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Abstract

Cloud computing has enabled myriad of computer applications to benefit from dynamic

provisioning of resources. Computer applications must often adjust their resources in response

to changes in the environment, in order to satisfy business-defined goals. However, engineer-

ing decision-making mechanisms to help the deployment and management of resources in cloud

contexts is a challenging task. In fact, applications running on cloud infrastructures call for

automated mechanisms that: (1) explore efficiently large solution spaces (defined by the com-

bination of machine types, provisioning actions, and state transitions expected in the temporal

horizon); (2) generate deliberate plans to operate the system in a way that satisfies require-

ments, maximizes performance and minimizes operational costs; and (3) support the definition

and revision of policies to adapt the system under expected conditions. Automated Planning,

the area of artificial intelligence concerned with synthesizing plans of actions to achieve a goal,

offers opportunities to address these challenges.

This thesis focuses on the design and evaluation of mechanisms that exploit automated plan-

ning to support the deployment and management of applications running in cloud environments.

To this purpose, this thesis presents three contributions: (1) a solution to the (offline) gen-

eration of reactive policies that exploits classical planning languages and tools to support the

definition and revision of policies, applicable under common conditions; (2) a solution to the

(online) generation of proactive plans that takes advantage of temporal planning and behavioral

predictions to reconfigure interactive applications; and (3) a solution to the (offline) generation

of execution policies that resorts to probabilistic planning to deal with the uncertainty caused

by spot instance revocations in the deployment of workflow applications. These proposals have

been evaluated using realistic case studies of elastic scaling and workflow executions in the cloud.

Results support the claim that automated decision-making mechanisms that rely on planning

are scalable and responsive, and able to guide the system to satisfy requirements, optimize

performance and minimize operational costs.





Resumo

A computação em nuvem permitiu que várias aplicações se beneficiassem da reserva dinâmica

de recursos. Essas aplicações necessitam de ajustar seus recursos em resposta a mudanças no

ambiente, a fim de satisfazer metas de qualidade de serviço definidas pelo negócio. No entanto, a

concepção dos mecanismos de tomada de decisão usados para gerir a reserva e a gestão de recursos

em contextos de computação na nuvem é uma tarefa complexa. Na verdade, as aplicaçães na

nuvem exigem mecanismos automáticos para: (1) explorar eficientemente grandes espaços de

solução (definidos pela combinação dos tipos de máquina, das ações de reserva e das transições

de estado esperadas no horizonte temporal); (2) gerar planos para operar o sistema de uma

maneira que satisfaça os requisitos, maximize o desempenho e minimize os custos operacionais;

e (3) apoiar a definição e revisão de poĺıticas para adaptar o sistema nas condições esperadas.

O Planeamento Automático, a área de inteligência artificial dedicada a sintetizar sequências de

ações para atingir um objetivo, permite enfrentar esses desafios.

Esta tese aborda o desenho e avaliação de técnicas que exploram o planeamento automático

para suportar a reserva e a gestão de aplicações executadas na nuvem. Com este objectivo, a

tese apresenta três contribuições: (1) uma solução para a geração (offline) de poĺıticas reativas,

que explora linguagens e ferramentas de planeamento temporal para apoiar a definição e revisão

de poĺıticas, aplicáveis sob condições comuns; (2) uma solução para a geração (online) de planos

proativos, que aproveita o planeamento temporal de longo prazo e as previsões comportamentais

para reconfigurar aplicações interativas; e (3) uma solução para a geração (offline) de poĺıticas

de execução, que recorre ao planeamento probabiĺıstico para lidar com a incerteza causada

por revogações de instâncias efémeras (spot instances, em inglês) na concretização de aplicações

baseadas em fluxos de trabalho. Essas propostas foram avaliadas usando casos de estudo realistas

que ilustram a escalabilidade elástica e execuções de fluxo de trabalho na nuvem.

Os resultados suportam a hipótese de que os mecanismos automáticos de tomada de decisão

baseados em planeamento são escaláveis, ágeis, e capazes de orientar o sistema para satisfazer

os requisitos do utilizador, otimizar o desempenho e minimizar os custos operacionais.
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1Introduction

Cloud computing represents a global market of over $186.4 billion, of which the fastest-

growing segment is the infrastructure services, projected to grow 35.9% in 2019 (Gartner 2018).

Cloud computing has enabled myriad of computer applications to benefit from dynamic pro-

visioning of resources. It offers desirable features such as: virtualization, the instantiation of

virtual machines with pre-defined sizes decoupled from the physical infrastructure where they

are deployed; provisioning, the opportunity to rent and allocate resources on-demand; and a

pay-as-you-go economic model, such that users only pay for the actual resources consumed.

The combination of these features offers opportunities for computer systems to become more

scalable, cost-efficient, and autonomous.

One example of the services that make cloud computing attractive is elastic scaling. Elastic

scaling enables cloud applications to dynamically accommodate resources in a pool of virtual

servers, in response to variations in their workload. By doing so, cloud applications can avoid

unnecessary costs in their operations, caused by capacity over-provisioning. To manage elastic

scaling, applications can put in place a set of policies to regulate the activation and termination

of machines in their server pool. For instance, a reactive policy may dictate that a new virtual

machine must be activated when the average CPU utilization reaches a given threshold, defined

by the system expert. Indeed, most cloud providers support elastic scaling through the definition

of reactive rules (e.g. Amazon Auto-Scaling in Amazon EC21). Yet, these rules are restrictive

in what they express and do not fully exploit the flexibility of the cloud infrastructure.

Cloud providers offer a wide range of virtual machines for applications with different re-

quirements (e.g. general purpose, compute optimized, memory optimized), with different “sizes”

1https://aws.amazon.com/



2 CHAPTER 1. INTRODUCTION

pre-defined by the cloud provider (e.g. small, medium, large) that are allocated distinct amounts

of computational resources (e.g. number of CPU cores, memory size, etc.). Virtual machines

can also be rented in different price markets, as on-demand instances or revocable instances

(a.k.a. spot instances). On-demand instances are billed a fixed price per time unit (e.g. by

the hour), with reliability guarantees to the user. Revocable instances have dynamic prices that

vary according to a bidding market and can be revoked at any time by the cloud provider, when

the price of the instance exceeds the bid placed by the user. Ideally, cloud applications can take

advantage of the diversity of machine sizes and market prices to define policies that optimize

their performance and guarantee cost-effective operations.

However, defining policies for dynamic provisioning of resources in the cloud is a challeng-

ing task. First, a wide variety of machine sizes can be combined together into many possible

configurations. These machines can also be activated or terminated in different orders to reach

the desired configuration. Deciding on the best configuration and the order of the provision-

ing actions that satisfies the system requirements, optimizes its performance, and minimizes its

operational costs, is complex. Second, cloud infrastructures are affected by uncertainty. Un-

certainty due to performance variability and interference makes so that applications deployed

in two different machines of the same type perform differently. Uncertainty provoked by the

unexpected revocation of spot instances can also affect the efficiency and reliability of the appli-

cation. Thus, applications must make decisions that account for actions that may have multiple

outcomes and (sometimes undesirable) effects on the system. Third, reaction times are limited,

scaling actions are not instantaneous and cloud resources are rented in time units (e.g. by the

hour). So, in order to make effective and pertinent decisions, applications must consider tem-

poral factors, such as server activation times or the expected behavior of the environments in a

time horizon. Finally, applications must translate high-level business objectives into operational

goals and ensure that policies do not violate system constraints and user preferences.

Policies are not only hard to define, but also difficult to maintain. Policies are usually defined

in the context of stable cloud computing services, according to specific business objectives. Still,

cloud contexts are subject to constant changes (e.g. the introduction of new hardware can

make so that new machine types are available to the application). Also, business objectives and

system requirements are constantly refined as the system evolves. In consequence, policies must

be updated frequently.
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The complexity of decision-making for the definition of policies that govern the deployment

and management of computer applications running in cloud environments may be an impair-

ment to their further development. Currently, cloud applications can enable low-level corrective

policies to react to environmental changes, usually expert-defined event-condition-action rules

(as discussed previously). Still, more elaborate (high-level) deliberate plans are needed to guide

the system under uncertainty towards the desired configuration. Yet, plans as such are hard to

define by experts.

Certainly, cloud applications are in need of automated mechanisms for decision-making that:

(1) facilitate the exploration of large solution spaces (defined by the combination of machine

sizes, the provisioning actions, and the state transitions expected in the temporal horizon); (2)

generate deliberate plans to operate the system in a way that satisfies requirements, maximizes

performance and minimizes operational costs; and (3) support the automated definition and

revision of policies that adapt the system under common conditions and that are easily updated

in changing business contexts. In this, the problem of deploying and managing applications

in cloud environments is akin to that of autonomic computing, given the requirements for dy-

namic accommodation of resources, on-the-fly tuning of parameters, robustness to environmental

changes, and adjustability to variable user requirements.

Autonomic computing aims at reducing the barrier that complexity poses to further devel-

opment of computer systems by integrating intelligence into the management process (Kephart

& Chess 2003). By closing the operational loop via an external control mechanism, it is possible

to monitor the performance of the system, analyze its behavior, and, when necessary, plan and

execute proper adaptation actions to guide the system towards business-defined goals. Systems

that are able to autonomously adapt under changing conditions are known as self-adaptive.

Planning, the decision-making task of finding a course of action from an initial state to a

desired state that satisfies the requirements of the system and meets the operational goals, is

a fundamental piece to enable self-adaptation. Planning benefits from having an broad view

on how actions can be combined together to sort out the environmental changes and lead the

system to meet its requirements, while optimizing performance and minimizing costs. Auto-

mated planning, the area of artificial intelligence concerned with synthesizing plans of actions

to achieve a goal, is rich in languages, algorithms, and tools that could potentially improve the

deployment and management of computer system with complex decision-making problems.
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To define a planning problem it is required some knowledge about the system configuration,

the adaptation actions and their effects, and the user preferences and business goals. At its

simplest form, the planning problem model defines: (1) all valid configurations of the system,

(2) the adaptation actions that can be applied by the system with their expected effects in

the system configuration, (3) the performance indicators that serve to guide the adaptation,

and (4) the goals that define the desired configurations. Depending on other factors that affect

decision-making, the planning problem can be defined as classical, probabilistic or temporal. The

classical planning problem explores the space of possible system states to decide a deterministic

plan that leads the system to the target state, which satisfies the goals. Additionally, when non-

determinism can be captured in the form of probabilistic effects, probabilistic planning can resolve

models where actions can lead the system to different possible states and find the (probabilistic)

plan that optimizes the system performance and meets the goals. What is more, to take in

consideration the temporal factors that may affect the adaptation, temporal planning can tackle

problems characterized by actions with variable duration and concurrency, treating time as a

continuous exogenous variable or using augmented state variables that include time.

To engineer an adequate planning solution, one must not only consider the complexity cap-

tured in the planning problem definition, but also the time available for planning. For instance,

in the case of elastic scaling, applications exposed to steady workload variations typically have

enough time to react, while applications subject to faster workload changes usually do not. Re-

active planning online risks failing at finding a timely solution when the planning problem is

complex and reaction times are tight. As an alternative, offline planning can take advantage

of longer search times to find adequate solutions that can later be encapsulated into policies to

manage operations at run-time.
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1.1 Problem Statement

Previous experiences offer evidence that autonomic computing may alleviate the manage-

ment burden for applications running in cloud environments (Brun, Serugendo, Giese, Kienle,

Litoiu, Müller, Pezzè, & Shaw 2009; Krupitzer, Roth, VanSyckel, Schiele, & Becker 2015). Nev-

ertheless, cloud applications are still unable to exploit the power of intelligent planning fully

(Salehie & Tahvildari 2009; Weyns 2019). In particular, the mechanisms that guide the deploy-

ment and management of applications in the cloud are still rather primitive and could benefit

from automated planning. Considering this context, the thesis addresses the following question:

How can planning techniques be engineered to automate the deployment and management of

computer applications running in cloud environments?

To make steps towards answering this question, this thesis addresses the use of automated

planning for the adaptation of cloud applications in three different scenarios, as discussed below.

1.1.1 Scenario 1

Reactive policies used to manage resources in the cloud have several limitations. First, re-

active policies are usually defined by operators and system managers. Sadly, reactive policies

defined solely by humans are usually limited in the way they conduct reconfiguration and overly

simplistic on how actions are combined. Second, reactive policies do not exploit the benefits of

deliberate decision-making. Most policies, defined in the form of event-condition-action rules,

are executed greedily and can lead the system to states that are locally optimal at best. Third,

reactive policies are difficult to maintain in business contexts subject to frequent changes, such

as cloud environments. These policies require to be constantly updated to: (1) account for new

machine types and prices made available; (2) consider new system requirements and dependabil-

ity constraints; and (3) adjust to changing business goals and user preferences. Ideally, planning

can support the automated definition and revision of policies that describe how to adapt the

system under common conditions and that can be easily updated in changing business contexts.

In this scenario, the thesis addresses the following question:

How can classical planning be used for the (offline) generation of policies that support elastic

scaling of interactive applications in cloud environments?
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1.1.2 Scenario 2

Many interactive applications running in cloud environments demand some reconfiguration

immediately after accommodating their resources. Typically, data reconfigurations have some

negative impact on the performance of the system; thus, applications attempt to minimize

the number of reconfiguration actions and their impact. Additionally, these applications are

often exposed to fast-changing environments. Therefore, adaptation actions must be enforced

even before changes in the environment take place. This is to avoid that data reconfigurations

occur during a period of high stress that could further degrade the performance. Finally, cloud

providers rent resources in time units and, when billing periods are long (e.g. per hour), decisions

can be better made having a long-term view of the environmental changes in the horizon.

Ideally, interactive applications running in cloud environments can benefit from controllers that:

(1) decide adaptation action proactively by anticipating environmental changes; (2) consider

long-term decisions that account for the billing periods of the cloud provider; and (3) take in

consideration the impact of reconfiguration in the system performance when making decisions.

In this scenario, the thesis addresses the following question:

How can temporal planning be used for the proactive reconfiguration (online) of interactive

applications in cloud environments?

1.1.3 Scenario 3

Many cloud providers offer the possibility of renting transient resources (a.k.a. spot in-

stances). Cloud applications may take advantage of transient resources, provided that potential

failures provoked by the revocation of these machines do not affect the application services given

to the customers. For instance, muti-tier web or data processing applications could benefit of

discounted costs by being deployed dynamically in the cloud, using a mix of on-demand and

spot instances. These applications are usually represented as a workflow of tasks with timely

requirements. Ideally, planning can be used to define policies for the dynamic deployment of

workflows in the cloud that guarantee timely executions and reliability at minimal costs.

In this scenario, the thesis addresses the following question:

How can probabilistic planning be used for the (offline) generation of policies for the execu-

tion of workflows using spot instances in cloud environments?
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1.2 Summary of Contributions

This thesis explores the three opportunities for the use of automated planning to support

the deployment and management of applications in cloud environments, identified above. These

opportunities are materialized in the following contributions:

Planning to Support Reactive Policies for Elastic Scaling: This contribution discusses

how to integrate AI planning into the generation of high-level adaptation policies that are: (1)

easily derived from the system models and human expertise; (2) effective at guiding adaptation

towards the best reachable system state; and (3) able to comply to dependability constraints

imposed to the system. Automated planning is used as a complement to human decision-

making. A standard planning language is used to encode a temporal planning problem, while

planning tools help decide the target configuration and the adaptation plan towards the target

configuration. In addition, a novel scanning mechanism is proposed to build policies that cover

common system conditions. The solution is evaluated in the context of policy revision due to

new dependability constraints introduced by the system experts.

Planning to Support Proactive Scaling and Reconfigurations: This contribution ex-

plores the reconfiguration of cloud-enabled applications using controllers that combine proactive

techniques with the ability to manage heterogeneous resources. The solution relies on temporal

patterns obtained from historical data to predict the evolution of the workload and to initi-

ate adaptation before the service quality is affected. Decisions are made based on knowledge

about the workload curve, the cloud resources, and the initial system configuration. The pro-

posed solution is materialized in Augure, a controller that uses linear programming at run-time

to search the space of actions in long-term horizons and to select a plan that: (1) minimizes

the price billed by the cloud provider and (2) mitigates the negative side-effects of reconfigu-

ration on the service quality. In addition, to study proactive controllers that make (greedy)

decisions looking at short-term horizons, this contribution introduces Vadara+, an extension of

Vadara (Loff & Garcia 2014) that manages heterogeneous resources. Augure is evaluated for the

live reconfiguration of an online transaction processing database system, called E-Store (Taft,

Mansour, Serafini, Duggan, Elmore, Aboulnaga, Pavlo, & Stonebraker 2014), and compared to

other controllers: Reactive, Vadara, and Vadara+.
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Planning to Support Workflow Executions with Spot Instances: This contribution

studies the use of automated planning as a tool to optimize the execution of deadline-constraint

workflows in cloud environments. The proposed solution derives policies using models that

capture the non-deterministic effects of deployment actions, to account for the probability of

revocation of a spot instance. Planning is used to solve automatically generated Markov Decision

Processes (MDP) that model the execution of the workflow and to explore the state space

using well-known algorithms that lead to the optimal policy. Static policies are derived offline,

before the execution of a job. These policies are then executed at run-time and guide the

selection of deployment actions, depending on the occurrence of failures and the actual task

completion times. The solution is evaluated for the execution a real-world scientific workflow

application, Epigenomics (Juve, Chervenak, Deelman, Bharathi, Mehta, & Vahi 2013). The

solution is compared to two other scheduling frameworks that consider spot instances: LTO

(Poola, Ramamohanarao, & Buyya 2014) and Dyna (Zhou, He, & Liu 2016).

1.3 Summary of Results

Considering the contributions listed above, the main results present in the thesis are the

following:

• An implementation of an automated planning solution to support the definition and revi-

sion of reactive policies for elastic scaling in the cloud, and its evaluation via simulations

in a case study.

• An implementation of an automated planning solution to support the proactive scaling and

reconfiguration of cloud applications, and its evaluation via simulations and a prototype

deployment in E-Store, an online transaction processing database system.

• An implementation of an automated planning solution to support workflow executions

using spot instances in the cloud, and its evaluation via simulations with Epigenomics, a

scientific workflow application.
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1.4 Thesis Structure

The remaining of the thesis has the following structure:

Chapter 2: introduces fundamental concepts which are relevant for the context of the

contributions presented in the thesis;

Chapter 3: presents and evaluates an automated planning solution to support the defi-

nition and revision of reactive policies for elastic scaling in the cloud;

Chapter 4: presents and evaluates an automated planning solution to support the proac-

tive scaling and reconfiguration of cloud applications;

Chapter 5: presents and evaluates an automated planning solution to support workflow

executions using spot instances in the cloud;

Chapter 6: concludes the thesis summarizing the results derived from the thesis and

discussing pointers for future work.
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2Fundamental Concepts

and State of the Art

2.1 Cloud Computing and Applications

2.1.1 Cloud Computing

Cloud computing has emerged as a model that changes the way software applications are

deployed and managed. Cloud computing offers three attractive features: (1) virtualization,

the instantiation of virtual servers with pre-defined computational capacities decoupled from

the actual physical infrastructure where they are deployed; (2) provisioning, the flexibility to

scale a pool of computational resources by activating or terminating servers on-the-fly; and (3)

a pay-as-you-go economic model, the chance to pay for the consumed resources by time units.

Cloud providers offer a wide variety of virtual machines customized for different applications:

general purpose, computational intensive, memory intensive, etc. For each type of application,

there exists a wide selection of server sizes with pre-defined configurations of CPU, memory,

storage, and network capacity. For instance, a computationally optimized machine of extra

large size c5.xlarge in Amazon EC2 has 4 CPUs and 8 GiB of memory. Currently, Amazon

offers more than six machine sizes for each application type1.

Cloud providers typically follow a linear pricing scheme, i.e. prices increase linearly with

the size of virtual machines of the same type. For instance, in Amazon EC2, computationally

optimized machines of extra large size c5.xlarge have a price of 0.17$/hour, while machines with

double the resources c5.2xlarge have a price of 0.34$/hour2. Cloud providers charge these costs

to the application, depending on the amount of time consumed by a rented virtual machine

instance. Usually, applications are charged by the hour, meaning that the time consumed by

the application is counted in hours and any extra time counts as a complete extra hour. That

is, any spare time is payed by the application even if the server remains idle. More recently,

1https://aws.amazon.com/ec2/instance-types/
2https://aws.amazon.com/ec2/pricing/on-demand/
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some cloud providers have introduced a billing scheme in seconds, which gives more flexibility

to the application and potentially reduces the cost generated by instances in idle state.

Cloud providers also offer revocable instances (spot instances3 in Amazon EC2 or preemptible

instances4 in Google GCE). Revocable instances are machines that take advantage of spare

compute capacity in the cloud, available to the user at steep discounts compared to on-demand

prices, but that can be interrupted by the cloud provider when the capacity is needed. These

instances are regulated by a bidding market, such that the instance is granted to the highest

bidder (and revoked when another user places a higher bid) and the cost is decided by the cloud

provider dynamically, based on the market demand5. Revocable instances can help reduce

operational costs of applications, since they are rented at a fraction of the cost of on-demand

instances. Yet, since they can also be evicted at any time, they can introduce uncertainty about

the composition of the server pool and its performance.

2.1.2 Elastic Scaling of Interactive Applications

Interactive applications naturally operate in changing environment, where user demand is

variable over time. These applications can benefit from the dynamic reservation of resources in

response to variations in their workload, an ability known as elastic scaling. Cloud computing

has enabled many interactive applications to benefit from elastic scaling, providing easy access

to virtual machine types that users can request and release as needed.

Applications in the cloud can reserve resources through two main scaling actions: (1) to

activate a server, increasing the computational capacity of a pool of servers; and (2) to terminate

a server, decreasing the computational capacity of a pool of servers. Naturally, these scaling

actions have associated costs. Indeed, applications pay a fixed price (per time unit) for servers

activated on-demand. The business objectives that regulate the elastic scaling of resources in

the cloud can be often classified in three groups: (1) to meet the requirements of the system, e.g.

in terms of dependability constraints; (2) to optimize the performance of the application (e.g.

to keep the response time experience by the user under a given threshold); and (3) to minimize

the monetary costs associated to the rental of resources.

3https://aws.amazon.com/ec2/spot/
4https://cloud.google.com/preemptible-vms/
5https://aws.amazon.com/ec2/spot/
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Challenges of Elastic Scaling: Elastic scaling in the cloud is a hard task, mainly due to

the presence of heterogeneous resources, performance variability, the impact of reconfigurations,

and the limited reaction times. In the following, these factors are discussed:

1. Managing heterogeneous resources: An important dimension of elastic scaling is the ability

to accommodate virtual machines of different sizes and prices. Ideally, cloud applications

can exploit the diversity of machine types to potentially achieve a better fitting of the

computational capacity to the workload. Managing heterogeneous resources is difficult,

though. The best composition of the server pool can be a mix of different machines types.

Finding the right composition is often complex and time-consuming. Also, scaling the pool

towards the best composition may require activating and terminating servers of different

types in a specific order, demanding that the controller is able to explore an even larger

space of scaling actions to find the best plan.

2. Performance variability: While applications can decide which virtual machine to activate,

the underlying physical infrastructure remains hidden. So, applications have little control

over “where” their virtual machines are deployed. This is relevant because cloud services

are known to suffer from significant performance variability and unpredictability (Leitner

& Cito 2016; Delimitrou & Kozyrakis 2013). This is often caused by: (1) hardware hetero-

geneity, if virtual machines are instantiated in physical machines with different hardware

features; (2) resource contention, when virtual machines col-located in the same physical

machine contend for limited resources, e.g. processing power; and (3) failures, usually

caused by hardware deterioration, software updates, or system malfunctioning. These

factors impact the performance of the application differently depending on the applica-

tion type and the infrastructure of the provider. Sadly, due to the unobservability and

uncontrollabilty of these factors, applications can hardly predict the behavior of newly de-

ployed virtual machines. Therefore, controllers must be able to handle uncertainty, e.g. by

considering that the execution of scaling actions may lead to multiple possible outcomes.

