Extending Scala
with Oz Concurrency

Ozma

> O o
o c 9
R% m

el &
c O m
S O L
5° 5

c
T O 2
D-...Wv -
&
L9 C
,e O
» O
@]

Nov. 18, 2011

PLDC Research Group

(pldc.info.ucl.ac.be)

Université catholique de Louvain
B-1348 Louvain-la-Neuve, Belgium

© 2011 P. Van Roy. All rights reserved.

News flash: T
Concurrency is still hard

It has all kinds of fun problems like race conditions, reentrancy,
deadlocks, livelocks, fairness, scheduling, handling shared data,
and multi-agent collaboration algorithms

e Java’s synchronized objects are tough to program with (expletive deleted)
e Erlang’s and Scala’s actors are better, but they still have race conditions
e Libraries can hide some of these problems, but they always peek through

Adding distribution makes it even harder

Adding partial failure makes it even much harder than that

The Holy Grail: can we make concurrent programming

as easy as sequential programming?

e Yes, amazingly it can be done for deterministic concurrency

e 0Ozma, a conservative extension to Scala, is designed to do this

© 2011 P. Van Roy. All rights reserved.

Overview of the talk

e Why deterministic concurrency?

Advantages and disadvantages

Scala + Oz = Ozma
e Declarative dataflow

Lightweight threads and the wonders of single assignment val
e More programming techniques

Three powerful principles
e Message passing and nondeterminism

This is also very important, so let’s add it cleanly
e Technical details for the language geek

Comparison with Scala streams and lazy vals, handling exceptions
e The pastis prologue

The future of Ozma, distribution, and fault tolerance

© 2011 P. Van Roy. All rights reserved.

Scala in a nutshell

e Scala is a multiparadigm language that compiles to JVM and .NET.
Directly interoperable with Java
e Developed since 2001 by Martin Odersky and others, it supports both

functional programming and object-oriented programming

Clean language with advanced properties (e.g., closures, powerful type inferencing),
easy migration for Java programmers

e According to Typesafe, Inc., it has over 100,000 developers
See for more information

e Scala provides common abstractions for concurrent programming
Signals and monitors (synchronized objects)
Futures, syncvars, asynchronous and synchronous channels, fork-join

Actors with mailboxes, semaphores
Akka library: transactional actors

e Some of these are good and some are bad
Good: futures, syncvars, channels, fork-join = they are deterministic!
Bad: monitors, semaphores (least bad: actors, transactions)

© 2011 P. Van Roy. All rights reserved.

Scala + Oz = Ozma :

e Oz is a multiparadigm language that has been y _
. oncepts, Techniques, and Mod.els
used for language experiments by a bunch of il
smart but eccentric language researchers since
the early 1990s (see www.mozart-0z.org)
e Constraint programming, network-transparent

distributed programming, declarative/procedural
GUI programming, concurrent programming

e Textbook “Concepts, Techniques, and Models
of Computer Programming”, MIT Press, 2004

e Oz supports concurrent programming based on a

declarative dataflow core with lightweight threads One third of the
— Ozma extends Scala with a new concurrency book is about
model based on the Oz dataflow ideas concurrency

© 2011 P. Van Roy. All rights reserved.

Ozma implementation

e Ozma’s implementation combines a modified Scala compiler
and a modified Oz compiler, and targets the Oz VM (Mozart).
It was first released in June 2011.

The Oz VM has efficient support for lightweight threads, dataflow
synchronization, by-need synchronization, and failed values

e Full source and binaries (with open-source license) available at:
e Full documentation available at:

e Download the compiled binaries and try it out!
Or compile it yourself with Scala = 2.9.0, Mozart 2 1.4.0, and Ant = 1.6
It runs under Linux, Mac OS X, and maybe Windows

e All the Ozma examples in this talk are running code

© 2011 P. Van Roy. All rights reserved.

Ozma extends Scala with a T
new concurrency model

e The heart of the model is declarative dataflow
e Further extended with laziness (still declarative) and ports (for nondeterminism)
e This allows adding nondeterminism exactly where needed and no more

message passing

lazy declarative dataflow

declarative dataflow waitNeeded

. . orts
I|ghtwe|ght threadS (by_need Synch) (name% StreamS)
dataflow valges (\{al) byNeedFuture, newPortObiect
streams (lists with lazified lists J
dataflow tail)
In roman:
the new concepts
In italics:
The heart of ’ghe useful abstractions
new model is .
deterministic

© 2011 P. Van Roy. All rights reserved.

