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News flash: 
Concurrency is still hard 

  It has all kinds of fun problems like race conditions, reentrancy, 
deadlocks, livelocks, fairness, scheduling, handling shared data, 
and multi-agent collaboration algorithms 
  Java’s synchronized objects are tough to program with (expletive deleted) 
  Erlang’s and Scala’s actors are better, but they still have race conditions 
  Libraries can hide some of these problems, but they always peek through 

  Adding distribution makes it even harder 

  Adding partial failure makes it even much harder than that 

  The Holy Grail: can we make concurrent programming 
as easy as sequential programming? 
  Yes, amazingly it can be done for deterministic concurrency 
  Ozma, a conservative extension to Scala, is designed to do this 
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Overview of the talk 
  Why deterministic concurrency? 

  Advantages and disadvantages 
  Scala + Oz ⇒ Ozma 

  Declarative dataflow 
  Lightweight threads and the wonders of single assignment val!

  More programming techniques 
  Three powerful principles 

  Message passing and nondeterminism 
  This is also very important, so let’s add it cleanly 

  Technical details for the language geek 
  Comparison with Scala streams and lazy vals, handling exceptions 

  The past is prologue 
  The future of Ozma, distribution, and fault tolerance 
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Scala in a nutshell 
  Scala is a multiparadigm language that compiles to JVM and .NET. 

  Directly interoperable with Java 
  Developed since 2001 by Martin Odersky and others, it supports both 

functional programming and object-oriented programming 
  Clean language with advanced properties (e.g., closures, powerful type inferencing), 

easy migration for Java programmers 

  According to Typesafe, Inc., it has over 100,000 developers 
  See www.scala-lang.org for more information 

  Scala provides common abstractions for concurrent programming 
  Signals and monitors (synchronized objects) 
  Futures, syncvars, asynchronous and synchronous channels, fork-join 
  Actors with mailboxes, semaphores 
  Akka library: transactional actors 

  Some of these are good and some are bad 
  Good: futures, syncvars, channels, fork-join ⇒ they are deterministic! 
  Bad: monitors, semaphores (least bad: actors, transactions) 
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Scala + Oz ⇒ Ozma 
  Oz is a multiparadigm language that has been 

used for language experiments by a bunch of 
smart but eccentric language researchers since 
the early 1990s (see www.mozart-oz.org ) 
  Constraint programming, network-transparent 

distributed programming, declarative/procedural 
GUI programming, concurrent programming 

  Textbook “Concepts, Techniques, and Models 
of Computer Programming”, MIT Press, 2004 

  Oz supports concurrent programming based on a 
declarative dataflow core with lightweight threads 

  Ozma extends Scala with a new concurrency 
model based on the Oz dataflow ideas 
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One third of the 
book is about 
concurrency ⇒



Ozma implementation 
  Ozma’s implementation combines a modified Scala compiler 

and a modified Oz compiler, and targets the Oz VM (Mozart). 
It was first released in June 2011. 
  The Oz VM has efficient support for lightweight threads, dataflow 

synchronization, by-need synchronization, and failed values 

  Full source and binaries (with open-source license) available at: 
  https://github.com/sjrd/ozma 

  Full documentation available at: 
  http://www.info.ucl.ac.be/~pvr/MemoireSebastienDoeraene.pdf 

  Download the compiled binaries and try it out! 
  Or compile it yourself with Scala ≥ 2.9.0, Mozart ≥ 1.4.0, and Ant ≥ 1.6 
  It runs under Linux, Mac OS X, and maybe Windows 

  All the Ozma examples in this talk are running code 
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Ozma extends Scala with a 
new concurrency model 
  The heart of the model is declarative dataflow 

  Further extended with laziness (still declarative) and ports (for nondeterminism) 
  This allows adding nondeterminism exactly where needed and no more  
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waitNeeded 
(by-need synch.) 
byNeedFuture, 

lazified lists 

ports 
(named streams) 
newPortObject 

declarative dataflow 

lazy declarative dataflow 

message passing 

The heart of the 
new model is 
deterministic 

In roman: 
the new concepts 

In italics: 
useful abstractions 

lightweight threads 
dataflow values (val) 

streams (lists with 
dataflow tail) 



Why deterministic concurrency? 