3. Reconfiguration impacts: Scaling actions can penalize the system performance while being

executed. This is relevant in stateful applications, where scaling actions may require

data to be transferred among replicas. The state transfer not only consumes network

resources, but also processing capacity in active replicas, contributing to increased latency

and reduced throughput. For instance, storage database systems usually perform costly
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migration procedures for re-balancing after scaling actions (Lim, Babu, & Chase 2010; Taft,

Mansour, Serafini, Duggan, Elmore, Aboulnaga, Pavlo, & Stonebraker 2014). Controllers

must take into account reconfiguration impacts when making decisions to scale resources,

in order to mitigate their negative effects on performance and availability.

4. Limited reaction times: Elastic scaling in public clouds is mostly carried out using reactive

rules. Cloud applications can set reactive policies to automatically scale resources when a

performance indicator reaches a threshold (e.g. to activate a server when CPU utilization is

above 80%). Yet, monitoring times and long server activation times slow down the ability

to react to sudden changes. In scenarios subject to sudden changes, reactive scaling may

cause delayed or dropped requests that ultimately cause profit loss.

2.1.2.1 Related Work

Due to its many benefits and practical relevance, elastic scaling of application in cloud

computing has deserved significant attention in the literature. In the following, a summary of

the most significant contributions to the state-of-the-art is presented.

2.1.2.1.1 Reactive Scaling Techniques A vast majority of the commercial and academic

approaches resort to reactive policies to manage resources. The policies that govern reactive

scaling exist in two forms: manual and automatic. A manual policy of elasticity means that the

user is responsible for monitoring the virtual environment and applications and for executing

all scaling actions. The cloud provider enables an interface (e.g an API) with which the user

interacts with the system. An automatic policy means that the control and the actions are taken

by the cloud system or by the application, in accordance with user-defined rules and settings,

or specified in the Service Level Agreement (SLA). The controller uses monitoring to collect

information like CPU load, memory and network traffic to decide when and how scale resources.

Reactive solutions are mostly based in event-condition-action rules. Each rule is composed

of a set of conditions that, when satisfied, trigger scaling actions in the underlying cloud. Every

condition considers an event or a metric of the system which is compared against a threshold.

The information about metrics values and events is provided by the infrastructure monitoring

system or by the application.
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The use of reactive techniques is quite common and is found in most commercial providers:

Amazon EC2 6, Google GCE 7, Microsoft Azure 8, RackSpace 9, Rightscale 10, Scalr 11. Example

of academic works in which the resources are managed manually are Elastin (Neamtiu 2011)

and Work Queue (Rajan, Canino, Izaguirre, & Thain 2011), and automatically, is TIDE (Meng,

Liu, & Soundararajan 2010)

2.1.2.1.2 Proactive Scaling Techniques While commercial solutions are still dominated

by reactive scaling policies, recent academic works have proposed predictive approaches that uses

heuristics and mathematical/analytical techniques to anticipate the system load behavior, and

based on these results, decide when and how to scale resources. Temporal predictors (e.g., time

series with moving average, auto-regression, exponential smoothing, or neural networks) and

non-temporal predictors (e.g., support vector machines or decision trees) are used to estimate

future workload values and required resources, as discussed in many surveys (Qu, Calheiros, &

Buyya 2018; Lorido-Botran, Miguel-Alonso, & Lozano 2014; Hummaida, Paton, & Sakellariou

2016). An empirical evaluation of most common techniques is presented in (Kim, Wang, Qi,

& Humphrey 2016). Besides, some authors propose to combine several of these techniques to

improve the accuracy of the prediction, e.g., to combine time-series forecasting using genetic

algorithms (Messias, Estrella, Ehlers, Santana, Santana, & Reiff-Marganiec 2016).

Many proactive scaling techniques have been proposed in the literature. For brevity, only

the most relevant to the thesis are presented here. PRESS (Gong, Gu, & Wilkes 2010) is

a predictive (vertical) scaling engine, that leverages signal processing and statistical learning

algorithms to achieve short-term predictions of resource requirements online. For workloads with

repeating patterns, it derives a signature from historic resource usage patterns via a Fast Fourier

Transform (FFT), and for applications without repeating patterns, it uses a Discrete-Time

Markov Chain (DTMC) to build a short-term prediction of future metric values. CloudScale

(Shen, Subbiah, Gu, & Wilkes 2011) is a system that automates fine-grained (vertical) scaling,

based on time series of resource usage to predict the resource demands in the short-term. AGILE

(Nguyen, Shen, Gu, Subbiah, & Wilkes 2013) adjusts dynamically the number of same-sized

6https://aws.amazon.com/
7https://cloud.google.com/compute/
8https://azure.microsoft.com/en-us/
9https://www.rackspace.com/

10https://www.rightscale.com/
11https://www.scalr.com/
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virtual machines assigned to a cloud application, using wavelet transforms to provide a medium-

term resource demand prediction with enough lead time to start up new server instances before

performance falls short. Authors in (Jiang, Lu, Zhang, & Long 2013) propose an auto-scaling

scheme that uses machine learning and time series historic data to predict the average number

of web requests in the long-term future, and makes decisions to (horizontally) scale a pool of

same-sized virtual machines based on that prediction. Vadara (Loff & Garcia 2014) is a generic

elasticity framework that enables the use of pluggable cloud-provider-agnostic elastic strategies

and uses a combination of predictive workload forecasting techniques to estimate the behavior

of the workload to make short-term scaling decisions. InteliScaler (Shariffdeen, Munasinghe,

Bhathiya, Bandara, & Bandara 2016) is a proactive auto-scaler for platform-as-a-service cloud,

that combines workload prediction mechanism based on time-series forecasting with machine

learning techniques to estimate the workload in the short-term, and make decisions taking into

account the billing schemes of the provider (e.g. per hour).

2.1.2.1.3 Scaling and Data Reconfiguration Previous work has been dedicated to scal-

ing resources for muti-tier applications that require some data reconfiguration. Those of partic-

ular interest are presented here. In (Lim, Babu, & Chase 2010), an elastic controller for stateful

applications is proposed and tested with a popular distributed storage system. The controller

makes scaling decisions considering the delay of actuators and the need to re-balance data across

replicas. CloudScale (Shen, Subbiah, Gu, & Wilkes 2011) also automates elastic scaling and can

resolve scaling conflicts between applications using migration. It employs a migration based

conflict handling that estimates the penalties in Service Level Objectives (SLO) in resource

provisioning and decides what virtual machine to migrate and when, considering the estimated

penalties in performance. The Transactional Auto Scaler (TAS) presented in (Didona, Romano,

Peluso, & Quaglia 2014) is a system for automating scaling of in-memory transactional data

grids, e.g. NoSQL data stores or distributed transactional memories. It uses a performance

forecasting methodology that combines analytical modeling and machine-learning, and manages

heterogeneous resources. The SCADS Director (Trushkowsky, Bod́ık, Fox, Franklin, Jordan, &

Patterson 2011) addresses the problem of scaling a distributed storage system under stringent

performance requirements. It uses a performance model coupled with workload statistics to pre-

dict whether each server is likely to continue to meet its SLOs, and incorporates an estimation

of the degradation due to data reconfiguration to decide when and what resources to scale.
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2.1.2.1.4 Managing Heterogeneous Resources Most controllers in the literature focus

on managing a pool of servers of the same size, thus simplifying the decision to how many

servers to activate or terminate (Hummaida, Paton, & Sakellariou 2016; Galante & Bona 2012).

Approaches that manage heterogeneous resources have been proposed before for resource pro-

visioning and allocation, though. In (Srirama & Ostovar 2014) a controller for resource provi-

sioning finds a cost-optimal setup of various machine sizes that satisfy the requirements of the

incoming workload for workflow applications. A linear programming model is built, taking as

input the workload of each task, the processing capacity, periodic costs and activation times of

each machine type, and the age of running instances. The model, solved with constraint solvers,

provides the optimal number of machines from each type that must be added to or removed. In

(Wang, Gupta, & Urgaonkar 2016), authors go further assuming fine-grained scaling of CPU and

memory ’within’ an already procured virtual machine; a form of vertical scaling. The controller

uses rather simplistic policies to make decisions on how much CPU and memory to add or re-

move from the instances. In (Verma, Gangadharan, Narendra, Ravi, Inamdar, Ramachandran,

Calheiros, & Buyya 2016), a dynamic resource demand prediction and allocation framework is

presented. This approach adds the service tenants to virtual machines that match the predicted

load and allocates the virtual machines to physical machines using a best-fit decreasing heuristic.

In (Ma, Zhang, Zhang, & Zhang 2016), genetic algorithms are used to solve a dynamic resource

allocation and cost optimization model to find near-optimal solutions efficiently.

2.1.2.2 Limitations and Open Issues

Research in the last decade has proposed elaborate techniques to automate elastic scaling.

However, there are still some limitations in their current ability to satisfy business goals in

terms of performance optimization and cost minimization, as well as unexplored opportunities

to exploit the flexibility offered by cloud computing.

1. Reactive policies are restrictive. Event-condition-action rules are insufficient to capture

reasoning for complex decision-making and, thus, are unable to intelligently manage re-

source provisioning for interactive applications. Cloud applications can benefit from the

definition of more complex policies that capture strategic reasoning and that implement

sequential/parallel scaling actions. Current reactive policies are also unable to abstract

from high-level business objective and user preferences. Cloud applications can benefit



18 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART

from mechanism to translate high-level objectives and user preferences into operational

policies. These mechanism should be flexible enough to allows the re-definition of policies

may the business context evolve.

2. Elastic scaling is reduced to a greedy execution of actions. Reactive controllers employ a

set of rules that are executed one-at-a-time, in a best-effort manner. Similarly, proactive

controllers use workload predictions to make punctual decisions in the near future; these

decisions are also executed greedily. Most proactive approaches are based on short-term

predictions and, even those that predict the workload in the long term, do not exploit the

full benefits of long-term planning (at best, they employ heuristics to allocate resources).

Greedy scaling is undesirable; it may provoke unnecessary oscillations and lead to sub-

optimal solutions, unable to lead the system to its optimal configuration in a way that

minimizes long-term cost. Cloud applications require scaling mechanisms that exploit

long-term deliberate planning to optimize performance and minimize cost.

3. Heterogeneous resources are not fully exploited. Most solutions scale a pool of same-sized

virtual machines. Combining machines of different sizes and prices potentially lead to a

better fit of the capacity to the demand. While previous approaches already manage het-

erogeneous resources, cloud applications can benefit from controllers that combine hetero-

geneous resources with long-term reasoning to schedule resources in a way that minimizes

operational costs, according to cloud-defined billing periods.

4. Most scaling controllers are oblivious to reconfiguration impacts. Previous approaches

address the migration of data after scaling actions. Performance degradation caused by

data migrations is an important factor for adapting these systems. Yet, controllers rarely

use models that estimate these impacts to make decisions about how or when to scale

resources; instead, reconfiguration is often treated as a separate subsequent process.

5. Scalability is a major bottleneck. Controllers must explore large solution spaces of machine

types and scaling actions in a long-term horizon to make optimal decisions. Applications

required that elastic controllers are able to search those spaces efficiently, to respond to

workload variations in a timely manner. How to engineer controllers that exploit deliberate

planning and find solutions in real-time is an open question.
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2.1.3 Deployment of Workflow Applications

Many multi-tier web and data processing jobs can be decomposed in a set of separate tasks,

some of which can be executed in parallel, while others need to be executed in sequence. Each

task can be executed in a single machine or may require the provisioning of multiple machines

to be completed. The entire job is often subject to timeliness requirements, defined by the user.

The most common way of representing this type of jobs is as a workflow. Workflow applications

capture the desired execution order of the tasks in a job and can benefit from abstract reasoning

to schedule the deployment of such tasks in dynamic environments.

Workflow applications can benefit from the flexibility offered by cloud providers. Indeed,

workflow scheduling in the cloud has already been tested with homogeneous resources and pre-

dictable task completion times. In such scenarios, a controller can find a schedule that minimizes

the makespan in order to meet the timeliness requirements of the application. Still, several op-

portunities offered by cloud providers remain somewhat unexplored.

Cloud providers offer a wide variety of virtual machines for diverse application types with

pre-defined machine sizes. The combination of machine sizes and prices gives even more flexibil-

ity to execute workflows, assigning to each task the machines size that satisfies its computational

requirements. Naturally, deploying tasks on different machines sizes would affect the execution

times and the expected cost of the deployment. Thus, to schedule workflows in such scenar-

ios, it is required to explore a larger search space of possible deployments, and minimizing the

makespan may no be longer the main objective. In fact, several schedules that comply with

the timeliness requirements may exist. The controller’s objective would then be to select the

schedule that incurs minimal costs to the application.

More interestingly, cloud providers offer revocable machines that can be rented at steep

discounts from on-demand instances. Revocable instances may reduce workflow execution costs,

at the penalty of added uncertainty in task completion times. This could be an impairment

to the use of revocable machines when scheduling workflows with timeliness requirements. In

particular, tasks deployed in revocable instances may fail if the instance is interrupted by the

cloud provider before the task finishes its execution. In order to exploit revocable machines

for the deployment on workflow applications, controllers must generate schedules that take into

account the uncertainty in the outcome of a task execution. The added complexity could enlarge

the search space and make more difficult the selection of the “best” schedule.
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2.1.3.1 Related Work

The problem of workflow scheduling has deserved much attention by the research community.

In the following, a summary of the most significant contributions to the state-of-the-art is

presented.

2.1.3.1.1 Workflow Scheduling in the Grid The scheduling of workflows has been mostly

studied in the context of grid computing, which concerns the use of widely distributed computer

resources to reach a common goal and where each machine in the network is pre-assigned to the

execution of a given task. The problem of workflow scheduling is, therefore, simplified, since

the controller does not need to select different machines sizes, with pre-defined computational

resources, for the execution of each task in a job. In the context of grid computing, some

contributions deserve particular attention. In (Sakellariou, Zhao, Tsiakkouri, & Dikaiakos 2007),

workflow applications with budget constraints are modelled as directed acyclic graphs (DAGs)

and resolved using heuristics that, first produce good-performing schedules in terms of makespan

or budget, and then combine these schedules to find a solution with a better trade-off between

these metrics. In (Duan, Prodan, & Fahringer 2007), the problems of performance and cost

optimization are formulated as sequential cooperative games and resolved using two algorithms:

one, to minimize the expected execution time of workflow application; and two, to minimize the

execution cost while guaranteeing a deadline. In (Yu, Buyya, & Tham 2005), the execution of

workflow applications is scheduled using heuristics based on Markov Decision Processes (MDPs)

and which objective is to minimize the execution costs while meeting time constraints. The

common objective of these proposals is to design efficient heuristics to schedule workflows in

order to satisfy goals in terms of execution time and execution costs.

2.1.3.1.2 Workflow Deployment in the Cloud Scheduling for the deployment of work-

flow applications in cloud environment has also deserved some attention. In (Kllapi, Sitaridi,

Tsangaris, & Ioannidis 2011), a scheduling framework is proposed and tested with greedy, proba-

bilistic, and exhaustive search algorithms. In (Mao & Humphrey 2011), scheduling of workflows

with soft deadline constraints is achieved by heuristics that dynamically allocate and deallocate

virtual machines and that execute tasks using the most cost-efficient instances. In (Byun, Kee,

Kim, & Maeng 2011), the challenge of estimating the amount of resources required by each task
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and the selection of virtual machines to deploy workflow applications is tackled with heuristic

algorithms. Authors recognize that static allocation strategies lead to potential resource waste,

since all scheduled resources may not always be required for the entire rental period. In (Zhang,

Cao, Hwang, & Wu 2011), the authors tackle the issue of dynamic workflow scheduling on vir-

tual clusters and reduce scheduling overhead with an iterative ordinal optimization approach

that finds “good enough” schedules. In a similar line, (Maguluri, Srikant, & Ying 2012) ad-

dresses resource allocation problems for the deployment of real-time workflow applications using

a stochastic models for load balancing and scheduling. These proposals exploit on-demand vir-

tual machines in the cloud to minimize execution costs and focus on the design of heuristics for

provisioning/allocating machines to the execution of tasks in workflows with deadlines.

2.1.3.1.3 Managing Revocable Instances Revocable machines have been offered by

cloud providers for several years, yet heavy-tailed price distributions suggest that few appli-

cations actually use revocable instances. It is possible to conjecture that applications may be

concerned by the possibility of too many job interruptions. In particular, to enable applications

to use revocable instances it is important to answer two questions: how might the provider set

the price, and what prices should applications bid? These questions are addressed in (Zheng,

Joe-Wong, Tan, Chiang, & Wang 2015), where authors suggest that exploiting optimal bidding

prices can be achieved by: (1) modeling the pricing scheme and matching the model to histor-

ically offered prices; and (2) deriving optimal bidding strategies for different job requirements

and interruption overheads. The strategy of bidding optimal prices is, indeed, followed by most

proposals that use revocable instances. However, some authors argue that sophisticated bidding

strategies do not provide any advantages over simple strategies, since: (1) there are a wide range

of bid prices that yield the optimal cost and availability; and (2) there is enough availability of

resources in the public market. In fact, authors in (Sharma, Irwin, & Shenoy 2017) claim that

cloud users can adopt trivial bidding strategies and focus instead on modifying applications to

efficiently seek the lowest cost resources. This claim is supported by market models that demon-

strate that, if the bid is equal to the on-demand price, then the expected cost is a fixed fraction

β of the on-demand price (e.g. β = 0.25 for compute optimized instances in Amazon EC2) and

the probability of being revoked is less than 80% in the first hour. Planning the execution of

workflows applications using revocable machines in the cloud has not been fully studied (other

related approaches are further discussed in Chapter 5).
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2.1.3.2 Limitations and Open Issues

Research in the last decade tackled the problem of workflow scheduling to minimize the

makespan, minimize execution costs, and meet timely requirements. However, there are still

some limitations in current techniques to find optimal schedules as well as unexplored opportu-

nities in exploiting the flexibility offered by cloud computing.

1. Workflow scheduling algorithms are sub-optimal. Most solutions focus on designing new

algorithms and heuristics that can resolve the NP-hard scheduling problem in an efficient

manner. While this is justified for real-time applications, not all workflows require online

scheduling and, thus, are not bound by restrictive reaction times. Workflow applications

with known structures could potentially benefit from optimal policies that use deliber-

ate planning to search schedules that minimize the operational costs and meet deadline

constraints. These policies could be defined offline, an be executed when deployment is

required.

2. Heterogeneous resources have not been fully exploited. Previous techniques restricted by

online scheduling times resort to resources that have been pre-selected or to a reduced

number of machine types. Since resource selection is fundamental to the scheduling prob-

lem (e.g., a task executed in different machines have different execution times and costs),

algorithms that do not consider all possible machine types are potentially unable to find

the optimal solution.

3. Revocable instances offer unexplored opportunities. As suggested by previous market mod-

els, cloud applications could resort to trivial bidding strategies and still achieve optimal

cost and availability. To take advantage of revocable instance prices, controllers must

provide mechanism that support the dynamic provisioning of resources considering the

possibility of task execution failures to occur due to instance interruptions. The resulting

schedule must ensure that the workflow is successfully executed before the deadline and

that execution costs are minimized. How to exploit revocable instances for the deployment

of workflows in cloud environments is a challenging problem that has not yet been fully

addressed.
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2.2 Automated Planning for Self-Adaptation

2.2.1 Self-Adaptation and Autonomic Computing

The term autonomic computing was introduced for the first time in 2001. In this year, IBM

released a manifesto (Horn 2001) identifying the increasing complexity in systems management

as the primary obstacle for further development of the IT industry in the next years. Such

consciousness led latter to IBM’s vision of autonomic computing (Kephart & Chess 2003). Since

then, the term is used to refer to any computerized system empowered to autonomously manage

its resources. The goal of autonomic computing is to tackle the arising issues in management

by integrating intelligence and autonomy into the operational process, while hiding intrinsic

complexity to managers and staff.

The autonomic concept is inspired in biology. Specifically, it is inspired in the way the

human autonomic nervous system unconsciously adapts the human body to its needs and to

the environment, by taking care of intrinsic functions. Taking the human body as the reference,

some characteristics were identified so that a system could be considered “autonomic” (Ganek

& Corbi 2003), such as: the ability to know itself and its surroundings, to reconfigure under

varying conditions, to optimize its performance, to recover from routine and malfunctioning, to

guard from external attacks, etc. Such autonomic features, present in their biological namesakes,

are known as self-* properties (Salehie & Tahvildari 2009).

At a primitive level, an autonomic system should exhibit self-awareness, the ability to be

conscious of its states and behaviors, and context-awareness, the ability to reason about its

operational environment and eventual changes on it. These rudimentary properties are essential

for the system to interact with its environment and it is typically achieved by monitoring, i.e.

collecting information. Once awareness is accomplished, the autonomic system should enable

mechanism for supporting four major properties (Kephart & Chess 2003):

• Self-Configuration: to automatically and dynamically reconfigure system components and

the relations among them, in response to contextual changes.

• Self-Optimization: to proactively seek for opportunities to improve its own performance

and efficiency when external conditions change.

• Self-Healing: to spontaneously detect, diagnose and repair localized system failures.
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From a more general perspective, a system exhibiting all such properties may be considered

to be self-adaptive. The term adaptation is indeed used in biology to capture how organisms

adapt to their environments, so as to maintain themselves in a viable state, through sensory

feedback mechanisms. As such, an adaptive system may be defined as a set of interdependent

and interacting entities, forming an integrated whole that together is able to respond to envi-

ronmental changes or changes in the interacting parts. In the literature, however, many authors

prefer to refer to such systems as self-managing ; a term that is more specific to the intent to

free system administrators from the details of system operation, i.e. to hide the operational

complexity of the system.

Whereas self-adaptivity can be achieved in several ways, research supports the idea of en-

abling feedback loops as an external mechanism to control the operation of a system subject to

environmental changes (Brun, Serugendo, Giese, Kienle, Litoiu, Müller, Pezzè, & Shaw 2009).

The objective is to continuously adapt the system’s output to follow or to converge to a specific

desired behavior, usually given as an input reference to the system. Thus, to close the opera-

tional loop a system must be empowered with proper mechanisms: (1) to gather information

and sense the environment; (2) to interpret the relevant data; (3) to identify the proper changes

to the system required to adapt; (4) to decide what actions to take, with which intensity and

in which order; and (5) to execute the action plan. Following this approach, numerous models

and framework implementations have been proposed (Oreizy, Heimbigner, Johnson, Gorlick,

Taylor, Wolf, Medvidovic, Rosenblum, & Quilici 1999; Dobson, Denazis, Fernández, Gäıti, Ge-

lenbe, Massacci, Nixon, Saffre, Schmidt, & Zambonelli 2006; Garlan, Cheng, Huang, Schmerl,

& Steenkiste 2004).

Arguably the most widespread feedback control model in the literature is the MAPE-K

model (Kephart & Chess 2003). In this model, IBM differentiates the system (managed system)

from its control mechanism (managing system), interfacing via: sensors, in charge of collecting

data about the system, and effectors, to carry out adaptations to it. The model consists of four

major (sequential) activities, depicted in Figure 2.1:

• Monitoring (M): responsible for collecting and aggregating data from sensors and convert-

ing them to behavioral patterns and symptoms.

• Analyzing (A): concerned with detecting the symptoms provided by the monitoring pro-

cess, in order to recognize when the adaptation is required.
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Figure 2.1: The MAPE-K Adaptation Framework

• Planning (P): determines how to adapt in order to achieve the best outcome, relying on

certain criteria to compare adaptations and for the selection of a proper course of action.

• Executing (E): responsible for applying the actions determined by the planning process,

by mapping such actions to what is provided by the effectors.

According to this model, a Knowledge (K) layer, which may contain system models, data,

patterns, rules, commands, etc., serves as support for the four activities in the adaptation loop.

2.2.1.1 Architecture-Based Self-Adaptation

A common practice in the software engineering community is to approach the system from

a conceptual model that defines its structure and behavior, usually in the form of a system

architecture that comprises system components, the visible properties of those components and

the relationships between them. In general, all architectural models tend to share the basic idea

of the system being represented as a graph of nodes (components) and arcs (connections). Here,

the components and connectors represent general concepts with some associated properties.

For instance, in a client/server application, the components can be web servers, clients, and

databases; connectors can be the links between them; and properties for a server can be the

state “on” or “off”. Additionally, the model allows to set a number of architectural constraints
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and binding properties on the components and connectors that define the valid configuration

(and/or behavior) of the system.

