-

lems.

System Dynamics is part of systems theory. This is an approach to understand the

behavior of complex systems over time. It considers the internal feedback loops and

delay effects that affect the overall behavior of the system. It is based on models

that are a formalization of assumptions about the user’s system. It allows robust

simulation, if the modelization is precise enough.

In System Dynamics, running a simulation is solving mathematical equations to ob-

tain the value of each variable over time. The equations contain parameters that

must be calibrated often on historical data. The output of a simulation for a given

set of input data is called a scenario.

This technique allows mathematical modeling to understand and analyze complex

problems. It was developed in the 50s to help business managers improve their under-

standing of industrial processes. Since the 90’s it exists software tools to understand

system dynamics with appropriate user interfaces, like STELLA2. They can solve

problems by calculating incrementally each variable on very short time intervals.

It is interesting to see how a system reacts to an external perturbation. This stress

will trigger a series of positive and negative feedback that will ultimately magnify or

counteract the initial stimulus.

2more info: http://www.iseesystems.com/
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This example comes from the excellent book Dynamic Modeling of Diseases

and Pests of Bruce Hannon and Matthias Ruth[13]. This model shows the

evolution of an epidemic if people lose their immunity.

Figure 1.10: Corresponding model

After the first occurrence, loss of immunity dampens the effect of epidemics

and are less severe. In the long term, the number of sick persons is con-

stant. That number is typically larger than would be the case of permanent

immunity.

Figure 1.11: Loss of immunity. Blue line (1) represents sick population in

the presence of immunity. Red line (2) represents sick population with a loss

of immunity.

Example: System Dynamics

- 19 -
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This is the previous example in STELLA:

LOSS OF IMMUNITY

----------------

CONTAGIOUS(t)=CONTAGIOUS(t-dt)+(GET SICK-STAY IN BED) * dt

INIT CONTAGIOUS = 1 {Individuals}

INFLOWS:

GET SICK = CONTACT RATE * (CONTAGIOUS + SICK) * NON IMMUNE

{Individuals per Time Period}

OUTFLOWS:

STAY IN BED = CONTAGIOUS {Individuals per Time Period}

IMMUNE(t) = IMMUNE(t - dt) + (RECOVER - LOSE IMMUNITY) * dt

INIT IMMUNE = 0 {Individuals}

INFLOWS:

RECOVER = .9*SICK {Individuals per Time Period}

OUTFLOWS:

LOSE IMMUNITY = .1*IMMUNE

NON IMMUNE(t) = NON IMMUNE(t - dt) + (BIRTHS +

LOSE IMMUNITY - GET SICK) * dt

INIT NON IMMUNE = 1000000 {Individuals}

INFLOWS:

BIRTHS = 5000 {Individuals per Time Period}

LOSE IMMUNITY = .1*IMMUNE

OUTFLOWS:

GET SICK = CONTACT RATE * (CONTAGIOUS + SICK)*NON IMMUNE

{Individuals per Time Period}

SICK(t) = SICK(t - dt) + (STAY IN BED - RECOVER - DIE) * dt

INIT SICK = 0 {Individuals}

INFLOWS:

STAY IN BED = CONTAGIOUS {Individuals per Time Period}

OUTFLOWS:

RECOVER = .9 * SICK {Individuals per Time Period}

DIE = .1 * SICK {Individuals per Time Period}

CONTACT RATE = .000002 {1/(Number of Contagious + Sick) *

Nonimmune) per Time Period}

STELLA

- 20 -
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1.4.2 Control Theory

Control theory is the set of techniques to control a physical quantity (temperature,

velocity, pressure, ...), without human intervention, to maintain a given value. It

includes the study of the behavior of dynamic systems based on parameterized tra-

jectories of their parameters. Control theory has a mathematical foundation with

many theoretical results if the systems obey certain formal rules.

It’s better to illustrate this theory with an example, taken from Boris J. Lurie and

Paul J. Enright [26]

Figure 1.12: Servomechanism of a single-loop feedback system

Figure 1.13: Block diagram

The first figure represents the servomechanism that regulates the elevation of an

antenna. The second figure shows the block diagram for this system of control. We

represent it as a cascade of elements, ie links. The capital letters stand for the

signals’ Laplace transforms and also for the transfer finctions of the linear links. This

block diagram shows a single-input single-output (SISO) system. There is one input

command, U1, which is the commanded elevation angle, and just one output U2,

which is the actual elevation of the atenna. Evidently, there is one feedback loop,

and so the system is also referred to as single-loop.
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The feedback path contains some sort of sensor for the output variable and

has the transfer function B. Ideally, the measured output value BU2 equals

the commanded value U1, and the error E = U1 −BU2 at the output of the

summer is zero. In practice, most of the time the error is nonzero but small.

The error amplified by the compensator C is applied to the actuator A, in

this case a motor regulator (driver) and a motor. The motor rotates the plant

P , the antenna itself, which is the object of the control. The compensator,

actuator and plant make up the forward path with the transfer function

CAP . If the feedback path were not present, the system would be reffered

to as open-loop, and the output U2 would simply equal the product CAPU1.

The return signal which goes into the summer from the feedback path is TE,

where the product T = CAPB is called the loop transfer function, or the

return ratio.

The output of the summer is

E = U1 − ET

so that the error

E =
U1

T + 1
=
U1

F

where F = T+1 is the return difference and its magnitude |F | is the feedback.

It is seen that when the feedback is large, the error is small.

Feedback in control theory: example

1.4.3 Models comparison

We will now make a brief comparison between the two models discussed in this section

and design with WIFS.

System Dynamics Control Theory WIFS

Good for discrete systems no yes yes

Good for continuous systems yes yes no

Reasoning quantitative quantitative qualitative

Loop Enabling/Disabling no yes yes

Mathematical Complexity easy hard easy

Local vs Global local local global

Based on this table, we can infer which technique is best suited according to the

system to design. Notice that as the control theory is extremely complex from a

mathematical point of view, we prefer to use the WIFS when we deal with nonlinear

systems.
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Discrete Systems Continuous Systems

Linear Control Theory / WIFS Control Theory / System Dynamics

Nonlinear WIFS System Dynamics

Regarding the WIFS, the main challenge is to show that qualitative reasoning is

rigorous. If we can do that, we can use the techique of WIFS in nonlinear systems,

thus saving considerable time to design compared to the theory of control that involves

a lot of mathematical resources. Indeed, this thesis is led to show the relationship

between a global qualitative methodology (using WIFS) and several local quantitative

methodologies (control theory, system dynamics, model checking).

1.4.4 What about Model Checking?

Model Checking is a family of techniques for automatic verification of dynamic sys-

tems. The aim is to check algorithmically whether a given model, the system itself

or an abstraction of the system satisfies a specification, often formulated in terms

of temporal logic. Model checking allows verification (making sure that the system

satisfies certain safety properties) if the formalization is precise enough.

We’ll discuss it later in the chapter 5. But the main idea is that we’ll need this

method to check the validity of our qualitative reasoning in our approach to design

systems with feedback structures.

1.5 Approach and Organisation

The approach of this dissertation is a qualitative reasoning -but rigorous- on the

design rules of systems designed with weakly interacting feedback structures.

We will analyse examples not only in Computer Sciences but also in other areas such

as Biology or Business. We will focus very specifically on adaptive systems.

Here is the structure and organization of this paper:

Chapter 2 introduces the basic concepts, which means that we will see all the

concepts and definitions necessary to know in to pursue in this work. There will be

also a historical section devoted to cybernetics.

Chapter 3 deals with Weakly Interacting Feedback Structures, it will explain ex-

actly what WIFS are. This will treat in depth, in technical details, what we have

previously introduced in section 1.2.
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Then we will face the central chapter of this book, Chapter 4. This chapter set

the trial of methodology which this work treats. The finality of this chapter is to

develop a set of heuristics to guide the process to the design systems with feedback

structures.

Chapter 5 deals with System Validation. This is to show, demonstrate and discuss

what we have advanced and found in the previous chapter.

Chapter 6 consists of a series of concrete examples where the heuristics and rules

from Chapter 4 are applied. As said before, there will be not only examples dealing

with computer sciences topics, but also dealing with other domains.

The final chapter, Chapter 7, is also an application of rules, but it is entirely

dedicated to the human body, which is a fantastic complex system. Obviously this is

not about the whole human body (if that were the case, we should devote an entire

volume to it), it’s just an introduction which presents the main systems in the human

body.
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This chapter presents the necessary background needed to understand the approach

and methodology presented in this work. Some concepts are very useful to be rede-

fined to have a common understanding of all these concepts. Each time we try to

have some cohesion when we move from one concept to another.

Firstly we will define all the concepts around the system. In the same section, we’ll

also define and formalize the notion of state machine. After that, we will see the

concept of abstraction, a key discipline to fully master the design with WIFS and

conceptualizing systems. The third section is dedicated to the robustness, which is a

keyword in the title of my master’s thesis. The fourth section is about nonlinearity

and chaos in detail and the reasons for the difficulty to design such systems. The

fifth section is derived from the observation that there are often irregularities and

unexpected events in large systems. And finally the last section recounts the his-

torical development that led cybernetics to examine the design of systems and more

particularly of autonomic systems.
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2.1 Systems

A system can be defined as a set of elements interacting with each other according to

certain principles or rules. A system can be open or closed in a given area, depending

on whether or not directly interacts with its environment.

In this section we will see different types of systems but above all we will start with

the notion of state machine.

2.1.1 State transition system

A state transition system is a model of abstract machine. It consists of a given set of

states, and a set of transitions from one state to another, which can be labeled from

a set of labels, same label can appear on several transitions . If this set is a singleton,

the labeling may be omitted.

Note three important points:

• The set of states can be infinite or even uncountable.

• The set of all transitions can be infinite or even uncountable.

• A finite automaton has an initial state and a set of final states.

The state-transition systems can be represented as directed graphs.

State transition Formally we define a state transition (unlabelled) as a couple

(S,→) with →⊂ S × S where S is the set of states, and → is the transition relation.

If p and q are two states, p, q ∈→ means there is a transition from p to q and is

denoted as p→ q

There is no assumption on S and→, they may be infinite, even uncountable. However,

if S is finite (and hence also →), the transition system is a directed graph.

We can also give a definition of labeled transition system: at that time, we must find

a set of labels Λ, and take →⊂ S × Λ× S. The transition system is then the triplet

(S,Λ,→). If there is a transition labeled by λ ∈ Λ between two states p and q, then

we note p
λ→ q.

Finite state machine In the case where S and Λ are finite, one may refer to finite

state machines (in general, we will also give a condition for accepting input word,

which is often the data of two subsets of S that will be initial states, and accepting

states).

Deterministic System The transition system is called deterministic if and only

if → is a function. It is non-deterministic otherwise.
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This example comes from Wikipediaa.

S1 and S2 are states and S1 is an accepting state or a final state. Each edge

is labeled with the input. This example shows an acceptor for strings over

{0, 1} that contain an even number of zeros.

Figure 2.1: This diagram is also called Moore machine

ahttp://en.wikipedia.org/wiki/State diagram

Example: State Diagram

2.1.2 Complex systems and system overview

A complex system is a set consisting of many interacting entities. These entities can

allow the observer to predict the system feedback, behavior and evolution changes,

by calculation. When we want to model a system, we conceive a number of evolution

rules, then the system is simulated by iterating the rules to obtain a structured result.

A system is complex if the final result is not directly predictable by knowing the

rules. In other terms, despite a thorough knowledge of the elementary components

of a system, it is now impossible to predict its behavior, other than by experience or

simulation.

This limitation comes from the impossibility of putting the system into resolvable and

predictive equations. What is crucial is the number of parameters, and the fact that

each one can have a major influence on system behavior. To predict this behavior,

it is necessary to take all of them into account, which is to run a simulation of the

system studied.

A complex system is a system composed of many entities in local and simultaneously

interaction. It often requires that the system has more of the following specifications

(which shows that there is no widely accepted formal definition of what exactly a

complex system is):

• The interaction graph is not trivial: it’s not just everyone interacts with every-

one (there are at least special relationships).

• The interactions, as well as most of the information, are local. There are few

central organization.
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• There are feedback loops. Feedback loops can be a cause of the system behav-

ior’s nonlinearity.

Most of the time the complex systems have the following characteristics in addition:

• Interactions of components together form groups of components strongly linked,

each group is in interaction with others. It allows to model the complex system

by levels: each component interacts locally with a limited number of components

.

• The components can themselves be complex systems (different levels): a society

can be seen as a system composed of interacting individuals, each individual

can be seen as a system composed of interacting organs, each organ... We’ll

cover this in more detail in the next section.

• The system acts on its environment, we say that the system is open.

Finally, it would be interesting to show the following illustration, created by Hiroki

Sayama1, :

1Hiroki Sayama, D.Sc., Collective Dynamics of Complex Systems (CoCo) Research Group at

Binghamton University, State University of New York
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Figure 2.2: Organizational map of complex systems

This is a visual, organizational map of complex systems broken into seven sub-groups.

2.2 Abstraction and Emergence

As for computer science (eg the OSI model), the abstraction is a matter important

in understanding how the system works. We will discuss two key concepts related to

abstraction: behavior and emerging properties. To introduce this concept, note that

the abstraction is present everywhere in systems. For example, in the respiratory sys-

tem, conscious control does not need to know details of breathing reflex. Also in this

example, note that we also have a layer hierarchy, as the OSI model, with component

→ feedback loop → feedback structure → weakly interacting feedback structures.
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Behavior The behavior of a system is the part of its activity which manifests itself

to an observer.

2.2.1 Emerging properties

Emerging properties refer to the appearance of new characteristics to a certain degree

of complexity. We can define the emergence by two characteristics:

• The whole is more than the sum of its parts. This means that you can not

necessarily predict the behavior of the entire by the analysis of its parts.

• The whole adopts a behavior whom detailed knowledge about the parts does

not provide full information about the whole.

Let illustrate this with an image of Stewart and Cohen[9]. Ian Stewart and Jack

Cohen show that the concept of emergence is a crossing point to explain the macro-

scopic properties that can not relate to properties of components alone, and so on:

indeed, If it is evident that cats are strongly attracted to the mice, it seems absurd

to infer that the cat ’s molecules are directly attracted by the mice ’s molecules. The

cause of this attractiveness must therefore be sought in the internal organization of

these, or even more complex structures such as those of the nervous and hormonal

systems.
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This passage is taken from article by Jeffrey O. Kephart and David M. Chess,

The Vision of Autonomic Computing [21]. It is a metaphor for the emergence

of the behavior of an autonomic system to the emergence of social intelligence

from a colony of ants.

Autonomic systems will be interactive collections of auto-

nomic elements, individual system constituents that contain re-

sources and deliver services to humans and other autonomic el-

ements. Autonomic elements will manage their internal behav-

ior and their relationships with other autonomic elements in ac-

cordance with policies that humans or other elements have es-

tablished. System self-management will arise at least as much

from the myriad interactions among autonomic elements as it

will from the internal self-management of the individual auto-

nomic elements, just as the social intelligence of an ant colony

arises largely from the interactions among individual ants.[...]