Why deterministic concurrency?

Client 1

Client 2

Server

e Determinism has strong limitations!
Any concurrent execution always gives the same results
Even a simple client/server can’t be written
e But determinism has big advantages too

Race conditions are impossible by design

With determinism as default, we can reduce the need for nondeterminism (in the
client/server: it's needed only at the point where the server accepts requests)

Any functional program can be made concurrent without changing the result

© 2011 P. Van Roy. All rights reserved.

This client/server can’t
be written in a
deterministic model!

It's because the server
accepts requests
nondeterministically
from the two clients

Deterministic concurrency: e
the right default?

e Parallel programming has finally arrived (a surprise to old timers like me!)

Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, most apps will do it

Distributed computing: data-intensive with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

e Something fundamental will have to change

Sequential programming can’t be the default (it's a centralized bottleneck)
Libraries can only hide so much (interface complexity, distribution structure)

e Concurrency will have to get a lot easier

Deterministic concurrency is functional programming!

It can be extended cleanly to distributed computing
Open network transparency (implemented in Oz since 1999)
Modular fault tolerance (implemented in Oz since 2007)
Large-scale distribution (on the way...)

© 2011 P. Van Roy. All rights reserved.

Such an old idea, why isn’tit |::
used already?

e Deterministic concurrency has a long history that starts in 1974
e Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

e Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

e Why was it forgotten for so long?

e Message passing and monitors arrived at about the same time:

Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial
intelligence. In 3 International Joint Conference on Aftificial Intelligence (IJCAI), pp. 235-245, Aug.
1973.

Charles Antony Richard Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549-557, Oct. 1974.

e | Actors and monitors handle nondeterminism, so they are better. Right?

e Dataflow computing also has a long history that starts in 1974

e Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in
Computer Science, vol. 19, pp. 362-376, 1974,

e | Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWERA4, the first dual-core processor, in 2001).

10
© 2011 P. Van Roy. All rights reserved.

Declarative Dataflow

Declarative dataflow o°

z=X+y :
—> Thread execution
(executes from left to right)
val x: Int _x=1 Dataflow synchronization
val y: Int y=2 N

val z: Int

e Allval values can do dataflow
e They are single assignment

e The addition operation waits
until both x and y are bound

e This does both synchronization
and communication

e Programs with declarative dataflow are always deterministic
e This program will always print 3, independent of the scheduler

thread { x=1 }
thread { y=2 }
thread { z=x+y }

println(z)

© 2011 P. Van Roy. All rights reserved.

o000
= o000
Using the thread statement oo
as an expression
x=thread(1) X Each green box is
Z a concurrent agent
> z=thread(x+y) — printin(z)
— Each arrow is a
JRireRel) Y shared dataflow value
val x = thread(l) e Exactly the same behavior as
val y = thread(2) the previous example
val z = thread(x+y) e Using the thread statement in
. this way can often simplify the
println(z) syntax of concurrent programs

13

© 2011 P. Van Roy. All rights reserved.

Declarative dataflow t
extensions to Scala

e Lightweight threads: hundreds of thousands of threads can be
active simultaneously (like Erlang, by the way)

thread { println(“New lightweight thread”) }

e Dataflow values: every val can be a single-assignment variable.
Operations that need the value will wait until it is available.

val x = thread(l) // binds x in its own thread
println(x+10) // the addition waits for x

e By-need (lazy) execution: wait until value is needed

val x: Int
thread{ waitNeeded(x); x=factorial(69) }
println(x) // need to print causes calculation of x

14

© 2011 P. Van Roy. All rights reserved.

Implementing futures

import scala.ozma.thread
object SimpleFuture {

def main(args: Array[String]) {
println(“start”)
val result = thread(fibonacci(40)) // create a future
println(“continue execution while computing”)
println(“Fib(40) = “+result) // wait for result
}
def fibonacci(arg:Int): Int = arg match { // burn cycles
case 0 | 1 =>1
case => fibonacci(arg-1)+fibonacci(arg-2)

}
}

e Futures can be implemented easily using dataflow values
e The computation is started in a new thread and returns a future
e Any calculation using the future will wait until its value is available

15

© 2011 P. Van Roy. All rights reserved.