Among several techniques to engineering self-adaptive systems, the architecture-based ap-

proach is recognized as being particularly well-suited for complex systems and has been widely

explored (Dashofy, van der Hoek, & Taylor 2002; Chen, Peng, Yu, Nuseibeh, & Zhao 2014).

The architectural model has been widely accepted as a mean to support reasoning about the

system. The popularity of such approach can be explained because of its generality and level

of abstraction, that makes its underlying concepts and the system description applicable to a

wide range of domains. Besides, there exist a wealth of architecture description languages and

notation that support dynamic architectures and formal architecture-based analysis and rea-

soning (Kramer & Magee 2007). In addition, many architecture-based adaptation frameworks

have been proposed, including: Rainbow (Garlan, Cheng, Huang, Schmerl, & Steenkiste 2004),

Plasma (Tajalli, Garcia, Edwards, & Medvidovic 2010), and Morph (Braberman, D’Ippolito,

Kramer, Sykes, & Uchitel 2015), among others.

Another reason for adopting an architecture-based model is reuse. Reuse is sustained by

the definition of architectural styles (Cheng, Garlan, Schmerl, Sousa, Spitznagel, & Steenkiste

2002), a set of principles that provide an abstract framework to describe the architecture for a

family of applications (e.g. client/server applications). More specifically, an architectural style

determines the vocabulary of components and connectors that can be used in instances of that

style, together with the constraints on how to combine them. Additionally, architectural styles

promote the reuse of style-specific adaptation mechanisms (e.g. actions, rules, plans, strategies).

2.2.1.1.1 Architectural Model From a broader perspective, the architectural models can

support self-adaptation through the definition of:

• System Architecture: as component and connector with properties and constraints.

• System Metrics: as monitored performance indicators of the behavior of the system.

• Adaptation Actions: as operational instructions with effects on the architectural properties

of the system and predicted impacts on the system metrics.

• Business Goals: that capture high-level business objectives about the behavior of the

system, written in terms of architectural properties and system metrics.
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Figure 2.2: Layered Control and Operational Instructions

2.2.1.1.2 Layered Controls From the architectural perspective, an interesting approach

to engineer self-adaptation consists in building up a hierarchy of control layers on the system;

an idea inspired in the sense-plan-act architectures used in robotics (Gat & Bonnasso 1998).

Three layers of control are proposed in (Kramer & Magee 2007):

• Component Control: feedback control loops that regulate the primitive behavior of the

system (e.g. to adjust the operating parameters of the components).

• Change Management: reactive/corrective plan execution under arising conditions (e.g. to

execute actions/plans that select new control behaviors and set new operating parameters).

• Goal Management: deliberate planning, time consuming computations that takes the cur-

rent state and high-level objectives and attempts to produce plans to achieve those goals.

2.2.1.1.3 Operational Instructions Similarly, it is practical to understand operational

instructions at different levels of control:

• Primitive commands: operational instructions that modify the system properties at the

component-level (low-level of control).

• Guarded actions: operational instructions in the form of condition-action-effect constructs,

used to correct the system behavior (middle-level of control).

• Deliberate plans: operational instructions in the form of a sequences of guarded actions,

used to guide the system to a desired state defined by business goals (high-level of control).

The Stitch language (Cheng & Garlan 2012) refers to these categories as operators, tactics, and

strategies, correspondingly.
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2.2.1.2 Adaptation Policies

Adaptation policies describe how to adapt the system under common conditions. They no-

tably transform high-level business objectives that define the correct behavior of the system into

actual operational instructions that steer such behavior under common conditions. Adaptation

policies have been extensively utilized to engineer adaptive systems (Ghezzi, Pinto, Spoletini, &

Tamburrelli 2013).

Adaptation policies are best described in three parts: conditions, operations, and effects.

Adaptation conditions trigger the execution of the operations and refer to both system condi-

tions, i.e. the configuration of the system in terms or architectural properties, and environmental

conditions, i.e., the external factors that affect the performance of the system, notably captured

by the system metrics. Adaptation operations refer to the operational instructions in form of

an action or a plan that shall be executed under such conditions. Adaptation effects are the ex-

pected observable changes in behavior of the system once these operations are enacted and refer

to both the expected effects in the configuration of the system and its architectural properties

(e.g. activating a server S1 changes a property S1.state from “off” to “on”) and the predicted

impact on the performance of the system, captured by the system metrics (e.g. activating a

server S1 improves the latency by 20%).

The use of policies for the purposes of self-adaptation is widely accepted by the community.

Adaptation policies are attractive due to their: (1) support to reasoning, since they capture

understanding of the system from a conceptual perspective; (2) readability to humans, which

can be crucial for human involvement in system operations (e.g. to accredit accountability

for the system’s behavior); and (3) efficiency, as they guarantee timely executions at run-time

operations. However, policies can be hard to maintain, especially in business contexts subject

to frequent changes, such as, the introduction of new component types, the emergence of new

adaptation conditions and operations, or even the variation of the business preferences regarding

the system behavior.
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2.2.2 Automated Planning

Planning, as a fundamental property of intelligent behavior, is an object of research by the

artificial intelligence community. Automated planning is a branch of this discipline that concerns

the realization of strategies or action sequences, typically for execution by intelligent agents.

2.2.2.1 Planning Problem

The planning problem varies according to some factors regarding the system under study.

• Deterministic/non-deterministic/stochastic: A system is considered deterministic if its

transition function is a deterministic function of the input action and the previous state

(i.e, given the same action and same previous state, the system goes to the same next state).

It is considered non-deterministic if, given an action and a previous state, the next state

is not uniquely determined. The system is considered stochastic if it is non-deterministic

and the probability of transition to the various next states is known.

• Static vs. dynamic: A system is said to be static if its transition function becomes the

“identity function” when the control input is said to “No op”. More informally, the world

doesn’t change when the agent is not doing anything. A system is said to be dynamic if

it is not static. One can, of course, talk about a spectrum between static and dynamic.

• Observable vs. non-observable: A dynamic system is said to be “completely observable” if

its internal state can be recovered through the output transformation function. If only part

of its state can be observed, then it is called “partially observable”. The control theoretic

definition of observability actually considers a system to be observable if the state of the

system at time t can be completely recovered through observations on the state of the

system at a finite number of future time instances.

2.2.2.1.1 Problem Definition Self-adaptive systems are considered to be dynamic systems

empowered with monitoring tools that make them fully or partially observable. The effects of

the actions over the system can be modeled as deterministic, non-deterministic, or stochastic, on

a case to case basis, depending on the complex system interactions, the environmental changes

and the generalized uncertainty.
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The automated planning community has standardized the definition of planning problem as

deterministic (classical planning) or stochastic (probabilistic planning). Additionally, the effects

of actions may take in consideration temporal factors, in which case, the problem is considered

to be a temporal planning problem. In the following, the planning problem is defined from an

architectural perspective of the system.

1. Classical Planning: Classical planning considers the deterministic transformation of the

domain. Given a set of states S, a set of actions A : S → S, a subset of actions A(s) ⊆ A

applicable in each state s, an initial state s0 ∈ S, and a set of goal states SG ⊆ S,

classical planning is the task of finding a sequence of actions that, when applied to s0,

yields one goal state. In this definition: S is the set of all valid system states (e.g.

the configuration of the system in terms of architectural properties and the metrics the

indicate the performance of the system); A is the set of all possible actions, with associated

conditions and (deterministic) effects, in terms of the architectural properties of the system

and the metrics that indicate the performance of the system; s0 is a state of the system that

does not satisfy the declared architectural constraints and/or high-level business goals; and

SG is the set of all system states that satisfy the declared goals.

2. Probabilistic Planning: Probabilistic planning considers the probabilistic transformation of

the domain for stochastic systems. Given a set of states S, a set of actions A, a transition

probability function P : S × A → S, an initial state s0 ∈ S, a set of goal states SG ⊆ S,

probabilistic planning is the task of finding a sequence of actions that, when applied to

s0, yield one goal state with certain probability. In this definition: S is the set of all valid

system states; A is the set of all possible actions, with associated conditions in terms of

the architectural properties of the system and the metrics that indicate the performance

of the system; P is the transition probability function specifying the probability P (s, a, s′)

of reaching state s′ ∈ S, when action a ∈ A is applied to state s ∈ S; s0 is a state of

the system that does not satisfy the declared architectural constraints and/or high-level

business goals; and SG is the set of all system states that satisfy the declared goals.

3. Temporal Planning: The problem could consider the time when actions are executed, usu-

ally via a sequence of decision steps l = 1, 2, ..., Lmax, where Lmax is referred to as horizon.

Temporal planning deals with time as a continuous exogenous variable and is particularly

useful for problems characterized by actions with variable duration and concurrency.



2.2. AUTOMATED PLANNING FOR SELF-ADAPTATION 31

2.2.2.1.2 Planning under Uncertainty Most systems are naturally affected by uncer-

tainty. Uncertainty can manifest itself in the form of unexpected events or changes in the

system and its environment, such that predicting the state of the system after the execution of

an action becomes a difficult task. The malfunctioning of one of the components of the system

may prevent an action of having its expected effect on one of the system properties (e.g. if a

server S1 fails to boot up, switching on that server may end up in a property S1.state equal

to “off”). Also, an unexpected change in the environment may affect the performance of the

system in a undesired way (e.g. a spike in the load of a newly activated server may saturate its

processing capacity). The non-deterministic nature of these changes acts in way that the accu-

mulated effects of executing a (planned) sequence of actions, can deviate the system’s behavior

to an undesired final state. Planning under uncertainty is indeed an open issue and subject of

study in the automated planning community.

In order to provide these system with control mechanisms, it is a common practice to model

the system in a stochastic way by defining a planning problem with probabilistic transitions.

For instance, a malfunction of the system may lead to an undesired effect with 1% probability,

or environmental changes may lead the system to a peculiar variation in its performance metrics

with 5% probability. The definition of a probabilistic problem ensures that decision-making

takes uncertainty in consideration when finding and selecting a plan that can lead the system

to a desired state with a certain probability. To control stochastic systems, it is important

that decision-making mechanisms are capable of keeping track of the changes that follow the

execution of each action, such as to steer the coarse of action in the right direction whenever

the system deviates from its expected common behavior.

2.2.2.1.3 Planning with Utility and Preferences System operations are typically asso-

ciated with a sense of benefit or cost to the system’s performance (and the business, in general).

The execution of an operational instruction may improve the performance of the system at the

expense of monetary costs (e.g. switching on a new server may add computational capacity to a

service and also increase the incurred costs), and otherwise. Also, an operation may potentially

lead the system to a (transitional) state that is particularly beneficial or harmful to the system.

Naturally, when selecting a coarse of action that leads the system to a goal state, the controllers

would select the plan that does not violate system constraints and that result in more rewards

and/or less costs to the system, overall.
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In order to capture these operational preferences, in addition to the definition of goals, a

reward function R (or a cost function C, depending on the case) is often associated to the

sates of the system s ∈ S and the actions a ∈ A (and transitions) that transform such states.

Therefore, when there are several desired goal states and various sequences of actions that may

lead to one of them, these rewards serve as an indicator of preference to support the selection

of the “best” (or cheapest) sequence of actions that leads to a goal state. Here, the term “best”

is typically defined in terms of a utility that must be optimizes. In addition, hard preferences

can be imposed as constraints that regulate which actions and state are transited during the

selection of a plan.

2.2.2.1.4 Complexity of the Planning Problem The definition of the planning problem,

ideally, captures all the complexity associated to making deliberate decisions that can guide the

system to satisfy the business preferences and goals. The complexity of the problem increases

with the number of possible states of the system (i.e. the combination of all configuration

parameters and system metrics), the number of actions that can be executed to each state, the

number of transitions between states and the number of time steps in the horizon. This increase

is not linear, but exponential (combinatorial), and leads to the state space explosion problem,

where the size of the state space is so large that even containing it represents a computational

challenge and search time become impractical.

The definition of a planning problem that can accurately model the complexity of decision-

making and that is also practical in terms of search times is, therefore, an engineering problem.

2.2.2.2 Planning Techniques

2.2.2.2.1 Planning with Artificial Intelligence (AI) The artificial intelligence field is

rich in models, languages, and tools for planning. The Planning Domain Definition Language

(PDDL) is the de-facto language of automated planning (McDermott, Ghallab, Howe, Knoblock,

Ram, Veloso, Weld, & Wilkins 1998). At its simplest, it specifies the planning problem via object

types and their boolean properties in the form of predicates, their initial state and goals, and the

actions that could change the state of the world. Extensions of the language have been made to

support: optimization of a plan-metric, temporal properties via declaration of durative actions

(PDDL2.1), and planning with objects fluents i.e. continuous values consumed or produced by
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actions (PDDL3.1). Defining a planning problem in PDDL is done in two parts: a domain

specification, where object types, predicates, functions, and actions are declared; and a problem

specification, where objects are instantiated and initialized and goals are declared. In terms of

tools, the International Planning Competition (IPC) (Vallati, Chrpa, & McCluskey ) serves as

a platform to compare the effectiveness and efficiency of search algorithms and heuristics. In

this platform, planners are tested over a set of example problems described in a standardized

language and planners are ranked according to their effectiveness and efficiency. The competition

is composed of several tracks including deterministic, probabilistic, and temporal.

2.2.2.2.2 Markov Decision Processes Markov Decision Processes (MDPs) describe sce-

narios where the system “moves” through a sequence of states. The transition between states

happens in response to a sequence of actions taken by an agent, at different decision steps. The

outcome of actions are typically non deterministic, such that an action can lead the system

to several system states with different probabilities. Executing an action on the system brings

some reward (or cost, depending on the case). The objective is to control the system by taking

appropriate action while optimizing some criterion (e.g. maximizing the total expected reward

over a sequence of decision steps). The most significant property shared by systems described as

MDPs is the markovian property, meaning that any action applied to a state in a given decision

step is independent from the past, i.e. no information about previous decisions may influence a

current decision. From an algorithm perspective, fundamental algorithms such as value iteration

and policy iteration are commonly used to solve MDPs in their most generic form: the Stochas-

tic Shortest Path (SSP) problem. There exist, though, a multitude of approaches proposed by

AI researchers to scale solution algorithms to larger problems. For a deeper understanding of

MDPs, the reader is referred to the literature in (Mausam & Kolobov 2012).

2.2.2.2.3 Linear Programming Linear programming is an approach typically related to

operational research. Models in linear programming consist of a symbolic representation of

the objects that compose the system under study, connected according to certain rules. It

manipulates the symbolic representation of the building blocks of the system until a satisfactory

results is obtained. Formally, linear programming is a technique for the optimization of a

linear objective function, subject to linear equality and inequality constraints (Dantzig 2016).

Linear programming often deals with the deterministic transformation of the world, in discrete



34 CHAPTER 2. FUNDAMENTAL CONCEPTS AND STATE OF THE ART

amounts. Certain probabilistic problems can also be reduced to linear programming problems,

e.g., scheduling problem (Baptiste, Le Pape, & Nuijten 2012). It has proven useful in modeling

diverse types of problems in planning, scheduling, assignment, and design. Additionally, a

multitude of constraint solvers currently exists that are efficient at finding solutions to large

problems (e.g. CPLEX (IBM 2016)). Linear programming benefits from efficient exploration of

large solution spaces, in detriment of more abstract and flexible representations (e.g. like those

captured by AI planning languages).

2.2.3 Automated Planning for Self-Adaptation

As discussed above, automated planning is rich in: (1) definitions, to classify planning

problems according to the factors involved; (2) languages, to represent the behavior of the

system, the environment, and the control actions; and (3) tools, that implement heuristics and

exhaustive search algorithms to explore the space of possible solutions and to select the best

plan. Therefore, systems that require adaptation may resort to automated planning techniques

to support decision-making. In fact, for a system to be truly self-adaptive, it must be able to

decide which actions are more appropriate to execute under certain conditions and in which

order to execute them to reach a state that satisfies the business-defined goals; the task known

as Planning in the MAPE-K adaptation framework (Kephart & Chess 2003).

2.2.3.0.1 Making vs. Achieving Two main approaches can be identified for introduc-

ing planning capabilities into software systems (Horn 2001). The first one is to engineer self-

adaptivity into the system at the design phase. The second is to achieve self-adaptivity through

adaptive learning. In (Sterritt 2003) these two approaches are called making and achieving :

• Making: Has an implied system and/or software engineering view to engineering adaptivity

into the system. In general, the system triggers the adaptation process as the result of

a undesired conditions (e.g. a constraint violation) and executes actions according to

pre-defined rules, to correct the operation of the system.

• Achieving: Has an implied artificial intelligence and adaptive learning view to achieve

adaptive behavior. By achieving, instead, the system enable intelligent planning mecha-

nisms on-the-fly to select an appropriate course of action that guides the system from the

current state towards a desired state.
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These two approaches do not necessarily contradict each other. Indeed, it is possible to see

both as cooperating at different levels of control; making, at a reactive control level (e.g. change

management in (Kramer & Magee 2007)) and achieving, at a deliberate control level (e.g. goal

management in (Kramer & Magee 2007)). Whereas the former permits quick reaction to ex-

pected changes, the latter performs a slower deliberate planning to achieve system goals. A

system able to adapt at both level, reactive and deliberative, is desired.

2.2.3.0.2 Online vs. Offline In general, since deliberate planning is a time consuming

task, it is not always possible to plan on-the-fly. Indeed, planning can be done online or offline:

• Online Planning: is recommended for systems with lower complexity and loose time re-

quirements, such that an adaptation plan can be found in short time without compromising

the performance of the system. Online planning generates a plan that is specific to the

initial state of the system when the planning task is activated.

• Offline Planning: is recommended for highly complex systems (e.g. when planning must

consider many possible combinations of objects, actions, and transitions) that require a

fast response. Offline planning can generate adaptation plans that are triggered reactively

during online operations.

2.2.3.0.3 Reactive vs. Proactive The dynamics of the environment can also affect the

type of planning mechanism to put in place. Depending on the adaptation scenario, planning

can be reactive or proactive.

• Reactive Planning: is applicable in scenarios where the environment changes slowly and

steadily, such that the system has enough time to react to the instantaneous events that

triggered the planning task (e.g. the violation of a constraint).

• Proactive Planning: is able to predict the behavior of the system and the environment in

a future horizon and make decisions before these changes take place. Thus, this technique

is better suited for scenarios where environmental changes are fast and predictable and

where there is limited time to plan and execute, such that corrective measures must be

taken in advance.
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2.2.3.1 Related Work

2.2.3.1.1 Adaptation Policies Adaptation policies can be derived manually, using knowl-

edge from experts, administrators and managers exclusively. For instance, Stitch (Cheng &

Garlan 2012) is a language that is able to capture operational instructions dictated by system

experts, in the form of guarded actions and deliberate plans. However, expert-defined plans

may be limited in the number of covered system conditions or in the way actions are combined

together to reach a desired behavior.

Alternatively, reactive policies can be derived automatically, as shown by previous work. In

(Rosa, Rodrigues, Lopes, Hiltunen, & Schlichting 2013), a general framework for automatically

deciding adaptation actions is presented. Rules are generated offline, specifying component

adaptations that may help achieve high-level business goals, and selected online, evaluating the

conditions of the system. Similarly, Fossa (Frömmgen, Rehner, Lehn, & Buchmann 2015) uses

a methodology that separates the adaptation logic from the actual application implementation,

to learn event-condition-actions rules by automatically executing a multitude of tests. Rule

sets are generated by algorithms such as genetic programming and the results are evaluated

using a utility function provided by the developer. These solutions do not exploit the benefit of

deliberate planning, though.

Solutions that generate adaptation plans at run-time also exist. For instance, a system

which permits arbitrary dynamic adaptation by exploiting reactive plans is presented in (Sykes,

Heaven, Magee, & Kramer 2007). Reactive plans are generated online with a planning tool

from high-level goals given by the user, and the behaviour of the system is described by the set

of condition-action-rules given in the plan. Plans generate at run-time cannot be validated by

experts held accountable for the system and may be applicable only to the initial system state

that triggered adaptation, instead of common system conditions.

2.2.3.1.2 Planning with AI The idea of modeling architecture-based self-adaptation as a

planning problem is not new. Previous attempts to encode software architectures into PDDL

include: a methodology to specify architectural reconfiguration as actions in PDDL via graph

transformations (Tichy & Klöpper 2012; Rasche & Ziegert 2013); a framework for automated

generation of processes for self-adaptive software systems based on workflows, AI planning and

model transformation (da Silva & de Lemos 2011); and a support method to encode ADL
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types an constraints in PDDL representation (Méhus, Batista, & Buisson 2012). Previous work

also demonstrates that AI languages and tools can be used effectively in specific scenarios.

For instance, automated planning can be used to support the automatic generation of paths

for the evolution of software architectures. The evolution problem is mapped into a planning

language capable of representing the initial and target architectures, the evolution operators,

the path constraints and the functions that evaluate the qualities of the path; and, then, off-

the-shelf planners derive the candidate evolution paths. This approach is proposed in (Barnes,

Pandey, & Garlan 2013), where authors use the PDDL language and two planners (LPG-td

(Gerevini, Saetti, & Serina 2006) and OPTIC (Benton, Coles, & Coles 2012)) to resolve a

data migration problem under business constraints. This work puts in evidence the difficulty

of writing correct specifications in PDDL, the limited features of planning tools, and the long

search times. Additionally, the authors do not address how to plan under uncertainty or how to

assemble more complex strategies that combine candidate paths.

2.2.3.1.3 Planning under Uncertainty In the literature, it has been suggested that

stochastic search techniques might be effective to engineer planning for self-* systems (Coker,

Garlan, & Le Goues 2015). The design of self-* systems inherently involves trade-offs in mul-

tiple interrelated and evolving dimensions, including complex notions of time, cost, and non-

determinism, that stochastic techniques could help resolve. The authors present a prototype

to the generation of plans offline, based on genetic programming combined with a probabilistic

model checker used as a fitness function. Proactive self-adaptation under uncertainty has been

tackled in (Moreno, Cámara, Garlan, & Schmerl 2015). An auto-regressive time series predictor

is used to estimated the future behavior of the environment. Then, a simplistic model based on

a three-point discrete-distribution approximation is used to construct a short-term prediction of

the environment and its uncertainty. In (Cámara, Garlan, Schmerl, & Pandey 2015), the authors

present an approach to automatically synthesize optimal reactive plans via model checking of

Stochastic Multi-Player Games (SMGs), that enables modeling uncertainty both as probabilistic

outcomes of adaptation actions and through explicit modeling of environmental behavior. In a

similar line, (Franco, Correia, Barbosa, Rela, Schmerl, & Garlan 2016) proposes to improve self-

adaptation planning through software architecture-based stochastic modeling. In particular, it

proposes a formal automated approach to translate a specification from an Architecture Descrip-

tion Language (ADL) to a Discrete Time Markov Chain (DTMC), as well as a method to predict
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the quality impact of each adaptation strategy that supports decision-making in unexpected or

untested conditions. A hybrid planning approach that combines deterministic planning with

Markov Decision Process (MDP) planning is proposed in (Pandey, Moreno, Cámara, & Garlan

2016). Deterministic planning provides plans quickly when timeliness is critical, while MDP

planning allows the system to generate optimal plans when there is sufficient time to do so.

2.2.3.2 Limitations and Open Issues

1. Reactive policies do not benefit from deliberate planning. Automatically generated policies

are limited to event-condition-action rules that can be executed greedily. Adaptation plans

are generated and executed online, instead. This gap can be narrowed with the automated

generation of reactive policies in the form of deliberate plans, applicable under common

system conditions.

2. AI planning languages and tools are limited. Reasoning about complex decision-making for

systems self-adaptation requires high level of expressiveness, which is offered by planning

languages. However, planning tools are limited in the number of language features they

support. Additionally, AI planning tools require excessive time to find a solution to large

scale problems. This could prevent the use of these techniques online. The question of

how to use AI automated planning to support online adaptation remains unanswered.

