
© 2011 P. Van Roy. All rights reserved.

1

Ozma: Extending Scala
with Oz Concurrency

Peter Van Roy
Sébastien Doeraene

QCon 2011 San Francisco

Nov. 18, 2011

PLDC Research Group
(pldc.info.ucl.ac.be)

Université catholique de Louvain
B-1348 Louvain-la-Neuve, Belgium

News flash:
Concurrency is still hard

  It has all kinds of fun problems like race conditions, reentrancy,
deadlocks, livelocks, fairness, scheduling, handling shared data,
and multi-agent collaboration algorithms
  Java’s synchronized objects are tough to program with (expletive deleted)
  Erlang’s and Scala’s actors are better, but they still have race conditions
  Libraries can hide some of these problems, but they always peek through

  Adding distribution makes it even harder

  Adding partial failure makes it even much harder than that

  The Holy Grail: can we make concurrent programming
as easy as sequential programming?
  Yes, amazingly it can be done for deterministic concurrency
  Ozma, a conservative extension to Scala, is designed to do this

© 2011 P. Van Roy. All rights reserved.

2

Overview of the talk
  Why deterministic concurrency?

  Advantages and disadvantages
  Scala + Oz ⇒ Ozma

  Declarative dataflow
  Lightweight threads and the wonders of single assignment val!

  More programming techniques
  Three powerful principles

  Message passing and nondeterminism
  This is also very important, so let’s add it cleanly

  Technical details for the language geek
  Comparison with Scala streams and lazy vals, handling exceptions

  The past is prologue
  The future of Ozma, distribution, and fault tolerance

© 2011 P. Van Roy. All rights reserved.

3

Scala in a nutshell
  Scala is a multiparadigm language that compiles to JVM and .NET.

  Directly interoperable with Java
  Developed since 2001 by Martin Odersky and others, it supports both

functional programming and object-oriented programming
  Clean language with advanced properties (e.g., closures, powerful type inferencing),

easy migration for Java programmers

  According to Typesafe, Inc., it has over 100,000 developers
  See www.scala-lang.org for more information

  Scala provides common abstractions for concurrent programming
  Signals and monitors (synchronized objects)
  Futures, syncvars, asynchronous and synchronous channels, fork-join
  Actors with mailboxes, semaphores
  Akka library: transactional actors

  Some of these are good and some are bad
  Good: futures, syncvars, channels, fork-join ⇒ they are deterministic!
  Bad: monitors, semaphores (least bad: actors, transactions)

© 2011 P. Van Roy. All rights reserved.

4

Scala + Oz ⇒ Ozma
  Oz is a multiparadigm language that has been

used for language experiments by a bunch of
smart but eccentric language researchers since
the early 1990s (see www.mozart-oz.org)
  Constraint programming, network-transparent

distributed programming, declarative/procedural
GUI programming, concurrent programming

  Textbook “Concepts, Techniques, and Models
of Computer Programming”, MIT Press, 2004

  Oz supports concurrent programming based on a
declarative dataflow core with lightweight threads

  Ozma extends Scala with a new concurrency
model based on the Oz dataflow ideas

© 2011 P. Van Roy. All rights reserved.

5

One third of the
book is about
concurrency ⇒

Ozma implementation
  Ozma’s implementation combines a modified Scala compiler

and a modified Oz compiler, and targets the Oz VM (Mozart).
It was first released in June 2011.
  The Oz VM has efficient support for lightweight threads, dataflow

synchronization, by-need synchronization, and failed values

  Full source and binaries (with open-source license) available at:
 https://github.com/sjrd/ozma

  Full documentation available at:
 http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf

  Download the compiled binaries and try it out!
  Or compile it yourself with Scala ≥ 2.9.0, Mozart ≥ 1.4.0, and Ant ≥ 1.6
  It runs under Linux, Mac OS X, and maybe Windows

  All the Ozma examples in this talk are running code

© 2011 P. Van Roy. All rights reserved.

