f HOPL IV mO4art

A History of the Oz
Multiparadigm Language

Peter Van Roy and Seif Haridi
June 20, 2021

*.""j
HOPL1V

mO4art

Flashbacks

1970

1980

1990

The prehistory of Oz

Prolog

Logic as a programming language

/\

Concurrency
Logic for concurrent programming

Constraints
Logic for search-based solver

\/

Concurrent constraint calculus

AKL language and system

Oz

HOPL IV

Initial vision

|

Logic for
two areas

|

Unifying the
two areas

l

Multiparadigm
programming

The French Connection

* The place: Marseille, France
* The time: early 1970s

* An opinionated French computer scientist sitting in a bar drinking his Pastis
* Next to him, a dignified Englishman drinking his tea

e Suddenly, lightning strikes!
* Programming in logic, the Prolog language!

The Rising Sun f

* The place: Tokyo, Japan
* The time: early 1980s

« A lanky computer sensei slowly sipping his saké "
* Next to him, a samurai of fast systems chugging on his Asahi

e Suddenly, lightning strikes!
* The path to enlightenment is concurrent logic!

x";;
£ HOPLIV

mO4art

The Vision
and the Foundation

3
>/
&

HOPL1V

The Oz vision: multiparadigm programming

* All large programs need more than one paradigm

* The program may have a database with relational (logical) structure, it may do
(functional) transformations, it can use object-oriented principles to structure
its data, and concurrency to connect its independent parts

* We would like to support this
e How can we do it? Where do we start?

* Oz project starting points

* We design and implement a single language
e We use concurrent constraints as the semantic foundation

P
4
Z"l HOPL IV

What is a paradigm?

* What is a programming paradigm? Is there even such a thing?

* Programming is a huge bag of languages and concepts
* |n practice, there are different ways of programming a computer

* For the Oz design, we defined a paradigm as follows:

e A programming paradigm is an approach to program a computer
based on a coherent set of principles or a mathematical theory

* Examples
* Functional programming: based on lambda calculus
* Logic programming: based on a formal logic such as Horn-clause logic

* Object-oriented programming: an approach to organizing data and its
operations based on data abstraction, mutable state, and polymorphism

P
'y
V4

HOPLIV

Why do we need a single language?

* Why not just use different languages or libraries?
* This facilitates upward migration from existing systems
* Many examples exist, for example the Gecode constraint solver is a C++ library

 This approach has disadvantages
* Cognitive load on the programmer, increased system complexity
* Cross-paradigm optimizations are extremely difficult

* This is not a long-term solution
* As researchers, we aimed for a fundamental, conceptual solution

3
>/
&

HOPL1V

What is the foundation?

* How do we combine four different paradigms?
* Functional: lambda calculus
* Logic: first-order logic
* Object-oriented: data abstraction and polymorphism
* Concurrent programming

* We need a foundation in which all these paradigms can fit naturally
e We chose concurrent constraints as our foundational model

* Why concurrent constraints?
* All four paradigms can be done in a straightforward way, as we will show

* |t has powerful properties: constraint domains can be defined separately, and
synchronization is defined with logical entailment

I‘4
V-4
Z“"" HOPL IV

* The concurrent constraint model is a
agent Q Q calculus for general computation
Q Q e The model consists of a shared constraint
ask H store observed by concurrent agents
B\

/—\\ * The store ¢ contains constraints:
constramt store -

A/ .G—Cl/\CZA”'/\Cn

* There are two basic operations:

) * Tell: add c to o, which becomes o A c
* Agents are programmed in a small language: * Ask: wait until o has enough information to
e Ask and tell decide c or —c

* Concurrent composition, variable definition,
procedure definition

Concurrent constraint model|

* Technically, the ask is doing logical
entailment which checks ok=c and okE-c

HOPL IV

Concurrent constraint language

= 5 S, Concurrent composition gfor;t;:er::fgonsmim
| XinS Variable introduction
| ¢ Tell constraint
| fC,[IC[]--[]C,elseSend Conditional
| p(Xy -+ X,) Procedure call
= Xy X,incthenS Ask clause
= proc p(X; -+ X,) S end Procedure definition

proc times2(L1, L2)
if L1=nil then L2=nil

[XM1lin >|;1=X| M:_l then M2 in * The first agent initially suspends because the store
L2=2*X| M2 times2(M1, M2) does not entail L1=nil or L1=X| M1 or their negations

end end * The second agent will build L1
L1 L2 in times2(L1,L2) times2(1|2|3|nil,L1)

