DIAL

4 Digital access to libraries

"Towards a Practical Tool for Music Composition: Using Constraint
Programming to Model Chord Progressions and Modulations"

Sprockeels, Damien ; Van Roy, Peter

ABSTRACT

The Harmoniser project aims to provide a practical tool to aid music composers in creating complete
musical works. In this paper, we present a formal model of its second layer, tonal chord progressions
and modulations to neighbouring tonalities, and a practical implementation using the Gecode constraint
solver. Since music composition is too complex to formalize in its entirety, the Harmoniser project makes
two assumptions for tractability: first, it focuses on tonal music (the basis of Western classical and popular
music); second, it defines a simplified four-layer composition process that is relevant for a significant
number of composers. Previous work on using constraint programming for music composition was limited
to exploring the formalisation of different musical aspects and did not address the overall problem of
building a practical composer tool. Harmoniser's four layers are global structure (tonal development
of the whole piece), chord progressions (diatonic and chromatic) and modulations, voicing (four-voice
chord layout), and ornaments (e.g., passing notes, appoggiaturas), all allowing iterative refinement by the
composer. This paper builds on prior work for voicing layer 3, \textit{Diatony}, and presents a model for
layer 2, chord progressions and modulations. The results of the present paper can be used as input to
\textit{Diatony} to generate voicing. Future work will define models for the remaining layers, and combine
all layers together with a graphical user interface as a plug-in for a DAW.

CITE THIS VERSION

Sprockeels, Damien ; Van Roy, Peter. Towards a Practical Tool for Music Composition: Using Constraint
Programming to Model Chord Progressions and Modulations.International Joint Conference on Artificial
Intelligence (Montréal, du 16/08/2025 au 22/08/2025). http://hdl.handle.net/2078.1/301819

Le dépdt institutionnel DIAL est destiné au dépot
et a la diffusion de documents scientifiques
émanant des membres de I'UCLouvain. Toute
utilisation de ce document a des fins lucratives
ou commerciales est strictement interdite.
L'utilisateur s'engage a respecter les droits
d'auteur liés a ce document, principalement le
droit a l'intégrité de l'ceuvre et le droit a la

paternité. La politique compléte de copyright est
disponible sur la page Copyright policy

Available at: http://hdl.handle.net/2078.1/301819

DIAL is an institutional repository for the deposit
and dissemination of scientific documents from
UCLouvain members. Usage of this document
for profit or commercial purposes is stricly
prohibited. User agrees to respect copyright
about this document, mainly text integrity and
source mention. Full content of copyright policy

is available at Copyright policy

[Downloaded 2025/05/31 at 22:25:09]

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

Towards a Practical Tool for Music Composition: Using Constraint Programming
to Model Chord Progressions and Modulations

Damien Sprockeels, Peter Van Roy

ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium
{damien.sprockeels, peter.vanroy } @uclouvain.be

Abstract

The Harmoniser project aims to provide a practi-
cal tool to aid music composers in creating com-
plete musical works. In this paper, we present a for-
mal model of its second layer, tonal chord progres-
sions and modulations to neighbouring tonalities,
and a practical implementation using the Gecode
constraint solver. Since music composition is too
complex to formalize in its entirety, the Harmoniser
project makes two assumptions for tractability:
first, it focuses on tonal music (the basis of West-
ern classical and popular music); second, it defines
a simplified four-layer composition process that is
relevant for a significant number of composers.
Previous work on using constraint programming for
music composition was limited to exploring the for-
malisation of different musical aspects and did not
address the overall problem of building a practi-
cal composer tool. Harmoniser’s four layers are
global structure (tonal development of the whole
piece), chord progressions (diatonic and chromatic)
and modulations, voicing (four-voice chord lay-
out), and ornaments (e.g., passing notes, appoggiat-
uras), all allowing iterative refinement by the com-
poser. This paper builds on prior work for voicing
layer 3, Diatony, and presents a model for layer 2,
chord progressions and modulations. The results of
the present paper can be used as input to Diatony
to generate voicing. Future work will define mod-
els for the remaining layers, and combine all layers
together with a graphical user interface as a plug-in
for a DAW.

1 Introduction

Constraint Programming (CP) is a popular technique for gen-
eration [Pachet and Roy, 2011; Papadopoulos et al., 2015;
Bonlarron and Régin, 2024]. Music generation with CP is
popular as well, in particular for harmonisation. It is some-
times added to some form of learning [Lattner et al., 2018;
Giuliani et al., 2023] to provide more user control as well
as a better global structure. However, learning is limited by
the training data. An alternative approach is to formalise mu-
sic theory and rely solely on CP [Huang and Chew, 2005;

Anders, 2008; Anders and Miranda, 2009; Carpentier et al.,
2010; Davismoon and Eccles, 2010]. This alternative has
multiple advantages. First, there is no limitation based on
training data. Second, it ensures that the rules are satisfied in
every generated solution. Third, it makes the solutions eas-
ier to tweak, giving more control to composers. However,
there are two disadvantages. First, it requires a substantial
set of rules to make the generated solutions usable, and sec-
ond, finding solutions often requires significant computation
at runtime. Previous work using CP to create composer tools
falls into two categories: Tools formalising one specific as-
pect of music theory [Ebcioglu, 1990; Truchet et al., 2003;
Herremans and Sorensen, 2013], that lack generality, and
tools that can model large amounts of music theory [An-
ders et al., 2005; Laurson and Kuuskankare, 2005; Sandred,
2010] but require programming to be used, therefore limiting
their usability for composers. In contrast, we propose an ap-
proach that completely models a musical style without requir-
ing programming skills to be usable. Aside from CP and ML,
two other approaches are generative grammars [Rohrmeier,
2011] and conceptual blending [Eppe et al., 2015]. Chord-
blending generates new progressions from existing ones, and
it could potentially be combined with our approach to ob-
tain more complex modulations. Generative grammars are
used to understand the recursive structure of tonal harmony.
Compared to these two approaches, constraint programming
allows composers to add arbitrary musical ideas to a musi-
cal theory such as tonal harmony, and find coherent solutions
(see Section 4.2 for a concrete example).

1.1 Harmoniser project

The Harmoniser project aims to build a practical tool to aid
composers based on CP that addresses both the issues of rule
definition and computation time. The rules are inferred from
treatises on music theory (see Section 3). Because the solver
enforces rules, this relieves the composer of much tedious
work so they can focus on adding musical ideas to shape solu-
tions into a desired result. To reduce computational complex-
ity, we follow the decomposition of the composition process
that was introduced in [Sprockeels and Van Roy, 2024], fol-
lowing [Pachet and Roy, 2001] which concludes that proper
structuring is necessary to make constrained musical compo-
sition feasible. It decomposes the process of musical com-
position in four layers, resulting in smaller problems that

I I i

Layer 1 Layer2 Layer 3 Layer 4
Global Structure and Voicing Ormaments
e s s e 2

[y RV AR S e

| S—

'

by 2 1

f s e S

Figure 1: Illustration of the four-layer framework for composing a
musical piece.

can be solved independently (see Section 2). The first layer
is global harmonic structure, the second is chord progres-
sions and modulations, the third is chord voicing, and the
fourth adds ornaments. The present paper focuses on the sec-
ond layer. The third layer was published in [Sprockeels and
Van Roy, 2024] and defines the Diarony model.

1.2 Contributions

The present paper has two main contributions. First, a for-
mal model of the second layer of the composition process,
namely chord progressions in a tonality and modulations to
neighbouring tonalities. This model gives freedom to express
musical ideas while guaranteeing that tonal music rules are
respected. Second, a constraint implementation in the Gecode
constraint solver [Gecode Team, 2019]. The generated output
can be given to Diatony to generate a voicing for the solu-
tions. The solution space contains all possible tonal chord
progressions with the given parameters, and composers ex-
press musical ideas by giving desired tonalities and modula-
tions as well as adding constraints. This prunes the search
space and eventually gives a desired musical solution.

1.3 Structure of the paper

Section 2 gives the four-layer framework for music com-
position, which refines the framework of [Sprockeels and
Van Roy, 2024]. Section 3 defines the formal model of tonal
progressions and modulations. Section 4 evaluates the model
showing its intended use by a composer. Section 5 concludes
this paper and outlines future work.