6

Ozma extends Scala with a
new concurrency model
  The heart of the model is declarative dataflow

  Further extended with laziness (still declarative) and ports (for nondeterminism)
  This allows adding nondeterminism exactly where needed and no more

© 2011 P. Van Roy. All rights reserved.

7

waitNeeded
(by-need synch.)
byNeedFuture,

lazified lists

ports
(named streams)
newPortObject

declarative dataflow

lazy declarative dataflow

message passing

The heart of the
new model is
deterministic

In roman:
the new concepts

In italics:
useful abstractions

lightweight threads
dataflow values (val)

streams (lists with
dataflow tail)

Why deterministic concurrency?

  Determinism has strong limitations!
  Any concurrent execution always gives the same results
  Even a simple client/server can’t be written

  But determinism has big advantages too
  Race conditions are impossible by design
  With determinism as default, we can reduce the need for nondeterminism (in the

client/server: it’s needed only at the point where the server accepts requests)
  Any functional program can be made concurrent without changing the result

© 2011 P. Van Roy. All rights reserved.

8

Client 1

Client 2

Server

This client/server can’t
be written in a

deterministic model!

It’s because the server
accepts requests

nondeterministically
from the two clients

Deterministic concurrency:
the right default?
  Parallel programming has finally arrived (a surprise to old timers like me!)

  Multicore processors: dual and quad today, a dozen tomorrow, a hundred
in a decade, most apps will do it

  Distributed computing: data-intensive with tens of nodes today (NoSQL,
MapReduce), hundreds and thousands tomorrow, most apps will do it

  Something fundamental will have to change
  Sequential programming can’t be the default (it’s a centralized bottleneck)
  Libraries can only hide so much (interface complexity, distribution structure)

  Concurrency will have to get a lot easier
  Deterministic concurrency is functional programming!
  It can be extended cleanly to distributed computing

  Open network transparency (implemented in Oz since 1999)
  Modular fault tolerance (implemented in Oz since 2007)
  Large-scale distribution (on the way…)

© 2011 P. Van Roy. All rights reserved.

9

Such an old idea, why isn’t it
used already?
  Deterministic concurrency has a long history that starts in 1974

  Gilles Kahn. The semantics of a simple language for parallel programming. In IFIP
Congress, pp. 471-475, 1974. Deterministic concurrency.

  Gilles Kahn and David B. MacQueen. Coroutines and networks of parallel processes. In
IFIP Congress, pp. 993-998, 1977. Lazy deterministic concurrency.

  Why was it forgotten for so long?
  Message passing and monitors arrived at about the same time:

  Carl Hewitt, Peter Bishop, and Richard Steiger. A universal modular ACTOR formalism for artificial
intelligence. In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug.
1973.

  Charles Antony Richard Hoare. Monitors: An operating system structuring concept. Communications
of the ACM, 17(10):549-557, Oct. 1974.

  Actors and monitors handle nondeterminism, so they are better. Right?

  Dataflow computing also has a long history that starts in 1974
  Jack B. Dennis. First version of a data flow procedure language. Springer Lecture Notes in

Computer Science, vol. 19, pp. 362-376, 1974.
  Dataflow remained a fringe subject since it was always focused on parallel programming,

which only became mainstream with the arrival of multicore processors in mainstream
computing (e.g., IBM POWER4, the first dual-core processor, in 2001).

© 2011 P. Van Roy. All rights reserved.

10

Declarative Dataflow

© 2011 P. Van Roy. All rights reserved.

11

Declarative dataflow

  All val values can do dataflow
  They are single assignment
  The addition operation waits

until both x and y are bound
  This does both synchronization

and communication

© 2011 P. Van Roy. All rights reserved.

12

val x: Int!
val y: Int!
val z: Int!

thread { x=1 }!
thread { y=2 }!
thread { z=x+y }!

println(z)!

  Programs with declarative dataflow are always deterministic
  This program will always print 3, independent of the scheduler

x=1!

y=2!

z=x+y!
Thread execution
(executes from left to right)

Dataflow synchronization

Using the thread statement
as an expression

  Exactly the same behavior as
the previous example

  Using the thread statement in
this way can often simplify the
syntax of concurrent programs

© 2011 P. Van Roy. All rights reserved.

