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News flash: 
Concurrency is still hard 

  It has all kinds of fun problems like race conditions, reentrancy, 
deadlocks, livelocks, fairness, scheduling, handling shared data, 
and multi-agent collaboration algorithms 
  Java’s synchronized objects are tough to program with (expletive deleted) 
  Erlang’s and Scala’s actors are better, but they still have race conditions 
  Libraries can hide some of these problems, but they always peek through 

  Adding distribution makes it even harder 

  Adding partial failure makes it even much harder than that 

  The Holy Grail: can we make concurrent programming 
as easy as sequential programming? 
  Yes, amazingly it can be done for deterministic concurrency 
  Ozma, a conservative extension to Scala, is designed to do this 
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Overview of the talk 
  Why deterministic concurrency? 

  Advantages and disadvantages 
  Scala + Oz ⇒ Ozma 

  Declarative dataflow 
  Lightweight threads and the wonders of single assignment val!

  More programming techniques 
  Three powerful principles 

  Message passing and nondeterminism 
  This is also very important, so let’s add it cleanly 

  Technical details for the language geek 
  Comparison with Scala streams and lazy vals, handling exceptions 

  The past is prologue 
  The future of Ozma, distribution, and fault tolerance 
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Scala in a nutshell 
  Scala is a multiparadigm language that compiles to JVM and .NET. 

  Directly interoperable with Java 
  Developed since 2001 by Martin Odersky and others, it supports both 

functional programming and object-oriented programming 
  Clean language with advanced properties (e.g., closures, powerful type inferencing), 

easy migration for Java programmers 

  According to Typesafe, Inc., it has over 100,000 developers 
  See www.scala-lang.org for more information 

  Scala provides common abstractions for concurrent programming 
  Signals and monitors (synchronized objects) 
  Futures, syncvars, asynchronous and synchronous channels, fork-join 
  Actors with mailboxes, semaphores 
  Akka library: transactional actors 

  Some of these are good and some are bad 
  Good: futures, syncvars, channels, fork-join ⇒ they are deterministic! 
  Bad: monitors, semaphores (least bad: actors, transactions) 
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Scala + Oz ⇒ Ozma 
  Oz is a multiparadigm language that has been 

used for language experiments by a bunch of 
smart but eccentric language researchers since 
the early 1990s (see www.mozart-oz.org ) 
  Constraint programming, network-transparent 

distributed programming, declarative/procedural 
GUI programming, concurrent programming 

  Textbook “Concepts, Techniques, and Models 
of Computer Programming”, MIT Press, 2004 

  Oz supports concurrent programming based on a 
declarative dataflow core with lightweight threads 

  Ozma extends Scala with a new concurrency 
model based on the Oz dataflow ideas 
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One third of the 
book is about 
concurrency ⇒



Ozma implementation 
  Ozma’s implementation combines a modified Scala compiler 

and a modified Oz compiler, and targets the Oz VM (Mozart). 
It was first released in June 2011. 
  The Oz VM has efficient support for lightweight threads, dataflow 

synchronization, by-need synchronization, and failed values 

  Full source and binaries (with open-source license) available at: 
  https://github.com/sjrd/ozma 

  Full documentation available at: 
  http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf 

  Download the compiled binaries and try it out! 
  Or compile it yourself with Scala ≥ 2.9.0, Mozart ≥ 1.4.0, and Ant ≥ 1.6 
  It runs under Linux, Mac OS X, and maybe Windows 

  All the Ozma examples in this talk are running code 

© 2011 P. Van Roy.  All rights reserved. 

6 



Ozma extends Scala with a 
new concurrency model 
  The heart of the model is declarative dataflow 

  Further extended with laziness (still declarative) and ports (for nondeterminism) 
  This allows adding nondeterminism exactly where needed and no more  
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waitNeeded 
(by-need synch.) 
byNeedFuture, 

lazified lists 

ports 
(named streams) 
newPortObject 

declarative dataflow 

lazy declarative dataflow 

message passing 

The heart of the 
new model is 
deterministic 

In roman: 
the new concepts 

In italics: 
useful abstractions 

lightweight threads 
dataflow values (val) 

streams (lists with 
dataflow tail) 



Why deterministic concurrency? 

  Determinism has strong limitations! 
  Any concurrent execution always gives the same results 
  Even a simple client/server can’t be written 

  But determinism has big advantages too 
  Race conditions are impossible by design 
  With determinism as default, we can reduce the need for nondeterminism (in the 

client/server: it’s needed only at the point where the server accepts requests) 
  Any functional program can be made concurrent without changing the result 
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Client 1 

Client 2 

Server 

This client/server can’t 
be written in a 

deterministic model! 