2 Harmoniser Project

There are probably as many ways to compose music as there
are composers. In a practical tool, it is nonetheless important
to give a predefined structure to guide composers. In [Sprock-
eels and Van Roy, 2024], an iterative process with four layers
that are general enough to be relevant for a significant por-
tion of composers was identified, and is refined in this paper.
Figure 1 illustrates this structure. This paper focuses on the
second layer, namely chord progressions and modulations. To
put this in context, we explain all the layers.

Global structure The first layer decomposes the piece into
progressions, each in a single tonality, connected by modu-
lations. It can happen that there is only one tonality for the
whole piece, and hence no modulations, but in the general
case, there are multiple tonalities with one modulation be-
tween every two successive progressions. The same tonality
can be present more than once in the whole piece.

Progressions and modulations The second layer realises
the harmonic development within each progression. It defines

a sequence of chord degrees for each of the progressions, as
well as modulations to transition from one progression to the
next. Chord degrees can be diatonic (belonging to the tonal-
ity) or chromatic (not belonging to the tonality). Section 3
gives the main aspects of the formal model for this layer.

Voicing The third layer defines the voicing, i.e., the actual
notes on the musical staff for each chord. The typical way
to represent chord voicing is to use four voices. There are
two aspects to take into account: “vertical” harmony, i.e. the
interaction between notes in a given chord, and “horizon-
tal” harmony, the interaction between notes in a voice over
time. Some voicing rules have an influence on chord states,
in which case they are also handled in layer 2 and thus in the
model of this paper. They are presented in Section 3. Layer 3
is presented in Diatony [Sprockeels and Van Roy, 2024].

Ornaments The fourth and final layer is melodic orna-
ments. Given a voicing for a chord progression, ornaments
such as passing notes or appoggiaturas are added as details to
enrich the musical piece. This adds essential complexity to
the harmony.

3 Formal Model of Tonal Chord Progressions

We now define the formal model of tonal chord progressions
and modulations, which is the second layer of the Harmoniser
project and the main focus of this paper. Here, a progression
is a sequence of chord degrees in a given tonality and a mod-
ulation is a transition between two successive progressions
of different tonalities. The model defines the possible chords
(degree, quality and state) and transitions between them fol-
lowing the theory of Western tonal music, which is based on
the concept of tonality'. All the concepts used in the model
are standard concepts of tonal music theory, for which many
references exist?.

The rules implemented in the model are taken from [Duha,
2016] and [Gauldin, 2004], ensuring consistency with Di-
atony [Sprockeels and Van Roy, 2024] that uses the same ref-
erences. We use Duha’s chapter on modulations as well as
Gauldin’s chapters 4 (triads and seventh chords), 6 (partwrit-
ing), 8-11 (diatonic harmony), 13 (dominant chords), 14 (pre-
dominant chords), 16 (6-4 chord), 17 (third and sixth de-
gree), 19 (leading tone seventh chord), 21 (secondary domi-
nant chords), 29 (Neapolitan chord), and 30 (augmented sixth
chord). This model was established in collaboration with two
composers to ensure its correctness and utility for composers.

3.1 Basic concepts of the model

The formalisation builds on the concepts of chord and chord
transition:

* A chord is a set of three or more notes, uniquely iden-
tified by a triple (r, g, s) where r is the root note (one
of the twelve notes of Western music), ¢ is the quality
(which defines the intervals between the chord notes),
and s is the state (defined by the chord note that is at the

'A tonality is defined as a pair of a key (one of the twelve notes
C, C#, D, up to B) and a mode (major or minor).

“Some links: tonality, chords and functions, secondary domi-
nants and augmented sixth chords, amongst many others.

https://www.britannica.com/art/tonality
https://intermusic.lmta.lt/mod/book/tool/print/index.php?id=344
https://www.simplifyingtheory.com/secondary-dominants/
https://www.simplifyingtheory.com/secondary-dominants/
https://en.wikipedia.org/wiki/Augmented_sixth_chord

lowest voice). Within a given tonality, each note has a
degree d that defines its function within the tonality as
well as the possible qualities and states that are available
to build chords on that note as a root.

* A chord transition is a pair of two chords. In Western
tonal music, chord transitions are defined by degree tran-
sitions in a tonality.

Our formal model is built on top of these two concepts. The
constant transition matrix 7" defines possible chord transitions
between two chord degrees in a tonality, while three other
constant matrices M, P, and L define the relationships be-
tween a chord degree and the possible chord qualities, states,
and root notes respectively. These matrices compactly encode
a large amount of tonal music theory, which to our knowledge
has not been done by any previous composer tool. Aside from
these matrices, constraints are enforced to model more spe-
cific aspects of tonal music theory that are not captured by
the matrices. Additional constraints are also enforced to al-
low for modulations between tonalities, which is a key aspect
of Western tonal music.

3.2 Composer input and solver output

For chord progressions to be generated, the model requires a
series of parameters. These can come from the first layer of
the Harmoniser project or from the composer. First, the to-
tal number of chords of the musical piece (n) and the number
of progressions (/) must be specified. The progressions’ be-
ginning (b;) and end (e;) are deduced from the modulations,
except for the start of the first progression and the end of the
last one, and are known from the start. This is developed in
Section 3.4.

n,l € Ny Q)
Vi e [0,l] b;,e; €[0,n])
b;<e; bp=0 e_1=n-—1 3)

The tonality of each progression (¢;), in the form of a tuple
(key, mode), must also be provided.

Vie [0, t = (km))

where k € {C,C{,D,...,B} and m € {major, minor}. Dif-
ferent progressions can have the same tonality, but not succes-
sively. Additionally, modulation types® (type,,), starts (s,,)
and ends (f,,,) must also be specified. Together, they will de-
termine the length of each progression.

Ym e 0,1 —1]
Sm, fm € [O,n[8m < fm)

type,, € {perfect cadence, pivot chord,
alteration, chromatic} 6)
where m represents a modulation, and is linked to the pro-
gression from which it modulates (modulation m goes from

progression m to progression m + 1).

Provided these parameters, the model gives the chords of

the piece. In tonal music, chords are referred to by their
degree, i.e. their role in the tonality. However, degrees are

*Modulation types are detailed in Section 3.4.

tonality specific, and the different progressions must be able
to communicate because in the case of modulations, some
chords must be constrained by two progressions. This is done
using the triplet (root note, quality, state) that uniquely iden-
tifies a chord. The model therefore defines three variable
arrays for the whole piece R, () and S that represent each
chord’s root note, quality and state, as well as an array for
the chord degrees in each progression D;. Additionally, each
progression has a subset of the whole piece variable arrays
(R;, Qi,S;) that correspond to their part in the piece. These
arrays are defined below.

Chord roots The root of a chord is the note on which the
chord is built. It is one of the twelve notes (and their enhar-
monics) of Western music:
Ve € [0,n]
R]c] € {C, C#/Db, D, D{/Eb, E/Fb, Ef/F
F#/Gb, G, GH/Ab, A, At/Bb, B} 7

where c denotes each chord of the progression.
Chord qualities Chord qualities define the intervals of the
chord notes with the root of the chord:
Ve € [0,n]
Q|c] € {Major, Minor, Diminished, Augmented,
Dominant seventh, Major seventh, Minor seventh,
Diminished seventh, Half-diminished seventh,
Minor-major seventh, Augmented sixth} (8)

Chord states Chord states define the note of the chord that
is at the bass, i.e. the lowest note of the chord:
Ve € [0,n]
S|c] € {Fundamental, First inversion,
Second inv., Third inv.})

Chord degrees The supported chord degrees consist of the
seven diatonic chord degrees, as well as some common chro-
matic chords.

Vi € [0,1], ¢; € [0,n4]
Djle;] € {LILILIV,V,VLVILVda,
V/ALVAILV/AV,V/VNV/VLV/VILHIIL, 6A} (10)

3.3 Progression constraints

In this section and the next we present the most important
constraints of the model. We distinguish two categories of
constraints: constraints that apply to progressions, i.e. con-
straints in a given tonality, and constraints that apply to mod-
ulations, i.e. between two tonalities. The progression con-
straints ensure that chord progressions in a tonality follow
the rules of tonal harmony, while modulation constraints en-
sure a smooth transition between the progressions. Due to
space limitations, the matrices M, P and L are presented in
the technical appendix *. In the following definitions, musi-
cal notations have been used to present the model more intu-
itively. In practice, numerical values are used.