13

val x = thread(1)!
val y = thread(2)!
val z = thread(x+y)!

println(z)!

x=thread(1)

y=thread(2)

z=thread(x+y) println(z)

x

y

z
Each green box is
a concurrent agent

Each arrow is a
shared dataflow value

Declarative dataflow
extensions to Scala
  Lightweight threads: hundreds of thousands of threads can be

active simultaneously (like Erlang, by the way)
thread { println(“New lightweight thread”) }  

  Dataflow values: every val can be a single-assignment variable.
Operations that need the value will wait until it is available.

val x = thread(1) // binds x in its own thread  
println(x+10) // the addition waits for x  

  By-need (lazy) execution: wait until value is needed
val x: Int  
thread{ waitNeeded(x); x=factorial(69) }  
println(x) // need to print causes calculation of x!

© 2011 P. Van Roy. All rights reserved.

14

Implementing futures

  Futures can be implemented easily using dataflow values
  The computation is started in a new thread and returns a future
  Any calculation using the future will wait until its value is available

© 2011 P. Van Roy. All rights reserved.

15

import scala.ozma.thread  
object SimpleFuture {  
 def main(args: Array[String]) {  
 println(“start”)  
 val result = thread(fibonacci(40)) // create a future  
 println(“continue execution while computing”)  
 println(“Fib(40) = “+result) // wait for result  
 }!

 def fibonacci(arg:Int): Int = arg match { // burn cycles  
 case 0 | 1 => 1  
 case _ => fibonacci(arg-1)+fibonacci(arg-2)  
 }  
} !

Streams: lists as dataflow
communication channels

  A stream is a list with an unbound dataflow tail
  It can be extended indefinitely or terminated with Nil!

  Any list function can read a stream (it’s exactly like reading a list)
  It will automatically wait when it finds an unbound tail

  Like the foreach operation in this example
  If put inside a thread, the list function becomes a concurrent agent

© 2011 P. Van Roy. All rights reserved.

16

val x: List[Int]  
val ints = 1 :: 2 :: 3 :: 4 :: x // unbound tail  

thread { ints foreach println } // a printing agent  

val y: List[Int]!
x = 5 :: 6 :: 7 :: y // the agent will print these  

The magic of declarative
dataflow

  Both versions print the same final result 1, 4, 9, 16, …, 100
  So what’s the difference? What does concurrency buy you?

  The sequential version: nothing is output for 10 seconds, and then the whole list
  The concurrent version: a new result is output every second
  Declarative dataflow turns batch programs into incremental programs

© 2010 P. Van Roy. All rights reserved. 17

object Test {  
 def main(args: Array[String]) {  
 val range = gen(1, 10) // sequential version  
 val result = range map (x => x*x)  
 result foreach println  

 val range2 = thread(gen(1, 10)) // concurrent version  
 val result2 = thread(range map (x => x*x))  
 result2 foreach println  
 }  
 def gen(from: Int, to: Int): List[Int] = {  
 sleep(1000)  
 if (from > to) Nil  
 else from :: gen(from+1, to) // tail-recursive in Ozma  
 }  
} !

Pipelines using streams

  A list function put in a thread becomes a concurrent agent
  List functions must be tail-recursive for this to work

  This is automatically true in Ozma (ensured by compiler transformation)

© 2011 P. Van Roy. All rights reserved.

18

def generateFrom(n: Int): List[Int] =  
 n :: generateFrom(n+1)  

val integers = thread(generateFrom(0))  
val evens = thread(integers filter (_ % 2 == 0))  
val tenFirst = thread(evens take 10)  
tenFirst foreach println!

generateFrom filter take 10
foreach
println

integers evens tenFirst

Lazy pipelines

  byNeedFuture introduces lazy execution: its body will be executed on
demand; list operations are made lazy by modifying lists with .lazified!

  Lazy execution preserves determinism

© 2011 P. Van Roy. All rights reserved.

