
Scale and Design for
Peer-to-Peer and Cloud

Modified version of talk given at TTI-Vanguard
conference « Matters of Scale » on July 20, 2010

Feb. 12, 2012

Peter Van Roy

ICTEAM Institute
Université catholique de Louvain

Louvain-la-Neuve, Belgium

© 2010 Peter Van Roy

1

Three Laws of Scalability
  The First Law:

  New things happen at each new scale
  Suggests a path toward future Internet structure
  Emergence of elastic computing and Heisenberg applications

  The Second Law:
  In the limit of increasing scale, large systems have only local control
  Implies concurrency, asynchrony, and nondeterminism

  The Third Law (The CAP Theorem):
  Pick any two of consistency, availability, and partition tolerance
  Gives a map for navigating in the design space of scalability

  Designing for scalability
  Mostly independent parts with carefully designed interactions
  Weakly interacting feedback structures, complex components, and phases
  Some scalable computing systems: Scalaris and Beernet

© 2010 Peter Van Roy

2

The Three Major Distribution
Structures

© 2010 Peter Van Roy

1. Client/server
(distributed)

2. Peer-to-peer
(distributed,scalable)

3. Cloud
(distributed,scalable,elastic)

Elasticity: the ability to ramp resource usage up
and down according to instantaneous demand
Elasticity opens up the new world of Heisenberg
applications that we are just starting to exploit

3

What is Scalability?
  A system is scalable if it is able to handle growing amounts of work

in an acceptable manner (adapted from Wikipedia)
  Desired system properties (such as performance) are “acceptable”

functions of system size n
  We consider systems that consist of n equivalent nodes connected

through a communication network
  Ideally, performance (number of operations / second) p(n) = O(n), where

n increases as work increases
  May not be achievable because of an inherent bottleneck: nodes need to

communicate and each message needs to choose its destination, which
introduces a logarithmic factor log(n) per message

  For many useful tasks, with proper design there are few messages,
they have small delay, and they are rarely on the critical path, so
O(n) is often achievable

© 2010 Peter Van Roy

4

What is Elasticity?
(The Mind of Palador)
  “Last came one of the strange beings from the system of Palador. It was nameless, like all its

kind, for it possessed no identity of its own, being merely a mobile but still dependent cell in
the consciousness of its race. Though it and its fellows had long been scattered over the
galaxy in the exploration of countless worlds, some unknown link still bound them together as
inexorably as the living cells in a human body.”

  “In moments of crisis, the single units comprising the Paladorian mind could link together in
an organization no less close than that of any physical brain. At such moments they formed an
intellect more powerful than any other in the Universe. All ordinary problems could be solved
by a few hundred or thousand units. Very rarely, millions would be needed, and on two
historic occasions the billions of cells of the entire Paladorian consciousness had been welded
together to deal with emergencies that threatened the race. The mind of Palador was one of
the greatest mental resources of the Universe; its full force was seldom required, but the
knowledge that it was available was supremely comforting to other races.”

  From the short story “Rescue Party” by Sir Arthur C. Clarke. First published in Astounding
Science Fiction in May 1946. Written in March 1945 while Clarke was in the Royal Air Force. It is
the first story that Clarke sold. Many of the themes in this story recur in Clarke’s later work.

© 2010 Peter Van Roy

5

Peer-to-Peer Versus Cloud

  Both P2P and cloud computing are
scalable, but there is a fundamental
difference between them

  Suppose Skype would like to add real-
time language translation ability to its
phone connections
  Skype is based on a dynamic peer-to-

peer architecture
  Real-time language translation needs

elasticity: huge resources (data and
computation), but just for the person
calling

  It can’t be done on Skype’s own P2P
architecture because it’s not elastic
  The resources are just not there
  It needs to be hosted on a cloud, as an

extension of the P2P structure

© 2010 Peter Van Roy

Simple example of Skype P2P routing
Nodes involved in 3-way conference call
(FX1, GVI inside NUS, RR outside NUS)

6

The “Next Internet Revolution”

1970 1980 1990 2000 2010

Internet abstraction level

 TCP/IP

 Email & Usenet

 Web & Search

 Social Networking & Commerce

 “Heisenberg Applications”

2020

  The Internet has gone through
four revolutions since its
inception
  Each revolution takes about

ten years to be internalized
  Old timers like me saw many of

them (I started using it in 1983)
  We are now on the brink of a

fifth revolution fueled by
elasticity and based on a
combination of cloud computing
and data-intensive algorithms
  Applications that use massive

resources in short bursts, at a
constant cost

Year

© 2010 Peter Van Roy

7

The First Law
(Novelty at Each Scale)

© 2010 Peter Van Roy

8

The First Law of Scalability
  At each new scale, the situation changes…

 Sam Spade: “Ten thousand? We were talking about a lot more money than this.”
Kasper Gutman: “Yes, sir, we were, but this is genuine coin of the realm. With a
dollar of this, you can buy ten dollars of talk.”
– The Maltese Falcon

  It’s like physics: at each higher energy level, new physics appears
  No problem is ever solved for all scales (despite claims to the contrary)

  It’s a basic law of scalability that even physics cannot get around
  In large systems, we see this every day

  Not just computing systems, but any kind of system that can get big, e.g.,
organizations, skyscrapers, etc., needs new ideas at each level of scale

  Biological systems take the lead in complexity and the more we look
the more we find (e.g., see [Michal 1999] Atlas of Biochemical Pathways)