*http://hdl.handle.net/2078.1/301819

http://hdl.handle.net/2078.1/301819
http://hdl.handle.net/2078.1/301819

T [0 |10 [IV [V [VI | VII | Vda | V/IL[V/IO[V/IV] V/V [V/VI[V/VI] bIT | 64
i 11 1 [1 [111 T 11

i 11 11 1 11
T 1 T

v 1 1 1 1 1 1 1 1 1 1 1
v 1 1 1 1 1 1
VI 1 1 1 1 1 1 1 1 1
VII 1 1 1

Vda |A 1 B C
\7ii 1 1

VI 1 1

V/IV 1 1
v/V 1

V/VI 1 1

V/VIlp 1 3 1 F
bIT T T 1
6A o 1 1 |[H |

Table 1: Transition matrix 1" between successive chord degrees in
a tonality. Zeroes are omitted for clarity, thus an empty slot in the
matrix corresponds to a value of zero.

Chord transitions The most important constraint describes
the possible transitions for chord degrees in a tonality. This
is enforced through the 7' matrix and shown in table 1. It
is read as: chord row can be followed by chord column if
the value in the matrix is equal to 1. For example, the III
chord can be followed by the VI and V/VI, but not any other
degree. The T matrix encodes generally accepted rules for
tonal harmony, taken from [Duha, 2016] and [Gauldin, 2004].
Each block of the matrix constrains a specific aspect of tonal
chord progressions:

¢ Block A () defines possible chord succession be-
tween diatonic chords’.

* Block B (dark blue) defines what secondary dominant®
chords can follow diatonic chords.

e Block C () defines what chromatic chords,
amongst the ones supported, can follow diatonic chords.

e Blocks D () and E (cyan) define what diatonic
chords and other secondary dominants can follow sec-
ondary dominants, respectively. Secondary dominants
must move to a chord that is based on the note that is a
perfect fifth below their root note. They can either re-
solve to their corresponding diatonic chord (e.g. II for
V/II), or move to another dominant chord based on that
same note (e.g. V/V for V/II).

* Block F (grey) enforces the rules for chromatic chords
following secondary dominant chords. It is not allowed,
so this part of the matrix is empty.

¢ Blocks G (violet) and H (magenta) enforce the rules for
chromatic chords. The lowered second degree (bII) and
the augmented sixth (6/A) must go to V, but they can go
to the fifth degree appoggiatura (Vda) before that.

¢ Block I (red) enforces rules for the succession of chro-
matic chords. It is not allowed, thus this part of the ma-
trix is empty.

T can be seen as an adjacency matrix, thus 7% counts pos-
sible chord progressions of k chords in a tonality, which are
valid walks through the equivalent graph. Table 2 shows the
graph corresponding to the adjacency matrix, separated into

3The fifth degree double appoggiatura (Vda) is treated separately
because its musical function is completely different.
8A secondary dominant is the dominant of a diatonic degree.

the diatonic part (2a) and the chromatic part (2b) for readabil-
ity. Bold arrows mean that a transition is the preferred choice,
regular arrows mean a possible alternative, and dotted arrows
mean that a transition is possible but rarely used. Possible
transitions through chromatic chords in the diatonic part are
annotated on the transition arrow to make the diagram more
readable. Since these are nodes, they can be used to hop to
the chromatic part and back. The constraint enforced is:

Vi € [O,l[, C; S [ani_bi[T[Di[cg],Di[Cg-i-l]] =1 (11)

where i represents each progression and ¢} represents each
chord of the progression except the last one, and 7' is the
matrix in Figure 1. This is not implemented with the regu-
lar constraint [Pesant, 2004] because using a matrix makes it
easy for composers to modify the possible transitions with-
out requiring to recompute the whole underlying DFA of a
regular constraint. As explained in Section 4, this does not
cause efficiency problems but can be done in the future if it
becomes necessary.

Though voicing is handled by Diatony, the third layer of
the Harmoniser project, a few constraints must be enforced to
ensure that the progressions generated by this model are com-
patible with the strict voicing rules of tonal music, namely
tritone resolution and the preparation of diatonic seventh
chords. Voicing rules are also necessary for modulations.

Tritone resolution When one of the tritone notes is at the
bass, its resolution affects the state of the next chord. This
is the case for dominant chords (primary or secondary) in
first or third inversion. For chords in first inversion, the bass
note should move up by step. For chords in third inversion, it
should move down by step.

Vi € [O,Z[, C; S [0,61‘ — bl[
D = (D;[c}] = V A Qi[c}] € {Major, Dom. 7th, Dim. 7th})
V (VI < D;[e;] < VIVIT)

(12)
D A Sl[cﬂ = 1StinV — Bz[c; —+ 1] = Bl[c;] +1 mod?7
(13)
D ASi[cf] =3"inv = Bi[c;+1] = Bi[¢}] =1 mod 7
(14)

Where D is true for a dominant chord, and false otherwise,
and B; is the array containing the degree of the note at the
bass for each chord, which is derived from D; and S; and
defined in the technical appendix. The “ mod 7 ” is due to
the fact that there are seven diatonic degrees in a tonality.

Preparation of diatonic seventh chords Except for the
fifth degree (V) chord, when a diatonic chord has a seventh,
that note must be present in the chord that is played before,
at the same voice. In our model, we can only enforce that
the seventh is in the previous chord. Diatony will impose that
they are in the same voice.

Ve; € [1,e; — by

H;lc;] = 1A D;le;] < VLA Djlei] #V =

Ro;[i — 1] = Se;[i] V Ti;[i — 1] = Se;]d)
VFili—1] = Seili] (15

V/V-bll-Aug. 6!.!1/ \ Y,

AN
~ VN-Vda- | IV
" bll-Aug.6th /

[v

III/

\T//VI “

\V/VI—/

(a) Diatonic part of the graph described by the adjacency matrix
in Figure 1.

\TI,@‘/{\IV)

_—

V/VI

<//ur/
{ (III /

(b) Chromatic part of the graph described by the adjacency ma-
trix in Figure 1.

Figure 2: Transition matrix between chord degrees, as a graph. Node names are unique, so walks can hop between (a) and (b).

Modulation

(a) Perfect cadence modulation

Modulation

(b) Pivot chord modulation

(c) Alteration modulation

Modulation

(d) Chromatic modulation

Figure 3: Representation of the different modulation types.

Where H;[c;] is true when chord ¢; in progression ¢ has a
seventh, and false otherwise; Ro;, T'i;, F'i; and Se; are the
degree corresponding to the root, third, fifth and seventh of
each chord respectively. They are derived from D; and de-
fined in the technical appendix.

3.4 Modulation constraints

There are two main types of modulation from one tonality to
another: modulations to neighbouring tonalities (at least one
chord in common), and modulations to distant tonalities. In
this paper, we focus on modulations to neighbouring tonali-
ties. We distinguish four types of modulations to neighbour-
ing tonalities. Their representation is given in Figure 3, and
their definitions and formalisation are given below.

Perfect cadence modulation This can be considered as one
tonality ending and another beginning. The current tonality
ends on a perfect cadence and the next tonality starts on the

next chord (see Figure 3a). The only constraint to enforce is
that the last two chords of the first tonality are V and I, both
in fundamental state.

Dplem —bm — 1=V A Splem — by — 1] = Fund. State
A Dplem —bm] =1 A Splem — by] = Fund. State
(16)

We link the first and the second progression to the modula-
tion.

em:fm bm+1 :fm+1 (17)

Pivot chord modulation A pivot chord modulation uses a
chord that is in both tonalities as a pivot to transition from one
tonality to the other. It can be followed by multiple chords
that are in both tonalities, and eventually a perfect cadence in
the new tonality, which ends the modulation. To model this
transition period where chords are in both tonalities, there is
an overlap between the two corresponding progressions (see
Figure 3b). The global variables from position s,,, up to posi-
tion f,,, — 2 are constrained by both tonalities, so the chords at
these positions must be available in both tonalities. The pivot
chord cannot be VII.

Dm+l[fm = bmy1 — 1] =V
A Smt1lfm — bm+1 — 1] = Fund. State
A Dm+1[fm - bm+1] =1

ASms1lfm — 0 = Fund. State (18)

We link the first and the second progression to the modula-
tion.

m+1]

m:fm_2 bm+1 = Sm (19)

Alteration modulation An alteration modulation intro-
duces a note from the second tonality that is not present in
the original tonality to start the modulation. This chord has to
be followed by the V of the new tonality, affirming it (see Fig-
ure 3c). If the chord used to introduce the alteration cannot
be followed by V, it has to be the next chord. The last chord
of the first progression must be diatonic, cannot be VII and

cannot have a seventh. The first chord of the new progression
must be diatonic, and cannot be V or VII.

