
© 2011 P. Van Roy. All rights reserved.

1

Ozma: Extending Scala
with Oz Concurrency

Peter Van Roy
Sébastien Doeraene

QCon 2011 San Francisco

Nov. 18, 2011

PLDC Research Group
(pldc.info.ucl.ac.be)

Université catholique de Louvain
B-1348 Louvain-la-Neuve, Belgium

News flash:
Concurrency is still hard

  It has all kinds of fun problems like race conditions, reentrancy,
deadlocks, livelocks, fairness, scheduling, handling shared data,
and multi-agent collaboration algorithms
  Java’s synchronized objects are tough to program with (expletive deleted)
  Erlang’s and Scala’s actors are better, but they still have race conditions
  Libraries can hide some of these problems, but they always peek through

  Adding distribution makes it even harder

  Adding partial failure makes it even much harder than that

  The Holy Grail: can we make concurrent programming
as easy as sequential programming?
  Yes, amazingly it can be done for deterministic concurrency
  Ozma, a conservative extension to Scala, is designed to do this

© 2011 P. Van Roy. All rights reserved.

2

Overview of the talk
  Why deterministic concurrency?

  Advantages and disadvantages
  Scala + Oz ⇒ Ozma

  Declarative dataflow
  Lightweight threads and the wonders of single assignment val!

  More programming techniques
  Three powerful principles

  Message passing and nondeterminism
  This is also very important, so let’s add it cleanly

  Technical details for the language geek
  Comparison with Scala streams and lazy vals, handling exceptions

  The past is prologue
  The future of Ozma, distribution, and fault tolerance

© 2011 P. Van Roy. All rights reserved.

3

Scala in a nutshell
  Scala is a multiparadigm language that compiles to JVM and .NET.

  Directly interoperable with Java
  Developed since 2001 by Martin Odersky and others, it supports both

functional programming and object-oriented programming
  Clean language with advanced properties (e.g., closures, powerful type inferencing),

easy migration for Java programmers

  According to Typesafe, Inc., it has over 100,000 developers
  See www.scala-lang.org for more information

  Scala provides common abstractions for concurrent programming
  Signals and monitors (synchronized objects)
  Futures, syncvars, asynchronous and synchronous channels, fork-join
  Actors with mailboxes, semaphores
  Akka library: transactional actors

  Some of these are good and some are bad
  Good: futures, syncvars, channels, fork-join ⇒ they are deterministic!
  Bad: monitors, semaphores (least bad: actors, transactions)

© 2011 P. Van Roy. All rights reserved.

4

Scala + Oz ⇒ Ozma
  Oz is a multiparadigm language that has been

used for language experiments by a bunch of
smart but eccentric language researchers since
the early 1990s (see www.mozart-oz.org)
  Constraint programming, network-transparent

distributed programming, declarative/procedural
GUI programming, concurrent programming

  Textbook “Concepts, Techniques, and Models
of Computer Programming”, MIT Press, 2004

  Oz supports concurrent programming based on a
declarative dataflow core with lightweight threads

  Ozma extends Scala with a new concurrency
model based on the Oz dataflow ideas

© 2011 P. Van Roy. All rights reserved.

5

One third of the
book is about
concurrency ⇒

Ozma implementation
  Ozma’s implementation combines a modified Scala compiler

and a modified Oz compiler, and targets the Oz VM (Mozart).
It was first released in June 2011.
  The Oz VM has efficient support for lightweight threads, dataflow

synchronization, by-need synchronization, and failed values

  Full source and binaries (with open-source license) available at:
 https://github.com/sjrd/ozma

  Full documentation available at:
 http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf

  Download the compiled binaries and try it out!
  Or compile it yourself with Scala ≥ 2.9.0, Mozart ≥ 1.4.0, and Ant ≥ 1.6
  It runs under Linux, Mac OS X, and maybe Windows

  All the Ozma examples in this talk are running code

© 2011 P. Van Roy. All rights reserved.