Streams: lists as dataflow oo
communication channels

val x: List[Int]
val ints =1 :: 2 :: 3 :: 4 :: x // unbound tail

thread { ints foreach println } // a printing agent

val y: List[Int]
X =5 3::6 127 ::y // the agent will print these

e Astream is a list with an unbound dataflow tail
e |t can be extended indefinitely or terminated with Nil

e Any list function can read a stream (it's exactly like reading a list)
o It will automatically wait when it finds an unbound tail
Like the foreach operation in this example
o If putinside a thread, the list function becomes a concurrent agent

16

© 2011 P. Van Roy. All rights reserved.

The magic of declarative T
dataflow

object Test {
def main(args: Array[String]) {
val range = gen(l, 10) // sequential version
val result = range map (X => X*X)
result foreach println

val range2 = thread(gen(l, 10)) // concurrent version
val result2 = thread(range map (x => X*Xx))
result2 foreach println

}

def gen(from: Int, to: Int): List[Int] = {
sleep(1000)
if (from > to) Nil
else from :: gen(from+l, to) // tail-recursive in Ozma

}

}
e Both versions print the same final result 1, 4, 9, 16, ..., 100

e So what’s the difference? What does concurrency buy you?
e The sequential version: nothing is output for 10 seconds, and then the whole list
e The concurrent version: a new result is output every second

e Declarative dataflow turns batch programs into incremental programs
© 2010 P. Van Roy. All rights reserved. 17

Pipelines using streams

integers . evens tenFirst foreach
generateFrom > filter > take 10 2 println

def generateFrom(n: Int): List[Int] =
n :: generateFrom(n+1l)

val integers = thread(generateFrom(0))

val evens = thread(integers filter (_ % 2 == 0))
val tenFirst = thread(evens take 10)

tenFirst foreach println

e Alist function put in a thread becomes a concurrent agent
e List functions must be tail-recursive for this to work

e This is automatically true in Ozma (ensured by compiler transformation)

© 2011 P. Van Roy. All rights reserved.

18

Lazy pipelines

integers . evens tenFirst foreach
generateFrom > filter > take 10 2 println

def generateFrom(n: Int): List[Int] = byNeedFuture {
n :: generateFrom(n+1l)

}

val integers = generateFrom(0)

val evens = integers.lazified filter (_ % 2 == 0)
val tenFirst = evens.lazified take 10

tenFirst foreach println

e DbyNeedFuture introduces lazy execution: its body will be executed on
demand; list operations are made lazy by modifying lists with . lazified

e Lazy execution preserves determinism
19

© 2011 P. Van Roy. All rights reserved.

More Programming
Techniques

Three powerful principles

e Any functional program can be made concurrent
without changing the result by adding calls to thread
e Threads can be added anywhere in the program
e Turns batch into incremental (removes roadblocks)

e Any list function can become a concurrent agent
by executing it in a thread
o Because list functions in Ozma are tail-recursive,
the agent has no memory leak (stack size is constant)
e Any computation, functional or not, can be made lazy
by adding calls to waitNeeded

e Syntactic sugar is provided with byNeedFuture
and .lazified
21

© 2011 P. Van Roy. All rights reserved.

o000
o000
o0
o
From map to concurrent map
def map[A, B](list: List[A], f: A => B): List[B] = {
if (list.isEmpty) Nil
else f(list.head) :: map(list.tail, f)
}
def concMap[A, B](list: List[A], f: A => B): List[B] = {
if (list.isEmpty) Nil
else thread(f(list.head)) :: concMap(list.tail, £f)
}

e |n concMap, all evaluations of f execute concurrently

e Itis even possible to call concMap when fis not known (unbound).
This will create a list containing unbound values, like futures: they
will be evaluated as soon as f is known (bound to a function).

22

© 2011 P. Van Roy. All rights reserved.

Map as a concurrent agent

def gen(from: Int): List[Int] = from :: gen(from+l)

def displayEvenSquares() {
val integers = thread(gen(0))
val evens = thread(integers filter (_ % 2 ==
val evenSquares = thread(evens map (X => X*X)

evenSquares foreach println “\\\\

Concurrent agent

e Wrapping the calls to gen, £ilter, and map within threads turns them
into concurrent agents
e Note that foreach is also an agent, living in the main thread

e As new elements are added to the input stream, new computed elements
will appear on the output stream
23

© 2011 P. Van Roy. All rights reserved.