  Determinism has strong limitations! 
  Any concurrent execution always gives the same results 
  Even a simple client/server can’t be written 

  But determinism has big advantages too 
  Race conditions are impossible by design 
  With determinism as default, we can reduce the need for nondeterminism (in the 

client/server: it’s needed only at the point where the server accepts requests) 
  Any functional program can be made concurrent without changing the result 
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Client 1 

Client 2 

Server 

This client/server can’t 
be written in a 

deterministic model! 

It’s because the server 
accepts requests 

nondeterministically 
from the two clients 



Deterministic concurrency: 
the right default? 
  Parallel programming has finally arrived (a surprise to old timers like me!) 

  Multicore processors: dual and quad today, a dozen tomorrow, a hundred 
in a decade, most apps will do it 

  Distributed computing: data-intensive with tens of nodes today (NoSQL, 
MapReduce), hundreds and thousands tomorrow, most apps will do it 

  Something fundamental will have to change 
  Sequential programming can’t be the default (it’s a centralized bottleneck) 
  Libraries can only hide so much (interface complexity, distribution structure) 

  Concurrency will have to get a lot easier 
  Deterministic concurrency is functional programming! 
  It can be extended cleanly to distributed computing 

  Open network transparency (implemented in Oz since 1999) 
  Modular fault tolerance (implemented in Oz since 2007) 
  Large-scale distribution (on the way…) 
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Such an old idea, why isn’t it 
used already? 
  Deterministic concurrency has a long history that starts in 1974 

  Gilles Kahn.  The semantics of a simple language for parallel programming.  In IFIP 
Congress, pp. 471-475, 1974.  Deterministic concurrency. 

  Gilles Kahn and David B. MacQueen.  Coroutines and networks of parallel processes.  In 
IFIP Congress, pp. 993-998, 1977.  Lazy deterministic concurrency. 

  Why was it forgotten for so long? 
  Message passing and monitors arrived at about the same time: 

  Carl Hewitt, Peter Bishop, and Richard Steiger.  A universal modular ACTOR formalism for artificial 
intelligence.  In 3rd International Joint Conference on Artificial Intelligence (IJCAI), pp. 235-245, Aug. 
1973. 

  Charles Antony Richard Hoare.  Monitors: An operating system structuring concept.  Communications 
of the ACM, 17(10):549-557, Oct. 1974. 

  Actors and monitors handle nondeterminism, so they are better.  Right? 

  Dataflow computing also has a long history that starts in 1974 
  Jack B. Dennis. First version of a data flow procedure language.  Springer Lecture Notes in 

Computer Science, vol. 19, pp. 362-376, 1974. 
  Dataflow remained a fringe subject since it was always focused on parallel programming, 

which only became mainstream with the arrival of multicore processors in mainstream 
computing (e.g., IBM POWER4, the first dual-core processor, in 2001). 
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Declarative Dataflow 
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Declarative dataflow 

  All val values can do dataflow 
  They are single assignment 
  The addition operation waits 

until both x and y are bound 
  This does both synchronization 

and communication 
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val x: Int!
val y: Int!
val z: Int!

thread { x=1 }!
thread { y=2 }!
thread { z=x+y }!

println(z)!

  Programs with declarative dataflow are always deterministic 
  This program will always print 3, independent of the scheduler 

x=1!

y=2!

z=x+y!
Thread execution 
(executes from left to right) 

Dataflow synchronization 



Using the thread statement 
as an expression 

  Exactly the same behavior as 
the previous example 

  Using the thread statement in 
this way can often simplify the 
syntax of concurrent programs 
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val x = thread(1)!
val y = thread(2)!
val z = thread(x+y)!

println(z)!

x=thread(1) 

y=thread(2) 

z=thread(x+y) println(z) 

x 

y 

z 
Each green box is 
a concurrent agent 

Each arrow is a 
shared dataflow value 



Declarative dataflow 
extensions to Scala 
  Lightweight threads: hundreds of thousands of threads can be 

active simultaneously (like Erlang, by the way) 
thread { println(“New lightweight thread”) }  

  Dataflow values: every val can be a single-assignment variable.  
Operations that need the value will wait until it is available. 

val x = thread(1)  // binds x in its own thread  
println(x+10)      // the addition waits for x  

  By-need (lazy) execution: wait until value is needed 
val x: Int  
thread{ waitNeeded(x); x=factorial(69) }  
println(x)         // need to print causes calculation of x!
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Implementing futures 

  Futures can be implemented easily using dataflow values 
  The computation is started in a new thread and returns a future 
  Any calculation using the future will wait until its value is available 
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import scala.ozma.thread  
object SimpleFuture {  
  def main(args: Array[String]) {  
    println(“start”)  
    val result = thread(fibonacci(40))  // create a future  
    println(“continue execution while computing”)  
    println(“Fib(40) = “+result)        // wait for result  
  }!

  def fibonacci(arg:Int): Int = arg match {  // burn cycles  
    case 0 | 1 => 1  
    case _ => fibonacci(arg-1)+fibonacci(arg-2)  
  }  
}    !