3. Planning under uncertainty is time consuming. Effective adaptation demands the explo-

ration of large solution spaces, defined by the combination of system objects, adaptation

actions, and state transitions expected in the temporal horizon. Long-term planning under

uncertainty is complex, computationally expensive and time consuming. Currently, there

are no generic planning languages and tools that can model this type of complexity and

be resolved efficiently at run-time.
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2.3 Evaluation Metrics

To evaluate the design of controllers that exploit automated planning to decide the deploy-

ment and management of applications in the cloud it is important to define a set of evaluation

metrics:

1. System Requirements: Computer systems often have requirements in terms of their config-

uration. These requirements define the valid configurations and parameters of the system,

that must not violated by the application manager. At times, they can be expressed in

the form of dependability constraints. For instance, an interactive application in the cloud

may impose that at least one server always remains active during reconfiguration, to guar-

antee some availability to the users. A correct controller is one that does not violate the

requirements of the system.

2. System Performance: Systems often monitor their operations via key performance indi-

cators. Interactive server/client applications serving content to users, typically have two

main performance indicators: throughput and latency. Throughput is the actual rate that

information is transferred. Latency, or response time, is the the delay between the user

request and the user response, which is affected by the network bandwidth and the pro-

cessing capacity of the servers. Applications may have as a business objective to maintain

the throughput above a certain threshold or to minimize the response time. Workflow

applications may have other performance metrics, such as the execution time, the time

required for the execution of all tasks in a job. For instance, these application can express

the business goals by defining bounds to the execution times (i.e. deadlines). A correct

controller is the one that does not violate the performance goals and/or that leads the

system to the state that optimizes the performance according to the user preference.

3. Operational Costs: A major reason why software applications resort to dynamic provision-

ing of resources in the cloud, is the reduction of operational costs. While operational costs

is a rather broad concept, in the context of cloud computing services it is possible to con-

centrate in the monetary costs (in dollars) billed to the application by the cloud providers;

specifically, the monetary costs due to consumed resources. In addition, applications often

resort to the concept of “utility” and the monetized penalties due to violations of the

system requirements. A controller must minimize the monetary costs or maximize the
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utility. It is worth noting that controllers must often balance between performance and

costs, according to user preferences.

4. Controller’s Responsiveness: Given that applications in the cloud are exposed to dy-

namic environments, controllers must have the quality of reacting quickly and positively

to environmental conditions. For reactive scaling controllers, responsiveness consists in

deciding and executing an action immediately after an unexpected event has occurred. If

the controller is supported by policies, these must have reaction plans to cover the arising

conditions; failing to come up with a solution in limited time is a violation of the respon-

siveness property. For proactive scaling controllers, responsiveness consists in being able

to act before the (undesired) changes take place, as well as being able to correct the de-

cided actions if unexpected changes arise. Finally, for workflow schedulers, responsiveness

consists in being able to come up with a schedule that ensures that execution times are

respected, as well as being able to adapt these schedules if unexpected conditions arise.

5. Controller’s Scalability: For a controller to find the “best” solution, it must handle the

complexity of decision-making problem. A controller is scalable if, given a description of

the factors that affect decision-making, it is able to generate the entire space of possible

solutions, explore it efficiently, and find the “best” solution. In particular, online controllers

must be able to search the space and find a solution in limited time. Controllers that are

unable to consider all possibilities and fail to search the space for complex problems are

not scalable.



3Reactive Policies for

Elastic Scaling

This chapter introduces and evaluates an approach to automatically generate reactive poli-

cies for elastic scaling of cloud applications. In particular, it addresses the question of how can

classical planning be used for the (offline) generation of policies that support elastic scaling in

cloud environments.

This chapter discusses how to integrate automated planning into the generation of high-level

adaptation policies that: (1) can be easily derived from the system models and human expertise;

(2) are effective at guiding the system towards the best reachable configuration; and (3) can react

to common conditions. Automated planning tools have been used as a complement to human

decision-making, as they have proved effective at exploring the combinatorial space of actions

to find plans. Additionally, novel automated mechanisms to build comprehensive policies that

cover interesting conditions and to facilitate keeping policies up-to-date have been incorporated.

3.1 Motivation and Goals

Currently, most solutions to elastic scaling consider a homogeneous resources and are con-

trolled by restrictive reactive policies that do not make use of deliberate decision-making. The

most significant evidence of this phenomenon is the way cloud providers allow applications to

scale their resources. For instance, Amazon Auto Scaling 1 allows applications to define reactive

policies that regulate the server pool via scaling actions that are triggered by events (e.g. when

the average CPU utilization reaches a pre-defined threshold). Ideally, controllers for elastic scal-

ing can take advantage of the flexibility offered by cloud providers in terms of heterogeneous

resources. A pool of servers that combines different virtual machine sizes may fit more tightly

the requirements for processing capacity. Table 3.1 gives an example of a set of general purpose

instances, with distinct processing capacity, prices and start-up times.

1https://aws.amazon.com/autoscaling/
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Table 3.1: Cloud Resources: Amazon EC2 Instances - m1

Instance Size Short CPU Price ($/hr) Start-up (sec)

m1.small S 1 cores 0.044 98

m1.large L 4 cores 0.175 95

m1.xlarge XL 8 cores 0.350 100

The Importance of Planning: Controllers for elastic scaling can also exploit the benefits

of deliberate planning. To discuss the benefits of planning, Fig. 3.1 illustrates a scenario where

the initial state of a system is that of one active m1.xlarge server, a configuration that is highly

expensive but that serves users in low response times. Let’s assume this states is reached after

a small decrease in the workload occurs. Then, scaling down the system could provide savings.

To make the best decision, operators must deal with some challenges:

A Selecting the target configuration: Given heterogeneous resources, multiple configurations

may provide the capacity required to deal with a change in the observed load. For a simple

scenario depicted before, Fig. 3.1 shows three final configurations with a slightly different

trade-off between the expenditures and the (predicted) response time observed by clients

after the system is reconfigured. As several valid final configurations are possible, the

decision on the “best” one is dictated by business preferences regarding performance and

expenditures.

B Selecting the best adaptation path: The order in which adaptation actions are executed to

guide the system towards the target configuration is very important. Experts may want to

prevent system downtime during reconfiguration ensuring that at least another server is up

before the m1.xlarge server is decommissioned; this would force the system to temporarily

further increase expenditures before a final (cheaper) state is reached. Fig. 3.1 depicts three

different paths that can be followed to reach the third final state; these paths illustrate

how different orderings could produce very different transient states during adaptation.

C Taking time into account: It is worth noting that adaptation paths to different final

configurations may take different time to execute. In some settings, the time required to

execute a reconfiguration must also be taken into account when adapting the system to

ensure the fastest plan can be found. Since classical planning does not account for actions

with duration, temporal planning may be better fitted for problems with this complexity.
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Figure 3.1: Motivation: Planning target configuration (1, 2 and 3) and best adaptation path (A, B and C)

AI planning can do a great deal to resolve decision-making in such scenarios, by providing

means to evaluate target configurations according to business preferences, to select the best

adaptation path in compliance with system constraints, and to provide tools supporting temporal

actions to ensure that the fastest plan is selected.

Still, AI planning tools exhibit intrinsic limitations that must be circumvented. First, plan-

ners are designed to find plans from a specific initial state. Instead, when generating policies,

a comprehensive set of adaptation rules should cover all undesirable conditions that the system

can plausibly reach. Second, planning tools are designed to deal with boolean properties. There-

fore, previous proposal are unable to resolve the challenges imposed by the temporal nature and

numeric complexity of the scenario described before (see Related Work).

Goal: To use classical (and temporal) planning for the (offline) generation of policies that

support elastic scaling of interactive applications running in cloud environments. In particular:

(1) to combine a description of the problem (easily derived from human experts) with the use of

automated tools for the search of complex strategies; (2) to exploit deliberate planning to find

solutions that are effective at guiding the system towards the best reachable configuration; and

(3) to build techniques to encapsulate plans as adaptation policies that cover common system

conditions and that facilitate the revision of such policies in changing business contexts.
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3.2 Approach

This contribution addresses the unresolved challenges of exploiting automated planning

for the generation of high-level policies in adaptation scenarios that rely heavily on temporal

and numeric properties. From the perspective of architecture-based self-adaptation, automated

planning can rely on the definition of an model that describes the system operations and the

environment. In the following, it is assumed a system model that defines: the system architecture

as component and connector types, with their associated properties and constraints; metrics,

as system performance indicators; actions, as guarded operations with effects on architectural

properties and impacts on metrics; and goals over architectural properties and metrics.

High-level policies are generated by combining three complementary tasks, namely: i) an

encoding task that translates the system architecture, adaptation knowledge, and the initial

system state into a language specification readable to the planner; ii) a planning and selection

task, that evokes the planner multiple times to obtain a set of suitable solutions and selects the

preferred one according to some optimization criteria; and iii) a scanning task, that selects the

system states to which planning is applied and merges plans under common system conditions.

The interplay of these tasks is illustrated in Fig. 3.2.
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To illustrate how this approach can generate reactive policies, consider the adaptation sce-

nario presented in Fig. 3.1. The approach is applicable to cases in which new system conditions

or configurations are available; in our scenario, consider that there is a new dependability con-

straint that enforces a minimum of four processing cores at all time. Initially, the space of system

configurations and system metrics to be considered for adaptation is defined by the expert and

taken as input to the scanner; in our scenario, the system configuration is defined by the possible

combinations of three server types (m1.small,m1.large and m1.xlarge) and the system metric of

interest is the response time. The optimization criteria capturing the business goals is assumed

to be the minimization of a utility function defined by the expert; in our scenario, the business

goal is to minimize a combination of expenditures and response time. Then, the scanning task is

used to smartly select initial system states such as to avoid exhaustive exploration of the entire

space; e.g. it considers an initial configuration of one active m1.xlarge server when the response

time is low, between 0ms and 20ms. Each state is encoded into a problem specification and

the planner and selector are used to obtain adaptation plans; e.g. the planner generates two

adaptation plans that meet the new dependability constraint, A and C (showed in Fig. 3.1),

and the selector chooses plan C to be best at minimizing the utility. This process is iterative,

as the space is scanned deeper in certain regions, selecting new initial states depending on the

outcome of previously visited states; e.g. if the initial response time is very low, under 10ms,

another adaptation plan D (similar to C, but that does not add a third m1.small server) leads

to a better utility. The scanning task finishes by generating policies, such that adaptation plans

are executed given some applicability conditions on the system metrics; in our scenario, for a

configuration of one active m1.large server, two policies are generated: (1) if response time ≤

10ms, then execute plan D, and (2) if 10ms ≤ response time ≤ 20ms, then execute plan C.

3.2.1 Encoding

In order for planners to be able to find solutions they must be fed with an encoding of the

system model and adaptation problem in a standard action language. It is worth mentioning

that this approach targets adaptation scenarios that rely heavily on numeric properties to guide

adaptation. Mapping the system architecture (components, connectors, and their properties)

into PDDL (McDermott, Ghallab, Howe, Knoblock, Ram, Veloso, Weld, & Wilkins 1998; Fox

& Long 2003) is straightforward. A mapping into PDDL is shown in Fig. 3.3.
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Architectural Model Concepts PDDL	Language Constructs Example	Specification
Component/connector:	types Types (and	sub-types) (:type	server)
Component/connector:	properties	(boolean) Predicates:	type-specific	boolean	functions (:predicate	on	?s	- server)
Component/connector:	properties	(numeric) Functions:	type-specific	numeric	fluents (:functions cpu	?s	- server		price	?s	– server)
Component/connector: instances Objects:	typed	instances	declared	statically (:object	S0	S1	S2	- server)
Metrics:	component-specific	(boolean) Predicates:	type-specific	boolean	functions (:predicate	overloaded	?s	- server)
Metrics:	component-specific	(numeric) Functions:	type-specific	numeric	fluents (:functions	load	?s	- server)
Metrics:	system	general	(numeric) Functions:	numeric	fluents (:functions expenses)
Metrics:	thresholds	(numeric) Functions:	numeric	fluents (:functions	budget)
Action:	declaration and	duration Durative	Action: action	name

Parameters:	type-instances	to	be	affected
Duration: action-specific	numeric	value

(:durative-action	TurnOff-Server
:parameters (?s	- server)
:duration	(=	?duration	100)

Action:	conditions	(components	and	metrics) Condition:	list of	boolean/numeric	conditions :condition (and	(on	?s)	(<	(load	?s)(*	0.2	(cpu	?s))))
Action:	 effects	(components	and	metrics) Effect: list	of	predicate/function	assignments :effect	(and	(not	(on	?s))	(decrease expenses	(price	?s)))
Goals (components	and	metrics) Goals:	list of	boolean/numeric	conditions (:goal	(<	expenses budget))

Figure 3.3: Approach: Encoding in the PDDL planning language

Nonetheless, it is not obvious how to encode system metrics (numeric functions) or the

optimization criteria, such that they can be used to guide the search for the best adaptation path.

Action languages were originally crafted to deal with boolean properties, not numeric functions.

Consequently, the primitive versions of the language allow only to accumulate numerical effects

(impacts) on a unique cost function, instead of separate numeric functions (metrics). Also,

goals need to be expressed as a conjunction of predicates, instead of conditional expressions on

numeric functions (metrics). This approach exploits more advanced versions of the language

(PDDL 3.1 (Gerevini & Long 2005)) to overcome these restrictions.

In particular, this approach requires language support for:

• Numeric and object variables (a.k.a. fluents) enable the definition of system metrics (nu-

meric functions) that can accumulate numerical effects (action impacts) over a path.

• Arithmetic operators enable the definition of simple action impact functions over system

metrics and can be used to declare more elaborate system metrics (e.g. a linear combination

of other metrics)

• Conditional expressions permits to evaluate conditions over fluents (e.g. if a system met-

ric is over a threshold), which is particularly useful for evaluating action preconditions,

conditional effects, or goals over system metrics.

• Universal and existential preconditions serve to extend the expressiveness of conditional

expressions, allowing to test if a condition applies to “at least one” or to “all” components

of a certain type in the system.
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• Conditional effects extend action impacts so as to declare collateral effects.

The optimization criteria (duration and utility) is then encoded into the language. Plan

duration optimization is inherent to temporal planning, enabled by the definition of durative

actions and search heuristics to find the fastest solution. Plan utility optimization is enabled by

the language by declaring a metric minimization statement, that optimizes a total-cost function

over the path. Such utility function can be defined as a linear combination of the normalized

metrics that are to be minimized, an instantiation of the weighted sum method to multi-objective

optimization (Marler & Arora 2010). However, while the metric minimization feature is sup-

ported by classical and temporal planners in general, no current planner that supports other

requirements of the model (e.g. numeric variables) supports such feature as well.

3.2.2 Planning

The planning task relies on off-the-shelf tools as a main building block. Temporal Fast Down-

ward (TFD) (Eyerich, Mattmüller, & Röger 2009; Vallati, Chrpa, Grzes, McCluskey, Roberts, &

Sanner 2015) is a progression search-based system that extends classical planning to support du-

rative actions and numeric variables. TFD is particularly outstanding due to support to numeric

variables, which makes it an adequate solver for the scenario presented in the motivation.

TFD, however, is limited when dealing with plan-metric optimization, as the planner forces

plan duration as the unique optimization criteria. Therefore, search heuristics driven by duration

criteria (relying on the TFD planner) are combined with plan optimization based on utility

criteria, via the plan selector.

Particularly, for a given initial state, the plan selector generates problem specifications

declaring different utility goals of the form (:goal (≤ (utility) (threshold)). The utility function

is defined as a linear combination of the normalized metrics to be minimized. A binary search is

used to select the minimum possible threshold in a utility range, initially defined between zero

and the utility computed at the initial state. In each round of the binary search, the planner is

executed to find a plan that leads to a final state whose utility is less than the selected threshold.

The search terminates when the selected threshold is sufficiently low, such that the obtained

plan can be considered good enough, and/or when utility goals for lower thresholds are found

unattainable.
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3.2.3 Scanning

The generation of reactive policies assumes that high-level plans that cover general condi-

tions of the system must be found offline. This ensures that deliberate planning can be incor-

porated without harming the timely response of the system. The general conditions covered by

a given plan are a subset of relevant states that the system may fall into at run-time.

To derive offline plans for general conditions of the system, the multi-dimensional space

of system states that are relevant for adaptation must be searched (scanned). A system state

consists of a configuration (specifying which components are active, how they are connected, and

their properties) and a particular combination of the system metrics. Since the space state is in

general too large, it is impossible to run the planner for all possible states. Scanning consists of

exploring the metric space given an initial configuration of the system, as well as exploring the

space of all possible initial configurations.

Scanning Metrics Space: This mechanisms explores the metric space for a given system

configuration c. The metric space is characterized by having D dimensions, one dimension per

metric. Each metric takes values in a numeric continuous interval [dmin, dmax] provided to the

algorithm by the expert. The algorithm takes two additional parameters as inputs: x, the

number of initial divisions of each metric interval, and µ, the target granularity of the space.

It is worth mentioning that this approach assumes that the n-dimensional metric space is

mapped into a utility space (via an expert-defined function) for decision-making, so it comes

natural to resort to utility to predict space granularity. For example, consider two system states,

s1 and s2, with utilities u1 and u2 respectively. When |u1− u2| is smaller than a certain utility

threshold µ, such states are indistinguishable in the utility space, thus, a finer division would

be undetectable and purposeless for decision-making. Parameters x and µ enable user control

over the initial segmentation of the space and the depth of the scanning, and can be tuned to

trade-off between accuracy of the results and efficiency of the algorithm. The scanning algorithm

for the metric space (Algorithm 1 presented bellow) ensures that the multi-dimensional space

of all system metrics is uniformly visited and that scanning is focused into interesting regions,

avoiding exhaustive exploration.



3.2. APPROACH 49

Algorithm 1 Scanning Metrics

1: input: a configuration c, ordered set of dimensions D, ranges [dmin, dmax] for each dimen-
sion, number of points per dimension x, granularity for the utility µ

2: output: a set of plans P for all visited system states
3: function Scanning(c, D, x, µ)
4: for all d ∈ D do
5: for all i ∈ [0, x− 1] do
6: t[i]← i ∗ (dmax − dmin)/x
7: end for
8: m[ordinal(d)]← {t[i] : i ∈ [0, x− 1]} . define x points
9: r[ordinal(d)]← {(t[i], t[i+ 1]) : i ∈ [0, x− 2]} . define ranges

10: end for
11: V ← {(m1,m2, . . .m|D|) : mi ∈ m[i]} . define vertexes
12: H ← {(r1, r2, . . . r|D|) : ri ∈ r[i]} . define partitions
13: S ← {(c, v) : v ∈ V } . define initial states
14: P ← ∅ . define plan set
15: P ← PLANNING(S, P ) . find plans for all initial states
16: while H 6= ∅ do
17: h← e : e ∈ H . select partition h
18: H ← H \ {h}
19: Eh ← edges(h) . get edges in partition h
20: for all e ∈ Eh do
21: (v1, v2)← vertexes(e) . retrieve edge vertexes
22: if |utility(c, v1)− utiliy(c, v2)| > µ then . check granularity
23: p1← P (c, v1)
24: p2← P (c, v2) . retrieve plans of edge vertexes
25: if p1 6= p2 then . compare plans of edge vertexes
26: bisect← true . decide to bisect partition h
27: break
28: end if
29: end if
30: end for
31: if bisect then
32: for all d ∈ D do
33: (t1, t2)← get(h, ordinal(d)) . retrieve points of d in h
34: tm← (t1 + t2)/2 . compute midpoint in h
35: mh[ordinal(d)]← {t1, tm, t2} . define points in h
36: rh[ordinal(d)]← {(t1, tm), (tm, t2)} . define ranges in h
37: end for
38: Vh ← {(m1,m2, ...m|D|) : mi ∈ mh[i]} . define vertexes in h
39: Hh ← {(r1, r2, ...r|D|) : ri ∈ rh[i]} . define partitions in h
40: Sh ← {(c, vh) : vh ∈ Vh \ V } . define unvisited states in h
41: P ← PLANNING(Sh, P ) . find plans for unvisited states in h
42: S ← S ∪ Sh . update states
43: V ← V ∪ Vh . update vertexes
44: H ← H ∪Hh . update partitions
45: end if
46: end while
47: return P
48: end function
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Algorithm 1 consists of two steps:

The first step proceeds to the segmentation of the metric space uniformly. For each di-

mension, the algorithm selects x uniformly distributed points within the operational interval of

each metric, thus dividing it into x− 1 smaller ranges equal in size (line 5-10). A combination

of ranges in D defines a partition h, i.e. a n-dimensional hyper-cube representing a sub-set of

possible metric values within the space. Each partition is confined by its vertexes and edges;

each vertex v defined as a unique operational point of the system, i.e. a combination of specific

values for all metrics. Thus, the segmentation results in a first set of xn vertexes V and a set

of (x − 1)n partitions H of the entire space (line 11-12). Then, a set of initial system states S

is found; each state s defined as a pair of the initial configuration c and an operational point v

(line 13). The algorithm executes the planning routine for such first set of states S and get in

return a plan p to each initial state s (line 14-15). As a result of this first step, a set of plans P

is generated for (x)n operational points evenly spread in the metric space.

The second step proceeds to the iterative division of the metric space when needed. This

step checks that all vertexes in a given partition h have the same plan p and, if not, proceed

to separate such partition into smaller ones; this is done iteratively until the granularity of

the partitions is “small enough”. The algorithm proceeds by selecting a partition h from H

(line 17-18). Then, for all edges in h, it compares the plans generated for adjacent vertexes

p1 and p2 (line 19-30). It decides to bisect the space if these plans are different for any pair

of adjacent vertexes in h (line 25-28). Bisection is done by computing the midpoint for every

range defining the current partition h (line 32-37). Then, it generates all new (sub-)partitions

and their corresponding vertexes in h, the sets Hh and Vh (line 38-39). It defines new states s,

as the combination of c with the newly generated vertexes vh (not yet visited) and execute the

planning routine to find plans for all such new states (line 40-41). It updates the sets S, V , and

H (line 42-44). This procedure is repeatedly executed for all partitions in H and stops when

rounds cease generating new partitions (i.e. no more bisections are done). This occurs when

partitions get ’small enough’ or when adjacent plans are the same.

Algorithm 1 returns a set of reconfiguration plans P (c) for each sub-region of the metric

space, for configuration c (line 47).
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Scanning Configuration Space: Initially, the expert defines the available system component

types with their properties and the architectural constraints stating how such components are

put together (e.g. the maximum number of available instances of the same type or the maximum

budget). Defining all system configurations, i.e. possible combinations of active components and

property settings, is either too demanding or unnecessary. Yet, operators tend to have some

insights about which are the most common system configurations, a knowledge worth availing.

It is possible to scan the configuration space taking as a seed a small set of common system

configurations defined by the expert C0. This approach takes advantage of the metric space

scanning algorithm (described previously) to predict successive system configurations that can

result from the adaptation process. This is done using the set of reconfiguration plans P (c0)

returned by the algorithm. For any plan p(s0) = [a1, a2, ..., af ] in P (c0) for a initial state

s0 = (c0, v), the algorithm is able to generate a set of subsequent system states {s1, s2, ..., sf},

from which it derives a set of subsequent system configurations {c1, c2, ..., cf}. In the first

iteration, the procedure generates subsequent system configurations for all seed configurations

c0 in C0. In next iterations, the procedure takes as input the result of a previous iteration

Ci to generate a new (bigger) set Ci+1 of subsequent states worth exploring. The procedure

is repeated for a number of iterations k (a parameter set by the expert), allowing the user to

control the adaptation horizon in the number of subsequent possible configurations to visit.

Consolidating Policies: To generate policies, the solution consolidates adaptation plans un-

der common system conditions. The algorithm merges adjacent partitions (with shared hyper-

planes) that share common adaptation plans. It extract system conditions rm as the per-metric

ranges under which a plan is valid. This results in a set of policies, defined by: initial configu-

ration c, system conditions rm, and adaptation plan p.

3.3 Case Study

To study the effectiveness of this approach, policies are generated to support elastic scaling

of a web content application, a news website similar to CNN. This user-interactive application is

served by a pool of machines in the cloud that it must adjust to meet the capacity requirements

of the user demand, which varies over time.
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Let’s consider an adaptation scenario where the cloud provider make available three different

machine types, as shown in Table 3.1: m1.small, m1.large, and m1.xlarge. The application expert

has defined two new dependability constraints: (1) at least one server has to be active at all

time to guarantee service availability, and (2) the system processing capacity cannot be lower

than six cores at any time.

