
Elements of a unified semantics for
synchronization-free programming

based on Lasp and Antidote

March 1, 2018
Dagstuhl seminar 18091

Peter Van Roy

Université catholique de Louvain

Work in progress; inspired by the document by Peter Zeller, Annette Bieniusa, Mathias
Weber, Christopher Meiklejohn, Peter Van Roy, Nuno Preguiça, and Carla Ferreira

1

LightKone and SyncFree projects

�  LightKone H2020 project (2017-2019)
lightkone.eu
◦  Lightweight computation for networks

at the edge
◦  Partners: UCL, UPMC/INRIA, INESC

TEC/UMinho, TUKL, NOVA ID/UNL,
Scality, Gluk, UPC/Guifi, Stritzinger

�  SyncFree FP7 project (2013-2016)
syncfree.lip6.fr
◦  Large-scale computation without

synchronisation
◦  Partners: INRIA, Basho, Trifork, Rovio,

UNL, UCL, Koç, TUKL

Three systems from SyncFree
�  Lasp provides dataflow

composition of CRDTs
�  Antidote provides causal

transactional CRDT storage
�  Legion provides peer-to-peer

CRDT interaction between
clients

⇒ Each explores a different part of the space

Syncfree
computing

Lasp Antidote

Legion

There can be only one!

– Connor MacLeod, Highlander (1986)

There can be only one semantics!

– Prof. Dr. Ir. Connor MacLeod, Hochländer (1986)

(*)

(*)
Es kann nur eine Semantik geben!

Lasp and Antidote
�  Lasp
◦  Deterministic dataflow functional semantics
◦  Graph of CRDTs connected by operations
◦  Resilient communication with hybrid gossip targeting

unreliable networks (e.g., edge networks)
�  Antidote
◦  Georeplicated data store with low latency and high

availability
◦  Transactional causal+ consistency on CRDTs

�  Both based on CRDTs
◦  Both provide consistency with weak synchronization
◦  Both tolerate partitioning and message reordering

6

Combining Lasp and Antidote

�  Both are distributed programming models
based on weak synchronization

�  Lasp and Antidote were invented separately
◦  Both use CRDTs as their data structures
◦  Both provide important functionality
◦  But they have very different implementations

� We would like to combine them
◦  Define one semantics that can express both
◦  Allow the implementations to interoperate

correctly

7

The LightKone reference platform

�  Reference platform defined by the unified semantics

�  Antidote and Lasp are partial implementations

8

LightKone reference platform

causal+ consistency

georeplication

transactions

dataflow functional execution

scalable edge implementation

CRDTs

resilient communication layer

partition tolerant

reorder tolerant

ABSTRACT
EXECUTIONS

9

Abstract executions
�  We describe systems in terms of events and their visibility
◦  This defines observable behavior between clients and the system
◦  An abstract execution is an event graph that satisfies certain

correctness conditions that we explain in the next two slides
�  For full definitions see S. Burckhardt, Principles of Eventual Consistency, 2014

�  Event e∈E: uniquely identifies objects and their operations
◦  Key: key(e)∈Keys

�  Objects are uniquely identified by their key k

◦  Operation: op(e)∈Ops
◦  Result value: res(e)∈V

�  Visibility relation vis ⊂ E×E: defines what events can see
◦  We write e1 ≺vis e2 when (e1,e2)∈vis
◦  e1 can be observed by e2

�  Arbitration relation ar ⊂ E×E: breaks ties for concurrency

10

Data types
�  Each data type T is defined by a function FT
◦  Each object k has a type defined by type(k)

�  Value of an object is defined for each event e
◦  Value depends on e’s context, i.e., all the object’s

events that are visible to e (we do not represent the
object state explicitly)

�  Context c=ctxt(e) = (E’, op|E’ , vis|E’ , ar|E’)
 where E’={e’ ∈ E | e’ ≺vis e}

◦  We can restrict the context to key k:
c|k= (E, op, vis, ar)|k = (E’, op|E’ , vis|E’ , ar|E’) where E’={e∈E|key(e)=k}

�  Value v= Ftype(key(e))(ctxt(e)|key(e)) ∈ V

11

Correct execution
�  A correct execution satisfies the conditions:
◦  Acyclic visibility: no cycles in vis
◦  Total arbitration: ar is a total order
◦  Per-object eventual consistency
�  All of an object’s events are seen by all other events on that

object (except for a finite number)
�  For all keys k: ∀e∈Ek. {e’∈Ek | e⊀vise’} is finite

 where Ek={e | key(e)=k}

◦  Correct results (definition of res)
�  ∀e∈E. res(e)=Ftype(key(e)) (ctxt(e)|key(e))

◦  Causality
�  Per-object causal consistency: ∀k: vis|Ek is transitive
�  Causal consistency: vis is transitive

12

LASP SEMANTICS

13

Lasp
�  Sets connected with a map:

 S1=declare(set),  
bind(S1, {add, [1,2,3]}),  
S2=declare(set),  
map(S1, fun(X)->X*2 end, S2).

