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Three Laws of Scalability 
  The First Law: 

  New things happen at each new scale 
  Suggests a path toward future Internet structure 
  Emergence of elastic computing and Heisenberg applications 

  The Second Law: 
  In the limit of increasing scale, large systems have only local control 
  Implies concurrency, asynchrony, and nondeterminism 

  The Third Law (The CAP Theorem): 
  Pick any two of consistency, availability, and partition tolerance 
  Gives a map for navigating in the design space of scalability 

  Designing for scalability 
  Mostly independent parts with carefully designed interactions 
  Weakly interacting feedback structures, complex components, and phases 
  Some scalable computing systems: Scalaris and Beernet 
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The Three Major Distribution 
Structures 
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1. Client/server 
(distributed) 

2. Peer-to-peer 
(distributed,scalable) 

3. Cloud 
(distributed,scalable,elastic) 

Elasticity: the ability to ramp resource usage up 
and down according to instantaneous demand 
Elasticity opens up the new world of Heisenberg 
applications that we are just starting to exploit 
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What is Scalability? 
  A system is scalable if it is able to handle growing amounts of work 

in an acceptable manner (adapted from Wikipedia) 
  Desired system properties (such as performance) are “acceptable” 

functions of system size n 
  We consider systems that consist of n equivalent nodes connected 

through a communication network 
  Ideally, performance (number of operations / second) p(n) = O(n), where 

n increases as work increases 
  May not be achievable because of an inherent bottleneck: nodes need to 

communicate and each message needs to choose its destination, which 
introduces a logarithmic factor log(n) per message 

  For many useful tasks, with proper design there are few messages, 
they have small delay, and they are rarely on the critical path, so 
O(n) is often achievable 
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What is Elasticity? 
(The Mind of Palador) 
  “Last came one of the strange beings from the system of Palador.  It was nameless, like all its 

kind, for it possessed no identity of its own, being merely a mobile but still dependent cell in 
the consciousness of its race.  Though it and its fellows had long been scattered over the 
galaxy in the exploration of countless worlds, some unknown link still bound them together as 
inexorably as the living cells in a human body.” 

  “In moments of crisis, the single units comprising the Paladorian mind could link together in 
an organization no less close than that of any physical brain.  At such moments they formed an 
intellect more powerful than any other in the Universe.  All ordinary problems could be solved 
by a few hundred or thousand units.  Very rarely, millions would be needed, and on two 
historic occasions the billions of cells of the entire Paladorian consciousness had been welded 
together to deal with emergencies that threatened the race.  The mind of Palador was one of 
the greatest mental resources of the Universe; its full force was seldom required, but the 
knowledge that it was available was supremely comforting to other races.” 

  From the short story “Rescue Party” by Sir Arthur C. Clarke.  First published in Astounding 
Science Fiction in May 1946.  Written in March 1945 while Clarke was in the Royal Air Force.  It is 
the first story that Clarke sold.  Many of the themes in this story recur in Clarke’s later work. 
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Peer-to-Peer Versus Cloud 

  Both P2P and cloud computing are 
scalable, but there is a fundamental 
difference between them 

  Suppose Skype would like to add real-
time language translation ability to its 
phone connections 
  Skype is based on a dynamic peer-to-

peer architecture 
  Real-time language translation needs 

elasticity: huge resources (data and 
computation), but just for the person 
calling 

  It can’t be done on Skype’s own P2P 
architecture because it’s not elastic 
  The resources are just not there 
  It needs to be hosted on a cloud, as an 

extension of the P2P structure 
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Simple example of Skype P2P routing 
Nodes involved in 3-way conference call 
(FX1, GVI inside NUS, RR outside NUS) 
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The “Next Internet Revolution” 

1970 1980 1990 2000 2010 

Internet abstraction level 

 TCP/IP 

 Email & Usenet 

 Web & Search 

 Social Networking & Commerce 

 “Heisenberg Applications” 

2020 

  The Internet has gone through 
four revolutions since its 
inception 
  Each revolution takes about 

ten years to be internalized 
  Old timers like me saw many of 

them (I started using it in 1983) 
  We are now on the brink of a 

fifth revolution fueled by 
elasticity and based on a 
combination of cloud computing 
and data-intensive algorithms 
  Applications that use massive 

resources in short bursts, at a 
constant cost 

Year 
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The First Law 
(Novelty at Each Scale) 

© 2010 Peter Van Roy 

8 



The First Law of Scalability 
  At each new scale, the situation changes… 

 Sam Spade: “Ten thousand?  We were talking about a lot more money than this.” 
Kasper Gutman: “Yes, sir, we were, but this is genuine coin of the realm. With a 
dollar of this, you can buy ten dollars of talk.” 
– The Maltese Falcon 

  It’s like physics: at each higher energy level, new physics appears 
  No problem is ever solved for all scales (despite claims to the contrary) 

  It’s a basic law of scalability that even physics cannot get around 
  In large systems, we see this every day 

