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Three Laws of Scalability

e The First Law:
e New things happen at each new scale
e Suggests a path toward future Internet structure
e Emergence of elastic computing and Heisenberg applications
e The Second Law:
e In the limit of increasing scale, large systems have only local control
e Implies concurrency, asynchrony, and nondeterminism
e The Third Law (The CAP Theorem):
e Pick any two of consistency, availability, and partition tolerance
e Gives a map for navigating in the design space of scalability
e Designing for scalability
e Mostly independent parts with carefully designed interactions
o Weakly interacting feedback structures, complex components, and phases
e Some scalable computing systems: Scalaris and Beernet
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Elasticity: the ability to ramp resource usage up
and down according to instantaneous demand

Elasticity opens up the new world of Heisenberg
applications that we are just starting to exploit
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What is Scalability?

e A system is scalable if it is able to handle growing amounts of work
in an acceptable manner (adapted from Wikipedia)
Desired system properties (such as performance) are “acceptable”
functions of system size n
e \We consider systems that consist of n equivalent nodes connected
through a communication network

|deally, performance (number of operations / second) p(n) = O(n), where
n increases as work increases

May not be achievable because of an inherent bottleneck: nodes need to
communicate and each message needs to choose its destination, which
introduces a logarithmic factor log(n) per message
e For many useful tasks, with proper design there are few messages,
they have small delay, and they are rarely on the critical path, so
O(n) is often achievable
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What is Elasticity? see
(The Mind of Palador)

“Last came one of the strange beings from the system of Palador. It was nameless, like all its
kind, for it possessed no identity of its own, being merely a mobile but still dependent cell in
the consciousness of its race. Though it and its fellows had long been scattered over the
galaxy in the exploration of countless worlds, some unknown link still bound them together as
inexorably as the living cells in a human body.”

“In moments of crisis, the single units comprising the Paladorian mind could link together in
an organization no less close than that of any physical brain. At such moments they formed an
intellect more powerful than any other in the Universe. All ordinary problems could be solved
by a few hundred or thousand units. Very rarely, millions would be needed, and on two
historic occasions the billions of cells of the entire Paladorian consciousness had been welded
together to deal with emergencies that threatened the race. The mind of Palador was one of
the greatest mental resources of the Universe; its full force was seldom required, but the
knowledge that it was available was supremely comforting to other races.”

From the short story “Rescue Party” by Sir Arthur C. Clarke. First published in Astounding

Science Fiction in May 1946. Written in March 1945 while Clarke was in the Royal Air Force. ltis
the first story that Clarke sold. Many of the themes in this story recur in Clarke’s later work.
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Peer-to-Peer Versus Cloud

Simple example of Skype P2P routing

Nodes involved in 3-way conference call
(FX1, GVl inside NUS, RR outside NUS)
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Both P2P and cloud computing are
scalable, but there is a fundamental
difference between them

Suppose Skype would like to add real-
time language translation ability to its
phone connections

e Skype is based on a dynamic peer-to-
peer architecture

e Real-time language translation needs
elasticity: huge resources (data and
computation), but just for the person
calling

It can’t be done on Skype’s own P2P

architecture because it's not elastic

e The resources are just not there

e |t needs to be hosted on a cloud, as an
extension of the P2P structure
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The “Next Internet Revolution”
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The Internet has gone through
four revolutions since its
inception
e Each revolution takes about
ten years to be internalized
e Old timers like me saw many of
them (I started using it in 1983)
We are now on the brink of a
fifth revolution fueled by
elasticity and based on a
combination of cloud computing
and data-intensive algorithms
e Applications that use massive

resources in short bursts, at a
constant cost



The First Law
(Novelty at Each Scale)




The First Law of Scalability

e At each new scale, the situation changes...

Sam Spade: “Ten thousand? We were talking about a lot more money than this.”
Kasper Gutman: “Yes, sir, we were, but this is genuine coin of the realm. With a
dollar of this, you can buy ten dollars of talk.”

— The Maltese Falcon

e It's like physics: at each higher energy level, new physics appears
No problem is ever solved for all scales (despite claims to the contrary)

e It's a basic law of scalability that even physics cannot get around

e Inlarge systems, we see this every day

Not just computing systems, but any kind of system that can get big, e.g.,
organizations, skyscrapers, etc., needs new ideas at each level of scale

Biological systems take the lead in complexity and the more we look
the more we find (e.g., see [Michal 1999] Atlas of Biochemical Pathways)

Computing systems take the lead for man-made systems
e Let's see what happens when we scale up...
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Randomness

New Scales and New Worlds
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This diagram is adapted
from [Weinberg 1975] An
Introduction to General
Systems Thinking

The disciplines of
computing (invention) and
biology (discovery) are
pushing the boundaries of
the two shaded areas
inwards

We are barely starting to

investigate the surprising
and novel phenomena in
the white area
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e But it has always
existed!

