
Over the past few years a number of
new applications have appeared on
the market that take advantage of the
sheer scale of the internet: these
include (among others) file-sharing,
collaboration, social networks, role-
playing games and vendors. However,
ensuring that these applications are
robust enough to meet the needs of
users is a tough challenge, a challenge
that nevertheless is being made ever
more pressing by the inadequacies of
current solutions. As things stand,
keeping the kinds of applications
alluded to above up and running
requires the full attention of a team
of specialists, and even then they
often still have problems! Who
amongst us has not seen a website
crash because it has been ‘slashdotted’
or ‘dugg?’ Who has not seen
applications break because of a
missing plug-in or a network problem?
These problems cause great frustration
and no little inconvenience for users,
who are often deprived of the ability
to perform what can be essential work
functions. The severity of the problem
demands that it be addressed.

We at the SELFMAN project, an
IST project launched in June 2006 to
build self-managing applications on
the internet based on peer-to-peer
technology, aim to build internet
applications that don’t break and that
don’t need a team of specialists to keep
them running. How can we do this? We
take inspiration from the real world,
from where the lesson is clear: things
that take care of themselves are reliable
and robust. This means that we need to

make sure the applications are capable
of self-managing. They should be able
to reconfigure themselves so that they
are capable of running as their users
require regardless of the circumstances,
even when their environment or their
requirements change.

In order to build self-managing
applications the SELFMAN project
starts with systems that have already
solved the problem! These are the so-

called structured overlay networks,
which are the latest descendants of
peer-to-peer technology. Peer-to-peer
systems became popular with Napster
(even though, with its centralised
directory, it was not really a peer-to-
peer technology), followed by systems
like Gnutella, Kazaa, Morpheus, Freenet,
and many others. In these systems all
nodes are ‘peers’: they can all play the
same roles. If a node crashes then the

With distributed systems growing larger and more complex it is becoming increasingly clear that the
task of managing them is beyond conventional technologies. Self-managing applications for the internet
provide an effective, efficient and reliable solution, says Peter Van Roy of the SELFMAN project

eStrategies | Projects www.britishpublishers.com66 67

others take over and continue. Structured
overlay networks are the latest and
most advanced descendants of this
idea: they provide guaranteed, efficient
communication between their nodes as
well as guaranteed lookup of data.

Structured overlay networks have
been developed as a direct result
of academic research. Our role at
the SELFMAN project is to ensure
that they can be of practical use in
industrial applications. We are fixing
the minor missing elements and are

building a transaction service on top
of them, while we have also made the
overlay networks robust in the face of
a critically important problem, namely
network partitioning. When a network
partitions – maybe, for example,
because a router has gone down or a

cable is cut – our networks continue to
survive as separate overlay networks.
When the connection returns, our
separate networks merge together
again automatically.

With these considerations firmly in mind
SELFMAN is looking at three applications:

• A machine-to-machine messaging
application (defined by France
Telecom). This application creates
a large ad-hoc network so as to

enable the reliable transmission of
messages across the world. If nodes
go down or new nodes appear then
the application has to keep working
reliably and transparently.

• A distributed Wiki (as defined by
the Zuse Institute in Berlin). Wikis

are one of the world’s most popular
collaborative tools as they let a group
of people create and organise large
documents. However, when a Wiki
has too many users performance
suffers. We have built a Wiki over
a structured overlay network using
our transaction system for updates.
This greatly improves performance
and scalability. The distributed Wiki
won first prize in the first IEEE
International Scalable Computing
Challenge (SCALE 2008).

• A video streaming application
(defined by Peerialism AB). We want
to distribute video on demand to large
numbers of customers and to be able
to guarantee quality of service on the
internet. Customers come and go on
a regular basis, sometimes they look
at the same movies and sometimes
they don’t. In order to manage all
these video streams we need to
engage in dynamic reconfiguration.
The video streaming application will
soon be available as a product by
Peerialism AB.