Indeed, in social insects such as ants or termites, it appears an emergent

behavior, overall effect resulting from the application of local rules. Studies

by ethologists have shown that some collective behavior of social insects were

self-organized. Self-organization characterizes processes in which structures

emerge at the collective level, from a multitude of simple interactions between

insects, without being explicitly coded at the individual level. For example,

the fact that a termite has more chance to make a divot in a place where

there are already, this will arise the construction of a mound in a group of

termites.

Extract: autonomic elements and social intelligence

2.2.2 Phase diagrams

A phase of a complex system consisting of many interacting components is an area

of the operating space in which the aggregate behavior of the components can be

characterized concisely. For example, each component consisting of a specific system,

may be in the same state and have the same dominant set (same behavior). Often,

the components have identical specifications, but this is not always the case.

Phases appear in many complex systems consisting of large numbers of interacting

components, not just in physical systems (such as water) where the components are

molecules or atoms, but also in computing systems (such as peer-to-peer networks)

where the components are software components, and also in social systems (such as

human organizations) where the components are human beings. Different parts of

the system can be in different phases. The important point is that phase transitions,

where the system changes phase, require no global coordination, but only local in-

teraction between nearby components. Boundaries between phases can be sharp or
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diffuse, and critical points may occur. A critical point (we will discuss this topic in

more detail later) is a small part of the operating space in which tiny changes in

operating conditions can result in large parts of the system changing phase.

A phase diagram is a graphical representation used in thermodynamics representing

the fields of the physical state of a system based on variables chosen to facilitate

understanding of the studied phenomena.

When all phases are represented in different physical states, we talk about change of

state diagram.

Illustrate this with an example for water2:

Figure 2.3: Phase diagram for water

• The triple point is the point where the three phases coexist which happens at

a specific temperature and pressure.

• The curve of change of liquid-vapor stops at a point called critical point (not

shown on the picture) beyond which the water has only a single fluid phase,

rather closest (in terms of its physical properties) of a gas for pressures below the

critical pressure, rather close to a liquid at pressures above the critical pressure.

It is important to understand the workings of phase diagrams because, in a system,

for each phase or phase transition, a specific behavior will be appropriate.

2.3 Robustness and Scalability

The robustness of a system is defined as the stability of its performance. In computer

science, it means that the system does not crash at the slightest disturbance.

2http://www.earth.northwestern.edu/people/seth/202/new 2004/H2Ophase.html
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2.3.1 Three Laws of Scalability

According to Peter Van Roy [38], a system is scalable if it is able to handle growing

amounts of work in an acceptable manner. There are three laws of scalability:

1. New things happen at each new scale.

2. In the limit of increasing scale, large systems have only local control.

3. (the CAP theorem)Pick any two of consistency, availability, and partition tol-

erance.

We have so far met the first two laws in our examples, from respiratory system (among

others).

We will now discuss these three laws. This discussion is also inspired by the slides

presentation of Peter Van Roy [38].

First law : New things happen at each new scale. It means the at each new scale,

the situation changes. We can apply this law to physics for example. At each new

level of energy, new laws and new physics appears (see box below). This example is

inspired from an essay of the Absolute Motion Institute : The Joules of the Universe3.

The diagram on the next page shows all the units of energy found in na-

ture. The smallest (stationary photon) to the largest (total output since the

creation of the universe).

Note the scale change: indeed, firstly, at 10−38 joule, the unit is considered

as energy of an individual photon (such as radio waves, television waves, the

light spectrum, etc... ). Then from 10−12 joule of energy the next element,

hydrogen fusion, does not take into account the photons but the kinetic

energy of the nuclei of helium and hydrogen speeding away from one another.

It’s the same with nuclear fission of Uranium235 or the proton-antiproton

annihilation.

The next few items on the scale are units of energy used in science and

commerce. The erg is the energy of a gram of mass moving at a velocity of

2 centimeters per second. A foot pound is the energy of one pound moving

at 2 feet per second. A calorie is the amount of energy required to raise the

temperature of one gram of water one degree Celsius.[16]

And so on ... This example clearly illustrates our first physical law: Novelty

at Each Scale.

Scalability in nature

3http://www.circlon-theory.com/HTML/joules.html
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Figure 2.4: The Joules of the Universe. This diagram shows the energy transfer of a

number of familiar events over the whole energy spectrum.

Note that a problem remains: What about WIFS introduced in section 1.2? How

can we make the correspondence between it and the first law? Indeed, it seems that

in this case there is only one level of scale.

The solution follows from the second and third law: considering that there are WIFS

structures at each level. Take for example the respiratory system introduced previ-

ously and we are interested in a random single component: Measuring CO2 in blood.

If we change the level, this component can be a WIFS structure because it can be

assumed it is constituted of sensors that are themselves feedback structures (because

composed of cells).
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Figure 2.5: Single component as a WIFS

Second law : In the limit of increasing scale, large systems have only local control.

The fact that the control is only local, involves apparation of concurrency, nondeter-

minism and asynchrony. The Asynchrony is due to the fact that the message may

take an arbitrary time for transmission. Therefore, this implies the failures are very

difficult to detect.

Once we have to program these kind of big systems, we must use the

right paradigms. Most of the time, the paradigms used will include mes-

sage passing (to simulate asynchronicity). It turns out that the simplest

paradigms for concurrent programming are deterministic dataflow concur-

rency and message-passing concurrency.

Technical note

Note that global control may be possible in some cases (less and less as the scale

increases). Mostly, it is very expensive or impossible.

But there is not only disadvantages: as the control is local, the failures are local as

well. We can therefore consider that the parts of a system are mostly independents,

but not quite, there is little interaction between them. Hence the name of weakly

interacting feedback structures.
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These examples are from [38], these are examples of large systems consisting

of mostly independent parts:

• Gas in a box: molecules mostly independent, occasional interaction

when two molecules collide.

• Peer-to-peer network: peers mostly independent, occasional interaction

between neighbors only.

• Swarm intelligence: collaborative behavior among large numbers of

simple agents (e.g., flocking and swarming). Each agent interacts with

only a small number of neighbors.

• Gossip algorithm: nodes mostly independent, occasional interaction be-

tween random pairs. Can efficiently solve many global problems such as

diffusion, search, aggregation, monitoring, and topology management

such as T-Man algorithm where the topology emerges progressively

through the cycles.

Figure 2.6: T-Man algorithm. Each node periodically picks a random node

and exchanges information with it

Examples: Mostly Independent Parts

Third law (the CAP Theorem) : Pick any two of consistency, availability, and

partition tolerance.

The fact is that for all systems, at all levels of abstraction, and at all sizes, it is

impossible to implement an object that guarantees the following properties in all fair

executions:

• Consistency: all operations are atomic (totally ordered)

• Availability: every request eventually returns a result

• Partition tolerance: any messages may be lost

According to the theorem, the system can only satisfy two of them at the same time.
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2.3.2 Link between Scalability and Robustness

It goes without saying that greater scalability leads to a greater robustness. In fact,

if the system adapts his behavior and maintains its functionality and performance

according to the demand, it implies that the system has less misfortune to crash at

the slightest disturbance.

Actually there is no comprehensive approach to design system robustly. In my opin-

ion, this is a set of elements to consider: scalability, reliability, flexibility, sustainabil-

ity, upgradeability and reusability. Among these, we focused on the scalability be-

cause according to the CoreGrid Technical Report on self management in distributed

systems [54], [...] it is not possible to achieve scalability without first achieving

self-management, since a large-scale distributed system will otherwise be completely

unmanageable. This is why, by following some of the guidelines of this work (ie

self-management systems), we grant much importance to scalability.

2.4 Non-Linearity and Chaos

In Section 1.3, we have already discussed the organization and classification of sys-

tems. Now we’ll focus on chaotic systems.

As you can see on the Strogatz mapping, chaotic systems are nonlinear. Actually,

most of real life problems imply nonlinearity. According to Wikipedia4, a nonlinear

system is any problem where the variable(s) to be solved for cannot be written as a

linear combination of independent components.

Nonlinear systems can exhibit completely unpredictable behavior, which may even

seem random (although it is a completely deterministic systems). This unpredictabil-

ity is called chaos.

4http://en.wikipedia.org/wiki/Nonlinear system
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Figure 2.7: Chaos theory focuses mainly on the description of these systems with a

small number of degrees of freedom, often very simple to define, but whose dynamics

appears as messy

In his book[43], Strogatz tries a definition for chaos :

Chaos is aperiodic long-term behavior in a deterministic system that exhibits sensi-

tive dependence on initial conditions.

He states that so far no definition of the term chaos is universally accepted. But

almost everyone would agree on these three ingredients:

1. Aperiodic long-term behavior means that there are trajectories which do no

settle down to fixed points, periodic orbits, or quasiperiodic orbits as t → ∞.

For pratical reasons, we should require that such trajectories are not too rare.

For instance, we could insist that there be an open set of initial conditions

leading to aperiodic trajectories, or perhaps that such trajectories should occur

with nonzero probability, given a random initial condition.

2. Deterministic means that the system has no random or noisy inputs or param-

eters. The irregular behavior arises from the system’s nonlinearity, rather than

from noisy driving forces.
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3. Sensitive dependence on initial conditions means that nearby trajectories sep-

arate exponentially fast, i.e., the system has positive Liapunov exponent.

This function is used to illustrate chaotic behavior in dynamical systems

theory. It relates this unusual name because Vladimir Arnold described it in

1967 with the help of a drawing of a cat.

As we are in the computersciences, we are interested in discrete version of

this function, on a set of discontinuous points. In practice, we take an image

consisting of disjoint pixels. The points have integer coordinates in the range

{0, ...N − 1}. We set:

ψ : IN,N → IN,N

P

(
x

y

)
7→ P ′

(
(x+ y) mod N

(x+ 2y) mod N

)
Applying this transformation repeatedly, we see a radically different behavior

and surprising. Indeed, we find after a finite number of iterations the original

image.

Figure 2.8: Arnold’s cat map sample. Back to the original after 300 itera-

tions. c©Claudio Rocchini, 2006

Computer processing is to swap the pixels without losing information; pos-

sible permutations of the image being finite in number, it can only fall into

a cycle.

Chaotic System example : Arnold’s cat map

It should be pointed that chaos is a form of behavior that often occurs in complex
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systems. The system does not have to be very big for chaos to occur, it just has to

be nonlinear with a sensitive dependence on initial conditions. In a complex system,

chaotic behavior can occur on many scales. In the WIFS methodology, it can occur

within a single FS or between several WIFS. Chaos is both good and bad. It is bad

because it introduces a fundamental unpredictability in a system’s behavior. It is

good because it can improve certain characteristics of a system. For example the

reaction time of a system can be reduced by keeping the system in a chaotic region

of the operating space.

The relationship of chaos to the WIFS methodology is similar to the re-

lationship of complex components to the WIFS methodology. A complex

component is often necessary, since it encapsulates an algorithm that can

give very good behavior in a part of the operating space. However, the

complex component has to be handled carefully, since it can introduce in-

stability. Similarly, a component with chaotic behavior can be very good in

part of the operating space, but chaos has to be handled carefully as well,

since it can also introduce instability (undesired behavior). Chaos is harder

to handle than complex components, since chaos can exist at larger scales.

It may exist between several WIFS at the largest scale, or it may exist inside

a component. In both cases, it has to be handled carefully.

[Peter Van Roy, 2012].

Note

2.5 Irregularity in Large System

In physics, the analysis of complex systems usually begins by linearization in order

to reduce their complexity. This approach is valid for conditions and assumptions

precise and restrictive. This leads to quantitative results which allow physicists to

get an idea of the processes taking place close to equilibrium. While the system is

close to its equilibrium point, it is possible to keep the commonly used techniques for

linear systems to get answers about the behavior of the nonlinear system5. But this

is inefficient when you move away a little bit of an equilibrium point.

A nonlinear system involves in fact, in most cases, unpredictable behavior, as can

be the reversal of Earth’s magnetic field. Physics has developed techniques to try to

control or to enable a better understanding of certain nonlinear systems, such as the

method Pyragas based on a series of feedback loops[3]. So for large systems, abnormal

events (such as failures) are normal occurrences.

As systems become larger, their inherent fragility becomes more and more apparent.

Software errors and partial failures become common, even frequent occurrences. This

5Lyapunov stability
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fact implies that software errors can not be completely eliminated and we have to

be dealt with [55]. It’s the reason why large systems must be designed carefully,

otherwise the system will not behave well when stressed.

2.6 History: Cybernetics

It is important to have some historical concepts to understand the motivations and

background which eventually led to this master’s thesis.

The main thing to note is that a lot of fields have their origin in cybernetics, more

precisely, it is Norbert Wiener who laid the foundation in 1948 in his book that

founded the discipline: Cybernetics, or Control and Communication in the Animal

and the Machine[30]. We can define cybernetics as a science of self-regulating systems

that is not interested by components or their interactions, but their overall behavior is

taken into consideration first. This is a modeling of the relationship between elements

of a system, by the study of information and principles of interaction. This is the

science made by all theories of process control and communication and control in

living beings, machinery and systems sociological and economic.

Cybernetics refers primarily a means of knowledge, which examines information in the

sense of physics, in the definition given by Norbert Wiener: As entropy is a measure

of disorganization, the information provided by a series of messages is a measure

of organization. In the first sense, cybernetics is a phenomenological approach that

examines the information, its structure and function in systemic interactions. Which

can be translated as the general science of control and communications in natural

and artificial systems.

Feedback is highlighted by this approach because it is essential to develop a logic

of self-regulation. Thus we see the emergence of feedback loops, a mechanisms that

connects effect and his own cause, with or without delay.

Most participants in the cybernetic movement are major authors in their discipline.

So the concepts are spreading rapidly. Cybernetics marks the time of a major epis-

temological break that has profoundly influenced all areas of science and its benefits

are countless.

As Napoleon says “Un bon croquis vaut mieux qu’un long discours” (A good sketch

is better than a long speech.), we will therefore illustrate the influence of cybernetics

by a diagram representing all disciplines that led from this matter. This map is from

Wikipedia6.

6http://en.wikipedia.org/wiki/Complex systems
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Figure 2.9: “Everything” started from Cybernetics
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This chapter is a continuation of what we discussed in the section on feedback thinking

(section 1.2). The concepts discussed previously are here more detailed.

At first, we discuss the motivations for using such qualitative structures. Then we will

detail the concept of feedback loop and feedback structure and analyze the interactions

between the feedback loops. After that, we will see how a system model as a feedback

structure is linked with state diagram. Next, and this is a key part, we will group

elements discussed above and making the link with the concept of emergence and

then deducing a formalism. Finally, we analyze a case study with the curve of prey-

predator equation (Lotka-Volterra).

