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LightKone and SyncFree projects 

�  LightKone H2020 project (2017-2019)  
lightkone.eu 
◦  Lightweight computation for networks 

at the edge 
◦  Partners: UCL, UPMC/INRIA, INESC 

TEC/UMinho, TUKL, NOVA ID/UNL, 
Scality, Gluk, UPC/Guifi, Stritzinger 

�  SyncFree FP7 project (2013-2016) 
syncfree.lip6.fr 
◦  Large-scale computation without 

synchronisation 
◦  Partners: INRIA, Basho, Trifork, Rovio, 

UNL, UCL, Koç, TUKL 



Three systems from SyncFree 
�  Lasp provides dataflow 

composition of CRDTs 
�  Antidote provides causal 

transactional CRDT storage 
�  Legion provides peer-to-peer 

CRDT interaction between 
clients 

⇒ Each explores a different part of the space 

Syncfree 
computing 

Lasp Antidote 

Legion 



There can be only one! 

– Connor MacLeod, Highlander (1986) 



There can be only one semantics! 

– Prof. Dr. Ir. Connor MacLeod, Hochländer (1986) 

(*) 

(*) 
Es kann nur eine Semantik geben! 



Lasp and Antidote 
�  Lasp 
◦  Deterministic dataflow functional semantics 
◦  Graph of CRDTs connected by operations 
◦  Resilient communication with hybrid gossip targeting 

unreliable networks (e.g., edge networks) 
�  Antidote 
◦  Georeplicated data store with low latency and high 

availability 
◦  Transactional causal+ consistency on CRDTs 

�  Both based on CRDTs 
◦  Both provide consistency with weak synchronization 
◦  Both tolerate partitioning and message reordering 
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Combining Lasp and Antidote 

�  Both are distributed programming models 
based on weak synchronization 

�  Lasp and Antidote were invented separately 
◦  Both use CRDTs as their data structures 
◦  Both provide important functionality 
◦  But they have very different implementations 

� We would like to combine them 
◦  Define one semantics that can express both 
◦  Allow the implementations to interoperate 

correctly 
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The LightKone reference platform 

�  Reference platform defined by the unified semantics 

�  Antidote and Lasp are partial implementations 
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LightKone reference platform 

causal+ consistency 

georeplication 

transactions 

dataflow functional execution 

scalable edge implementation 

CRDTs 

resilient communication layer 

partition tolerant 

reorder tolerant 



ABSTRACT 
EXECUTIONS 
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Abstract executions 
�  We describe systems in terms of events and their visibility 
◦  This defines observable behavior between clients and the system 
◦  An abstract execution is an event graph that satisfies certain 

correctness conditions that we explain in the next two slides 
�  For full definitions see S. Burckhardt, Principles of Eventual Consistency, 2014 

�  Event e∈E: uniquely identifies objects and their operations 
◦  Key: key(e)∈Keys 

�  Objects are uniquely identified by their key k 

◦  Operation: op(e)∈Ops 
◦  Result value: res(e)∈V 

�  Visibility relation vis ⊂ E×E: defines what events can see 
◦  We write e1 ≺vis e2  when (e1,e2)∈vis 
◦  e1 can be observed by e2 

�  Arbitration relation ar ⊂ E×E: breaks ties for concurrency 
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Data types 
�  Each data type T is defined by a function FT 
◦  Each object k has a type defined by type(k) 

�  Value of an object is defined for each event e 
◦  Value depends on e’s context, i.e., all the object’s 

events that are visible to e (we do not represent the 
object state explicitly) 

�  Context c=ctxt(e) = (E’, op|E’ , vis|E’ , ar|E’) 
          where E’={e’ ∈ E | e’ ≺vis e} 

◦  We can restrict the context to key k: 
c|k= (E, op, vis, ar)|k = (E’, op|E’ , vis|E’ , ar|E’) where E’={e∈E|key(e)=k} 

