
A History of the Oz
Multiparadigm Language

Peter Van Roy and Seif Haridi
June 20, 2021

Flashbacks

The prehistory of Oz

Prolog
Logic as a programming language

Concurrency
Logic for concurrent programming

Constraints
Logic for search-based solver

Concurrent constraint calculus
AKL language and system

Oz

1970

1980

1990 Unifying the
two areas

Logic for
two areas

Initial vision

Multiparadigm
programming

The French Connection

• The place: Marseille, France
• The time: early 1970s

• An opinionated French computer scientist sitting in a bar drinking his Pastis
• Next to him, a dignified Englishman drinking his tea

• Suddenly, lightning strikes!
• Programming in logic, the Prolog language!

The Rising Sun

• The place: Tokyo, Japan
• The time: early 1980s

• A lanky computer sensei slowly sipping his saké
• Next to him, a samurai of fast systems chugging on his Asahi

• Suddenly, lightning strikes!
• The path to enlightenment is concurrent logic!

The Vision
and the Foundation

The Oz vision: multiparadigm programming

• All large programs need more than one paradigm
• The program may have a database with relational (logical) structure, it may do

(functional) transformations, it can use object-oriented principles to structure
its data, and concurrency to connect its independent parts

• We would like to support this
• How can we do it? Where do we start?

• Oz project starting points
• We design and implement a single language
• We use concurrent constraints as the semantic foundation

What is a paradigm?

• What is a programming paradigm? Is there even such a thing?
• Programming is a huge bag of languages and concepts
• In practice, there are different ways of programming a computer

• For the Oz design, we defined a paradigm as follows:
• A programming paradigm is an approach to program a computer

based on a coherent set of principles or a mathematical theory
• Examples

• Functional programming: based on lambda calculus
• Logic programming: based on a formal logic such as Horn-clause logic
• Object-oriented programming: an approach to organizing data and its

operations based on data abstraction, mutable state, and polymorphism

Why do we need a single language?

• Why not just use different languages or libraries?
• This facilitates upward migration from existing systems
• Many examples exist, for example the Gecode constraint solver is a C++ library

• This approach has disadvantages
• Cognitive load on the programmer, increased system complexity
• Cross-paradigm optimizations are extremely difficult

• This is not a long-term solution
• As researchers, we aimed for a fundamental, conceptual solution

What is the foundation?

• How do we combine four different paradigms?
• Functional: lambda calculus
• Logic: first-order logic
• Object-oriented: data abstraction and polymorphism
• Concurrent programming

• We need a foundation in which all these paradigms can fit naturally
• We chose concurrent constraints as our foundational model

• Why concurrent constraints?
• All four paradigms can be done in a straightforward way, as we will show
• It has powerful properties: constraint domains can be defined separately, and

synchronization is defined with logical entailment

Concurrent constraint model
• The concurrent constraint model is a

calculus for general computation
• The model consists of a shared constraint

store observed by concurrent agents
• The store σ contains constraints:

• σ = c1 ∧ c2 ∧ ⋯ ∧ cn
• There are two basic operations:

• Tell: add c to σ, which becomes σ ∧ c
• Ask: wait until σ has enough information to

decide c or ¬c

• Technically, the ask is doing logical
entailment which checks σ⊨c and σ⊨¬c

Seif Haridi, FGCS’94, December, 1994 6

CCP

tell ask

constraint store

agent

Agents tell constraints to a shared constraint store
and may ask if constraints are entailed by the store.

• Agents are programmed in a small language:
• Ask and tell
• Concurrent composition, variable definition,

procedure definition

Concurrent constraint language

proc times2(L1, L2)
if L1=nil then L2=nil
[] X M1 in L1=X|M1 then M2 in

L2=2*X|M2 times2(M1, M2)
end end
L1 L2 in times2(L1,L2) times2(1|2|3|nil,L1)

S ::= S1 S2 Concurrent composition
| X in S Variable introduction
| c Tell constraint
| if C1 [] C2 [] ⋯ [] Cn else S end Conditional
| p(X1⋯ Xn) Procedure call

C ::= X1⋯ Xn in c then S Ask clause
D ::= proc p(X1⋯ Xn) S end Procedure definition

• The first agent initially suspends because the store
does not entail L1=nil or L1=X|M1 or their negations

• The second agent will build L1

• As L1 is built, the first agent incrementally builds L2First agent Second agent

Synchronization as logical entailment

• Synchronization is when one concurrent
computation waits on another

• Logical entailment to define synchronization

• Consider a store σ={x,y} with variables x, y
• To do the addition y=x+1, we must know x
• We do an ask operation:

if number(x) then y=x+1 end
• This tests σ⊨number(x) :

Does σ know that x is a number?