Dy, [em] #VIL A Hy, [em] =0
A Dp41[0] € {V,VII} (20)
Dpp1[0] < VILA Dy 1[0 # V 2n
Where H,,[cy,] is true when chord ¢, has a seventh.

We must also ensure that the first chord of the new progres-
sion contains a note that is not in the first tonality. We define
a function f;(n) that takes as argument a note in [C,B], and
returns the quality of the diatonic chord built on that note if it
is in £. The function is not defined if the note is not in ¢.

_[net Qun)
ft(n)_{n¢t L

This is equivalent to a 12-value array, containing for each note

the quality of the chord based on this note in ¢ if it exists, and
nothing otherwise. We then impose the constraint:

fto(Bm41[0]) = LV fi, 1 (Rint1[0]) # fi,, (Rm+1[(()]2)2)
which means that the quality of the chord based on note
Ry, +1[0] cannot be the same in both tonalities. If this note
is not in t,,, this is trivially satisfied. This ensures that there
is at least one note in the first chord in the new progression
that is not in the previous tonality. We still have to enforce
that this altered chord is followed by V. Depending on which
degree it corresponds to, it might not be possible for V to
follow directly. In that case, it should be the next chord.

T[Dpmsi[0],V]=0 = D, 4[2]=V (23)
T[Dpms1[0],V] £0 = D, 4[1]=V (24

Chromatic modulation This kind of modulation occurs
when one chord in the first tonality is followed by the V of
the new tonality, with a chromatic movement in the voice that
plays the leading tone of the new tonality in the dominant
chord (see Figure 3d). The voice leading aspect of this mod-
ulation needs to be handled in the third (voicing) layer of the
Harmoniser project. Similarly to the preparation of diatonic
seventh chords, constraints still need to be enforced in this
model to make sure that this chromatic movement is possi-
ble. In particular, we must enforce that the first chord of the
new progression is V, and there must be a one chord over-
lap between the progressions to ensure that the transition is
smooth. The chord in this overlap is thus a secondary domi-
nant in the first tonality, and the dominant in the new one. We
must also ensure that the note in the first tonality correspond-
ing to the leading tone in the new tonality is present in the
chord just before the dominant of the new tonality (i.e., when
modulating from C major to A major, there must be a G in
the first chord that can move to a Gt in the second chord). To
enforce that, we must compute the interval in semitones be-
tween the keys of the two tonalities, and transform that into a
degree difference. This is shown in Table 2.

d = Degs[|tm -km — tmy1-kmi1l]
s=6+d mod7
Dpi1[0] =V A Rop[nm — 2] =s

V Tim[m —2] =8V Fig[ng, —2] = s (25)

Where s is the degree that the seventh of the new tonality
corresponds to in the first tonality.

3.5 Branching

The goal of our model is to define a search space that is as per-
missive as possible, only enforcing mandatory rules of tonal
harmony to allow for composers’ creativity to shape the so-
lutions instead of the constraints. As a result, the number of
solutions is very large and the branching strategies are defined
for the relevancy of solutions rather than for efficiency.

With that in mind, the branching is first performed on chord
degrees, as this is the most important variable array, select-
ing the variable with the smallest domain size and the value
at random. The preferences in Figure 2 are not followed
to avoid staying in the “preferred” transitions that would be
repetitive. This could of course be improved in the future by
considering composer preferences when assigning new val-
ues to variables. Branching is then performed on states, also
on the smallest domain variable, favouring fundamental state
and first inversion as these are the most common states in
tonal music. Finally, branching is performed on chord quali-
ties, favouring triads over seventh chords.

4 Evaluation and example use case

Complete source code of our model is available on GitHub’,
along with its integration with Diatony.

4.1 Efficiency and number of solutions

Since the model is designed to give as much freedom as pos-
sible to composers, the number of possible solutions for a
given problem is enormous if no composer preferences are
given. The only constraints enforced by default are the ones
that are necessary to ensure that the generated chord progres-
sions follow the rules of tonal harmony. We expect the com-
poser to add musical ideas to guide the solver, formulated as
constraints. This will in the future be done through a GUIL

As a result of this approach, solutions are found extremely
quickly for problems of significant size and efficiency is
hence not the main focus of this section. For example, the
musical piece shown in Section 4.2 was generated in 3ms on
an M1 MacBook Pro. Another longer piece, consisting of 60
chords with five modulations, was generated in 20ms. This
is because this layer of the Harmoniser project on its own
lacks global rules, that will be enforced through the first layer
in future work. We expect the computation to be more in-
tensive with the addition of composer-subjective constraints,
that will transform the problem from a satisfaction problem
(finding a valid solution) to an optimisation problem (finding
the best solution), where the criteria for what makes a solu-
tion better are provided by the composer, and with complex
links between the progressions.

4.2 Example of composer use
We now put ourselves in the mindset of a composer, to show
how our tool can be used to generate a harmonic progression.

"https://github.com/sprockeelsd/Progressions-and-Modulations/
tree/IJCAI2025

https://github.com/sprockeelsd/Progressions-and-Modulations/tree/IJCAI2025
https://github.com/sprockeelsd/Progressions-and-Modulations/tree/IJCAI2025
https://github.com/sprockeelsd/Progressions-and-Modulations/tree/IJCAI2025

0 I [2 3 [4

5

6 | 7 § [9 [10 [11

unison (0) second (1) third (2)

fourth (3)

fifth (4) sixth (5) seventh (6)

Table 2: Conversion between intervals and degree difference (Degs). The first row correspond to intervals in semitones.

C minor Eb major C minor
Half Perfect
cadence Perfect cadence modulation Pivot chord modulation

o

1 (v vt v v

Legend ‘

7+ Gadenc Pivot
0 Modulation T Cadence P chord

Figure 4: Representation of the input given to the solver.

We explain the example in terms of constraints, but in a prac-
tical tool, these constraints would be given through a GUIL
For our example, we want to write a chord progression that
starts in C minor, modulates to its relative tonality Eb major
and then comes back to the tonality of C minor, that is 28
chords long. We want a perfect cadence modulation on chord
12, and a pivot chord modulation from chord 18 to 23.

In addition to these necessary instructions, we add the fol-
lowing constraints to express our musical intentions. (1) The
first chord must be I. (2) No chord can be III or VII, ex-
cept during the pivot chord modulation. (3) Only dominant
chords can have a seventh. (4) There is a half cadence on
chord seven. (5) There is a chromatic chord just before that
(position six). (6) The II chord should only be used in first in-
version. (7) There is a perfect cadence at the end of the piece.
The input is illustrated in Figure 4.

If we run the solver with these input and constraints, it
produces the following output. For the first progression in
C minor, the chords suggested by the solver are I-1I-Vda-V-
VI-IV-bII-V-I-V-I-IV-V-I. This is interesting, but based on per-
sonal taste, we make a few modifications: I-II-Vda-V-I-1V-
6/\-V-1I-V-I-Vda-V-I. This is also an accepted solution for the
solver. For the Eb major to C minor progression, the output is
I-VI-I-V-VI-V/VIV-VII-VILH-V-I-VI-II-V-1, where VI|I is
the pivot chord starting the modulation (sixth degree in Eb
major and first degree in C minor) and the following chords
are in both tonalities up until the perfect cadence in C mi-
nor. For this part, we only make one small modification: we
modify the perfect cadence that ends the modulation to be an
interrupted cadence. This is due to personal taste. The final
chords for this part are thus I-VI-II-V-VI|I-V/VI|V-VI|I-VII|II-
V-VI-I-1I-V-1. Chord states have been omitted in the listing
of the output to keep it readable, but they are as shown in
Figure 5. Diatony can then be used to generate a four-voice
texture representing our piece. Figure 5 shows one possible
four-voice texture of this piece. It can be listened to here®.
A harmonic rhythm has been given to the chords, as well as
some ornamental notes, by the composer.