3.1 Nonlinearity in the world

Nonlinear effects are effects that do not occur in direct proportion to the action.

As we have seen previously, this is the case for a lot of real-world effects, because
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the world contains living organisms that are full of nonlinear mechanisms. These

interesting systems (including life itself) are so much harder to analyze quantitatively

than linear ones. The reason is simple: in linear systems, unlike nonlinear, the

parts can be analyzed separately and then being combined (superposition principle,

compositional systems)[38]. So it is very difficult to accurately reproduce and analyze

these nonlinear systems quantitatively.

But there’s an interesting point: actually the majority of nonlinear systems can be

analyzed qualitatively. How? by a combination of geometrical reasoning and some

analysis. This theme is out of scope of this master’s thesis. However, for more

information, Strogatz’s book in 1994 Nonlinear Dynamics And Chaos is a reference

and is highly recommended [43].

The most common nonlinearities are:

Critical threshold Below a certain value, nothing happens. Above, an effect

starts.

Saturation Beyond a certain input value, the output value will not change.

Hysteresis Same input value correspond to different values of output depending

on whether the input value is increasing or decreasing.

Quantification When the input value increases continuously, the output value only

changes stepwise.

Again, you can see how to qualitatively analyze these concepts in Strogatz’s book.

What we must know is that any intelligent behavior results from nonlinearity. But

the more the system is nonlinear, the more it is fragile. Indeed, if there are many

links, if an element is affected by an external event, its neighbors will be too. It

follows that the system is often more robust to small local perturbation than it would

be without the links. Complexity theory taught us that many simple units interacting

according to simple rules could generate unexpected order[44]. However, intelligent

systems must be as robust as possible. That’s why they are made of weakly interacting

subsystems.

3.2 System as Feedback Structures

This section introduces the various components of the WIFS hierarchy: interacting

single components form a feedback loop, feedback loops form a feedback structure,
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feedback structures form a WIFS. We will conclude with a simple example to illus-

trate the concepts discussed in detail. A large proportion of this section is inspired

from Alexander Bultot master’s thesis, A survey of systems with multiple interacting

feedback loops and their application to programming [7].

3.2.1 Feedback Loop

A feedback loop consists of three components that interact together with a subsystem.

We saw it earlier in the introduction, this is just a reminder. These components are:

[7]

• Monitoring agent: monitors the state of the subsystem and sends the state

information to the calculating agent.

• Calculating agent: calculates a corrective action to apply to the system and

sends this correction to the actuating agent.

• Actuating agent: applies the corrective action to the subsystem.

Figure 3.1: Reminder of the general structure of a feedback loop
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If we look at Figure 3.1, we can see that the big box on the bottom is

the subsystem with which the feedback loop interacts. In the case of the

garbage collector, the subsystem is the System Memory. The monitoring

agent detects when the free memory is below a determined threshold to

activate the garbage collector.

Figure 3.2: Garbage collector operation as a feedback loop

The box on the right (monitoring) detects low free memory. The top box

(correcting agent) calculate the new free memory and then the next box

(actuating agent) update the system memory with the new free memory.

Loop example : Freeing memory in the garbage collector

Proactive and Reactive

Regarding the feedback loop, there are two types of activation: a loop can respond

to an event by triggering (reactive), or a loop can be triggered itself by anticipating

this event (proactive).

We can have both of these activation for the same loop, for example in the garbage

collector:

• The threshold of free memory is reached, it causes the garbage collector to be

run.
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• The running application can decide to invoke the garbage collector directly

(it bypasses the detection of low free memory). This is done commonly just

before a critical piece of code, to make sure the garbage collector is not run

unexpectedly during the critical code.

Note that a proactive loop has an extra agent that anticipates events. That is, instead

of receiving an event, this agent can query the state of the resource and if necessary

create events for the next agent. [7]

Positive and Negative

We distinguish two types of feedback loops:

• The positive feedback loops: the injection of the output data as input facilitates

and accelerates the transformation in the same direction, this has the effect

of amplifying the behavior of the system. The effects are cumulative (effect

snowball) and the behavior is divergent, either in the form of exponential growth

or explosion, or in the form of an exponential decay which leads to a blockage

of the action.

• The negative feedback loops : the output act in the opposite direction to previous

results. Effects tend to stabilize the system.

The positive feedback loops are those where the variation of an element spreads

throughout the loop so that the initial variation has increased, hence the name of

reinforcing loop.

Figure 3.3: A positive feedback loop : births

Feedback is positive if it contains an even number of negative relationships or only

positive relationships.

- 47 -



Designing robust adaptive software with feedback structures Chapter 3

In his admirable book The Fifth Discipline[40], Peter Senge talks about the

reinforcement loop:

The behavior that results from a reinforcing loop is either acceler-

ating growth or accelerating decline. For example, the arms race

produces an accelerating growth of arms stockpiles.[...] Positive

word of mouth produced rapidly rising sales of Volkswagens dur-

ing the 1950s, and videocassette recorders during the 1980s. A

bank run produces an accelerating decline in a bank’s deposits.

Folk wisdom speaks of reinforcing loops in terms such as snowball

effect, bandwagon effect, or vicious circle, and in phrases describ-

ing particular systems: the rich get richer and the poor get poorer.

In business, we know that momentum is everything, in building

confidence in a new product or within a fledgling organization.

We also know about reinforcing spirals running the wrong way.

The rats are jumping ship suggests a situation where, as soon as

a few people lose confidence, their defection will cause others to

defect in a vicious spiral of eroding confidence. Word of mouth

can easily work in reverse, and (as occurred with contaminated

over-the-counter drugs) produce marketplace disaster.

Extract : Reinforcement Loop

In the negative feedback loop, a variation on an element is transmitted throughout

the loop so that it determines a variation of opposite sign on the element itself.

The behavior of these loops is characterized by self-corrective action. Any variation

produced on one of the elements of the loop aims to cancel out. Such kind of loop

tends asymptotically to bring the corresponding structure in a state of equilibrium,

hence the name of balancing loops.

Figure 3.4: A negative feedback loop : deaths

A feedback loop is negative if it contains an odd number of negative relationships.

It means there is a relationship between two elements where a change in the cause

variable generates a variation in the opposite direction of the variable effect.
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Another extract from Peter Senge[40]

Balancing feedback processes are everywhere. They underlie all

goal-oriented behavior. Complex organisms such as the human

body contain thousands of balancing feedback processes that

maintain temperature and balance, heal our wounds, adjust our

eyesight to the amount of light, and alert us to threat. A biolo-

gist would say that all of these processes are the mechanisms by

which our body achieves homeostasis - its ability to maintain con-

ditions for survival in a changing environment. Balancing feed-

back prompts us to eat when we need food, and to sleep when we

need rest, or -as shown in the diagram above- to put on a sweater

when we are cold.

Extract : Balancing Loop

3.2.2 Interactions

In this subsection, we present the different techniques of interaction between feedback

loops, how they communicate.

Stigmergy

Stigmergy is a method of indirect communication in a self-organized emergent envi-

ronment, where agents communicate with each other by changing their environment.

Stigmergy was first observed in nature: ants communicate by depositing pheromones

behind them, so that other ants can follow the trail to the food (or the colony) as

needed. This is called a stigmergic system.

In stigmergy, two loops monitor and affect a common subsystem. In our previously

stated example, taken from Norbert Wiener [30] and resumed by Alexandre Bultot[7],

one can observe a tribesman in a hotel lobby where the temperature is regulated

by a thermostat. The tribesman is cold and as he is primitive, he starts a fire.

His behaviour is represented by the outer loop. On the other hand, the room is

air-conditioned (the inner loop). Thus, as the tribesman stokes the fire, the room

temperature increases, causing the air-conditioning to work harder. The final result

is that the more the tribesman stokes the fire, the lower the temperature will be.
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Figure 3.5: Stigmergy at hotel lobby

The two loop affect interdependent system parameters: the temperature in different

parts of the room.

This example is an example of uncontrolled stigmergy : the two loops will compete

and this may lead to a runaway situation (i.e. the hotel being set on fire)[7]. In

general, stigmergy should then be used with care[36].

Management

In management, one loop directly controls another loop. Based on the previous exam-

ple, the correct solution is that the tribesman can evolve and learn his lesson. Instead

of starting a fire to keep warm, he now knows that he must adjust the thermostat to

the desired temperature.[7]

Figure 3.6: Management at hotel lobby

The outer loop is now managing the inner one and the system tends to a stable state.

This example with the tribesman shows that sometimes management is preferable

to stigmergy. The primitive tribesman should control the temperature by using the

thermostat. This is a case where stigmergy is undesirable.
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3.2.3 Feedback Structure

This extract is for understanding the relationship between the analyzed system and

the feedback structures:

Each feedback structure consists of a set of feedback loops that together maintain

one global system property. Depending on the system’s operating conditions, different

parts of the feedback structure will be active, which enables it to adapt to a wide range

of operating conditions. [...] Each feedback structure consists of a set of feedback

loops that together manage one system property. [...] It is important to distinguish

between the system level (feedback structures) and the building block level (feedback

loops). A feedback structure is built using feedback loops as building blocks and

maintains a global system property by combining the goal-driven behaviors of its

constituent feedback loops.[34]

The question is, what is a system property? This is what we will answer in the

next section by establishing the relationship between a state diagram and the active

loops.

3.3 Binding Feedback Structures and State Diagram

All components of a feedback structure can not be active at the same time. For

example, let imagine that we’re playing chess, what happens in our brain? We will

use an article by Dr. Jordan Grafman dealing on the topic[29].

“Imagine yourself as a chess player about to checkmate your opponent”, Grafman

said in describing the work of the brain. “All your knowledge and experience are

being retrieved for your next move. First, you perceive the pieces on the board and

mentally separate the color-coded pieces. Then you analyze their positions on the

board, identify the value of the different pieces, and retrieve the rules of the game

for any move. If you are a skilled player like the 10 subjects in this study, you

also recognize specific patterns that signify when you have an advantage over your

opponent. Finally you have to analyze the consequences of your potential moves and

the countermoves of your opponent”

For chess players, color separation and spatial discrimination activate parts on both

sides of the brain toward the back of the head (1) known to be associated with visual

processing. Rule retrieval activates two parts on the left side of the brain, a small

structure deep within the brain associated with indexing memories (2) and a structure

in an area near the left ear associated with memory storage (3). Checkmate judgment

activates areas on both sides near the front of the brain crucial for planning (4) and

in the back of the brain important for generating images (5).
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Figure 3.7: Brain activity in chess playing

Now imagine that in addition to playing chess, we experience the feeling of hunger.

What happens in our brain?

Actually it is within the hypothalamus that is performed the integration of different

types of signals for the regulation of appetite. In scientific terms, the signals - the

inputs - are both classical neurotransmitters and neuropeptides. The effect on ap-

petite - the output - then passes through different signaling pathways. This response

of the hypothalamus acts on many brain structures involved in memory, motivation,

planning, decision making, learning, action and motor control, which are all functions

required for food.

According to the lipostatic theory of control of food intake described by Ganong[52],

adipose tissue produces a humoral signal which is proportional to the amount of fat

in the body and which acts on the hypothalamus to decrease food intake and increase

energy expenditure.

Figure 3.8: Brain activity in chess playing when hungry

Now, what happens when we want to annihilate that? The answer is simple: we eat.
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But what happens in the background? Exactly the opposite effect of previously: the

absorption of food will increase the concentration of leptin. Thus, the receptors in

the hypothalamus are more solicited, which implies that the hypothalamus give us a

feeling of satiety.

This can be seen in the diagram below:

Figure 3.9: Brain activity after eating

As the affected subsystem (brain) is the same as that used in a game of chess, thinking

about the game of chess will be influenced by the feeling of hunger. It is therefore a

stigmergy interraction.

Assuming we play chess by default(we freeze the feedback loop playing chess to

active), there are two possible states: S1, chess playing - hungry and S2, chess

playing - not hungry.

Figure 3.10: Each combination of active loops has a corresponding state
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So as stated above, each possible combination of active loops has a corresponding

state, and inversely, each possible state of a complex system has a combination of

active feedback loop.

We can not deduce a state diagram based solely on a feedback structure. We

need the system specification and execution rules to know which combina-

tions of feedback loops are allowed in the feedback structure.

In the other way, we can not deduce a feedback structure only based on a

state diagram: we know nothing about the different components by watching

a state diagram.

So we can go from one to the other, but we need additional information to

perform this.

Comment

3.4 Feedback Structure Formalism

This section will allow us to formalize the concepts and intuitions that we had in the

previous points. As a first step, we will discuss the complex components, which is

a particular type of component. After that we will undertake to define a formalism

for feedback structure. And finally we will give a comprehensive analysis of some

patterns of feedback structure.

3.4.1 Complex Component

We define component as complex if it can do nontrivial reasoning.

If we start from the example of the respiratory system or the chess player, we see

that there are components with complex behavior. They are respectively the con-

scious control of breathing and body and the hypothalamus. A complex component

implements an algorithm that completely solves a given problem within a particular

(small) part of the operating space. From the viewpoint of the system containing the

complex component, the latter is a black box: we do not look inside the box, we use

it as a primitive. The behavior of a complex component cannot be predicted by the

rest of the system, since otherwise they would not be needed. Most of the time, they

play a key role in the system wherein they are included. But this reasoning is only

valid in a particular part of the system’s state space and should be ignored in other

parts.

It should be noted that some feedback structures do not contain complex component

because they simply do not have in need. This is the case for the hypothalamus

system (see section 6.2).
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If we go back to the respiratory system, we see that the behavior of complex

component is to activate/deactivate the feedback loop respiratory system. This loop

handles the details of the control of the respiratory muscles and clocking human

respiratory cycles. The complex component does not have to understand these details,

but interacts through several parameters in the respiratory loop: the timing of the

cycle and the depth of the breathing.[31]

Look at the role of complex component in the respiratory system. Assume

that we fall into the water. What’s going on?

Drowning does not necessarily result in the penetration of large amount of

water in the lungs. Water penetration, even in minute quantities in the

airways, causes reflex apnea: the epiglottis is closed by laryngeal spasm to

protect the airway, preventing breathing even when the head is above water.

Therefore, the available oxygen in the body decreases: this is called hypoxia.

If prolonged cerebral hypoxia, the conscious control is no longer activated,

which causes that spasm rises, which activates the breathing reflex feedback

loop, allowing the entry of water in the airways.

Impact of complex component: drowning

The presence or not of a complex component can have a significant impact on the

design of feedback structures. For example, a complex component like conscious con-

trol may introduce instability that needs fail-safe protective mechanisms. To design

system that contains complex components, we need to follow special rules that are

included in the next chapter.

3.4.2 Formalism

We present a formal approach to define the composition of a feedback structure.