Streams: lists as dataflow 
communication channels 

  A stream is a list with an unbound dataflow tail 
  It can be extended indefinitely or terminated with Nil!

  Any list function can read a stream (it’s exactly like reading a list) 
  It will automatically wait when it finds an unbound tail 

  Like the foreach operation in this example 
  If put inside a thread, the list function becomes a concurrent agent 
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val x: List[Int]  
val ints = 1 :: 2 :: 3 :: 4 :: x  // unbound tail  

thread { ints foreach println }   // a printing agent  

val y: List[Int]!
x = 5 :: 6 :: 7 :: y    // the agent will print these  



The magic of declarative 
dataflow 

  Both versions print the same final result 1, 4, 9, 16, …, 100 
  So what’s the difference?  What does concurrency buy you? 

  The sequential version: nothing is output for 10 seconds, and then the whole list 
  The concurrent version: a new result is output every second 
  Declarative dataflow turns batch programs into incremental programs 
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object Test {  
  def main(args: Array[String]) {  
    val range = gen(1, 10) // sequential version  
    val result = range map (x => x*x)  
    result foreach println  

    val range2 = thread(gen(1, 10)) // concurrent version  
    val result2 = thread(range map (x => x*x))  
    result2 foreach println  
  }  
  def gen(from: Int, to: Int): List[Int] = {  
    sleep(1000)  
    if (from > to) Nil  
    else from :: gen(from+1, to) // tail-recursive in Ozma  
  }  
} !



Pipelines using streams 

  A list function put in a thread becomes a concurrent agent 
  List functions must be tail-recursive for this to work 

  This is automatically true in Ozma (ensured by compiler transformation) 
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def generateFrom(n: Int): List[Int] =  
   n :: generateFrom(n+1)  

val integers = thread(generateFrom(0))  
val evens = thread(integers filter (_ % 2 == 0))  
val tenFirst = thread(evens take 10)  
tenFirst foreach println!

generateFrom filter take 10 
foreach 
println 

integers evens tenFirst 



Lazy pipelines 

  byNeedFuture introduces lazy execution: its body will be executed on 
demand; list operations are made lazy by modifying lists with .lazified!

  Lazy execution preserves determinism 
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def generateFrom(n: Int): List[Int] = byNeedFuture {  
   n :: generateFrom(n+1)  
}  

val integers = generateFrom(0)  
val evens = integers.lazified filter (_ % 2 == 0)  
val tenFirst = evens.lazified take 10  
tenFirst foreach println!

generateFrom filter take 10 
foreach 
println 

integers evens tenFirst 



More Programming 
Techniques 
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Three powerful principles 
  Any functional program can be made concurrent 

without changing the result by adding calls to thread!
  Threads can be added anywhere in the program 
  Turns batch into incremental (removes roadblocks) 

  Any list function can become a concurrent agent 
by executing it in a thread 
  Because list functions in Ozma are tail-recursive, 

the agent has no memory leak (stack size is constant) 

  Any computation, functional or not, can be made lazy 
by adding calls to waitNeeded!
  Syntactic sugar is provided with byNeedFuture 

and .lazified!
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From map to concurrent map 

  In concMap, all evaluations of f execute concurrently 
  It is even possible to call concMap when f is not known (unbound).  

This will create a list containing unbound values, like futures: they 
will be evaluated as soon as f is known (bound to a function). 
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def concMap[A, B](list: List[A], f: A => B): List[B] = {  
  if (list.isEmpty) Nil  
  else thread(f(list.head)) :: concMap(list.tail, f)  
}!

def map[A, B](list: List[A], f: A => B): List[B] = {  
  if (list.isEmpty) Nil  
  else f(list.head) :: map(list.tail, f)  
}!



Map as a concurrent agent 

  Wrapping the calls to gen, filter, and map within threads turns them 
into concurrent agents 
  Note that foreach is also an agent, living in the main thread 

  As new elements are added to the input stream, new computed elements 
will appear on the output stream 
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def gen(from: Int): List[Int] = from :: gen(from+1)!

def displayEvenSquares() {  
  val integers = thread(gen(0))  
  val evens = thread(integers filter (_ % 2 == 0))  
  val evenSquares = thread(evens map (x => x*x))  
  evenSquares foreach println  
}!