  Not just computing systems, but any kind of system that can get big, e.g., 
organizations, skyscrapers, etc., needs new ideas at each level of scale 

  Biological systems take the lead in complexity and the more we look 
the more we find (e.g., see [Michal 1999] Atlas of Biochemical Pathways) 

  Computing systems take the lead for man-made systems 

  Let’s see what happens when we scale up… 

© 2010 Peter Van Roy 
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New Scales and New Worlds 
  This diagram is adapted 

from [Weinberg 1975] An 
Introduction to General 
Systems Thinking 

  The disciplines of 
computing (invention) and 
biology (discovery) are 
pushing the boundaries of 
the two shaded areas 
inwards 

  We are barely starting to 
investigate the surprising 
and novel phenomena in 
the white area 

Simulation 
Collective organic behavior 

Algorithms 
Organisms 
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Alps Viewed From Space 

  This amazing 
sight was never 
seen by humans 
until spaceflight 
was invented 

  But it has always 
existed! 
  Nature obeys 

the First Law 
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  Energy is a basic 
component of the 
universe 

  Energy obeys 
conservation and 
linear superposition 
properties 

  We observe 100 
orders of magnitude 
in energy levels 
  From a stationary 

photon to the total 
output of the universe 
since creation 

  Something new and 
interesting happens 
at every energy level 
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Scalability in Nature 

12 
Diagram 
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Nazca Figures 
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  Humans strive to obey the First Law too 
  These giant figures can only be seen from the sky: intended for the gods? 
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Striving for the First Law 

  Successful complex structures built by 
humans are successful precisely because 
they obey the essential laws of complexity 

  It is therefore worthwhile to try to 
understand them in a scientific way 

© 2010 Peter Van Roy 
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Scalability and Transparent  
Distribution (A Personal Experience) 

  Goal: make the accidental complexity of distributed programming disappear, 
leaving only the essential complexity 

  Achieved by the Mozart system in 1999 (www.mozart-oz.org) 
  But the First Law is not so easily vanquished: beyond ~10 machines, the 

application structure needs to change!  

© 2010 Peter Van Roy 

1 pipe, 3 clients, 2 servers 
on six machines 

Same code with another 
distribution structure 

Same on one machine 
(during development) 
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Scalability in Programming 
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101 103 105 107 109 ? LOC 
Year 1950 1960 1970 1980 1990 2000 

? 
2010 

Data becomes dominant 
Heisenberg applications 

Computer science changes deeply 
at each next level 

Going higher in each level means 
building the rudiments of the next 
level (e.g., a 100,000 line assembly 
program, such as IBM Prolog in 
1990, must be structured!) 

(*) All dates are approximate 

Program complexity timeline (*) 

1940 
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A Glimpse of the Future… 
  Today’s Internet… 

  Internet ≈ 800,000,000 hosts (2010, www.isc.org); 
biggest cloud ≈ 1,000,000 hosts (2010, Google) 

  Even the biggest clouds cannot meet the demand 
  Organizations will build clouds of different sizes 

  All clouds will be elastic, limited only by their size 
  Pressure to increase elasticity will cause them 

to federate (peer-to-peer clouds) 

  The future Internet will consist only of clouds 
  The word “cloud” will cease to have special meaning 
  Virtualization and elasticity will be omnipresent 

  It will be elastic, data-dominant, and self-learning 
  Elasticity will be used at all scales 
  Programs will use learning to improve themselves 
  Typical example: real-time audio language translation 

© 2010 Peter Van Roy 
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Elastic Computing and 
Heisenberg Applications 

© 2010 Peter Van Roy 
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Elastic Computing 
  Two main infrastructures for scalable computing 

  Peer-to-peer: use of client machines (my current expertise) 
  Cloud-based: use of datacenters (my future research) 

  Cloud is elastic; peer-to-peer is not 
  Elasticity: the ability to scale resource usage up and down 

rapidly according to instantaneous demand 
  Elasticity is a new property that did not exist before clouds 

  Elasticity makes possible Heisenberg applications 
  Applications that use enormous computational and storage 

resources for short times, but at constant (low) cost 
  A new kind of application that did not exist before clouds 

© 2010 Peter Van Roy 
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Computational Heisenberg 
Principle (1) 
  A cloud has two key properties: 

  Pay per use: pay only for the resources actually used 
  Elasticity: ability to scale resource usage up (and down) rapidly 

  For a fixed cost, as the time interval decreases more resources 
can be made available: 

  For a given maximum cost, the product of resource amount 
and usage time is less than a constant 

  Analogy with Heisenberg’s Uncertainty Principle in physics: the product of 
uncertainty in time and uncertainty in energy is equal to (or greater than) a 
constant.  This increases the probability of events that use arbitrarily high 
energies if the time period is short enough.  As long as the high energies are 
less than the uncertainty, then they are allowed! 
  This is a property of the system itself, not a limitation of measurement! 
  ∆t⋅∆E = c and tallow≤∆t and Eallow≤∆E implies tallow⋅Eallow ≤ c 

  This opens the door to new applications that could not be done before 
© 2010 Peter Van Roy 
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Computational Heisenberg 
Principle (2) 

  For given fixed resource cost 
c0, what kinds of applications 
can run? 