  Computing systems take the lead for man-made systems

  Let’s see what happens when we scale up…

© 2010 Peter Van Roy

9

New Scales and New Worlds
  This diagram is adapted

from [Weinberg 1975] An
Introduction to General
Systems Thinking

  The disciplines of
computing (invention) and
biology (discovery) are
pushing the boundaries of
the two shaded areas
inwards

  We are barely starting to
investigate the surprising
and novel phenomena in
the white area

Simulation
Collective organic behavior

Algorithms
Organisms

© 2010 Peter Van Roy

10

Alps Viewed From Space

  This amazing
sight was never
seen by humans
until spaceflight
was invented

  But it has always
existed!
  Nature obeys

the First Law

© 2010 Peter Van Roy

11

  Energy is a basic
component of the
universe

  Energy obeys
conservation and
linear superposition
properties

  We observe 100
orders of magnitude
in energy levels
  From a stationary

photon to the total
output of the universe
since creation

  Something new and
interesting happens
at every energy level

© 2010 Peter Van Roy

Scalability in Nature

12
Diagram
© Absolute Motion Institute

© 2010 Peter Van Roy

13

Nazca Figures

© 2010 Peter Van Roy

  Humans strive to obey the First Law too
  These giant figures can only be seen from the sky: intended for the gods?

14

Striving for the First Law

  Successful complex structures built by
humans are successful precisely because
they obey the essential laws of complexity

  It is therefore worthwhile to try to
understand them in a scientific way

© 2010 Peter Van Roy

15

Scalability and Transparent
Distribution (A Personal Experience)

  Goal: make the accidental complexity of distributed programming disappear,
leaving only the essential complexity

  Achieved by the Mozart system in 1999 (www.mozart-oz.org)
  But the First Law is not so easily vanquished: beyond ~10 machines, the

application structure needs to change!

© 2010 Peter Van Roy

1 pipe, 3 clients, 2 servers
on six machines

Same code with another
distribution structure

Same on one machine
(during development)

16

Scalability in Programming

© 2010 Peter Van Roy

101 103 105 107 109 ? LOC
Year 1950 1960 1970 1980 1990 2000

?
2010

Data becomes dominant
Heisenberg applications

Computer science changes deeply
at each next level

Going higher in each level means
building the rudiments of the next
level (e.g., a 100,000 line assembly
program, such as IBM Prolog in
1990, must be structured!)

(*) All dates are approximate

Program complexity timeline (*)

1940

17

A Glimpse of the Future…
  Today’s Internet…

  Internet ≈ 800,000,000 hosts (2010, www.isc.org);
biggest cloud ≈ 1,000,000 hosts (2010, Google)

  Even the biggest clouds cannot meet the demand
  Organizations will build clouds of different sizes

  All clouds will be elastic, limited only by their size
  Pressure to increase elasticity will cause them

to federate (peer-to-peer clouds)

  The future Internet will consist only of clouds
  The word “cloud” will cease to have special meaning
  Virtualization and elasticity will be omnipresent

  It will be elastic, data-dominant, and self-learning
  Elasticity will be used at all scales
  Programs will use learning to improve themselves
  Typical example: real-time audio language translation

© 2010 Peter Van Roy

18

Elastic Computing and
Heisenberg Applications

© 2010 Peter Van Roy

19

Elastic Computing
  Two main infrastructures for scalable computing

  Peer-to-peer: use of client machines (my current expertise)
  Cloud-based: use of datacenters (my future research)

  Cloud is elastic; peer-to-peer is not
  Elasticity: the ability to scale resource usage up and down

rapidly according to instantaneous demand
  Elasticity is a new property that did not exist before clouds

  Elasticity makes possible Heisenberg applications
  Applications that use enormous computational and storage

resources for short times, but at constant (low) cost
  A new kind of application that did not exist before clouds

© 2010 Peter Van Roy

20

Computational Heisenberg
Principle (1)
  A cloud has two key properties:

  Pay per use: pay only for the resources actually used
  Elasticity: ability to scale resource usage up (and down) rapidly

  For a fixed cost, as the time interval decreases more resources
can be made available:

  For a given maximum cost, the product of resource amount
and usage time is less than a constant

  Analogy with Heisenberg’s Uncertainty Principle in physics: the product of
uncertainty in time and uncertainty in energy is equal to (or greater than) a
constant. This increases the probability of events that use arbitrarily high
energies if the time period is short enough. As long as the high energies are
less than the uncertainty, then they are allowed!
  This is a property of the system itself, not a limitation of measurement!
  ∆t⋅∆E = c and tallow≤∆t and Eallow≤∆E implies tallow⋅Eallow ≤ c

  This opens the door to new applications that could not be done before
© 2010 Peter Van Roy

21

Computational Heisenberg
Principle (2)

  For given fixed resource cost
c0, what kinds of applications
can run?

  Before clouds: all applications
lived in light blue area which
gives local resources for
maximum cost c0 (r ≤ r0)

  With clouds: dark blue area
becomes available for the
same cost (r > r0)

  The dark blue area is the home
of Heisenberg applications
  Like a data-intensive application

combined with machine learning
techniques

Time interval	

Available resources	

t0	

r0	

Local resources for cost c0	

c0	

Cloud resources for cost c0	

© 2010 Peter Van Roy

t ⋅ r ≤ c0

22

A Heisenberg Application (1):
Real-Time Voice Translation
  The pieces of this application already exist; for example the IRCAM

research institute has implemented many of them
  It requires combining domain knowledge (in sound and language)

with an enormous sound fragment database, hosted on a cloud

Normalization to
canonical voice

Decomposition
into phoneme

sequences
Lookup in

sound database

English/Chinese
sound fragment

database

Concatenative
synthesis

Denormalization
to original voice

English
voice

Chinese
voice

(purely hypothetical design!)