e Nature obeys
the First Law

11

© 2010 Peter Van Roy



Scalabil

n Nature

t

A= 10" Kilograms
o] o e
x5 ol i) [} >+
A 5 C/lo o a4 s
< | p— S oY
I O — —~ Q S 1000 Kil
-~ o -~ i oV
« ) | S N QS S
9 < \ L= 10 m- i L0y 3
<« - \ - | E i N N
O \ Titanic art /-.( "4 Q,
({}.0 e " Daily Receipt by Earth of Solar Energy o N O
N All Electricity Since Tesla NS Q
}f(- /\ X 40 Annm] U.S. Energy Consumption 1.6 \ 3
0/ o A= LT Ki al Annual U.S. Electrical 5 \Q q
‘Q" Ry Daily Output of the Sun a aly v Power Production * N\ o —
— L JE- R A ne Kiogram
0/ " Searly Oupatof e 2 T.s "c Sin & _AHumme e N \Q ‘ ®
y g d e [ - \
0, Y Sn:'r:m oL KY-) 2 b TRy P One Knlogmm of . Q\b
& 0 V "?“, ’J/ it * f \ \Q Matter/Antimateer Annihilation \, \
. N = 100 <;:0 e 7' 2=1,000,000 km . 51,000,000,000 @ 10¢7kw/hr 1 0\3
(5‘0\’ ™ Earth’s Motion Relative 9(‘\0 e N \ AC ’;‘;‘:t” Line Sla(mmr\ 1908 Tunguska E \Lln‘(I PO \
) to the CBR(0O2C) $p» 7/ : on. Photon A= 10%"m™ A
y 5 0/\ \ A= One Kilometer Fission of One Kg of U-235 -— % \0\ A= Pine Ebam
6’{ 0[ Kilogram: « O AM Radio Photon One Gram of Matter/Antimatter Anmhilation ,v“// = - A
& 07 7 Television Photon Avliuulldc lfke a IIZC E ‘0‘3 P
GF y s 2= Ons Metes ; F"“_‘ Atomic Bomb -~ 4
€ 1 = 0y ; b Titanic Fall 1o the Bottom / ]Ol2
] Oy P, W ORE MU A Human's Velocity Relative to CBR Rest |
()PO I o1 2.7° Cosmic Background Photon One Ton of Hydrogen — i = 1 O‘ 1
& = -/ Infrared Photons One Ton of Coal ~~_ |
] v A
- One Elee A One Tonof TNT ~__ L
) ) (,,_()] - One Electron Volt ", 10 i
IVO I Earth at I/:( 37 ~— Red Photon One U.S. Gallon of Gasoline lO / I 0 70
81 _()‘ ~._ — Violet Photon One Kilowatt-Hour (3.6 x lll(’)», < 109 Total Output of the Universe |
| " o1 - ILt:;:::.:l‘;:nll|x:ﬁ;‘nt Hydrogen Atom One Cubic Foot of Natural Gas. | 7 Since Creation

~ | - H e S \ \

Ct’O[ 0\ 2= One Angstrom Unit A One Horse Power-Hour (2.6845 x Il)(‘ Mt ]08 1069
‘ 9= X-ray Photons One Penny @ 10¢/kw/hr o
| \ ray on S >

= 0‘ & g\~ 0 ‘, Electron/Pesitron Annihilation 2= 10 “m {
& Gamma Ray B \ e W N 5
ot ay Bl \} \ / ~ He-3/H:2 Fusion One Wat-Hour (3.6 wh W ps 1O KHlograr / 06,5’
0\ = ol A A 'z‘/ Fission of One Atom of U-235  One BTU (1055 x 10%), \ / 2
vy \of = 30 Kilograms, ooz \\\ N Pmlm/.»\nnpmhm Annihilation Most Powerful Cosmic R'l)\ \ 2 ol
)\ . e One Calorie (4.184) [ A 4 = 10"
\ NN A= 1070 Y Q \\I ~ One Billion Electron Volts ") ,‘0:::'“ / Osx ok \06)
gvo \ " Output of the Sun Since Y Q ~ e ¥, One Erg Ponml (1 lﬁ(\) _ a5 l)\ cay energy of
A\ Formation Q\' Q\ \ P o J ; A= 1077 P B O\_, neutrons \ / /
o B P e ¥ 05,
ov ; Yearly Ouputof the Milky Way ¥ 5 S = — =S One joule is the amount of /
=103 Kg \ g o A energy of a one kilogram mass  \ / @
\F‘Q P vod] ow ot moving at V2 meters per second. \ Oy
& S =Mv? G o
a qQ Gamma Ray Burst 2 I\\ qu
% lonization energy of 2% / )
protons and clectrons

R
69@
S

Diagram
© Absolute Motion Institute

Dee 14, 1997 ation énerey of 2256
\ S N

") 5

S

N

Yearly Output of the Universe \

2.1 / A= 10"m ,/_i” if /O C‘Y)
A ey o a8 Lo B
& D o =
TR BRI 8 ¢
& =] 4 o
= 107" Ki T

© 2010 Peter Van Roy

Energy is a basic
component of the
universe

Energy obeys
conservation and
linear superposition
properties

We observe 100
orders of magnitude
in energy levels

From a stationary
photon to the total
output of the universe
since creation

Something new and
interesting happens
at every energy level
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Humans strive to obey the First Law too
These giant figures can only be seen from the sky: intended for the gods?

© 2010 Peter Van Roy
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Striving for the First Law 3

e Successful complex structures built by
humans are successful precisely because
they obey the essential laws of complexity

e Itis therefore worthwhile to try to
understand them in a scientific way

15
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Scalability and Transparent s
Distribution (A Personal Experience)
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1 pipe, 3 clients, 2 servers =) Same code with another =) Same on one machine
on six machines distribution structure (during development)

e Goal: make the accidental complexity of distributed programming disappear,

leaving only the essential complexity o t
e Achieved by the Mozart system in 1999 ( y mear

e But the First Law is not so easily vanquished: beyond ~10 machines, the

application structure needs to change!
16
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Scalability in Programming

Program complexity timeline ©

=) Heisenberg applications
) Data becomes dominant
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A Glimpse of the Future... :

e Today’s Internet...
e Internet = 800,000,000 hosts (2010, www.isc.org);
biggest cloud = 1,000,000 hosts (2010, Google)
e Even the biggest clouds cannot meet the demand
e Organizations will build clouds of different sizes

All clouds will be elastic, limited only by their size
Pressure to increase elasticity will cause them
to federate (peer-to-peer clouds)
e The future Internet will consist only of clouds
e The word “cloud” will cease to have special meaning
e Virtualization and elasticity will be omnipresent

e It will be elastic, data-dominant, and self-learning
e Elasticity will be used at all scales ‘
e Programs will use learning to improve themselves
e Typical example: real-time audio language translation