  Before clouds: all applications 
lived in light blue area which 
gives local resources for 
maximum cost c0 (r ≤ r0) 

  With clouds: dark blue area 
becomes available for the 
same cost (r > r0) 

  The dark blue area is the home 
of Heisenberg applications 
  Like a data-intensive application 

combined with machine learning 
techniques 

Time interval	



Available resources	



t0	



r0	



Local resources for cost c0	



c0	



Cloud resources for cost c0	
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t ⋅ r ≤ c0 
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A Heisenberg Application (1): 
Real-Time Voice Translation 
  The pieces of this application already exist; for example the IRCAM 

research institute has implemented many of them 
  It requires combining domain knowledge (in sound and language) 

with an enormous sound fragment database, hosted on a cloud 

Normalization to 
canonical voice 

Decomposition 
into phoneme 

sequences 
Lookup in 

sound database 

English/Chinese 
sound fragment 

database 

Concatenative 
synthesis 

Denormalization 
to original voice 

English 
voice 

Chinese 
voice 

(purely hypothetical design!) 

  Performance will be gradually improved through feedback from 
bilingual speakers and speech recognition technology 

  Franz Och, head of translation services at Google, announced 
recently that they are working on something similar (Feb. 10, 2010) 
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A Heisenberg Application (2): 
Ubiquitous Augmentation 
  Your sensory input will be “augmented” in real-time 

  Faces, objects, and names you see will be recognized 
  Selected relevant information will be given spontaneously 
  Foreign languages (text, audio, visual) will be translated 
  When doing an activity, you will be guided to do it expertly 
  When confronted with a problem, solutions will be suggested 

  The augmentation will be good enough that it can be 
always enabled (it doesn’t get in your way) 
  It will learn to mesh with your thinking processes productively 
  On the rare occasions that it is disabled, you will feel helpless 

  As if half of your brain just stopped working 
  Like today’s Internet addictions, but much worse! 

© 2010 Peter Van Roy 
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The Second Law 
(Only Local Control) 

© 2010 Peter Van Roy 
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The Second Law 
  In the limit of increasing scale, large systems 

have only local control 
  The system is concurrent and nondeterministic 

by default 
  Messages can take arbitrary time to arrive 

(asynchrony) and failures are hard to detect 
  Global control must be programmed and it can 

be very expensive or impossible 
  Sometimes global control is just impossible 

  In a purely asynchronous system, consensus 
is impossible to achieve even if just one 
process can crash [FLP 1985] 

  Consensus can be achieved by adding 
synchrony or randomness, both of which may 
be too drastic 

  But not all is bad news 
  Failures are local too 
  Some global control is possible, but less and 

less as the scale increases 
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 A typical large system 
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The Internet is Treacherous 
As the Sea 

  Asynchronous system: messages take arbitrary (but finite) time 
  Synchronous system: messages take fixed maximum time 
  What about the Internet? 

  It starts out asynchronous (stormy) but eventually becomes synchronous (calm) 
  But we don’t know how long this will take or what the message delays are! 

© 2010 Peter Van Roy 

Clipper Heavy storms at sea 
(clipper’s goal: don’t sink!) 

Sea calms down 
(clipper reaches shore) 

Any application 
or algorithm 

Asynchrony: many failure suspicions 
(algorithm’s goal: don’t crash!)  

Synchrony: known delays 
(algorithm does its job) 
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Coping with Asynchrony 
  The perennial dilemma 

  Asynchrony is natural and has higher performance 
  Synchrony is easier to use (each operation is finished before the next) 

  Two extremes  
  Extreme 1: Push the asynchrony into the lower layers (e.g., libraries) for 

performance, and keep the user layers synchronous 
  Extreme 2: Rewire the user’s brain to adjust to asynchrony (e.g., use 

notifications and keep work state external to user’s brain) 
  Only works up to a point, because asynchrony is fundamentally harder for 

human conscious since it needs many context switches 
  Compromise: Use asynchrony by default and insert synchronous 

operations occasionally to simplify the system 
  Let us see how this works out in a real system… 

© 2010 Peter Van Roy 
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The Right Way 
and the Wrong Way 

  A heresy: object-oriented programming is irrelevant for the Internet! 
  Important: isolation, concurrency, asynchronous messages, higher-order programming 
  Unimportant: inheritance, classes, methods, UML diagrams, monitors 

© 2010 Peter Van Roy 

 Ericsson AXD 301 ATM 
Switch: >1 million lines 
of Erlang 

 Erlang: Concurrent and 
independent by 
default, asynchronous 
messages, multi-agent 
programs 

 Java: Sequential and 
monolithic by default, 
synchronous RMI, 
shared-data programs 
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Nondeterminism 
  The system makes choices 