Concurrent agent 



Map as a lazy agent 

  Now foreach imposes the control flow and laziness prevents the agents 
from getting ahead of the consumer 

  This guarantees that the whole program executes in constant memory 
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def gen(from: Int): List[Int] = byNeedFuture {  
  from :: gen(from+1)  
}!

def displayEvenSquares() {  
  val integers = gen(0)  
  val evens = integers.lazified filter (_ % 2 == 0)  
  val evenSquares = evens.lazified map (x => x*x)  
  evenSquares foreach println  
}!



Sieve of Eratosthenes as a 
declarative dataflow program 

  This program calculates 
the prime numbers up to a 
maximum using the Sieve 
of Eratosthenes. 

  The program dynamically 
builds a pipeline of filter 
agents that successively 
remove multiples of 2, 3, 5, 
etc. 

  The program can be made 
lazy by prefixing the 
generate and sieve 
definitions with 
byNeedFuture!
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import scala.ozma._!
object PrimeNumbers {!
  def main(args: Array[String]) {!
    val max = args(0).toInt!
    val integers = thread(generate(2, max))!
    val result = thread(sieve(integers))!
    result.toAgent foreach println!
  }!
  def generate(from: Int, to: Int): List[Int] = {!
   if (from>to) Nil else from::generate(from+1, to)!
  }!
  def sieve(list: List[Int]): List[Int] = {!
   list match {!
     case Nil => Nil!
     case head::tail =>!
       val filtered = thread {!
         tail.toAgent filter (_ % head != 0)!
       }!
       head :: sieve(filtered)!
   }!
 }!
}!



Message Passing 
and Nondeterminism 
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Managing nondeterminism 
with ports 
  So far, all our programs have been deterministic 

  Determinism is a good default, but for real programs 
we need nondeterminism too! 

  Let’s add nondeterminism in a nice way 
  One way is to give names to streams 

  A port is a named stream, where the name is a constant 
  Any thread can send a value to a port 
  The port will append the value to its stream 
  The senders and the receivers of a port can themselves be 

deterministic computations; the only nondeterminism is the 
order in which sent values appear on the port’s stream 
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Introducing ports 

  The values 1, 2, and 3 will be displayed in some order 
(nondeterminism) 
  The actual order depends on the thread scheduler 

  No memory leak: garbage collection will remove the parts 
of the stream already read 
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val (s, p) = newPort[Int]  // Create port p with stream s  
thread{ p.send(1) }  
thread{ p.send(2) }  
thread{ p.send(3) }  

thread { s foreach println }  // Print elements of the!
                              // port’s stream one by one 



Partial barrier synchronization 
with ports 

  The partial barrier starts n tasks concurrently and waits until 
m tasks complete (with m≤n) 

  We implement it with a port whose stream contains only units 
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def partialBarrier(m: Int, tasks: List[() => Unit]) {  
  val (stream, port) = Port.newPort[Unit]  
  for (task <- tasks)  
    thread { task(); port.send(()) }  
  stream(m-1)  // wait for at least m elements  
}  

println(“start”)  
partialBarrier(1, List(  
    () => { sleep(1000); println(“a”) },  
    () => { sleep(3000); println(“b”) },  
    () => { sleep(2000); println(“c”) }  
))  
println(“peekaboo”)!



Building nondeterministic 
agents with ports 

  A port object is an actor.  It reads messages sequentially from the stream 
and uses the messages to update its internal state. 

  The foldLeft operation updates the internal state as messages are 
received (note: si is a received message): 
     (…(((init handler s0) handler s1) handler s2) … )!
  The current value of foldLeft is the agent’s internal state 

  Neat trick: foldLeft is a function used as a concurrency pattern 
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def newPortObject[A,B])(init:B)(handler:(B,A)=>B) = {  
  val (s, p) = Port.newPort[A]  
  thread{ s.toAgent.foldLeft(init)(handler) }  
  p  
}!