5 Conclusion

This paper defines a formal model of tonal chord progres-
sions and modulations to neighbouring tonalities. We give a
constraint-based implementation of this model in the Gecode

8https://youtu.be/97wBAwCcZC8E 2si=o_dvYZyOGCegtrHN

o1 | | | | Jid o JJJ JJ |‘\1 | p—
Foteg=— 122" Fo— e 7 o s
SRS e = fo u L4 tohe
el |C |0 e e © e o |© e A
LD DR e o+ o — o - o o
Ve b o o
zE=2 =
11
b AN TN SN JAN T g N ddN N
0rb—oww o) - e e
%vu o o o
o o o o o ho o o
b ——o o
7 — o o
19
pobd N J N)
%blry — r = % O (e}
o o o o Qh\g
by —8 o

Figure 5: Musical piece based on the chord progression generated by
the solver. The voicing has been added by Diatony and the rhythm
by the composer.

constraint solver. Combined with the Diatony model [Sprock-
eels and Van Roy, 2024], this implementation generates tonal
chord progressions with modulations in a four-voice texture.

The present model can be used as the foundation for
many useful extensions. It can be enriched by allowing for
more chromatic and borrowed chords, as well as modulations
to distant tonalities, and by adding larger harmonic struc-
tures like harmonic sequences. The matrices encoding large
amounts of musical knowledge, such as T and others defined
in the technical appendix, are currently encoded in Gecode by
element constraints, and could be extended to give a weight to
each value, allowing composers to value some choices more
than others. Extensional constraints could also be used in-
stead of constant values, to dynamically change values dur-
ing the search. Global constraints such as the regular or cost-
regular constraints could also be used to further improve the
efficiency of the model.

In the case where the composer wants suggestions from the
solver, it would be interesting to generate successive solutions
that differ significantly. This could be done using a branch
and bound approach to post additional constraints when a so-
lution is found, or using other approaches such as those pro-
posed in [Pesant et al., 2022] and [Ingmar et al., 2020]. This
is left for future work.

This work is part of the ongoing Harmoniser project aiming
to assist composers in their creation process with constraint
programming. In this project, a four-layer decomposition of
the composition process was identified. So far, models have
been defined and implemented for layer 2 (this paper) and
layer 3 ([Sprockeels and Van Roy, 2024]). Models for the re-
maining layers are ongoing work with the goal of providing
a complete set of models for the whole composition process,
allowing to generate full musical pieces with the help of con-
straint programming. We are also working on a graphical user
interface for this tool as well as an implementation as a plug-
in for a Digital Audio Workstation.

https://youtu.be/97wBAwcZC8E?si=o_dvYZyOGCegtrHN
https://youtu.be/97wBAwcZC8E?si=o_dvYZyOGCegtrHN

Acknowledgements

The authors wish to thank the Conservatoire Royal de Brux-
elles for allowing us to take courses on music theory, and
more specifically we thank Prof. Adrien Tsilogiannis for his
insight on this paper, as well as Dr. Karim Haddad from IR-
CAM for his insight on the musical aspect of the paper. We
also thank Juliette Vanderhaeghen and Lucile Dierckx for
their support and feedback during the redaction. We thank
all the anonymous reviewers of this paper who helped us to
greatly improve the quality of the paper.

References

[Anders and Miranda, 2009] Torsten Anders and Eduardo R
Miranda. A Computational Model that Generalises
Schoenberg’s Guidelines for Favourable Chord Progres-

sions. In proceedings of the Sound and Music Computing
Conference, pages 48-52, 2009.

[Anders ef al., 2005] Torsten Anders, Christina Anagnos-
topoulou, and Michael Alcorn. Strasheela: Design and Us-
age of a Music Composition Environment Based on the Oz
Programming Model. In Multiparadigm Programming in
Mozart/Oz: Second International Conference, MOZ 2004,
Charleroi, Belgium, October 7-8, 2004, Revised Selected
and Invited Papers 2, pages 277-291. Springer, 2005.

[Anders, 2008] Torsten Anders. Composing Music by Com-
posing Rules: Design and Usage of a Generic Music Con-
straint System. PhD thesis, Queen’s University Belfast,
2008.

[Bonlarron and Régin, 2024] Alexandre Bonlarron and Jean-
Charles Régin. Intertwining CP and NLP: The Generation
of Unreasonably Constrained Sentences. In Thirty-Third
International Joint Conference on Artificial Intelligence
{IJCAI-24}, pages 7600-7608. International Joint Confer-
ences on Artificial Intelligence Organization, 2024.

[Carpentier er al., 2010] Grégoire Carpentier, Gérard As-
sayag, and Emmanuel Saint-James. Solving the Mu-
sical Orchestration Problem using Multiobjective Con-
strained Optimization with a Genetic Local Search Ap-
proach. Journal of Heuristics, 16:681-714, 2010.

[Davismoon and Eccles, 2010] Stephen Davismoon and
John Eccles. = Combining Musical Constraints with
Markov Transition Probabilities to Improve the Gen-
eration of Creative Musical Structures. In European
Conference on the Applications of Evolutionary Compu-
tation, pages 361-370. Springer, 2010.

[Duha, 2016] Isabelle Duha. L’Harmonie en Liberté: de la
Mémoire a I'Improvisation. Gérard Billaudot, Armiane
Imp., 2016.

[Ebcioglu, 1990] Kemal Ebcioglu. An Expert System for
Harmonizing Chorales in the Style of JS Bach. The Jour-
nal of Logic Programming, 8(1-2):145-185, 1990.

[Eppe ef al., 2015] Manfred Eppe, Roberto Confalonieri,
Ewen Maclean, Maximos Kaliakatsos, Emilios Cam-
bouropoulos, Marco Schorlemmer, Mihai Codescu, and
K Kiihnberger. Computational Invention of Cadences and

Chord Progressions by Conceptual Chord-Blending. In
Proceedings of the Twenty-Fourth International Joint Con-
ference on Artificial Intelligence, pages 2445-2451. AAAI
Press; International Joint Conferences on Artificial Intelli-
gence, 2015.

[Gauldin, 2004] Robert Gauldin. Harmonic Practice in
Tonal Music. Second Edition. W. W. Norton and Com-
pany, Inc, 2004.

[Gecode Team, 2019] Gecode Team. Gecode: Generic Con-
straint Development Environment, 2019.

[Giuliani et al., 2023] Luca Giuliani, Francesco Ballerini,
Allegra De Filippo, and Andrea Borghesi. MusiComb:
a Sample-based Approach to Music Generation Through
Constraints. In 2023 IEEE 35th International Conference
on Tools with Artificial Intelligence (ICTAI), pages 194—
198, 2023.

[Herremans and Sorensen, 2013] Dorien Herremans and
Kenneth Sorensen. Composing Fifth Species Counterpoint
Music with a Variable Neighborhood Search Algorithm.
Expert systems with applications, 40(16):6427-6437,
2013.

[Huang and Chew, 2005] Cheng Zhi Anna Huang and Elaine
Chew. Palestrina Pal: a Grammar Checker for Music Com-
positions in the Style of Palestrina. In Proceedings of
the 5th Conference on Understanding and Creating Mu-
sic, 2005.

[Ingmar et al., 2020] Linnea Ingmar, Maria Garcia de la
Banda, Peter J Stuckey, and Guido Tack. Modelling Diver-
sity of Solutions. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 34, pages 1528-1535,
2020.

[Lattner et al., 2018] Stefan Lattner, Maarten Grachten, and
Gerhard Widmer. Imposing Higher-level Structure in
Polyphonic Music Generation using Convolutional Re-
stricted Boltzmann Machines and Constraints. Journal of
Creative Music Systems, 2:[1]-31, 2018.

[Laurson and Kuuskankare, 2005] Mikael Laurson and Mika
Kuuskankare. Extensible Constraint Syntax through Score
Accessors. In Journées d’Informatique Musicale, 2005.

[Pachet and Roy, 2001] Frangois Pachet and Pierre Roy. Mu-
sical Harmonization with Constraints: A Survey. Con-
straints, 6:7-19, 2001.

[Pachet and Roy, 2011] Frangois Pachet and Pierre Roy.
Markov Constraints: Steerable Generation of Markov Se-
quences. Constraints, 16(2):148-172, 2011.

[Papadopoulos ef al., 2015] Alexandre Papadopoulos, Pierre
Roy, Jean-Charles Régin, and Frangois Pachet. Generating
all Possible Palindromes from n-gram Corpora. In IJCAI
2015, 2015.

[Pesant et al., 2022] Gilles Pesant, Claude-Guy Quimper,
and Hélene Verhaeghe. Practically Uniform Solution Sam-
pling in Constraint Programming. In International Con-
ference on Integration of Constraint Programming, Arti-
ficial Intelligence, and Operations Research, pages 335—
344. Springer, 2022.