  The user has almost no influence on 
these choices (message arrivals, 
process scheduling)  

  The choices may or may not affect 
the results 

  Good nondeterminism: choice 
does not affect result (benign) 
  Choose path (to same destination) 
  Choose order of independent 

operations (client A or client B) 

  Evil nondeterminism: choice 
affects result (race condition) 
  Choose destination 
  Choose order of dependent 

operations (credit or debit) 

© 2010 Peter Van Roy 
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Concurrency 

© 2010 Peter Van Roy 

HW/SW 
boundary 

Concurrent 
programming 
(software, 
independence) 

Parallel 
programming 
(hardware, 
speed) 

 Coexistent 
programming 

(systems as 
collections of 

separate parts) 

Concurrent components 
or “agents” or “services” 

Parallel processors 
or “cores” 

FPGA 
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“Mostly” Independent Parts 
  Large systems consist of mostly independent parts 

  Gas in a box: molecules mostly independent, occasional 
interaction when two molecules collide. 

  Peer-to-peer network: peers mostly independent, occasional 
interaction between neighbors only.  Can provide efficient and 
robust communication and storage infrastructure (see later). 

  Gossip algorithm: nodes mostly independent, occasional 
interaction between random pairs. Can efficiently solve many 
global problems such as diffusion, search, aggregation, 
monitoring, and topology management. 

  Swarm intelligence: collaborative behavior among large 
numbers of simple agents (e.g., flocking and swarming).  
Each agent interacts with only a small number of neighbors. 
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Gossip Algorithm: 
Topology Management 

  The T-Man algorithm does topology management using a gossip algorithm 
  Each node periodically picks a random node and exchanges information with it 
  Each node has a ranking function that knows what distances nodes are supposed 

to have in the desired topology (i.e., a torus emerging from a random graph) 
  The topology emerges in a few cycles (one cycle = one update per node) 
  The algorithm is efficient, extremely robust, and can track changes 

© 2010 Peter Van Roy 
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The Third Law 
(The CAP Theorem) 

© 2010 Peter Van Roy 
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The Third Law 
  The CAP theorem was conjectured by Eric Brewer at PODC 

in 2000 and proved by Seth Gilbert and Nancy Lynch in 2002 
  For an asynchronous network, it is impossible to implement 

an object that guarantees the following properties in all fair 
executions: 
  Consistency: all operations are atomic (totally ordered) 
  Availability: every request eventually returns a result 
  Partition tolerance: any messages may be lost 

  The CAP Theorem applies for all systems, at all levels of 
abstraction, and at all sizes 
  It can be applied in many places in the same system 
  The whole system is a rainbow of interacting instances of CAP 

© 2010 Peter Van Roy 

35 



The CAP Triangle 

  The CAP space hugs the 
edges of the triangle 
  Cost increases toward 

the center 
  The center itself is empty! 

  All parts of the CAP space 
have their uses 

  We have arranged some 
applications around the 
triangle according to 
perceived functionality 
  Very little systematic study 

has been done about 
navigating in this triangle 

C+A 

C+P A+P C A 

P 

A C 

P 

Trade-off Trade-off 

Trade-off 

(Web cache) 

Mercurial 

(BitTorrent) 
(PeerTV) 

(DropBox) 
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(Wuala) 

(…) = read-only 

Search 

Cost 
increases 

∞	



Key-value 
stores 

Distr. DB 
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Designing with CAP 
  C is hard to achieve (Second Law) →   (P+A, no C) is the default 

  Consistency requires global coordination 

  Avoid needing C if possible 
  We can achieve robustness (P) and performance (A) 

  DropBox and Web cache give P and A, but not C 
  Wuala and BitTorrent are read-only, achieve C easily 
  Mercurial is consistent if connected (C+A), but is still usable if disconnected (P+A) 

  But if we really need C 
  Give up A → Waiting sometimes needed 
  Give up P → Fragile system 

  Distributed database guarantees C but will block if there is a partition  

  We can have our cake and eat it too, if we pay the price 
  Highly reliable communication channels and fault tolerance 
  We get C and A, and we “seem” to get P as well (actually, we just have less partitions) 

  Scalaris, Beernet: peer-to-peer with majority consensus (Paxos) gives robustness 
  Cassandra: run on cloud, not peer-to-peer (does not support loose coupling) 

© 2010 Peter Van Roy 
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Designing for 
Scalability 

© 2010 Peter Van Roy 
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Design Rules for Scalability? 
  How can we learn how to build scalable systems? 

  The First Law says new ideas are needed as the system grows 
  But finding new ideas requires blood, sweat, and tears 

  Short-cut: study existing systems that work 
  Biological systems have already treaded this path and are 

suitably huge (see [Michal 1999] Atlas of Biochemical Pathways) 
  Some computing systems have treaded this path as well, 

especially Internet protocols and applications 

  Learn lessons from both kinds of systems 
  And maybe come up with some general principles? 