First agent Second agent e As L1 is built, the first agent incrementally builds L2

-~
L7

47

{)“

/° HOPLIV

Synchronization as logical entailment

Concurrent constraints Oz
* Synchronization is when one concurrent * Dataflow concurrency is the core of Oz
computation waits on another « Dataflow variables are the glue that ties
* Logical entailment to define synchronization together concepts from all paradigms
 Consider a store o={x,y} with variables x, y * Consider this sequential Oz program:
* To do the addition y=x+1, we must know x local Yin
* We do an ask operation: Y=X+1)
if number(x) then y=x+1 end {Browse Y} % Display Y
e This tests coEnumber(x) : end
Does o know that x is a number? * Execution will wait at X+1 because X is
* This is dataflow behavior unbound (ask operation)
* Knowledge about x drives the computation * When X Is bc?und in another thread-(tell
operation), like X=5, execution continues

*.""j
HOPL1V

mO4art

The Road to Oz

* HOPLIV

Unifying the two areas of logic programmin

* In the 1980s, logic programming was divided into two disjoint
research areas
e Concurrent logic programming
* Constraint logic programming

* A major research problem was how to unify them
* This would combine reasoning systems with parallel computing
* This would lead to a society of independent reasoning agents

* The AKL project successfully realized this unification
* |t defined a computation model giving composition of search and concurrency
* |t built a high-quality system that successfully demonstrated the model

HOPL IV

AKL: the Swedish ancestor to Oz (1990)

local agents * The AKL project had the explicit goal of

unifying concurrent logic programming
and constraint logic programming

* The AKL system was released in 1990
for single and multiprocessor systems

* AKL defines computation spaces, each
of which consists of a constraint store
and its agents

* An agent can itself be a computation space;
agents see their enclosing stores

Ioc_al * This gives full compositionality of search and
constraint store concurrency: First-class search engines can be
run concurrently, and conversely, concurrent
computations can be used inside search engines

3
/3
P4

HOPL IV

Oz: the German step after AKL (>1990)

* Oz is a direct successor of AKL
* Oz provides a much richer set of concepts for the programmer
* Oz layers its kernel language, giving a well-factored language and semantics

* Compared to AKL, Oz adds the following:
* Full compositionality of all language concepts
 Compositional syntax (break with AKL's Horn clause syntax from Prolog)
* Higher-order programming and ubiquitous first-class values
* Mutable versus immutable data types

3
>/
&

HOPL1V

Oz language design cycles

* “0z 0” (1991)

* This initial language did not yet use the concurrent constraint model

* 0z 1(1993)

* The first language influenced by AKL and using the concurrent constraint model

* The Swedish and German groups now joined efforts on a common system
* 0Oz 2 (1996)

* The first language that succeeded in the multiparadigm vision

« 0z 3 (1998)

* Conservative extension for components and distributed computing

Timeline up to Mozart 1.0

* HYDRA German project (1991) led by Gert Smolka (DFKI)
* Complex deductive problem solving (needed for many DFKI projects)

* ACCLAIM European project (1992-1995) led by Seif Haridi (SICS, Sweden)
* Advancing concurrent constraint programming

* Collaboration between DFKI, SICS, DEC PRL: Oz, AKL, and LIFE languages

Oz 1 language (1993): first language, many experimental features

* PERDIO German project + PERDIO Swedish project (1996-1999)

Joined efforts of DFKI and SICS on Oz, Peter Van Roy from PRL to DFKI to UCL
First-class computation spaces and constraint programming (Christian Schulte)

A 4

Oz 2 language (1996): first stable language
Oz 3 language (1998): conservative extension for components and distribution

\ 4

Mozart 1.0 full system (180000 lines C/C++, 140000 lines Oz)

v

CCL Workshop (Oct. 1992)
Informal release (Nov. 1993)