Global property of a feedback structure

Each feedback structure maintains one global property of the system. That is, it

has a corresponding predicate (a logical sentence) that is function of the system’s

parameters and of time. When this predicate is true, the feedback structure is said

to be operative (working). When the predicate is false, the feedback structure has

failed. The feedback structure is supposed to adapt itself to environmental conditions

so that the predicate is true as often as possible.
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Definition of a system

A System consists of a set of feedback structures together with their dependency

graph.

Sys = (WS,DG)

where WS is a set of feedback structures and DG is their dependency graph. The

specification of the system is the conjunction

S1 ∧ S2 ∧ ... ∧ Sn

where each Si is the global property corresponding to a feedback structure fs i in

WS.

WS = {fs1, fs2, ..., fsn}

What is the effect of the dependency graph? There are different possibilities, but it

seems that the basic effect must be one of operational dependency: if fs1 → fs2 in the

graph then fs1 must be operative (S1 is true) for fs2 to be working. I.e., if fs1 is in

an inoperative state then fs2 eventually becomes inoperative (after a finite number of

transitions - this could be expressed as a formula in temporal logic). Note that this

is an interesting kind of implication that we can formalize with temporal logic. If fs1

is inoperative intermittently this may or may not cause fs2 to become inoperative,

depending on how fs2 is built.

In addition of this condition of operativeness, there is another one: the state of fs1

determines which are the possible states that fs2 can be in. It may be that fs1 has

reduced functionality (even though it implements S1) that can effect the operation

of fs2. For example, in the human respiratory system, the conscious control can fall

away because O2 level is too low, but the respiratory system is still functioning!

Let’s feedback structures fs1, fs2, fs3, fs4 with current states cs1, cs2, cs3, cs4, re-

spectively. We can define a function f to restrict the possible states.

fi(cs1, cs2, cs3) ⊆ (possiblestatesof fs4 )
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so cs4 ∈ f(cs1, cs2, cs3).

Definition of a Phase

Phases occur in systems that have many instances of a feedback structure with the

same architecture, such as a peer-to-peer system or a parallel system. These instances

will generally interact with each other according to a dependency graph. In such a

system, a phase p is a subset of instances with the same state. All phases pi form a

partition of the system.

With this definition of phase we can study the global behavior of the system. Indeed,

we can rank the phases in terms of the fraction of the system that each of them

describes:

|pi| ≥ |pj| ≥ |pk| ≥ ...

where |...| means cardinality of a set. This ranking order is a function of time.

We can then define macroscopic phase transitions, for example, one possibility is

when the global ranking order of the phases changes.

The idea is that a system controlled by feedback loops may have several macroscopic

(global) states, similar to phases. If the system is exposed to a hostile environment,

it may change its global state. In order for the system to survive such changes, they

should be reversible. [36]

Also, we can see that changes in the phase partition do not require any global syn-

chronization: the state of each feedback structure is a purely local property that

changes according to the local environment of that feedback structure.

The next step after the formalization is to apply it to examples, to see whether it

helps in understanding how a system works.

Definition of a feedback structure

A feedback structure is a structure

fs = (G,D,A)

where:

• G is a directed graph (V,E) of components V and communication links E.

• D is a finite state machine (S, init, death) with states S, initial state init and

death state death. Each state s in S is a mode of operation of the feedback

structure, where the mode determines the set of components that are active.

• A is a function from S → P (V ), that is, for each state s in S, A(s) is the set of

components that are active.

- 57 -



Designing robust adaptive software with feedback structures Chapter 3

Coupled to the FS, there is his behavior:

fsbehavior = (E, T )

• E is an infinite sequence that represents the execution of a feedback structure.

E = [ s1︸︷︷︸
internal

,

external︷︸︸︷
e1 , s2, e2, ...]

where si is a state (internal condition) and ei is an event ∈ C(external condi-

tion). We note that si is a time interval and ei is a time instant, we have:

time(si) = [ti; ti+1]

time(ei) = ti

• T is a time duration:

T : (S ∪ C)× N→ R+

where C is the set of external conditions.

Each state transition in E has a condition that is a function of the external environ-

ment, under which it can be taken. For example, in the human respiratory system,

the transition

(conscious, holding breath)⇒ (unconscious, holding breath)

can be taken if the oxygen level falls below a particular number, which is a function of

how the biological system works. These conditions connect the formal model to the

real biological system. It’s important to make this connection, and it lets us use the

formal model to reason about the real system, as described in the next paragraph.

One important purpose of the formal model of the feedback structure is to verify the

behavior of the feedback structure. We should be able to derive a set of conditions

under which the feedback structure will behave correctly (that is, where current state

s ∈ S is always /∈ death). These conditions need to be proved of the real system. If

the condition becomes false, then the system will break - so we have found a limit of

the system. We can therefore use the formal model to debug the real system. For

example, if we remove the topmost component unconscious failsafe from the human

respiratory system, then the resulting system has a bug: holding your breath can

make you die. The formal model should be able to derive that the transition

(conscious,holding breath)⇒ (*,breathing)

is impossible (condition to make it possible is never true) because of the lack of the

failsafe component.

Another purpose of the formal model is to analyze what happens when several feed-

back structures are part of the same system (Weakly Interacting Feedback Structures).

Large systems very often contain several feedback structures. These feedback struc-

tures will interact through some shared environment variables. The formal model

should be able to tell us when this interaction is ok and when something goes wrong.
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3.4.3 Formalism Application

We believe that the formal model as described in this section fulfills the desired

expectations. We will illustrate this formalization on the chess player system (CP).

(FSCP ) = (G,D,A)

where

G is the following graph:

{v1, v2, v3, v4, v5, v6, v7, v8, v9} ∈ V

{e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12} ∈ E

D = (S, init, death) is the following state machine :

where

• {s1, s2, s3, s4} ∈ S

• init = s1

• death = s4
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A is the following function:

A(s1) = {v1, v2, v3, v4}

Assuming you’re not hungry when you start playing.

A(s2) = {v1, v2, v3, v4, v5, v6, v7}

A(s3) = {v1, v2, v3, v4, v6, v8, v9}

Assuming that you can eat while playing

A(s4) = {}
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This is a death state. We stop playing chess, regardless the other loops.

E is represented as a transition table which takes into account external events.

Current state (internal) Event (external) New state

S1 e1: decides to eat S3

S2 e1: decides to eat S3

S1 e2: decides to stop playing S4

S2 e2: decides to stop playing S4

S1 e3: game ends S4

S2 e3: game ends S4

We can see that different events can make the same transition (ex : S1 ⇒ S4)

3.4.4 Patterns

We can identify some basic patterns. We will take four from [7].

Fail-safe A failsafe system is constantly checks to ensure perfect functioning and

bringing the process to a safe state in case of error. This pattern consists of two feed-

back loops: one negative and one complex (neither negative nor positive). The mode

of interaction between these two loops is management : the negative loop manages

the complex one.
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A Cyclic Redundancy Check (CRC) is a tool for detecting transmission er-

rors. The mechanism is to protect data blocks by adding a control code.

This CRC code contains redundant elements compared to the transmitted

data to allow the detection of errors, but also repair them in some cases. It

is used in the case of transmission of a large series of bytes.

This code is based on the fact that any bit string can be used to construct

a polynomial, each of the bits gives the value of a corresponding polynomial

coefficient. Example:

0101→ 0x3 + 1x2 + 0x1 + 1x0 → x2 + 1

The implementation of the CRC requires choosing a reference polynomial

called the generator often named G(x). The sender will then divide the

message by G(x). But we can not directly perform this division. We will

therefore make a division, byte by byte, input frame. The receiver of the

frame divides the sum of the bytes of the frame and the value of the CRC

by the same polynomial. If the remainder is NULL, it means the frame is

correctly received. Otherwise, the receiver will request a retransmission.

Figure 3.11: Notification to the sender depends on the result obtained by the

controller

Example of fail-safe: CRC

Data abstraction In data abstraction, two feedback loops interact through man-

agement. In this case, a complex loop manages another loop that can be either

positive or negative. The complex loop does not need to know how the other loop

works, it just manages it.[7]
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As previously said, a running application can interact with the garbage col-

lector. This running application can decide to invoke the garbage collector

directly (it bypasses the detection of threshold). This is done commonly just

before a critical piece of code, to make sure the garbage collector is not run

unexpectedly during the critical code. This is an example of management.

Figure 3.12: The inner loop is the garbage collector, the outer one is the

running application.

Example of data abstraction: Garbage collector

Management tower This pattern is a combination of patterns data abstraction

and fail-safe. In fact, it is a tower management which is formed by a combination

of feedback loops. We can observe one in the three outer loops from the example of

human respiratory system.
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Figure 3.13: Conscious control is secured by the fail-safe system and implements the

breathing system by an abstraction pattern.[7]

Event inhibitor A slow negative loop controls a fast positive loop by management.

In general terms, an inhibitor is something that slows or prevents a process.
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In the field of nuclear, a chain reaction occurs when a neutron causes fission

of a fissile Uranium-235 atom producing more neutrons which in their turn

cause further fissions. The chain reaction can be monitored and used in a

nuclear reactor to produce energy. How? By using control rods. This is a

movable neutron-absorbing material, for decreasing the neutron multiplica-

tion factor by neutron sterile-capture.

Figure 3.14: Control of the nuclear fission

In feedback structure that looks like thisa:

Figure 3.15: Feedback structure of a portion of the core of a nuclear reactor

aNote that for clarity we do not consider the other elements of the reactor.

Example of event inhibitor: Nuclear control rod
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Chapter 4

Elaboration of Design Rules
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The topic of this chapter is to devise a methodology at a similar level of abstraction

than an existing methodology of software construction. The goal is to elaborate some

design rules that, starting from system description, build the corresponding system

in a qualitative way, using weakly interacting feedback structures.

There are three sections: Firstly we propose a qualitative methodology. After that

we will link this methodology with quantitative techniques such as system dynamics,

model checking and control theory. It is important to discuss with these concrete

technical notions. Finally we’ll launch tracks to reduce the scope of this methodology

from system design to software design.

4.1 Proposed Methodology

As mentioned previously, interactions between the feedback structures are weak, for

this reason the design process divides the system naturally into single feedback struc-

ture and combining them to form the complete system.

This process consists of three main steps that are taken from [34]:
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1. We first decompose the system specification into separate properties, each of

which is assigned to one feedback structure.

2. We then design each feedback structure separately.

3. Finally, we combine these feedback structures to form the complete system.

Sometimes, the complete design may need several iterations due to potential unde-

sirable dependencies.

Remember that our formal approach of a system is decomposed into a set of feedback

structures (WS) and a dependency graph (DG).

Sys = (WS,DG)

whereas our formal approach of a feedback structure (FS contained in WS) is

FS = (G,D,A)

with G, D and A as components.

We will initially graphically illustrate our methodology:
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Figure 4.1: Schematic view of our design methodology

The goal is to allow to design systems with desired global properties. The three main

parts outlined above will be discussed in detail in the following subsections.

4.1.1 Decomposition

Actually, the specification of a system is nothing but a combination of properties. For

example, let’s take Scalaris from Appendix A. Scalaris is a scalable, transactional,

distributed key-value store. It can be used for building scalable Web 2.0 services1. In

their article [34], Peter Van Roy em et al define Scalaris specifications as a conjunction

1more info in Appendix A and http://code.google.com/p/scalaris/
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of six properties:

SScalaris = Skey−value ∧ Sconnectivity ∧ Srouting ∧ Sload ∧ Sreplica ∧ Stransaction

The approach is to choose right properties that facilitates reasoning about the pro-

gram and its specification.

Once we have these properties, each of them will be performed by a single manager,

where a manager corresponds to a feedback structure. Actually dividing system

functionality into feedback structures is a natural way to define and to separate

concerns in real systems [34].

We should not care for relevant links of dependencies and interraction among the

feedback structures, we will deal with this problem later.

In this passage from an article called Self Management and the Future of

Software Design by Peter Van Roy [37], the author established a link be-

tween the global properties of systems and current developments in physics.

This text is out of scope of this master thesis but we wanted to publish it

informatively.

An important part of any general system theory concerns the

global properties of a system. Can they be determined for an

existing system and can we design systems with desired global

properties? The latter question is especially important for large-

scale computer systems, such as the Internet or distributed sys-

tems built on top of the Internet. Some of the important points

are the system’s stability, its behavior when stressed, and whether

the system’s imminent collapse can be detected before it happens.

Answers to some of these questions exist for complex systems in

physics. Such systems consist of large numbers of very simple

components, but they can sometimes be a useful approximation

to computer systems. For example, Krishnamurthy et al [22] have

done an analytic study of the Chord structured overlay network

using a master equation approach. Another example is the be-

lief propagation algorithm. This algorithm is defined in terms of

message passing between large numbers of simple nodes[56]. It

has been used to give solutions to the SAT problem and other

problems. Belief propagation is a general technique that can de-

termine global properties of a system in terms of local properties.

It can be used for monitoring global properties as part of a feed-

back loop.

Extract: global properties in physics
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4.1.2 Building each feedback structure

Here we will build each structure independently feedback. By simple manipulations,

we will find successively all the feedback structure ’s components.

Behaviors Identification

This informal stage is quite simple and consists in identifying all possible behaviors

of the feedback structure studied. We will use the example of the respiratory system:

As a first step, we define the elements on which we will identify the dif-

ferent states. There are two: the state of the larynx and the state of our

consciousness.

• For the larynx, we identify two behaviors: breathing and laryngospasm.

– The breathing reflex is the default behavior. The breathing reflex

is a semi-automatic mechanism that controls breathing and lack

of conscious control of it, causing the sensation of suffocation in

the presence of an excessive amount of carbon dioxide dissolved

in the blood plasma.

– Laryngospasm is an involuntary contraction of the muscles sur-

rounding the larynx. The laryngospasm occur suddenly during

brief attacks usually lasting less than a minute. When a laryn-

gospasm occurs, vocal cords suddenly crashing making it impos-

sible to breath. This can be caused for example when we fall into

the water.

• For the consciousness, we identify three states: normal, conscious and

unconscious.

– Normal, as its name indicates is the default behavior. We breathe,

we hold our breath without realizing it.

– Conscious means that we realize that we breathe. For example

the doctor asks us to breathe slowly for the auscultation, or when

we make fun competitions of apnea.

– Unconscious means that we have lost consciousness. For example,

when we are for too long under the water, we lost our consciousness

and become uncscious.

Example: respiratory system

Once we have that, we need to combine these different states to obtain all possible

states of the feedback structure:
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Figure 4.2: Combination of states

With this picture, we see that the feedback structure behavior will have 6 possible

states.

Building the state diagram

We already have the states {Conscious breathing, Conscious laryngospasm, Unconscious

breathing, Unconscious laryngospasm, Normal breathing, Normal laryngospasm}. The

idea is to find the links and conditions between these states based on the system de-

scription.

We obtain this diagram, taken from [38]:

Figure 4.3: The human respiratory system can be seen as a state diagram
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Don’t forget to add init and death states. We can deduce these states from the

system description.