6

Ozma extends Scala with a
new concurrency model
  The heart of the model is declarative dataflow

  Further extended with laziness (still declarative) and ports (for nondeterminism)
  This allows adding nondeterminism exactly where needed and no more

© 2011 P. Van Roy. All rights reserved.

7

waitNeeded
(by-need synch.)
byNeedFuture,

lazified lists

ports
(named streams)
newPortObject

declarative dataflow

lazy declarative dataflow

message passing

The heart of the
new model is
deterministic

In roman:
the new concepts

In italics:
useful abstractions

lightweight threads
dataflow values (val)

streams (lists with
dataflow tail)

Why deterministic concurrency?

  Determinism has strong limitations!
  Any concurrent execution always gives the same results
  Even a simple client/server can’t be written

  But determinism has big advantages too
  Race conditions are impossible by design
  With determinism as default, we can reduce the need for nondeterminism (in the

client/server: it’s needed only at the point where the server accepts requests)
  Any functional program can be made concurrent without changing the result

© 2011 P. Van Roy. All rights reserved.

8

Client 1

Client 2

Server

This client/server can’t
be written in a

deterministic model!

It’s because the server
accepts requests

nondeterministically
from the two clients

Deterministic concurrency:
the right default?
  Parallel programming has finally arrived (a surprise to old timers like me!)

  Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, most apps will do it

  Distributed computing: data-intensive with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

  Something fundamental will have to change
  Sequential programming can’t be the default (it’s a centralized bottleneck)
  Libraries can only hide so much (interface complexity, distribution structure)

  Concurrency will have to get a lot easier
  Deterministic concurrency is functional programming!
  It can be extended cleanly to distributed computing

  Open network transparency (implemented in Oz since 1999)
  Modular fault tolerance (implemented in Oz since 2007)
  Large-scale distribution (on the way…)

© 2011 P. Van Roy. All rights reserved.

9

Such an old idea, why isn’t it
used already?
  Deterministic concurrency has a long history that starts in 1974

  Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

  Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

  Why was it forgotten for so long?
  Message passing and monitors arrived at about the same time:

  Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial
intelligence. In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug.
1973.

  Charles Antony Richard Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549-557, Oct. 1974.

  Actors and monitors handle nondeterminism, so they are better. Right?

  Dataflow computing also has a long history that starts in 1974
  Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in

Computer Science, vol. 19, pp. 362-376, 1974.
  Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWER4, the first dual-core processor, in 2001).

© 2011 P. Van Roy. All rights reserved.

10

Declarative Dataflow

© 2011 P. Van Roy. All rights reserved.

11

Declarative dataflow

  All val values can do dataflow
  They are single assignment
  The addition operation waits

until both x and y are bound
  This does both synchronization

and communication

© 2011 P. Van Roy. All rights reserved.

12

val x: Int!
val y: Int!
val z: Int!

thread { x=1 }!
thread { y=2 }!
thread { z=x+y }!

println(z)!

  Programs with declarative dataflow are always deterministic
  This program will always print 3, independent of the scheduler

x=1!

y=2!

z=x+y!
Thread execution
(executes from left to right)

Dataflow synchronization

Using the thread statement
as an expression

  Exactly the same behavior as
the previous example

  Using the thread statement in
this way can often simplify the
syntax of concurrent programs

© 2011 P. Van Roy. All rights reserved.

13

val x = thread(1)!
val y = thread(2)!
val z = thread(x+y)!

println(z)!

x=thread(1)

y=thread(2)

z=thread(x+y) println(z)

x

y

z
Each green box is
a concurrent agent

Each arrow is a
shared dataflow value

Declarative dataflow
extensions to Scala
  Lightweight threads: hundreds of thousands of threads can be

active simultaneously (like Erlang, by the way)
thread { println(“New lightweight thread”) }  

  Dataflow values: every val can be a single-assignment variable.
Operations that need the value will wait until it is available.

val x = thread(1) // binds x in its own thread  
println(x+10) // the addition waits for x  

  By-need (lazy) execution: wait until value is needed
val x: Int  
thread{ waitNeeded(x); x=factorial(69) }  
println(x) // need to print causes calculation of x!