It’s because the server 
accepts requests 

nondeterministically 
from the two clients 



Deterministic concurrency: 
the right default? 
  Parallel programming has finally arrived (a surprise to old timers like me!) 

  Multicore processors: dual and quad today, a dozen tomorrow, a hundred 
in a decade, most apps will do it 

  Distributed computing: data-intensive with tens of nodes today (NoSQL, 
MapReduce), hundreds and thousands tomorrow, most apps will do it 

  Something fundamental will have to change 
  Sequential programming can’t be the default (it’s a centralized bottleneck) 
  Libraries can only hide so much (interface complexity, distribution structure) 

  Concurrency will have to get a lot easier 
  Deterministic concurrency is functional programming! 
  It can be extended cleanly to distributed computing 

  Open network transparency (implemented in Oz since 1999) 
  Modular fault tolerance (implemented in Oz since 2007) 
  Large-scale distribution (on the way…) 
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Such an old idea, why isn’t it 
used already? 
  Deterministic concurrency has a long history that starts in 1974 

  Gilles Kahn.  The semantics of a simple language for parallel programming.  In IFIP 
Congress, pp. 471-475, 1974.  Deterministic concurrency. 

  Gilles Kahn and David B. MacQueen.  Coroutines and networks of parallel processes.  In 
IFIP Congress, pp. 993-998, 1977.  Lazy deterministic concurrency. 

  Why was it forgotten for so long? 
  Message passing and monitors arrived at about the same time: 

  Carl Hewitt, Peter Bishop, and Richard Steiger.  A universal modular ACTOR formalism for artificial 
intelligence.  In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug. 
1973. 

  Charles Antony Richard Hoare.  Monitors: An operating system structuring concept.  Communications 
of the ACM, 17(10):549-557, Oct. 1974. 

  Actors and monitors handle nondeterminism, so they are better.  Right? 

  Dataflow computing also has a long history that starts in 1974 
  Jack B. Dennis. First version of a data flow procedure language.  Springer Lecture Notes in 

Computer Science, vol. 19, pp. 362-376, 1974. 
  Dataflow remained a fringe subject since it was always focused on parallel programming, 

which only became mainstream with the arrival of multicore processors in mainstream 
computing (e.g., IBM POWER4, the first dual-core processor, in 2001). 
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Declarative Dataflow 
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Declarative dataflow 

  All val values can do dataflow 
  They are single assignment 
  The addition operation waits 

until both x and y are bound 
  This does both synchronization 

and communication 
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val x: Int!
val y: Int!
val z: Int!

thread { x=1 }!
thread { y=2 }!
thread { z=x+y }!

println(z)!

  Programs with declarative dataflow are always deterministic 
  This program will always print 3, independent of the scheduler 

x=1!

y=2!

z=x+y!
Thread execution 
(executes from left to right) 

Dataflow synchronization 



Using the thread statement 
as an expression 

  Exactly the same behavior as 
the previous example 

  Using the thread statement in 
this way can often simplify the 
syntax of concurrent programs 
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val x = thread(1)!
val y = thread(2)!
val z = thread(x+y)!

println(z)!

x=thread(1) 

y=thread(2) 

z=thread(x+y) println(z) 

x 

y 

z 
Each green box is 
a concurrent agent 

Each arrow is a 
shared dataflow value 



Declarative dataflow 
extensions to Scala 
  Lightweight threads: hundreds of thousands of threads can be 

active simultaneously (like Erlang, by the way) 
thread { println(“New lightweight thread”) }  

  Dataflow values: every val can be a single-assignment variable.  
Operations that need the value will wait until it is available. 

val x = thread(1)  // binds x in its own thread  
println(x+10)      // the addition waits for x  

  By-need (lazy) execution: wait until value is needed 
val x: Int  
thread{ waitNeeded(x); x=factorial(69) }  
println(x)         // need to print causes calculation of x!
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Implementing futures 

  Futures can be implemented easily using dataflow values 
  The computation is started in a new thread and returns a future 
  Any calculation using the future will wait until its value is available 
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import scala.ozma.thread  
object SimpleFuture {  
  def main(args: Array[String]) {  
    println(“start”)  
    val result = thread(fibonacci(40))  // create a future  
    println(“continue execution while computing”)  
    println(“Fib(40) = “+result)        // wait for result  
  }!

  def fibonacci(arg:Int): Int = arg match {  // burn cycles  
    case 0 | 1 => 1  
    case _ => fibonacci(arg-1)+fibonacci(arg-2)  
  }  
}    !