In order to build these applications
we have implemented a transaction
system on top of a structured overlay
network. This is challenging because of
the high rate of ‘churn’, that is, the high
rate of nodes that leave, crash, or join,
while the routing tables and storage

A self-managing
peer-to-peer network

Example of feedback loop architecture: Human respiratory system (Figure 2)

Crashes are particularly difficult on the internet because
we cannot know for sure whether a node is really down
or if it is just a communications problem. In response
our solution uses a majority algorithm: we maintain
several copies of the data, and the transaction can then
commit if a majority of these copies are running

Feedback loops (Figure 2)

Self-managing systems react
and adapt to changes in their
environment. This behaviour is an
example of a feedback loop that
continuously monitors a parameter,
calculates a response, and updates
the system. A self-managing system
contains many interacting feedback
loops. For example, the figure shows
the human respiratory system as
four interacting feedback loops. This
figure explains why choking is a
normal defensive reaction (called
‘laryngospasm’) and why trained
athletes can fall unconscious while
holding their breath. A structured
overlay network contains many
interacting feedback loops. Within the
SELFMAN project we are exploring
how to program such a system to
understand and predict its behaviour.

A self-managing peer-to-peer network (Figure 1)

Over the past few years a number of
new applications have appeared on
the market that take advantage of the
sheer scale of the internet: these
include (among others) file-sharing,
collaboration, social networks, role-
playing games and vendors. However,
ensuring that these applications are
robust enough to meet the needs of
users is a tough challenge, a challenge
that nevertheless is being made ever
more pressing by the inadequacies of
current solutions. As things stand,
keeping the kinds of applications
alluded to above up and running
requires the full attention of a team
of specialists, and even then they
often still have problems! Who
amongst us has not seen a website
crash because it has been ‘slashdotted’
or ‘dugg?’ Who has not seen
applications break because of a
missing plug-in or a network problem?
These problems cause great frustration
and no little inconvenience for users,
who are often deprived of the ability
to perform what can be essential work
functions. The severity of the problem
demands that it be addressed.

We at the SELFMAN project, an
IST project launched in June 2006 to
build self-managing applications on
the internet based on peer-to-peer
technology, aim to build internet
applications that don’t break and that
don’t need a team of specialists to keep
them running. How can we do this? We
take inspiration from the real world,
from where the lesson is clear: things
that take care of themselves are reliable
and robust. This means that we need to

make sure the applications are capable
of self-managing. They should be able
to reconfigure themselves so that they
are capable of running as their users
require regardless of the circumstances,
even when their environment or their
requirements change.

In order to build self-managing
applications the SELFMAN project
starts with systems that have already
solved the problem! These are the so-

called structured overlay networks,
which are the latest descendants of
peer-to-peer technology. Peer-to-peer
systems became popular with Napster
(even though, with its centralised
directory, it was not really a peer-to-
peer technology), followed by systems
like Gnutella, Kazaa, Morpheus, Freenet,
and many others. In these systems all
nodes are ‘peers’: they can all play the
same roles. If a node crashes then the

With distributed systems growing larger and more complex it is becoming increasingly clear that the
task of managing them is beyond conventional technologies. Self-managing applications for the internet
provide an effective, efficient and reliable solution, says Peter Van Roy of the SELFMAN project

eStrategies | Projects www.britishpublishers.com66 67

others take over and continue. Structured
overlay networks are the latest and
most advanced descendants of this
idea: they provide guaranteed, efficient
communication between their nodes as
well as guaranteed lookup of data.

Structured overlay networks have
been developed as a direct result
of academic research. Our role at
the SELFMAN project is to ensure
that they can be of practical use in
industrial applications. We are fixing
the minor missing elements and are

building a transaction service on top
of them, while we have also made the
overlay networks robust in the face of
a critically important problem, namely
network partitioning. When a network
partitions – maybe, for example,
because a router has gone down or a

cable is cut – our networks continue to
survive as separate overlay networks.
When the connection returns, our
separate networks merge together
again automatically.

With these considerations firmly in mind
SELFMAN is looking at three applications:

• A machine-to-machine messaging
application (defined by France
Telecom). This application creates
a large ad-hoc network so as to

enable the reliable transmission of
messages across the world. If nodes
go down or new nodes appear then
the application has to keep working
reliably and transparently.

• A distributed Wiki (as defined by
the Zuse Institute in Berlin). Wikis

are one of the world’s most popular
collaborative tools as they let a group
of people create and organise large
documents. However, when a Wiki
has too many users performance
suffers. We have built a Wiki over
a structured overlay network using
our transaction system for updates.
This greatly improves performance
and scalability. The distributed Wiki
won first prize in the first IEEE
International Scalable Computing
Challenge (SCALE 2008).

• A video streaming application
(defined by Peerialism AB). We want
to distribute video on demand to large
numbers of customers and to be able
to guarantee quality of service on the
internet. Customers come and go on
a regular basis, sometimes they look
at the same movies and sometimes
they don’t. In order to manage all
these video streams we need to
engage in dynamic reconfiguration.
The video streaming application will
soon be available as a product by
Peerialism AB.