  Performance will be gradually improved through feedback from
bilingual speakers and speech recognition technology

  Franz Och, head of translation services at Google, announced
recently that they are working on something similar (Feb. 10, 2010)

© 2010 Peter Van Roy

23

A Heisenberg Application (2):
Ubiquitous Augmentation
  Your sensory input will be “augmented” in real-time

  Faces, objects, and names you see will be recognized
  Selected relevant information will be given spontaneously
  Foreign languages (text, audio, visual) will be translated
  When doing an activity, you will be guided to do it expertly
  When confronted with a problem, solutions will be suggested

  The augmentation will be good enough that it can be
always enabled (it doesn’t get in your way)
  It will learn to mesh with your thinking processes productively
  On the rare occasions that it is disabled, you will feel helpless

  As if half of your brain just stopped working
  Like today’s Internet addictions, but much worse!

© 2010 Peter Van Roy

24

The Second Law
(Only Local Control)

© 2010 Peter Van Roy

25

The Second Law
  In the limit of increasing scale, large systems

have only local control
  The system is concurrent and nondeterministic

by default
  Messages can take arbitrary time to arrive

(asynchrony) and failures are hard to detect
  Global control must be programmed and it can

be very expensive or impossible
  Sometimes global control is just impossible

  In a purely asynchronous system, consensus
is impossible to achieve even if just one
process can crash [FLP 1985]

  Consensus can be achieved by adding
synchrony or randomness, both of which may
be too drastic

  But not all is bad news
  Failures are local too
  Some global control is possible, but less and

less as the scale increases

© 2010 Peter Van Roy

 A typical large system
26

The Internet is Treacherous
As the Sea

  Asynchronous system: messages take arbitrary (but finite) time
  Synchronous system: messages take fixed maximum time
  What about the Internet?

  It starts out asynchronous (stormy) but eventually becomes synchronous (calm)
  But we don’t know how long this will take or what the message delays are!

© 2010 Peter Van Roy

Clipper Heavy storms at sea
(clipper’s goal: don’t sink!)

Sea calms down
(clipper reaches shore)

Any application
or algorithm

Asynchrony: many failure suspicions
(algorithm’s goal: don’t crash!)

Synchrony: known delays
(algorithm does its job)

27

Coping with Asynchrony
  The perennial dilemma

  Asynchrony is natural and has higher performance
  Synchrony is easier to use (each operation is finished before the next)

  Two extremes
  Extreme 1: Push the asynchrony into the lower layers (e.g., libraries) for

performance, and keep the user layers synchronous
  Extreme 2: Rewire the user’s brain to adjust to asynchrony (e.g., use

notifications and keep work state external to user’s brain)
  Only works up to a point, because asynchrony is fundamentally harder for

human conscious since it needs many context switches
  Compromise: Use asynchrony by default and insert synchronous

operations occasionally to simplify the system
  Let us see how this works out in a real system…

© 2010 Peter Van Roy

28

The Right Way
and the Wrong Way

  A heresy: object-oriented programming is irrelevant for the Internet!
  Important: isolation, concurrency, asynchronous messages, higher-order programming
  Unimportant: inheritance, classes, methods, UML diagrams, monitors

© 2010 Peter Van Roy

 Ericsson AXD 301 ATM
Switch: >1 million lines
of Erlang

 Erlang: Concurrent and
independent by
default, asynchronous
messages, multi-agent
programs

 Java: Sequential and
monolithic by default,
synchronous RMI,
shared-data programs

29

Nondeterminism
  The system makes choices

  The user has almost no influence on
these choices (message arrivals,
process scheduling)

  The choices may or may not affect
the results

  Good nondeterminism: choice
does not affect result (benign)
  Choose path (to same destination)
  Choose order of independent

operations (client A or client B)

  Evil nondeterminism: choice
affects result (race condition)
  Choose destination
  Choose order of dependent

operations (credit or debit)

© 2010 Peter Van Roy

30

Concurrency

© 2010 Peter Van Roy

HW/SW
boundary

Concurrent
programming
(software,
independence)

Parallel
programming
(hardware,
speed)

 Coexistent
programming

(systems as
collections of

separate parts)

Concurrent components
or “agents” or “services”

Parallel processors
or “cores”

FPGA

31

Concurrency is hard, so let’s not fight it head-on, but use its power…

“Mostly” Independent Parts
  Large systems consist of mostly independent parts

  Gas in a box: molecules mostly independent, occasional
interaction when two molecules collide.

  Peer-to-peer network: peers mostly independent, occasional
interaction between neighbors only. Can provide efficient and
robust communication and storage infrastructure (see later).

  Gossip algorithm: nodes mostly independent, occasional
interaction between random pairs. Can efficiently solve many
global problems such as diffusion, search, aggregation,
monitoring, and topology management.

  Swarm intelligence: collaborative behavior among large
numbers of simple agents (e.g., flocking and swarming).
Each agent interacts with only a small number of neighbors.