For illustration purposes, in the following the system is considered to depart from an initial

configuration in which two m1.xlarge servers are active and the performance indicator of interest

is the response time, when in the range between 0ms and 50ms.

3.4 Application

3.4.1 Encoding

System components: The available server instance sizes (small, large, and xlarge) are spec-

ified with their associated prices, start-up times, cpu capacities, and shutdown times as shown

in Listing 3.1. A server instance can be enabled or disabled, which is captured as a boolean

property. The system expenditures, i.e. the cost of all enabled servers, and the system capacity,

computed as the sum of the capacity of all enabled servers, are encoded as functions. While

the system architecture consists of more components and connectors in a real cloud application,

Listing 3.1 shows only the server types for simplicity.

System metrics: The model considers the response time, i.e. the average latency perceived

by clients, as the metric of interest, which is encoded as a function (line 5 in Listing 3.1).

System goals: The utility function is defined as a linear combination of the system expen-

ditures (configuration-specific) and the response time (metric-specific). The weights and nor-

malization factors are declared to each term (line 6 in Listing 3.1). Expert-defined weights are:

w1 = 0.14 for expenditures and w2 = 0.86 for response time. Normalization factors are taken as

the maximum value of the operational interval defined by the expert: expenditures in [0.000$/hr,

0.800$/hr] and response time in [0ms, 4000ms]. The planning goal to find a system state which

utility is below the utility threshold is declared (line 7 in Listing 3.1).
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Listing 3.1: PDDL specification: components metrics and goals

1 (: types small large xlarge − server)

2 (: predicates (is enabled ?s − server))

3 (: functions (price ?s − server) (cpu ?s − server) (capacity)

4 (startup ?s − server) (shutdown) (expend))

5 (: functions (time))

6 (: functions (w1) (w2) (n1) (n2) (th))

7 (: goal (<= (+ (∗(/(expend) n1) w1) (∗(/(time) n2) w2)) (th)))

Listing 3.2: PDDL specification: action DeactivateServer

1 (:durative−action DeactivateServer

2 :parameters (?s − server)

3 :duration (= ?duration (shutdown))

4 :condition (and

5 (at start (is enabled ?s)))

6 (over all ( exists (?s − server) (is enabled ?s)))

7 (at start (>= (− (capacity) (cpu ?s)) (cputh))))

8 : effect (and

9 (at start (not (is enabled ?s)))

10 (at end (decrease (expend) (price ?s)))

11 (at end (assign (time)

12 (∗ (/ (capacity) (− (capacity) (cpu ?s)) (time))

13 (at end (decrease (capacity) (cpu ?s))))

Systems actions: Adaptation actions are two: activate or deactivate server (see Listing 3.2).

Each action is defined by its: parameters as the specific component type to be affected; duration

which is parametrized to be equal to the start-up/shutdown time; conditions for the action to

be selected (e.g. an instance must be active in order to be deactivated - line 5); effects on the

configuration parameters; and impacts expressed as a linear function (e.g. the impact on the

response time is inversely proportional to the variation in the capacity - line 11).

Dependability constraints: Since constraints are not supported explicitly by the planning

language and tools, they are encoded as action conditions (see Listing 3.2). The dependability

constraint imposes that at least one server remains active during plan execution as a condition

to deactivating servers (line 6). Also, a server cannot be deactivated when the predicted final

capacity (after shutdown) is less than a threshold cputh = 6 cores (line 7).
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3.4.2 Planning

The encoded utility function to guide plan selection assigns the value (0.14) ∗

(expend/0.800) + (0.86) ∗ (time/4000) to a state with a configuration that costs expend per

hour and has the value time for the response time (a value known to be in [0ms, 50ms]). Several

utility thresholds are generated using the procedure described before to find an adaptation plan.

Experiments show that the solution, in average, is found between the 5th and 6th iteration.

3.4.3 Scanning

As mentioned before, for the case study the initial configuration c consists of two enabled

XL servers (and, hence, expenditures of 0.700$/hr). The scanning procedure is run for the

one-dimensional space for response time in the interval [0ms, 50ms]. The algorithm is run

considering: the initial number of points is set to x = 11 and the utility granularity µ = 0.001.

In the first step, the metric interval is partitioned in 10 sections of 5ms. In the subsequent

phases, deep scanning is done for neighboring states with mismatching plans. The algorithm

further partitions the range [20ms, 25ms] in subsequent iterations, thus visiting two new states.

In total, the metric space scanning algorithm visits 13 initial states for configuration c. Plans

are merged under common conditions, resulting in two policies; one plan covers system response

time in range [0ms, 24ms] and a different plan covers the range [24ms, 50ms].

3.5 Evaluation

3.5.1 Generated Policies

The generated policy for the initial system configuration c and metric conditions rm in the

sub-range [0ms, 24ms] is shown in Listing 3.3. The adaptation plan aims at a final configuration

consisting of one large server (L1) and three small servers (S1, S2, S3), for a total of seven CPU

cores to handle the workload.

The adaptation actions are ordered to meet the dependability constraints in terms of mini-

mum processing capacity and number of active servers. As a consequence, XL1 server cannot be

decommissioned right after XL2; this ensures at least one server is active at all time. Similarly,
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XL1 server is deactivated only after L1, S1, and S2 are active; so the plan ensures a minimum

compound capacity of six cores at any time. It is worth noting that a similar set of actions

scheduled in a different order could violate dependability constraints. Similarly, alternative

valid plans (e.g. activating several small server instead of the one large server) could be costlier

or slower in execution.

Listing 3.3: One of the Generated Policies

CONFIGURATION: (XL1 enabled) (XL2 enabled)

conditions : 0ms < response time < 24ms

adaptation plan:

(A) DeactivateServer (XL2)

(B) ActivateServer (L1)

(C) ActivateServer (S1)

(D) ActivateServer (S2)

(E) DeactivateServer (XL1)

(F) ActivateServer (S3)

3.5.2 Scalability

The TFD planner took 4.54 seconds in average to find the solutions and 12.4 seconds to

generate the plans presented above, for a problem instantiating 17 objects. In the evaluation, a

problem specifications with an increasing number of server instances is considered. The results

suggest that search times in TDF increase dramatically with the number of objects (see Table

3.2). Long search times could limit these tools to find solutions at run-time.

Table 3.2: Scalability: Search Times of TDF Planning Tool

N. Instances Instance types Search Time

26 18 S + 5 L + 3 XL 4.62 sec

31 19 S + 8 L + 4 XL 7.38 sec

33 20 S + 10 L + 5 XL 46.1 sec

36 23 S + 10 L + 5 XL 114 sec

Time performance is correlated to the characteristics of the search graphs (specific to the

encoded problem), search algorithms, and search heuristics implemented by the planning tools.

TFD heuristics benefit the exploration of the action space over that of object space. Thus,

by declaring actions that are parametrized with properties (e.g. prices, start-up times), the

encoding already stressed TFD’s search capabilities. Yet, the encoding could be tailored to
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reduce TFD’s search times, e.g. by using typed-based properties (instead of object-based) and

non-parametrized actions. Since this approach is supposed to be executed offline, any planner

that is able to find adequate solutions, even if it takes several minutes or a couple of hours, is still

useful for this approach. TFD, in particular, was able to find solutions in all tested scenarios.

3.5.3 Discussion

The approach ensures that the system requirements, e.g. dependability constraints, are

encoded in the specification of the planning problem, such that the generated policies do not

violate these requirements. The approach also encodes a multi-objective goal that balances

the system performance (e.g. reduced response time experienced by the customer) and the

operational costs (e.g. expenditures due to rented machines), according to user preferences.

An elastic controller empowered by the generated policies would be responsive to expected

conditions of the system. Policies are generated offline and can be executed timely, in scenarios

where the variation in the workload are slow. Also, the generated policies ensure that expected

conditions are covered, since the scanning task already explores the space of all possible config-

urations and environmental conditions, defined by the experts.

The planning tools could resolve the complexity of real-life scenarios. Yet, AI planning tools

still present limitation that prevent them to be used online. Search times increase significantly

with the number of objects to explore. Nevertheless, the applicability of the approach is not

affected by long search times, since the policy generation procedure is executed offline.
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3.6 Related Work

Most decision-making mechanisms for elasticity are based on greedy solutions that select

first the action with best immediate impact on the system’s performance. Most commercial

cloud providers, e.g. Amazon, Google, Microsoft, and several academic proposals, e.g. (Rosa,

Rodrigues, Lopes, Hiltunen, & Schlichting 2013; Cheng & Garlan 2012), resort to these solutions.

These greedy approaches can fail when faced with complex scenarios that require planning.

Few planning-based approaches exist currently. For instance, Mistral (Jung, Hiltunen, Joshi,

Schlichting, & Pu 2010) relies on a holistic search algorithm, a variation of A*, that considers

adaptation costs to determine optimal plans. Still, adaptation actions do not have associated

impact functions on performance metrics and, thus, derived plans cannot account for transient

violations of dependability constraints during adaptation.

Previous solutions have used AI planning for self-adaptation, similar to the presented ap-

proach. For instance, in (Barnes, Pandey, & Garlan 2013) the authors encode a software ar-

chitecture evolution problem in the PDDL language and resolve it with temporal planners. In

PLASMA (Tajalli, Garcia, Edwards, & Medvidovic 2010), architectural descriptions are auto-

matically translated into PDDL and a planner is used to find the components that need to be

included in a configuration to achieve the system functional goals and, then, to find a plan able

to transform the current configuration to the desired one. Also, an approach for the generation of

temporal plans is proposed in (Ziegert & Wehrheim 2015) that allows durative reconfigurations

and proposes an encoding into PDDL that solves concurrency issues. However, these solutions

lack the ability to tackle problems that require numeric values (e.g. system metrics) to guide the

search. Additionally, the generated plans are not aggregated in the form of adaptation policies

that are applicable under common system conditions.

3.7 Conclusions

The approach presented above aims at responding the question: How can classical planning

be used to support the (offline) generation of policies for elastic scaling in cloud environments?.

The proposed approach solves a classical planning problem (extended with temporal fea-

tures) using AI planning. This approach was successful at meeting the goals and addressing
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limitation of previous work in that:

1. The generation of policies is supported by automated tools that can foresee unexpected

combinations of machine types and scaling actions to elaborate (more complex) strategies.

It departs from an encoding of the problem easily derived from the system model and

human expertise. It improves on previous work that relied solely on humans to define

reactive policies.

2. The generated policies exploit the benefit of planners to choose a sequence of actions to

guide the system to the desired configuration. In this sense, it improves on previous work

where elastic scaling was reduced to a greedy execution of event-condition-rules, potentially

unable to lead the system to its “best” configuration.

3. The encoding of the planning problem is flexible enough that new machine types and

system constraints can be easily incorporated and the planning and scanning steps can

support the generation of a revised set of policies. That way, the proposed solution can

assist the frequent revision of policies due to changes in the context.
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Summary

This chapter has presented the implementation of an automated planning solution to support

the definition and revision of reactive policies for elastic scaling in the cloud, and its evaluation

via simulations in a case study. This solution relies on AI planning languages and tools to gen-

erate policies that support elastic scaling. It is effective at mapping a (simplified) architectural

model of the system into a standard action language (PDDL3.0), at scanning the space of system

conditions, at generating a set of plans produced by off-the-shelve planners (TFD), and at select-

ing the best configurations and plans according to multi-objective criteria. The results suggest

that automated planning is a valid alternative for the offline generation of policies applicable

to real life cloud environment scenarios. Notably, planning can circumvent the limitations of

human-defined policies, producing more elaborate combinations of actions that lead the system

to the desired configuration, while preventing the violation of system constraints.

Publications

The work presented in this chapter contributed to the following publication:

Automated Generation of Policies to Support Elastic Scaling in Cloud Envi-

ronments. R. Gil Martinez, A. Lopes, L. Rodrigues Proceedings of the ACM Symposium on

Applied Computing (SAC). Marrakech, Morocco. 2017
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4Proactive Scaling and

Reconfigurations

This chapter introduces and evaluates an approach to execute automated planning at run-

time for elastic scaling and reconfiguration of cloud applications. In particular, it addresses the

question on how can temporal planning be used for the proactive reconfiguration (online) of

interactive applications in cloud environments.

This chapter explores the reconfiguration of cloud-enabled applications using controllers that

combine proactive techniques with the ability to manage heterogeneous resources. The solution

relies on temporal patterns obtained from historical data to predict the evolution of the workload

and to initiate adaptation before the service quality is affected. Decisions are made based on

knowledge about the workload curve, the cloud resources, and the initial system configuration.

The chapter presents Augure, a controller that uses constraint solvers at run-time to search

the space of actions in long-term horizons and to select a plan that: (1) minimizes the price

billed by the cloud provider and (2) mitigates the negative side-effects of reconfiguration on the

service quality. In addition, to study proactive controllers that make (greedy) decisions looking

at short-term horizons, this contribution introduces Vadara+, an extension of Vadara (Loff &

Garcia 2014) that manages heterogeneous resources.

4.1 Motivation and Goals

Applications in the cloud may be exposed to environments where changes occur rather

abruptly and the time for planning on-the-fly is limited. Reactive policies that execute greedy

guarded actions may respond quickly; yet, without a perspective of future events, the system may

be exposed to oscillations that hinder its performance. Reactive policies that rely on deliberate

planning, presented in the previous chapter, are also oblivious to the future variations of the

environment and may divert the system’s behavior in an undesired way. In scenarios as such,

proactive planning can be an appropriate solution.
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The contributions presented in this chapter are motivated by three key features: (1) proac-

tive planning as a solution to narrow reaction times; (2) the importance of acknowledging re-

configuration impacts; and (3) the ability to manage heterogeneous resources; discussed below.

Proactive Scaling Proactive controllers have advantages when compared to reactive ones.

First, they can scale resources in a timely manner. Reactive adaptation is slowed down by long

monitoring and activation times (including server boot-up, configuration, and state migrations).

For instance, Netflix waits 5-10 minutes before triggering activation and servers can take up to 45

minutes to be ready to serve requests (Jacobson, Yuan, & Joshi 2013). Proactive controllers can

perform early activations; thus, servers can be ready before the (expected) surges occur. Second,

proactive scaling can anticipate state migrations. While reactive activation may induce migration

to occur when the system is highly stressed, proactive techniques can execute migrations when

the system is not stressed. Fig. 4.1 shows throughput degradation due to delayed reactions and

how early activations can mitigate these impacts, when scaling resources of an elastic database

system for online transaction processing applications (see Testbeds: E-Store). Finally, proactive

controllers also benefit from longer times to explore larger solution spaces.

Naturally, the efficiency of proactive scaling depends on having accurate predictions of fu-

ture workload. Luckily, many user-interactive applications see predictable workload behaviors.

Wikipedia reports daily access with decreased volumes at night (Urdaneta, Pierre, & van Steen

2009). Netfilx sees high demand after releasing new episodes (Jacobson, Yuan, & Joshi 2013).

Sports websites see surges during important events (Arlitt & Jin 2000). The New York Stock

Exchange transactions rise an order of magnitude during the first and last ten minutes of a trad-

ing day (Nazaruk & Rauchman 2013). Travel agencies, flight operators, and e-commerce stores

see seasonal boosts during summer and holidays. In scenarios like these, proactive adaptation

is convenient (Qu, Calheiros, & Buyya 2018; Kim, Wang, Qi, & Humphrey 2016).

Previous approaches to proactive scaling use temporal predictions of the workload curve

to make short-term scaling decisions, in a greedy manner (see Related Work). Differently,

Augure benefits from long-term decisions on the predicted workload curve to derive scheduled

plans. Time series analysis has also been used in the past to identify behavioral patterns in the

workload (Herbst, Huber, Kounev, & Amrehn 2014; Liu, Liu, Shang, Chen, Cheng, & Chen

2017). Augure sits on the assumption that workload patterns exist and can be learned.
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Figure 4.1: Motivation: Proactive scaling and reconfiguration of stateful applications. Experimental testing with E-Store

Reconfiguration Impacts Scaling actions can penalize the system performance while being

executed. This is relevant in stateful applications, where scaling actions may require data

to be transferred among replicas. The state transfer not only consumes network resources,

but also processing capacity in active replicas, contributing to increased latency and reduced

throughput (Taft, Mansour, Serafini, Duggan, Elmore, Aboulnaga, Pavlo, & Stonebraker 2014).

Despite this, a large majority of scaling solutions for the cloud are oblivious to these effects. In

previous solutions, like Vadara (Loff & Garcia 2014), reconfiguration impact can be taken into

account by starting actions ahead of time, thus ensuring that migrations end before the system

is overloaded. By making the controller aware of reconfiguration costs, it is possible to find

plans that mitigate service degradation when operating in heterogeneous settings. A plan with

mixed server types can reach resource utilization at minimal cost (equivalent to that reached

using equal-capacity servers of the smallest type); yet, it benefits from using less servers and

triggering less adaptations, thus, reducing their impact on service quality.

Heterogeneous Resources Heterogeneous resources offer an opportunity to mix a set of ma-

chines of distinct sizes that can tightly adjust to the required capacity. Previous approaches that

manage heterogeneous resources do not take into account temporal factors to find a plans to bet-

ter fit the workload curve in a long-term horizon. Since pricing schemes by cloud providers often

charge by the hour, having a long term view may help decide differently about a composition of

the pool of heterogeneous resources that could reduce costs more efficiently.
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Goal: To use temporal planning for the (online) generation of proactive plans for elastic scaling

and live reconfiguration of applications in cloud environments. In particular: (1) to enable

proactive planning techniques that can anticipate environmental changes and find plans to scale

resources accordingly; (2) to employ long-term decision-making, to make scaling decisions able

to reduce monetary costs by accounting for billing schemes that charge resources in long periods

(e.g. by the hour); and (3) to enforce awareness about the reconfiguration impacts, to mitigate

the negative side-effects on the system performance.

4.2 Approach

This section introduces Augure, a proactive controller for live reconfiguration of cloud ser-

vices that leverages knowledge about workload patterns and takes into account the heterogeneity

of resources and the impact of reconfiguration actions when planning adaptation. Augure works

by combining four complementary tasks: (1) pattern extraction, (2) fitting and prediction, (3)

planning and, (4) execution, as shown in Fig. 4.2. The notion of workload patterns and each of

the tasks performed by Augure are described below.
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Figure 4.2: Approach Overview
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4.2.1 Workload Patterns

A workload pattern denotes a set of workload curves sharing some characteristics. In Augure,

these patterns are used to capture recurrent observed behaviors in the workload. A pattern is

represented by a time series. Its data points should be regarded as normalized workload values

to the value of the workload at time 0.

Fig. 4.3 illustrates several workload patterns. Pattern A denotes workloads that are constant

in the foreseeable future. Patterns B and C denote scenarios where workload changes steadily.

Patterns D, E, F denote more sophisticated realistic behavior, extracted directly from (The

Internet Traffic Archive 2018). Interestingly, pattern E and F signal similar curves initially but

deviate significantly from a point in time (see minute 140 in patterns E and F). It is worth

noting that if only pattern A is available, the behavior of Augure is purely reactive, i.e. Augure

assumes that the load will remain constant and only reacts to changes when they are observed.

The adoption of patterns that abstract from the initial workload value and focus only on

the relative variation in a time horizon is justified by the observation that, while patterns are

recurrent, values change according to user behavior. Thus, a workload curve may be different

depending on the day of the week (e.g. workload volumes may be higher on weekends).
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4.2.2 Pattern Extraction

Augure keeps a database of relevant workload patterns. Some patterns are pre-loaded

in the system. Other patterns may be explicitly added to the system based on knowledge

obtained elsewhere (e.g., leveraging the expertise of human operators). Also, patterns can be

learned automatically at run-time. Each pattern is stored with a number of features that may

subsequently help to match a specific workload behavior with the known patterns. Contextual

features can be temporal (day of the week, season, holidays), trends (increasing or decreasing

slopes), variances (burstiness levels), or information on sporadic events (team popularity in a

football match).

The current prototype of Augure uses patterns that are captured offline (i.e. manually input

by the operator) and patterns that are captured online, relying on a workload classification and

forecasting approach proposed in (Herbst, Huber, Kounev, & Amrehn 2014). These techniques

continuously provide a time series of point forecasts of the workload intensity with confidence

intervals and accuracy metrics in configurable intervals. These forecasts have been normalized

to the value of the workload at time 0 and categorized by comparing to the patterns already

in the database. New patterns are added to the database when the current forecast does not

match any of the existing patterns.

4.2.3 Fitting and Prediction

This task aims at predicting accurately the workload values in a given horizon, based on

known patterns and the observed behavior during execution. It is divided into two sub-tasks:

Fitting, the first sub-task, tries to match the current workload behavior with one of the

known patterns. Augure uses both the shape of the pattern and the contextual features associ-

ated to it to match the current execution with one of the patterns in the database. Historical

data observed during a fixed interval (e.g. one hour) is compared to each existing pattern.

Patterns are ranked by how similar they are to currently observed behavior, using standard de-

viation error weighted to the relative temporal past distance. The fitting process always returns

at least one pattern. If no obvious candidate is found, pattern A is used. If several patterns see

similar initial behavior, fitting will single out one of them, only when a significant deviations

occurs (see patterns E and F, which deviate at minute 140).
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De-normalization, the second sub-task, predicts the workload values. Augure creates a

prediction of the workload by de-normalizing the pattern using the specific values observed in

the current execution. For instance, assume that pattern B is selected after a one hour fitting

interval. If at minute 60 the workload is 1300 req/s, then the predictor will estimate that the

workload would increase up to a 2000 req/s by the end of the prediction window (minute 200).

The system is monitored periodically to confirm that the observed values are consistent with

the prediction. When the monitored workload is within the confidence levels, the pre-computed

plan continues to be executed. Whenever the monitored workload deviates out of confidence

levels, the predicted values are adjusted to the observed behavior and a new plan is computed.

If after a deviation there exists another pattern that matches better the observed behavior, such

pattern is selected, de-normalized to the monitored values, and a new plan is computed.

4.2.4 Planning

The planning task takes the current configuration of the system, the selected workload

prediction, and a list of resource types, to compute a sequence of adaptations that must be

performed to meet the workload demand. The current version of Augure only considers two

types of adaptations: activate or deactivate a server of a given type. Therefore, a plan is a

sequence of activation and deactivation actions to be executed at particular time instants that

deal with the expected increase and decrease in the workload. From a given initial configuration,

the goal of planning is to find the best set of mixed resources and the best sequence of actions

that minimizes a cost function, based on the assumption that the workload will follow the

prediction. To this goal, Augure encodes the planning problem using a linear programming

model and employs an off-the-shelf constraint solver, CPLEX (IBM 2016), to find an optimal

solution. Similar techniques have been used in the past for short-term decisions in scenarios

that do not consider a degradation impact of migrations (Srirama & Ostovar 2014).

The cost function considers both the direct costs associated to the active (rented) servers

and the indirect costs incurred when clients are not served timely. In order to estimate these

costs, Augure relies on a model of the servers and their operation. A server can be in different

states: inactive, start-up, warm-up, active, and cool-down, before going back to inactive. The

times it take to warm up and cool down a server are specific to the application and the cloud

provider; these times must be estimated for each application (offline). The capacity and the
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cost of a server depend on the server type and its state. An inactive server of any type has 0

capacity and 0 cost. The activation of an inactive server puts it on start-up state for some time,

then it goes through a warm-up state and when warm up is over the server becomes active. The

graceful decommission of the server requires the server to go through a cool-down state before

becoming inactive again. The capacity of a server x in an active state, is denoted by px (in terms

of requests per second) while the degraded capacity of a server x in the warm-up or cool-down

state is denoted by dx. Negative values of dx can be used to capture the overhead that such

server may induce on other servers due to state-transfer or other initialization or deactivation

tasks. Servers that are not inactive have a cost that, in most cloud providers, is often charged

in fixed billing periods (e.g. 60 minutes in Amazon EC2).

The cost function is encoded as follows. The direct cost associated to a server x is represented

by cx; this accounts for how much it is charged by the cloud provider when a server is requested.