• For the init state, we start from hypothesis that we are initially in the

most common situation: normal breathing.

• For the death state (it may there be many, but in our case there is

only one), we took the scenario where the person dies. Actually the

person dies of drowning. What’s going on? The person is unconscious

and underwater. As there is an obstruction (water), we are in the state

Unconscious laryngospasm. Then the person is for too long in this state

(time out) and passes into the state Uncoscious breathing. The person

breathes underwater, water enters the lungs ⇒ dead.

The state diagram D = (S, init, death) becomes:

with init = { Normal breathing } and death = { Drowned }.

death and init states in respiratory system

We have therefore the state diagram D, the first component of our feedback structure.

The next step is to find G.
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Building Graph

The idea of development is to build each feedback loop separately and after assembling

them to obtain the final structure of G.

Let us recall briefly the description of a feedback loop. There are three agents at-

tached to a subsystem: monitoring agent, correcting agent and actuating agent. The

actuating agent is the only one that does something concrete, that performs an ac-

tion. In respiratory system there are two actuating agents: breathing reflex and

laryngospasm. In Garbage Collector system there is one actuating agent: update

system memory. It means that, in the final feedback structure, there will be two and

a one left curve for respectively respiratory and garbage collector system.

After that we need to associate for each actuating agent the corresponding monitoring

and corracting agents. For this we must rely on our system description. In respiratory

system we know that the breathing reflex occurs when a certain level of CO2 in the

blood is reached. It can be triggered by other causes such as our conscience but they

are exceptions. We will return later but for now we focus on the main causes, in the

normal state. Therefore two elements are needed: one that will monitor our CO2

and one that will serve as triggering. We can easily make the matching with the two

agents. We thus obtain our first feedback loop:

Figure 4.4: Our first feedback loop is built

Similarly (based on system description), we obtain our second feedback loop for laryn-

gospasm:
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Figure 4.5: Our second feedback loop is built

In the description of the system garbage collector, we identified the only

action that is update system memory. This may be due to two things: A

threshold of low system memory is reached or critical code is detected. As

said earlier, we are now interested in the default cause. In this case this is

low system memory. In fact critical code can be considered as an exception.

This is a routine that interrupts the normal process of garbage collector. We

therefore obtain this feedback loop:

in garbage colletor system

We must now establish an order between the feedback loops. In our example what is

the inner loop and the outer loop? Simply refer to the system description. What hap-

pens if the CO2 has reached its threshold and in the same time there is an obstruction

in the airways? We see that after a while, the breathing reflex takes over the laryn-

gospasm. This means that the breathing reflex is the outer loop and laryngospasm

the inner one.
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Figure 4.6: The feedback structure emerges progressively

The breathing reflex loop implements normal breathing independently of the laryn-

gospasm loop [34]. Each feedback loop can then be designed and optimized separately

using control theory [19] or discrete systems theory [8].

We must now integrate the remaining states: conscious and unconscious. We are

clearly here in a hierarchical relationship:

unconscious � conscious � normal

So based on system specification we just use the hierarchical pattern called manage-

ment tower seen previously in the section 3.4.4. We obtain this graph:

If we are attentive, we note that there is no triggering event type to activate the

loop consciousness. In fact this is due to the presence of a complex component
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(see previously). This component is the link that communicates with other feedback

structure of our whole system. For example there could be another feedback structure

called ”brain” that communicate via this component.

Figure 4.7: Adding complex component

In the case of the garbage collector, the pattern to be applied is data abstrac-

tion.

garbage collector
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This extract is taken from [36], it highlights the key role of complex compo-

nents.

In the human respiratory system, there is a conscious control of

the breathing apparatus. This has the advantage that all the

power of conscious reasoning can be brought to bear in the case

of catastrophes. For example, if the person is in a car that falls

into a river, the conscious control can stop breathing temporarily

until the person is outside of the car. Conscious control is also

dangerous, however: it can introduce instability. If the person

decides to stop breathing (for example, because of a wager), then

the system must somehow defend itself. This can be done by

having an outer loop observe the conscious control. In the case

of the human respiratory system, the brain falls unconscious if

the blood oxygen level drops too low. When this happens, the

conscious control disappears and the breathing apparatus starts

working normally again. The general rule is that complex com-

ponents can improve the power of the system (for example, they

can stabilize an unstable system, like a pilot who stabilizes an

unstable airplane) at the price of possibly introducing instability

at other occasions. They must therefore always be observed by

an outer loop that can take action when this happens.

With respect to stability, there is no essential difference between

human components and programmed complex components; both

can introduce stability and instability. Human components ex-

cel in adaptability (dynamic creation of new feedback loops) and

pattern matching (recognizing new situations as variations of old

ones). They are poor whenever a large amount of precise calcu-

lation is needed. Programmed components can easily go beyond

human intelligence in such areas. Whether or not a component

can pass a Turing test is irrelevant for the purposes of self man-

agement.

Note: Complex components should be sandboxed

At this stage, we built the graph G and the state diagram D. Let us continue our

process!

Finding A

We have seen previously that a very important part of a feedback structure is its

state diagram. To find A, the idea is that each state in this diagram corresponds to a

set of active feedback loops in the feedback structure. For a given state, we call this

the dominant set. By a qualitative analysis, we divide the whole operating space into
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regions, where each region corresponds to one dominant set. At any given instant, the

system’s behavior corresponds to a point in this operating space. When the system’s

behavior changes, this point moves. When a feedback loop becomes active or inactive,

then the dominant set changes, and the point will make a transition from one region

to another.

Therefore the goal of this step is to bind G and D. There are two possible ways:

G⇒ D (4.1)

or

D ⇒ G (4.2)

By experience, we’ll choose the second one (4.2). It means that we start from all the

possible dominant sets of active loops and we’ll try to match each of these combina-

tions to a state. This is a robust aproach. Indeed we cover not only the cases from

the states but also all possible cases, include cases that normally not occur.

The easiest way to proceed is drawing an array with all the possibilities. Example

for the respiratory system:

Then we build the combination array, based on system description:

possible states: {Conscious breathing, Conscious laryngospasm, Unconscious breath-

ing, Unconscious laryngospasm, Normal breathing, Normal laryngospasm, Drowned

}
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L1 L2 L3 L4 corresponding state

0 0 0 0 Death (drowned)

1 0 0 0 Normal laryngospasm

0 1 0 0 Normal breathing

1 1 0 0 none (mutual exclusion)

0 0 1 0 Death (drowned)

1 0 1 0 Conscious laryngospasm

0 1 1 0 Conscious breathing

1 1 1 0 none (mutual exclusion)

0 0 0 1 Death (drowned)

1 0 0 1 Unconscious laryngospasm

0 1 0 1 Unconscious breathing

1 1 0 1 none (mutual exclusion)

0 0 1 1 none (mutual exclusion)

1 0 1 1 none (mutual exclusion)

0 1 1 1 none (mutual exclusion)

1 1 1 1 none (mutual exclusion)

Based on this table, we can deduce A(si):

A(normalBreathing) = {L2}
A(normalLaryngospasm) = {L1}
A(consciousBreathing) = {L2, L3}
A(consciousLaryngospasm) = {L1, L3}
A(unconsciousBreathing) = {L2, L4}
A(unconsciousLaryngospasm) = {L1, L4}
A(death) = {¬L1,¬L2, ∗}

Behavior

Let firstly start to find E. As the first example was a bit simplistic, here we will

introduce a new step in our process: finding internal variables. How to do that? Just

by taking the monitored variables and the description of the system deduce whether

it is an internal or external.

In our example, we have two internal variables: CO2 in blood and O2 in blood. These

internal variables will be present in the form of ratios and can take values in the range

[0, 1]. These variables are useful because they determine certain state transitions.

We have listed only three external events:

1. the person is underwater (obstruction from environment).

2. the person is emerged from the water (no obstruction).

3. conscious decision (voluntary holding/releasing breath).
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We’re not going to spill too much on the methodology used to construct state tran-

sition table. It is relatively easy but out of scope of this thesis. For more info, there

are suitable books like [41].

Current state (internal) Event (external) New state

normalBreathing e1: underwater normalLaryngospasm

normalBreathing O2 ≤ tO2 unconsciousBreathing

normalBreathing e2: conscious decision consciousBreathing

normalLaryngospasm e2: conscious decision consciousLaryngospasm

consciousLaryngospasm e2: conscious decision normalLaryngospasm

consciousBreathing e2: conscious decision normalBreathing

consciousBreathing O2 ≤ tO2 unconsciousBreathing

consciousBreathing e1: underwater consciousLaryngospasm

unconsciousBreathing O2 ≥ tO2 normalBreathing

unconsciousBreathing O2 ≤ tO2 ∧ CO2 ≥ tCO2 drowned

∧underwater
unconsciousBreathing O2 ≤ tO2 ∧ CO2 ≤ tCO2 unconsciousLaryngospasm

∧underwater
normalLaryngospasm no obstruction normalBreathing

consciousLaryngospasm no obstruction consciousBreathing

unconsciousLaryngospasm no obstruction unconsciousBreathing

where tO2 is a specific threshold below which the person is unconscious, and where

tCO2 is a threshold beyond which the breathing reflex is triggered. We keep our E.

Note that, in case of drowning the water rushes into the lungs of the person, causing

death.

We can add constraint using T function. For example:

|T (consciousbreathing)| ≤ breath− holdbreakpoint
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This example initially from Norbert Wiener[30], taken in extract from [36]

allows us to realize the power of using time scales:

Different parts of a system, such as two feedback loops, can take

advantage of different time scales. For example, one loop can

work at short times and another at long times, thus avoiding in-

terference. Or one loop can gather information using short times,

and then pass this information to another loop that works at long

times. Norbert Wiener [30] gives a simple example of a human

driver braking an automobile on a surface whose slipperiness is

unknown. The human tests the surface by small and quick brak-

ing attempts; this allows to infer whether the surface is slippery

or not. The human then uses this information to modify how to

brake the car. This technique uses a loop at a short time scale to

gain information about the environment, which is then used for

regulation at a long time scale. The fast loop manages the slow

loop.

Note: Take advantage of different time scales

4.1.3 Orchestration

Now that we have successfully designed each of them, we need to handle the interac-

tions between feedback structures and coordinating their actions to avoid interference

and to manage the whole system.

Ideally, the goal is to have minimal interaction. Regarding interactions, remember

that W in WIFS means weakly. Therefore it should not there be a lot of links

between our feedback structures. But some interaction always exists, therefore some

coordination is always required.

Finding dependencies

We will not reinvent the wheel and use the methodology that our predecessors Peter

Van Roy em et al left us [36] [34]: For a successful orchestration, it is crucial to per-

form the right decomposition. [...] The interactions between feedback structures form

a dependency graph, which is a directed graph whose nodes are feedback structures

and where each edge indicates an interaction. Because interactions can be subtle [...],

it is important to simplify them as much as possible at design time.

A first simplify example can be a simplify version of our respiratory system.

SRespiratory = SCO2stabilizing ∧ Sconsciousness ∧ SO2transition
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with the feedback structure previously designed responsible for CO2stabilizing, and

let’s assume a feedback structure brain that is responsible for consciousness, and

another one, lungs that is responsible for O2transition.

We have these dependencies:

Sconsciousness → SCO2stabilizing

SCO2stabilizing → SO2transition

For the first one, we’ve seen previously that brain can trigger our breath. For the

second one, we saw that it was the analyed feedback structure that send the air to

the lungs and control breathing. There is therefore a dependency.

An other example is from Scalaris. We’ve seen previously that this system can be

seen as a conjunction of properties:

SScalaris = Skey−value ∧ Sconnectivity ∧ Srouting ∧ Sload ∧ Sreplica ∧ Stransaction

Extract from paper from [34] and present in appendix A relieves these dependencies:

Sconnectivity → Srouting

Sconnectivity → Sreplica

Srouting → Sreplica

Srouting → Sload

Sreplica → Stransaction

For example from [36], the replicated storage has to take the routing into account. If

a node fails, then the replicated storage has to create a new replica, but taking the

routing into account which must also be repaired.

Figure 4.8: Schematic view of our dependencies
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It’s very instinctive to establish these dependency links. It’s very instinctive to es-

tablish these links. We have to rely on the system description, trying to interact as

little as possible feedback structures among-them.

This extract is taken from [34]:

To reduce the interaction of feedback structures it is important to

add them in the right order. If done correctly, each new feedback

structure can be added in (almost) orthogonal fashion to the sys-

tem. The acyclic part of the dependency graph can be ordered

according to a topological sort. Cycles are handled separately.

Note: Extract

Analyzing dependencies

For dependencies, the channel of communication between feedback structures will be

via their complex component. The idea is that passing through this component is

the only way to interact with the feedback structure.

Regarding the analysis, we propose to create a table for each dependency ’s link.

We include both agents communicators (e.g. complex components) and note the

event(s) associated with this link. We will illustrate this with the link Sconsciousness →
SCO2stabilizing in this table2:

ComponentSconsciousness
ComponentSCO2stabilizing

effect

rachidian bulb conscious control of body event e2 : conscious decision

and breathing

Once this step is completed, we have built our whole system.

4.2 Software Design Context

In this section, we are particularly interested in information systems and more partic-

ulary in Self-management systems. Is the methodology also works for these systems?

Actually the methodology is the same as the previous section, except that we’ll adapt

it for self-management system and that we add an additional step: the mapping. The

mapping is used to link resources and feedback structures. This step takes place after

the orchestration.

But do not go too fast, first recall briefly what a self-managing application is.

2more info: http://www.cognifit.com/fr/parties-du-cerveau/
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Note that a major part of this section is based on the excellent article by Ahmad Al-

Shishtawy em et al called A Design Methodology for Self-Management in Distributed

Environments [1].

4.2.1 Self-management

The selfmanagement initiative advocates self-configuring, self-healing, self-optimization

and self-protection (also called self-* ).

We can extract three parts from a self-managing application: the functional part,

the touchpoints, and the management part. The functional part of an application

can be designed, for example, by defining interfaces, components, component groups,

and bindings [1]. The touchpoints consists of a set of sensors and effectors used to

interact with resources (get status and perform operations), for example measure O2

in respiratory system. The management part is determined by management require-

ments.

Management part is the key, actually it can be decomposed into a number of man-

agers. Each of them responsible for a specific self-* property or alternatively appli-

cation subsystems [1]. We can easily make the connection with our methodology by

decomposing the part of management like that:

SSelf−Management = Sself−configuring ∧ Sself−healing ∧ Sself−optimization ∧ Sself−protection

Based on that we can build feedback structures that will coordinate their activities

in order to achieve management objectives. Each of these feedback structures will be

implemented by autonomic managers.

4.2.2 Autonomic Manager

Definition This definition is from [1] :

An autonomic manager is the key building block in the architecture.

Autonomic managers are used to implement the self-management be-

haviour of the system. This is achieved through a control loop that

consists of four main stages: monitor, analyze, plan, and execute. The

control loop interacts with the managed resource through the exposed

touchpoints.