© 2010 Peter Van Roy

32

Gossip Algorithm:
Topology Management

  The T-Man algorithm does topology management using a gossip algorithm
  Each node periodically picks a random node and exchanges information with it
  Each node has a ranking function that knows what distances nodes are supposed

to have in the desired topology (i.e., a torus emerging from a random graph)
  The topology emerges in a few cycles (one cycle = one update per node)
  The algorithm is efficient, extremely robust, and can track changes

© 2010 Peter Van Roy

33

The Third Law
(The CAP Theorem)

© 2010 Peter Van Roy

34

The Third Law
  The CAP theorem was conjectured by Eric Brewer at PODC

in 2000 and proved by Seth Gilbert and Nancy Lynch in 2002
  For an asynchronous network, it is impossible to implement

an object that guarantees the following properties in all fair
executions:
  Consistency: all operations are atomic (totally ordered)
  Availability: every request eventually returns a result
  Partition tolerance: any messages may be lost

  The CAP Theorem applies for all systems, at all levels of
abstraction, and at all sizes
  It can be applied in many places in the same system
  The whole system is a rainbow of interacting instances of CAP

© 2010 Peter Van Roy

35

The CAP Triangle

  The CAP space hugs the
edges of the triangle
  Cost increases toward

the center
  The center itself is empty!

  All parts of the CAP space
have their uses

  We have arranged some
applications around the
triangle according to
perceived functionality
  Very little systematic study

has been done about
navigating in this triangle

C+A

C+P A+P C A

P

A C

P

Trade-off Trade-off

Trade-off

(Web cache)

Mercurial

(BitTorrent)
(PeerTV)

(DropBox)

© 2010 Peter Van Roy

(Wuala)

(…) = read-only

Search

Cost
increases

∞	

Key-value
stores

Distr. DB

36

Designing with CAP
  C is hard to achieve (Second Law) → (P+A, no C) is the default

  Consistency requires global coordination

  Avoid needing C if possible
  We can achieve robustness (P) and performance (A)

  DropBox and Web cache give P and A, but not C
  Wuala and BitTorrent are read-only, achieve C easily
  Mercurial is consistent if connected (C+A), but is still usable if disconnected (P+A)

  But if we really need C
  Give up A → Waiting sometimes needed
  Give up P → Fragile system

  Distributed database guarantees C but will block if there is a partition

  We can have our cake and eat it too, if we pay the price
  Highly reliable communication channels and fault tolerance
  We get C and A, and we “seem” to get P as well (actually, we just have less partitions)

  Scalaris, Beernet: peer-to-peer with majority consensus (Paxos) gives robustness
  Cassandra: run on cloud, not peer-to-peer (does not support loose coupling)

© 2010 Peter Van Roy

37

Designing for
Scalability

© 2010 Peter Van Roy

38

Design Rules for Scalability?
  How can we learn how to build scalable systems?

  The First Law says new ideas are needed as the system grows
  But finding new ideas requires blood, sweat, and tears

  Short-cut: study existing systems that work
  Biological systems have already treaded this path and are

suitably huge (see [Michal 1999] Atlas of Biochemical Pathways)
  Some computing systems have treaded this path as well,

especially Internet protocols and applications

  Learn lessons from both kinds of systems
  And maybe come up with some general principles?

© 2010 Peter Van Roy

39

First Step:
Decide on the Scale
  Centralized systems are much easier to design than

decentralized systems
  But the degree of centralization that’s possible depends on the

scale: larger scales support less centralization (Second Law)
  LAN: centralized control
  Internet: centralized address assignment, decentralized routing
  Internet on the scale of the solar system

  Decide on the desired scale, and introduce the maximum
possible centralization that’s possible at that scale
  Note that your design will not work for larger scales (First Law)

© 2010 Peter Van Roy

40

Second Step:
Add Consistency

  Every scalable design starts as a decentralized system (P+A, no C)
  A coexistent system of independent pieces (Second & Third Laws)

  Nodes occasionally interact (add some C) → collaboration, emergence
  Split protocol: what happens when a node leaves a group (may be abrupt)
  Merge protocol: what happens when a node joins a group

  Merge is based on data coherence and may need input from highest level
  Many examples: biology, peer-to-peer, map-reduce, gas/liquid/solid, …

© 2010 Peter Van Roy

split/merge

 group

41

Third Step:
General Design Principles
  We start with a decentralized system (P+A, no C)

  The problem: how much C do we need and how do we add it?

  The rest of the talk explores how to add C
  Human respiratory system (biology)
  Decentralized transactional store (computing)

  Scalaris and Beernet peer-to-peer structured overlay networks
  More examples in the stub slides: TCP, hotel lobby, human

endocrine system

  These examples motivate general design principles
  We present two: complex components and phase behavior

  Main design principle:
weakly interacting feedback structures

© 2010 Peter Van Roy

42

Weakly Interacting Feedback
Structures
  Concurrent component

  An active entity communicating with its neighbors through
asynchronous messages (Second Law)

  “Intelligence” concentrated in core components
  Feedback loop

  Monitor, corrector, and actuator components connected to
a subsystem and continuously maintaining one local goal

  Feedback structure
  A set of feedback loops that work together to maintain

one global system property
  Weakly interacting feedback structures

  The complete system is a conjunction of global
properties, each maintained by one feedback structure

  The feedback structures have dependencies based on
the operating conditions (Third Law)