Streams: lists as dataflow 
communication channels 

  A stream is a list with an unbound dataflow tail 
  It can be extended indefinitely or terminated with Nil!

  Any list function can read a stream (it’s exactly like reading a list) 
  It will automatically wait when it finds an unbound tail 

  Like the foreach operation in this example 
  If put inside a thread, the list function becomes a concurrent agent 
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val x: List[Int]  
val ints = 1 :: 2 :: 3 :: 4 :: x  // unbound tail  

thread { ints foreach println }   // a printing agent  

val y: List[Int]!
x = 5 :: 6 :: 7 :: y    // the agent will print these  



The magic of declarative 
dataflow 

  Both versions print the same final result 1, 4, 9, 16, …, 100 
  So what’s the difference?  What does concurrency buy you? 

  The sequential version: nothing is output for 10 seconds, and then the whole list 
  The concurrent version: a new result is output every second 
  Declarative dataflow turns batch programs into incremental programs 
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object Test {  
  def main(args: Array[String]) {  
    val range = gen(1, 10) // sequential version  
    val result = range map (x => x*x)  
    result foreach println  

    val range2 = thread(gen(1, 10)) // concurrent version  
    val result2 = thread(range map (x => x*x))  
    result2 foreach println  
  }  
  def gen(from: Int, to: Int): List[Int] = {  
    sleep(1000)  
    if (from > to) Nil  
    else from :: gen(from+1, to) // tail-recursive in Ozma  
  }  
} !



Pipelines using streams 

  A list function put in a thread becomes a concurrent agent 
  List functions must be tail-recursive for this to work 

  This is automatically true in Ozma (ensured by compiler transformation) 
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def generateFrom(n: Int): List[Int] =  
   n :: generateFrom(n+1)  

val integers = thread(generateFrom(0))  
val evens = thread(integers filter (_ % 2 == 0))  
val tenFirst = thread(evens take 10)  
tenFirst foreach println!

generateFrom filter take 10 
foreach 
println 

integers evens tenFirst 



Lazy pipelines 

  byNeedFuture introduces lazy execution: its body will be executed on 
demand; list operations are made lazy by modifying lists with .lazified!

  Lazy execution preserves determinism 
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def generateFrom(n: Int): List[Int] = byNeedFuture {  
   n :: generateFrom(n+1)  
}  

val integers = generateFrom(0)  
val evens = integers.lazified filter (_ % 2 == 0)  
val tenFirst = evens.lazified take 10  
tenFirst foreach println!

generateFrom filter take 10 
foreach 
println 

integers evens tenFirst 



More Programming 
Techniques 
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Three powerful principles 
  Any functional program can be made concurrent 

without changing the result by adding calls to thread!
  Threads can be added anywhere in the program 
  Turns batch into incremental (removes roadblocks) 

  Any list function can become a concurrent agent 
by executing it in a thread 
  Because list functions in Ozma are tail-recursive, 

the agent has no memory leak (stack size is constant) 

  Any computation, functional or not, can be made lazy 
by adding calls to waitNeeded!
  Syntactic sugar is provided with byNeedFuture 

and .lazified!
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From map to concurrent map 

  In concMap, all evaluations of f execute concurrently 
  It is even possible to call concMap when f is not known (unbound).  

This will create a list containing unbound values, like futures: they 
will be evaluated as soon as f is known (bound to a function). 
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def concMap[A, B](list: List[A], f: A => B): List[B] = {  
  if (list.isEmpty) Nil  
  else thread(f(list.head)) :: concMap(list.tail, f)  
}!

def map[A, B](list: List[A], f: A => B): List[B] = {  
  if (list.isEmpty) Nil  
  else f(list.head) :: map(list.tail, f)  
}!



Map as a concurrent agent 

  Wrapping the calls to gen, filter, and map within threads turns them 
into concurrent agents 
  Note that foreach is also an agent, living in the main thread 

  As new elements are added to the input stream, new computed elements 
will appear on the output stream 
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def gen(from: Int): List[Int] = from :: gen(from+1)!

def displayEvenSquares() {  
  val integers = thread(gen(0))  
  val evens = thread(integers filter (_ % 2 == 0))  
  val evenSquares = thread(evens map (x => x*x))  
  evenSquares foreach println  
}!