19

def generateFrom(n: Int): List[Int] = byNeedFuture {  
 n :: generateFrom(n+1)  
}  

val integers = generateFrom(0)  
val evens = integers.lazified filter (_ % 2 == 0)  
val tenFirst = evens.lazified take 10  
tenFirst foreach println!

generateFrom filter take 10
foreach
println

integers evens tenFirst

More Programming
Techniques

© 2011 P. Van Roy. All rights reserved.

20

Three powerful principles
  Any functional program can be made concurrent

without changing the result by adding calls to thread!
  Threads can be added anywhere in the program
  Turns batch into incremental (removes roadblocks)

  Any list function can become a concurrent agent
by executing it in a thread
  Because list functions in Ozma are tail-recursive,

the agent has no memory leak (stack size is constant)

  Any computation, functional or not, can be made lazy
by adding calls to waitNeeded!
  Syntactic sugar is provided with byNeedFuture

and .lazified!

© 2011 P. Van Roy. All rights reserved.

21

From map to concurrent map

  In concMap, all evaluations of f execute concurrently
  It is even possible to call concMap when f is not known (unbound).

This will create a list containing unbound values, like futures: they
will be evaluated as soon as f is known (bound to a function).

© 2011 P. Van Roy. All rights reserved.

22

def concMap[A, B](list: List[A], f: A => B): List[B] = {  
 if (list.isEmpty) Nil  
 else thread(f(list.head)) :: concMap(list.tail, f)  
}!

def map[A, B](list: List[A], f: A => B): List[B] = {  
 if (list.isEmpty) Nil  
 else f(list.head) :: map(list.tail, f)  
}!

Map as a concurrent agent

  Wrapping the calls to gen, filter, and map within threads turns them
into concurrent agents
  Note that foreach is also an agent, living in the main thread

  As new elements are added to the input stream, new computed elements
will appear on the output stream

© 2011 P. Van Roy. All rights reserved.

23

def gen(from: Int): List[Int] = from :: gen(from+1)!

def displayEvenSquares() {  
 val integers = thread(gen(0))  
 val evens = thread(integers filter (_ % 2 == 0))  
 val evenSquares = thread(evens map (x => x*x))  
 evenSquares foreach println  
}!

Concurrent agent

Map as a lazy agent

  Now foreach imposes the control flow and laziness prevents the agents
from getting ahead of the consumer

  This guarantees that the whole program executes in constant memory

© 2011 P. Van Roy. All rights reserved.

24

def gen(from: Int): List[Int] = byNeedFuture {  
 from :: gen(from+1)  
}!

def displayEvenSquares() {  
 val integers = gen(0)  
 val evens = integers.lazified filter (_ % 2 == 0)  
 val evenSquares = evens.lazified map (x => x*x)  
 evenSquares foreach println  
}!

Sieve of Eratosthenes as a
declarative dataflow program

  This program calculates
the prime numbers up to a
maximum using the Sieve
of Eratosthenes.

  The program dynamically
builds a pipeline of filter
agents that successively
remove multiples of 2, 3, 5,
etc.

  The program can be made
lazy by prefixing the
generate and sieve
definitions with
byNeedFuture!

© 2011 P. Van Roy. All rights reserved.

25

import scala.ozma._!
object PrimeNumbers {!
 def main(args: Array[String]) {!
 val max = args(0).toInt!
 val integers = thread(generate(2, max))!
 val result = thread(sieve(integers))!
 result.toAgent foreach println!
 }!
 def generate(from: Int, to: Int): List[Int] = {!
  if (from>to) Nil else from::generate(from+1, to)!
 }!
 def sieve(list: List[Int]): List[Int] = {!
  list match {!
  case Nil => Nil!
  case head::tail =>!
  val filtered = thread {!
  tail.toAgent filter (_ % head != 0)!
  }!
  head :: sieve(filtered)!
  }!
 }!
}!

Message Passing
and Nondeterminism

© 2011 P. Van Roy. All rights reserved.

26

Managing nondeterminism
with ports
  So far, all our programs have been deterministic

  Determinism is a good default, but for real programs
we need nondeterminism too!