© 2010 Peter Van Roy 
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First Step: 
Decide on the Scale 
  Centralized systems are much easier to design than 

decentralized systems 
  But the degree of centralization that’s possible depends on the 

scale: larger scales support less centralization (Second Law) 
  LAN: centralized control 
  Internet: centralized address assignment, decentralized routing 
  Internet on the scale of the solar system 

  Decide on the desired scale, and introduce the maximum 
possible centralization that’s possible at that scale 
  Note that your design will not work for larger scales (First Law) 

© 2010 Peter Van Roy 
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Second Step: 
Add Consistency 

  Every scalable design starts as a decentralized system   (P+A, no C) 
  A coexistent system of independent pieces (Second & Third Laws) 

  Nodes occasionally interact (add some C) → collaboration, emergence 
  Split protocol: what happens when a node leaves a group (may be abrupt) 
  Merge protocol: what happens when a node joins a group 

  Merge is based on data coherence and may need input from highest level 
  Many examples: biology, peer-to-peer, map-reduce, gas/liquid/solid, … 

© 2010 Peter Van Roy 

split/merge 

 group 
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Third Step: 
General Design Principles  
  We start with a decentralized system (P+A, no C) 

  The problem: how much C do we need and how do we add it? 

  The rest of the talk explores how to add C 
  Human respiratory system (biology) 
  Decentralized transactional store (computing) 

  Scalaris and Beernet peer-to-peer structured overlay networks 
  More examples in the stub slides: TCP, hotel lobby, human 

endocrine system 

  These examples motivate general design principles 
  We present two: complex components and phase behavior 

  Main design principle: 
weakly interacting feedback structures  

© 2010 Peter Van Roy 
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Weakly Interacting Feedback 
Structures 
  Concurrent component 

  An active entity communicating with its neighbors through 
asynchronous messages (Second Law) 

  “Intelligence” concentrated in core components 
  Feedback loop 

  Monitor, corrector, and actuator components connected to 
a subsystem and continuously maintaining one local goal 

  Feedback structure 
  A set of feedback loops that work together to maintain 

one global system property 
  Weakly interacting feedback structures 

  The complete system is a conjunction of global 
properties, each maintained by one feedback structure 

  The feedback structures have dependencies based on 
the operating conditions (Third Law) 

© 2010 Peter Van Roy 
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Human Respiratory System 
and Complex Components 

© 2010 Peter Van Roy 
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Human Respiratory System 

  Default behavior: rhythmic breathing reflex 
  Complex component: conscious control can override and plan lifesaving actions 
  Abstraction: conscious control does not need to know details of breathing reflex 
  Fail-safe: conscious control can itself be overridden (falling unconscious)  
  Time scales: laryngospasm is a quick action that interrupts slower breathing reflex 

© 2010 Peter Van Roy 

Some design rules: 

The operation of the 
human respiratory 
system is given as one 
feedback structure, 
inferred from a precise 
medical description of 
its behavior 

45 



State Diagram 

  The human respiratory system can be seen as a state diagram 
  Dominant subset = active subset of feedback loops = state 

  At any time, one subset is active, depending on operating conditions 
  Each subset corresponds to a state in the state diagram 

© 2010 Peter Van Roy 
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Power is Built In, Not Added On 

  The power of a system depends on the strength of its complex components 
  The human respiratory system uses conscious control (e.g., to avoid drowning!) 
  Erlang OTP uses supervisor trees and a database to implement robustness 
  Scalaris uses Paxos consensus and replication to implement fast transactions 
  Google Search uses eigenvector calculation of the Web link matrix 
  What does your system use? 

© 2010 Peter Van Roy 

3.6-Liter Biturbo Motor 
with 353 kW (480 HP) 

Porsche Carrera GT 
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Some Complex Components 
  Human intelligence 

  Main strength: adaptability (dynamic 
creation of new feedback loops) 

  Program intelligence 
  Can easily go beyond human 

intelligence in many areas! 
  Turing test is irrelevant: complex 

components are already replacing 
humans in more and more areas 

  Minesweeper digital assistant: uses 
constraints (easy to program!) 

  Chess: uses alpha-beta search with 
heuristics 

  Compiler: translates human-
readable program into executable 
form 

© 2010 Peter Van Roy 
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More on Complex Components 
  Complex components completely solve a problem inside 

a specific (small) part of the space of system operating 
conditions (from the viewpoint of the rest of the system) 
  Conscious control, a chess program, and a compiler are 

extremely smart within their operating space 
  Outside of this space, they can be very stupid and should be 

inactive (on their own accord or forced) 

  Complex components are completely unpredictable 
when viewed from the outside 
  If it were not so, they would not be needed! 
  They can be highly nonlinear and unstable; the rest of the system 

has to trust them (up to some hardwired fail-safe) 
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How Come Conscious Control 
is So Smart? 
  Cognitive science and neurology try to understand why 