• This is dataflow behavior
• Knowledge about x drives the computation

• Dataflow concurrency is the core of Oz
• Dataflow variables are the glue that ties

together concepts from all paradigms

• Consider this sequential Oz program:
local Y in

Y=X+1
{Browse Y} % Display Y

end

• Execution will wait at X+1 because X is
unbound (ask operation)

• When X is bound in another thread (tell
operation), like X=5, execution continues

Concurrent constraints Oz

The Road to Oz

Unifying the two areas of logic programming

• In the 1980s, logic programming was divided into two disjoint
research areas
• Concurrent logic programming
• Constraint logic programming

• A major research problem was how to unify them
• This would combine reasoning systems with parallel computing
• This would lead to a society of independent reasoning agents

• The AKL project successfully realized this unification
• It defined a computation model giving composition of search and concurrency
• It built a high-quality system that successfully demonstrated the model

AKL: the Swedish ancestor to Oz (1990)

• The AKL project had the explicit goal of
unifying concurrent logic programming
and constraint logic programming

• The AKL system was released in 1990
for single and multiprocessor systems

• AKL defines computation spaces, each
of which consists of a constraint store
and its agents

• An agent can itself be a computation space;
agents see their enclosing stores

• This gives full compositionality of search and
concurrency: First-class search engines can be
run concurrently, and conversely, concurrent
computations can be used inside search engines

constraint store

agents

local agents

local
constraint storeconstraint store

agents

local agents

local
constraint store

Oz: the German step after AKL (>1990)

• Oz is a direct successor of AKL
• Oz provides a much richer set of concepts for the programmer
• Oz layers its kernel language, giving a well-factored language and semantics

• Compared to AKL, Oz adds the following:
• Full compositionality of all language concepts
• Compositional syntax (break with AKL’s Horn clause syntax from Prolog)
• Higher-order programming and ubiquitous first-class values
• Mutable versus immutable data types

Oz language design cycles

• “Oz 0” (1991)
• This initial language did not yet use the concurrent constraint model

• Oz 1 (1993)
• The first language influenced by AKL and using the concurrent constraint model

• The Swedish and German groups now joined efforts on a common system
• Oz 2 (1996)

• The first language that succeeded in the multiparadigm vision

• Oz 3 (1998)
• Conservative extension for components and distributed computing

Timeline up to Mozart 1.0

• HYDRA German project (1991) led by Gert Smolka (DFKI)
• Complex deductive problem solving (needed for many DFKI projects)

• ACCLAIM European project (1992-1995) led by Seif Haridi (SICS, Sweden)
• Advancing concurrent constraint programming
• Collaboration between DFKI, SICS, DEC PRL: Oz, AKL, and LIFE languages
• Oz 1 language (1993): first language, many experimental features

• PERDIO German project + PERDIO Swedish project (1996-1999)
• Joined efforts of DFKI and SICS on Oz, Peter Van Roy from PRL to DFKI to UCL
• First-class computation spaces and constraint programming (Christian Schulte)
• Oz 2 language (1996): first stable language
• Oz 3 language (1998): conservative extension for components and distribution
• Mozart 1.0 full system (180000 lines C/C++, 140000 lines Oz)

CCL Workshop (Oct. 1992)
Informal release (Nov. 1993)

DFKI Oz 1.0 (Jan. 1995)
WOz ‘95 Workshop (Nov. 1995)

DFKI Oz 2.0 (Sep. 1996)

Mozart 1.0 (Jan. 1999)
Major release

Mozart 1.0

• Mozart 1.0 released
in Jan. 1999
• BSD style open-

source language
• 10000 downloads

during 1999-2001

• Widely used during
period 1999-2009
• Last major release

Mozart 1.4.0 in 2008

The Design Approach

Language design approaches

• Historically, there are two basic approaches to design a language

• One way is to start from the machine and build the language on top
• Examples are Fortran, C, C++, and recently, Rust
• Basically, a bottom-up approach: efficiency first

• Another way is to start from a principled design and implement it
• Examples are Lisp, Prolog, Smalltalk, Erlang, Haskell, Javascript, Python, and Oz
• Basically, a top-down approach: principles first

Oz design approach: a form of top-down

• The general language is very
rich; yet the kernel language
was always kept very small

• The developers continuously
introduce new abstractions as
solutions to practical problems

• The abstraction is first simplified
as much as possible; often it
vanishes!