�  Value v= Ftype(key(e))(ctxt(e)|key(e)) ∈ V 
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Correct execution 
�  A correct execution satisfies the conditions: 
◦  Acyclic visibility: no cycles in vis 
◦  Total arbitration: ar is a total order 
◦  Per-object eventual consistency 
�  All of an object’s events are seen by all other events on that 

object (except for a finite number) 
�  For all keys k: ∀e∈Ek. {e’∈Ek | e⊀vise’} is finite 

          where Ek={e | key(e)=k} 

◦  Correct results (definition of res) 
�  ∀e∈E. res(e)=Ftype(key(e)) (ctxt(e)|key(e)) 

◦  Causality 
�  Per-object causal consistency: ∀k: vis|Ek is transitive 
�  Causal consistency: vis is transitive 
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LASP SEMANTICS 
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Lasp 
�  Sets connected with a map: 

 S1=declare(set),  
bind(S1, {add, [1,2,3]}),  
S2=declare(set),  
map(S1, fun(X)->X*2 end, S2).

�  Deterministic dataflow functional semantics 
◦  Graph of CRDTs connected by operations 
◦  Operations: Map, filter, fold, product, intersect, union, join 

�  Efficient resilient implementation 
◦  Ensures consistency with weak synchronization 
◦  Tolerates node and communication failures 
◦  Uses a communication layer based on hybrid gossip 
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S1 S2 map 



�  Consider a Lasp program with two objects k1 and k2 and 
a map between them: 
   K1 = declare(set),  
   K2 = declare(set),  
   map(K1, fun(X) -> X*2 end, K2).

�  Let’s calculate res(e8) = {2,4,6} 
◦  Set of visible events for e8: E’= {e1, e2, e3, e5, e6, e7} 

◦  res(e8) = R(k2, ctxt(e8)) = (λS→{x·2 | x∈V})(R(k1,ctxt(e8)) 
where R(k1,ctxt(e8)) = Faw-set(ctxt(e8)) = {1,2,3} 

◦  res(e8) = R(k2, ctxt(e8)) = {2,4,6} 

Example Lasp program 

15 



Lasp semantics 
�  To specify Lasp semantics, 

we add two concepts: 
◦  Lasp objects and links 

�  Lasp object: we partition the key space into base objects 
and Lasp objects 
◦  LaspKeys ⊂ Keys 
◦  Base objects have both read and update events, whereas Lasp 

objects have only read events 

�  Link: Each Lasp object k is linked from n objects 
◦  link(k)=([k1, …, kn], f) 
◦  The function f defines the read operation on k, which depends 

on k1, …, kn 

16 

S1 S2 map 

Base object Lasp object Link 



Lasp operations 
�  Lasp operations are defined by their links 
◦  Each Lasp operation has its own link 
◦  On this slide, we assume all objects have set values 

�  Lasp (as defined in PPDP 2015 (*) ) provides: 
◦  Map: ([k], λV→{f(x) | x∈V}) 
◦  Product: ([k1,k2], λV1,V2→(V1×V2)) 
◦  Intersection: ([k1,k2], λV1,V2→(V1∩V2)) 
◦  Union: ([k1,k2], λV1,V2→(V1∪V2)) 
◦  Filter: ([k], λV→{x | x∈V∧P(x)}) 

◦  Fold: ([k], foldf,z) where 
 foldf,z{}=z and foldf,z({x}∪V)=f(x, foldf,z(V)) 
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(*) Christopher Meiklejohn and Peter Van Roy.  Lasp: A language for 
distributed, coordination-free programming.  In Principles and Practice 
of Declarative Programming (PPDP 2015).  ACM, 184–195 (July 2015). 