[Pesant, 2004] Gilles Pesant. A Regular Language Member-
ship Constraint for Finite Sequences of Variables. In In-
ternational conference on principles and practice of con-
straint programming, pages 482—495. Springer, 2004.

[Rohrmeier, 2011] Martin Rohrmeier. Towards a Generative
Syntax of Tonal Harmony. Journal of Mathematics and
Music, 5(1):35-53, 2011.

[Sandred, 2010] Orjan Sandred. =~ PWMC, a Constraint-
solving System for Generating Music Scores. Computer
Music Journal, 34(2):8-24, 2010.

[Sprockeels and Van Roy, 2024] Damien Sprockeels and Pe-
ter Van Roy. Expressing Musical Ideas with Constraint
Programming Using a Model of Tonal Harmony. In Inter-
national Joint Conference on Artificial Intelligence, 2024.

[Truchet et al., 2003] Charlotte Truchet, Gérard Assayag,
and Philippe Codognet. OMClouds, Petits Nuages de Con-
trainte dans OpenMusic. In Journées d’Informatique Mu-
sicale, 2003.

Towards a Practical Tool for Music Composition: Using Constraint Programming
to Model Chord Progressions and Modulations: Technical Appendix

Damien Sprockeels, Peter Van Roy

ICTEAM, UCLouvain, Louvain-la-Neuve, Belgium
{damien.sprockeels, peter.vanroy } @uclouvain.be

I I i

Layer 1 Layer2 Layer 3 Layer 4
Global Structure and Voicing Ornaments
(#ts [! =

fe— e s = = N e e
] I-V-VHIVIT-VARV-T W M VN B } "
e —

7

p s N s S

Figure 1: Illustration of the four-layer framework for composing a
musical piece.

1 Introduction

This document defines the mathematical formalization of the
second layer of the Harmoniser project, namely chord pro-
gressions and modulations in the context of tonal harmony.

2 Structure of Harmoniser

The Harmoniser project aims to build a practical tool to aid
composers based on CP that addresses both the issues of rule
definition and computation time. Because the solver enforces
rules, this relieves the composer of much tedious work so they
can focus on adding musical ideas to shape solutions into a
desired result. To reduce computational complexity, we fol-
low the decomposition of the composition process that is de-
tailed in the paper. It decomposes the process of musical com-
position in four layers, resulting in smaller problems that can
be solved independently. This is depicted in Figure 1. The
first layer is global harmonic structure, the second is chord
progressions and modulations, the third is chord voicing, and
the fourth adds ornaments. The present paper focuses on the
second layer. The third layer’s model has already been devel-
oped (see full paper for the reference). The model presented
in this annex is the second layer. Its output can be given to
the third layer, which generates the four voices and hence the
notes.

3 Composer Input

This section describes the parameters that are required to de-
fine instances of the problem. On top of that, the composer
can add as many constraints as they want to shape the results.

Whole piece Two parameters are defined regarding the
whole piece: the total number of chords, n € Ny, and the
number of progressions, [€ Ng.

Progressions Three parameters are required to define a pro-
gression: its beginning b;, end e; and tonality ¢;. The begin-
ning and end are deduced from the modulations (see Section
7.2).

Vi € [0,1]
bi,eie[O,n[bop=0 e_1=n-1 (1)
t; = (k,m) 2)

where k € {C, C#/Db, D, D#/Eb, E/Fb, E4/F, F4/Gb, G, Gt/Ab,
A, At/Bb, B} and m € {major, minor}.

Modulations Finally, modulations are also defined with
three parameters: their start s,,,, finish f,,, and type type,,.
Vm € [0,1 — 1]
vafme [Oan[5m<fm 3)
type,, € {perfect cadence, pivot chord,
alteration, chromatic } 4
where m represents a modulation, and is linked to the pro-

gression from which it modulates (modulation m goes from
progression m to progression m + 1).

4 Solver Output

Given the parameters described in section 3, the solver will
produce the following triplet as an output:

* The array of root notes for each chord of the whole piece.
 The array of states for each chord of the whole piece.

 The array of chord qualities for each chord of the whole
piece.

To make the output easier to analyze in the context of tonal
harmony, additional arrays are generated for each progression
in the piece expressing the chords as degrees in the respective
tonality. the progressions’ beginning and end, deduced from
the modulations, are also generated. This makes it possible to
give the solver’s output directly as an input to layer 3 of the
Harmoniser project.

5 Indices in the whole piece

This section defines useful indices to access elements in the
whole piece.

Fundamental State
First Inversion
Second Inversion
Third Inversion
Fourth Inversion

A LW =O

Table 1: Value table for the possible chord states

Chord position in the piece As the model writes a musical
piece as a sequence of chords, it is useful to be able to access
each of them. This is done through their index:

ce0,n] 5

A number of rules apply on all chords but the last, so we
define an index for that as well:

delo,n—1] 6

Progressions As there can be multiple progressions (con-
nected by modulations) in the musical piece, it is useful to be
able to access each of them. This is done through their index:

pe 0] @)

Chord position in a section As explained in section 2, the
piece is divided in progressions based on the tonalities. It is
also useful to be able to access a chord in these sections, so
we define an index for them as well:

Vp ¢p € [0,n, —1] ®

where n,, is the number of chord in the progression p. Simi-
larly,
Vp ¢, €[0,n, 2])

6 Variables

This section defines the variables used to express the musical
rules. Some variables are global for the whole piece, while
others are specific to a progression.

6.1 Global variables

States This array of variables contains the state of each
chord.
Ve
S]c] € {Fundamental, First inversion,
Second inv., Third inv., Fourth inv.} (10)

The corresponding values are given in Table 1.

Qualities
chords.

This array of variables contains the quality of the

Ve

Q|c] € {Major (M), Minor (m), Diminished (°),
Augmented (A\), Dominant seventh (7),

Major seventh (M7), Minor seventh (m7),

Diminished seventh (°7), Half-diminished seventh (&7),

Minor-major seventh (mM7), Augmented sixth (6A)}
(11

Major 0 Minor 1
Diminished 2 Augmented 3
Dominant Seventh 4 Major Seventh 5
Minor Seventh 6 || Diminished Seventh | 7
Minor Major Seventh | 8 Augmented Sixth | 9

Table 2: Value table for the different chord qualities

Third | Fifth | Seventh
Major 4 3
Minor 3 4
Diminished 3 3
Augmented 4 4
Augmented sixth 4 6
Dominant seventh 4 3 3
Major seventh 4 3 4
Minor seventh 3 4 3
Diminished seventh 3 3 3
Half diminished 3 3 4
Minor major seventh 3 4 4

Table 3: Interval (in semitones) with the previous note for each chord
quality

The corresponding values are given in Table 2. Table 3 gives
the intervals between each consecutive note of the chord,
based on its quality. Together with the root note, it allows
to select all the notes constituting the chord.

Root Notes This array of variables contains the root note of
the chord, i.e the note it is built on.

Ve
R]c] € {C, C#/Db, D, D/Eb, E/Fb, Ef/F
F1/Gb, G, GHi/Ab, A, At/Bb, B} (12)

The corresponding values are given in Table 4.

Has Seventh This array of variables contains 1 for chords
that have a seventh, and O for chords that don’t. A chord can
have a seventh on top of the traditional third and fifth. In that
case, some extra rules must be enforced, so it is important to
have an easy access to that information. We thus define an
array H:

Ve H[d € [0,1] (13)

Where 1 means that the chord has a seventh, and 0 means it
doesn’t. It is linked to the quality array:

VeH[d =0 < Qlc < 3 (14)
VeH[c]=1< Q[c] >3 (15)

6.2 Variables specific to a progression

This section defines the variables defined for each progres-
sion.

'Only the Italian augmented sixth is implemented, but other ver-
sions of these chords are straightforward to include in the model.

C [CyDb| D |[DUEh| E [F
0 I 2 3 i |5
Fi/Gh | G | GiAb | A |A¥By | B
6 7 8 9 10 | 11

Table 4: Value table for the different notes

I II III v \Y VI | VII | Vda
0 1 2 3 4 5 6 7

VAL | V/IIL | V/IV | V/V | V/VI | VII° | bIT | 6 A
8 9 10 11 12 13 14 15

Table 5: Value table for the different notes

Chords This is the main array of variables for the chord
progression. It contains the degree with respect to the tonality
for each chord in this progression.