© 2010 Peter Van Roy

43

Human Respiratory System
and Complex Components

© 2010 Peter Van Roy

44

Human Respiratory System

  Default behavior: rhythmic breathing reflex
  Complex component: conscious control can override and plan lifesaving actions
  Abstraction: conscious control does not need to know details of breathing reflex
  Fail-safe: conscious control can itself be overridden (falling unconscious)
  Time scales: laryngospasm is a quick action that interrupts slower breathing reflex

© 2010 Peter Van Roy

Some design rules:

The operation of the
human respiratory
system is given as one
feedback structure,
inferred from a precise
medical description of
its behavior

45

State Diagram

  The human respiratory system can be seen as a state diagram
  Dominant subset = active subset of feedback loops = state

  At any time, one subset is active, depending on operating conditions
  Each subset corresponds to a state in the state diagram

© 2010 Peter Van Roy

46

Power is Built In, Not Added On

  The power of a system depends on the strength of its complex components
  The human respiratory system uses conscious control (e.g., to avoid drowning!)
  Erlang OTP uses supervisor trees and a database to implement robustness
  Scalaris uses Paxos consensus and replication to implement fast transactions
  Google Search uses eigenvector calculation of the Web link matrix
  What does your system use?

© 2010 Peter Van Roy

3.6-Liter Biturbo Motor
with 353 kW (480 HP)

Porsche Carrera GT

47

Some Complex Components
  Human intelligence

  Main strength: adaptability (dynamic
creation of new feedback loops)

  Program intelligence
  Can easily go beyond human

intelligence in many areas!
  Turing test is irrelevant: complex

components are already replacing
humans in more and more areas

  Minesweeper digital assistant: uses
constraints (easy to program!)

  Chess: uses alpha-beta search with
heuristics

  Compiler: translates human-
readable program into executable
form

© 2010 Peter Van Roy

48

More on Complex Components
  Complex components completely solve a problem inside

a specific (small) part of the space of system operating
conditions (from the viewpoint of the rest of the system)
  Conscious control, a chess program, and a compiler are

extremely smart within their operating space
  Outside of this space, they can be very stupid and should be

inactive (on their own accord or forced)

  Complex components are completely unpredictable
when viewed from the outside
  If it were not so, they would not be needed!
  They can be highly nonlinear and unstable; the rest of the system

has to trust them (up to some hardwired fail-safe)

© 2010 Peter Van Roy

49

How Come Conscious Control
is So Smart?
  Cognitive science and neurology try to understand why

  The brain uses brute force, but in a very smart way

  Conscious control is a bricklayer: it continuously builds and
organizes new components on top of existing components
  This process is continuous from birth with compound interest effect,

which is why humans are so smart in common-sense tasks

  It continuously brings the most useful concepts to the top
(cache organization combined with “grandfather cell”)
  Manipulating common concepts is made easy

  “Mirror neurons”: it can use its own components to simulate other
humans, which is why humans can empathize so well with others

  It can efficiently execute up to two complex programs at once
(“walking and chewing gum”), because of the two-lobed structure
of the brain

© 2010 Peter Van Roy

50

Transactional Store
and Phase Behavior

© 2010 Peter Van Roy

51

A Peer-to-Peer Key/
Value Store: Scalaris

  Scalaris is a high-performance self-managing key/value store that provides
transactions and is built on top of a structured overlay network
  A major result of the European SELFMAN project (www.ist-selfman.org)
  4000 read-modify-write transactions per second on two dual-core Intel Xeon at 2.66 GHz

  Scalaris has five WIFS: connectivity management (Sconnect), routing (Sroute), load
balancing (Sload), replica management (Sreplica), and transaction management (Strans)

Sscalaris= Skey-value ∧ Sconnect ∧ Sroute ∧	

	

 Sload ∧ Sreplica ∧ Strans
The Scalaris specification is a conjunction of
six properties. Each non-functional property
is implemented by one feedback structure.

Sconnect → Sroute → Sreplica → Strans

© 2010 Peter Van Roy

Sload

52

53

Structured Overlay Networks
Ring

Fingers

  Structured overlay networks
are often based on a ring
  By far the most popular structure,

it has many variants and has
been extensively studied

  Self organization is done at
two levels:
  The ring ensures connectivity: it

must always exist despite node
joins, leaves, and failures

  The fingers provide efficient
routing: they can be temporarily
in an inconsistent state

© 2010 Peter Van Roy

53

Structured Overlay Networks:
Inspired by Peer-to-Peer

  Hybrid (client/server)
  Napster

  Unstructured overlay
  Gnutella, Kazaa,

Morpheus, Freenet, …
  Uses flooding

  Structured overlay
  Exponential network
  DHT (Distributed Hash

Table), e.g., Chord, DKS,
Scalaris, Beernet, etc.

R = N-1 (hub)

R = 1 (others)

H = 1

R = ? (variable)

H = 1…7

(but no guarantee)

R = log N

H = log N

(with guarantee)

© 2010 Peter Van Roy

54

55

A “Relaxed” Ring:
Beernet

  The relaxed ring is completely
asynchronous
  Join and leave are completely

asynchronous
  The bushes appear only if

there are failure suspicions
  Beernet implements the

relaxed ring (SELFMAN)
  There is a perfect ring (in red)

as a subset of the relaxed ring
  The relaxed ring is always

converging to a perfect ring
  The bushiness depends on

churn (rate of change of the
ring, leaves/joins) and failure
suspicion rate (communication
delays)

© 2010 Peter Van Roy

Perfect ring

Bushes

55

Phases in the Relaxed Ring

  The relaxed ring has (at least) three phases
  Uses ring merge algorithm developed in SELFMAN
  We are studying how the ring reacts to external stress (phase transitions)