Concurrent agent 



Map as a lazy agent 

  Now foreach imposes the control flow and laziness prevents the agents 
from getting ahead of the consumer 

  This guarantees that the whole program executes in constant memory 
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def gen(from: Int): List[Int] = byNeedFuture {  
  from :: gen(from+1)  
}!

def displayEvenSquares() {  
  val integers = gen(0)  
  val evens = integers.lazified filter (_ % 2 == 0)  
  val evenSquares = evens.lazified map (x => x*x)  
  evenSquares foreach println  
}!



Sieve of Eratosthenes as a 
declarative dataflow program 

  This program calculates 
the prime numbers up to a 
maximum using the Sieve 
of Eratosthenes. 

  The program dynamically 
builds a pipeline of filter 
agents that successively 
remove multiples of 2, 3, 5, 
etc. 

  The program can be made 
lazy by prefixing the 
generate and sieve 
definitions with 
byNeedFuture!

© 2011 P. Van Roy.  All rights reserved. 

25 

import scala.ozma._!
object PrimeNumbers {!
  def main(args: Array[String]) {!
    val max = args(0).toInt!
    val integers = thread(generate(2, max))!
    val result = thread(sieve(integers))!
    result.toAgent foreach println!
  }!
  def generate(from: Int, to: Int): List[Int] = {!
   if (from>to) Nil else from::generate(from+1, to)!
  }!
  def sieve(list: List[Int]): List[Int] = {!
   list match {!
     case Nil => Nil!
     case head::tail =>!
       val filtered = thread {!
         tail.toAgent filter (_ % head != 0)!
       }!
       head :: sieve(filtered)!
   }!
 }!
}!



Message Passing 
and Nondeterminism 
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Managing nondeterminism 
with ports 
  So far, all our programs have been deterministic 

  Determinism is a good default, but for real programs 
we need nondeterminism too! 

  Let’s add nondeterminism in a nice way 
  One way is to give names to streams 

  A port is a named stream, where the name is a constant 
  Any thread can send a value to a port 
  The port will append the value to its stream 
  The senders and the receivers of a port can themselves be 

deterministic computations; the only nondeterminism is the 
order in which sent values appear on the port’s stream 
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Introducing ports 

  The values 1, 2, and 3 will be displayed in some order 
(nondeterminism) 
  The actual order depends on the thread scheduler 

  No memory leak: garbage collection will remove the parts 
of the stream already read 
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val (s, p) = newPort[Int]  // Create port p with stream s  
thread{ p.send(1) }  
thread{ p.send(2) }  
thread{ p.send(3) }  

thread { s foreach println }  // Print elements of the!
                              // port’s stream one by one 



Partial barrier synchronization 
with ports 

  The partial barrier starts n tasks concurrently and waits until 
m tasks complete (with m≤n) 

  We implement it with a port whose stream contains only units 
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def partialBarrier(m: Int, tasks: List[() => Unit]) {  
  val (stream, port) = Port.newPort[Unit]  
  for (task <- tasks)  
    thread { task(); port.send(()) }  
  stream(m-1)  // wait for at least m elements  
}  

println(“start”)  
partialBarrier(1, List(  
    () => { sleep(1000); println(“a”) },  
    () => { sleep(3000); println(“b”) },  
    () => { sleep(2000); println(“c”) }  
))  
println(“peekaboo”)!



Building nondeterministic 
agents with ports 

  A port object is an actor.  It reads messages sequentially from the stream 
and uses the messages to update its internal state. 

  The foldLeft operation updates the internal state as messages are 
received (note: si is a received message): 
     (…(((init handler s0) handler s1) handler s2) … )!
  The current value of foldLeft is the agent’s internal state 

  Neat trick: foldLeft is a function used as a concurrency pattern 
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def newPortObject[A,B])(init:B)(handler:(B,A)=>B) = {  
  val (s, p) = Port.newPort[A]  
  thread{ s.toAgent.foldLeft(init)(handler) }  
  p  
}!