DFKI Oz 1.0 (Jan. 1995)
WOz ‘95 Workshop (Nov. 1995)

DFKI Oz 2.0 (Sep. 1996)

Mozart 1.0 (Jan. 1999)
Major release

HOPL IV

Mozart 1.0

=
g

Mozart Documentation Dism|-’Lllat?ﬂt'::rr(i’:lr;::mrfci?o:ozart o M Oza rt 1 . O re I e a S e d

Peter Van Roy, Seif Haridi, Per Brand

Getting Started w i n .Ja n . 1999

System Documentation

The System Installation Manual Documentation Overview
The Demo Applications Document How To Read The Documentation [] B S D S t I e O e n -
Changes Global Index

Tutorials

d

Introductory

source language

e * 10000 downloads
Finite Domain Constraint during 1999'2001

Programming in Oz. A Tutorial.

073l of Oz
Distributed Programming in Mozart
Finite Domain Constraint Programming,
Qlication Programming

Reference Manuals

Programming Modules and Libraries Interfaces

The Oz Base Environment Constraint Extensions Reference’

st Ifesfocing 0 C and i+ Christian Schulte Gert Smolka Py Widely used during
' period 1999-2009

* Last major release

The Mozart Standard Library Definitions
Programming Environment and Tools The Oz Notation
Loop Support

The Oz Programming Interface, Browser,

Explorer, System Panel, Distribution Panel, Other
Shel Utiltes, Ozcar: Debugger, Profiler,

Gump: Frontend Generator, Inspector

Limitations
Contributed Libraries, Add-ons
MOzart Global User Library (MOGUL)
0z Documentation DTD

Distribution Subsystem

Mozart 1.4.0 in 2008

HOPL IV mO4qart

The Design Approach

B UCLouvain

HOPL IV

Language design approaches

e Historically, there are two basic approaches to design a language

* One way is to start from the machine and build the language on top

* Examples are Fortran, C, C++, and recently, Rust
* Basically, a bottom-up approach: efficiency first

* Another way is to start from a principled design and implement it
* Examples are Lisp, Prolog, Smalltalk, Erlang, Haskell, Javascript, Python, and Oz

* Basically, a top-down approach: principles first

HOPL IV

Oz design approach: a form of top-down

* The general language is very
rich; yet the kernel language
was always kept very small

lazy evaluation

Rich cearch functional dataflow \ * The developers continuously

general language \‘ components introduce new abstractions as
\\‘ object system solutions to practical problems

\‘ * The abstraction is first simplified
— time \\ as much as possible; often it

vanishes!
* A new abstraction is accepted if
Lean its implementation is efficient
kernel language _ and its semantics is simple
first-class

computation spaces

N

(nothing) | WaitNeeded * This methodology achieved
' the goal of multiparadigm
programming

v

dataflow
variables

sequential composition,
cells

From the concurrent constraint language ...

S1S,

XinS$S

C
ifC,[1C[]:-[]C,elseSend
p(Xy -+ Xy)

Concurrent composition
Vaariable introduction
Tell constraint
Conditional

Procedure call

X; - X,incthenS
proc p(X; -- X,) Send

Ask clause

Procedure definition

/* HOPLIV

P
fﬁj
HOPL1V

... to concurrent constraints in Oz

S == 55 Sequential composition
| XinS Vaariable introduction
| ¢ Tell constraint
| ifC,[]1C[] - []C,elseSend Conditional
| {XX; - X} Procedure call
| threadSend Thread introduction
C == X;--X,incthenS$S Ask clause
c = X=proc{SX;:-X,}Send| .. Constraints

* Oz made two major changes to the concurrent constraint model
* Higher-order procedures (procedures are constraints)
* Concurrency is explicit (threads) instead of implicit

HOPL IV

Rich general language...

