LIGHTKONE

Lightweight computation for networks at the edge

Université
catholique

«ewan Flaments of a unified semantics for

synchronization-free programming
based on Lasp and Antidote

March 1,2018
Dagstuhl seminar 18091

Peter Van Roy
Université catholique de Louvain

Work in progress;inspired by the document by Peter Zeller, Annette Bieniusa, Mathias
Weber, Christopher Meiklejohn, Peter Van Roy, Nuno Preguica, and Carla Ferreira

LIGHTKONE



LightKone and SyncFree projects

e LightKone H2020 project (2017-2019)

lightkone.eu
LI G HT O N E o Lightweight computation for networks
Lightweight computation for networks at the edge at the edge

o Partners: UCL, UPMC/INRIA, INESC
TEC/UMinho, TUKL, NOVA ID/UNL,
Scality, Gluk, UPC/Guifi, Stritzinger

* SyncFree FP7 project (2013-2016)
syncfree.lip6.fr

SYNC FREE ° Large-scale computation without

synchronisation

o Partners: INRIA, Basho, Trifork, Rovio,
UNL, UCL, Ko¢, TUKL

LIGHTKONE



Three systems from SyncFree

 Lasp provides dataflow Antidote
composition of CRDTs \ l

e Antidote provides causal Syncfree
transactional CRDT storage

* Legion provides peer-to-peer t
CRDT interaction between Legion
clients

= Each explores a different part of the space

LIGHTKONE



There can be only one!

— Connor Macleod, Highlander (1986)

LIGHTKONE



There can be only one semantics! ©

— Prof. Dr. Ir. Connor Macleod, Hochldnder (1986)

]
©) Es kann nur eine Semantik geben!

LIGHTKONE



Lasp and Antidote

o Lasp
> Deterministic dataflow functional semantics
> Graph of CRDTs connected by operations

> Resilient communication with hybrid gossip targeting
unreliable networks (e.g., edge networks)

e Antidote

> Georeplicated data store with low latency and high
availability

o Transactional causal+ consistency on CRDTs

e Both based on CRDTs

> Both provide consistency with weak synchronization

> Both tolerate partitioning and message reordering

LIGHTKONE



Combining Lasp and Antidote

e Both are distributed programming models
based on weak synchronization

* Lasp and Antidote were invented separately

> Both use CRDTs as their data structures
> Both provide important functionality
° But they have very different implementations

* We would like to combine them

> Define one semantics that can express both

° Allow the implementations to interoperate
correctly

LIGHTKONE



The LightKone reference platform

LightKone reference platform

V.9

~Za
transactions CRDTs @ LaSp
causal+ consistency partition tolerant dataflow functional execution
georeplication reorder tolerant resilient communication layer
scalable edge implementation

» Reference platform defined by the unified semantics

e Antidote and Lasp are partial implementations

LIGHTKONE



ABSTRACT
EXECUTIONS



Abstract executions

* We describe systems in terms of events and their visibility
> This defines observable behavior between clients and the system

> An abstract execution is an event graph that satisfies certain

correctness conditions that we explain in the next two slides
For full definitions see S. Burckhardet, Principles of Eventual Consistency, 2014

e Event e €E: uniquely identifies objects and their operations
> Key: key(e) EKeys
Objects are uniquely identified by their key k
o Operation: op(e) € Ops
> Result value: res(e) €V
e Visibility relation vis C EXE: defines what events can see
° We write e, <., e, when (e,e,) Evis
° e, can be observed by e,

e Arbitration relation ar C EXE: breaks ties for concurrency

LIGHTKONE



Data types

e Each data type T is defined by a function F-
° Each object k has a type defined by type(k)

* Value of an object is defined for each event e

> Value depends on e’s context, i.e., all the object’s
events that are visible to e (we do not represent the
object state explicitly)

» Context c=ctxt(e) = (F’, opg, Vis;p, arg)
where E'={e’ € E| & < e}

> We can restrict the context to key k:
= (E op, vis, ar), = (F', opjg , Vis|g , arjg) where E'={e EE|key(e)=k}

¢ Value V= Ftype(key(e))(CtXt(e)|I<ey(e)) EV

LIGHTKONE



Correct execution

e A correct execution satisfies the conditions:
> Acyclic visibility: no cycles in vis
o Total arbitration: ar is a total order

~ Per-object eventual consistency

All of an object’s events are seen by all other events on that
object (except for a finite number)

For all keys k: VeE€E,.{e’EE, | eX,e’} is finite
where E ={e | key(e)=k}
o Correct results (definition of res)
Ve &E. res(e)=F e (ey(e)) (CX() ey (e)
o Causality

Per-object causal consistency: Vk: visg, is transitive
Causal consistency: vis is transitive

LIGHTKONE



LASP SEMANTICS



Lasp

» Sets connected with a map: 0—) —)o

Sl=declare(set),

bind(S1, {add, [1,2,31}),
S2=declare(set),

map(S1l, fun(X)->X*2 end, S2).