�  Deterministic dataflow functional semantics
◦  Graph of CRDTs connected by operations
◦  Operations: Map, filter, fold, product, intersect, union, join

�  Efficient resilient implementation
◦  Ensures consistency with weak synchronization
◦  Tolerates node and communication failures
◦  Uses a communication layer based on hybrid gossip

14

S1 S2 map

�  Consider a Lasp program with two objects k1 and k2 and
a map between them:
 K1 = declare(set),  
 K2 = declare(set),  
 map(K1, fun(X) -> X*2 end, K2).

�  Let’s calculate res(e8) = {2,4,6}
◦  Set of visible events for e8: E’= {e1, e2, e3, e5, e6, e7}

◦  res(e8) = R(k2, ctxt(e8)) = (λS→{x·2 | x∈V})(R(k1,ctxt(e8))
where R(k1,ctxt(e8)) = Faw-set(ctxt(e8)) = {1,2,3}

◦  res(e8) = R(k2, ctxt(e8)) = {2,4,6}

Example Lasp program

15

Lasp semantics
�  To specify Lasp semantics,

we add two concepts:
◦  Lasp objects and links

�  Lasp object: we partition the key space into base objects
and Lasp objects
◦  LaspKeys ⊂ Keys
◦  Base objects have both read and update events, whereas Lasp

objects have only read events

�  Link: Each Lasp object k is linked from n objects
◦  link(k)=([k1, …, kn], f)
◦  The function f defines the read operation on k, which depends

on k1, …, kn

16

S1 S2 map

Base object Lasp object Link

Lasp operations
�  Lasp operations are defined by their links
◦  Each Lasp operation has its own link
◦  On this slide, we assume all objects have set values

�  Lasp (as defined in PPDP 2015 (*)) provides:
◦  Map: ([k], λV→{f(x) | x∈V})
◦  Product: ([k1,k2], λV1,V2→(V1×V2))
◦  Intersection: ([k1,k2], λV1,V2→(V1∩V2))
◦  Union: ([k1,k2], λV1,V2→(V1∪V2))
◦  Filter: ([k], λV→{x | x∈V∧P(x)})

◦  Fold: ([k], foldf,z) where
 foldf,z{}=z and foldf,z({x}∪V)=f(x, foldf,z(V))

17

(*) Christopher Meiklejohn and Peter Van Roy. Lasp: A language for
distributed, coordination-free programming. In Principles and Practice
of Declarative Programming (PPDP 2015). ACM, 184–195 (July 2015).

Eventual consistency of linked objects
�  If a Lasp object k1 depends on a base object k2, then

there is eventual consistency between the two objects
�  First define all the objects that a Lasp object depends

on (dependsOn function):
◦  There are direct dependencies and transitive dependencies
◦  If link(k) = ([k1, …, kn], f) then {k1, …, kn}⊆dependsOn(k)
◦  If ka∈dependsOn(kb) and kb∈dependsOn(kc) then

ka∈dependsOn(kc)

�  Then all base events e are seen by all but a finite
number of dependent Lasp events e’:
◦  ∀e∈E. {e’∈E | key(e)∈dependsOn(key(e’)) ∧ e⊀vise’} is finite
◦  This definition is similar to eventual consistency on one object,

but here it concerns two objects

 18

Reading from Lasp objects (1)
�  Base objects can be read and updated
◦  The value of a base object at event e is defined by

the context of e: all events that are visible to e
◦  The value can be updated because the context

depends on e
�  Lasp objects can only be read
◦  Value of a Lasp object e is defined by the link,

which defines a function of the base objects that
the Lasp object depends on
◦ No update is possible on e since the value does

not depend on the context of e

19

Reading from Lasp objects (2)
�  Result value is written res(e) for event e
◦  Event e can be for a base object or a Lasp object
◦  We assume res(e)=R(key(e), ctxt(e)) with R as follows

�  Read from base objects
◦  For base objects, R is defined by Ftype definition
◦  R(k, c) = Ftype(k)(c|k)

�  Read from Lasp objects
◦  For Lasp objects, R is defined by the link
◦  Assume that link(k)=([k1, …, kn],f)
◦  R(k, c) = f(R(k1,c), ..., R(kn,c))

20

CONVERGENT
CONSISTENCY
(WORK IN PROGRESS)

21

From eventual to convergent (1)
�  So far we have defined eventual consistency for single

objects and for linked (Lasp) objects

�  Eventual consistency for single objects
◦  All events e are seen by all but finite number of events e’ on the

same object
◦  ∀e∈E: {e’∈E | key(e)=key(e’) ∧ e⊀vise’} is finite

�  Eventual consistency for linked objects
◦  Base events e are seen by all but finite number of dependent

Lasp events e’
◦  ∀e∈E: {e’∈E | key(e)∈dependsOn(key(e’)) ∧ e⊀vise’} is finite

�  But CRDTs do more than eventual consistency!