• A new abstraction is accepted if
its implementation is efficient
and its semantics is simple

• This methodology achieved
the goal of multiparadigm
programming

Rich
general language

Lean
kernel language

time

search

first-class
computation spaces

components

(nothing)

lazy evaluation

WaitNeeded

object system

sequential composition,
cells

functional dataflow

dataflow
variables

From the concurrent constraint language …

S ::= S1 S2 Concurrent composition
| X in S Variable introduction
| c Tell constraint
| if C1 [] C2 [] ⋯ [] Cn else S end Conditional
| p(X1⋯ Xn) Procedure call

C ::= X1⋯ Xn in c then S Ask clause
D ::= proc p(X1⋯ Xn) S end Procedure definition

… to concurrent constraints in Oz

• Oz made two major changes to the concurrent constraint model
• Higher-order procedures (procedures are constraints)
• Concurrency is explicit (threads) instead of implicit

S ::= S1 S2 Sequential composition
| X in S Variable introduction
| c Tell constraint
| if C1 [] C2 [] ⋯ [] Cn else S end Conditional
| {X X1⋯ Xn} Procedure call
| thread S end Thread introduction

C ::= X1⋯ Xn in c then S Ask clause
c ::= X=proc {$ X1⋯ Xn} S end | … Constraints

Rich general language…

• Powerful foundation
• First-class values (functions, procedures, classes, objects, components,

modules, spaces)
• Compositional factored syntax
• Lightweight threads and dataflow variables
• Deep embedding for distributed computing

• Multiple paradigms
• Functional, functional dataflow, lazy functional dataflow, actor dataflow
• Data abstraction, polymorphism, inheritance
• Dataflow concurrency, multiagent programming, shared state concurrency
• Relational programming, constraint programming, programmable search

engines

…lean kernel
language

• We start with a simple kernel language that
underlies our first paradigm, functional
programming

• We then add concepts one by one to give
the other paradigms

• Vastly different paradigms have quite
similar kernel languages

• The final kernel language is much simpler
than the sum of all paradigms

• It is possible to program in each paradigm
separately and to combine them where
necessary

Salient Features of Oz

Functional programming

fun {Ints N Max}
if N<Max then

{Delay 1000}
N|{Ints N+1 Max}

else nil end
end

fun {Map L F}
case L of X|M then

{F X}|{Map M F}
[] nil then nil end

end

• Generate a list of integers and map them:
local L1 L2 in

L1={Ints 1 10}
L2={Map L1 fun {$ X} X*X end}
{Browse L2} % Display [1 4 9 16 … 81]

end
• Because of dataflow variables,

both functions are tail-recursive:
proc {Map L F R}

…
local R1 in R={F X}|R1

R1={Map M F}
end
…

end

Create list R with unbound
tail R1 that is bound inside
the recursive call to Map

From functional to functional dataflow

• A stream is a list that ends in an unbound variable
• S=a|b|c|d|S2
• A stream can be extended with new elements as necessary

• The stream can be closed by binding the end to nil

• A stream can be used as a communication channel
between two threads
• The first thread adds elements to the stream
• The second thread reads the stream

Functional dataflow
• We run the program concurrently without changing the definitions:

local L1 L2 in
{Browse L1}
{Browse L2}
thread L1={Ints 1 10} end
thread L2={Map L1 fun {$ X} X*X end} end

end
• This turns a batch computation into an incremental (streaming) computation

• In general, any functional program can be made more incremental by adding threads
anywhere, without changing the final results

thread L1={Ints 1 10} end thread L2={Map L1 fun {$ X} X*X end} end

L1=1|2|3|4|…

(functional dataflow demo)

Ultralightweight threads

• Fibonacci with two recursive calls; first call creates a thread,
dataflow synchronization correctly combines the results

• In the functional paradigm of Oz, any expression can be executed
in its own thread without changing the result

fun {Fib X}
if X=<2 then 1
else thread {Fib X-1} end + {Fib X-2} end

end

{Browse {Fib 26}}

Execution time: 2.80 seconds
Number of threads: 121586 (in 1996)

Ports and multi-agent programming

• We want to do multi-agent programming
• It cannot be done in functional dataflow, because of nondeterminism!