Initial state State updater 



Agents playing ball 

  Each player receives the ball 
and sends it to a randomly 
chosen other player 

  Each player counts the 
number of balls received 

  The port allows a player to 
receive from either of the 
others (nondeterminism) 
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Player 1 

Player 2 

Player 3 

object BallGame {  
  type Ball = Unit  
  val ball: Ball = ()  
  type Player = Port[Ball]  
  def main(args: Array[String]) {  
    val player1: Player  
    val player2: Player  
    val player3: Player  
    player1 = makePlayer(“Player 1”, Seq(player2, player3))  
    player2 = makePlayer(“Player 2”, Seq(player3, player1))  
    player3 = makePlayer(“Player 3”, Seq(player1, player2))  
    player1.send(ball)  
    while(true) sleep(1000)!
  }!
  def makePlayer(id:Any, others:Seq[Player]):!
    Player = {  
      Port.newPortObject(0){(st:Int, b:Ball) =>!
        st+1!
        Random.rand(others).send(b)!
      }!
  }  
}  



Recursive thread termination (1) 

  A new thread can itself create new threads, and so forth recursively 
  We would like to detect when all threads are terminated. 

This is harder than barrier synchronization since we don’t know 
in advance how many threads are created. 

  Here’s the interface: 
   newThread(SubThreadProc => Unit): Ack!

  Here’s the usage: 
   val ack = newThread { thr => s }  
                   // s is any statement  
                   // thr{s’} inside s creates a thread 

  ack.waitFor()  // waits until all threads have terminated!
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  How it works: we use a port to tally the number of active threads 
  Each new thread sends +1 to the port when it is created and -1 to 

the port when it terminates 
  Needs a bit of care to avoid races: send +1 just before creation and -1 

inside the thread just before termination 
  When the running total on the stream is 0 then all threads are terminated  
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+1 

-1 

+1 

+1 

+1 

-1 

-1 
-1 

ack=newThread(thr⇒s)!

1 2 1 2 1 2 1 0 
ack.waitFor()!

Running tally of active threads Termination 

Recursive thread termination (2) 



Recursive thread termination (3) 
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sealed class Ack {  
  def waitFor() {  
    // do nothing  
  }  
}!

object Ack extends Ack  

object RecursiveTermination {  
  type SubThreadProc = (=> Unit) => Unit  
  def newThread(body: SubThreadProc => Unit): Ack = {  
    val (s, p) = Port.newPort[Int]  
    def subThread(c: => Unit) {  
      p.send(1)  
      thread { c; p.send(-1) }  
    }  
    def zeroExit(n: Int, is: List[Int]): Ack = is match {  
      case i :: ir => if (n+i != 0) zeroExit(n+i, ir) else Ack  
      case Nil => Ack  
    }  
    subThread {  
      body(subThread)  
    }  
    thread(zeroExit(0, s))  
  }  
}  



Recursive thread termination (4) 
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def main(args: Array[String]) {  
  val ack = newThread { thr =>  
    sleep(500); println(“c”)  
    thr { sleep(250); println(“d”)  
          thr { sleep(2000); println(“b”) }  
          thr { sleep(1000); println(“a”) } }  
  }  

  println(“started”)  
  ack.waitFor()  
  println(“all done”)  
}!

  newThread creates main thread 
  thr creates subthreads (recursive calls allowed) 
  ack.waitFor() waits until all threads are done 

started  
c  
d  
a  
b  
all done!

Output 



Technical Details for 
the Language Geek 
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Scala streams versus Ozma 
streams 
  Scala streams are lists with a delaying mechanism for the tail 

  A Scala stream provides a form of coroutining (sequential) 
  Lazy: The tail is calculated only when the tail method is invoked 

  Ozma streams are lists with an unbound dataflow tail 
  An Ozma stream is used in both eager and lazy concurrency 
  Eager: Access to the tail waits until the tail is bound 
  Lazy: Calculation of the tail is initiated when the tail is needed 

  What’s the difference between Scala and Ozma streams? 
  Ozma streams allow slack: the producer can get ahead of the consumer 

  It’s possible to write a bounded buffer with Ozma streams, but not with Scala 
streams: in the latter, the producer and consumer execute in lock step 

  Ozma streams guarantee independence: if the producer gets in an 
infinite loop or raises an exception, this does not hinder the consumer 
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Scala lazy val versus Ozma 
byNeed 

  lazy val is evaluated upon first access (encounter in code) 
  byNeed value is evaluated upon need (actual use) 

  It can be passed around as an argument without evaluating it 
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lazy val x = { … }!
val y = x   // x is evaluated here in Scala!
println(“checkpoint”)!
println(y)!

val x = byNeed { … }!
val y = x   // x is not evaluated (not needed)!
println(“checkpoint”)!
println(y)  // x is evaluated here in Ozma (needed)!