  Let’s add nondeterminism in a nice way
  One way is to give names to streams

  A port is a named stream, where the name is a constant
  Any thread can send a value to a port
  The port will append the value to its stream
  The senders and the receivers of a port can themselves be

deterministic computations; the only nondeterminism is the
order in which sent values appear on the port’s stream

© 2011 P. Van Roy. All rights reserved.

27

Introducing ports

  The values 1, 2, and 3 will be displayed in some order
(nondeterminism)
  The actual order depends on the thread scheduler

  No memory leak: garbage collection will remove the parts
of the stream already read

© 2011 P. Van Roy. All rights reserved.

28

val (s, p) = newPort[Int] // Create port p with stream s  
thread{ p.send(1) }  
thread{ p.send(2) }  
thread{ p.send(3) }  

thread { s foreach println } // Print elements of the!
 // port’s stream one by one 

Partial barrier synchronization
with ports

  The partial barrier starts n tasks concurrently and waits until
m tasks complete (with m≤n)

  We implement it with a port whose stream contains only units

© 2011 P. Van Roy. All rights reserved.

29

def partialBarrier(m: Int, tasks: List[() => Unit]) {  
 val (stream, port) = Port.newPort[Unit]  
 for (task <- tasks)  
 thread { task(); port.send(()) }  
 stream(m-1) // wait for at least m elements  
}  

println(“start”)  
partialBarrier(1, List( 
 () => { sleep(1000); println(“a”) },  
 () => { sleep(3000); println(“b”) },  
 () => { sleep(2000); println(“c”) }  
))  
println(“peekaboo”)!

Building nondeterministic
agents with ports

  A port object is an actor. It reads messages sequentially from the stream
and uses the messages to update its internal state.

  The foldLeft operation updates the internal state as messages are
received (note: si is a received message):
 (…(((init handler s0) handler s1) handler s2) …)!
  The current value of foldLeft is the agent’s internal state

  Neat trick: foldLeft is a function used as a concurrency pattern

© 2011 P. Van Roy. All rights reserved.

30

def newPortObject[A,B])(init:B)(handler:(B,A)=>B) = {  
 val (s, p) = Port.newPort[A]  
 thread{ s.toAgent.foldLeft(init)(handler) }  
 p  
}!

Initial state State updater

Agents playing ball

  Each player receives the ball
and sends it to a randomly
chosen other player

  Each player counts the
number of balls received

  The port allows a player to
receive from either of the
others (nondeterminism)

© 2011 P. Van Roy. All rights reserved.

31

Player 1

Player 2

Player 3

object BallGame {  
 type Ball = Unit  
 val ball: Ball = ()  
 type Player = Port[Ball]  
 def main(args: Array[String]) {  
 val player1: Player  
 val player2: Player  
 val player3: Player  
 player1 = makePlayer(“Player 1”, Seq(player2, player3))  
 player2 = makePlayer(“Player 2”, Seq(player3, player1))  
 player3 = makePlayer(“Player 3”, Seq(player1, player2))  
 player1.send(ball)  
 while(true) sleep(1000)!
 }!
 def makePlayer(id:Any, others:Seq[Player]):!
 Player = {  
 Port.newPortObject(0){(st:Int, b:Ball) =>!
 st+1!
 Random.rand(others).send(b)!
 }!
 }  
}  

Recursive thread termination (1)

  A new thread can itself create new threads, and so forth recursively
  We would like to detect when all threads are terminated.

This is harder than barrier synchronization since we don’t know
in advance how many threads are created.

  Here’s the interface:
 newThread(SubThreadProc => Unit): Ack!

  Here’s the usage:
 val ack = newThread { thr => s }  
 // s is any statement  
 // thr{s’} inside s creates a thread 

 ack.waitFor() // waits until all threads have terminated!

© 2011 P. Van Roy. All rights reserved.