  The brain uses brute force, but in a very smart way 

  Conscious control is a bricklayer: it continuously builds and 
organizes new components on top of existing components 
  This process is continuous from birth with compound interest effect, 

which is why humans are so smart in common-sense tasks 

  It continuously brings the most useful concepts to the top 
(cache organization combined with “grandfather cell”) 
  Manipulating common concepts is made easy 

  “Mirror neurons”: it can use its own components to simulate other 
humans, which is why humans can empathize so well with others 

  It can efficiently execute up to two complex programs at once 
(“walking and chewing gum”), because of the two-lobed structure 
of the brain 
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Transactional Store 
and Phase Behavior 
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A Peer-to-Peer Key/
Value Store: Scalaris 

  Scalaris is a high-performance self-managing key/value store that provides 
transactions and is built on top of a structured overlay network 
  A major result of the European SELFMAN project (www.ist-selfman.org) 
  4000 read-modify-write transactions per second on two dual-core Intel Xeon at 2.66 GHz 

  Scalaris has five WIFS: connectivity management (Sconnect), routing (Sroute), load 
balancing (Sload), replica management (Sreplica), and transaction management (Strans) 

Sscalaris= Skey-value ∧ Sconnect ∧ Sroute ∧	



	

 Sload ∧ Sreplica ∧ Strans 
The Scalaris specification is a conjunction of 
six properties. Each non-functional property 
is implemented by one feedback structure. 

Sconnect → Sroute → Sreplica → Strans   
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Structured Overlay Networks 
Ring 

Fingers 

  Structured overlay networks 
are often based on a ring 
  By far the most popular structure, 

it has many variants and has 
been extensively studied 

  Self organization is done at 
two levels: 
  The ring ensures connectivity: it 

must always exist despite node 
joins, leaves, and failures 

  The fingers provide efficient 
routing: they can be temporarily 
in an inconsistent state 
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Structured Overlay Networks: 
Inspired by Peer-to-Peer 

  Hybrid (client/server) 
  Napster 

  Unstructured overlay 
  Gnutella, Kazaa, 

Morpheus, Freenet, … 
  Uses flooding 

  Structured overlay 
  Exponential network 
  DHT (Distributed Hash 

Table), e.g., Chord, DKS, 
Scalaris, Beernet, etc. 

R = N-1 (hub) 

R = 1 (others) 

H = 1 

R = ? (variable) 

H = 1…7 

(but no guarantee) 

R = log N 

H = log N 

(with guarantee) 
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A “Relaxed” Ring: 
Beernet 

  The relaxed ring is completely 
asynchronous 
  Join and leave are completely 

asynchronous 
  The bushes appear only if 

there are failure suspicions 
  Beernet implements the 

relaxed ring (SELFMAN) 
  There is a perfect ring (in red) 

as a subset of the relaxed ring 
  The relaxed ring is always 

converging to a perfect ring 
  The bushiness depends on 

churn (rate of change of the 
ring, leaves/joins) and failure 
suspicion rate (communication 
delays) 
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Phases in the Relaxed Ring 

  The relaxed ring has (at least) three phases 
  Uses ring merge algorithm developed in SELFMAN 
  We are studying how the ring reacts to external stress (phase transitions) 

  Key questions: 
  How do the phases show up at the application layer? (“qualitative changes”) 
  How do we know when we are near a phase transition? (“early bubbling”) 
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Phases in Large Systems 

  A phase is a concise 
characterization of an 
aggregate behavior in a 
system consisting of many 
interacting components 

  Phases appear in many 
large systems 
  Not just physical systems 

(water) but also computing 
systems (like peer-to-peer) 

© 2010 Peter Van Roy 

  Different parts of the system can be in different phases (no global synchronization!) 
    Depending on the local operating conditions (environment) 
    Boundaries between phases can be sharp or diffuse 
    Phase transitions and critical points can occur if operating conditions change 

Water phase diagram 
(Copyright © Martin Chaplin) 
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Conclusions and 
Prospects 
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Conclusions and Prospects 
  Laws of scalability 

  First Law: new phenomena appear at each scale 
  Second Law: as scale increases, systems have only local control 
  Third Law: pick two of consistency, availability, partition tolerance 

  Clouds are a key part of the next Internet revolution 
  Elasticity leads to Heisenberg applications 
  Demand will cause proliferation of federated clouds  

  Design for scalability: a research agenda 
  Weakly interacting feedback structures with dominant subsets 
  Complex components to solve the problem in limited conditions 
  Phases to define behavior over all possible operating conditions 
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The Structure of Elasticity 
  Elasticity of clouds has been compared to an electric grid 

  This is a reasonable comparison, but elasticity in clouds is 
more complex than in electric grids (for example, often the 
storage must survive since it is shared by many tasks) 

  Elasticity in clouds has two dimensions: 
computing/storage vs. unrelated/related 
  Elastic computing: often amortization between unrelated tasks 

  But computing can also involve related tasks (solution sharing) 

  Elastic storage: often amortization between related tasks 
  But storage can also involve unrelated tasks (temporary storage) 

  Elastic tasks are grouped depending on whether they are 
related or not 
  Storage tasks are related when they share storage 
  Computing tasks are related when they share solutions 
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Scalability Implies Long Life 
  A scalable system is not just large, it is also long-lived 
  Memory leaks 

  Memory leaks are hard to find in distributed systems because of remote 
references and failures.  There is no practical algorithm for true distributed 
garbage collection. 