  Key questions:
  How do the phases show up at the application layer? (“qualitative changes”)
  How do we know when we are near a phase transition? (“early bubbling”)

© 2010 Peter Van Roy

56

Phases in Large Systems

  A phase is a concise
characterization of an
aggregate behavior in a
system consisting of many
interacting components

  Phases appear in many
large systems
  Not just physical systems

(water) but also computing
systems (like peer-to-peer)

© 2010 Peter Van Roy

  Different parts of the system can be in different phases (no global synchronization!)
  Depending on the local operating conditions (environment)
  Boundaries between phases can be sharp or diffuse
  Phase transitions and critical points can occur if operating conditions change

Water phase diagram
(Copyright © Martin Chaplin)

57

Conclusions and
Prospects

© 2010 Peter Van Roy

58

Conclusions and Prospects
  Laws of scalability

  First Law: new phenomena appear at each scale
  Second Law: as scale increases, systems have only local control
  Third Law: pick two of consistency, availability, partition tolerance

  Clouds are a key part of the next Internet revolution
  Elasticity leads to Heisenberg applications
  Demand will cause proliferation of federated clouds

  Design for scalability: a research agenda
  Weakly interacting feedback structures with dominant subsets
  Complex components to solve the problem in limited conditions
  Phases to define behavior over all possible operating conditions

© 2010 Peter Van Roy

59

References
for Further Reading

© 2010 Peter Van Roy

60

References (1)
  Joe Armstrong. Making Reliable Distributed Systems in the Presence of Software Errors, Ph. D.

dissertation, Royal Institute of Technology (KTH), Kista, Sweden, Nov. 2003.
  Ken Birman, Gregory Chockler, and Robbert van Renesse. “Toward a Cloud Computing Research

Agenda”, 3rd ACM SIGOPS International Workshop on Large Scale Distributed Systems and
Middleware, ACM SIGACT News, 40(2): 68-80 (June 2009).

  Alexandre Bultot. A Survey of Systems with Multiple Interacting Feedback Loops and Their Application
to Programming, Master’s report, Dept. of Comp. Sci. and Eng., UCL, Aug. 2009.

  Rick Cattell. “High Performance Scalable Data Stores”, Feb. 22, 2010.
  Raphaël Collet. The Limits of Network Transparency in a Distributed Programming Language, Ph. D.

dissertation, Dept. of Comp. Sci. and Eng., UCL, Dec. 2007.
  Michael Fischer, Nancy Lynch, and Michael Paterson. “Impossibility of Distributed Consensus with One

Faulty Process”, Journal of the ACM, 32(2): 374-382 (April 1985).
  Seth Gilbert and Nancy Lynch. “Brewer’s Conjecture and the Feasibility of Consistent, Available,

Partition-Tolerant Web Services”, ACM SIGACT News, 33(2): 51-59 (2002).
  Rachid Guerraoui and Luís Rodrigues. Introduction to Reliable Distributed Programming, Springer-

Verlag, 2006.
  Márk Jelasity and Özalp Babaoglu. “T-Man: Gossip-based Overlay Topology Management”, Proc. 3rd

Int. Workshop on Engineering Self-Organising Systems (ESOA 2005), Springer-Verlag LNCS volume
3910, 2006, pp. 1-15.

  Boris Mejías. A Relaxed Ring for Self-Managing Decentralized Systems with Transactional Replicated
Storage, Ph. D. dissertation, Dept. of Comp. Sci. and Eng., UCL, Oct. 2010 (in preparation).

  Gerhard Michal and Dietmar Schomburg. Biochemical Pathways: An Atlas of Biochemistry and
Molecular Biology, Wiley-Blackwell, 1999 (first edition), 2011 (second edition, to appear).

© 2010 Peter Van Roy

61

References (2)
  Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten Schütt. “Enhanced Paxos Commit for

Transactions on DHTs”, 10th IEEE/ACM International Symposium on Cluster, Cloud and Grid Computing
(CCGrid 2010), May 17-20, 2010, Melbourne, Australia.

  SELFMAN: Self Management for Large-Scale Distributed Systems Based on Structured Overlay
Networks and Components. European 6th Framework Programme, www.ist-selfman.org (2009).

  Peter M. Senge et al. The Fifth Discipline Fieldbook: Strategies and Tools for Building a Learning
Organization, Nicholas Brealey Publishing, 1994.

  Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. “Dealing with Network Partitions in Structured Overlay
Networks”, Journal of Peer-to-Peer Networking and Applications, 2(4): 334-347 (2009).

  Steven Strogatz. Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and
Engineering (Studies in Nonlinearity), Perseus Books, 1994.

  Nassim Taleb. The Black Swan: The Impact of the Highly Improbable, Penguin Books, 2008.
  Peter Van Roy, Seif Haridi, and Alexander Reinefeld. “Software Design with Weakly Interacting

Feedback Structures and Its Application to Distributed Systems”, Research Report RR2011-01, ICTEAM
Institute, UCL, Jan. 2011.

  Peter Van Roy. “Programming Paradigms for Dummies: What Every Programmer Should Know”,
chapter in New Computational Paradigms for Computer Music, G. Assayag and A. Gerzso (eds.),
IRCAM/Delatour France, June 2009.

  Gerald M. Weinberg. An Introduction to General Systems Thinking, Dorset House Publishing, 1975
(Silver Anniversary Edition 2001).