- 84 -



Designing robust adaptive software with feedback structures Chapter 4

Figure 4.9: Structure of an autonomic manager. The whole is called autonomic

element. Elements interact with other elements and with human programmers via

their autonomic managers. [21]

Actually this is a particular feedback loop:

• Monitor matches Monitoring agent

• Execute matches Actuating agent

• Analyze, plan and knowledge matches Actuating agent

• Managed element matches Subsystem

As mentioned above, it is better to decompose management into several autonomic

managers which cooperate. Indeed, according to [1] Decomposition can also be used

to enhance the management performance by running different management tasks

concurrently and by placing the autonomic managers closer to the resources they

manage. Also it will increase scalability and robustness [1].

4.2.3 Methodology for self-managing application

We will use our iterative methodology and adapt it to self-management by working

with autonomic managers.

Actually the methodology remains practically the same. The actions and objec-

tives of stages are related to classical issues in distributed systems such as partition-

ing and separation of concerns, and optimal placement of modules in a distributed
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environment[1]. Only two changes are observed: an additional main step (4 stages

instead of 3) and the interactions between autonomic managers.

We will therefore first take the 3 main steps of our methodology and add one, then

we will discuss about the interactions.

Decomposition

The idea is to decompose the management into properties. There are two ways for

the decomposition.

• Functional : as previously done, we divide management based on self-* proper-

ties.

• Spatial: tasks are defined based on the structure of the managed application

[1].

The criteria that decides whether we use a spatial or functional way is the fact that

each task (or group of related task) must be performed by a single feedback structure.

Assignment

Each property is then assigned to a feedback structure. These feedback structure

are composed of autonomic managers. Each of which becomes responsible for one or

more management tasks.

Regarding the formation of autonomic managers, it is exactly the same process as

the feedback loops.

Orchestration

As feedback structures manages the same system, there will necessarily be interactions

and coordination between them. Therefore it avoids conflicts and interferences and

it manages the system properly.

Do not forget that we need a minimum of interaction. So the interaction will be more

inside of the feedback structure, at autonomic managers level (feedback loops).

Mapping

This is the new step and it is relatively simple. As said in [1], the set of autonomic

managers are then mapped to the resources. A major issue to be considered at this

step is optimized placement of managers and possibly functional components on nodes

in order to improve management performance.

- 86 -



Designing robust adaptive software with feedback structures Chapter 4

Interactions between autonomic managers

Here we will reformulate the patterns and interactions between autonomic managers.

There are four way of interactions [1]:

1. Stigmergy: in self-management, agents are autonomic managers and the envi-

ronment is the managed application.

Figure 4.10: stigmergy effect [1]

According to [1], the stigmergy effect is, in general, unavoidable when you

have more than one autonomic manager and can cause undesired behaviour

at runtime. Hidden stigmergy makes it challenging to design a self-managing

system with multiple autonomic managers. However stigmergy can be part of

the design and used as a way of orchestrating autonomic managers.

2. Hierarchical Management: We keep our famous tower management. Communication

between levels is done using touchpoints.
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Figure 4.11: hierarchical management [1]

Note about time scales [1]: Autonomic managers at different levels often operate

at different time scales. Lower level autonomic managers are used to manage

changes in the system that need immediate actions. Higher level autonomic

managers are often slower and used to regulate and orchestrate the system

by monitoring global properties and tuning lower level autonomic managers

accordingly.

3. Direct Interaction: We can have a direct interaction between autonomic man-

agers by directly linking the appropriate elements between them.

Figure 4.12: direct interaction [1]

According to [1], cross autonomic manager bindings can be used to coordinate

autonomic managers and avoid undesired behaviors such as race conditions or
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oscillations.

4. Shared Management Elements: the fourth way to communicate is that auto-

nomic managers interacts by a sharing element.

Figure 4.13: shared management elements [1]

This can be used to share state (knowledge) and to synchronise their actions

[1].
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The goal of this chapter is to show the relationship between a global and qualitative

methodology (using weakly interaction feedback structures) and several local and

quantitative methodologies (like control theory, system dynamics, model checking,...).

These quantitatives methodologies can justify our qualitative work. It is important

to formally justify our methodology to avoid unexpected behaviors.

The problem is that working with these quantitative methodologies require strong for-

malizations in order to use them (in opposition of feedback structures). Our method-

ologie can be used in complementary way to existing quantitative methodologies.

For example, in our operating space, there is a relationship between qualitative behav-

ior and quantitative behavior. Qualitative behavior is derived from state space and

dominant sets in feedback structures, quantitative behavior can be calculated within
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an area in the operating space that corresponds to a single state. Quantitative be-

havior can be calculated with a quantitative method such as control theory or system

dynamics, since these disciplines are designed for a fixed set of feedback loops.

Systems can show unexpected behavior that becomes clear

only through formal analysis. For example, techniques from the-

oretical physics have been used to show that structured overlay

networks exhibit phase transitions when network communications

become very slow [23].

Note from [34]

It is clear that our methodology can be linked with many disciplines. We will discussed

them one by one. As stated above, they are complementary to our methodology.

5.1 System Dynamics

We are in a quantitative approach. System dynamics allows robust simulation if the

modelization is precise enough. We will, as a first step, look at a specific example

of System Dynamics. After that we will deduce in a concrete way the limits of this

approach. Finally we will link these approach and our methodology and we will

see how the use of Weakly Interacting Feedback Structures may improve the use of

System Dynamics.

5.1.1 A System Dynamics example

Our example is from the book Dynamic Modeling of Diseases and Pests [13]. It is a

model dealing with Lyme disease.

Over the past 20 years since Lyme disease was first diagnosed, it has

been identified as the most common vector-borne disease in the United

States. The repopulation of white-tailed deer in the United States of

America has been associated with the emergence of this disease. The

tick vector, Ixodes scapularis, harbors Borrelia burgdorferi (B.b.), the

organism responsible for Lyme disease[33]. The larval and nymphal stages

feed on intermediate hosts, which are mostly small mammals and birds.

The adult tick prefers to feed on deer, but will also feed on dogs and

people. The main intermediate host in the northeast United States is

the white-footed mouse. Mice and chipmunks may serve as reservoirs

for B.b. in nature since they maintain active infections for at least 3

to 4 months. In the Midwest, however, it has been determined that the

eastern chipmunk may be equally important as an intermediate host. The

ticks appear to follow the migration of deer but deer may be simply an
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amplification host; they are able to clear infection from B.b. within a few

days.

This was for the introduction. Now we will skip the development step (finding the

different parameters and then assigning to quantitative values to these parameters,

given hypothesis). In fact, what interests us is not the development by using System

Dynamics approach (beyond the scope of this paper), but the final result, and in

particular, the final graph.

Here is the graph from[13]:

Figure 5.1: Population dynamics of the blacklegged tick
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Ticks move in sequential fashion from egg to larva, to nymph, to adult

during a 2-year period in which they are in resting stages prior to molting

to the next life stage. Conveyors have been used to simulate the rest

periods. Additionally, we assumed that intermediate and definitive host

densities account for the carrying capacity and feeding success of the tick

stages dependent on a blood meal to molt.

The parameters and variable names are quite eloquent and allow to realize easily

without much notions of what the System Dynamics approach is.

Figure 5.2: The four following diagrams reprensents respectively building blocks, for

stocks, flows, converters, and connectors (information arrows).

Now that we have this, we can proceed to the next step: identify the limitations of

this approach.

5.1.2 Limit of the model

This model provides us interesting strong results. But it is only valid for a given

environment. A change of environment, let’s assume a change of climate, can affect

the overall results[6]. It has shown that the temperature and humidity strongly

influenced the behavior of ticks carrying Lyme: they are twice more mobile, and are

actively looking for prey when it is hot and dry. The fact that this model does not

consider climate change makes it less realistic.

Indeed, suppose a sudden change in climate. Each tick will have change his behavior

because it is a new environment. This change in behavior will not be seen in the

System Dynamics model because it considers only one behavior.

Actually the different loops that constitute a graph of System Dynamics are always

activated. But this is not the case in reality. The first behavior of a tick female is

laying, but during freeze period his first behavior becomes survival. Actually several

weeks may pass before the female begins to lay eggs if conditions are not favorable.

It may happen that the female dies before laying. So the idea is that in reality, there

is an activation/deactivation of loops in a system after a change of environment, that

there is no in System Dynamics.

- 93 -



Designing robust adaptive software with feedback structures Chapter 5

This is a general criticism of System Dynamics. Usually this approach build a

system with lots of loops that only work in a part of the environment. If an environ-

mental change occurs, even if it is small, it can distort the whole system. There is no

adaptibility in System Dynamics.

To remedy this, we might consider breaking the System Dynamics in subsystems

and making them interact according to environment changes, but unfortunately the

concept of system decomposition is not clear in System Dynamics

5.1.3 Links with our methodology

How can we make the System Dynamics approach (which despite its flaws is still a

very interesting quantitative approach) adaptive by combining it with our approach

with Weakly Interacting Feedback Structures?

In Feedback Structures, it is noted that according to a given environment, we have

a superposition of feedback loops. These superposition is actually a combination of

active feedback loops. For each of these combination will correspond one

System Dynamics graph. For example, let’s take a simplify feedback structure

like this:

Figure 5.3: Feedback Structure of blacklegged tick ecosystem in normal case

This graph corresponds to what we have seen in System Dynamics example (without

detailing all quantitative data, variables and parameters). There is a synergistic

interaction between the differents development stages of the tick via the ecosystem.

The only direct interaction (direct management) is when the adult tick lays eggs, she

then directly determines the amount of eggs.

Now let’s assume that, as in our example of the limitation of the System Dynamics

approach, the environment is changing and we are in a big freeze period. What
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happens at the feedback structure level? As the adult female tick stops laying to

concentrate on surviving the cold, there is a change in the activation of feedback

loop. There is no more direct link from the adult tick to eggs.

Figure 5.4: Feedback Structure of blacklegged tick ecosystem in frozen period

For this Feedback Structure graph, there is a corresponding graph in System Dynamics

which can be totally different from the one we saw. Indeed, the cycles are not the

same (eg adults no longer lay) and the values are also different (for example ticks,

whatever their stage of development, are twice less active in cold weather).

So to summarize what has been said, each System Dynamics graph can be considered

as a specific combination of feedback loops into a feedback structure.

The notion of system decomposition is not very clear in System Dynamics.

But this decomposition is possible and would be useful because when we

look at the graphs, we notice that they are usually very (too?) large. If we

can find a reliable decomposition methodology, we could then scale up and

considering that a System Dynamics graph can be partitioned. For each of

these part can correspond a Feedback Structure graph and each part could

slightly interact with other (weakly interacting). Then a System Dynamics

graph could be seen as a Weakly Interacting Feedback Structures.

Another possibility?
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5.2 Control Theory

Control theory has a mathematical foundation with many theoretical results if the

systems obey certain formal rules. Control theory is used to maintain a goal. Examples

are varied:

• On a commercial airplane the vertical acceleration should be less than a certain

value for passenger comfort.[18]

• All new cars are, for some years now, equipped with an electronic control unit

that manages, in addition of the safe part of the engine, the engine management

part that includes the injection control or also the control of the turbo.

We will directly go to the example without dwelling on the mathematical development

who, although it is the key in Control Theory, requires too many concepts that are

beyond the scope of this thesis.

5.2.1 A Control Theory example

This simple example is from [18]. This is about Keck I telescope. At the time of the

example (1990), it was not yet built1. It illustrates well what the Control Theory is

without going into the details of the mathematical development:

A very interesting engineering system is the Keck astronomical telescope,

currently under construction on Mauna Kea in Hawaii. When completed

it will be the world’s largest. The basic objective of the telescope is to

collect and focus starlight using a large concave mirror. The shape of

the mirror determines the quality of the observed image. The larger the

mirror, the more light that can be collected, and hence the dimmer the star

that can be observed. The diameter of the mirror on the Keck telescope

will be 10m. To make such a large, high-precision mirror out of a single

piece of glass would be very difficult and costly. Instead, the mirror on

the Keck telescope will be a mosaic of 36 hexagonal small mirrors. These

36 segments must then be aligned so that the composite mirror has the

desired shape.

The control system to do this is illustrated in the figure above.

1Keck I was completed in 1993.
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Figure 5.5: Block diagram of Keck telescope control system [18]

As shown, the mirror segments are subject to two types of forces: distur-

bance forces (described below) and forces from actuators. Behind each

segment are three piston-type actuators, applying forces at three points

on the segment to effect its orientation. In controlling the mirror’s shape,

it succes to control the misalignment between adjacent mirror segments.

In the gap between every two adjacent segments are (capacitor-type) sen-

sors measuring local displacements between the two segments. These local

displacements are stacked into the vector labeled y; this is what is to be

controlled. For the mirror to have the ideal shape, these displacements

should have certain ideal values that can be pre-computed; these are the

components of the vector r. The controller must be designed so that in

the closed-loop system y is held close to r despite the disturbance forces.

Notice that the signals are vector valued. Such a system is multivariable.

Our uncertainty about the plant arises from disturbance sources:

• As the telescope turns to track a star, the direction of the force of

gravity on the mirror changes.

• During the night, when astronomical observations are made, the am-

bient temperature changes.

• The telescope is susceptible to wind gusts.

and from uncertain plant dynamics:

• The dynamic behavior of the components-mirror segments, actua-

tors, sensors-cannot be modeled with infinite precision.
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At this point, we understand the usefulness of the Control Theory and how the

development process will be managed. There will be a mathematical development

that which will lead to find an optimized solution for this system.

5.2.2 Limit of the model

As we have seen, the Control Theory is primarily used to optimize complex systems.

The calculations used for this optimization take a while. And for this reason we rarely

see systems with more than one feedback loop. There are some rare examples with

two loops that we can see in the book Feedback Control of Computing Systems [19] 2.

So a first limit of this model is that it only works with small complex systems.

This is unmodeled when the system becomes large.

A second limit is that it works only in a part of space. For example let’s take a fan

motor, the fan is optimized specifically for a certain type of engine with a determined

cylinder capacity. It is optimized for some specific behavior. If the fan is placed on a

new motor (different from the previous one), it is likely that this fan is not optimized

for this motor and his behavior. And personally, I would not take the risk of driving

a car with this included...

We can conclude that a second limit of this model is that systems with Control

Theory are only optimized in some part of space, there are other situations in

which these systems are not optimized.

5.2.3 Links with our methodology

As previously stated, Control Theory is usefull typically to optimize throughput or

some other quantitative property. Let’s take our previous example and put it under

the form of a feedback loop.

2chapter 10, last chapter of the book
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Figure 5.6: Keck I as a feedback loop

By this example, we see that we can easily do the matching between the feedback

loops and the schemes of Control Theory.