© 2011 P. Van Roy. All rights reserved.

14

Implementing futures

  Futures can be implemented easily using dataflow values
  The computation is started in a new thread and returns a future
  Any calculation using the future will wait until its value is available

© 2011 P. Van Roy. All rights reserved.

15

import scala.ozma.thread  
object SimpleFuture {  
 def main(args: Array[String]) {  
 println(“start”)  
 val result = thread(fibonacci(40)) // create a future  
 println(“continue execution while computing”)  
 println(“Fib(40) = “+result) // wait for result  
 }!

 def fibonacci(arg:Int): Int = arg match { // burn cycles  
 case 0 | 1 => 1  
 case _ => fibonacci(arg-1)+fibonacci(arg-2)  
 }  
} !

Streams: lists as dataflow
communication channels

  A stream is a list with an unbound dataflow tail
  It can be extended indefinitely or terminated with Nil!

  Any list function can read a stream (it’s exactly like reading a list)
  It will automatically wait when it finds an unbound tail

  Like the foreach operation in this example
  If put inside a thread, the list function becomes a concurrent agent

© 2011 P. Van Roy. All rights reserved.

16

val x: List[Int]  
val ints = 1 :: 2 :: 3 :: 4 :: x // unbound tail  

thread { ints foreach println } // a printing agent  

val y: List[Int]!
x = 5 :: 6 :: 7 :: y // the agent will print these  

The magic of declarative
dataflow

  Both versions print the same final result 1, 4, 9, 16, …, 100
  So what’s the difference? What does concurrency buy you?

  The sequential version: nothing is output for 10 seconds, and then the whole list
  The concurrent version: a new result is output every second
  Declarative dataflow turns batch programs into incremental programs

© 2010 P. Van Roy. All rights reserved. 17

object Test {  
 def main(args: Array[String]) {  
 val range = gen(1, 10) // sequential version  
 val result = range map (x => x*x)  
 result foreach println  

 val range2 = thread(gen(1, 10)) // concurrent version  
 val result2 = thread(range map (x => x*x))  
 result2 foreach println  
 }  
 def gen(from: Int, to: Int): List[Int] = {  
 sleep(1000)  
 if (from > to) Nil  
 else from :: gen(from+1, to) // tail-recursive in Ozma  
 }  
} !

Pipelines using streams

  A list function put in a thread becomes a concurrent agent
  List functions must be tail-recursive for this to work

  This is automatically true in Ozma (ensured by compiler transformation)

© 2011 P. Van Roy. All rights reserved.

18

def generateFrom(n: Int): List[Int] =  
 n :: generateFrom(n+1)  

val integers = thread(generateFrom(0))  
val evens = thread(integers filter (_ % 2 == 0))  
val tenFirst = thread(evens take 10)  
tenFirst foreach println!

generateFrom filter take 10
foreach
println

integers evens tenFirst

Lazy pipelines

  byNeedFuture introduces lazy execution: its body will be executed on
demand; list operations are made lazy by modifying lists with .lazified!

  Lazy execution preserves determinism

© 2011 P. Van Roy. All rights reserved.

19

def generateFrom(n: Int): List[Int] = byNeedFuture {  
 n :: generateFrom(n+1)  
}  

val integers = generateFrom(0)  
val evens = integers.lazified filter (_ % 2 == 0)  
val tenFirst = evens.lazified take 10  
tenFirst foreach println!

generateFrom filter take 10
foreach
println

integers evens tenFirst

More Programming
Techniques

© 2011 P. Van Roy. All rights reserved.