• We add one new concept to do multi-agent programming
• A named communication stream that we call a port

% Send S1 to the port
thread S1={Ints 1 1000} end
for X in S1 do {Send P X} end

% Send S2 to the port
thread S2={Ints 1001 2000} end
for X in S2 do {Send P X} end

% Connect name P to stream S
declare P S in
{NewPort P S}

% Read the stream S
thread L2={Map S fun … end} end

P S

• Multi-agent programming = functional dataflow + port

S1

S2

L2

Actors

fun {NewActive Class Init}
S
Port={NewPort S}
Object={New Class Init}

in
thread

for M in S do {Object M} end
end
Port

end

• We combine multi-agent
programming with object-
oriented programming
• This gives a new abstraction,

an active object
• Concurrency behavior of an agent
• Computation behavior of an object

Software transaction
manager using strict
two-phase locking with
ordered timestamps
for deadlock avoidance

This is the full
implementation of the
transaction manager;
this gives an idea of
what Oz programs look
like

(transaction demo)

Parser specification
in Oz using the gump
DSL parser generator
tool creating an LL(1)
parser

This is an example
of one of the tools
provided with the
Mozart system

Constraint Programming

Constraint programming

• Mozart 1.0 supports constraint programming
• Constraint programming is a powerful approach to

solve complex combinatoric problems; it is a kind of
glue for operations research algorithms

• Problems are specified as logical relations and solved
with an incremental solver

• Mozart was the most advanced constraint system
at its release in 1999
• First-class computation spaces allows programming of

custom solvers in Oz
• Supports nested concurrent solvers (as in AKL)

Explorer tool for interactive
exploration of a search tree

Christian Schulte

Distributed Computing

Distributed computing

• Work on Distributed Oz started in 1995 and was part of the Mozart 1.0
release in 1999
• It is based on the clean separation between immutable data, dataflow variables, and

mutable data in Oz
• This separation facilitates deep embedding of distribution

• Each language entity is implemented with its own distributed algorithm, which defines the
network behavior and failure behavior while preserving kernel language semantics

• Distributed behavior of general language entities (like objects and classes)
follows from the distributed behavior of their kernel language parts
• Application behavior is independent of distribution structure, except for

operation timing and partial failure, for which extensions are provided

Distributed objects in Oz

• The object’s distributed behavior is defined by the distributed behavior of its parts
• An object consists of an object-record which contains a class and the object’s mutable state
• Both object-record and class are immutable, so can be copied across the network
• Mutable state (cell) obeys a consistency protocol

class Account
attr bal:0
meth trans(Amt)

bal:=@bal+Amt
end
meth getBal(B)

B=@bal
end

end
A={New Account trans(100)}

Distributed dataflow variables

• This figure shows how a dataflow variable is distributed over three compute nodes
• Generalizes remote futures, allows broadcast, maintains consistency of distributed store
• Consistency means that results are always the same, no matter in what order the

dataflow variables are bound
• This is a consequence of the semantics, which is distributed unification

M

P P

P

T

Node 1 Node 2 Node 3

Dataflow variable Thread

Variable manager

Important Oz Applications

Main Oz applications

• This table shows the largest applications that we know of in terms of how
they use the strengths of the Oz language and Mozart system

Concurrency
Multi-agent

Distribution
Fault tolerance

Constraints
Symbolic

Higher-order

FriarTuck X

Strasheela X

NLP X X

iCities X X

Beernet X

DIVE X X

TransDraw X X

Ωmega X X X

LogOz X X

Programming textbook

• General programming textbook based on Oz
published by MIT Press (2004), 929 pages

• Chapters organized according to paradigms
• Main theme is concurrency (1/3 of the book)

• “This book follows in the fine tradition of Abelson/
Sussman and Kamin’s book on interpreters, but goes
well beyond them, covering functional and Smalltalk-
like languages as well as more advanced concepts in
concurrent programming, distributed programming,
and some of the finer points of C++ and Java.”
– Peter Norvig, Google Inc.