The idea to link Control Theory and Weakly Interacting Feedback Structures is to

apply Control Theory to each feedback loop. As applying the theory of control takes

a subsequent time, we will only apply this theory on feedback loops that need to be

optimized.

• In the example of breathing system, the goal is to optimize the O2 and CO2

concentration in blood. So if the goal is to optimize this system, we will apply

the Control Theory only on two of four feedback loops.

• In the chess player example, we will only apply Control Theory on inner loop

which is to optimize the chess strategy of the player. Indeed, we don’t think

that eating at this time or another will affect our chances of winning. The

important is to eat to keep the clearness, that’s all.

Applying Control Theory on each feedback loops works well when the

feedback loops are mostly independent. Actually, the less feedback loops are

independent, the most there are parameters to be considered in the optimization.

5.3 Model Checking

The Model Checking is a family of techniques for automatic verification of dynamic

systems. It is algorithmically verify whether a given model, the system itself or an

abstraction of the system satisfies a specification, often phrased in terms of temporal

logic.
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There is a big difference between Model Checking and Testing because the testing

does not check everything but takes only a sample. Testing complex systems can

easily turn into finding a needle in a haystack.

“Program testing can at best show the presence of errors but never their

absence.” Edsger Dijkstra.

Quote

Model Checking as a formal method does not depend on guesses. At least as the

theory goes, if there is a violation of a given specification, model checking will find

it. Model checking is supposed to be a rigorous method that exhaustively explores

all possible behaviors [20]. If there is only one little bug, Model Checking will find

it. There is no probability in this model and that’s a good thign because software

robustness is not based on probability.

The idea is to consider all possible executions of the system. It takes time but we can

reduce this time by taking some shortcuts and algorithms proper to model checking

(out of scope, [53] and [10]). This is a quantitative way to verify if a system works.

5.3.1 Limitations of using the Model Checking

Model Checking allows verification if the formalization is precise enough. Sometimes

systems can not be so easily formalized and extracting rules and syntax may be hard

to do. Let’s take the immune system, we can easily modeling it qualitatively but it’s

hard to find a right and strong formalism that can apply Model Checking.

5.3.2 Using Model Checking in WIFS

Actually, the right way to study discrete systems such as feedback structure is by

modeling each component in a feedback structure as a state machine. The interacting

components are then modeled as interacting state machines. The way to prove

properties of such systems (for example, that they are robust) is actually by

using Model Checking. By this way we’ll do exhaustive analysis of all the relevant

behaviors. As previously said, no assumptions on probability distributions are made,

so the results are always correct.

We have seen that it’s hard to verify a big system like Weakly Interacting Feedback

Structures. The right way to proceed is to verify locally. Indeed, when a feedback

structure is in some state, we can verify by Model Checking. For each feedback

structure, there is a state diagram. So from each of these state diagram (e.g from

each part of WIFS), we can apply Model Checking.
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This chapter consists of examples that implement our methodology. As the design of

a feedback structure takes non-negligible time, we prefer to deal with several feedback

structures from different areas rather than dealing with multiple feedback structure
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from a same area and build a WIFS. Therefore, we’ll focus strongly on the second

step of our process which involves the construction of feedback structures.

6.1 TCP

We start with a first example IT-oriented: the TCP protocol. We briefly recall its

principle in the system description. The idea is not to be focused on the protocol,

the format and structure of a TCP segment, but rather be focused on the behavior

of this system.

6.1.1 System description

We identify five properties for Transmission Control Protocol, we will briefly describe

them one by one.

1. Reliability of transfers: PreliableTransfer. Actually, the TCP has a system

of acknowledgment that allows the client and server to ensure proper mutual

reception of data.

2. Connection establishing: PconnectionEstablishement. Both machines must syn-

chronize their sequences through a mechanism called three way handshake.

Figure 6.1: Establishment of a TCP connection [5]

3. Sliding window: PslidingWindow. In many cases, it is possible to limit the

number of acknowledgments by setting sequence number after which an ac-

knowledgment is required. Sliding window defines a range of sequences that do

not require acknowledgment, and it moves as and when acknowledgments are

received. In addition, the size of this window is not fixed.

4. Connexion releasing: PconnectionRelease . The receiver can request to end a

connection as well as the sender. The mechanism is again three way handshake.
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5. Congestion: PcongestionManagement. The size of the sliding window will change

depending on whether or not segments transfer are successful.

6.1.2 Behavior identification

Instinctively, we feel that we can firstly regroup two of these properties: Establishing

and releasing the connection can form the connection management. We have then

three properties:

STCP = PconnectionManagement ∧ PslidingWindow ∧ PreliableTransfer ∧ PcongestionManagement

Each of these four properties will be implemented by a feedback loop. Feedback loops

will form together a feedback structure.

Here are the elements on which we will determine the states: the transfer, the sliding

window and the connection.

• Connection can be established or not established.

• The state of the sliding window depends on its length (LSW ): LSW = 0 or

LSW > 0 .

• Transfer can be ongoing or stopping.

We deduce that there are 8 possible combinations of states (23). This does not

necessarily mean that there are 8 possible behaviors. In fact, according to system

specifications, some combinations are not possible: for example transfert ongoing

while connection is not established is impossible.

Connection LSW Transfer possible? name

not established = 0 stopping V Init

not established = 0 ongoing X

not established > 0 stopping X

not established > 0 ongoing X

established = 0 stopping V Transfer (sliding window = 0)

established = 0 ongoing X

established > 0 stopping X

established > 0 ongoing V Transfer

We have finally three possible behaviors.

6.1.3 State diagram D

Here is our state diagram with death state and init state added:

S =
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Figure 6.2: State diagram of a simplify TCP

We obtains D = (S, init = Init, death = Disconnected).

6.1.4 Building graph G

Let’s build the feedback loops one after one.

Connection

The monitoring agent checks for connection segments (SYN, FIN, ACK). It also

regularly watch if there was no abrupt disconnection.

The correcting agent checks the validity of the segments and decides which segments

will be sent in response.

The update agent sends segments and apply possible change of state.
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Figure 6.3: Connection feedback loop

Transfer

The monitoring agent checks for segments into packets.

The correcting agent prepares the new segment to send.

The update agent sends segments and apply possible change of state.

Figure 6.4: Transfer loop

Sliding Window

The sliding window determines which packet to send (a hole in the sliding window),

which packet to give to the application and when sliding the window (to the left,

when the packet is given to the application).

As there is a direct management interaction between the sliding window and the

transfer feedback loop (the state of the sliding window determines whether there is

transfer or not), we can apply the fail safe pattern.
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Figure 6.5: Safe fail pattern application for the sliding window and transfer feedback

loops

Window Management

There is also a direct management interaction between the sliding window and the

window management, we can apply the fail safe pattern.

We have a monitoring agent that monitors the throughput.

The correcting agent calculate policy modification and determine if the transfer is

allowed or not.

Figure 6.6: Safe fail pattern application for the window management and sliding

window feedback loops
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Final graph

The feedback loop connection interacts by stigmergy with the previous feedback loop,

we have our feedback structure graph by assembling these feedback loops.

Figure 6.7: Graph G of TCP feedback structure

In the TCP/IP implementation, an inner loop handles the sliding window protocol

and an outer loop manages the inner loop to control congestion. The outer loop does

this in a simple way: it changes the size of the sliding window. This changes the

bandwidth needed by the inner loop, since the size of the liding window determines

the number of packets that can be in transit at any moment in time. This is an

example of a natural management: the outer loop adjusts a simple parameter of an

inner loop. No other interaction is needed. [37]

6.1.5 Finding A

Let’s build the combination array. The possible states are the following: { Init,

Transfer, Disconnected }

To save space in the table, we’ll link sliding window and window management, because

one can not work without the other.

Connection Sliding window Transfer corresponding state

0 0 0 Disconnected

0 0 1 Disconnected

0 1 0 Disconnected

0 1 1 Disconnected

1 0 0 Init

1 0 1 none (no throughput with LSW = 0)

1 1 0 Transfer

1 1 1 Transfer
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6.1.6 Behavior: E

Internal variable:

• LSW

• ConnectionReleasing

External events:

• e1: data segment received

• e2: transfer complete

• e3: valid SYN+ACK segment receive

• e4: valid ACK segment receive

• e5: valid FIN+ACK segment receive

• e6: valid FIN segment receive

• e7: abrupt disconnection

E

Current state (internal) Event (external) and/or condition New state

Init e3: valid SYN+ACK segment receive Transfer

Init e4: valid ACK segment receive Transfer

∧ConnectionReleasing = 0

Init e5: valid FIN+ACK segment receive Disconnected

Init e4: valid ACK segment receive Disconnected

∧ConnectionReleasing = 1

Transfer e1: data segment receive Transfer

Transfer LSW = 0 Transfer

Transfer e2: transfer complete Init∧
ConnectionReleasing = 1

Transfer e7: abrupt disconnection Disconnected

Transfer LSW > 0 Transfer

6.2 Thermoregulation in human body

We will describe in some detail the phenomena to ensure consistent body tempera-

ture because it is a good example of hypothalamic control level. In mammals, this

consistency is essential for the proper functioning of the body: the speeds of all the

biochemical reactions are temperature dependent, and for us, the system works best

between 37 and 38 ◦C.
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Description of the system that we will see is inspired by [25]. In this system, the

hypothalamus has a key role.

6.2.1 System description

The body regulates its central temperature through two main mechanisms: the con-

trol of the production of heat and the control of heat loss.

It is mainly through the somatomotor system that the human ensures production

of additional heat in the thermoregulatory phenomena: the thrill accelerates the

metabolism. Heat loss is set by regulating the cutaneous circulation. Excess heat

generated in the body is transported by the blood flow to the skin and there it

is dispersed into the environment by radiation. Heat loss is set by regulating the

cutaneous circulation. Excess heat generated in the body is transported by the blood

flow to the skin and there it is dispersed into the environment by radiation.

The evaporation of sweat actively secreted by the skin is an important mechanism

for cooling, especially when the ambient temperature is high. In addition to these

mechanisms, sensations of heat or cold can induce specific behavior, such as extreme

temperatures avoidance, the choice of particular garments, etc.. This type of behav-

ior can obviously be considered as part of the regulatory mechanisms of the body

temperature.

If the body knows when to lose heat and when it should happen, is that he has

receptors (thermosensitive elements) capable of measuring temperature. Such recep-

tors are found in the anterior region of the hypothalamus and in the skin. Those of

the anterior hypothalamus are specialized neurons that measure the core tempera-

ture rises (warm-sensitive neurons). Receptors in the skin are cold-sensitive neurons

that detect the lowering of the surface temperature. Thus, any drop in temperature

comes to knowledge centers through the cold receptors before the core temperature

has been reduced. The cutaneous receptors sensitive to hot probably did not matter

in thermoregulation. [51]

Information from hot-sensitive and cold-sensitive neurons converge on the center of

control of the hypothalamus. The hypothalamus then adjusts the heat production or

loss.

Elevation of body temperature can cause an increase in skin blood flow and sweat

emission, these two phenomena contribute to heat loss. An increase in the activity of

the sweat glands fibers increases the secretion of sweat. A decrease in the activity of

fibers that innervate the cutaneous blood vessels, causes expansion of these and thus

increasing blood flow at this level.

When these receptors are activated by a drop in peripheral temperature, then the

heat production is increased by increasing the metabolic activity and heat loss is

reduced by decreased blood flow to the skin. There is also provocation of shivering :

- 109 -



Designing robust adaptive software with feedback structures Chapter 6

the body will activate all the muscles under the skin to warm the skin without the

need to use hot-blooded, focusing this time on the vital organs.

When the temperature difference becomes too high, our body can be in extreme state:

hypothermia[50] or hyperthermia[49]. In this cases, we are unconscious.

Here is a shematic view of our description1:

Figure 6.8: Thermoregulation: Anatomy diagram representing the relationship be-

tween the most important thermal regulation items

Obviously this is a rather simplistic description of the system. We should involve

other regions of the central nervous system such as spinal and brainstem which are

also thermosensitive and thermoregulatory functions: biological thermoregulation is

considerably more complex than it seems in the figure 6.8.

6.2.2 Behavior identification

There are four different elements:

• activated or avoided sweat production

• increased, decreased or normal blood flow

• activated or avoided shivering

• conscious or unconscious

Increased blood flow and sweat production are bonded, same for decreased blood flow

and shivering.

1picture taken from www.neurology.org
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Consciousness Sweat Blood flow Shivering possible? name

yes no decreased no X

yes no decreased yes V fighting against heat loss

yes no normal no V normal

yes no normal yes X

yes no increased no X

yes no increased yes X

yes yes decreased no X

yes yes decreased yes X

yes yes normal no X

yes yes normal yes X

yes yes increased no V fighting against heat raise

yes yes increased yes X

no no decreased no X

no no decreased yes V hypothermia

no no normal no X

no no normal yes X

no no increased no X

no no increased yes X

no yes decreased no X

no yes decreased yes X

no yes normal no X

no yes normal yes X

no yes increased no V hyperthermia

no yes increased yes X

6.2.3 State diagram D

S
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Figure 6.9: State diagram of our thermoregulation

D = (S; init = Normal; death = ApparentDeath)

Based on [51], we can determine the core temperature range of these states:

Apparent death ]41.5◦C; [

Hyperthermia ]38.3◦C; 41.5◦C]

Fighting against heat raise ]37.5◦C; 38.3◦C]

Normal ]36.5◦C; 37.5◦C]

Fighting against heat loss ]35.0◦C; 36.5◦C]

Hypothermia ]30.0◦C; 35.0◦C]

Apparent death ]; 30.0◦C]

6.2.4 Building graph G

Here is the final graph:
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Figure 6.10: Graph G of a hypothalamus feedback structure

6.2.5 Finding A

We first identify the different loops from the graph G:

Figure 6.11: Graph G of a hypothalamus feedback structure

Now, let’s build the array. Possible states are the following: {Normal, FightingAgainstHeatLoss,
Hypothermia, FightingAgainstHeatRise, Hyperthermia, ApparentDeath }
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L1 L2 L3 L4 Conscious corresponding state

0 0 0 0 0 ApparentDeath

0 0 0 0 1 none

0 0 0 1 0 none

0 0 0 1 1 none

0 0 1 0 0 none

0 0 1 0 1 none

0 0 1 1 0 none

0 0 1 1 1 none

0 1 0 0 0 none

0 1 0 0 1 none

0 1 0 1 0 none

0 1 0 1 1 none

0 1 1 0 0 none

0 1 1 0 1 none

0 1 1 1 0 none

0 1 1 1 1 none

1 0 0 0 0 none

1 0 0 0 1 none

1 0 0 1 0 none

1 0 0 1 1 none

1 0 1 0 0 none

1 0 1 0 1 none

1 0 1 1 0 none

1 0 1 1 1 none

1 1 0 0 0 Normal

1 1 0 0 1 none

1 1 0 1 0 FightingAgainstHeatRise

1 1 0 1 1 Hyperthermia

1 1 1 0 0 FightingAgainstHeatLoss

1 1 1 0 1 Hypothermia

1 1 1 1 0 none

1 1 1 1 1 none

6.2.6 Behavior: E

It is observed that the monitored variables are dependent on both the behavior of the

body, but also the environment in which the body is located. To avoid having to deal

with complex formulas such as hope of survival in the water [17], we will consider

that the only variable that will change will be the body temperature.