Scala 

Ozma 



Two features and a limitation 
  Two features: 

  Errors in lazy execution are handled through failed values, so that the 
exception appears at the point where the value is needed 

  Port streams are read-only; they can only be extended by the port’s 
send operation and not by any other operation (secure encapsulation) 

  One limitation: 
  The current Ozma implementation has one limitation related to garbage 

collection and the List module.  The methods .lazified 
and .toAgent must be used whenever a list operation in the standard 
List module is used, since otherwise the operation will not currently 
reclaim memory when used in a dataflow style.  Note: for user-defined 
list operations the problem does not exist. 

  The limitation is due to how lists are currently implemented in Ozma; we 
plan to remove it in the near future. 
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Handling exceptions 
in lazy computations 

  What happens if the lazy computation (in byNeedFuture) throws an 
exception? 
  The lazy computation is running in another thread from the thread that needs x! 

  The only reasonable possibility is to raise the exception where x is needed 
  byNeedFuture catches the exception thrown by the lazy computation and wraps 

it in a failed value, which causes println(x) to raise an exception 
  The exception is raised in the right place 
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 try {!
   val list = Nil:List[Int]!
   val x = byNeedFuture(list.head)  // list is empty!!
   println(x)!
 } catch {!
   case _: java.util.NoSuchElementException =>!
     println(“The list was empty”)!
 }!



Implementation of 
byNeedFuture 

  The evaluation of value is triggered when result is needed 
  If the evaluation of value returns an exception, then we wrap the exception 

in a failed value using the Ozma primitive makeFailedValue  
  This method is actually native in the Ozma implementation for efficiency 
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def byNeedFuture[A](value: => A) = {  // value is by-name  
  val result: A  
  thread {  
    waitNeeded(result)  
    try {  
      result = value  // value is evaluated here  
    } catch {  
      case throwable: Throwable =>  
        result = makeFailedValue(throwable)  
    }  
  }  
  result  
}  

New primitive operation in Ozma 



More on Scala concurrency 
  Scala already has a rich set of concurrency abstractions 

  In Ozma these can be used together with dataflow 
  Scala’s concurrency abstractions are designed to be efficient 

using the underlying Java mechanisms 
  The primitive mechanism: monitors with wait, notify, notifyAll 
  They are not good enough to implement Ozma, unfortunately 

  Some of them are actually not bad at all: 
  Futures, syncvars, fork-join (deterministic!) 
  Asynchronous/synchronous channels (deterministic!) 
  Actors with mailboxes (comparable to Erlang) 

  Even better concurrency is available in the Akka library 
  Dataflow variables and transactional actors 
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The Past is Prologue 
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Whither Ozma? 
  Ozma makes concurrent programming simpler 

  The heart of a concurrent program is deterministic. 
Nondeterminism is added just where it’s needed. 

  Correctness is easy: the deterministic part is purely functional 
and the nondeterministic part uses message passing 

  The Ozma implementation uses the Oz virtual machine (Mozart) 
  It’s a complete implementation of Scala on a new VM that’s not the 

JVM or .NET, so you can see it as a new implementation of Scala 
  It’s not interoperable with Java, though.  The Mozart VM was used 

because of its support for fine-grain threads, dataflow, and failed values. 

  We are thinking about the future of Ozma.  Would you be interested 
in a supported version?  Should we join the Scala community and 
work on Scala’s concurrency model?  Or should we join the Java 
community and work on the JVM (like Flow Java did)? 
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Generalizing dataflow for 
distribution and fault tolerance 
  Language support for distributed programming in Oz 

  Network transparency: a program executed over several nodes 
gives the same result as if it were executed on a single node, 
provided network delays are ignored and no failure occurs 
  Exact same source code is run independent of distribution structure 

  Network awareness: a program can predict and control its physical 
distribution and network behavior  

  Fully implemented in Oz (Mozart 1.4.0) 

  Modular fault tolerance in Oz using fault streams 
  Exceptions and RMI: synchronous, not modular, requires changing 

code at each possible distribution point 

  Fault streams on language entities: asynchronous, modular, just 
add new code with no changes to existing code  
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Thanks for your attention! 

  Ozma was developed as part of our research in 
programming languages and distributed computing 

  We are currently hiring new Ph.D. candidates! 

  Doctoral fellowships available in Distributed Computing 
  Erasmus Mundus program: see www.emjd-dc.eu 
  Salary + benefits (medical insurance) 
  Application deadline Jan. 23, 2012 
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