Map as a lazy agent

def gen(from: Int): List[Int] = byNeedFuture {
from :: gen(from+l)

}

def displayEvenSquares() {
val integers = gen(0)
val evens = integers.lazified filter (_ % 2 == 0)
val evenSquares = evens.lazified map (X => X*X)
evenSquares foreach println

e Now foreach imposes the control flow and laziness prevents the agents
from getting ahead of the consumer

e This guarantees that the whole program executes in constant memory

24

© 2011 P. Van Roy. All rights reserved.

Sieve of Eratosthenes as a 3
declarative dataflow program

import scala.ozma.
object PrimeNumbers {

e This program calculates

def main(args: Array[String]) { ,
val max = args(0).toInt the prime numbers up toa
val integers = thread(generate(2, max)) maximum using the Sieve
val result = thread(sieve(integers)) of Eratosthenes.
result.toAgent foreach println)
} e The program dynamically
def generate(from: Int, to: Int): List[Int] = { builds a pipe”ne of filter
}if (from>to) Nil else from::generate(from+l, to) agents that SUCCGSSiVGly
def sieve(list: List[Int]): List[Int] = { remove multiples of 2, 3, 5,
list match { efc.
case Nil => Nil
case head::tail => e The program can be made
val filtered = thread { lazy by prefixing the
} tail.toAgent filter (_ % head != 0) generate and sieve
head :: sieve(filtered) deflnlthnS Wlth
} byNeedFuture
}
}

25

© 2011 P. Van Roy. All rights reserved.

Message Passing
and Nondeterminism

Managing nondeterminism T
with ports

e So far, all our programs have been deterministic

Determinism is a good default, but for real programs
we need nondeterminism too!

e Let's add nondeterminism in a nice way

One way is to give names to streams

e Anportis a named stream, where the name is a constant

Any thread can send a value to a port
The port will append the value to its stream

The senders and the receivers of a port can themselves be
deterministic computations; the only nondeterminism is the
order in which sent values appear on the port’s stream

27

© 2011 P. Van Roy. All rights reserved.

Introducing ports

val (s, p) = newPort[Int] // Create port p with stream s
thread{ p.send(1l) }

thread{ p.send(2) }
thread{ p.send(3) }

thread { s foreach println } // Print elements of the
// port’s stream one by one

e The values 1, 2, and 3 will be displayed in some order
(nondeterminism)

e The actual order depends on the thread scheduler

e No memory leak: garbage collection will remove the parts
of the stream already read

28

© 2011 P. Van Roy. All rights reserved.

Partial barrier synchronization
with ports

def partialBarrier(m: Int, tasks: List[() => Unit]) {
val (stream, port) = Port.newPort[Unit]
for (task <- tasks)
thread { task(); port.send(()) }

stream(m-1) // wait for at least m elements

}

println(“start”)
partialBarrier(1l, List(
() => { sleep(1000); println(“a”) },
() => { sleep(3000); println(“b") },
() => { sleep(2000); println(“c”) }
))

println(“peekaboo”)

e The partial barrier starts n tasks concurrently and waits until
m tasks complete (with m<n)

e We implement it with a port whose stream contains only units

© 2011 P. Van Roy. All rights reserved.

29

Building nondeterministic ot
agents with ports

def newPortObject[A,B])(init:B) (handler:(B,A)=>B) = {
val (s, p) = Port.newPort[A]
thread{ s.toAgent.foldLeft(init) (handler) }

- L

Initial state State updater

e A port object is an actor. It reads messages sequentially from the stream
and uses the messages to update its internal state.

e The foldLeft operation updates the internal state as messages are
received (note: s; is a received message):

(..(((init handler s,) handler s;) handler s,) ..)
e The current value of foldLeft is the agent’s internal state
e Neat trick: foldLeft is a function used as a concurrency pattern

30

© 2011 P. Van Roy. All rights reserved.

Agents playing ball

object BallGame {
type Ball = Unit
val ball: Ball = ()
type Player = Port[Ball]

def main(args: Array[String]) {

val playerl: Player
val player2: Player
val player3: Player

playerl = makePlayer(“Player 1",
player2 = makePlayer(“Player 2",
player3 = makePlayer(“Player 3",

playerl.send(ball)
while(true) sleep(1000)

}

Player 1

def makePlayer(id:Any, others:Seq[Player]):

Player = {

Port.newPortObject(0){(st:Int, b:Ball) =>

st+1

Random.rand(others).send(b)

© 2011 P. Van Roy. All rights reserved.