These costs are incurred every billing period and, once a server is requested, releasing it before

the end of the next billing period brings no savings. Indirect costs are captured as a penalty l

payed due to requests that are served slower or may even be dropped when the installed capacity

is not enough to sustain the workload. This cost at a given point y is assumed to be proportional

to the gap between the required capacity at that point (denoted by wy) and the installed capacity

given by the sum of the capacity of all servers that are not inactive. The workload demand is

assumed to be served linearly with respect to the installed processing capacity, measured in

number of processing units.

The encoding of the problem using linear programming uses three collections of boolean

variables: the billing points billxy indicate whether a server x is requested or renewed by the

cloud provider at point y, the activexy indicates whether the server x is active at point y (i.e.,

serving some load), and conf xy indicates whether the server x is at in the warm-up or cool-down

state at point y (i.e., state migration is going on). The planning window has duration r+ t+ g,

where r is the maximum server start-up time (including warm-up time), t is the time window

of the workload curve, and g is the billing period, measured in time-steps of τ minutes. Hence,

the time instant that corresponds to a point y is y × τ minutes. Under these assumptions, the

cost function used by Augure is captured in Equation 4.1.

r+t+g∑
y=0

(

s∑
x=1

cx.billxy + l.(wy −
s∑

x=1

(px.activexy + dx.conf xy))) (4.1)
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4.2.5 Execution

The execution module takes the plan as input and schedules all the adaptations in the plan,

from the current time until the end of the reassessment period. This involves requesting the

activation of new servers or the decommissioning of active servers. It is worth mentioning that,

while the current prototype is targeted at supporting horizontal scaling, the system may be

extended to consider vertical scaling as well.

4.2.6 Continuous Re-evaluation

All the tasks above are executed periodically. New patterns can be discovered and added

to the database in any cycle. Similarly, the selected pattern and the predicted values of the

workload are re-assessed periodically, to take into account the real evolution of the workload.

As a consequence, a more suitable pattern and more accurate values may be selected based on

the data observed at run-time. If an updated prediction of the workload curve exists, planning is

re-executed taking as input the current configuration of the system and the updated prediction.

Finally, the most current plan is scanned and the scheduled actions are prompted.

It is worth noting that, in the absence of learned patterns, Augure behaves as a purely

reactive controller, resorting by default to pattern A. Augure assumes that the load remains

constant throughout time and, therefore, only reacts to changes when detected (at the end of a

monitoring period).



70 CHAPTER 4. PROACTIVE SCALING AND RECONFIGURATIONS

4.3 Case Study

To evaluate Augure, let’s consider a scenario with general purpose instances from Amazon,

shown in Table 4.1. The processing capacity and the cost of the servers are defined by two

units: p = 50 req/s. (equivalent to 1CPU) and c = 0.006 $/hr. Realistic workload traces

and patterns have been extracted directly from (The Internet Traffic Archive 2018)(Arlitt & Jin

2000). In particular, the case study concentrates on workload traces that match patterns D, E,

and F (see Fig. 4.3). For the application, the server activation time (including server boot-up,

configuration, and state migrations) was set to 12 minutes and the state migrations to 3 minutes.

Table 4.1: Cloud Resources: Amazon EC2 Instances - t2

Instance Size CPU Cost [$/hr.] P [p] C [c]

t2.micro 2 0.012 2 2

t2.small 4 0.023 4 4

t2.medium 8 0.047 8 8

4.3.1 Testbeds

Augure was evaluated with two different testbeds:

Simulator: The discrete simulator implements a idealized managed system where the ca-

pacity of the system matches exactly the sum of the capacity of the machines that are active

at a given time. Simulators are used to evaluate the controller’s performance in isolation and

without external noise.

E-Store: E-Store is an elastic in-memory database system designed for online transac-

tion processing applications (Taft, Mansour, Serafini, Duggan, Elmore, Aboulnaga, Pavlo, &

Stonebraker 2014). E-store supports high/low partitioning granularity for hot/cold tuples and

employs live migration to distribute data among servers and achieve load balancing even in

the face of skewed access patterns (Elmore, Arora, Taft, Pavlo, Agrawal, & El Abbadi 2015).

An important aspect of E-Store is that adding/removing replicas involves an expensive data

migration procedure that has a significant impact on the system.
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4.3.2 Controllers

Four different controllers were used to investigate the effects of proactive scaling and het-

erogeneous resources:

Reactive (Baseline): E-Store is natively controlled using reactive techniques akin to those

offered by cloud providers. The controller adjusts a pool of equally-sized servers. Servers are

added/removed from the pool (one at a time) when the CPU utilization exceeds a pre-defined

threshold. In the presented experiments, a homogeneous pool of t2.medium servers was used.

One new server is added when the average CPU utilization is higher than 80% (6 minutes

monitoring) and one server is removed when the average CPU utilization is lower than 25% (12

minutes monitoring).

Vadara: Vadara (Loff & Garcia 2014) combines greedy heuristics with short-term predic-

tions to scale a pool of homogeneous resources. Vadara predicts workload variations in the next

monitoring cycle and reacts accordingly, activating the necessary resources in advance. Also,

Vadara does not deactivate servers immediately when the load drops; instead, it leaves servers

in an idle pool and reuses them if the workload rises again before the rented time expires. In

the experiments, a homogeneous pool of t2.medium servers is used. Vadara was fed with the

prediction of the workload curve and the next monitoring cycle was fixed to be equal to the

server activation time.

Vadara+: Vadara+ is an extension of Vadara that can manage heterogeneous resources.

Vadara+ was developed as a contribution of this work. It uses a prediction of the workload

variation in the next monitoring cycle to estimate the number of processing units needed in the

near future. It employs first fit decreasing (FFD) heuristics to compute a combination of mixed

server types that fits the workload in the next monitoring cycle and adapts the pool greedily. In

the experiments, a heterogeneous pool of servers (t2.micro, t2.small, and t2.medium) was used.

The next monitoring cycle was fixed to be equal to the server activation time.

Augure: Augure combines workload predictions and a long term horizon to find a schedule

of actions to control a pool of heterogeneous resources. In the experiments, a heterogeneous

pool of t2.micro, t2.small, and t2.medium servers is used and Augure is customized with τ = 3

minutes and a monitoring cycle equal to the server activation time.
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4.4 Evaluation

An extensive evaluation of Augure is presented in this section. Simulations and a real system

implementations are used to assess various aspects of the planning approach and to compare

the performance of different scaling techniques.

4.4.1 Planning Time

The simulator was used to measure how long it takes the planner component of Augure to

compute an adaptation plan as a function of the problem size. The size of the problem, i.e.

the number of constraints in the linear programming model, depends on two parameters: the

“length” of the temporal window t measured in time-steps and the number of resources in the

server pool. Augure’s scalability was tested against different values of the time-step τ , thus

changing the number of samples. For a fixed value of τ , the intensity of the workload curve was

modified; the number of server instances needed to meet the workload varies accordingly.

Fig. 4.4 shows how the search time increases with the number of resources for each value of

τ . Depending on the workload intensity, the value of the time-step can be selected to guarantee

that search times are tamed. In average, CPLEX solves a large problem (around 30 thousand

constraints) in less than 5 minutes; a positive result when compared to the monitoring and

activation times. For the workload traces used in this evaluation, the number of instances

ranges from 5 to 12, making it acceptable to fix τ = 3 minutes.
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4.4.2 Fitting and Prediction

The simulator was used to evaluate Augure’s ability to fit the current workload to a pattern

in the database and the impact of miss-fitting and workload deviations on its ability to meet

SLOs. The system was exposed to deviations in a workload matching pattern E (see Fig. 4.3).

Fitting and prediction results are depicted in Fig. 4.5. Augure is able to accurately perform

the fitting task when the workload matches exactly one of the known patterns (Subfig. 4.5.1).

When the workload values deviate significantly from the predicted curve (e.g. at time 84 in

Subfig. 4.5.2 there is an abrupt surge), Augure readjusts its prediction successfully. Similarly,

when the workload curve deviates from the selected pattern (e.g. at time 144 in Subfig. 4.5.3 the

load starts following pattern F, instead of E), Augure is able to recognize the current pattern

promptly. In such situations, Augure’s miss-fit induces SLO violations for less than 10% of

requests during the immediate cycle after the deviation up until the time when the effects of the

updated plan are observed.

Also, Augure was evaluated in a scenario where it must resort back to pattern A in every

cycle, behaving as a reactive system. In such case, SLO violations cannot be avoided, resulting

in 10% to 50% of unserved requests per cycle (Subfig. 4.5.4). Results show that knowledge of

workload patterns, even if not fully accurate, brings significant benefits.
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Figure 4.5: Responsiveness: Augure’s fitting and miss-fitting effects on system performance
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4.4.3 Cost and Reconfiguration Impacts

The simulator was used to assess the impact of reconfiguration actions. The system was

exposed to a workload curve matching pattern D and proactive controllers were compared.

Let’s consider three scenarios to capture the impact of reconfiguration actions on the system:

local, global, and stop+go. Local: implies that activated servers have a percentage of their

steady-state performance during warm-up/cool-down periods, but do not degrade the overall

performance. Global: captures a scenario in which all active servers see performance degrada-

tion when one of the servers is warming up or cooling down. The overall capacity is considered

to degrade with a factor dx of four times the compound capacity of all servers in warm-up/cool-

down state. Stop+Go: captures a scenario in which the system temporarily stops operating

when a server is warming-up or cooling down; during these intervals, the processing capacity is

null and all requests are dropped. For this simulation, the impact of reconfiguration is studied

in scenarios with system degradation: global and stop+go. The indirect costs due to SLO vio-

lations were computed using the cost function with a loss factor l = 0.001 $/min multiplied by

the lacking capacity at each time-step.

Table 4.2 shows the bill (in cost units [c] and dollars [$]) and the reconfiguration impacts

(as Service Level Objective Violations SLOV and losses in dollars [$]) for Vadara (V), Vadara+

(V+) and Augure (A). Vadara+ reaches a better fit for the workload curve using mixed resources

and incurs lower bills than Vadara[medium]. Vadara generates less reconfiguration actions when

using larger servers, which translates into fewer violations and monetary losses. In this particular

setting, Vadara[medium] outperforms Vadara+ in terms of overall cost. In comparison to Vadara

and Vadara+, Augure is able to reduce the number of reconfigurations by 20% (homogeneous) to

70% (heterogeneous). Augure[mixed ] plans are also cheaper both in billed price and in monetary

losses; a cost reduction up to 35%. As expected, stop+go inflicts more violations to the SLO for

all three controllers, since it stops all service at every reconfiguration step.

Simulations confirm that greedy controllers that use short-term predictions may trigger

many reconfigurations and, in scenarios with degrading impacts, this translates into monetary

losses. Also, controllers that manage mixed resources find a better fit for the workload curve,

reducing over-provisioning and incurring lower bills. Augure’s planning on long-term horizons

and mixed resources is able to derive plans that lower the billed costs while mitigating the impact

of reconfigurations on the system performance.
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Table 4.2: Cost Reductions: Vadara (V), Vadara+ (V+), Augure (A)

Controller Bill Bill Global Stop+Go
[server ] [c] [$] SLOV Loss[$] SLOV Loss[$]

V[micro] 82 0.4834 207 2.4840 269 3.2280

V[small ] 88 0.5192 181 2.1720 205 2.4600

V[medium] 96 0.5664 159 1.9080 159 1.9080

V+[mixed ] 84 0.4956 179 2.1480 241 2.8920

A[micro] 80 0.4720 165 1.9800 467 5.6040

A[small ] 84 0.4956 178 2.1360 319 3.8280

A[medium] 96 0.5664 181 2.1720 205 2.4600

A[mixed ] 82 0.4838 157 1.8840 232 2.7840

4.4.4 Live Reconfiguration in E-Store

In this subsection, Augure controller is evaluated as a solution to live reconfiguration of

a transactional database management system, E-Store. The performance of the controllers on

this system is assessed comparing the billed prices and the service degradation measured by

two indicators: throughput and 50% latency. E-Store was deployed locally with a database of

60 million tuples that are each 1KB (60GB in total). Extensive experiments were conducted

using large data-sets with uniform access patterns. All the experiments were conducted in a

cluster of 20 Linux machines connected by a 10Gb switch. Each node has two Intel Xeon quad-

core processors running at 2.13 GHz with 40GB of RAM. Servers are virtual machines with

pre-configured capacities, equivalent to server types presented previously (see Table 4.1).

The system was exposed to workload traces matching pattern D. To generate transactional

workloads, the standard YCSB workload generator (Cooper, Silberstein, Tam, Ramakrishnan,

& Sears 2010) was augmented, such that the volume of transactions could vary over time. YCSB

was configured to execute 85% read-only and 15% update transactions.

Before running the experiments on the real deployment, simulations were used to es-

timate the performance of the four controllers: Reactive, Vadara, Vadara+, and Augure.

Vadara[medium] was selected since this is the best scenario for Vadara, as mentioned before. For

this setting, the simulations indicated that both Augure and Vadara use seven servers and four

activation actions. Unfortunately, Vadara+ requires ten servers and twelve activation actions.

As noted above, controllers that combine greedy decisions with mixed resources trigger more56

reconfiguration actions. Given the poor performance of Vadara+ in this particular setting, this

controller was excluded from the set of live experiments with the real testbed.
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BILLED	PRICE:	88C	(0.5192$)
DELAYED	TRANS.:	66.4	x	106

VADARA

REACTIVE

AUGURE

BILLED	PRICE:	88C	(0.5192$)
DELAYED	TRANS.:	63.2	x	106

BILLED	PRICE:	82C	(0.4838$)
DELAYED	TRANS.:	27.0	x	106

Figure 4.6: Scaling and Reconfiguration Impacts: E-Store live reconfiguration impact on throughput and latency. Con-

troller comparison: Reactive, Vadara and Augure
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Fig. 4.6 shows the results for Reactive, Vadara, and Augure in the live deployment of

E-Store with pattern D. Each sub-figure corresponds to one controller and shows the service

degradation measured by two indicators: throughput (in transactions per second) and 50%

latency (in milliseconds). Each reconfiguration action induces a spike decrease in the measured

throughput (in comparison to the target throughput), as well as a spike increase in the 50%

latency. Every delayed transaction over 100ms is counted as an SLO violation. For each sub-

figure, it is presented (low left corner) the total billed price by the cloud provider (in cost units

c and dollars $) and the total number of delayed transactions that violate the SLOs.

Results are interesting. Compared to the reactive approach, Vadara offers the same billed

price but is able to decrease the number of delayed transactions by 5% (the reactive controller

misses more transactions due to monitoring and activation delays). Augure offers significantly

better results when compared to Vadara, reducing the billed price by 7%. More importantly,

Augure reduces the number of reconfigurations and their impact on the system. It mitigates

delayed transactions by 58% with respect to Vadara and by 60% with respect to Reactive.

4.4.5 Discussion

Augure resorts to a linear programming model to decide a schedule of scaling actions to

accommodate resources such that the system capacity meets the (predicted) workload curve.

Even if not explored in the proposal, a linear programming model is ideal to capture system

requirements in the form of constraints to the adaptation. With regards to the optimization

of the system performance and minimization of operational costs, Augure acts in two ways:

(1) it imposes that the computational capacity must always be able to meet the (predicted)

workload demand, to ensure that the throughput is maintained at acceptable levels; and (2)

it optimizes a cost function that considers both the cost billed by the cloud provider due to

resource consumption and the monetary penalty caused by performance degradation due to

reconfiguration actions. Both mechanisms are embedded in the linear programming model.

Augure is responsive enough to act quickly and positively to environmental changes. In fact,

its proactive nature makes so that it is able to act even before the (predicted) changes in the

workload curve take place. Additionally, through fitting and prediction, Augure can readjust its

plans whenever the workload curve deviates from the predicted pattern. At its worst, Augure

behaves as a reactive controller, when no prediction is available. When predictions are inaccurate
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and violations of the service level objectives are unavoidable, fast planning ensures that a new

scaling solution is found before the next monitoring cycle.

Augure’s planning is empowered by linear programming. The linear programming model

encodes a simplified (and inflexible) description of the scheduling problem. This is beneficial in

that constraint planners can solve a model with thousands of constraints in few minutes, making

it highly scalable. Otherwise, languages and tools from AI temporal planning are unable to

handle problems with long temporal horizons and many combinations of machine types.

4.5 Related Work

The solution presented above is based on the assumption that temporal patterns exist and

can be effectively extracted, using techniques similar to the ones proposed in (Herbst, Huber,

Kounev, & Amrehn 2014). In that proposal, a forecasting methodology that dynamically selects

at run-time a suitable forecasting method for a given context is able to continuously provide time

series of point forecasts of the workload intensity with confidence intervals and forecast accuracy

metrics in configurable intervals and with controllable computational overhead during run-time.

Many other temporal predictors (e.g. time series with moving average, auto-regression, ex-

ponential smoothing, or neural networks) and non-temporal predictors (e.g. support vector

machines or decision trees) have been used in the past to estimate future workload values and

resources (Qu, Calheiros, & Buyya 2016; Lorido-Botran, Miguel-Alonso, & Lozano 2014; Kim,

Wang, Qi, & Humphrey 2016; Messias, Estrella, Ehlers, Santana, Santana, & Reiff-Marganiec

2016). Any technique able to generate long temporal workload predictions may be incorporated

to the presented approach.

Proactive approaches for elastic scaling of resources in the cloud have been proposed in

the past. However, most approaches only generate predictions of the workload in the short or

medium term (Gong, Gu, & Wilkes 2010; Shen, Subbiah, Gu, & Wilkes 2011; Nguyen, Shen,

Gu, Subbiah, & Wilkes 2013; Loff & Garcia 2014; Shariffdeen, Munasinghe, Bhathiya, Bandara,

& Bandara 2016). Even solutions that have long-term predictions available (Jiang, Lu, Zhang,

& Long 2013), resort to short-term greedy decision-making. All such solutions are unable to

benefit from long-term scheduling that considers cloud provider’s billing periods (one hour) to

scale resources in a way that minimizes over-provisioning in time.
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Other solutions exist that require some data reconfiguration after scaling resources. Previous

approaches ignore the performance degradation caused by data reconfiguration when executing

scaling actions (Lim, Babu, & Chase 2010; Shen, Subbiah, Gu, & Wilkes 2011; Didona, Romano,

Peluso, & Quaglia 2014). To the best knowledge, only the SCADS Director (Trushkowsky, Bod́ık,

Fox, Franklin, Jordan, & Patterson 2011) incorporates an estimation of the degradation due to

data reconfiguration in the decision-making for elastic scaling of heterogeneous resources. Yet,

similar to the other proposals, the SCADS Director does not benefit from a long-term vision to

schedule the activation and termination of replicas proactively, such as to reduce the potential

negative impacts of data reconfiguration.

While controllers that manage heterogeneous resources have been proposed before (Srirama

& Ostovar 2014; Wang, Gupta, & Urgaonkar 2016; Verma, Gangadharan, Narendra, Ravi,

Inamdar, Ramachandran, Calheiros, & Buyya 2016; Ma, Zhang, Zhang, & Zhang 2016), the

controller presented in this chapter is more effective at combining machines of various sizes using

planning to schedule them such as to minimize monetary costs in the long horizon. Previous

approaches that provision resources in a greedy manner or with heuristics, without a long-term

prediction of the workload curve, risk executing sub-optimal plans, instead.

4.6 Conclusions

The approach presented above aims at responding the question: How can temporal planning

be used for the proactive reconfiguration (online) of interactive applications in cloud environ-

ments?

The proposed approach solves a temporal planning problem using a linear programming

module and constraint solvers. This approach was successful at meeting the goals and addressing

the limitation of previous work in that:

1. Augure is a proactive controller that used temporal planning to scale resources such as

to accommodate the system capacity to the predicted workload. It enables a fitting and

prediction mechanism to predict the future behavior of the workload, departing from a

database of learned patterns. Plans generated online are executed before changes occur.

It improves on previous work that are not responsive enough to react to fast changes.
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2. Augure generates a model of the planning problem that considers a long temporal horizon,

such as to generate a schedule of the activation and termination of machines that meets the

capacity requirements while minimizing the monetary costs billed by the cloud provider.

It improves on previous work that make short term decisions in a sub-optimal manner.

3. Augure optimizes a cost function that captures the monetary penalties due to performance

degradation produced by data migrations and that also considers the (predicted) behavior

of the environment to mitigate the negative impact of reconfigurations on the service. It

improves on previous work that cannot account for the impact of reconfigurations.
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Summary

This chapter has presented the implementation of an automated planning solution to support

the proactive scaling and reconfiguration of cloud applications, and its evaluation via simulations

and a prototype deployment in E-Store, an online transaction processing database system. The

solution introduced Augure, a proactive decision-making tool for resource adaptation in cloud-

enabled applications. Augure combines the benefits of long-term predictions of the workload

curve and the use of heterogeneous resources to find adaptation plans that offer a good fitting

of resources to the demand in the long horizon. Augure plans minimize the price billed by the

cloud provider and mitigate the impact of reconfiguration on the system performance. Using

off-the-shelf solvers, Augure can search the space of resource combinations and action schedules

in less than 5 minutes. Augure recognizes workload behavior changes and adjusts the prediction

promptly. Augure is able to tame the number of reconfigurations when compared to greedy

proactive techniques (such as Vadara+), achieving better results and lower costs overall.

Publications

The work presented in this chapter has contributed to the following publication:

Augure: Proactive Reconfiguration of Cloud Applications using Heterogeneous

Resources. R. Gil Martinez, Z. Li, A. Lopes, L. Rodrigues. Proceedings of the 16th IEEE

International Symposium on Network Computing and Applications (NCA). Boston, USA. 2017
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5Workflow Executions with

Spot Instances

This chapter introduces and evaluates a technique to automatically generate reactive policies

for the deployment of workflow applications in the cloud, using spot instances. In particular, it

addresses the question on how can probabilistic planning be used for the (offline) generation of

policies that regulate the execution of workflows, using spot instances in cloud environments.

This chapter studies the use of automated planning as a tool to optimize the execution

of deadline-constraint workflows in cloud environments. The proposed solution derives policies

using models that capture the non-deterministic effects of deployment actions, to account for the

probability of revocation of a spot instance. Planning is used to solve automatically generated

Markov Decision Processes (MDP) that model the execution of the workflow and to explore

the state space using well-known algorithms that lead to the optimal policy. Static policies are

derived before the execution of a job (offline). These policies are then executed at run-time and

guide the selection of deployment actions, depending on the occurrence of failures and the actual

task completion times.

5.1 Motivation and Goals

Many multi-tier web and data processing jobs are represented as workflows, which capture

the desired execution order of the tasks within a job and helps to reason abstractly about how

to schedule such tasks in a deployment environment.

Workflow scheduling has been studied extensively in scenarios where resources are homo-

geneous and task completion times are predictable. In such scenarios, is is possible to find a

schedule that minimizes the makespan and meets the timeliness requirements of the application.

However, in heterogeneous scenarios, where several machine types are available and the task

duration and price depend on the machine type, the search space becomes much larger and min-

imizing the makespan may no be longer the main objective. In fact, other schedules may exist
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that still comply with the timeliness requirements and can be executed on cheaper deployments.

Furthermore, very few works are prepared to deal with the uncertainty that is introduced by

the use of revocable instances.

How to exploit the availability of revocable instances when planning the execution of work-

flows is a challenging problem. Specifically, it is planning problem that must resolve scheduling

constraints, selection of machine sizes, and uncertainty. First, all tasks must be scheduled in a

way that reduces cost but also ensures that the job finishes before its deadline. Second, machines

must be chosen carefully taking in consideration the resources required by each task and their

costs; one must decide both the size (e.g., small) and reliability (on-demand or spot instances)

to minimize the expected execution cost. Third, the uncertainty introduced by performance

variability and instance revocations must be accounted for to ensure the timely execution of a

plan. To take full advantage of the opportunities offered by cloud providers, it is important

to consider not only the execution time and the cost of each task, but also the probability of

success; in particular, how likely it is that resources may be revoked.

The Importance of Planning: Since the problem of deciding machine types and time sched-

ules for workflow executions in the cloud is complex, planning could be used to find the best

solution.

To illustrate the importance of planning to find the best solution, a simplified scenario is

shown in Fig. 5.1. Here, a workflow W is composed of five sequential tasks with equal fixed

durations (1 time unit) and different resource requirements: T1 to T4 (1 CPU) and T5 (16 CPU).