Eventual consistency of linked objects 
�  If a Lasp object k1 depends on a base object k2, then 

there is eventual consistency between the two objects 
�  First define all the objects that a Lasp object depends 

on (dependsOn function): 
◦  There are direct dependencies and transitive dependencies 
◦  If link(k) = ([k1, …, kn], f) then {k1, …, kn}⊆dependsOn(k) 
◦  If ka∈dependsOn(kb) and kb∈dependsOn(kc) then 

ka∈dependsOn(kc) 

�  Then all base events e are seen by all but a finite 
number of dependent Lasp events e’:   
◦  ∀e∈E. {e’∈E | key(e)∈dependsOn(key(e’)) ∧ e⊀vise’} is finite 
◦  This definition is similar to eventual consistency on one object, 

but here it concerns two objects 
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Reading from Lasp objects (1) 
�  Base objects can be read and updated 
◦  The value of a base object at event e is defined by 

the context of e: all events that are visible to e 
◦  The value can be updated because the context 

depends on e 
�  Lasp objects can only be read 
◦  Value of a Lasp object e is defined by the link, 

which defines a function of the base objects that 
the Lasp object depends on 
◦ No update is possible on e since the value does 

not depend on the context of e 
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Reading from Lasp objects (2) 
�  Result value is written res(e) for event e 
◦  Event e can be for a base object or a Lasp object 
◦  We assume res(e)=R(key(e), ctxt(e)) with R as follows 
 

�  Read from base objects 
◦  For base objects, R is defined by Ftype definition 
◦  R(k, c) = Ftype(k)(c|k) 

�  Read from Lasp objects 
◦  For Lasp objects, R is defined by the link 
◦  Assume that link(k)=([k1, …, kn],f) 
◦  R(k, c) = f(R(k1,c), ..., R(kn,c)) 
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CONVERGENT 
CONSISTENCY 
(WORK IN PROGRESS) 
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From eventual to convergent (1) 
�  So far we have defined eventual consistency for single 

objects and for linked (Lasp) objects 

�  Eventual consistency for single objects 
◦  All events e are seen by all but finite number of events e’ on the 

same object 
◦  ∀e∈E: {e’∈E | key(e)=key(e’) ∧ e⊀vise’} is finite 

�  Eventual consistency for linked objects 
◦  Base events e are seen by all but finite number of dependent 

Lasp events e’ 
◦  ∀e∈E: {e’∈E | key(e)∈dependsOn(key(e’)) ∧ e⊀vise’} is finite 

�  But CRDTs do more than eventual consistency! 
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From eventual to convergent (2) 
�  Eventual consistency leaves out a key property of 

CRDT and Lasp execution 
◦  Eventual consistency says only that every event will be taken into 

account always after a sufficiently long time, but there is a finite 
interval during which the event can have erratic visibility 
◦  In CRDTs and Lasp, computations are always based on a strictly 

growing set of events (once added, an event is never forgotten) 

�  Lasp computations are always converging to the result 
◦  Every update eventually appears on all replicas 
◦  Each replica has a strictly growing set of updates 
◦  This is a monotonicity property 
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Convergent consistency 
�  Consider the definition of monotonic reads 
◦ ∀e1, e2, e3∈E: e1≺vise2 ∧e2≺soe3 ⇒e1≺vise3 

◦  A (read) event once visible in a session is always visible 
in the session 

�  Convergent consistency between two objects 
◦  An event e of object k1 once visible to object k2 is 

always visible to k2 

◦ ∀e∈Ek1 ,∀e’,e’’∈Ek2 : e≺vise’∧e’≺vise’’ ⇒ e≺vise’’ 

�  Convergent consistency for Lasp objects 
◦  Add the condition k1∈dependsOn(k2) 
◦  If a base event is seen by a dependent Lasp event, then 

it is seen by all further events of the same Lasp object 
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Convergence and CRDTs 
� Convergent consistency 
◦  Each event adds information permanently in a 

single step 
�  Strong eventual consistency 
◦  n replicas that receive the same updates (in 

any order) have equivalent state 
◦ A state-based CRDT satisfies SEC 
◦ An acyclic Lasp program satisfies SEC 