© 2010 Peter Van Roy



Elastic Computing and
Heisenberg Applications




Elastic Computing

e Two main infrastructures for scalable computing
Peer-to-peer: use of client machines (my current expertise)
Cloud-based: use of datacenters (my future research)

e Cloud is elastic; peer-to-peer is not

Elasticity: the ability to scale resource usage up and down
rapidly according to instantaneous demand

Elasticity is a new property that did not exist before clouds

e Elasticity makes possible Heisenberg applications

Applications that use enormous computational and storage
resources for short times, but at constant (low) cost

A new kind of application that did not exist before clouds

20
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Computational Heisenberg e
Principle (1)

e Acloud has two key properties:
e Pay per use: pay only for the resources actually used
o Elasticity: ability to scale resource usage up (and down) rapidly

e For afixed cost, as the time interval decreases more resources
can be made available:

e | For a given maximum cost, the product of resource amount
and usage time is less than a constant

e Analogy with Heisenberg’s Uncertainty Principle in physics: the product of
uncertainty in time and uncertainty in energy is equal to (or greater than) a
constant. This increases the probability of events that use arbitrarily high
energies if the time period is short enough. As long as the high energies are
less than the uncertainty, then they are allowed!

This is a property of the system itself, not a limitation of measurement!
At-AE = cand t,,,sAtand E_,,SAE implies t E

e This opens the door to new applications that could not be done before

<C

allow allow allow

21
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Computational Heisenberg e
Principle (2)

e For given fixed resource cost

Available resources . C .
Co, What kinds of applications

can run?
. t-r< Co e Before clouds: all applications
/ lived | hich
% | lved In whic
%% » Cloud resources for cost ¢, gives local resources for

\\\\\\

\\\\\\\\

maximum cost ¢, (r < rp)

Local resources for cost c, e With clouds: dark blue area
becomes available for the

o ; same cost (r >ry)
¥ e The dark blue area is the home

of Heisenberg applications

Time intervazl o Like a data-intensive application
fo combined with machine learning
techniques 29
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A Heisenberg Application (1): | :::
Real-Time Voice Translation

e The pieces of this application already exist; for example the IRCAM
research institute has implemented many of them

e |t requires combining domain knowledge (in sound and language)
with an enormous sound fragment database, hosted on a cloud

English/Chinese

sound fragment (purely hypothetical design!)
database
English I Chinese
voice L Decomposition , , L voice
I_Normalllzatlor) to % into phoneme R Lookup in R Concatenqtlve R Deno_rr_nallzatpn X
canonical voice sequences sound database synthesis to original voice

e Performance will be gradually improved through feedback from
bilingual speakers and speech recognition technology

e Franz Och, head of translation services at Google, announced
recently that they are working on something similar (Feb. 10, 2010)

© 2010 Peter Van Roy
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A Heisenberg Application (2): | ::
Ubiquitous Augmentation

e Your sensory input will be "augmented” in real-time
Faces, objects, and names you see will be recognized
Selected relevant information will be given spontaneously
Foreign languages (text, audio, visual) will be translated
When doing an activity, you will be guided to do it expertly
When confronted with a problem, solutions will be suggested

e The augmentation will be good enough that it can be
always enabled (it doesn’t get in your way)
It will learn to mesh with your thinking processes productively

On the rare occasions that it is disabled, you will feel helpless

As if half of your brain just stopped working
Like today’s Internet addictions, but much worse!

24
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The Second Law
(Only Local Control)




The Second Law

In the limit of increasing scale, large systems
have only local control

The system is concurrent and nondeterministic
by default

Messages can take arbitrary time to arrive
(asynchrony) and failures are hard to detect

Global control must be programmed and it can
be very expensive or impossible

Sometimes global control is just impossible

In a purely asynchronous system, consensus
is impossible to achieve even if just one
process can crash [FLP 1985]

Consensus can be achieved by adding
synchrony or randomness, both of which may
be too drastic

But not all is bad news

Failures are local too

Some global control is possible, but less and
less as the scale increases

NAHRUNG

i () Al
AusKahn, DAS LEBEN DES MENSCH ranckh’sche Verlagshandlung, Stuttgart /

A typical large system

© 2010 Peter Van Roy
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. eo0o
The Internet is Treacherous 33
o0
[
As the Sea
Any application Asynchrony: many failure suspicions Synchrony: known delays
or algorithm (algorithm’s goal: don’t crash!) (algorithm does its job)

B

Clipper Heavy storms at sea Sea calms down
(clipper’s goal: don't sink!) (clipper reaches shore)

e Asynchronous system: messages take arbitrary (but finite) time
e Synchronous system: messages take fixed maximum time

e \What about the Internet?

e It starts out asynchronous (stormy) but eventually becomes synchronous (calm)

o But we don’t know how long this will take or what the message delays are! 07

© 2010 Peter Van Roy



Coping with Asynchrony

e The perennial dilemma
e Asynchrony is natural and has higher performance
e Synchrony is easier to use (each operation is finished before the next)

e [wo extremes

e Extreme 1: Push the asynchrony into the lower layers (e.g., libraries) for
performance, and keep the user layers synchronous

e Extreme 2: Rewire the user’s brain to adjust to asynchrony (e.g., use
notifications and keep work state external to user’s brain)

Only works up to a point, because asynchrony is fundamentally harder for
human conscious since it needs many context switches

e Compromise: Use asynchrony by default and insert synchronous
operations occasionally to simplify the system

e Let us see how this works out in a real system...