  The best technique is still distributed reference counting, with time-lease 
references and program management of distributed cycles.  This crosses all 
abstraction layers. 

  Partial failures 
  Failures of parts of the system are frequent and can be fixed by redundancy 

  Software rejuvenation 
  Periodically restart the system with a valid state recovered from the previous 

incarnation.  This solves both memory leaks and partial failures. 
  Used by biological systems for eons: it’s why we are not immortal.  A fertilized egg 

is a newly initialized process.  The older we get, the more defects accumulate. 
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Scalability and Concurrency 
  The Second Law implies concurrency (independence) by default 
  Concurrency and parallelism are often confused, so let us define their 

common core, “coexistence” 
  Concurrent = consisting of logically independent parts (programming concept) 
  Parallel = executing on separate processors (hardware concept) 
  Coexistent = “existing together” (dictionary definition) 

  Coexistent design: the discipline of building systems as collections of separate parts (at 
all levels, including hardware and software) 

  Concurrency has always existed in computing 
  All programs can be decomposed into almost-independent parts 

  Parallelism was a fringe area until recently 
  Multicore processors since 2001 (IBM POWER4 dual-core) 
  Distributed programming mostly client/server until 1990s 

  Now parallelism is mainstream and concurrency is embracing it 
  For multicore: add dataflow ideas to programming languages (sociological!) 
  For Internet: techniques from distributed algorithmics (still very technical) 
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Scalability in Dynamics 

  From [Strogatz 1994] Nonlinear Dynamics and Chaos 
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Dim 
1 2 ≥3 >>1 continuum 

Linear 

Nonlinear 

Growth, decay, 
and equilibrium Oscillations 

RC circuit 
Radioactive Decay 

RLC circuit 
Mass + spring 

2-body problem 

Fixed points 
Bifurcations 
Hysteresis 

Limit cycles 
Pendulum 

Predator-prey 
Biol. oscillators 

Collective 
phenomena 

Lasers 
Neural nets 

Immune system 
Economics 

Ecosystems 

Civil eng. 
structures 
Electrical 

eng. circuits 

Solid-state physics 
Equilibrium 

stat. mechanics 
Molecular dynamics 

Solitons 
Earthquakes 
Fibrillation 
Epilepsy 

Turbulence 
Gen. relativity 

Life 

Maxwell 
Schrödinger 

Elasticity 
Wave equations 

Diffusion 

Waves and 
patterns 

Chaos 
Intermittency 

Strange attractors 
3-body problem 

Fractals 

Controlled chaos 

Here be dragons 
Nonlinearity 

67 



© 2010 Peter Van Roy 

Simple Forms of Concurrency are 
the Right Defaults 
1.  The simplest paradigms for concurrent programming are 

deterministic dataflow concurrency and message-passing 
concurrency 
  Compare the simplicity of Concurrent Programming in Erlang with the 

complexity of Concurrent Programming in Java 
  Deterministic concurrency is the key to simplifying concurrent 

programming.  All forms of deterministic concurrency are explained in 
[Van Roy 2009]. 

2.  The Erlang language and system is used successfully for building 
highly available systems; it uses message-passing concurrency with 
independent agents 

3.  The E language and system is used successfully for building secure 
distributed systems; it uses deterministic concurrency to avoid the 
covert channels of nondeterminism 
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Civilization Relies on 
Feedback Loops 
  Most products of human civilization use an implicit management 

feedback loop, called “maintenance”, done by a human 
  Changing lightbulbs, replacing broken windows, filling up a car 

  Each human mind is at the center of many such feedback loops 
  Most require very little conscious thinking, since they have become 

“habits”: programmed into the brain below consciousness 
  Each human being creates huge numbers of such habit programs 

  But if there are too many feedback loops to manage then the human 
complains that “life is too complicated”! 
  “Civilization advances by reducing the number of feedback loops that 

have to be explicitly managed” (Van Roy’s corollary to A. N. Whitehead’s 
dictum) 

  A dishwashing machine reduces work of washing dishes, but it needs to 
be bought, maintained, replaced, etc.  Is it worth it?  Is the total effort 
reduced? 
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Hotel Lobby Example 
(from [Wiener 1948]) 

  This is unstable! 
  The tribesman stokes the 

fire but gets colder and 
colder because the 
airconditioning works 
harder and harder 

  Wiener leaves the fix 
as homework for the 
reader 

  One possible solution: 
outer loop (tribesman) 
controls the other by 
simply adjusting the 
thermostat 
  One loop controls the 

other 

  Two loops interacting through a common subsystem (stigmergy) 
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Correct Solution Uses 
Management 

  Instead of stoking a fire, the tribesman simply adjusts 
the thermostat.  The resulting system is stable. 