The workflow must finish execution before a deadline dW = 6 time units. To take advantage of

heterogeneity, let us consider that two machine sizes are available: small S (1 CPU) and extra

large X (16 CPU). Let’s assume that each task is executed in a machine size matching their

requirements (e.g. T1 is executed in machine size S). Each machine can be rented on-demand or

as a revocable instance. The price paid for revocable instance is assumed to be β = 0.25 times

the price on-demand and the success probability is p = 0.8 (the probability of non being revoked

in one time unit). To take advantage of free time slots, the application must decide which tasks

to execute using on-demand or revocable instances, to ensure that all tasks finish successfully

and the execution cost is minimized.

Figure 5.1 shows three different policies to assign machine types to tasks. Policy A selects
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Figure 5.1: Motivation: Workflow execution using three different policies: (A) on-demand only, (B) revocable greedy, and
(C) planning

on-demand instances only. The solution has the highest possible cost and under-utilizes the

available time. Policy B assigns the cheapest revocable instance to each task in each time step

(greedily) and resorts back to on-demand machines only when the time left does not allow for

task failures. This policy ideally follows an execution path in which all tasks are completed

using revocable instances, resulting in the cheapest cost (5$); yet, this solution occurs only with

probability 0.32768. The expected cost of policy B, considering all possible solutions is instead

of 15$. Policy C is derived using planning, i.e. exploring valid execution paths and comparing

them to decide the best choice at each step. For this workflow, the optimal policy assigns a

revocable machine to the execution the most expensive task: if the task succeeds, the cost is 8$

with high probability of 0.8. The expected cost of the solution is 11.2$, which is 25% cheaper

than the one derived using greedy heuristics.
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Figure 5.2: Motivation: Costs reductions of planned policies (w.r.t. greedy heuristics) against the cost ratio between the
most expensive and cheapest task

The example above considers a small workflow with a limited number of machine types. In

real life, scenarios are more complex and the space of solutions is larger. The benefits of using

planning vary depending on the specifics of the worfklow graph and the variety of machine types.

As a generalization of the workflow described before, it is possible study the benefits in cost

reduction of planning (w.r.t. greedy solutions) for different rates of prices of revocable instances,

using the same workflow graph while varying the ratio of resources required by T5 with respect to

{T1, ..., T4}. Fig. 5.2 shows the curve for three prices of revocable instances: β = 0.15, 0.20, 0.25

times the price on-demand, with success probability p = 0.8. Planning is always able to find the

cheapest solution and can reduce costs up to 40%.

Goal: To use probabilistic and temporal planning for the (offline) generation of execution

policies for the deployment of workflow applications in cloud environments. In particular: (1)

to take full advantage of the cost reduction opportunities introduced by spot instances; and (2)

to generate policies that surmount the uncertainty caused by instance revocation and guarantee

the reliable execution of workflows with timely requirements.
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5.2 Problem Formulation

Workflow: A workflow W = 〈T , GW , dW 〉 is defined by a set of tasks T , a labelled directed

acyclic graph GW whose nodes are labelled by tasks in T and a deadline dW . The notation i : T

is used to denote that node i is labelled by task T . Every task in T is required to label at least

one node but a task can be used to label different nodes. A (directed) edge in the graph, from

i : T to j : T ′ represents dependency of data from task T to task T ′. In this case, i : T is said

to be a parent of j : T ′ and j : T ′ is said to be a child task of i : T . A child cannot be executed

until all of its parents are completed. Each task T has a constraint XT on the resources required

for its execution (e.g. minimum number of processing cores). The deadline dW represents the

time limit for the execution of the workflow.

Resources: Cloud providers offer virtual machines for different applications: compute opti-

mized, memory optimized, etc. A virtual machine can be allocated different amounts of com-

putational resources, pre-defined by the cloud provider, such that there are different machine

sizes. Virtual machines can also be rented in different price markets, as on-demand instances

or revocable instances. On-demand instances have a fixed price per time unit and reliability

guarantees to the user. Revocable instances have a dynamic price that varies with the bidding

market and are revoked when the price of the instance exceeds the price bid by the user. The

ratio between the price paid for a revocable instance and the price of the instance rented on-

demand is β. The entire set of virtual machines available to the workflow application is denoted

by V . A virtual machine v ∈ V is defined by a tuple 〈cpuv,memv, cv(t), pv(t)〉, where: cpuv is

the number of processing cores, memv is the memory size, cv(t) is the cost of an instance rented

for t time units (as defined by the price market1), pv(t) is the probability of the rented instance

not being revoked during the first t time units.

Task Execution: Since tasks have different resource requirements, they could be executed in

different virtual machine types and, hence, might have different execution times. Let duration2

d(T, v) be the maximum execution time required to complete task T in a virtual machine v,

1A billing policy per second is assumed.
2d(T, v) is expressed in time units of 1 second.
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taking into account the launching time and the performance variability3. These durations allow

us to derive the expected cost4 c(T, v) and success probability p(T, v) of executing a task T in

an instance v: c(T, v) = cv(d(T, v))) and p(T, v) = pv(d(T, v)))5. Task failures are assumed to

occur only due to instance revocation. Also, tasks are atomic and must be executed again if

they fail. To control the number of times each i : T can be re-executed due to a task failure,

the bound y is introduced. If a task i : T fails y consecutive times using revocable machines,

i : T must be re-executed using on-demand machines. To ensure that the workflow W can be

executed successfully using the machines in V , it must be verified that the minimum makespan

M(W,V ) ≤ dW . M(W,V ) is the time required for the execution of all nodes in GW , when tasks

use the fastest on-demand machine v ∈ V .6

User Preferences : When executing a workflow W , the application user may be interested in

optimizing the execution to reduce monetary costs incurred by the utilization of virtual machines

or to reduce the makespan. To account for user preferences, the parameter u is used to indicate

a cost preference (u = 1) or a time preference (u = 0).7

Planning Problem: The execution of a workflow W must be planned, to decide what machine

type to use for the execution of each tasks and when to schedule each action, such that the

deadline is met and the performance is optimized. This planning problem has both temporal

and probabilistic features. In this formulation, the probabilistic planning definition is combined

with augmented states that include temporal variables.

Formally, the planning problem in defined in terms of a set of states S, an initial state

s0 ∈ S, a set of goal states SG ⊆ S, a set of actions A, a subset of actions A(s) ⊆ A applicable

in each state s, a transition probability function P (· | s, a) for every action a ∈ A(s), a reward

function R(· | s, a) for every action a ∈ A(s), and a sequence of steps L.

Specifically, assuming the enumeration {1 : T1, ..., n : Tn} of the nodes of GW , the problem

is defined by:

3Execution times are assumed to be fixed durations.
4c(T, v) is expressed in cost units, defined with respect to the cheapest instance
5On-demand instances are assumed to have a success probability of 100%.
6It is assumed that for each task T ∈ T there exists at least one v ∈ V with the required resources XT .
7A combination of cost and time (e.g. as a weighted sum) could be easily incorporated in future work.
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• S, the set of states, consists of all pairs of the form s = (〈b1, ..., bn〉, 〈t1, ..., tn〉), where bi is

a natural number ranging from 0 to y + 1 representing the execution state of task Ti — 0

means waiting, any value in {1, ..., y} means failed, and y+ 1 means successfully executed;

while, ti is a natural number ranging from 0 to dW that captures the time evolution for

the execution of i : Ti. Also, bi and ti are used as state variables and write bi(s) and ti(s)

to refer to their values.

• s0, the initial state, is such that bi(s0) = 0 and ti(s0) = 0, for i = 1, ..., n.

• SG, the set of goal states, is the set of states s such that bi(s) = y + 1 and ti ≤ dW , for

i = 1, ..., n.

• A, the set of actions, comprises the execution of each task in every virtual machine that has

enough resources to execute it. If v is a virtual machine that satisfies XTi , then a(i : Ti, v)

is used, or aiv for short, to denote the execution of i : Ti in v.

• A(s), the set of actions applicable in each s ∈ S, is defined as follows: aiv ∈ A(s) if and

only if: (1) i : Ti has not been successfully executed, i.e. bi(s) 6= y + 1; (2) all parents of

i : Ti have been successfully executed, i.e. bj(s) = y+1, if j : Tj is a parent of i : Ti; (3) the

time after the execution of i : Ti does not exceed the deadline, i.e. max({ti(s)} ∪ {tj(s) |

j : Tj is a parent of i : Ti}) + d(Ti, v) ≤ dW ; and (4) the execution of i : Ti has failed less

than y times i.e. bi(s) < y, if v is a revocable instance.

• P (· | s, aiv), the transition probability function for each s ∈ S and aiv ∈ A(s), is such that

P (s′|s, aiv) = 0 if ti(s
′) 6= max({ti(s)} ∪ {tj(s) | j : Tj is a parent of i : Ti}) + d(Ti, v).

Otherwise, P (s′|s, aiv) = p(Ti, v) if bi(s
′) = y + 1 and P (s′|s, aiv) = 1− p(Ti, v) if bi(s

′) =

bi(s) + 1.

• R(· | s, aiv), the reward function for each s ∈ S and aiv ∈ A(s), is such that R(s′|s, aiv) =

R(aiv)+R(s′). R(aiv) = −c(Ti, v), if user preference is cost (u = 1). R(aiv) = −d(Ti, v), if

user preference is time (u = 0). R(s′) = −R∞, for a dead-end state s′ /∈ SG and A(s′) = ∅;

R(s′) = 0, otherwise. R∞ is a large finite number.

• L is a sequence of natural numbers 1, 2, ..., Lmax that represent the decision steps at which

an action is executed. Lmax = n ∗ (y + 1) is called the horizon.
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The formulation of the planning problem corresponds to a finite-horizon Markov Decision

Process (fh-MDP) of the form 〈S,A, P,R,L〉 (as defined by (Mausam & Kolobov 2012)). To

make the presentation of the problem self-contained, below the key concepts regarding planning

with MDPs are recalled (also following (Mausam & Kolobov 2012)):

An execution history hl = ((s0, a0), ..., (sl−1, al−1), sl) is a sequence of pairs of states the

agent has visited and actions the agent has chosen in those states, at each step i, 0 ≤ i ≤ l − 1,

plus the state visited in step l. The set of all possible execution histories is denoted by H. Note

that, since it is assumed that every task in T can be executed in at least one machine in V

and the minimum makespan is not greater than the deadline, there exists at least one execution

history starting in the initial state s0 and ending in a goal state.

A deterministic history-dependent policy πhl : H → A is a mapping that assigns to each

hl ∈ H an action a ∈ A (the action to be executed after the execution history hl). If the

decision is independent of the execution history hl and depends only on the current state s and

the number of steps l that led to s, the policy is markovian. A markovian policy π : S ×L→ A

is a mapping that assigns to each s reached in a step l (denoted by sl) an action a ∈ A(s).

The value function V π(sl) = U(R
πsl
l , R

πsl+1

l+1 , ...) of a markovian policy π is a utility function

of a sequence of rewardsR
πsl
l , R

πsl+1

l+1 , ...; whereR
πsl
l is the reward obtained as a result of executing

policy π from state s at step l. In MDPs with finite horizon Lmax, the value function is defined

by the expected linear additive utility, such that for all s ∈ S:

V π(sl) =

 E[
∑Lmax

j=l R
πsl
j ] 1 ≤ l ≤ Lmax

0 l = Lmax + 1

The optimal policy π∗ is such that the optimal value function V ∗, the value function of π∗,

dominates the value function of any other policy π, for all hl ∈ H, i.e., V ∗(hl) ≥ V π(hl).

For fh-MDPs, the optimality principle ensures that:

(1) the optimal value function V ∗ exists, is markovian, and satisfies, for all s ∈ S and 1 ≤ l ≤

Lmax:

V ∗(sl) = max
a∈A

 ∑
sl+1∈S

P (sl+1|sl, a)[R(sl+1|sl, a) + V ∗(sl+1)]


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(2) the optimal policy π∗ corresponding to V ∗ is deterministic markovian and satisfies, for all

s ∈ S and 1 ≤ l ≤ Lmax:

π∗(sl) = argmax
a∈A

 ∑
sl+1∈S

P (sl+1|sl, a)[R(sl+1|sl, a) + V ∗(sl+1)]



The optimal solution of a fh-MDP is the optimal policy π∗. The objective of the planning

problem defined by 〈S,A, P,R, L〉 is to find the optimal policy π∗.

An important observation is that the optimal policy π∗ for the fh-MDP defined above is

stationary, i.e. the decision is independent of the execution step l and depends only on the

state s. This is because reachable states s contain enough information from which to derive the

number of steps l to reach s. Here on, π∗(s) is used instead of π∗(sl).

In addition, from the definition of the optimal value function V ∗ and the definition of the

reward function R presented above, follows that:

(1) Any execution history hl(π
∗) that result from the execution of the optimal policy π∗ starting

in s0, ends in a goal state sl ∈ SG. This can be understood intuitively from the imposition of

a penalty −R∞ to any execution history ending in a dead-end state sl /∈ SG and A(sl) = ∅.

Thus, when selecting π∗, any execution history ending in a goal state is always preferable to one

ending in a dead-end state.

(2) the optimal policy π∗ is such that V ∗(s0) minimizes the expected linear additive cost (or

duration, depending on the user preference) of the set of possible execution histories that result

from the execution of π∗, starting in the initial state s0 and terminating in sl. This notion of

optimality implies that any other policy results in a set of execution histories with a higher

expected linear additive cost (or duration).

The utility of the optimal policy π∗ is defined as U(π∗) = V ∗(s0). Depending on the user

preference, U(π∗) = −C(π∗) or U(π∗) = −D(π∗), where C(π∗) and D(π∗) denote the expected

linear additive cost and duration, respectively.
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5.3 Approach

In the previous subsection, the planning problem has been formulated as a fh-MDP of the

form 〈S,A, P,R,L〉. The resolution of MDPs (and planning problems, in general) faces two main

challenges: the state space explosion and the need for efficient algorithms. In the formulation,

the state space explosion comes as a natural consequence of considering the execution of each

task Ti in each virtual machine v, which defines a large set of reachable states s ∈ S and

applicable actions aiv ∈ A(s). The need for efficient algorithms comes for the desire to reduce

the overhead of finding the optimal solution, both in terms of computational expenses and time.

In this subsection, an approach to planning the execution of workflows in cloud environments

is presented. The approach consists of three stages: preparation, planning, and execution. In

the preparation stage, the execution of all tasks is characterized, the workflow graph is reduced,

and a reduced number of machines is pre-selected. In the planning stage, the MDP model is

built and the value iteration algorithms is used to find the optimal policy. In the execution

stage, the decisions dictated by the optimal policy are applied, as the controller evaluates the

outcome of each action on-the-fly.

These stages are described below:

5.3.1 Preparation

Task Characterization: The execution of a task T in a virtual machine v is characterized by

the mean CPU utilization cpuv(T ), the peak memory utilization memv(T ) and the maximum

execution time d(T, v). A task characterization only exists if v has the minimum number of

resources XT required for the execution of T . This characterization can be obtained experi-

mentally (by running all tasks on all possible machines) or by combining experimentation with

machine learning to build a performance model for each task without exploring the complete

configuration space (Alipourfard, Liu, Chen, Venkataraman, Yu, & Zhang 2017).
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Figure 5.3: Approach: Workflow graph reduction

Workflow Graph Reduction: A workflow graph GW containing concurrent pipelines is re-

duced to its minimal form, that is denoted as GW ′ . A pipeline is defined as a sequence of nodes

such that: (1) every node in this sequence has a single parent and a single child, (2) the child of

every node but the last is a node also in the sequence, (3) the parent of every node but the first

is a node also in the sequence. Concurrent pipelines are sets of pipelines with the same length,

that are labelled with the same tasks (the i-th nodes of all pipelines in the set are labelled with

the same task) and that have a common source and sink (the first nodes of all pipelines have the

same parent and the last nodes have the same child). A task Ti executed in a set of concurrent

pipelines is denoted by T(i,j), for j = 1, ..., zi. The notation T(i,j) is used as a shorthand for

(i, j) : Ti. Figure 5.3 presents an example where there are two sets of concurrent pipelines:

{T(2,j)}, for j = 1, 2, 3, and {(T(4,j), T(5,j), T(6,j))}, for j = 1, 2.

Consider one set of z concurrent pipelines of length m of the form {((k, j) : Tk, ..., (k+m, j) :

Tk+m)}. This set can be collapsed into one pipeline of the form {k : Tk, ..., k +m : Tk+m}. The

reduced workflow graph GW ′ is obtained by considering all sets of concurrent pipelines and

collapsing each one into a unique pipeline as described before.

The idea of solving a MDP for the reduced workflow W ′ originates from a couple of obser-

vations regarding the policies of the MDP for workflow W .
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(1) Consider two policies that only differ in the order they decide to execute tasks in concurrent

pipelines (e.g., in Fig. 5.3, consider a state in which T1 is completed but T(2,1), T(2,2) and T(3,3)

have not been executed, a policy that chooses to execute T(2,1) and a policy that chooses to

execute T(2,3), instead). Then, the utility for these policies is the same.

(2) Consider two actions π1(s) = a((i, j):Ti, v) and π1(s′) = a((i, j′):Ti, v
′) defined by a policy π1,

that decides the execution of the task Ti in two concurrent nodes (i, j) and (i, j′) in two machines

v and v′, when in two states s and s′ such that b(i,j)(s) = b(i,j′)(s
′) and t(i,j)(s) = t(i,j′)(s

′). The

policy π2 that is obtained from π1 by changing only the decision on s′ to π2(s′) = a((i, j′):Ti, v),

has still the same utility.

These properties make it possible to derive a policy π for W from a policy π′ for W ′

preserving optimality. Consider a reduced workflow W ′ has n′ nodes. Let Fi(s), for i = 1, .., n′,

be the function that assigns to each state s ∈ S (of W ), the minimum number jmin, for jmin =

1, ..., zi, such that bi,jmin(s) = min{bi,j(s) | j = 1, ..., zi}. Intuitively, the function Fi chooses

a jmin where task Ti,jmin has not been successfully executed, if there is any. If task Ti,j has

been successfully executed for all j = 1, ..., zi, then Fi just chooses j = 1. These functions

are used to define a mapping ψ from the states s ∈ S to the states ψ(s) ∈ Ψ, where Ψ is the

set of states of the MDP for W ′. In particular, ψ(s) is a state such that bi(ψ(s)) = bi,Fi(s)(s)

and ti(ψ(s)) = ti,Fi(s)(s). The derived policy π is defined by π(s) = a((i, Fi(s)) : Ti, v) iff.

π′(ψ(s)) = a(Ti, v). That is to say, for a set of concurrent pipelines, among the state variables

defined for a task in concurrent nodes,the decision of π′ is used considering only the state

variables that refer to that task in the selected node.

Machine Pre-Selection: The set of all possible combinations of machines v ∈ V and tasks

Ti ∈ Gw, VW , may contain machine types that are not good candidates for an optimal solution.

Thus, a preliminary selection of machine types v′ is selected for the execution of each task

Ti ∈ GW , defining the set V ′Ti . In particular, v′ ∈ V ′Ti if it satisfies the conditions: (1) v′ has the

minimum number of resources XTi required for the execution of Ti; (2) v′ minimizes the expected

cost of task Ti under equal duration i.e., c(Ti, v
′) ≤ c(Ti, v) if d(Ti, v

′) = d(Ti, v), for any v ∈ V ;

(3) v′ can execute task Ti without exceeding the deadline, i.e., d(Ti, v
′)+

∑
j 6=i dmin(Tj , v) ≤ dW ,

where dmin(Tj , v) is the minimum duration for a task Tj , j 6= i, using machines v ∈ V . The set

of pre-selected machines for W is a subset V ′W ⊆ VW , defined as: V ′W = V ′T1 ∪ ... ∪ V
′
Tn

.
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Figure 5.4: Approach: Planning with MDP

5.3.2 Planning

MDP Construction: The MDP construction takes as input the task characterization, the

reduced workflow and the pre-selected machines. A MDP is constructed using the module

formalism presented in (Kwiatkowska, Norman, & Parker 2011). The MDP model is constructed

automatically using a MDP framework. The MDP framework represents the execution of all

nodes in one module, where each action aiv is represented with a tag [iv], where i is the node

number and v is the virtual machine type (e.g. small S, on-demand O or revocable Q).

Listing 5.1: Reactive Module Formalism for MDP Construction

module w

b1 :[0.. y+1]; b2 :[0.. y+1]; t1 :[0.. dw]; t2 :[0.. dw];

[1SO] b1<y+1 & t1+d1<dw −> 1.0: b1’=y+1 & t’=t+d1;

[1SQ] b1<y & t1+d1<dw −> 0.8: b1’= y+1 & t’=t+d1 +0.2: b1’=b1+1 & t’=t+d1;

[2SO] b2<y+1 & b1= y+1 & max(t1,t2)+d2<=dw −> 1.0: b2’=y+1 & t’=max(t1,t2)+d2;

[2SQ] b2<y & b1=y+1 & max(t1,t2)+d2<=dw −> 0.8: b2’= y+1 & t’=max(t1,t2)+d2

+0.2: b2’=b2+1 & t’=max(t1,t2)+d2;

endmodule

rewards

[1SO] −c1SO; [1SQ] −c1SQ; [2SO] −c2SO; [2SQ] −c2SQ;

endrewards

Listing 5.1 shows a simplified module for a workflow W with two sequential tasks {T1, T2},

a deadline dw, a limited number of failures y, and a preference for cost reduction. The example
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shows two actions: [iSO] to execute task Ti using a small on-demand instance with 100% success

probability or [iSQ] to execute it in a small revocable instance with a 80% success probability.

Each action has its expected duration (d1 and d2) and expected cost (e.g. c1SO). The rewards

are defined in terms of the costs, due to the user preference.

Before solving the MDP, it is verified that there exists at least one policy π that leads to a

goal state s ∈ G. A model checking tool (PRISM (Kwiatkowska, Norman, & Parker 2011)) is

used to verify this property. The same tool is used to construct the reachable state space, the

transition matrix, and the reward matrix.

MDP Resolution: Classical approaches are used to solve the MDP constructed in the previ-

ous step. Classical approaches include value iteration, policy iteration, and linear programming.

For a-cyclic MDPs, value iteration is guaranteed to terminate with optimal values in a single

value update per state (Mausam & Kolobov 2012). Value iteration works by treating the value

function as an assignment, starting with an initial value V 0 and successively approximating V ∗

with a V m function such that the sequence of V ms converges to V ∗ in the limit, as m tends

to infinity. The value iteration algorithm is used to find the optimal policy π′∗ for the reduced

workflow w′.

5.3.3 Execution

This stage takes as input the optimal policy π′∗ generated for the reduce workflow w′ and

translates it to the optimal policy π∗ as described before. The online execution consists in taking

the actions dictated by the policy π∗(s) in every state s, starting from the initial state s0 up to

a goal state s ∈ G.

5.4 Case Study

As a case study, the planning approach is applied to the Epigenomics scientific workflow

(Juve, Chervenak, Deelman, Bharathi, Mehta, & Vahi 2013), a well-known workflow that is

extensively used in DNA research for mapping the epigenetic state of human cells. This case

study serves not only to illustrate the use of the approach, but also to compare with other

alternative solutions.



5.4. CASE STUDY 97

Figure 5.5: Case Study: Epigenomics workflow

Epigenomics is characterized as a highly pipelined workflow with multiple pipelines operating

on independent chunks of data in parallel, as shown in Fig. 5.5. The input to the workflow is DNA

sequence data obtained for multiple lanes from the genetic analysis process. The information

from each lane is split into multiple chunks by the fastQSplit task. The number of splits generated

depends on the partitioning factor used on the input data. The filterContams task then filter

out noisy and contaminated data from each of the chunks. The data in each chunk are then

converted to a format understood by the Maq DNA sequence mapping software by the sol2sanger

task. For faster processing and reduced diskspace usage, the data is then converted to the binary

fastQ format by fastq2bfq. Next, the remaining sequences are aligned with the reference genome

by the map task. The results of individual map processes are combined using one or more stages

of the mapMerge task. After merging, the maqIndex task operates on the merged alignment file

and retrieves reads about a specific region. Finally, the pileup task reformats the data so that

it can be displayed by a GUI. In most epigenomics jobs the CPU utilization is high and the

application as CPU-bound (Juve, Chervenak, Deelman, Bharathi, Mehta, & Vahi 2013).