  Norbert Wiener. Cybernetics, or Control and Communication in the Animal and the Machine, MIT Press,
Cambridge, MA, 1948.

  Ulf Wiger. “Four-fold Increase in Productivity and Quality – Industrial Strength Functional Programming
in Telecom-Class Products”, Ericsson Telecom AB, 2001.

© 2010 Peter Van Roy

62

Stub Slides

© 2010 Peter Van Roy

63

The Structure of Elasticity
  Elasticity of clouds has been compared to an electric grid

  This is a reasonable comparison, but elasticity in clouds is
more complex than in electric grids (for example, often the
storage must survive since it is shared by many tasks)

  Elasticity in clouds has two dimensions:
computing/storage vs. unrelated/related
  Elastic computing: often amortization between unrelated tasks

  But computing can also involve related tasks (solution sharing)

  Elastic storage: often amortization between related tasks
  But storage can also involve unrelated tasks (temporary storage)

  Elastic tasks are grouped depending on whether they are
related or not
  Storage tasks are related when they share storage
  Computing tasks are related when they share solutions

© 2010 Peter Van Roy

64

(power,unrelated)

Electric grid

computing storage

unrelated

related

Elastic cloud

Scalability Implies Long Life
  A scalable system is not just large, it is also long-lived
  Memory leaks

  Memory leaks are hard to find in distributed systems because of remote
references and failures. There is no practical algorithm for true distributed
garbage collection.

  The best technique is still distributed reference counting, with time-lease
references and program management of distributed cycles. This crosses all
abstraction layers.

  Partial failures
  Failures of parts of the system are frequent and can be fixed by redundancy

  Software rejuvenation
  Periodically restart the system with a valid state recovered from the previous

incarnation. This solves both memory leaks and partial failures.
  Used by biological systems for eons: it’s why we are not immortal. A fertilized egg

is a newly initialized process. The older we get, the more defects accumulate.

© 2010 Peter Van Roy

65

Scalability and Concurrency
  The Second Law implies concurrency (independence) by default
  Concurrency and parallelism are often confused, so let us define their

common core, “coexistence”
  Concurrent = consisting of logically independent parts (programming concept)
  Parallel = executing on separate processors (hardware concept)
  Coexistent = “existing together” (dictionary definition)

  Coexistent design: the discipline of building systems as collections of separate parts (at
all levels, including hardware and software)

  Concurrency has always existed in computing
  All programs can be decomposed into almost-independent parts

  Parallelism was a fringe area until recently
  Multicore processors since 2001 (IBM POWER4 dual-core)
  Distributed programming mostly client/server until 1990s

  Now parallelism is mainstream and concurrency is embracing it
  For multicore: add dataflow ideas to programming languages (sociological!)
  For Internet: techniques from distributed algorithmics (still very technical)

© 2010 Peter Van Roy

66

Scalability in Dynamics

  From [Strogatz 1994] Nonlinear Dynamics and Chaos

© 2010 Peter Van Roy

Dim
1 2 ≥3 >>1 continuum

Linear

Nonlinear

Growth, decay,
and equilibrium Oscillations

RC circuit
Radioactive Decay

RLC circuit
Mass + spring

2-body problem

Fixed points
Bifurcations
Hysteresis

Limit cycles
Pendulum

Predator-prey
Biol. oscillators

Collective
phenomena

Lasers
Neural nets

Immune system
Economics

Ecosystems

Civil eng.
structures
Electrical

eng. circuits

Solid-state physics
Equilibrium

stat. mechanics
Molecular dynamics

Solitons
Earthquakes
Fibrillation
Epilepsy

Turbulence
Gen. relativity

Life

Maxwell
Schrödinger

Elasticity
Wave equations

Diffusion

Waves and
patterns

Chaos
Intermittency

Strange attractors
3-body problem

Fractals

Controlled chaos

Here be dragons
Nonlinearity

67

© 2010 Peter Van Roy

Simple Forms of Concurrency are
the Right Defaults
1.  The simplest paradigms for concurrent programming are

deterministic dataflow concurrency and message-passing
concurrency
  Compare the simplicity of Concurrent Programming in Erlang with the

complexity of Concurrent Programming in Java
  Deterministic concurrency is the key to simplifying concurrent

programming. All forms of deterministic concurrency are explained in
[Van Roy 2009].

2.  The Erlang language and system is used successfully for building
highly available systems; it uses message-passing concurrency with
independent agents

3.  The E language and system is used successfully for building secure
distributed systems; it uses deterministic concurrency to avoid the
covert channels of nondeterminism

68

© 2010 Peter Van Roy

Civilization Relies on
Feedback Loops
  Most products of human civilization use an implicit management

feedback loop, called “maintenance”, done by a human
  Changing lightbulbs, replacing broken windows, filling up a car

  Each human mind is at the center of many such feedback loops
  Most require very little conscious thinking, since they have become

“habits”: programmed into the brain below consciousness
  Each human being creates huge numbers of such habit programs

  But if there are too many feedback loops to manage then the human
complains that “life is too complicated”!
  “Civilization advances by reducing the number of feedback loops that

have to be explicitly managed” (Van Roy’s corollary to A. N. Whitehead’s
dictum)

  A dishwashing machine reduces work of washing dishes, but it needs to
be bought, maintained, replaced, etc. Is it worth it? Is the total effort
reduced?