28
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The Right Way

and the Wrong Way :

e Ericsson AXD 301 ATM

Switch: >1 million lines

of Erlang

e Erlang: Concurrent and
independent by

default, asynchronous
messages, multi-agent

programs
e Java: Sequential and

monolithic by default,
X synchronous RMI,

shared-data programs

Call Handling Throughput for one CP - AXD 301 release 3.2

Traffic Case: ATM SVC UNI to UNI

100%
95%

40%

A

Call T'roughput
in % of maximum sustainable
call handling (set-up + release)

capacity

200 call set-up/s or
115 call/s sustained

100%

Abbreviations:
e CP Control Processor
," ATM  Asynchronous
e Transfer Mode
J’ Rejected SVC  Switched Virtual
e Calls (ATM) Channel
/ UNI User-Network
Interface signaling
------- Lo-a d- fl;IIT h;nEling prOtOCOI
of rejected calls

Offered Load
in % of maximum
call troughput

1000%

150%

e A heresy: object-oriented programming is irrelevant for the Internet!
e Important: isolation, concurrency, asynchronous messages, higher-order programming
e Unimportant: inheritance, classes, methods, UML diagrams, monitors

29
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e The user has almost no influence on
these choices (message arrivals,
process scheduling)

e The choices may or may not affect
the results

Good nondeterminism: choice

does not affect result (benign)

e Choose path (to same destination)

e Choose order of independent
operations (client A or client B)

Evil nondeterminism: choice
affects result (race condition)
e Choose destination

e Choose order of dependent
operations (credit or debit)

© 2010 Peter Van Roy



Concurrency

Concurrency is hard, so let’s not fight it head-on, but use its power...

Coexistent
programming
(systems as—
collections of
separate parts)

Concurrent components

‘ ‘ or “agents” or “services”

‘ ‘ ‘ Parallel processors
or “cores’

© 2010 Peter Van Roy

—_—

Concurrent
programming
— (software,
independence)

HW/SW
boundary

Parallel
programming
[ (hardware,
speed)
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“Mostly” Independent Parts

e Large systems consist of mostly independent parts
e Gas in a box: molecules mostly independent, occasional

interaction when two molecules collide.

Peer-to-peer network: peers mostly independent, occasional
interaction between neighbors only. Can provide efficient and
robust communication and storage infrastructure (see later).

Gossip algorithm: nodes mostly independent, occasional
interaction between random pairs. Can efficiently solve many
global problems such as diffusion, search, aggregation,
monitoring, and topology management.

Swarm intelligence: collaborative behavior among large
numbers of simple agents (e.g., flocking and swarming).
Each agent interacts with only a small number of neighbors.

32
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Gossip Algorithm: HE

Topology Management :

==

after 3 cycles after 5 cycles after 8 cycles after 15 cycles

e The T-Man algorithm does topology management using a gossip algorithm
e Each node periodically picks a random node and exchanges information with it
e Each node has a ranking function that knows what distances nodes are supposed
to have in the desired topology (i.e., a torus emerging from a random graph)
e The topology emerges in a few cycles (one cycle = one update per node)

e The algorithm is efficient, extremely robust, and can track changes
33
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The Third Law
(The CAP Theorem)




The Third Law

e The CAP theorem was conjectured by Eric Brewer at PODC
in 2000 and proved by Seth Gilbert and Nancy Lynch in 2002

e For an asynchronous network, it is impossible to implement
an object that guarantees the following properties in all fair
executions:

Consistency: all operations are atomic (totally ordered)
Availability: every request eventually returns a result
Partition tolerance: any messages may be lost

e The CAP Theorem applies for all systems, at all levels of
abstraction, and at all sizes

It can be applied in many places in the same system
The whole system is a rainbow of interacting instances of CAP
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The CAP Triangle

C+A

(...) = read-only

Key-value
stores
Distr. DB

Trade-off Trade-off

Trade-off

© 2010 Peter Van Roy

The CAP space hugs the
edges of the triangle

e Costincreases toward
the center

e The center itself is empty!

All parts of the CAP space
have their uses

We have arranged some
applications around the
triangle according to
perceived functionality

e \Very little systematic study
has been done about
navigating in this triangle
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Designing with CAP
e C is hard to achieve (Second Law) —| (P+A, no C) is the default
e Consistency requires global coordination
e Avoid needing C if possible
e We can achieve robustness (P) and performance (A)
DropBox and Web cache give P and A, but not C
Wuala and BitTorrent are read-only, achieve C easily
Mercurial is consistent if connected (C+A), but is still usable if disconnected (P+A)
e Butif we really need C
e Give up A — Waiting sometimes needed
e Give up P — Fragile system
Distributed database guarantees C but will block if there is a partition
e We can have our cake and eat it too, if we pay the price
e Highly reliable communication channels and fault tolerance
e Weget CandA, and we “seem” to get P as well (actually, we just have less partitions)
Scalaris, Beernet: peer-to-peer with majority consensus (Paxos) gives robustness
Cassandra: run on cloud, not peer-to-peer (does not support loose coupling)
37
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Designing for
Scalability




Design Rules for Scalability?

e How can we learn how to build scalable systems?
The First Law says new ideas are needed as the system grows
But finding new ideas requires blood, sweat, and tears

e Short-cut: study existing systems that work

Biological systems have already treaded this path and are
suitably huge (see [Michal 1999] Atlas of Biochemical Pathways)

Some computing systems have treaded this path as well,
especially Internet protocols and applications

e Learn lessons from both kinds of systems
And maybe come up with some general principles?
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First Step: 13
Decide on the Scale

e Centralized systems are much easier to design than
decentralized systems

But the degree of centralization that’s possible depends on the
scale: larger scales support less centralization (Second Law)

LAN: centralized control
Internet: centralized address assignment, decentralized routing
Internet on the scale of the solar system
e Decide on the desired scale, and introduce the maximum
possible centralization that’'s possible at that scale
Note that your design will not work for larger scales (First Law)
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Second Step:

Add Consistency :

split/merge

e Every scalable design starts as a decentralized system | (P+A, no C)
e A coexistent system of independent pieces (Second & Third Laws)

e Nodes occasionally interact (add some C) — collaboration, emergence
e  Split protocol: what happens when a node leaves a group (may be abrupt)
e Merge protocol: what happens when a node joins a group

e Merge is based on data coherence and may need input from highest level
e Many examples: biology, peer-to-peer, map-reduce, gas/liquid/solid, ...
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Third Step: ee:
General Design Principles

e \We start with a decentralized system (P+A, no C)
e The problem: how much C do we need and how do we add it?