20

Three powerful principles
  Any functional program can be made concurrent

without changing the result by adding calls to thread!
  Threads can be added anywhere in the program
  Turns batch into incremental (removes roadblocks)

  Any list function can become a concurrent agent
by executing it in a thread
  Because list functions in Ozma are tail-recursive,

the agent has no memory leak (stack size is constant)

  Any computation, functional or not, can be made lazy
by adding calls to waitNeeded!
  Syntactic sugar is provided with byNeedFuture

and .lazified!

© 2011 P. Van Roy. All rights reserved.

21

From map to concurrent map

  In concMap, all evaluations of f execute concurrently
  It is even possible to call concMap when f is not known (unbound).

This will create a list containing unbound values, like futures: they
will be evaluated as soon as f is known (bound to a function).

© 2011 P. Van Roy. All rights reserved.

22

def concMap[A, B](list: List[A], f: A => B): List[B] = {  
 if (list.isEmpty) Nil  
 else thread(f(list.head)) :: concMap(list.tail, f)  
}!

def map[A, B](list: List[A], f: A => B): List[B] = {  
 if (list.isEmpty) Nil  
 else f(list.head) :: map(list.tail, f)  
}!

Map as a concurrent agent

  Wrapping the calls to gen, filter, and map within threads turns them
into concurrent agents
  Note that foreach is also an agent, living in the main thread

  As new elements are added to the input stream, new computed elements
will appear on the output stream

© 2011 P. Van Roy. All rights reserved.

23

def gen(from: Int): List[Int] = from :: gen(from+1)!

def displayEvenSquares() {  
 val integers = thread(gen(0))  
 val evens = thread(integers filter (_ % 2 == 0))  
 val evenSquares = thread(evens map (x => x*x))  
 evenSquares foreach println  
}!

Concurrent agent

Map as a lazy agent

  Now foreach imposes the control flow and laziness prevents the agents
from getting ahead of the consumer

  This guarantees that the whole program executes in constant memory

© 2011 P. Van Roy. All rights reserved.

24

def gen(from: Int): List[Int] = byNeedFuture {  
 from :: gen(from+1)  
}!

def displayEvenSquares() {  
 val integers = gen(0)  
 val evens = integers.lazified filter (_ % 2 == 0)  
 val evenSquares = evens.lazified map (x => x*x)  
 evenSquares foreach println  
}!

Sieve of Eratosthenes as a
declarative dataflow program

  This program calculates
the prime numbers up to a
maximum using the Sieve
of Eratosthenes.

  The program dynamically
builds a pipeline of filter
agents that successively
remove multiples of 2, 3, 5,
etc.

  The program can be made
lazy by prefixing the
generate and sieve
definitions with
byNeedFuture!

© 2011 P. Van Roy. All rights reserved.

25

import scala.ozma._!
object PrimeNumbers {!
 def main(args: Array[String]) {!
 val max = args(0).toInt!
 val integers = thread(generate(2, max))!
 val result = thread(sieve(integers))!
 result.toAgent foreach println!
 }!
 def generate(from: Int, to: Int): List[Int] = {!
  if (from>to) Nil else from::generate(from+1, to)!
 }!
 def sieve(list: List[Int]): List[Int] = {!
  list match {!
  case Nil => Nil!
  case head::tail =>!
  val filtered = thread {!
  tail.toAgent filter (_ % head != 0)!
  }!
  head :: sieve(filtered)!
  }!
 }!
}!

Message Passing
and Nondeterminism

© 2011 P. Van Roy. All rights reserved.

26

Managing nondeterminism
with ports
  So far, all our programs have been deterministic

  Determinism is a good default, but for real programs
we need nondeterminism too!

  Let’s add nondeterminism in a nice way
  One way is to give names to streams

  A port is a named stream, where the name is a constant
  Any thread can send a value to a port
  The port will append the value to its stream
  The senders and the receivers of a port can themselves be

deterministic computations; the only nondeterminism is the
order in which sent values appear on the port’s stream

© 2011 P. Van Roy. All rights reserved.