Oz in programming education
• The textbook and Oz were used in

many university-level programming
courses
• At KTH, NUS, UCL in 2001-2003
• At UCL up to present day
• At ≥16 universities worldwide

• Concepts-based approach
• Five paradigms in the second year
• Formal semantics for all paradigms

• MOOCs on edX platform
• Louv1.1x and Louv1.2x 2013-2018

Functional programming
Functions and recursion
Higher-order programming
Single-assignment variables

Object-oriented programming
Data abstraction
Polymorphism
Inheritance

Deterministic dataflow
No race conditions
Concurrency transparency
Streams and agents

+ state (cells) + concurrency (threads)

Multi-agent dataflow
Deterministic dataflow
Nondeterminism where needed

Active objects
Object-oriented programming
Multi-agent dataflow

+ ports (named streams)

SimICS architecture simulator

• SimICS was the first system-level
simulator that could boot a non-modified
commercial operating system at the
instruction level

• The core of SimICS is SimGen, written in
Oz on Mozart since 1997, which compiles
an architecture specification into the
components necessary for its operation

• SimGen is still being used today (by Intel)
on Mozart 2 and it is probably one of the
longest lasting projects using Mozart

3. SimICS
SimICS is an instruction-set simulator developed at the
Swedish Institute of Computer Science (SICS). It
simulates one or more SPARC V8 processors, and
supports multiple physical address spaces, system-level
code, and emulation of the SunOS 5.x ABI for direct
analysis of user-level programs. The performance of
SimICS is acceptable even for large problems, with a
slowdown of around 25-75 per simulated processor.
SimICS itself is sequential, allowing it to be fully
deterministic, a crucial feature for an instrument.

SimICS allows a program to be studied interactively,
both for debugging and for profiling. Of primary
interest, SimICS can profile data and instruction cache
misses, translation look-aside buffer misses, and
instruction counts. These figures can be weighted,
sorted, and related to source code lines, allowing the
programmer to quickly zoom in on the portions of code
that consume resources.

SimICS has evolved over 7 years, and has absorbed
almost 20 man-years of effort.

3.1. SimICS interpreter
The core of SimICS is a variation of threaded code
(Bell 1973). Interpreters execute programs by running a
central fetch-decode-execute loop. Some simple design
ideas improve performance. Firstly, the target program,
in object code format, is translated to an intermediate
format, which is in turn interpreted. Whereas the target
instruction set is designed for interpretation by
hardware, the intermediate format is designed to be
easy for software. During execution, this intermediate
code is then cached. A variety of data structures keeps
track of when to regenerate intermediate code.

For each intermediate format instruction there is a small
segment of code, called a service routine, that emulates
the effects of that instruction, as well as performing any
administrative tasks for the simulation, such as event
queues, instruction pipeline, etc.

There are several ways of dispatching these service
routines; Figure 1 shows the four most common. These
are: subroutines called from an inner loop, a large
“switch” statement, directly addressable labels, and
function calls relying on tail call optimization. SimICS
primarily uses addressable labels using GCC (Stallman
1992), but can also run using tail recursion.

The process of implementing, and supporting, an
industrial-grade complete instruction set simulator is a
significant task. An instruction set will typically require
several hundred different service routines. The core
interpreter of SimICS is therefore implemented using a
metatool, SIMGEN, which automates a range of tasks
related to interpreter design (Larsson et al 1997).
SIMGEN works from a simulation-oriented specification
of the target instruction set, see Figure 2. Currently, it
will design the intermediate format, and then generate a
decoder, disassembler, encoder, and set of service
routines. Metatools such as SIMGEN have been in use
for some time, the contribution of SIMGEN is that it can
generate faster interpreters than is practical to do
manually. One way it accomplishes this is by
generating versions of the interpreter that gathers
service routine usage statistics, which it can then take as
input to regenerate a faster interpreter.