Vp, Ve,
D,[¢,] € {LILIILIV,V,VLVILVda,
V/LV/ALV/AV,V/V,V/VLV/VILPIL 6 A} (16)

The corresponding values are given in Table 5.

States This array contains the state of each chord. It is
linked to the global array of states through the following for-
mula:

Vp Sp[0:n, — 1] = S, : €] (17)

Qualities This array contains the quality of each chord. It
is linked to the global array of qualities through the following
formula:

¥ Qyl0:ny —1] = 0lby : ¢ (18)
Root Notes This array contains the root note of each chord.
It is linked to the global array of root notes through the fol-
lowing formula:

Vp Rp[0:mn, —1] =R[b, :) (19

Bass Degrees This is the note at the bass in a broad sense,
i.e without taking the alteration into account. For example, if
the tonality is C major and the bass degree is III, the note can
be E, Eb or Eff. There are seven degrees in a tonality.

Bylc,) € {LILULIV,V,VLVII} (20)

Root note, third, fifth and seventh In tonal music, chords
are built by stacking notes that are a third apart. For example,
the I chord is built on the I, then has the III (a third above),
then the V (a third above III), and so on. Table 11 gives the
degrees present in each chord degree. This is useful to deter-
mine what chord degree is at the bass of a chord depending
on its state, because the state is determined by the note at the
bass and vice versa and constraints have to be posted on the
bass.

Royp|c,] € {LILILIV,V,VLVII} 1)

Tiy[c,] € {LILILIV,V,VLVII} (22)

Fiylcy] € {LILULIV,V,VLVII} (23)
[cp]

Seplcp] € {LILILIV,V,VLVII} 24)

T [I [0 IV]V | VI| VI Vda|V/I[V/II[V/IV]V/V [V/VI[V/VI] bl | 6
I 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
11 1 1 1 1 1 1 1
111 1 1
v 1 1 1 1 1 1 1 1 1 1 1
v 1 1 1 1 1 1
VI 1 1 1 1 1 1 1 1 1
VII 1 1 1
Vda |A 1 B C
VI 1 1
Nz 1 1
V/IV 1 I
V/V 1
V/VI 1 1
V/Viip 1 E 1 F
bII 1 1
6A |G 1 1 |H |

Table 6: Transition matrix 7" between successive chord degrees in
a tonality. Zeroes are omitted for clarity, thus an empty slot in the
matrix corresponds to a value of zero.

Is Chromatic A chord is considered chromatic in a pro-
gression if it contains at least one note that does not occur
naturally in that progression’s tonality. In Table 5, this corre-
sponds to any chord in the second row. Therefore, the defini-
tion of this array is:

Vep Ipcy] € 10, 1] (25)

The following equations give the values:
Vep Iplep] = 0 < Dyey] < Vda (26)
Vep Ip[c,] = 1 < Dplcp] > Vda 27)

Has Seventh This array contains 1 if the chord has a sev-
enth, and 0 if it doesn’t. It is linked to the global array through
the following formula:

Vp Hp[0:n, —1] = H[b, : €] (28)

7 Constraints

This section defines all the constraints of the model.

7.1 Progression constraints

This section defines all the constraints regarding chord pro-
gressions in a given tonality.

Possible chord transitions The most important constraint
is the one that defines what chord degrees can be reached
from a given degree. This is done using the matrix depicted
in Table 6:

Vp, ¢, T[Dplc,]][Dple, +1]] =1 (29)

Each row and column represents a possible chord in the tonal-
ity. Each row contains a 1 for chords that are reachable from
this chord, and a O for chords that are not reachable. This
matrix is not tonality specific. For more details regarding the
matrix, see the main part of paper.

Link between chord degrees and qualities FEach degree
has a set of chord qualities that are possible. These depend
on the mode of the tonality (major/minor). This is enforced
through the following constraint:

Vp, cp Mtp-m[Dp[Cp]][Qp[CpH =1 (30)

where M can either be M, (Figure 7) or M; (Figure 8) de-
pending on the mode of the tonality of the progression.

M m ° A 7 M7 m7 °7 @7 [mM7] 6A
I 1 1

Possible states per chord degree P
VI Vi Vda Vit VL [VIV Vi
1 1 1 1 1

T i} i} v V[VNI [VIVIT] oIl [y

T T T T

il 1 1
il 1 1
v 1 1

T T T
] 1 T T
1 1

===l <]

T
[
1

EEEEE

v 1 1 1
VI 1 1
viI 1 1
Vda
v
V/II

Table 9: Matrix of possible states per degree (P)

VIV
VIV
V/VI
V/VII

I II III v VI VII | Vda

\Y
G A B C D E Ff G

bIT
6/ 1

Table 7: Matrix linking the chord degrees with the possible qualities
for major tonalities (Mo)

M m ° A 7 M7 m7 °7 a7 mM7 [6A
I 1 1
il 1 1
I 1 1
vV 1 1
v 1 1 1
VI 1 1
viI 1 1
Vda 1
VI
V/II
VIV
VIV
V/VI
V/VII
bIT
6/ 1

Table 8: Matrix linking the chord degrees with the possible qualities
for minor tonalities (M)

Link between chord degrees and states
chord degree has a possible set of states:

Similarly, each

Vp,cp PIDp[cy]|[Splep]] = 1 (€29)
where P is depicted in Figure 9. This is independent of the
tonality.

Link between chord degrees and root notes Again, simi-
larly, each chord degree corresponds to a note value:

Vp, ey Rplep] = Ntp, Dpley]] (32)
Where NN is a matrix where each row represents a tonality
(defined by key and mode), and each column corresponds to a
degree within that tonality (as defined in Table 5). The entries
of N contain the corresponding note values (as values from
Table 4) for each degree in each tonality. Table 10 shows
the entry of the N matrix for the G major tonality. The full
matrix is omitted due to its size and the fact that it can be
easily reconstructed, as all values are systematically derived
from the definitions of tonal music.

Link between the chord degrees, bass degrees and states
The degree that is present at the bass for a given chord in a
given state is given by Table 11:

Bylep] = LIDy|cp]][Splep]] (33)

Root, third, fifth and seventh of a chord Similarly, Table
11 gives the degree corresponding to the root, third, fifth and

VAL | VL | VIV [V/V [V/VI | V/VIIL | bIT | 6 A

E | /2 | G | A | B Ci | Ab | B

Table 10: N matrix for the tonality of G major

seventh of a chord:

Roy[cp] = L[Dplcy], 0] (34)
Tiplep] = L[Dplep), 1] (35)
Fipley] = L[Dplcy), 2] (36)
Seplep] = L[Dplep), 3] (37)

Fifth degree appoggiatura The Vda chord must resolve to
the V. This is already enforced with the matrix 7 from Table 6.
The V chord should be in fundamental state, and the quality
should be either major or dominant seventh.

Vp, ¢,
Dyle,] = Vda = Sp[c;, 4 1] = Fund. state
A Qplc, + 1] € {Major, Dominant seventh} (38)

Neapolitan sixth The chord based on the flattened second
degree (bII, one semitone above the tonic) should be used in
first inversion.

Vp,cp Dplep] =PIl = Sp[c,| = First inv. (39)

Successive chords of same degree This rule is not from
a music treatise, but is due to the representation choices we
made. Since ornaments and melody are not considered here,
a chord that varies over time but stays in the same state is
considered as one chord. It follows that two successive chords
of the same degree cannot have the same quality and state.

Vp, c’p Dp[c;] = Dp[c;7 +1] =

Sp [C;;] # Sp[C;; +1]v Qp [C;;] #Qp [C;) +1] (40)

Tritone resolutions One aspect of voice leading that we do
have to take into consideration in some cases is the tritone
resolution. In particular, when one of the tritone notes is at
the bass, it affects the state of the next chord. This is the case
for dominant chords (primary or secondary) in first or third
inversion. For chords in first inversion, the bass note should
move up by step. For chords in third inversion, it should move

Chord ition I

T i T v v VI | VI [Vda | VAT [VAL | VAV [V/V [VAVI [VNII[Bl [64
Fund /oot T T T v v VI VI T VI_| Vi T T | v 0 VI
T7/third i} v v VI | Vi T i T T i i} v v T v T
27/fifth v VI | vi T [l i} v v T v v VI | VI [1V VI v
3 seventh | VI [[} [v v VI_ | VIl v VI_| vi T [0l VI T -

Table 11: Matrix stating the note degrees that compose each chord
degree.

down by step.
Vp, ¢, D = (Dple,] = VAQylc,] €

{Major, Dominant Seventh, Diminished seventh})
V (VI < Dple,] < V/VI)
D A Sp[c,] = Firstinv. =
Byle, + 1] = Byle,] +1 mod 7
D A Sylc,] = Third inv. =
Byle, +1] = By[cj] =1 mod 7 (41)

Where D is true for a dominant chord (V with a major, domi-
nant seventh or diminished seventh quality or secondary dom-
inant chord), and false otherwise.