69

70

Hotel Lobby Example
(from [Wiener 1948])

  This is unstable!
  The tribesman stokes the

fire but gets colder and
colder because the
airconditioning works
harder and harder

  Wiener leaves the fix
as homework for the
reader

  One possible solution:
outer loop (tribesman)
controls the other by
simply adjusting the
thermostat
  One loop controls the

other

  Two loops interacting through a common subsystem (stigmergy)

© 2010 Peter Van Roy

70

Correct Solution Uses
Management

  Instead of stoking a fire, the tribesman simply adjusts
the thermostat. The resulting system is stable.

  This uses management instead of stigmergy
  Design pattern: use the system, don’t try to bypass it

© 2010 Peter Van Roy

71

72

TCP Feedback Structure
  This example shows a

reliable byte stream
protocol with congestion
control (a variant of TCP)
  This diagram is for the

sending side
  The congestion control

loop manages the
reliable transfer loop
  By changing the sliding

window’s buffer size
  With n connections there

are n feedback
structures interacting
through a shared
network (stigmergy)
  This is an example of a

system with n WIFS

© 2010 Peter Van Roy

72

PageRank in One Slide
  Each Web page holds a quantity of stuff called its “importance”
  At each step, the “importance” flows out along the outgoing links

  And new stuff comes in through the incoming links
  Not all flows out (damping factor d ≈ 0.85) since paths are not infinite

  We iterate until the amount is the same for all pages
  The final value gives an indication of how important a page is: a page is more

important when there are more links from pages that are themselves important
  This is a global fixpoint calculation: the PageRank values are the entries of

the dominant eigenvector of the Web adjacency matrix with damping factor

PageRank vector PageRank equation: multiply R by adjacency
matrix and adjust with damping factor

Normalized Web adjacency matrix

© 2010 Peter Van Roy

73

© 2010 Peter Van Roy

Hypothalamus-pituitary-target
organ Axis (Endocrine System)

  Two superimposed groups of negative feedback loops, a third short negative loop, a
fourth loop from the central nervous system (from [Encyclopaedia Britannica 2005])

  This diagram shows only the main components and their interactions; there are many
more parts giving a much more complex full system

74

Design Patterns
for Feedback Structures

  We can arrange feedback structures in a tree according to their
relationships and the problems they solve

© 2010 Peter Van Roy

Archetype Family Tree
(from [Senge 1994])

75

What About
Levels of Abstraction?
  WIFS architecture seems to imply a single level, yet

novelty is observed at all levels
  How can we reconcile this with the First Law?

  Solution: WIFS structure exists at all levels,
organized according to Second and Third Laws
(asynchrony and CAP)

  For example, in a multicellular organism:
  Single cell contains many WIFS, cells communicate

following CAP constraints
  Organs uses WIFS to maintain its operation
  Complete organism uses WIFS to survive in its

environment
© 2010 Peter Van Roy

76

77

More on the Relaxed Ring
  False failure suspicions are common on the Internet

  We do not want to eject the node from the ring when this happens
  The relaxed ring solves this by doing ring maintenance in asynchronous

fashion [Mejias 2008]
  Nodes communicate through message passing
  For a join, instead of one step involving 3 peers (as in Chord or DKS), we have

two steps each with 2 peers → we do not need locking or a periodic
stabilization algorithm

  Invariant: Every peer is in the same ring as its successor

© 2010 Peter Van Roy

77

Nonlinearity
  The world is a curious combination of linearity and nonlinearity

  Linearity = independent parts = whole equals the sum of the parts
  Nonlinearity = interacting parts = whole is more than the sum of the parts

  Why are nonlinear systems so much harder to analyze quantitatively
than linear ones?
  Because in linear systems, the parts can be analyzed separately and then

combined (superposition principle, compositional systems)
  But there is a surprising twist: many nonlinear systems can be analyzed

qualitatively (with a combination of geometrical reasoning and some analysis),
which is often good enough

  See [Strogatz 1994] Nonlinear Dynamics and Chaos
  We need nonlinearity for “intelligent” behavior, but…

  Too much nonlinearity makes the system fragile

  That’s why biological systems are made of weakly interacting subsystems
  What about nonlinearity and scalability?

© 2010 Peter Van Roy

78

Nonlinearity and Scalability
  Large systems must be mostly linear

  Large systems consist of parts that can be superposed
  Basic physical quantities are additive (mass, force, momentum, energy)

  Because they can be superposed, the system is linear
  They can’t be completely linear, though

  Because we need nonlinearity for all nontrivial behavior
  Interaction of two feedback structures is nonlinear
  State change of a feedback structure is nonlinear
  Complex components are nonlinear

  Therefore we should add nonlinearity where needed but no more
  Current computing systems are far too nonlinear and discontinuous
  They should be mostly linear with a smidgen of nonlinearity

© 2010 Peter Van Roy

79

Degrees of Increasing
Irregularity in a Large System
1.  Existence of probability distribution

  Statistical physics holds, all microstates have equal probability, behavior
is thermodynamic (describable by macroscopic state variables)

  Unfortunately, most simulations and models are stuck here!
2.  Critical point

  Minor fluctuations can be amplified without bounds
  The limit of statistical physics
  Many computing systems have critical points (garbage collectors,

dynamic hash tables, wide-area routing, virtual memory)
3.  No probability distribution exists (“Black Swans”)

  We know only the range of behavior, frequency limits do not exist
  Dijkstra’s guarded commands have this behavior

  Complex systems, program verification, distributed algorithmics

© 2010 Peter Van Roy

80