SIMGEN essentially solves two porting issues. Firstly,
the support of new instruction sets is greatly simplified,
since SIMGEN works from a high-level specification.
An earlier, handwritten SPARC V8 interpreter
(Samuelsson 1994) consisted of some 10,000 lines of C
macros, and was reimplemented using only 2,000 lines
of specification. SIMGEN has also been used to generateFigure 1 – Interpreter models

Figure 2 - SIMGEN Overview

Specification User

Specification. N

Encoder Decoder Disassembler User Modules

Intermediate Format

Service Routines Database

Compiler

Statistics Self-Prof. Simulator Simulator

Source Code

Application

Data

Human

SimGen

Simulator
Components

epilogue
epilogue

epilogue

epilogue

B. SwitchA. Subroutines

C. Labels D. Tail Calls

epilogue

epilogue

epilogue

epilogue

epilogue

epilogue

iCities agent simulator

• iCities was a European project (2001-2003) to study emergence in on-line communities
• iCities used Oz on Mozart to implement a parallel agent simulation platform for clusters

• In 2002, the system ran on 16 AMD Athlon 1900+ computers with 100 Mbit Ethernet under Linux,
achieved speedup of 11 to 14

simulator	architecture	

FriarTuck tournament scheduler

• FriarTuck is a round-robin sports
tournament scheduling application
based on constraint programming,
which was initially implemented in
Oz on Mozart in 1999

• This software scheduled several
sports tournaments in England and
the USA in 1999 and 2000

• The company still exists today and
is called Workforce Optimizer

NLP in Oz

• 323-page book for computational
linguistics in Oz published in 1999
• Some chapters:

• A Chart Parser for Context Free Grammars
• Chart Parsing for Unification Grammars
• Active Chart Parsing
• Constraints in Semantic Underspecification
• Word-Order and Dependency Structure
• Constraint-Based Dependency Parsing
• Concurrent Chart Parsing

Denys Duchier

Conclusions

Successes

• The initial goal of multiparadigm programming was largely achieved
• The Oz language successfully integrates many paradigms and the Mozart

system is a high-quality efficient implementation
• The Oz approach to concurrency successfully simplifies writing concurrent

applications
• The programming textbook successfully presents programming as a unified

discipline integrating many paradigms
• The book and Mozart system were successfully used in education
• The Mozart system was successfully used to build large applications
• The deep embedding approach of Oz for distribution is practical for cluster

computing
• Mozart 1.4.0 is a high-quality system that successfully combines multiparadigm

programming with constraints and deep embedding of distribution

Failures

• The Oz project failed in creating a self-sustaining community
• We failed to navigate the transition between funded research and open-

source development
• Most of the key developers left the project and were not replaced
• The open-source culture was in its infancy when Mozart was first released
• We failed to navigate timely the transition to 64-bit architectures due to lack

of resources
• Funding support for programming language research in Europe diminished

• The Oz syntax was unusual and the object syntax was not polished
• This created a threshold for new users to join the community
• We failed to recognize this and modernize the syntax

Legacy

• Oz was a pioneer in many ways
• In programming education, Oz was a successful foundation for a

concepts-based approach
• Oz pioneered several important programming concepts

• Lightweight threads (with shared data)
• Dataflow variables, as a tool for fine-grained asynchronous programming
• The distinction between mutable and immutable data types
• Functional dataflow, which is now standard for streaming analytics
• Programming with actors and futures
• Techniques for efficient constraint solving including computation spaces
• Deep embedding of distributed computing

The people

Iliès Alouini, Per Brand, Thorsten Brunklaus, Raphaël Collet, Benoit Daloze,
Guillaume Derval, Sébaswen Doeraene, Chris Double, Frej Drejhammar,
Denys Duchier, Sameh El-Ansary, François Fonteyn, Nils Franzén, Anthony Gégo,
Kevin Glynn, Donawen Grolaux, Gustavo Guwérrez, Seif Haridi, Dragan Havelka,
Marwn Henz, Marwn Homik, Yves Jaradin, Sverker Janson, Erik Klintskog,
Leif Kornstaedt, Simon Lindblom, Benjamin Lorenz, Stewart Mackenzie,
Guillaume Maudoux, Michael Mehl, Boriss Mejías, Valenwn Mesaros,
Johan Montelius, Marwn Müller, Tobias Müller, Anna Neiderud, Joachim Niehren,
Konstanwn Popov, Mahmoud Rafea, Ralf Scheidhauer, Chriswan Schulte,
Andreas Simon, Gert Smolka, Alfred Spiessens, Ralf Treinen, Peter Van Roy,
Jörg Würtz, Andres Zarza Davila