�  State-based CRDTs  
◦  State-based CRDT ensures SEC and CC 
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ANTIDOTE SEMANTICS 
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Antidote semantics 
�  Antidote provides the following guarantees 
◦  Acyclic visibility, total arbitration, eventual consistency 
◦  Causal consistency 
◦  Atomic visibility 
◦  Min snapshot 

�  Antidote provides a series of datatypes, such as: 
◦  Add-Wins Set: 

Faw-set(ctxt) = Faw-set(E, op, vis, ar) =  
   let E’ = filterResets(E, op, vis) in 
      {x | (∃a∈E’. op(a)=add(x)) 
            ∧∀r∈E’. op(r)=remove(x) →∃a∈E’.op(a)=add(x) ∧r≺visa} 
◦  Auxiliary filterResets(E, op, vis) returns events not affected by reset 
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Transactions 
�  To specify transactions, we add one concept 
◦  An event e is associated with a transaction t=tx(e) 

�  We assume all transactions are committed 
◦  Our model does not include time 
◦  We do not define isolation levels 

�  Atomic visibility 
◦  Given two transactions t1 and t2 
◦ ∀e1, e1’, e2, e2’ ∈E: 

   tx(e1)=tx(e1’)=t1 ∧ tx(e2)=tx(e2’)=t2 ⇒ e1≺vise2 ⟷ e1’≺vise2’ 
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Versioned store extension 

� Assume that each event e has a version(e) 
◦ A version is a set of events 
◦ User can provide a version for each event, if 

none then version(e)=⊥ 

� Min snapshot 
◦ ∀e, e’: e’∈version(e) ⇒ e’≺vise 

� Precise snapshot 
◦ ∀e, e’: e’∈version(e) ⇔ e’≺vise 
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CONCLUSIONS 
AND FURTHER WORK 
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Concrete semantics 
�  The concrete semantics refines the abstract semantics by 

adding nodes, node states, and messages between nodes 
◦  Burckhardt gives a general framework for concrete executions 

◦  In this framework we define node and communication failures 

�  Given a concrete execution, we can derive an observable 
history by considering events related to calls from a client 
◦  A history records the interactions between clients and the system 
◦   An abstract execution is a history that satisfies the correctness 

conditions given previously 
◦  If the observable history can be extended to a valid abstract 

execution (with vis and ar), then the concrete execution is correct 

�  With this approach, we can prove that Lasp and Antidote 
protocols satisfy the abstract semantics 
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Conclusions 
�  We now have a first unified semantics that explains both 

Lasp and Antidote in a single framework 
◦  This is a step toward a general-purpose semantics for synchronization-

free programming 
◦  In further development of both Lasp,  Antidote, and Legion we will 

commit to respecting this semantics 

�  Much work remains to be done 
◦  We have an abstract execution semantics that explains the observable 

behavior, but does not model distribution or failure 
◦  We need to extend this to a concrete semantics that understands 

nodes and their interactions 
◦  For continued work on the programming model,  the unified semantics 

needs to be extended with programming concepts such as modularity 
and functional abstraction 
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ADDITIONAL SLIDES 
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Session guarantees 
�  We assume a session order so ⊂ E×E that orders 

events from the same session 
◦  e1≺so e2 if e1 was submitted before e2 in the same session 

�  We distinguish read and write operations 
◦  isRead(e) and isWrite(e) predicates 

�  Read Your Writes 
◦  e1≺so e2 ∧ isWrite(e1) ∧ isRead(e2) → e1≺vis e2  

�  Monotonic Reads 
◦  e1≺so e2 ∧ isRead(e1) ∧ isRead(e2) → (∀e’. e’≺vise1 → e’≺vis e2) 

�  Writes Follow Reads 
◦  e1≺so e2 ∧ isRead(e1) ∧ isWrite(e2) → (∀e’. e’≺vise1 → e’≺vise2) 

�  General Session Guarantee 
◦  e1≺so e2 → e1≺vis e2 
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