e Deterministic dataflow functional semantics

o Graph of CRDTs connected by operations

o Operations: Map, filter, fold, product, intersect, union, join
o Efficient resilient implementation

> Ensures consistency with weak synchronization

o Tolerates node and communication failures

> Uses a communication layer based on hybrid gossip

LIGHTKONE



Example Lasp program

add(K1,1) _add(K1,2) add(K1,3) add(K1, 4)
Session 1: —€—= —=€e == —=e=— —==¢4)
Session 2: G _____ e ) R . € ciaabeked e ~ =363
read (K1) {1} read(K2) — {2} re: 1d(K1) — {1 2} read(K2) — {2, 4 ()}

e Consider a Lasp program with two objects k; and k, and
a map between them:
K1l = declare(set),
K2 = declare(set),
map(K1l, fun(X) -> X*2 end, K2).
* Let’s calculate res(eg) = {2,4,6}
o Set of visible events for eg: E'= {e, e,, €;, €, &, €7}
> res(eg) = R(k,, ctxt(eg)) = (A S—{x2 | xEV})(R(k,,ctxt(eg))
where R(k,,ctxt(eg)) = F, . (ctxt(eg)) = {I,2,3}
> res(eg) = R(k,, ctxt(eg)) = {2,4,6}

LIGHTKONE



Lasp semantics & \

e To specify Lasp semantics, O_, ,O
we add two concepts:

Base object Link Lasp object

° Lasp objects and links
e Lasp object: we partition the key space into base objects

and Lasp objects

> LaspKeys C Keys

> Base objects have both read and update events, whereas Lasp
objects have only read events

e Link: Each Lasp object k is linked from n objects

o link(K)=([k,, ..., k], f)

> The function f defines the read operation on k, which depends

onk,, ...k,

LIGHTKONE



Lasp operations

» Lasp operations are defined by their links
> Each Lasp operation has its own link
> On this slide, we assume all objects have set values

» Lasp (as defined in PPDP 2015 © ) provides:
. Map: ([K], A V—{f(x) | xEV})

Product: ([k,,k,], A V,V,—(V,xV,))

Intersection: ([k;,k,], A V,V,—(V,NV,))

Union: ([k,k,], A V,,V,—(V,UV,))

Filter: ([K], A V—={x | x€VAP(x)})

Fold: ([k], fold, ) where
fold; {}=z and fold;,({x} U V)=f(x, fold;,(V))

(*) Christopher Meiklejohn and Peter Van Roy. Lasp:A language for
distributed, coordination-free programming. In Principles and Practice

LIG HT|<C)N E of Declarative Programming (PPDP 2015). ACM, 184—195 (July 2015).

(0]

(0]

(@)

(o)

(0]



Eventual consistency of linked objects

 If a Lasp object k; depends on a base object k,, then
there is eventual consistency between the two objects

 First define all the objects that a Lasp object depends
on (dependsOn function):
> There are direct dependencies and transitive dependencies
o If link(k) = ([ky, ..., K], f) then {k,, ..., k,} © dependsOn(k)
° If k, € dependsOn(k,) and k, € dependsOn(k.) then
k, € dependsOn(k, )
e Then all base events e are seen by all but a finite
number of dependent Lasp events e’
o Ve€E.{e’EE | key(e) EdependsOn(key(e’)) A e e’} is finite
> This definition is similar to eventual consistency on one object,
but here it concerns two objects

LIGHTKONE



Reading from Lasp objects (|)

» Base objects can be read and updated

> The value of a base object at event e is defined by
the context of e:all events that are visible to e

> The value can be updated because the context
depends on e

» Lasp objects can only be read

> Value of a Lasp object e is defined by the link,
which defines a function of the base objects that
the Lasp object depends on

> No update is possible on e since the value does
not depend on the context of e

LIGHTKONE



Reading from Lasp objects (2)

e Result value is written res(e) for event e
> Event e can be for a base object or a Lasp object
> We assume res(e)=R(key(e), ctxt(e)) with R as follows

* Read from base objects
° For base objects, R is defined by F

; R(k’ C) = Ftype(k)(c|k)
e Read from Lasp objects

type definition

> For Lasp objects, R is defined by the link
> Assume that link(k)=([k, ..., k,],f)
> R(k, ¢) = f(R(k,c), ..., R(k,,c))

LIGHTKONE



CONVERGENT
CONSISTENCY
(WORK IN PROGRESS)



From eventual to convergent (1)

e So far we have defined eventual consistency for single
objects and for linked (Lasp) objects

e Eventual consistency for single objects

> All events e are seen by all but finite number of events e’ on the
same object

o Ve€E€E:{e’EE | key(e)=key(e’) A eX e’} is finite

e Eventual consistency for linked objects

> Base events e are seen by all but finite number of dependent
Lasp events €’

o Ve€E€E:{e'’EE | key(e) EdependsOn(key(e’)) A ef e’} is finite

e But CRDTs do more than eventual consistency!