Let’s consider an instance of the application defined by the workflow W . The workflow graph

GW , shown in Fig. 5.5, defines four concurrent pipelines for the task sequence 〈filterContams,

sol2sanger, fastq2bfq, map〉, for a total number of tasks n = 20. The time limit for the execution

of all tasks is dW = 71s. Additionally, the user imposes a preference for minimizing monetary

costs of the execution (u = 1).

To optimize the execution of a CPU-bound application, the system resorts to compute
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Figure 5.6: Case Study: Task characterization (c5.2xlarge machine)

optimized c5 machines from Amazon Ec2. The set of available machines to the application

is composed by four different sizes: c5.2xlarge (8 CPU), c5.4xlarge (16 CPU), c5.9xlarge (36

CPU) and c5.18xlarge (72 CPU). The notation n× is used: e.g., 2× identifies a c5.2xlarge.

Machines can be rented as on-demand O or revocable Q instances. The price for on-demand

instances grows linearly with the number of CPUs starting in c2x,O(t) = 0.34$/h = 0.0057$/s.

The expected paid price for a revocable instance behaves as c2x,Q(t) = β×c2x,O(t), with β = 0.2

when the bid equals the on-demand price. Additionally, the probability of revocation remains

fairly constant for t < 120s, such that p2x,Q(t) ≈ 0.8.

As described in the previous section, this approach requires a preparation stage that consists

of 3 steps, namely: task characterization, workflow graph reduction, machine pre-selection.

Task Characterization: Task characterization consists in learning the behaviour of each task

T when executed in different machines v ∈ V . Fig. 5.5 shows the characterization of the tasks

that compose the workflow when executed on a c5.2xlarge machine. The performance model

assumes that all tasks benefit from multicore processing, such that the runtime is inversely

proportional to the number of cores available to their execution. The expected duration of each

task is estimated in time slot of 1 second (e.g. dT1,2xO = 1). The cost is defined w.r.t. the

cheapest instances (c2x,O(1s) = 0.0057$), such that c(T, v) = 100× cv(d(T, v))/0.0057$.

Workflow Graph Reduction: The workflow graph GW is composed of n = 20 nodes, in-

cluding a set of z = 4 concurrent pipelines. The reduced workflow graph GW ′ consists n′ = 8

sequential nodes {T1, T2, T3, T4, T5, T6, T7, T8}. GW ′ identifies four task in the pipelines; in par-

ticular: T2 for filterContams, T3 for sol2sanger, T4 for fastq2bfq, and T5 for map. The cost of

executing a tasks T ∈ {T2, T3, T4, T5} in all pipelines is 4× c(T, v), for any machine v.
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Machine Pre-Selection: Given the workflow W and the task characterization, a subset of

machines is re-selected for the execution of each task, that defines the set V ′W . Table 5.1 presents

the selected machine types (identified by their size) for each tasks Ti ∈ GW ′ with dW = 71s. The

original set VW ′ is composed of 64 choices of machines types v ∈ V . The machine pre-selection

results in a set V ′W ′ composed by 36 choices (counting on-demand and revocable instances).

Table 5.1: Preparation: Machine Pre-Selection

T1 T2 T3 T4 T5 T6 T7 T8

4x 9x 2x 18x 18x 18x 18x 18x

2x 4x 9x 9x 9x 9x

2x 4x 4x

2x

5.5 Evaluation

This approach has been evaluated in terms of parameter sensitivity and planning algorithms.

The solution is compared to previous heuristics for the epigenomics application:

5.5.1 Quality and State Space

The sensitivity of the approach to the parameters that affect the search space has been

evaluated. These parameters are: the number of failures y, the set of machines V and the

deadline dW . The slack time is defined as the time distance between the deadline and the

minimum makespan: ST = dW −M(W,VW ). It is presented as a percentage of the minimum

makespan as: ST% = (dW −M(W,VW ))/M(W,Vw)× 100, and vary it between 0% and 100%.

Sensitivity to V ′: The subset of machines types limits the number of possible execution

actions for every task in the workflow and the reachable state space. It is important to assess

the impact of the composition of this set on the quality of the solution. Four sets of machine

types are considered:

• V , the combination of all machines types for each task.

• V ′, defined by the machine pre-selection procedure.
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Figure 5.7: Scalability: Size of the reachable state space for V . Reduction of the reachable state space for V ′, V ′
A and V ′

B
as percentage of the entire space (y = 1, 2, 3).

• V ′A, includes the fastest machines on-demand and all revocable machines, out of V ′.

• V ′B, includes the fastest machines on-demand and fastest revocable machines, out of V ′.

Figure 5.7 shows the size of the reachable state space for the entire set of machines V . The

state space increases rapidly as a function of the slack time and the number of failures (for V

and y = 5, there are 100 million reachable states). Fig. 5.7 shows the size of the state space

for V ′, V ′A and V ′B w.r.t to the original size using V , for y = 1, 2, 3 (y ≥ 4 behaves similar to

y = 3). As expected, the set V ′ has no effect on the number of reachable states, as the machine

pre-selection procedure is intended to reduce the number of action choices, instead. V ′ reduces

the number of action choices by 16.2%, in comparison to V . Differently, the machine sets V ′A

and V ′B have a significant impact on the size of the reachable state space. On average, the state

space using V ′A represents between 29% and 85% of the original size, while the state space using

V ′B represents 0.7% to 2.5% of the original size.

More importantly, the increase in the cost of the solution due to a reduced set of machines

is small, for both sets V ′A and V ′B (less than 5% in the experiments). On average, CV ′
A

(π∗) =

1.0142× CV (π∗) and CV ′
B

(π∗) = 1.0429× CV (π∗). The set V ′ has no impact in solution costs.

Sensitivity to y: The maximum number of failures y limits the number of times a task can

be executed using revocable instances and assumes values between 0 and dW . To evaluate the

impact of the the number of failures y in the quality of the solution, it has been computed the

percentage of cost savings with respect to a baseline solution using only on-demand instances

(equivalent to setting y = 0), for a series of slack time percentages from 0.1 to 1.0, using set

V ′B. Results in Fig. 5.8 suggest that executing tasks in revocable machines yield significant
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Figure 5.8: Scalability: Sensitivity to parameter y

cost reductions for any time slack time. The curves converge sharply, meaning that y = 1, 2, 3

produce the most significant impact in cost reductions and any solution derived using y > 3 yield

little extra savings. Indeed, in the experiments, the improvement in cost savings from y = 3 to

y = 4 is less than 0.01% for all slack times. In the rest of the experiments, y = 3 is used, since

it provides a good trade-off between size of the state space and quality of the solution.

5.5.2 Planning Algorithms

Two techniques to solve the MPD have been tested: value iteration and path planning. Path

planning differentiates from classical planning in that it performs best for problems with: (1) a

low dispersion rate, i.e. from any state there are only a few reachable successive states; and (2)

a clearly defined initial state and the goal states, such that the agent looks for a path between

them. A path planning algorithm has been tested for comparison sake. This algorithm explored

exhaustively the space of possible paths and was effective at finding the optimal solution; yet,

it required longer search times.
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As an example, this experiment was run with V ′B, y = 1, and dW = 71. The space of

reachable states consists of 440 states. Both techniques solve the MDP successfully. The value

iteration algorithm finds the optimal policy and generates the optimal strategy in only 0.25

seconds. The path planning algorithm took 1153 seconds to find 82 policies that lead the

execution to a goal state, for any possible execution history. Both algorithms generate solutions

with the same utility.

5.5.3 Planning vs. Heuristics

Planning implemented with value iteration VI-MDP was compared to two previous solutions

that implement heuristics: LTO and Dyna.

1. LTO (Poola, Ramamohanarao, & Buyya 2014): LTO is a running algorithm that executes

each task using revocable machines of a single type (the cheapest machine type) multiple

times until the task is executed successfully or until the latest time to on-demand (LTO);

i.e. the minimum time required to execute all remaining tasks using on-demand instances.

The LTO is recomputed every time a new task must be launched. Departing from an

estimation of the execution time of every remaining task in every machine type, LTO ’s

conservative algorithm selects a combination of machine types that satisfies the deadline

constraints and minimizes the cost (using the lowest cost machine types). Note that the

LTO algorithm does not limit the number of failures and is equivalent to considering

y = dW

2. Dyna (Zhou, He, & Liu 2016): Dyna is an algorithm that exploits revocable machines to

reduce costs while meeting probabilistic deadline guarantees. It searches the solution that

minimizes costs in the on-demand domain, using the A∗ algorithm. To the selection of a

machine type for on-demand execution of a given tasks, Dyna adds new machine types for

the execution in revocable instances, under two conditions: (1) the expected cost of the

hybrid machines is less than the cost using only the on-demand instance (2) the deadline

guarantees are not violated.
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Figure 5.9: Cost reduction: Normalized cost (w.r.t on-demand cost) against the slack time

Comparison VI-MPD was simulated with V ′A and y = 3. Both LTO and Dyna are simulated

with the machine set V ′ (see Table 5.1), with fixed task execution times, and deadline guarantees

of 100% (note that V ′ is a superset of V ′A; LTO and Dyna have been given more freedom). For

LTO, the solution considers both the conservative and aggressive algorithms. For Dyna, a

variation (referred to as Dyna* ) was used. It selects the cheapest set of on-demand machine

types using exhaustive exploration, instead of the A∗ algorithms. Both LTO and Dyna* resolve

a pre-selection of machine types different from that of VI-MPD, such that the selected set leaves

a smaller spare time for the execution of tasks in revocable instances.

Figure 5.9 shows the expected costs for the best solution of VI-MDP, LTO, and Dyna*, as

a function of the available slack. The cost is normalized with regard to the cost of running the

workflow using just on on-demand instances (i.e., the worst case). Note that when there is no

slack, all solutions have the same performance, because only the use of on-demand resources

satisfy the deadline. As the slack increases, there are more opportunities to use revocable

instances. Naturally, when the slack is very large (right side of the figure), it becomes possible

to tolerate a large number of evictions and the problem becomes much simpler; in this case,

any of the three algorithms can bring substantial advantages. Clearly, more powerful algorithms

are needed when the slack time is relatively small and, since the algorithm has few attempts

to execute tasks in revocable instances, these must be carefully selected. In this case, Dyna*
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performs very poorly; This can be explained by the algorithm, that fist selects a set of machines

on-demand that satisfy the deadline and only after it adds on-demand instances for the spare

time. LTO performs closer to VI-MDP, but VI-MDP still offers significant additional savings,

from 20% to 38% depending on the slack time available for the workflow execution.

5.5.4 Discussion

The proposed approach resorts to a definition of the problem as a finite-horizon Markov

Decision Process with rewards. System requirement regarding machine sizes for task execution

and the structure of the workflow graph are encoded during the preparation and construction

of the MDP. Preferences over the system performance and operational costs are encoded in the

definition of the reward function. In particular, monetary cost of resources are encoded as cost

in the execution of actions in the MDP, while restrictions on the execution times (deadlines)

are encoded as high penalties to any state where the workflow execution fails to finish before

the deadline. The solution of the MDP ensures that deadlines are met and monetary costs are

minimized.

In terms of responsiveness, the execution plans generated offline already account for the

occurrence of task failures due to instance revocations. That is, the policy contains contingency

plans to react to failures as they occur at run-time. Thus, alternate plans can be enacted

immediately, without the need for further planning.

The MDP solver implements the value iteration algorithm. By construction, the MDP

generates all valid states of the system (consider the reduces workflow graph), and value iteration

explores all the possible combinations to find the optimal policy. The search times are rather

small, in the order of minutes. However, since the proposed approach is supposed to be executed

offline, it is not affected by the longer search times. The major limitation in terms of scalability

has to do with computational resources, since the controller must be able to store a large MDP

and resolve it locally (more advanced implementations of the algorithm could also exploit parallel

processing).
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5.6 Related Work

The deployment of workflow applications in cloud environment has been studied in the

past, mostly via heuristics that provision and allocate virtual machines on-demand in a sub-

optimal manner (Kllapi, Sitaridi, Tsangaris, & Ioannidis 2011; Mao & Humphrey 2011; Byun,

Kee, Kim, & Maeng 2011; Zhang, Cao, Hwang, & Wu 2011; Maguluri, Srikant, & Ying 2012).

While the use of heuristics is justified for real-time applications, not all workflows require online

scheduling. Differently, the approach presented in this chapter exploits the benefits of planning

to generate the optimal solution offline and execute it at run-time. Also, differently from previous

approaches, the construction of a complete MDP and offline planning allows to search the space

of all virtual machine types available that can be candidates to the execution of tasks in the

workflow.

The approach presented in this chapter exploits the opportunities offered by revocable in-

stances via planning and is built on top of studies that suggest that cloud applications could

resort to trivial bidding strategies and still achieve optimal cost and availability (Sharma, Irwin,

& Shenoy 2016). Other proposals have attempted to deploy workflow applications using revoca-

ble instances, however, using heuristic algorithms. In (Poola, Ramamohanarao, & Buyya 2014)

it is presented a heuristics that executes each task using the cheapest revocable machines, mul-

tiple times until the task is executed successfully or until the latest time to on-demand (LTO);

i.e. the minimum time required to execute all remaining tasks using on-demand instances. The

LTO is recomputed every time a new task must be launched, using the cheapest (or most ex-

pensive) combination of on-demand machine types. Greedy heuristics like this perform poorly

under strict deadlines that allow for little slack time, since the algorithms cannot plan ahead

and foresee the use of slack time for the execution of more expensive tasks. Alternatively, Dyna

(Zhou, He, & Liu 2016) is a solution that approximates the benefits of planning. However, it

does not explore the space of on-demand and revocable instances together. Instead, it searches a

cheap solution in the on-demand domain and further optimizes the solution by adding revocable

instances to each task, only if beneficial to reduce the task cost without violating the probabilis-

tic deadline guarantees. Therefore, it may discard relevant solutions, including the optimal one,

and fail at exploiting revocable instances with an overall view of all tasks in the workflow.
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5.7 Conclusions

The approach presented above aims at responding the question: How can probabilistic and

temporal planning be used for the (offline) generation of policies for the execution of workflows

using spot instances in cloud environments?.

The proposed approach solves a probabilistic planning problem using a Markov Decision

Process model and value iteration algorithms. This approach was successful at meeting the

goals and addressing the limitation of previous work in that:

1. Using a probabilistic model that captures task execution costs and durations in on-demand

and spot instances, planning can produce schedules that foresee the selection of spot

instances for the execution of the most expensive tasks in the workflow, minimizing the

overall expected cost. This improves in previous cost-aware techniques that employ on-

demand instances only or that use heuristics that cannot lead to the minimum cost solution.

2. The generated policies can account for the possibility that task executions fail due to

spot instance revocations, and have alternative execution schedules to guarantee that the

workflow execution meet its deadline with 100% probability. It improves on previous work

that can only produce schedules that give probabilistic guarantees.



5.7. CONCLUSIONS 107

Summary

This solution demonstrated that planning the execution of workflows in the cloud can ben-

efit from searching the space of virtual machines types and mixed on-demand and revocable

instances, to reduce execution costs while meeting deadline constraints. The planning approach

is implemented departing from a finite horizon Markov Decision Process, later solved with a

value iteration algorithm. Techniques to reduce the state space without loosing value of the

solution were also presented. The results of applying this solution to a real scientific work-

flow suggest that it can achieve significant cost savings with respect to previous solutions that

implement heuristics, when the slack time allows to use revocable machines.

Publications

The work presented in this chapter has contributed to the following publication:

Planning Workflow Executions when Using Spot Instances in the Cloud. R. Gil

Martinez, A. Lopes, L. Rodrigues. Proceedings of the ACM Symposium on Applied Computing

(SAC). Limassol, Cyprus. 2019
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6Conclusions and Future

Work

This chapter closes the thesis. Section 6.1 summarizes the main results presented in the

thesis and briefly presents additional results that emerged from the work previously presented.

It closes by providing an answer to the questions introduced in Chapter 1. Section 6.2 concludes

the thesis by discussing future research directions.

6.1 Conclusions

The thesis has proposed, developed, and evaluated solutions based on three distinct scenarios

for the use of automated planning to support the deployment and management of computer

applications running in cloud environments. The benefits of each of these contributions were

illustrated through case studies. The considered solutions can be grouped in two families:

• solutions that use planning to support elastic scaling of resources for cloud applications. This

family of solutions uses a planner to directly manipulate the selection of machines sizes that

compose a pool of servers, used by a user-interactive application to provide its services; and

• solutions that use planning to support the deployment of workflow applications in cloud

environments. This family of solutions profits from dynamic provisioning of resources to

deploy tasks in a workflow, scheduled according to a policy defined by the planner.

For the family of solutions that uses planning to support elastic scaling of resources, two

distinct approaches where studied:

The (offline) generation of reactive policies, presented in Chapter 3. This solution relies on

AI planning languages and tools to generate policies that support elastic scaling. It is effective

at mapping a (simplified) architectural model of the system into a standard action language

(PDDL3.0), at scanning the space of system conditions, at generating a set of plans produced

by off-the-shelve temporal planners (TFD), and at selecting the best configurations and plans
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according to multi-objective criteria. The results suggest that automated planning is a valid

alternative for the offline generation of policies applicable to real life cloud environment scenarios.

In particular, planning can circumvent the limitations of human-defined policies, producing

more elaborate combinations of actions that lead the system to the desired configuration, while

preventing the violation of system constraints. Yet, AI planning has a long way to go in terms

of language support by the tools and efficiency, as long search times prevent these solutions to

be used for online planning.

The (online) generation of proactive plans, presented in Chapter 4. The solution introduced

Augure, a proactive decision-making tool for resource adaptation in cloud-enabled applications.

Augure combines the benefits of long-term predictions of the workload curve and the use of

heterogeneous resources to find adaptation plans that offer a good fitting of resources to the

demand in the long horizon. Augure plans minimize the price billed by the cloud provider and

mitigate the impact of reconfiguration on the system performance. Using off-the-shelf solvers,

Augure can search the space of resource combinations and action schedules in less than 5 minutes.

Augure recognizes workload behavior changes and adjusts the prediction promptly. Augure is

able to tame the number of reconfigurations when compared to greedy proactive techniques

(such as Vadara+), achieving better results and lower costs overall.

Combining Approaches

Although the thesis has introduced the idea that combining offline and online planning tech-

niques can be done, the problem of combining these two solutions was not explicitly addressed.

To control the resources that compose the pool of servers in a cloud application, the offline gen-

eration of policies can provide the manager with a preliminary set of plans that can be enacted

under known conditions. A proactive controller would execute these plans whenever the envi-

ronment is expected to stay steady in the horizon and the system conditions match those defined

in the reactive policy. On the other hand, the plans generated online by the proactive controller

can be stored and classified, such as to define reactive policies under common conditions, both

in terms of system initial state and the predicted behavior of the workload curve. Indeed, de-

liberate planning (online) and reactive policies (offline) operate at two complementary levels of

control, that is consistent with the definition of goal management and change management, from

the perspective of layered control in architecture-based self-adaptation.
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For the family of solutions that uses planning to support the deployment of workflow appli-

cations in cloud environments, one solution was studied:

The (offline) generation of execution policies, presented in Chapter 5. This solutions demon-

strated that planning the execution of workflows in the cloud can benefit from searching the

space of virtual machines types and mixed on-demand and revocable instances, to reduce execu-

tion costs while meeting deadline constraints. The planning approach is implemented departing

from a finite horizon Markov Decision Process, later solved with a value iteration algorithm.

Techniques to reduce the state space without loosing value of the solution were also presented.

The results of applying this solution to a real scientific workflow suggest that it can achieve cost

savings from 20% to 38% with respect to previous solutions that implement heuristics. The

solution saves up to 73% with respect to on-demand solutions. All experiments consider that

deadlines are not tight, such that planning can take advantage of slack time to attempt task

executions using revocable machines.

Overall, three different planning techniques have been successfully implemented to support

the deployment and management of applications in cloud environments: AI Planning, Linear

Programming, and Markov Decision Processes. For comparison purposes, AI Planning tech-

niques has been tested in all three scenarios; whereas it is partially possible to express the

complexity of the planning problems of all three adaptation scenarios using standard planning

languages, off-the-shelf planners were not efficient enough at exploring the solution space and

finding optimal plans in short times. Ideally, one would like to combine the expressiveness of

standard AI planning languages (e.g. PDDL) with the efficiency of mature search algorithms

and tools (e.g. constraint solvers). The efficiency of the tools is, therefore, the last gap to

be bridged for the full integration of automated planning (specifically, AI planning) into the

self-adaptation of systems.

Limitations

The use of planning for the purposes of self-adaptation in cloud environments still presents

important limitations. Ideally, decision-making in self-adaptive systems (planning, in particular)

is supported by knowledge about the system and its environment. Knowledge regarding the

system architecture and constraints, the adaptation actions and their effects, and the business

goals and preferences is presumed to be accurate. However, building a realistic model that
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captures with precision all parameters and external factors that potentially affect decision-

making is practically impossible. On top of that, planning languages may be limited in the

description of the world that can be captured. Even more troublesome, AI planning tools are

limited in their support of these languages and somewhat primitive in their ability to prune

the search space and resolve highly complex problems in narrow times. It is expected that

the evolution of AI planning will lead to more practical technologies that would widen the

applicability of these techniques to real life systems.

Ramifications and Collaborations

Additionally to the work presented in previous chapters, the research in the topic of planning

to support self-adaptation of cloud applications led to collaboration in other solutions.

In particular, the (online) revision of action models. Given that many systems are affected

by uncertainty due to hardware heterogeneity, co-residency and failures, adaptation actions often

have non-deterministic impacts, potentially leading to multiple outcomes. When this uncertainty

is not captured explicitly in the models that guide adaptation, decisions may turn out ineffective

or even harmful to the system. Also critical is the need for these models to be readable to human

operators accountable for the system. This study proposed a method to learn human-readable

models that capture non-deterministic impacts explicitly, using the K-plane clustering technique

in a novel way. Additionally, expert’s knowledge is exploited to bootstrap the adaptation process

as well as how to use the learned impacts to revise models defined offline.

The work of this collaboration has been published through the following publication:

Learning Non-Deterministic Impact Models for Adaptation. F. Duarte, R. Gil Mar-

tinez, P. Romano, A. Lopes, L. Rodrigues. Proceedings of the 13th IEEE/ACM International

Symposium on Software Engineering and Self-Managing Systems (SEAMS@ICSE). Gothenburg,

Sweden. 2018

6.2 Future Work

As discussed previously, additional research efforts are necessary to fully understand the

strengths and limitations that arise from the combination of the use of online learning and au-



tomated planning to support the management of resources in the cloud; in particular, elastic

scaling. In the following, a possible research vector that can be pursued considering the con-

tributions of thesis, and the combination of the discussed approaches, is motivated and briefly

presented.

From the perspective of architecture-based self-adaptation with layered control, it is desired

an external controller that can operate at a low-level of corrective control (via guarded actions

triggered by undesired events) and high-level deliberate planning (via a set of decision steps that

lead the system to its optimal state). These operational instructions are expected to manage the

system under uncertainty. This uncertainty does not only make so that adaptation action have

multiple possible outcomes (as resolved in collaboration work presented above). Uncertainty

can also affect the prediction of the behavior of the environment and the evolution of the system

guided by a deliberate plan. In an integrated solution, it is important to define mechanisms

that combine effectively the corrective control and deliberate planning, whenever the system

behavior deviates from the behavior expected by the model. The interplay between these two

layers is still to be explored fully. Additionally, the integration of learning techniques to assess

the effectiveness of reactive actions and plans at run-time, must be studied. Full self-adaptation,

after all, can only be achieved when the system is able to learn from the run-time execution of

pre-computed plans and policies.

In addition, from a software engineering perspective, the definition of an Architecture De-

scription Language (ADL) that is specific to the deployment and management of applications in

the cloud infrastructure could be beneficial. In particular, engineers could more easily express

knowledge about the system and its adaptation using such ADL, which may be automatically

translated into a standardized planning language (e.g. PDDL). Studying such integration is left

for future work.
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