  This uses management instead of stigmergy 
  Design pattern: use the system, don’t try to bypass it 
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TCP Feedback Structure 
  This example shows a 

reliable byte stream 
protocol with congestion 
control (a variant of TCP) 
  This diagram is for the 

sending side 
  The congestion control 

loop manages the 
reliable transfer loop 
  By changing the sliding 

window’s buffer size 
  With n connections there 

are n feedback 
structures interacting 
through a shared 
network (stigmergy) 
  This is an example of a 

system with n WIFS 
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PageRank in One Slide 
  Each Web page holds a quantity of stuff called its “importance” 
  At each step, the “importance” flows out along the outgoing links 

  And new stuff comes in through the incoming links 
  Not all flows out (damping factor d ≈ 0.85) since paths are not infinite 

  We iterate until the amount is the same for all pages 
  The final value gives an indication of how important a page is: a page is more 

important when there are more links from pages that are themselves important 
  This is a global fixpoint calculation: the PageRank values are the entries of 

the dominant eigenvector of the Web adjacency matrix with damping factor 

PageRank vector PageRank equation: multiply R by adjacency 
matrix and adjust with damping factor 

Normalized Web adjacency matrix 
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Hypothalamus-pituitary-target 
organ Axis (Endocrine System) 

  Two superimposed groups of negative feedback loops, a third short negative loop, a 
fourth loop from the central nervous system (from [Encyclopaedia Britannica 2005]) 

  This diagram shows only the main components and their interactions; there are many 
more parts giving a much more complex full system 
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Design Patterns 
for Feedback Structures 

  We can arrange feedback structures in a tree according to their 
relationships and the problems they solve 
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Archetype Family Tree 
(from [Senge 1994]) 
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What About 
Levels of Abstraction? 
  WIFS architecture seems to imply a single level, yet 

novelty is observed at all levels 
  How can we reconcile this with the First Law? 

  Solution: WIFS structure exists at all levels, 
organized according to Second and Third Laws 
(asynchrony and CAP) 

  For example, in a multicellular organism: 
  Single cell contains many WIFS, cells communicate 

following CAP constraints 
  Organs uses WIFS to maintain its operation  
  Complete organism uses WIFS to survive in its 

environment 
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More on the Relaxed Ring 
  False failure suspicions are common on the Internet 

  We do not want to eject the node from the ring when this happens 
  The relaxed ring solves this by doing ring maintenance in asynchronous 

fashion [Mejias 2008] 
  Nodes communicate through message passing 
  For a join, instead of one step involving 3 peers (as in Chord or DKS), we have 

two steps each with 2 peers → we do not need locking or a periodic 
stabilization algorithm 

  Invariant: Every peer is in the same ring as its successor 
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Nonlinearity 
  The world is a curious combination of linearity and nonlinearity 

  Linearity = independent parts = whole equals the sum of the parts 
  Nonlinearity = interacting parts = whole is more than the sum of the parts 

  Why are nonlinear systems so much harder to analyze quantitatively 
than linear ones? 
  Because in linear systems, the parts can be analyzed separately and then 

combined (superposition principle, compositional systems) 
  But there is a surprising twist: many nonlinear systems can be analyzed 

qualitatively (with a combination of geometrical reasoning and some analysis), 
which is often good enough 

  See [Strogatz 1994] Nonlinear Dynamics and Chaos  
  We need nonlinearity for “intelligent” behavior, but… 

  Too much nonlinearity makes the system fragile 

  That’s why biological systems are made of weakly interacting subsystems 
  What about nonlinearity and scalability? 

© 2010 Peter Van Roy 

78 



Nonlinearity and Scalability 
  Large systems must be mostly linear 

  Large systems consist of parts that can be superposed 
  Basic physical quantities are additive (mass, force, momentum, energy) 

  Because they can be superposed, the system is linear 
  They can’t be completely linear, though 

  Because we need nonlinearity for all nontrivial behavior 
  Interaction of two feedback structures is nonlinear 
  State change of a feedback structure is nonlinear 
  Complex components are nonlinear 

  Therefore we should add nonlinearity where needed but no more 
  Current computing systems are far too nonlinear and discontinuous 
  They should be mostly linear with a smidgen of nonlinearity  
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Degrees of Increasing 
Irregularity in a Large System 
1.  Existence of probability distribution 

  Statistical physics holds, all microstates have equal probability, behavior 
is thermodynamic (describable by macroscopic state variables) 

  Unfortunately, most simulations and models are stuck here! 
2.  Critical point 

  Minor fluctuations can be amplified without bounds 
  The limit of statistical physics 
  Many computing systems have critical points (garbage collectors, 

dynamic hash tables, wide-area routing, virtual memory) 
3.  No probability distribution exists (“Black Swans”) 

  We know only the range of behavior, frequency limits do not exist 
  Dijkstra’s guarded commands have this behavior 

  Complex systems, program verification, distributed algorithmics 
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