Player 2

\

Player 3

Seq(player2, player3))
Seq(player3, playerl))
Seq(playerl, player2))

Each player receives the ball
and sends it to a randomly
chosen other player

Each player counts the
number of balls received

The port allows a player to
receive from either of the
others (nondeterminism)

31

Recursive thread termination (1)

e A new thread can itself create new threads, and so forth recursively

e We would like to detect when all threads are terminated.
This is harder than barrier synchronization since we don’t know
in advance how many threads are created.

e Here's the interface:
newThread (SubThreadProc => Unit): Ack

e Here's the usage:

val ack = newThread { thr => s }

// s is any statement
// thr{s’} inside s creates a thread

ack.waitFor() // waits until all threads have terminated

32

© 2011 P. Van Roy. All rights reserved.

000
000
L X J
o
Recursive thread termination (2)
- +1‘ -1> 1
‘ [——
/ +1/ -1ﬁ>
+1/ 1y
ack=newThread(thr=s) +1/,"I ack.waitFor ()
1 2 1 2 1 2 1 0
Running tally of active threads \ Termination

e How it works: we use a port to tally the number of active threads

e Each new thread sends +1 to the port when it is created and -1 to
the port when it terminates

e Needs a bit of care to avoid races: send +1 just before creation and -1
inside the thread just before termination

e When the running total on the stream is 0 then all threads are terminated
33

© 2011 P. Van Roy. All rights reserved.

Recursive thread termination (3) | e

sealed class Ack {
def waitFor () {
// do nothing

}
}

object Ack extends Ack

object RecursiveTermination {

type SubThreadProc = (=> Unit) => Unit
def newThread(body: SubThreadProc => Unit): Ack = {
val (s, p) = Port.newPort[Int]
def subThread(c: => Unit) {
p.send(1)
thread { c¢; p.send(-1) }
}
def zeroExit(n: Int, is: List[Int]): Ack = is match {
case 1 :: ir => if (nt+i != 0) zeroExit(n+i, ir) else Ack
case Nil => Ack
}
subThread {
body (subThread)
}
thread(zeroExit (0, s))
}
} 34

© 2011 P. Van Roy. All rights reserved.

Recursive thread termination (4)

def main(args: Array[String]) {

val ack = newThread { thr => ()utput
sleep(500); println(“c”)
thr { sleep(250); println(“d”) started
thr { sleep(2000); println(“b”) } C
thr { sleep(1000); println(“a”) } } d
' a
println(“started”) b
ack.waitFor () all done
println(“all done”)

e newThread creates main thread
e thr creates subthreads (recursive calls allowed)
e ack.waitFor () walits until all threads are done

© 2011 P. Van Roy. All rights reserved.

35

Technical Details for
the Language Geek

Scala streams versus Ozma oo
streams

e Scala streams are lists with a delaying mechanism for the tail
e A Scala stream provides a form of coroutining (sequential)
e Lazy: The tail is calculated only when the tail method is invoked

e Ozma streams are lists with an unbound dataflow tail
e An Ozma stream is used in both eager and lazy concurrency
e [Eager: Access to the tail waits until the tail is bound
e Lazy: Calculation of the tail is initiated when the tail is needed

e \What'’s the difference between Scala and Ozma streams?

» Ozma streams allow slack: the producer can get ahead of the consumer

It's possible to write a bounded buffer with Ozma streams, but not with Scala
streams: in the latter, the producer and consumer execute in lock step

e Ozma streams guarantee independence: if the producer gets in an
infinite loop or raises an exception, this does not hinder the consumer

37

© 2011 P. Van Roy. All rights reserved.

Scala lazy val versus Ozma
byNeed

—lazy val x = { .. }

Scala-'println(”checkpoint")

println(y)

‘val x = byNeed { .. }

Ozma- println(“checkpoint”)

val vy = X // x is evaluated here in Scala

val y = x // x is not evaluated (not needed)

println(y) // x is evaluated here in Ozma (needed)

e lazy val is evaluated upon first access (encounter in code)

e DbyNeed value is evaluated upon need (actual use)
e It can be passed around as an argument without evaluating it

© 2011 P. Van Roy. All rights reserved.