Initial state State updater 



Agents playing ball 

  Each player receives the ball 
and sends it to a randomly 
chosen other player 

  Each player counts the 
number of balls received 

  The port allows a player to 
receive from either of the 
others (nondeterminism) 
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Player 1 

Player 2 

Player 3 

object BallGame {  
  type Ball = Unit  
  val ball: Ball = ()  
  type Player = Port[Ball]  
  def main(args: Array[String]) {  
    val player1: Player  
    val player2: Player  
    val player3: Player  
    player1 = makePlayer(“Player 1”, Seq(player2, player3))  
    player2 = makePlayer(“Player 2”, Seq(player3, player1))  
    player3 = makePlayer(“Player 3”, Seq(player1, player2))  
    player1.send(ball)  
    while(true) sleep(1000)!
  }!
  def makePlayer(id:Any, others:Seq[Player]):!
    Player = {  
      Port.newPortObject(0){(st:Int, b:Ball) =>!
        st+1!
        Random.rand(others).send(b)!
      }!
  }  
}  



Recursive thread termination (1) 

  A new thread can itself create new threads, and so forth recursively 
  We would like to detect when all threads are terminated. 

This is harder than barrier synchronization since we don’t know 
in advance how many threads are created. 

  Here’s the interface: 
   newThread(SubThreadProc => Unit): Ack!

  Here’s the usage: 
   val ack = newThread { thr => s }  
                   // s is any statement  
                   // thr{s’} inside s creates a thread 

  ack.waitFor()  // waits until all threads have terminated!
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  How it works: we use a port to tally the number of active threads 
  Each new thread sends +1 to the port when it is created and -1 to 

the port when it terminates 
  Needs a bit of care to avoid races: send +1 just before creation and -1 

inside the thread just before termination 
  When the running total on the stream is 0 then all threads are terminated  

© 2011 P. Van Roy.  All rights reserved. 

33 

+1 

-1 

+1 

+1 

+1 

-1 

-1 
-1 

ack=newThread(thr⇒s)!

1 2 1 2 1 2 1 0 
ack.waitFor()!

Running tally of active threads Termination 

Recursive thread termination (2) 



Recursive thread termination (3) 
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sealed class Ack {  
  def waitFor() {  
    // do nothing  
  }  
}!

object Ack extends Ack  

object RecursiveTermination {  
  type SubThreadProc = (=> Unit) => Unit  
  def newThread(body: SubThreadProc => Unit): Ack = {  
    val (s, p) = Port.newPort[Int]  
    def subThread(c: => Unit) {  
      p.send(1)  
      thread { c; p.send(-1) }  
    }  
    def zeroExit(n: Int, is: List[Int]): Ack = is match {  
      case i :: ir => if (n+i != 0) zeroExit(n+i, ir) else Ack  
      case Nil => Ack  
    }  
    subThread {  
      body(subThread)  
    }  
    thread(zeroExit(0, s))  
  }  
}  



Recursive thread termination (4) 
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def main(args: Array[String]) {  
  val ack = newThread { thr =>  
    sleep(500); println(“c”)  
    thr { sleep(250); println(“d”)  
          thr { sleep(2000); println(“b”) }  
          thr { sleep(1000); println(“a”) } }  
  }  

  println(“started”)  
  ack.waitFor()  
  println(“all done”)  
}!

  newThread creates main thread 
  thr creates subthreads (recursive calls allowed) 
  ack.waitFor() waits until all threads are done 

started  
c  
d  
a  
b  
all done!

Output 



Technical Details for 
the Language Geek 
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Scala streams versus Ozma 
streams 
  Scala streams are lists with a delaying mechanism for the tail 

  A Scala stream provides a form of coroutining (sequential) 
  Lazy: The tail is calculated only when the tail method is invoked 

  Ozma streams are lists with an unbound dataflow tail 
  An Ozma stream is used in both eager and lazy concurrency 
  Eager: Access to the tail waits until the tail is bound 
  Lazy: Calculation of the tail is initiated when the tail is needed 

  What’s the difference between Scala and Ozma streams? 
  Ozma streams allow slack: the producer can get ahead of the consumer 

  It’s possible to write a bounded buffer with Ozma streams, but not with Scala 
streams: in the latter, the producer and consumer execute in lock step 

  Ozma streams guarantee independence: if the producer gets in an 
infinite loop or raises an exception, this does not hinder the consumer 
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Scala lazy val versus Ozma 
byNeed 

  lazy val is evaluated upon first access (encounter in code) 
  byNeed value is evaluated upon need (actual use) 

  It can be passed around as an argument without evaluating it 
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lazy val x = { … }!
val y = x   // x is evaluated here in Scala!
println(“checkpoint”)!
println(y)!

val x = byNeed { … }!
val y = x   // x is not evaluated (not needed)!
println(“checkpoint”)!
println(y)  // x is evaluated here in Ozma (needed)!