LIGHTKONE



From eventual to convergent (2)

e Eventual consistency leaves out a key property of
CRDT and Lasp execution

> Eventual consistency says only that every event will be taken into
account always after a sufficiently long time, but there is a finite
interval during which the event can have erratic visibility

> In CRDTs and Lasp, computations are always based on a strictly
growing set of events (once added, an event is never forgotten)

e Lasp computations are always converging to the result
> Every update eventually appears on all replicas

> Each replica has a strictly growing set of updates

> This is a monotonicity property

LIGHTKONE



Convergent consistency

» Consider the definition of monotonic reads
© Ve, ene;EE <6, Aey<e; =e <8
> A (read) event once visible in a session is always visible
in the session
» Convergent consistency between two objects

> An event e of object k, once visible to object k, is
always visible to k,

- Ve€E,,,Ve,e”EE,:e<, e A<, e” = e, e”
» Convergent consistency for Lasp objects

> Add the condition k, €EdependsOn(k,)

o If a base event is seen by a dependent Lasp event, then
it is seen by all further events of the same Lasp object

Vis

LIGHTKONE



Convergence and CRDTs

» Convergent consistency

> Each event adds information permanently in a
single step

 Strong eventual consistency

° n replicas that receive the same updates (in
any order) have equivalent state

° A state-based CRDT satisfies SEC
> An acyclic Lasp program satisfies SEC

e State-based CRDTs
o State-based CRDT ensures SEC and CC

LIGHTKONE



ANTIDOTE SEMANTICS



Antidote semantics

* Antidote provides the following guarantees

Acyclic visibility, total arbitration, eventual consistency
Causal consistency

(0]

(o)

(@)

Atomic visibility

(@)

Min snapshot

* Antidote provides a series of datatypes, such as:

> Add-Wins Set:
Fovsec(CtXt) = F, .(E, Op, vis, ar) =
let E’ = filterResets(E, op, vis) in
{x | (aEF’. op(a)=add(x))
AV rEF. op(r)=remove(x) = JaEF .op(a)=add(x) Ar< a}
o Auxiliary filterResets(E, op, vis) returns events not affected by reset

LIGHTKONE



Transactions

* To specify transactions, we add one concept

> An event e is associated with a transaction t=tx(e)

e We assume all transactions are committed

o Our model does not include time
> We do not define isolation levels
e Atomic visibility
> Given two transactions t; and t,
- Ve,e',e,e, E€E:
tx(e,)=tx(e,)=t, A tx(e,)=tx(e,))=t, = ¢,<

y y
vise2 — eI <vise2

LIGHTKONE



Versioned store extension

e Assume that each event e has a version(e)
o A version is a set of events

> User can provide a version for each event, if
none then version(e)=_1

e Min snapshot
> Ve, e':e’Eversion(e) = e'< e
* Precise snapshot

> Ve, e':e’Eversion(e) & e'< e

LIGHTKONE



CONCLUSIONS
AND FURTHER WORK



Concrete semantics

e The concrete semantics refines the abstract semantics by
adding nodes, node states, and messages between nodes

> Burckhardt gives a general framework for concrete executions
° In this framework we define node and communication failures

* Given a concrete execution, we can derive an observable
history by considering events related to calls from a client

> A history records the interactions between clients and the system

> An abstract execution is a history that satisfies the correctness
conditions given previously

o If the observable history can be extended to a valid abstract
execution (with vis and ar), then the concrete execution is correct

e With this approach, we can prove that Lasp and Antidote
protocols satisfy the abstract semantics

LIGHTKONE



Conclusions

* We now have a first unified semantics that explains both
Lasp and Antidote in a single framework

> This is a step toward a general-purpose semantics for synchronization-
free programming

° In further development of both Lasp, Antidote, and Legion we will
commit to respecting this semantics

e Much work remains to be done

> We have an abstract execution semantics that explains the observable
behavior, but does not model distribution or failure

> We need to extend this to a concrete semantics that understands
nodes and their interactions

> For continued work on the programming model, the unified semantics

needs to be extended with programming concepts such as modularity
and functional abstraction

LIGHTKONE



ADDITIONAL SLIDES



Session guarantees

e We assume a session order so C EXE that orders
events from the same session

° e,<,, e, if e, was submitted before e, in the same session
e We distinguish read and write operations

> isRead(e) and isWrite(e) predicates
e Read Your Writes

- e,<, e, A isWrite(e|) A isRead(e,) — ¢,<,; &,
* Monotonic Reads

> e,<,, e A isRead(e|) A isRead(e,) = (Ve'.e< e, — €<, &)
* Writes Follow Reads

> e,<, e, A isRead(e|) A isWrite(e,) = (Ve'.e<, e — &<, e,)
e General Session Guarantee

° e, & —erx

vis

LIGHTKONE