 Powerful foundation

 First-class values (functions, procedures, classes, objects, components,
modules, spaces)

* Compositional factored syntax
* Lightweight threads and dataflow variables
* Deep embedding for distributed computing

* Multiple paradigms
* Functional, functional dataflow, lazy functional dataflow, actor dataflow
* Data abstraction, polymorphism, inheritance
* Dataflow concurrency, multiagent programming, shared state concurrency

* Relational programming, constraint programming, programmable search
engines

Functional

S = skip empty statement

| S S sequential composition

| local Xin Send variable introduction

| X=X variable-variable equality

| X=V variable-value equality

| if Xthen S| else S, end conditional

| {XY;--- Y,} procedure call

| case Xof Recordthen S; else S, end pattern matching
Functional dataflow

| thread Send thread introduction
Lazy functional dataflow

| {WaitNeeded X} by-need synchronization
Relational and constraint

| Space computation spaces
Exceptions

| tryS;catch Xelse S; end
| raise Xend

exception scope introduction
raise exception

Actor dataflow
| {NewPort XY}
| {Send XY}

port introduction
port send

Mutable state
| {NewCell XY}
| {Exchange XY Z}

cell introduction
cell exchange

XY Z = (identifiers)

Vv = Number | Procedure | Record | true | false
Number = Int| Float

Procedure := proc{$X; -- X;}Send

Record n= o f(l: Xy oo LX)

Space (space operations are listed in Figure 16)

HOPL IV

..lean kernel
language

* We start with a simple kernel language that
underlies our first paradigm, functional
programming

* We then add concepts one by one to give
the other paradigms

* Vastly different paradigms have quite
similar kernel languages

* The final kernel language is much simpler
than the sum of all paradigms

* Itis possible to program in each paradigm
separately and to combine them where
necessary

f;"j
HOPL1V

mO4art

Salient Features of Oz

3

fHOPLIV
Functional programming

fun {Ints N Max} * Generate a list of integers and map them:
if N<Max then local L1 L2 in
{Delay 1000} L1={Ints 1 10}
N|{Ints N+1 Max} L2={Map L1 fun {S X} X*X end}
else nil end {Browse L2} % Display [14 9 16 ... 81]
end end
* Because of dataflow variables,
fun {Map L F} both functions are tail-recursive:
case L of X|M then roc {Map L F R}
{F X}|{Map M F} g P
[1 nil then nil end

local R1 in R={F X}|[R1}
R1={Map M F} ¥

end k Create list R with unbound
tail R1 that is bound inside

the recursive call to Map

end

end

HOPL IV

From functional to functional dataflow

e A stream is a list that ends in an unbound variable
e S=a|b|c|d]|S2
* A stream can be extended with new elements as necessary
* The stream can be closed by binding the end to nil

* A stream can be used as a communication channel
between two threads
* The first thread adds elements to the stream
* The second thread reads the stream

f HOPL IV

Functional dataflow

* We run the program concurrently without changing the definitions:
local L1 L2 in
{Browse L1}
{Browse L2}
thread L1={Ints 1 10} end
thread L2={Map L1 fun {S X} X*X end} end
end

* This turns a batch computation into an incremental (streaming) computation

* In general, any functional program can be made more incremental by adding threads
anywhere, without changing the final results

L1=1(2[34]...

thread L1={Ints 1 10} end thread L2={Map L1 fun {$ X} X*X end} end

(functional dataflow demo)

Ultralightweight threads

e 0Oz Panel

Panel Options

]
T [//

— Runtime

Run: -
Garbage Collection: 0.55 s [m g:g
Copy: 0.00 s [0 g-;
Propagation: 0.00 s [m 0,
e

-

— Threads >

Created: 50000
Runnable: 1 [ggggg
20000
10000
0

I

Execution time: 2.80 seconds

% Number of threads: 121586 (in 1996)

fun {Fib X}
if X=<2 then 1

end

{Browse {Fib 26}}

* Fibonacci with two recursive calls; first call creates a thread,
dataflow synchronization correctly combines the results

* In the functional paradigm of Oz, any expression can be executed
in its own thread without changing the result

7
y
¥ HOPLIV

else thread {Fib X-1} end + {Fib X-2} end

Ports and multi-agent programming

* We want to do multi-agent programming

* It cannot be done in functional dataflow, because of nondeterminism!