27

Introducing ports

  The values 1, 2, and 3 will be displayed in some order
(nondeterminism)
  The actual order depends on the thread scheduler

  No memory leak: garbage collection will remove the parts
of the stream already read

© 2011 P. Van Roy. All rights reserved.

28

val (s, p) = newPort[Int] // Create port p with stream s  
thread{ p.send(1) }  
thread{ p.send(2) }  
thread{ p.send(3) }  

thread { s foreach println } // Print elements of the!
 // port’s stream one by one 

Partial barrier synchronization
with ports

  The partial barrier starts n tasks concurrently and waits until
m tasks complete (with m≤n)

  We implement it with a port whose stream contains only units

© 2011 P. Van Roy. All rights reserved.

29

def partialBarrier(m: Int, tasks: List[() => Unit]) {  
 val (stream, port) = Port.newPort[Unit]  
 for (task <- tasks)  
 thread { task(); port.send(()) }  
 stream(m-1) // wait for at least m elements  
}  

println(“start”)  
partialBarrier(1, List( 
 () => { sleep(1000); println(“a”) },  
 () => { sleep(3000); println(“b”) },  
 () => { sleep(2000); println(“c”) }  
))  
println(“peekaboo”)!

Building nondeterministic
agents with ports

  A port object is an actor. It reads messages sequentially from the stream
and uses the messages to update its internal state.

  The foldLeft operation updates the internal state as messages are
received (note: si is a received message):
 (…(((init handler s0) handler s1) handler s2) …)!
  The current value of foldLeft is the agent’s internal state

  Neat trick: foldLeft is a function used as a concurrency pattern

© 2011 P. Van Roy. All rights reserved.

30

def newPortObject[A,B])(init:B)(handler:(B,A)=>B) = {  
 val (s, p) = Port.newPort[A]  
 thread{ s.toAgent.foldLeft(init)(handler) }  
 p  
}!

Initial state State updater

Agents playing ball

  Each player receives the ball
and sends it to a randomly
chosen other player

  Each player counts the
number of balls received

  The port allows a player to
receive from either of the
others (nondeterminism)

© 2011 P. Van Roy. All rights reserved.

31

Player 1

Player 2

Player 3

object BallGame {  
 type Ball = Unit  
 val ball: Ball = ()  
 type Player = Port[Ball]  
 def main(args: Array[String]) {  
 val player1: Player  
 val player2: Player  
 val player3: Player  
 player1 = makePlayer(“Player 1”, Seq(player2, player3))  
 player2 = makePlayer(“Player 2”, Seq(player3, player1))  
 player3 = makePlayer(“Player 3”, Seq(player1, player2))  
 player1.send(ball)  
 while(true) sleep(1000)!
 }!
 def makePlayer(id:Any, others:Seq[Player]):!
 Player = {  
 Port.newPortObject(0){(st:Int, b:Ball) =>!
 st+1!
 Random.rand(others).send(b)!
 }!
 }  
}  

Recursive thread termination (1)

  A new thread can itself create new threads, and so forth recursively
  We would like to detect when all threads are terminated.

This is harder than barrier synchronization since we don’t know
in advance how many threads are created.

  Here’s the interface:
 newThread(SubThreadProc => Unit): Ack!

  Here’s the usage:
 val ack = newThread { thr => s }  
 // s is any statement  
 // thr{s’} inside s creates a thread 

 ack.waitFor() // waits until all threads have terminated!

© 2011 P. Van Roy. All rights reserved.

32

  How it works: we use a port to tally the number of active threads
  Each new thread sends +1 to the port when it is created and -1 to

the port when it terminates
  Needs a bit of care to avoid races: send +1 just before creation and -1

inside the thread just before termination
  When the running total on the stream is 0 then all threads are terminated

© 2011 P. Van Roy. All rights reserved.

33

+1

-1

+1

+1

+1

-1

-1
-1

ack=newThread(thr⇒s)!