e The rest of the talk explores how to add C
e Human respiratory system (biology)
e Decentralized transactional store (computing)
Scalaris and Beernet peer-to-peer structured overlay networks

e More examples in the stub slides: TCP, hotel lobby, human
endocrine system

e These examples motivate general design principles
o We present two: complex components and phase behavior
e Main design principle:
weakly interacting feedback structures
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Weakly Interacting Feedback |::
Structures

e An active entity communicating with its neighbors through
asynchronous messages (Second Law)

e ‘Intelligence” concentrated in core components
e Feedback loop

e Monitor, corrector, and actuator components connected to
a subsystem and continuously maintaining one local goal

e Feedback structure

o Aset of feedback loops that work together to maintain
one global system property

e \Weakly interacting feedback structures
e The complete system is a conjunction of global

-
properties, each maintained by one feedback structure - ———
e The feedback structures have dependencies based on @ ~

the operating conditions (Third Law)
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Human Respiratory System
and Complex Components

© 2010 Peter Van Roy
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Human Respiratory System :

Trigger unconsciousness
when O2 falls to threshold

The Operat|0n Of the Render unconscious
h uman res pl rato ry (and reduce CO2 threshold to base level)
System |S glven as one Conscious contrql i 4— Other inputs
feedback structure Ol body and breathing
) r Increase or decrease breathing rate
inferred from a precise and change CO2 threshold

. T (maximum is breath—hold breakpoint)
medical description of P —
. . rigger breathing retlex
ItS behaVIOr when CO2 increases to threshold

Trigger laryngospasm temporarily
when sufficient obstruction in airways 4\
Breathing Laryngospasm Ob]S)tfltli(;iton Mg&(l;lzlre Monitor Megszure
reflex (seal air tube) in airways in blood breathing in blood
Q Breathing apparatus g JJ
. in human body

Some deS|gn rules: Actuating agents Monitoring agents
e Default behavior: rhythmic breathing reflex
e Complex component: conscious control can override and plan lifesaving actions
e Abstraction: conscious control does not need to know details of breathing reflex
e Fail-safe: conscious control can itself be overridden (falling unconscious)
e Time scales: laryngospasm is a quick action that interrupts slower breathing reflex .
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State Diagram
laryngospasm
obstructionT
Conscious | conscious conscious
breathing decision decision
lecision or
oxygenlow/  onscious breath—hold
decision breakpoint
time out oxygen low time out
Unconscious \— = Unconscious
laryngospasm b Stction breathing W breathing P A—— laryngospasm
e The human respiratory system can be seen as a state diagram
e Dominant subset = active subset of feedback loops = state
e Atanytime, one subset is active, depending on operating conditions
e [Each subset corresponds to a state in the state diagram '
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Power is Built In, Not Added On | :

3.6-Liter Biturbo Motor
with 3563 kW (480 HP)

| Porsche Carrera GT

e The power of a system depends on the strength of its complex components

The human respiratory system uses conscious control (e.g., to avoid drowning!)
Erlang OTP uses supervisor trees and a database to implement robustness
Scalaris uses Paxos consensus and replication to implement fast transactions
Google Search uses eigenvector calculation of the Web link matrix

What does your system use? 4

© 2010 Peter Van Roy



Some Complex Components

e Human intelligence

Main strength: adaptability (dynamic
creation of new feedback loops)

e Program intelligence

Can easily go beyond human
intelligence in many areas!
Turing test is irrelevant. complex
components are already replacing
humans in more and more areas
Minesweeper digital assistant: uses
constraints (easy to program!)

Chess: uses alpha-beta search with
heuristics
Compiler: translates human-

readable program into executable
form

© 2010 Peter Van Roy
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v Autoplay

Z Zero propagation
Z Binary Constraints
' Set Constraints

__ Binary search

= Set search

3 representatives
for 2.94944e+15
solutions
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More on Complex Components

e Complex components completely solve a problem inside
a specific (small) part of the space of system operating
conditions (from the viewpoint of the rest of the system)

Conscious control, a chess program, and a compiler are
extremely smart within their operating space

Outside of this space, they can be very stupid and should be
inactive (on their own accord or forced)
e Complex components are completely unpredictable
when viewed from the outside
If it were not so, they would not be needed!
They can be highly nonlinear and unstable; the rest of the system
has to trust them (up to some hardwired fail-safe)
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How Come Conscious Control
is So Smart?

e Cognitive science and neurology try to understand why

The brain uses brute force, but in a very smart way

Conscious control is a bricklayer: it continuously builds and
organizes new components on top of existing components

This process is continuous from birth with compound interest effect,
which is why humans are so smart in common-sense tasks

It continuously brings the most useful concepts to the top
(cache organization combined with “grandfather cell”)
Manipulating common concepts is made easy

“Mirror neurons’: it can use its own components to simulate other
humans, which is why humans can empathize so well with others

It can efficiently execute up to two complex programs at once
("walking and chewing gum”), because of the two-lobed structure
of the brain
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Transactional Store
and Phase Behavior




THE ADVENTURES OF

gLFMAN A Peer-to-Peer Key/ T
S Value Store: Scalaris

WIKIPEDIA
English Deutsch
The Free Encyclopedia Die freie Enzykiopédie
500 000+ articles 210 000+ Artikel
Francais
7 SRR f SRR, Liencyclopédie libre
105 000+ BB ° 90 000+ articles
‘ AGY
Svenska ic a 1) Polski
Den fria encyklopedi A Wolna Encyklopedia
ooooo + artiklar T O [ ¥’ 60 000+ haset
0

Nederlands NS Espafiol
De vrije encyclopedie - La enciclopedi .
60 000+ artikelen 000 <:| st rong data consiste ncy

V= atomicity, consistency,
isolation, durability

<= availability

{3 scalability

S

scalaris— Skey—value A Sconnect A Sroute A
Sload A Sreplica A Strans

The Scalaris specification is a conjunction of
Six properties. Each non-functional property
is implemented by one feedback structure.