Scala 

Ozma 



Two features and a limitation 
  Two features: 

  Errors in lazy execution are handled through failed values, so that the 
exception appears at the point where the value is needed 

  Port streams are read-only; they can only be extended by the port’s 
send operation and not by any other operation (secure encapsulation) 

  One limitation: 
  The current Ozma implementation has one limitation related to garbage 

collection and the List module.  The methods .lazified 
and .toAgent must be used whenever a list operation in the standard 
List module is used, since otherwise the operation will not currently 
reclaim memory when used in a dataflow style.  Note: for user-defined 
list operations the problem does not exist. 

  The limitation is due to how lists are currently implemented in Ozma; we 
plan to remove it in the near future. 

© 2011 P. Van Roy.  All rights reserved. 

39 



Handling exceptions 
in lazy computations 

  What happens if the lazy computation (in byNeedFuture) throws an 
exception? 
  The lazy computation is running in another thread from the thread that needs x! 

  The only reasonable possibility is to raise the exception where x is needed 
  byNeedFuture catches the exception thrown by the lazy computation and wraps 

it in a failed value, which causes println(x) to raise an exception 
  The exception is raised in the right place 
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 try {!
   val list = Nil:List[Int]!
   val x = byNeedFuture(list.head)  // list is empty!!
   println(x)!
 } catch {!
   case _: java.util.NoSuchElementException =>!
     println(“The list was empty”)!
 }!



Implementation of 
byNeedFuture 

  The evaluation of value is triggered when result is needed 
  If the evaluation of value returns an exception, then we wrap the exception 

in a failed value using the Ozma primitive makeFailedValue  
  This method is actually native in the Ozma implementation for efficiency 
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def byNeedFuture[A](value: => A) = {  // value is by-name  
  val result: A  
  thread {  
    waitNeeded(result)  
    try {  
      result = value  // value is evaluated here  
    } catch {  
      case throwable: Throwable =>  
        result = makeFailedValue(throwable)  
    }  
  }  
  result  
}  

New primitive operation in Ozma 



More on Scala concurrency 
  Scala already has a rich set of concurrency abstractions 

  In Ozma these can be used together with dataflow 
  Scala’s concurrency abstractions are designed to be efficient 

using the underlying Java mechanisms 
  The primitive mechanism: monitors with wait, notify, notifyAll 
  They are not good enough to implement Ozma, unfortunately 

  Some of them are actually not bad at all: 
  Futures, syncvars, fork-join (deterministic!) 
  Asynchronous/synchronous channels (deterministic!) 
  Actors with mailboxes (comparable to Erlang) 

  Even better concurrency is available in the Akka library 
  Dataflow variables and transactional actors 
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The Past is Prologue 
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Whither Ozma? 
  Ozma makes concurrent programming simpler 

  The heart of a concurrent program is deterministic. 
Nondeterminism is added just where it’s needed. 

  Correctness is easy: the deterministic part is purely functional 
and the nondeterministic part uses message passing 

  The Ozma implementation uses the Oz virtual machine (Mozart) 
  It’s a complete implementation of Scala on a new VM that’s not the 

JVM or .NET, so you can see it as a new implementation of Scala 
  It’s not interoperable with Java, though.  The Mozart VM was used 

because of its support for fine-grain threads, dataflow, and failed values. 

  We are thinking about the future of Ozma.  Would you be interested 
in a supported version?  Should we join the Scala community and 
work on Scala’s concurrency model?  Or should we join the Java 
community and work on the JVM (like Flow Java did)? 
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Generalizing dataflow for 
distribution and fault tolerance 
  Language support for distributed programming in Oz 

  Network transparency: a program executed over several nodes 
gives the same result as if it were executed on a single node, 
provided network delays are ignored and no failure occurs 
  Exact same source code is run independent of distribution structure 

  Network awareness: a program can predict and control its physical 
distribution and network behavior  

  Fully implemented in Oz (Mozart 1.4.0) 

  Modular fault tolerance in Oz using fault streams 
  Exceptions and RMI: synchronous, not modular, requires changing 

code at each possible distribution point 

  Fault streams on language entities: asynchronous, modular, just 
add new code with no changes to existing code  
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Thanks for your attention! 

  Ozma was developed as part of our research in 
programming languages and distributed computing 

  We are currently hiring new Ph.D. candidates! 

  Doctoral fellowships available in Distributed Computing 
  Erasmus Mundus program: see www.emjd-dc.eu 
  Salary + benefits (medical insurance) 
  Application deadline Jan. 23, 2012 
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