In order to build these applications
we have implemented a transaction
system on top of a structured overlay
network. This is challenging because of
the high rate of ‘churn’, that is, the high
rate of nodes that leave, crash, or join,
while the routing tables and storage

A self-managing
peer-to-peer network

Example of feedback loop architecture: Human respiratory system (Figure 2)

Crashes are particularly difficult on the internet because
we cannot know for sure whether a node is really down
or if it is just a communications problem. In response
our solution uses a majority algorithm: we maintain
several copies of the data, and the transaction can then
commit if a majority of these copies are running

Feedback loops (Figure 2)

Self-managing systems react
and adapt to changes in their
environment. This behaviour is an
example of a feedback loop that
continuously monitors a parameter,
calculates a response, and updates
the system. A self-managing system
contains many interacting feedback
loops. For example, the figure shows
the human respiratory system as
four interacting feedback loops. This
figure explains why choking is a
normal defensive reaction (called
‘laryngospasm’) and why trained
athletes can fall unconscious while
holding their breath. A structured
overlay network contains many
interacting feedback loops. Within the
SELFMAN project we are exploring
how to program such a system to
understand and predict its behaviour.

A self-managing peer-to-peer network (Figure 1)

www.britishpublishers.com 00

self-organise to follow the churn.
Crashes are particularly difficult on the
internet because we cannot know for
sure whether a node is really down or if
it is just a communications problem. In
response our solution uses a majority
algorithm: we maintain several copies
of the data, and the transaction can
then commit if a majority of these
copies are running. If the transaction
manager node is suspected of failing
then the algorithm picks another one
transparently. This works even if the
manager node has not really failed.
This algorithm is based on a modified
version of the PAXOS uniform
consensus algorithm (Figure 3).

The SELFMAN project is entering
its third and final year and we are
committed to building on the advances
we have made. We have already built
a structured overlay network that can
survive network partitions and that
will merge when the network comes
back together, as well as a transaction
algorithm capable of handling the
hostile internet environment. In the last
year of the project we will be building
our target applications using the overlay
network and its transaction algorithm.
We will also make our software
available through open source and
other licensing agreements, a key step
towards entering a new era of robust,
self-managing internet applications.� ★

At a glance

Full Project Title
SELFMAN: Self Management for Large-Scale
Distributed Systems based on Structured
Overlay Networks and Components
European sixth framework programme,
IST Research in Software Technologies

Project Partners
Université catholique de Louvain
(UCL), Belgium
Royal Institute of Technology (KTH),
Sweden
Institut National de Recherche en
Informatique et Automatique (INRIA),
France
France Télécom Research and
Development, France
Konrad-Zuse-Zentrum für
Informationstechnik Berlin (ZIB),
Germany
Peerialism AB, Sweden
National University of Singapore
(NUS), Singapore

Contact Details
Peter Van Roy,
Université catholique de Louvain,
2 Place Sainte Barbe,
B-1348 Louvain-La-Neuve, Belgium
E: peter.vanroy@uclouvain.be
T: +32 485 42 46 77

Further Information
www.ist-selfman.org
cordis.europa.eu/ist/st/

Project Coordinator
Peter Van Roy

Peter Van Roy is a professor
in the Department of Computing
Science and Engineering at the
Université catholique de Louvain.
Current research interests include
self-managing systems and
programming paradigms.

eStrategies | Projects 68

Software components (Figure 3)

All distributed systems, and
especially self-managing systems,
consist of many different parts
that react in complex ways. For
example, there are communication
protocols (TCP, broadcast),
gossip protocols, consensus
protocols, and failure detectors.
In order to make programming
all these protocols and their
interactions as easy and painless
as possible, we program them as
components. For example, the
figure shows a uniform consensus
component that uses a best-
effort broadcast component, an
abortable consensus component,
and an eventual leader detection
component. We at the SELFMAN
project have defined a component
model and implemented it in
Java. All the distributed protocols
are components that react to
events. They are concurrent,
compositional, and dynamically
reconfigurable. As a bonus, the
model is able to exploit multi-core
architectures with no extra effort��.
The model is used by Peerialism
for its video streaming application.

Peter Van Roy

T H E A D V E N T U R E S O F

Example of software components: PAXOS uniform consensus algorithm (Figure 3)