S N\

Sconnect_’ Sroute - Sreplica - Strans

S/oad

e Scalaris is a high-performance self-managing key/value store that provides
transactions and is built on top of a structured overlay network
e A major result of the European SELFMAN project ( )
e 4000 read-modify-write transactions per second on two dual-core Intel Xeon at 2.66 GHz

e Scalaris has five WIFS: connectivity management (S,,,..s), routing (S,,,), load

balancing (S).,,), replica management (S,,,,;..), and transaction management (S

trans)
52
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Structured Overlay Networks

Ring

e Structured overlay networks

o By far the most popular structure,
it has many variants and has

s S are often based on a ring
, \
\.’(S}]BUD

s been extensively studied
: A e Self organization is done at
‘ 7 " two levels:

e The ring ensures connectivity: it
must always exist despite node

--r‘v‘

KAl joins, leaves, and failures

e The fingers provide efficient
‘V routing: they can be temporarily
Fingers In an inconsistent state
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Structured Overlay Networks:
Inspired by Peer-to-Peer

e Hybrid (client/server) m RiN-1 (hub)
o Napster & o R = 1 (others)

H=1

e Unstructured overlay

e Gnutella, Kazaa, R = ? (variable)

Morpheus, Freenet, ... H=1..7
e Uses flooding (but no guarantee)
e Structured overlay o /N o
e EXxponential network R=log N
e DHT (Distributed Hash C O H=log N
Table), e.g., Chord, DKS, (with guarantee)
Scalaris, Beernet, etc. @ Vi ©

54
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THE

S

ADVENTURES OF

gLFMAN A “Relaxed” Ring: ees

Beernet

Bushes

© 2010 Peter Van Roy

The relaxed ring is completely

asynchronous

e Join and leave are completely
asynchronous

e The bushes appear only if
there are failure suspicions

e Beernet implements the
relaxed ring (SELFMAN)
There is a perfect ring (in red)
as a subset of the relaxed ring
The relaxed ring is always
converging to a perfect ring

e The bushiness depends on
churn (rate of change of the
ring, leaves/joins) and failure
suspicion rate (communication
delays)
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Phases in the Relaxed Ring
O O O
o O°
I.ncrease Ipcrease @@
failure rate failure rate @ @ @ @
Decrease Decrease @G @ %G @
failure rate failure rate @@ @ @@
© o O
Solid phase Liquid phase Gaseous phase
(fixed neighbors) (changing neighbors) (no neighbors)

e The relaxed ring has (at least) three phases
e Uses ring merge algorithm developed in SELFMAN
e We are studying how the ring reacts to external stress (phase transitions)

e Key questions:
e How do the phases show up at the application layer? (“qualitative changes”)
e How do we know when we are near a phase transition? (“early bubbling”) 56
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Phases in Large Systems °

1TPa ]
Water phase diagram
3 VI (Copyright © Martin Chaplin)
E \ =]

1 GPa§

\':

1

\"HIL

Liquid

P

................... e Aphase is aconcise

—

characterization of an

Ih

aggregate behavior in a

Pressure
=
0
[4)]

XI

1kPa%—

system consisting of many

interacting components

Vapor

e Phases appear in many

1Pal

large systems

/

e Not just physical systems

100

200 300

400 500 600
Temperature (K)

700 800 900 1000 (water) but also computing

systems (like peer-to-peer)

e Different parts of the system can be in different phases (no global synchronization!)
® Depending on the local operating conditions (environment)
® Boundaries between phases can be sharp or diffuse
o Phase transitions and critical points can occur if operating conditions change
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Conclusions and
Prospects




Conclusions and Prospects

e Laws of scalability
e First Law: new phenomena appear at each scale
e Second Law: as scale increases, systems have only local control
e Third Law: pick two of consistency, availability, partition tolerance

e Clouds are a key part of the next Internet revolution
o Elasticity leads to Heisenberg applications
e Demand will cause proliferation of federated clouds
e Design for scalability: a research agenda
o Weakly interacting feedback structures with dominant subsets
e Complex components to solve the problem in limited conditions
o Phases to define behavior over all possible operating conditions
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The Structure of Elasticity
Elasticity of clouds has been compared to an electric grid
e This is a reasonable comparison, but elasticity in clouds is Electric grid

more complex than in electric grids (for example, often the O

storage must survive since it is shared by many tasks)
Elasticity in clouds has two dimensions:
computing/storage vs. unrelated/related

e Elastic computing: often amortization between unrelated tasks l
But computing can also involve related tasks (solution sharing)

(power,unrelated)

o Elastic storage: often amortization between related tasks :
5 . Elastic cloud
ut storage can also involve unrelated tasks (temporary storage)
Elastic tasks are grouped depending on whether they are computing Stor’ige)
related or not anretated | O O
e Storage tasks are related when they share storage
e Computing tasks are related when they share solutions olated O O
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Scalability Implies Long Life

e A scalable system is not just large, it is also long-lived

e Memory leaks

e Memory leaks are hard to find in distributed systems because of remote
references and failures. There is no practical algorithm for true distributed
garbage collection.

e The best technique is still distributed reference counting, with time-lease
references and program management of distributed cycles. This crosses all
abstraction layers.

e Partial failures
e Failures of parts of the system are frequent and can be fixed by redundancy
e Software rejuvenation

e Periodically restart the system with a valid state recovered from the previous
incarnation. This solves both memory leaks and partial failures.

e Used by biological systems for eons: it's why we are not immortal. A fertilized egg
is a newly initialized process. The older we get, the more defects accumulate.
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Scalability and Concurrency

e The Second Law implies concurrency (independence) by default

e Concurrency and parallelism are often confused, so let us define their
common core, “coexistence”

Concurrent = consisting of logically independent parts (programming concept)
Parallel = executing on separate processors (hardware concept)

Coexistent = “existing together” (dictionary definition)