* We add one new concept to do multi-agent programming

A named communication stream that we call a port

% Connect name P to stream S % Send S1 to the port
declare P S in thread S1={Ints 1 1000} end
{NewPort P S} for X in S1 do {Send P X} end
% Read the stream S % Send S2 to the port

thread L2={Map S fun ... end} end thread S2={Ints 1001 2000} end
for X in S2 do {Send P X} end

* Multi-agent programming = functional dataflow + port

S1

S2

,:;

‘r")l HOPL IV

S L2

* HOPLIV

Actors

fun {NewActive Class Init} * We combine multi-agent
S programming with object-
Port={NewPort S} oriented programming

~ Object={New Class Init} * This gives a new abstraction,

in an active object
thread . _ * Concurrency behavior of an agent

for Min S do {Object M} end * Computation behavior of an object

end
Port

end

declare
class TMClass
attr timestamp tm
meth init(TM) timestamp:=0 tm:=TM end

meth Unlockall(T RestoreFlag)
for save(cell:C state:S) in {Dictionary.items T.save} do
(C.owner):=unit
if RestoreFlag then (C.state):=S end
if {Not {C.queue.isEmpty}} then
Sync2#T2={C.queue.dequeue} in
(T2.state) :=running
(C.owner):=T2 Sync2=ok
end
end
end

meth Trans(P ?R TS) /* See next figure */ end
meth getlock(T C ?Sync) /* See next figure */ end

meth newtrans(P ?R)
timestamp:=@timestamp+1 {self Trans(P R @timestamp)}

end

meth savestate(T C ?Sync)
if {Not {Dictionary.member T.save C.name}} then

(T.save).(C.name):=save(cell:C state:@(C.state))

end Sync=ok

end

meth commit(T) {self Unlockall(T false)} end

meth abort(T) {self Unlockall(T true)} end

end

proc {NewTrans ?Trans ?NewCellT}
TM={NewActive TMClass init(TM)} in
fun {Trans P ?B} R in
{T™ newtrans(P R)}
case R of abort then B=abort unit
[1 abort(Exc) then B=abort raise Exc end
[commit(Res) then B=commit Res end
end
fun {NewCellT X}
cell(Cname: {NewName} owner:{NewCell unit}
queue: {NewPrioQueue} state:{NewCell X})
end
end

[~ meth Trans(P ?R TS)
Halt={NewName}
T=trans(stamp:TS save:{NewDictionary} body:P
state:{NewCell running} result:R)
proc {ExcT C X Y} S1 S2 in
{@tm getlock(T C S1)}
if Sl==halt then raise Halt end end
{@tm savestate(T C S2)} {Wait S2}
{Exchange C.state X Y}
end
proc {AccT C ?X} {ExcT C X X} end
proc {AssT C X} {ExcT C _ X} end
proc {AboT} {@tm abort(T)} R=abort raise Halt end end
in
thread try Res={T.body t(access:AccT assign:AssT
exchange:ExcT abort:AboT)}
in {@tm commit(T)} R=commit(Res)
catch E then
if E\=Halt then {@tm abort(T)} R=abort(E) end
end end
l_ end

meth getlock(T C ?Sync)
if @(T.state)==probation then
{self Unlockall(T true)}
{self Trans(T.body T.result T.stamp)} Sync=halt
elseif @(C.owner)==unit then
(C.owner):=T Sync=ok
elseif T.stamp==@(C.owner).stamp then
Sync=ok
else /* T.stamp\=@(C.owner).stamp */ T2=@(C.owner) in
{C.queue.enqueue Sync#T T.stamp}
(T.state) :=waiting_on(C)
if T.stamp<T2.stamp then
case @(T2.state) of waiting_on(C2) then
Sync2#_={C2.queue.delete T2.stamp} in
{self Unlockall(T2 true)}
{self Trans(T2.body T2.result T2.stamp)}
Sync2=halt
[1 running then
(T2.state):=probation
[1 probation then skip end
end
end

end

—

HOPL IV

Software transaction
manager using strict
two-phase locking with
ordered timestamps
for deadlock avoidance

This is the full
implementation of the
transaction manager;
this gives an idea of
what Oz programs look
like

(transaction demo)

\switch +gumpparseroutputsimplified +gumpparserverbose

declare

parser LambdaParser from GumpParser.'c!