32

  How it works: we use a port to tally the number of active threads
  Each new thread sends +1 to the port when it is created and -1 to

the port when it terminates
  Needs a bit of care to avoid races: send +1 just before creation and -1

inside the thread just before termination
  When the running total on the stream is 0 then all threads are terminated

© 2011 P. Van Roy. All rights reserved.

33

+1

-1

+1

+1

+1

-1

-1
-1

ack=newThread(thr⇒s)!

1 2 1 2 1 2 1 0
ack.waitFor()!

Running tally of active threads Termination

Recursive thread termination (2)

Recursive thread termination (3)

© 2011 P. Van Roy. All rights reserved.

34

sealed class Ack {  
 def waitFor() {  
 // do nothing  
 }  
}!

object Ack extends Ack  

object RecursiveTermination {  
 type SubThreadProc = (=> Unit) => Unit  
 def newThread(body: SubThreadProc => Unit): Ack = {  
 val (s, p) = Port.newPort[Int]  
 def subThread(c: => Unit) {  
 p.send(1)  
 thread { c; p.send(-1) }  
 }  
 def zeroExit(n: Int, is: List[Int]): Ack = is match {  
 case i :: ir => if (n+i != 0) zeroExit(n+i, ir) else Ack  
 case Nil => Ack  
 }  
 subThread {  
 body(subThread)  
 }  
 thread(zeroExit(0, s))  
 }  
}  

Recursive thread termination (4)

© 2011 P. Van Roy. All rights reserved.

35

def main(args: Array[String]) {  
 val ack = newThread { thr =>  
 sleep(500); println(“c”)  
 thr { sleep(250); println(“d”)  
 thr { sleep(2000); println(“b”) }  
 thr { sleep(1000); println(“a”) } }  
 }  

 println(“started”)  
 ack.waitFor()  
 println(“all done”)  
}!

  newThread creates main thread
  thr creates subthreads (recursive calls allowed)
  ack.waitFor() waits until all threads are done

started  
c  
d  
a  
b  
all done!

Output

Technical Details for
the Language Geek

© 2011 P. Van Roy. All rights reserved.

36

Scala streams versus Ozma
streams
  Scala streams are lists with a delaying mechanism for the tail

  A Scala stream provides a form of coroutining (sequential)
  Lazy: The tail is calculated only when the tail method is invoked

  Ozma streams are lists with an unbound dataflow tail
  An Ozma stream is used in both eager and lazy concurrency
  Eager: Access to the tail waits until the tail is bound
  Lazy: Calculation of the tail is initiated when the tail is needed

  What’s the difference between Scala and Ozma streams?
  Ozma streams allow slack: the producer can get ahead of the consumer

  It’s possible to write a bounded buffer with Ozma streams, but not with Scala
streams: in the latter, the producer and consumer execute in lock step

  Ozma streams guarantee independence: if the producer gets in an
infinite loop or raises an exception, this does not hinder the consumer

© 2011 P. Van Roy. All rights reserved.

37

Scala lazy val versus Ozma
byNeed

  lazy val is evaluated upon first access (encounter in code)
  byNeed value is evaluated upon need (actual use)

  It can be passed around as an argument without evaluating it

© 2011 P. Van Roy. All rights reserved.

38

lazy val x = { … }!
val y = x // x is evaluated here in Scala!
println(“checkpoint”)!
println(y)!

val x = byNeed { … }!
val y = x // x is not evaluated (not needed)!
println(“checkpoint”)!
println(y) // x is evaluated here in Ozma (needed)!

Scala

Ozma

Two features and a limitation
  Two features:

  Errors in lazy execution are handled through failed values, so that the
exception appears at the point where the value is needed

  Port streams are read-only; they can only be extended by the port’s
send operation and not by any other operation (secure encapsulation)

  One limitation:
  The current Ozma implementation has one limitation related to garbage

collection and the List module. The methods .lazified
and .toAgent must be used whenever a list operation in the standard
List module is used, since otherwise the operation will not currently
reclaim memory when used in a dataflow style. Note: for user-defined
list operations the problem does not exist.

  The limitation is due to how lists are currently implemented in Ozma; we
plan to remove it in the near future.