Coexistent design: the discipline of building systems as collections of separate parts (at
all levels, including hardware and software)

e Concurrency has always existed in computing
All programs can be decomposed into almost-independent parts

e Parallelism was a fringe area until recently
Multicore processors since 2001 (IBM POWER4 dual-core)
Distributed programming mostly client/server until 1990s

e Now parallelism is mainstream and concurrency is embracing it

For multicore: add dataflow ideas to programming languages (sociological!)
For Internet: techniques from distributed algorithmics (still very technical)
66
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Scalability in Dynamics 2

Nonlinearity
A
Growth, decay, _ | Here be dragons  ¢qjective Waves and
e Oscillations
and equilibrium | phenomena patterns
|
| g
Solitons
Limit cveles E Ethr_oII_eclc_h ik ] Lasers Earthquakes
Fixed points Pendglum nt Ch.at?s i Neural nets Fibrillation
- -] Bifurcations ntermittency ; Immune system Epileps
Nonlinear Hysteresis Predator-prey - strange attractors | Econorr¥ics Turpbulgnze
Biol. oscillators - 3-hody problem | Ecosystems Gen. relativity
Fractals | Life
B NS B S
- Civil eng. Solid-state physics 'V'a.?WYe”
. RC circuit RLC cwcqlt structures Equilibrium Schrod_lr)ger
Linear— Radioactive Decay 2|\_/Ibaosds * ?g&g?n Electrical stat. mechanics Wa\I/E elaeStlggi ons
yp eng. circuits  Molecular dynamics Diffuqsion
| | | | | > Dim
1 2 >3 >>1 continuum

e From [Strogatz 1994] Nonlinear Dynamics and Chaos
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Simple Forms of Concurrency are
the Right Defaults

1. The simplest paradigms for concurrent programming are
deterministic dataflow concurrency and message-passing
concurrency

Compare the simplicity of Concurrent Programming in Erlang with the
complexity of Concurrent Programming in Java

Deterministic concurrency is the key to simplifying concurrent
programming. All forms of deterministic concurrency are explained in

[Van Roy 2009].
2, The Erlang language and system is used successfully for building
highly available systems; it uses message-passing concurrency with
independent agents

3. The E language and system is used successfully for building secure

distributed systems; it uses deterministic concurrency to avoid the
covert channels of nondeterminism

© 2010 Peter Van Roy
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Civilization Relies on -
Feedback Loops

Most products of human civilization use an implicit management
feedback loop, called “maintenance”, done by a human
e Changing lightbulbs, replacing broken windows, filling up a car

Each human mind is at the center of many such feedback loops

e Most require very little conscious thinking, since they have become
“habits”™: programmed into the brain below consciousness

e [Each human being creates huge numbers of such habit programs

But if there are too many feedback loops to manage then the human
complains that “life is too complicated”!

e “Civilization advances by reducing the number of feedback loops that
have to be explicitly managed” (Van Roy’s corollary to A. N. Whitehead'’s
dictum)

e Adishwashing machine reduces work of washing dishes, but it needs to

be bought, maintained, replaced, etc. Is it worth it? Is the total effort

reduced?
69
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Hotel Lobby Example
(from [Wiener 1948])

e Two loops interacting through a common subsystem (stigmergy)

Thermostat
]
%ibesman
F irw

Hotel lobby Calculate corrective action

Tribesman
(stoke fire if too cold)

Thermostat
f’i (run aircond. if too warm) ﬁ
Stoke Run Measure Measure
) ) o temperature temperature
fire a1rcond1tloi> near fire in lobby
!4 Hotel lobby /J
Actuating agents Monitoring agents
Subsystem

© 2010 Peter Van Roy

This is unstable!

e The tribesman stokes the
fire but gets colder and
colder because the
airconditioning works
harder and harder

Wiener leaves the fix

as homework for the

reader

One possible solution:
outer loop (tribesman)
controls the other by
simply adjusting the

thermostat
e One loop controls the
other 70



Correct Solution Uses

Management

Tribesman
(adjust thermostat)

Thermostat
(run aircond. if too warm)

—

Run

airconditioning

-

—

Measure
temperature
at thermostat

Measure
temperature
at tribesman

Hotel lobby

—

e |nstead of stoking a fire, the tribesman simply adjusts

the thermostat. The resulting system is stable.
e This uses management instead of stigmergy

e Design pattern: use the system, don’t try to bypass it

© 2010 Peter Van Roy
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TCP Feedback Structure

Send Send

stream  acknowledgement o
Outer loop (congestion control)
Calculate policy modification
(modify throughput)
Inner loop (reliable transfer)
o

Calculate bytes to send

ﬁ (sliding window protocol) ﬁ

Actuator Monitor Monitor
(send packet) (receive ack) throughput

| /‘

!
|
o
Subsystem J

(network that sends packet to

destination and receives ack)

© 2010 Peter Van Roy

This example shows a
reliable byte stream
protocol with congestion
control (a variant of TCP)
e This diagram is for the
sending side
The congestion control
loop manages the
reliable transfer loop
e By changing the sliding
window’s buffer size
With n connections there
are n feedback
structures interacting
through a shared
network (stigmergy)

e Thisis an example of a
system with n WIFS 7



PageRank in One SI

ide

e Each Web page holds a quantity of stuff called its “importance”

e At each step, the “importance” flows out along the outgoing links
And new stuff comes in through the incoming links
Not all flows out (damping factor d = 0.85) since paths are not infinite

e We iterate until the amount is the same for all pages

The final value gives an indication of how important a page is: a page is more
important when there are more links from pages that are themselves important

e This is a global fixpoint calculation: the PageRank values are the entries of
the dominant eigenvector of the Web adjacency matrix with damping factor

PR(p,) | (1—d)/N
. PR:(PQ) R _ (1- _d)/ﬁ' i d
| PR(py) (1 d)/N]