end

meth error(VS) Scanner 1in
GumpParser.'
{System.showInfo 'line
end

token

": leftAssoc (1)
: leftAssoc(2)
: leftAssoc(2)
": leftAssoc(2)
: leftAssoc(2)
: leftAssoc(2)

syn program(?Definitions ?Terms)
'Definitions={ Definition($) }*

'Terms={ Term($) // ';' }+
end
syn Definition($)

'de e "(I) Term(T)
end
syn Term($)

'lambda "(I) Term(T)
[1 Term(T1l) Term(T2) prec('APPLY")
[T "(" Term(T)
[m (I) Line(L)
[1 "int'(I)
end

syn Line($)
skip => {GumpParser. 'c]
end

, getScanner(?Scanner)
#{Scanner getLineNumber($)}#'

' => definition(I T)

=> lambda(I T)
=> apply(T1 T2)
_>T

;> id(I L)
=> int(I)

'#VS}

, getScanner ($) getLineNumber ($)}

Parser specification
in Oz using the gump
DSL parser generator
tool creating an LL(1)
parser

This is an example
of one of the tools
provided with the
Mozart system

f;"j
HOPL1V

mO4art

Constraint Programming

* HOPLIV

Constraint programming

* Mozart 1.0 supports constraint programming

e Constraint programming is a powerful approach to
solve complex combinatoric problems; it is a kind of —— M £
glue for operations research algorithms Sxplorer Yove Seah Tt TR MR ‘

-

L

* Problems are specified as logical relations and solved
with an incremental solver

* Mozart was the most advanced constraint system
at its release in 1999

* First-class computation spaces allows programming of p
custom solvers in Oz =

Im Tme: 581s(26%¢c) © 3733 O 7 W 3727 Depth: 29
e Supports nested concurrent solvers (as in AKL)

| =

Explorer tool for interactive
exploration of a search tree

mO4art

Distributed Computing

3
>/
&

HOPL1V

Distributed computing

* Work on Distributed Oz started in 1995 and was part of the Mozart 1.0
release in 1999

* |t is based on the clean separation between immutable data, dataflow variables, and
mutable data in Oz

* This separation facilitates deep embedding of distribution

* Each language entity is implemented with its own distributed algorithm, which defines the
network behavior and failure behavior while preserving kernel language semantics

 Distributed behavior of general language entities (like objects and classes)
follows from the distributed behavior of their kernel language parts

» Application behavior is independent of distribution structure, except for
operation timing and partial failure, for which extensions are provided

Distributed objects in Oz

class Account
attr bal:0
meth trans(Amt)
bal:=@bal+Amt
end
meth getBal(B)
B=@bal
end
end
A={New Account trans(100)}

State
record

Cell

State
pointer

Y
state

bal ¢
100

Object-record

theClass theName

trans getBal

iy

P
fﬁj
f‘ HOPL IV

Class record
and object
identifier

* The object’s distributed behavior is defined by the distributed behavior of its parts
* An object consists of an object-record which contains a class and the object’s mutable state
* Both object-record and class are immutable, so can be copied across the network
* Mutable state (cell) obeys a consistency protocol

<

Distributed dataflow variables 9/

* This figure shows how a dataflow variable is distributed over three compute nodes

* Generalizes remote futures, allows broadcast, maintains consistency of distributed store

* Consistency means that results are always the same, no matter in what order the
dataflow variables are bound

* This is a consequence of the semantics, which is distributed unification

¥ HOPLIV mOqart

Important Oz Applications

B UCLouvain

HOPL IV

Main Oz applications

Concurrency | Distribution | Constraints | Higher-order
Multi-agent | Fault tolerance Symbollc

FriarTuck
Strasheela X
NLP X X
iCities X
Beernet
DIVE X

TransDraw

X X X X X

QOmega

LogOz X X

* This table shows the largest applications that we know of in terms of how
they use the strengths of the Oz language and Mozart system

HOPL IV

Programming textbook

Concepts, Techniques, and Models
of Computer Programming * General programming textbook based on Oz

published by MIT Press (2004), 929 pages
* Chapters organized according to paradigms
* Main theme is concurrency (1/3 of the book)

PETER VAN ROY and SEIF HARIDI

* “This book follows in the fine tradition of Abelson/
Sussman and Kamin’s book on interpreters, but goes
well beyond them, covering functional and Smalltalk-
like languages as well as more advanced concepts in
concurrent programming, distributed programming,
and some of the finer points of C++ and Java.”