Third inversion Chords that have no seventh cannot be in
third inversion.

Vp, cp
Slep) = Third inv. = Q[c,] > Dominant Seventh (42)

The seventh must be prepared Aside from dominant sev-
enth chords, the seventh of diatonic chords must be present in
the chord that is played before the chord containing the sev-
enth, at the same voice. In our model, we only need to ensure
that the seventh is in the previous chord.

Ve, € [1,n, — 1]
H,lep) = 1A Qplep] # Dom. Seventh A D,[e,] < VII
= Rolp— 1] = Se[p] v Ti[p— 1] = Se[p]
V Filp — 1] = Se[p]
(43)

Secondary dominant of the seventh degree This chord is
only available in the minor mode, as the root note of this
chord is not diatonic in the major mode.

Vp,cp tp.m, = Major = D,[c,] # V/VII (44)
Diminished seventh dominant chords These chords are
special because they cannot be in fundamental state, since
they do not have their fundamental as one of their notes. In-
deed, this chord is formed by adding a minor third on top of
a dominant seventh chord, and by removing its fundamental.
For example, in C major, the dominant seventh chord is G-
B-D-F, and the diminished seventh version is B-D-F-Ab. It is
thus considered to be in first inversion, so the note at the bass
is correct.

Vp,cp Qplcp] = Dim. seventh A Dylc,] # VII =

Splep] # Fund. state
(45)

Modulation

(a) Perfect cadence modulation

Modulation

(b) Pivot chord modulation

(c) Alteration modulation

Modulation

%

(d) Chromatic modulation

Figure 2: Representation of the different modulation types.

7.2 Modulation constraints

There are two main types of modulation from one tonality to
another: modulations to neighbouring tonalities (at least one
chord in common), and modulations to distant tonalities. In
this paper, we focus on modulations to neighbouring tonali-
ties. We distinguish four types of modulations to neighbour-
ing tonalities. Their representation is given in Figure 2, and
their definitions and formalisation are given below.

Perfect cadence modulation This can be considered as one
tonality ending and another beginning. The current tonality
ends on a perfect cadence and the next tonality starts on the
next chord (see Figure 2a). The only constraint to enforce is
that the last two chords of the first tonality are V and I, both
in fundamental state.

Dy, lem
A Dplem —bm] =1 A Splem —

—bm—1]=V A Sp[em — by, — 1] = Fund. State

b,,] = Fund. State
(46)

We link the first and the second progression to the modula-
tion.

em:fm bm+1 :fm+1 (47)

Pivot chord modulation A pivot chord modulation uses a
chord that is in both tonalities as a pivot to transition from one
tonality to the other. It can be followed by multiple chords
that are in both tonalities, and eventually a perfect cadence in
the new tonality, which ends the modulation. To model this
transition period where chords are in both tonalities, there is
an overlap between the two corresponding progressions (see
Figure 2b). The global variables from position s,,, up to posi-
tion f,,, — 2 are constrained by both tonalities, so the chords at
these positions must be available in both tonalities. The pivot

0 [2 3 | 4

5

6 [7 8 [9 [10 | 11

unison (0) second (1) third (2)

fourth (3)

fifth (4) sixth (5) seventh (6)

Table 12: Conversion between intervals and degree difference (Degs). The first row correspond to intervals in semitones.

chord cannot be VII.
Donem — bm] # VILA Dy, +1[0] £ VIL (48)
Dm+1[fm —bmt1 — 1] =V
A Spt1[fm — bms1 — 1] = Fund. State
A Dmsalfm = bmy1] =1
A Sm+1]fm — bm+1] = Fund. State (49)

We link the first and the second progression to the modula-
tion.

€m = fm -2 berl = Sm (50)
Alteration modulation An alteration modulation intro-
duces a note from the second tonality that is not present in
the original tonality to start the modulation. This chord has to
be followed by the V of the new tonality, affirming it (see Fig-
ure 2c). If the chord used to introduce the alteration cannot
be followed by V, it has to be the next chord. The last chord
of the first progression must be diatonic, cannot be VII and
cannot have a seventh. The first chord of the new progression
must be diatonic, and cannot be V or VII.

Dulem] # VIL A Hylem] =0
A Dyya[0] ¢ {V,VIL}
Dpi1[0] < VILA Dppiq[0] # V

(51
(52)

Where H,,|[c,,] is true when chord ¢,, has a seventh.

We must also ensure that the first chord of the new progres-
sion contains a note that is not in the first tonality. We define
a function fi(n) that takes as argument a note in [C,B], and
returns the quality of the diatonic chord built on that note if it
is in z. The function is not defined if the note is not in z.

_fnet Qin)
ft(n){ngét L

This is equivalent to a 12-value array, containing for each note
the quality of the chord based on this note in ¢ if it exists, and
nothing otherwise. We then impose the constraint:

fto (Rins1[0]) = LV fo,) (Rt [0]) # fi,, (Rm+1[?]5)3)
which means that the quality of the chord based on note
R,,+1]0] cannot be the same in both tonalities. If this note
is not in t,,, this is trivially satisfied. This ensures that there
is at least one note in the first chord in the new progression
that is not in the previous tonality. We still have to enforce
that this altered chord is followed by V. Depending on which
degree it corresponds to, it might not be possible for V to
follow directly. In that case, it should be the next chord.

T[Dm+1[0], V] =0 = Dpya[2] =V
T[Dpm41[0], V] #0 = Dpya[l] =V

(54)
(55)

Since the modulation possibly affects three chords (the one
that introduces the alteration, and the next two), the length of

this modulation is considered to be three even if sometimes
the modulation is over after the second chord. We link the
first and the second progression to the modulation.

em =Sm —1 bpt1 =5, (56)

Chromatic modulation This kind of modulation occurs
when one chord in the first tonality is followed by the V of
the new tonality, with a chromatic movement in the voice that
plays the leading tone of the new tonality in the dominant
chord (see Figure 2d). The voice leading aspect of this mod-
ulation needs to be handled in the third (voicing) layer of the
Harmoniser project. Similarly to the preparation of diatonic
seventh chords, constraints still need to be enforced in this
model to make sure that this chromatic movement is possi-
ble. In particular, we must enforce that the first chord of the
new progression is V, and there must be a one chord over-
lap between the progressions to ensure that the transition is
smooth. The chord in this overlap is thus a secondary domi-
nant in the first tonality, and the dominant in the new one. We
must also ensure that the note in the first tonality correspond-
ing to the leading tone in the new tonality is present in the
chord just before the dominant of the new tonality (i.e., when
modulating from C major to A major, there must be a G in
the first chord that can move to a Gf in the second chord). To
enforce that, we must compute the interval in semitones be-
tween the keys of the two tonalities, and transform that into a
degree difference. This is shown in Table 12.

d = Degs[|tm.km — tms1-Emy1]
s=6+d mod?7
D 1[0l =V A Rop[nm —2] =s

V Tim[nm — 2] = sV Figpn, — 2] =s (57)

Where s is the degree that the seventh of the new tonality
corresponds to in the first tonality.

We link the first and the second progression to the modula-
tion.
(58)

em =8m+1 bypt1=5n+1

	Introduction
	Harmoniser project
	Contributions
	Structure of the paper

	Harmoniser Project
	Formal Model of Tonal Chord Progressions
	Basic concepts of the model
	Composer input and solver output
	Progression constraints
	Modulation constraints
	Branching

	Evaluation and example use case
	Efficiency and number of solutions
	Example of composer use

	Conclusion
	Introduction
	Structure of Harmoniser
	Composer Input
	Solver Output
	Indices in the whole piece
	Variables
	Global variables
	Variables specific to a progression

	Constraints
	Progression constraints
	Modulation constraints