1 2 1 2 1 2 1 0
ack.waitFor()!

Running tally of active threads Termination

Recursive thread termination (2)

Recursive thread termination (3)

© 2011 P. Van Roy. All rights reserved.

34

sealed class Ack {  
 def waitFor() {  
 // do nothing  
 }  
}!

object Ack extends Ack  

object RecursiveTermination {  
 type SubThreadProc = (=> Unit) => Unit  
 def newThread(body: SubThreadProc => Unit): Ack = {  
 val (s, p) = Port.newPort[Int]  
 def subThread(c: => Unit) {  
 p.send(1)  
 thread { c; p.send(-1) }  
 }  
 def zeroExit(n: Int, is: List[Int]): Ack = is match {  
 case i :: ir => if (n+i != 0) zeroExit(n+i, ir) else Ack  
 case Nil => Ack  
 }  
 subThread {  
 body(subThread)  
 }  
 thread(zeroExit(0, s))  
 }  
}  

Recursive thread termination (4)

© 2011 P. Van Roy. All rights reserved.

35

def main(args: Array[String]) {  
 val ack = newThread { thr =>  
 sleep(500); println(“c”)  
 thr { sleep(250); println(“d”)  
 thr { sleep(2000); println(“b”) }  
 thr { sleep(1000); println(“a”) } }  
 }  

 println(“started”)  
 ack.waitFor()  
 println(“all done”)  
}!

  newThread creates main thread
  thr creates subthreads (recursive calls allowed)
  ack.waitFor() waits until all threads are done

started  
c  
d  
a  
b  
all done!

Output

Technical Details for
the Language Geek

© 2011 P. Van Roy. All rights reserved.

36

Scala streams versus Ozma
streams
  Scala streams are lists with a delaying mechanism for the tail

  A Scala stream provides a form of coroutining (sequential)
  Lazy: The tail is calculated only when the tail method is invoked

  Ozma streams are lists with an unbound dataflow tail
  An Ozma stream is used in both eager and lazy concurrency
  Eager: Access to the tail waits until the tail is bound
  Lazy: Calculation of the tail is initiated when the tail is needed

  What’s the difference between Scala and Ozma streams?
  Ozma streams allow slack: the producer can get ahead of the consumer

  It’s possible to write a bounded buffer with Ozma streams, but not with Scala
streams: in the latter, the producer and consumer execute in lock step

  Ozma streams guarantee independence: if the producer gets in an
infinite loop or raises an exception, this does not hinder the consumer

© 2011 P. Van Roy. All rights reserved.

37

Scala lazy val versus Ozma
byNeed

  lazy val is evaluated upon first access (encounter in code)
  byNeed value is evaluated upon need (actual use)

  It can be passed around as an argument without evaluating it

© 2011 P. Van Roy. All rights reserved.

38

lazy val x = { … }!
val y = x // x is evaluated here in Scala!
println(“checkpoint”)!
println(y)!

val x = byNeed { … }!
val y = x // x is not evaluated (not needed)!
println(“checkpoint”)!
println(y) // x is evaluated here in Ozma (needed)!

Scala

Ozma

Two features and a limitation
  Two features:

  Errors in lazy execution are handled through failed values, so that the
exception appears at the point where the value is needed

  Port streams are read-only; they can only be extended by the port’s
send operation and not by any other operation (secure encapsulation)

  One limitation:
  The current Ozma implementation has one limitation related to garbage

collection and the List module. The methods .lazified
and .toAgent must be used whenever a list operation in the standard
List module is used, since otherwise the operation will not currently
reclaim memory when used in a dataflow style. Note: for user-defined
list operations the problem does not exist.

  The limitation is due to how lists are currently implemented in Ozma; we
plan to remove it in the near future.

© 2011 P. Van Roy. All rights reserved.