Body temperature evolves over time, but as mentioned above, it is considered as a

variable that depends from external parameters of the system. We can not predict its
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behavior because it depends on too many external variables (the person’s behavior,

climate outside the body, person immersed in water, etc.).

Actually E is similar to the table obtained in the behavior section. The variable is

body temperature (BT )

Current state (internal) Event and/or condition New state

Hyperthermia BT > 41.5◦C ApparentDeath

Hyperthermia BT ≤ 38.3◦C FightingAgainstHeatRaise

F ightingAgainstHeatRaise BT > 38.3◦C Hyperthermia

F ightingAgainstHeatRaise BT ≤ 37.5◦C Normal

Normal BT > 37.5◦C FightingAgainstHeatRaise

Normal BT ≤ 36.5◦C FightingAgainstHeatLoss

F ightingAgainstHeatLoss BT > 36.5◦C Normal

F ightingAgainstHeatLoss BT ≤ 35.0◦C Hypothermia

Hypothermia BT > 35.0◦C FightingAgainstHeatLoss

Hypothermia BT ≤ 30.0◦C ApparentDeath

6.3 A web server

The third example is an IT example with which we interact every day: a web server.

6.3.1 System description

This is a web server of type Apache + Php + MySQL. We will not detail this descrip-

tion. Indeed, it is quite simple and quite long. It is supposed to be known by anyone

with a basic knowledge in computer science.

6.3.2 Behavior indetification

There are three elements:

• Web server have received a URL or not.

• Web server can issue a query to the database or not.

• Web server can respond by sending HTML code.
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Received Data querying HTML sending possible? name

no no no V Listening

no no yes X

no yes no X

no yes yes X

yes no no V Loading And Interpreting Code

yes no yes V Sending Response

yes yes no V Waiting For Data

yes yes yes X

6.3.3 State diagram D

S =

Figure 6.12: Global State Diagram of a webserver

D = (S, Init = Listening,Death = none)
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6.3.4 Building graph G

Here is our graph G:

Figure 6.13: Graph of a typical Apache-Php-MySQL web server

6.3.5 Finding A

We first identify the different loops from the graph G:
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6.3.6 Behavior: E

Current state (internal) Event and/or condition New state

Listening e1: Valid URL request LoadingAndInterpretingCode

LoadingAndInterpretingCode No Db request needed SendingResponse

LoadingAndInterpretingCode Db request needed WaitingForData

WaitingForData e2: Data received SendingResponse

SendingResponse Response Sent Listening
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Conclusion

Contents
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This end chapter is divided in two parts. Firstly we will enumerate the contributions

of this master thesis by establishing a brief review. Secondly we will launch new

tracks to go further this work and to start new thesis. And finally, I will close this

thesis with my own views and experiences during this work.

7.1 Contributions

Here Thompson’s quote (see beginning of this work) is very relevant : This book of

mine has little need of preface, for indeed it is “all preface” from beginning to end.

[45]. Indeed, this master thesis has just made the first steps toward a methodology

for WIFS.

We have starting this thesis by recalling some systems notions and the importance

of modeling non-linear systems due to their presence if we represents our world in

term of dynamical systems. We have then presenting Weakly Interacting Feedback

Structures from [35] and introducing a formalism to represent qualitatively these

feedback structures. One of the main property of these feedback structure is that their

are adaptives given their environment. We have then proposed a first methodology,

based on design rules, to build WIFS from a system description. This is the continuity

of Alexandre Bultot’s work [7]. After that, we have bond some existing quantitative

methodologies and tools (System Dynamics, Control Theory and Model Checking)

and our qualitative methodology and we have seen that if we use them together, it

can empowering the robustness of designed system. Finally we have applied our

methodology to concrete examples from different fields: biology, IT,...
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Actually, the whole thesis is a big multidisciplinar introduction to a new way of

modeling systems. Indeed, in addition to a new methodology, this thesis includes

System Dynamics, Control Theory and Model Checking. I strongly think that it

is important to make the links between these disciplines and use them together to

design huge complex sytems. It is the key of adaptivity and robustness.

For me, one of the most important contributions is the introduction of WIFS for-

malism. Note that this is a proposed formalism and this is only the basis. We are

open to any contribution or modification.

7.2 Further Work

There are a lot of new tracks to go further:

In our methodology, at the interraction level, we have mostly developed the inter-

ractions inside the feedback structure, between feedback loops. There is a lack of

details and development about interractions between the feedback structures them-

selves, at the orchestration level.

In a general point of view, one big thing is to deepen the WIFS methodology. It

means to go further in our design rules to guarantee more robust system and justify

it. By this way, it avoids unexpected behavior of the system designed. Actually we

are now able to build WIFS system qualitatively but not yet quantitatively. This can

be considered as one of the most important tasks for software development. A good

resource to start to work is the Strogatz book Nonlinear Dynamics And Chaos [43].

Despite taking huge time, applying our proposed methodology to design a big

complex system can show the power and/or the limits of our methodology. As it

takes a lot of time, I’ve decided to focus my Rules Application chapter on three

smaller cases instead a bigger one.

It can be interesting to stress the designed sytems to test their robustness and by

the way the quality of the methodology.

As previously said, if we can find a good methodology to split and part System

Dynamics ’s diagrams, we will be able to match each part of the partitioned diagram

to Feedback Structures graphs which can interract weakly between themselves (so

called Weakly Interacting)
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We can build a verify tool that will be able to check the validity of a WIFS by

applying Model Checking in the differents feedback structures.

And finally, the ultimate idea is to create a framework or a tool to build software

with WIFS and facilitate the design process.

7.3 Personal View

When Peter Van Roy suggested me this subject, I had no idea of what it was but I had

the feeling that WIFS methodology could be a great challenge and very interesting.

In my opinion, it exceeds my expectations: it was more interesting that I thought (!)

but the challenge was also harder that I thought, sometimes I was desperate because

my researchs didn’t predict expected outcomes. In the end, I keep a great feeling of

this experience, very interesting!

I think this topic is still relatively unexplored but also that there are real opportunities

in research and business, especially in terms of autonomic computing. Imagine a

company that sell softwares that can do the work of maintenance that a real person do

and this without making mistakes. That would reduce significantly the maintenance

costs of any company.

At the level of thesis development, the fact that Peter Van Roy tells me to start

from a few limited resources helps me a lot to understand gradually how a qualitative

methodology like WIFS works without being influenced by other existing methodolo-

gies. It was a very good approach.
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Scalaris

Here is the work that has been done regarding the Scalaris system. We decided

to include it because this thesis refers it a lot and it simplify the reading. This

extract is from the article Software design with interacting feedback structures and its

application to large-scale distributed systems written by Alexander Reinefeld, Peter

Van Roy and Seif Haridi. [34]

Scalaris is an open-source library providing a self-managing data management ser-

vice for Web 2.0 applications [42] [11] [46]. Web 2.0 enabled the Internet commerce

revolution. It is no longer a convenience, but a necessity. Customers rely on its

continuous availability, regardless of time and space. Even the shortest interruption,

caused by system downtime or network partitioning, may cause huge losses in repu-

tation and revenue. In addition to 24/7 availability, providers face another challenge:

they must, for a good user experience, be able to respond within milliseconds to

incoming requests, regardless whether thousands or millions of concurrent requests

are currently being served. Continuous availability, high performance, and scalability

were key requirements in the design of Scalaris. To satisfy these requirements, we

designed Scalaris to be self managing.

As a challenging benchmark for Scalaris, Figure A.1 shows how we implemented the

core of Wikipedia, the free encyclopedia, that anyone can edit. Wikipedia is among the

ten most frequently accessed websites. It handles about 50,000 requests per second,

of which 48,000 are cache hits in the proxy server layer and 2,000 are processed by

ten servers in the master/slave MySQL database layer[48].The proxy and web server

layers are embarrassingly parallel and therefore trivial to scale. From a scalability

point of view, only the database layer is challenging. Because our implementation

uses Scalaris to replace the database layer, it inherits all the favorable properties

of Scalaris such as scalability and self management. Instead of using a relational

database, we map the Wikipedia content to the Scalaris key/value store. On a page

update, a transaction across all affected keys (content, backlinks, categories, etc.)

and their replicas is done. With a synthetic benchmark, Scalaris achieves 14,000
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read+write transactions per second on 15 servers, increasing almost linearly with the

number of servers [11]. This number cannot be directly compared to the Wikipedia

number since the work and the processors are not the same, but it does show that

Scalaris is a credible implementation.

Figure A.1: Distributed Wikipedia built on top of Scalaris

We have built a second library, Beernet that differs from Scalaris in some impor-

tant points. Whereas Scalaris is based on a Chord # overlay network, Beernet uses a

relaxed ring structure [28]. We relax the connectivity condition, requiring only that

a node be in the same ring as its successor (instead of both its successor and pre-

decessor). Ring maintenance then does not need periodic stabilization and does not

rely on transitive connectivity. The relaxed ring has a bushy structure that converges

with local operations to a perfectly connected ring. We also modify the transaction

manager to request locks quickly and to notify all nodes of modified state. We need

these modifications for our collaborative drawing application, DeTransDraw, which

uses transactions to overcome network delays while maintaining a coherent global

drawing.
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Figure A.2: The Scalaris transaction protocol

A.1 Transactions on an overlay network

We first present the architecture of Scalaris using a traditional layered approach.

Scalaris is a structured overlay network extended with a transaction layer using a

replicated key/value storage. Its architecture provides the traditional ACID proper-

ties of transactions in a scalable decentralized setting. It does not attempt to replace

current database management systems with their general, full-edged SQL interfaces.

Instead our target is to support transactional Web 2.0 services like those needed for

Internet shopping, banking, or multiplayer online games. Figure A.1 shows the three

layers of the system:

1. At the bottom, an enhanced structured peer-to-peer network, with logarithmic

routing performance, provides the basis for storing and retrieving keys and their

corresponding values. In contrast to many other overlays, our implementation

stores the keys in lexicographical order. Lexicographical ordering instead of

random hashing enables control of data placement which is necessary for low

latency access in multi data center environments.

2. The middle layer implements data replication. It enhances the availability of

data even under harsh conditions such as node crashes and physical network

failures. We use symmetric replication, in which the data is replicated symmet-

rically around the ring.

3. The top layer provides transactional support for strong data consistency in the

face of concurrent data operations. It uses a fast consensus protocol with low

communication overhead that has been optimally embedded into the peer-to-

peer network.
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We explain briefly how the transaction protocol works, since this will help when

we explain Scalaris with feedback structures. Figure A.2 shows an example with a

structured peer-topeer network that has 16 nodes. A client initiates a transaction

by asking its nearest node, which becomes a transaction manager. Other nodes that

store data are transaction participants. Given symmetric replication with degree f

(4 in the figure), we have f transaction managers (TM and rTM in the figure) and

f replicas for the other participating nodes. A modified version of Lamport’s Paxos

uniform consensus algorithm is used for node agreement [11] [24] [12]: each replicated

transaction manager (rTM) collects votes from a majority of participants and locally

decides on abort or commit. The transaction manager (TM) then collects a majority

from the replicated transaction managers and sends its decision to all participants.

This algorithm achieves commitment if more than f = 2 nodes of each replica group

are alive. The algorithm’s operation seems simple; things are actually more subtle

because it is correct even if nodes can at any time be falsely suspected of having

failed. All we know is that after some unknown finite time, the failure suspicions are

correct (eventually perfect failure detection). In our experience, this failure detector

is adequate for an Internet setting, where nodes may crash and communication may

be interrupted.

Figure A.3: Scalaris specification with feedback structures

A.2 Feedback structures in Scalaris

As a complement to the layered presentation of the previous section, we can present

the architecture of Scalaris as a set of five feedback structures and their interactions:

1. Connectivity management. This feedback structure maintains the connectivity

of the ring using periodic successor list stabilization.

2. Routing management. This feedback structure maintains efficient routing tables

using periodic finger stabilization.

3. Load balancing. This feedback structure balances load by monitoring each node

and moving nodes when necessary to distribute load evenly.
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4. Replica management. This feedback structure maintains the invariant that there

will always eventually be f replicas of each data item. Whenever there is a

potential new replica, it uses consensus to propose a new replica set.

5. Transaction management. This feedback structure uses consensus among repli-

cated transaction managers and storage nodes to perform atomic commit, as

explained in the previous section. If the transaction manager TM fails, then one

of its replicas rTM takes over. Multiple takeovers are tolerated by consensus.

The Scalaris specification then consists of the conjunction of the five properties imple-

mented by these feedback structures, together with the functionality of the key-value

store itself. Interactions between the feedback structures are possible when the per-

ceived set of correct nodes changes, due to nodes joining, leaving, failing, or suspected

of failing. This gives a dependency graph between feedback structures. Figure A.3

shows the form of the specification and the dependency graph. [...] For Scalaris we

handle the interactions as follows:

• Connectivity management, routing management, and replica management in-

teract when the set of nodes changes. This does not affect correctness because

each manager always converges towards its ideal solution. Oscillations do not

occur because there are no cyclic dependencies (connectivity management is not

affected by the other two). We choose the time delays of the different managers

to improve effciency.

• Routing management can influence the load balancing. This has an effect on

the effciency of the load balancing algorithm.

• Replica management can influence the transaction management because the

number of replicas can change temporarily. This can cause data inconsistency

if there are temporarily more than f replicas, which can occur if there is a

false failure suspicion. This is trickly to handle correctly. One solution is to

require more than a simple majority in the consensus algorithm of the trans-

action management. This reduces the probability of inconsistency. This is not

satisfactory because it does not eliminate the problem and because it reduces

overall performance just to handle a rare situation. Another solution, which we

are working on, is to use consensus in the replica management itself to ensure

that all nodes agree on the f replicas. The transaction manager then takes a

majority only from an agreed set of replicas.

• Covert stigmergy between feedback structures may occur because the network

is a shared resource. Connectivity management is the most important property

and so it must be done faster than the other managers. Otherwise the overlay

network may become disconnected at high loads. To minimize other bad ef-

fects due to stigmergy, the management load on the network should be kept as

constant as possible. If connectivity management does less work, then routing

management takes up the slack.
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Because these five feedback structures act at all layers of the system, we can say

that the Scalaris implementation is self managing in depth. This has important

consequences for system administration. For many Web 2.0 services, the total cost-

of-ownership is dominated by the costs needed for personnel to maintain and optimize

the service. In traditional database systems, changing system size and tuning require

human interference which is error prone and costly. In both these situations, the

same number of administrators in Scalaris can operate much larger installations.
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