38

Two features and a limitation

e [wo features:

Errors in lazy execution are handled through failed values, so that the
exception appears at the point where the value is needed

Port streams are read-only; they can only be extended by the port’s
send operation and not by any other operation (secure encapsulation)

e One limitation:

The current Ozma implementation has one limitation related to garbage
collection and the List module. The methods .lazified

and .toAgent must be used whenever a list operation in the standard
List module is used, since otherwise the operation will not currently
reclaim memory when used in a dataflow style. Note: for user-defined
list operations the problem does not exist.

The limitation is due to how lists are currently implemented in Ozma; we
plan to remove it in the near future.

39
© 2011 P. Van Roy. All rights reserved.

Handling exceptions
in lazy computations

try {
val list = Nil:List[Int]

val x = byNeedFuture(list.head) // list is empty!

println(x)
} catch {

case _: java.util.NoSuchElementException =>
println(“The list was empty”)

}

e What happens if the lazy computation (in byNeedFuture) throws an
exception?

e The lazy computation is running in another thread from the thread that needs x!

The only reasonable possibility is to raise the exception where x is needed

e byNeedFuture catches the exception thrown by the lazy computation and wraps

it in a failed value, which causes println(x) to raise an exception
e The exception is raised in the right place

© 2011 P. Van Roy. All rights reserved.

40

Implementation of 1
byNeedFuture

def byNeedFuture[A](value: => A) = { // value is by-name
val result: A
thread {
waitNeeded (result)

try {
result = value // value is evaluated here
} catch {

case throwable: Throwable =>
result = makeFailedValue(throwable)

}
} \
result

e The evaluation of value is triggered when result is needed

e |If the evaluation of value returns an exception, then we wrap the exception
in a failed value using the Ozma primitive makeFailedvalue

e This method is actually native in the Ozma implementation for efficiency

New primitive operation in Ozma

41

© 2011 P. Van Roy. All rights reserved.

More on Scala concurrency

e Scala already has a rich set of concurrency abstractions
In Ozma these can be used together with dataflow

e Scala’s concurrency abstractions are designed to be efficient

using the underlying Java mechanisms

The primitive mechanism: monitors with wait, notify, notifyAll
They are not good enough to implement Ozma, unfortunately

e Some of them are actually not bad at all:
Futures, syncvars, fork-join (deterministic!)
Asynchronous/synchronous channels (deterministic!)
Actors with mailboxes (comparable to Erlang)

e Even better concurrency is available in the Akka library
Dataflow variables and transactional actors

42

© 2011 P. Van Roy. All rights reserved.

The Past is Prologue

Whither Ozma?

e (Ozma makes concurrent programming simpler

The heart of a concurrent program is deterministic.
Nondeterminism is added just where it's needed.

Correctness is easy: the deterministic part is purely functional
and the nondeterministic part uses message passing

e The Ozma implementation uses the Oz virtual machine (Mozart)

It's a complete implementation of Scala on a new VM that’s not the
JVM or .NET, so you can see it as a new implementation of Scala

It's not interoperable with Java, though. The Mozart VM was used
because of its support for fine-grain threads, dataflow, and failed values.

e We are thinking about the future of Ozma. Would you be interested
in a supported version? Should we join the Scala community and
work on Scala’s concurrency model? Or should we join the Java
community and work on the JVM (like Flow Java did)?

44

© 2011 P. Van Roy. All rights reserved.

Generalizing dataflow for
distribution and fault tolerance

e Language support for distributed programming in Oz

e Network transparency: a program executed over several nodes
gives the same result as if it were executed on a single node,
provided network delays are ignored and no failure occurs

Exact same source code is run independent of distribution structure

e Network awareness: a program can predict and control its physical
distribution and network behavior

e Fully implemented in Oz (Mozart 1.4.0)

e Modular fault tolerance in Oz using fault streams

Exceptions and RMI: synchronous, not modular, requires changing
code at each possible distribution point

Fault streams on language entities: asynchronous, modular, just
add new code with no changes to existing code

© 2011 P. Van Roy. All rights reserved.

45

Thanks for your attention!

e Ozma was developed as part of our research in
programming languages and distributed computing

e \We are currently hiring new Ph.D. candidates!

e Doctoral fellowships available in Distributed Computing
Erasmus Mundus program: see

Salary + benefits (medical insurance)
Application deadline Jan. 23, 2012

46

© 2011 P. Van Roy. All rights reserved.