PageRank vector

Normalized Web adjacency matrix
A

- N
[(p1,p1)  Up1p2) {(p1,pn) ]
{(p2, 1) :
: {(pi, pj)
L(pN, 1) {(pn,pN) ]

matrix and adjust with damping factor
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PageRank equation: multiply R by adjacency
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Hypothalamus-pituitary-target | ss¢
organ Axis (Endocrine System)

Target glands

Physical and _ , o B _
emotional pituitary tritodothyronine,
stresses hormones thyroxine
Thyroid Target
Immune | ¥ tissues
system (inhibit) (inhibit) thyro—
‘ : tropin - .
P | cortico—- (all) steroid
REWTo= tropin Adrenal hormones Target
Y Y Y hormones Y e L :
cortex tissues
Central Anterior
nervous — Hypothalamus — . —
system pituitary | \ 1 estrogens,
‘ Gonads androgens Target
A e = (testes& = "
flnhlb”} / grow[h - gona .0_ ovanes) 1SSuces
e hormone, ropins
somatotropin ,
Hormone secretion is inhibited by high local concentration ( pi) ' growth
Hormones are consumed by target tissues . Liver& factors Target
. . - . . \ ) | ——
Carrier proteins in bloodstream buffer the hormone (reduce variations) other tissues tissues

Estrogens increase and androgens decrease the carrier proteins
Many hormones have pulsed secretion, regulated by melatonin (pineal gland)

Two superimposed groups of negative feedback loops, a third short negative loop, a
fourth loop from the central nervous system (from [Encyclopaedia Britannica 2005])

This diagram shows only the main components and their interactions; there are many
more parts giving a much more complex full system
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Design Patterns oo

for Feedback Structures

Archetype Family Tree T,
from [Senge 1994]

Reinforcing Loop

vicious and virtuous spiral Balancing Loop

While waiting for my

But my growth X fix to take hold, to 'Bt.l! my
seems to lead But nothing relieve the tension,  fix is your But sometimes,
to your decline... 9OWs forevever... I become satisfied  nightmare But | don't know the reaction But my fix comes back
| form a partnership / with less ... / what I'm goin‘g to do is not immediate to haunt me
for growth, but end up
feeling betrayed ... . . \
Suscl:::(:ssst:ﬂ}lhe Limits to Growth Drifting Goals Escalation Indecision Balag(;llr;g; with Fix that Backfire
... so, if we're all
up against the The drifting goals . )

I have more than same limit My capacity is my undermine my long-term ) . - because I'm getting
one limit and can't limit. Therefore, my growth ... ...by making my partner into at the real underlying
address all of them capacity isn't large an adversary ... cause ...

equally... enough... l
The Anracﬁlveness Tragedy of the Gr_owth & Acmdent_al Shifting the Burden
Principle Commons Underinvestment Adversaries
... but there's a but once | become
temptation to let my add/ctgd to thg
standards slip instead ... symptomatic solution ...
Growth &
Underinvestment Addiction

(drifting standards)

e We can arrange feedback structures in a tree according to their

relationships and the problems they solve
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What About ool
Levels of Abstraction?

e WIFS architecture seems to imply a single level, yet
novelty is observed at all levels
How can we reconcile this with the First Law?

e Solution: WIFS structure exists at all levels,
organized according to Second and Third Laws
(asynchrony and CAP)

e For example, in a multicellular organism:

Single cell contains many WIFS, cells communicate
following CAP constraints

Organs uses WIFS to maintain its operation

Complete organism uses WIFS to survive in its
environment
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More on the Relaxed Ring

False failure suspicions are common on the Internet
e We do not want to eject the node from the ring when this happens

The relaxed ring solves this by doing ring maintenance in asynchronous
fashion [Mejias 2008]
e Nodes communicate through message passing

e Forajoin, instead of one step involving 3 peers (as in Chord or DKS), we have
two steps each with 2 peers — we do not need locking or a periodic
stabilization algorithm

Invariant: Every peer is in the same ring as its successor

p—>t
Ppe—(q
s > t
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Nonlinearity

e The world is a curious combination of linearity and nonlinearity
Linearity = independent parts = whole equals the sum of the parts
Nonlinearity = interacting parts = whole is more than the sum of the parts

e Why are nonlinear systems so much harder to analyze quantitatively
than linear ones?

Because in linear systems, the parts can be analyzed separately and then

combined (superposition principle, compositional systems)
But there is a surprising twist: many nonlinear systems can be analyzed
qualitatively (with a combination of geometrical reasoning and some analysis),
which is often good enough
See [Strogatz 1994] Nonlinear Dynamics and Chaos

We need nonlinearity for “intelligent” behavior, but...
Too much nonlinearity makes the system fragile
That’s why biological systems are made of weakly interacting subsystems

e \What about nonlinearity and scalability?
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Nonlinearity and Scalability

e Large systems must be mostly linear

Large systems consist of parts that can be superposed
Basic physical quantities are additive (mass, force, momentum, energy)

Because they can be superposed, the system is linear

e They can’t be completely linear, though
Because we need nonlinearity for all nontrivial behavior
Interaction of two feedback structures is nonlinear
State change of a feedback structure is nonlinear
Complex components are nonlinear

e Therefore we should add nonlinearity where needed but no more
Current computing systems are far too nonlinear and discontinuous
They should be mostly linear with a smidgen of nonlinearity
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Degrees of Increasing t
Irregularity in a Large System

1. Existence of probability distribution

e Statistical physics holds, all microstates have equal probability, behavior
is thermodynamic (describable by macroscopic state variables)

e Unfortunately, most simulations and models are stuck here!
2. Critical point
e Minor fluctuations can be amplified without bounds
e The limit of statistical physics
e Many computing systems have critical points (garbage collectors,
dynamic hash tables, wide-area routing, virtual memory)
3. No probability distribution exists (“Black Swans”)

o We know only the range of behavior, frequency limits do not exist
Dijkstra’s guarded commands have this behavior

e Complex systems, program verification, distributed algorithmics
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