39

Handling exceptions
in lazy computations

  What happens if the lazy computation (in byNeedFuture) throws an
exception?
  The lazy computation is running in another thread from the thread that needs x!

  The only reasonable possibility is to raise the exception where x is needed
  byNeedFuture catches the exception thrown by the lazy computation and wraps

it in a failed value, which causes println(x) to raise an exception
  The exception is raised in the right place

© 2011 P. Van Roy. All rights reserved.

40

 try {!
  val list = Nil:List[Int]!
  val x = byNeedFuture(list.head) // list is empty!!
  println(x)!
 } catch {!
  case _: java.util.NoSuchElementException =>!
  println(“The list was empty”)!
 }!

Implementation of
byNeedFuture

  The evaluation of value is triggered when result is needed
  If the evaluation of value returns an exception, then we wrap the exception

in a failed value using the Ozma primitive makeFailedValue
  This method is actually native in the Ozma implementation for efficiency

© 2011 P. Van Roy. All rights reserved.

41

def byNeedFuture[A](value: => A) = { // value is by-name  
 val result: A  
 thread {  
 waitNeeded(result)  
 try {  
 result = value // value is evaluated here  
 } catch {  
 case throwable: Throwable =>  
 result = makeFailedValue(throwable)  
 }  
 }  
 result  
}  

New primitive operation in Ozma

More on Scala concurrency
  Scala already has a rich set of concurrency abstractions

  In Ozma these can be used together with dataflow
  Scala’s concurrency abstractions are designed to be efficient

using the underlying Java mechanisms
  The primitive mechanism: monitors with wait, notify, notifyAll
  They are not good enough to implement Ozma, unfortunately

  Some of them are actually not bad at all:
  Futures, syncvars, fork-join (deterministic!)
  Asynchronous/synchronous channels (deterministic!)
  Actors with mailboxes (comparable to Erlang)

  Even better concurrency is available in the Akka library
  Dataflow variables and transactional actors

© 2011 P. Van Roy. All rights reserved.

42

The Past is Prologue

© 2011 P. Van Roy. All rights reserved.

43

Whither Ozma?
  Ozma makes concurrent programming simpler

  The heart of a concurrent program is deterministic.
Nondeterminism is added just where it’s needed.

  Correctness is easy: the deterministic part is purely functional
and the nondeterministic part uses message passing

  The Ozma implementation uses the Oz virtual machine (Mozart)
  It’s a complete implementation of Scala on a new VM that’s not the

JVM or .NET, so you can see it as a new implementation of Scala
  It’s not interoperable with Java, though. The Mozart VM was used

because of its support for fine-grain threads, dataflow, and failed values.

  We are thinking about the future of Ozma. Would you be interested
in a supported version? Should we join the Scala community and
work on Scala’s concurrency model? Or should we join the Java
community and work on the JVM (like Flow Java did)?

© 2011 P. Van Roy. All rights reserved.

44

Generalizing dataflow for
distribution and fault tolerance
  Language support for distributed programming in Oz

  Network transparency: a program executed over several nodes
gives the same result as if it were executed on a single node,
provided network delays are ignored and no failure occurs
  Exact same source code is run independent of distribution structure

  Network awareness: a program can predict and control its physical
distribution and network behavior

  Fully implemented in Oz (Mozart 1.4.0)

  Modular fault tolerance in Oz using fault streams
  Exceptions and RMI: synchronous, not modular, requires changing

code at each possible distribution point

  Fault streams on language entities: asynchronous, modular, just
add new code with no changes to existing code

© 2011 P. Van Roy. All rights reserved.

45

Thanks for your attention!

  Ozma was developed as part of our research in
programming languages and distributed computing

  We are currently hiring new Ph.D. candidates!

  Doctoral fellowships available in Distributed Computing
  Erasmus Mundus program: see www.emjd-dc.eu
  Salary + benefits (medical insurance)
  Application deadline Jan. 23, 2012

© 2011 P. Van Roy. All rights reserved.

46