— Peter Norvig, Google Inc.

p
f"f
f \)“
v J

P
4
4

HOPL IV

Oz in programming education

Functional programming
Functions and recursion
Higher-order programming
Single-assignment variables

+ state (cells) \:ﬁ)ncurrency (threads)

Object-oriented programming
Data abstraction

Polymorphism

Inheritance

Deterministic dataflow
No race conditions
Concurrency transparency
Streams and agents

il + ports (named str

eams)

Multi-agent dataflow
Deterministic dataflow
Nondeterminism where needed

/

Active objects

Multi-agent dataflow

Object-oriented programming

* The textbook and Oz were used in
many university-level programming
courses

e At KTH, NUS, UCL in 2001-2003
e At UCL up to present day
* At 216 universities worldwide

* Concepts-based approach
* Five paradigms in the second year
* Formal semantics for all paradigms

* MOOCs on edX platform
* Louvl.1x and Louv1.2x 2013-2018

P
*." o
Z“"" HOPL IV

SimICS architecture simulator

Comineaion g — * SimICS was the first system-level
simulator that could boot a non-modified

> SimGen [P smeitcion N commercial operating system at the

instruction level
Paininl Snie - -"-"—-—"--"--- N

\

[pecoter [\[osassemvier | [wsermoauies] e The core of SimICS is SimGen, written in
Oz on Mozart since 1997, which compiles
an architecture specification into the

I
|
Simulator :
l

Components
R 1———£————[i————' components necessary for its operation
Source Code
[Compier | [Applicaton e SimGen is still being used today (by Intel)
D pua on Mozart 2 and it is probably one of the

A A i .)
e smutmn] [] O e longest lasting projects using Mozart

Process
Manager
Master
Statistics
Control+Data
Worker #0 Worker #1

Mana; Man

0

oo

Simuaor (Bebavios 0 smm}

J

Users #0

2
g
-]

Data

simulator architecture

ICities agent simulator

speedup with replication (10k sites, 100 steps)
16

14 125k users —— F
250k users ---%--- ;
500k users ---%--- /

12F 1M users ~gw-)

o} /

8

6

4

2

0 - I 1 " N
t 2 4 8 16

speedups

16

14

12

10

speedup with caching (10k sites, 100 steps)

125k users ——
250k users ---X---
500k users ---%---
L tMusers ~-g--

workers

iCities was a European project (2001-2003) to study emergence in on-line communities

iCities used Oz on Mozart to implement a parallel agent simulation platform for clusters

* |In 2002, the system ran on 16 AMD Athlon 1900+ computers with 100 Mbit Ethernet under Linux,

achieved speedup of 11 to 14

HOPL IV

FriarTuck tournament scheduler

= Friar Tuck 1.1 |1
File Configure Demos About

* FriarTuck is a round-robin sports

ﬁ B L e | tournament scheduling application
—l Jan28 Jan 31 FF::? SIF?ba:'m:.E?:‘StF:al:r::s Feb 18 Feb21 Feb25 l.‘b|2;” based On ConStraint programming'

L'M - s which was initially implemented in

Pattern Sets T T OZ On Moza rt in 1999
pattern sets found (5) - - .
| * This software scheduled several

Timetables I~
[oo | | wl—q; : ;Q.H,. |T.p.;:mm|m | sports tournaments in England and
the USA in 1999 and 2000

Display
’/ Current Show I Browse ’ ’ :

Reset

- Timetable | - h . ” . d d
g5 T S] * The company still exists today an

Clem “UNC | +FSU [=GT | +Duke “NCSt| +Wake[=UVA | —FSU | +GT . . .