© 2011 P. Van Roy. All rights reserved.

39

Handling exceptions
in lazy computations

  What happens if the lazy computation (in byNeedFuture) throws an
exception?
  The lazy computation is running in another thread from the thread that needs x!

  The only reasonable possibility is to raise the exception where x is needed
  byNeedFuture catches the exception thrown by the lazy computation and wraps

it in a failed value, which causes println(x) to raise an exception
  The exception is raised in the right place

© 2011 P. Van Roy. All rights reserved.

40

 try {!
  val list = Nil:List[Int]!
  val x = byNeedFuture(list.head) // list is empty!!
  println(x)!
 } catch {!
  case _: java.util.NoSuchElementException =>!
  println(“The list was empty”)!
 }!

Implementation of
byNeedFuture

  The evaluation of value is triggered when result is needed
  If the evaluation of value returns an exception, then we wrap the exception

in a failed value using the Ozma primitive makeFailedValue
  This method is actually native in the Ozma implementation for efficiency

© 2011 P. Van Roy. All rights reserved.

41

def byNeedFuture[A](value: => A) = { // value is by-name  
 val result: A  
 thread {  
 waitNeeded(result)  
 try {  
 result = value // value is evaluated here  
 } catch {  
 case throwable: Throwable =>  
 result = makeFailedValue(throwable)  
 }  
 }  
 result  
}  

New primitive operation in Ozma

More on Scala concurrency
  Scala already has a rich set of concurrency abstractions

  In Ozma these can be used together with dataflow
  Scala’s concurrency abstractions are designed to be efficient

using the underlying Java mechanisms
  The primitive mechanism: monitors with wait, notify, notifyAll
  They are not good enough to implement Ozma, unfortunately

  Some of them are actually not bad at all:
  Futures, syncvars, fork-join (deterministic!)
  Asynchronous/synchronous channels (deterministic!)
  Actors with mailboxes (comparable to Erlang)

  Even better concurrency is available in the Akka library
  Dataflow variables and transactional actors

© 2011 P. Van Roy. All rights reserved.

42

The Past is Prologue

© 2011 P. Van Roy. All rights reserved.

43

Whither Ozma?
  Ozma makes concurrent programming simpler

  The heart of a concurrent program is deterministic.
Nondeterminism is added just where it’s needed.

  Correctness is easy: the deterministic part is purely functional
and the nondeterministic part uses message passing

  The Ozma implementation uses the Oz virtual machine (Mozart)
  It’s a complete implementation of Scala on a new VM that’s not the

JVM or .NET, so you can see it as a new implementation of Scala
  It’s not interoperable with Java, though. The Mozart VM was used

because of its support for fine-grain threads, dataflow, and failed values.

  We are thinking about the future of Ozma. Would you be interested
in a supported version? Should we join the Scala community and
work on Scala’s concurrency model? Or should we join the Java
community and work on the JVM (like Flow Java did)?

© 2011 P. Van Roy. All rights reserved.

44

Generalizing dataflow for
distribution and fault tolerance
  Language support for distributed programming in Oz

  Network transparency: a program executed over several nodes
gives the same result as if it were executed on a single node,
provided network delays are ignored and no failure occurs
  Exact same source code is run independent of distribution structure

  Network awareness: a program can predict and control its physical
distribution and network behavior

  Fully implemented in Oz (Mozart 1.4.0)

  Modular fault tolerance in Oz using fault streams
  Exceptions and RMI: synchronous, not modular, requires changing

code at each possible distribution point

  Fault streams on language entities: asynchronous, modular, just
add new code with no changes to existing code

© 2011 P. Van Roy. All rights reserved.

45

Thanks for your attention!

  Ozma was developed as part of our research in
programming languages and distributed computing

  We are currently hiring new Ph.D. candidates!

  Doctoral fellowships available in Distributed Computing
  Erasmus Mundus program: see www.emjd-dc.eu
  Salary + benefits (medical insurance)
  Application deadline Jan. 23, 2012

© 2011 P. Van Roy. All rights reserved.

46