Duke “UMD | +GT_ | UNG |[=Glem]| +FSU | +Wake|ENGSE EGl UNC ” d W kf O

FSU [NCSI TSGR +UMD | +wake|oDUE WA | <GT | Clen [TEOND IS Calie orkftorce Optimizer

GT —Duke| +Clem | +UNC | -Wake| +UVA | -UMD | =FSU | +Duke| ~Clem f =

UMD “Duke TFSU | +UVA | +NCSI[UNC| +GT | -Wake +FSU (.

UNC +Clem [-Wake| +Duke | -GT -UVA [+UMD +NCSt [+Wake| -Duke

NCSt -FSU | -UVA | +Wake -UMD [+Clem | +Duke | =UNC [+UVA | -Wake

UVA “Wake| +NCSt “UMD | +UNC [T =GT | +SU | +Clem [=NCSt

Wake +UVA | +UNC | -NCSt| -FSU | +GT ~Duke | ~Clem| +UMD | -UNC | +NCSt

i

Save... Save as web page... | Set as Current Ok I

o3

i/
¢

HOPL IV

NLP in Oz

» 323-page book for computational
linguistics in Oz published in 1999

Denys Duchier

* Some chapters:
* A Chart Parser for Context Free Grammars
Chart Parsing for Unification Grammars

° Active Chart Pa rsing Concurrent Constraint Programming in Oz
for Natural Language Processing

* Constraints in Semantic Underspecification
Claire Gardent

* Word-Order and Dependency Structure
* Constraint-Based Dependency Parsing mO1art

Concurrent Chart Parsing

*.""j
HOPL1V

mO4art

Conclusions

3
/3
P4

HOPL IV

Successes

* The initial goal of multiparadigm programming was largely achieved

* The Oz language successfully integrates many paradigms and the Mozart
system is a high-quality efficient implementation

* The Oz approach to concurrency successfully simplifies writing concurrent
applications

* The programming textbook successfully presents programming as a unified
discipline integrating many paradigms

* The book and Mozart system were successfully used in education
* The Mozart system was successfully used to build large applications

* The deep embedding approach of Oz for distribution is practical for cluster
computing

* Mozart 1.4.0 is a high-quality system that successfully combines multiparadigm
programming with constraints and deep embedding of distribution

HOPL IV

Failures

* The Oz project failed in creating a self-sustaining community

* We failed to navigate the transition between funded research and open-
source development

Most of the key developers left the project and were not replaced
The open-source culture was in its infancy when Mozart was first released

We failed to navigate timely the transition to 64-bit architectures due to lack
of resources

Funding support for programming language research in Europe diminished

* The Oz syntax was unusual and the object syntax was not polished
* This created a threshold for new users to join the community
* We failed to recognize this and modernize the syntax

HOPL IV

Legacy

* Oz was a pioneer in many ways

* In programming education, Oz was a successful foundation for a
concepts-based approach

» Oz pioneered several important programming concepts

* Lightweight threads (with shared data)
Dataflow variables, as a tool for fine-grained asynchronous programming
The distinction between mutable and immutable data types
Functional dataflow, which is now standard for streaming analytics
Programming with actors and futures
Techniques for efficient constraint solving including computation spaces
Deep embedding of distributed computing

HOPL IV

The people

llies Alouini, Per Brand, Thorsten Brunklaus, Raphaél Collet, Benoit Daloze,
Guillaume Derval, Sébastien Doeraene, Chris Double, Frej Drejhammar,

Denys Duchier, Sameh El-Ansary, Francois Fonteyn, Nils Franzén, Anthony Gégo,
Kevin Glynn, Donatien Grolaux, Gustavo Gutiérrez, Seif Haridi, Dragan Havelka,
Martin Henz, Martin Homik, Yves Jaradin, Sverker Janson, Erik Klintskog,

Leif Kornstaedt, Simon Lindblom, Benjamin Lorenz, Stewart Mackenzie,
Guillaume Maudoux, Michael Mehl, Boriss Mejias, Valentin Mesaros,

Johan Montelius, Martin Miller, Tobias Muller, Anna Neiderud, Joachim Niehren,
Konstantin Popov, Mahmoud Rafea, Ralf Scheidhauer, Christian Schulte,

Andreas Simon, Gert Smolka, Alfred Spiessens, Ralf Treinen, Peter Van Roy,

Jorg Wirtz, Andres Zarza Davila