22

From eventual to convergent (2)
�  Eventual consistency leaves out a key property of

CRDT and Lasp execution
◦  Eventual consistency says only that every event will be taken into

account always after a sufficiently long time, but there is a finite
interval during which the event can have erratic visibility
◦  In CRDTs and Lasp, computations are always based on a strictly

growing set of events (once added, an event is never forgotten)

�  Lasp computations are always converging to the result
◦  Every update eventually appears on all replicas
◦  Each replica has a strictly growing set of updates
◦  This is a monotonicity property

23

Convergent consistency
�  Consider the definition of monotonic reads
◦ ∀e1, e2, e3∈E: e1≺vise2 ∧e2≺soe3 ⇒e1≺vise3

◦  A (read) event once visible in a session is always visible
in the session

�  Convergent consistency between two objects
◦  An event e of object k1 once visible to object k2 is

always visible to k2

◦ ∀e∈Ek1 ,∀e’,e’’∈Ek2 : e≺vise’∧e’≺vise’’ ⇒ e≺vise’’

�  Convergent consistency for Lasp objects
◦  Add the condition k1∈dependsOn(k2)
◦  If a base event is seen by a dependent Lasp event, then

it is seen by all further events of the same Lasp object

24

Convergence and CRDTs
� Convergent consistency
◦  Each event adds information permanently in a

single step
�  Strong eventual consistency
◦  n replicas that receive the same updates (in

any order) have equivalent state
◦ A state-based CRDT satisfies SEC
◦ An acyclic Lasp program satisfies SEC

�  State-based CRDTs
◦  State-based CRDT ensures SEC and CC

25

ANTIDOTE SEMANTICS

26

Antidote semantics
�  Antidote provides the following guarantees
◦  Acyclic visibility, total arbitration, eventual consistency
◦  Causal consistency
◦  Atomic visibility
◦  Min snapshot

�  Antidote provides a series of datatypes, such as:
◦  Add-Wins Set:

Faw-set(ctxt) = Faw-set(E, op, vis, ar) =
 let E’ = filterResets(E, op, vis) in
 {x | (∃a∈E’. op(a)=add(x))
 ∧∀r∈E’. op(r)=remove(x) →∃a∈E’.op(a)=add(x) ∧r≺visa}
◦  Auxiliary filterResets(E, op, vis) returns events not affected by reset

27

Transactions
�  To specify transactions, we add one concept
◦  An event e is associated with a transaction t=tx(e)

�  We assume all transactions are committed
◦  Our model does not include time
◦  We do not define isolation levels

�  Atomic visibility
◦  Given two transactions t1 and t2
◦ ∀e1, e1’, e2, e2’ ∈E:

 tx(e1)=tx(e1’)=t1 ∧ tx(e2)=tx(e2’)=t2 ⇒ e1≺vise2 ⟷ e1’≺vise2’

28

Versioned store extension

� Assume that each event e has a version(e)
◦ A version is a set of events
◦ User can provide a version for each event, if

none then version(e)=⊥

� Min snapshot
◦ ∀e, e’: e’∈version(e) ⇒ e’≺vise

� Precise snapshot
◦ ∀e, e’: e’∈version(e) ⇔ e’≺vise

29

CONCLUSIONS
AND FURTHER WORK

30

Concrete semantics
�  The concrete semantics refines the abstract semantics by

adding nodes, node states, and messages between nodes
◦  Burckhardt gives a general framework for concrete executions

◦  In this framework we define node and communication failures

�  Given a concrete execution, we can derive an observable
history by considering events related to calls from a client
◦  A history records the interactions between clients and the system
◦  An abstract execution is a history that satisfies the correctness

conditions given previously
◦  If the observable history can be extended to a valid abstract

execution (with vis and ar), then the concrete execution is correct

�  With this approach, we can prove that Lasp and Antidote
protocols satisfy the abstract semantics

31

Conclusions
�  We now have a first unified semantics that explains both

Lasp and Antidote in a single framework
◦  This is a step toward a general-purpose semantics for synchronization-

free programming
◦  In further development of both Lasp, Antidote, and Legion we will

commit to respecting this semantics

�  Much work remains to be done
◦  We have an abstract execution semantics that explains the observable

behavior, but does not model distribution or failure
◦  We need to extend this to a concrete semantics that understands

nodes and their interactions
◦  For continued work on the programming model, the unified semantics

needs to be extended with programming concepts such as modularity
and functional abstraction

32

ADDITIONAL SLIDES

33

Session guarantees
�  We assume a session order so ⊂ E×E that orders

events from the same session
◦  e1≺so e2 if e1 was submitted before e2 in the same session

�  We distinguish read and write operations
◦  isRead(e) and isWrite(e) predicates

�  Read Your Writes
◦  e1≺so e2 ∧ isWrite(e1) ∧ isRead(e2) → e1≺vis e2

�  Monotonic Reads
◦  e1≺so e2 ∧ isRead(e1) ∧ isRead(e2) → (∀e’. e’≺vise1 → e’≺vis e2)

�  Writes Follow Reads
◦  e1≺so e2 ∧ isRead(e1) ∧ isWrite(e2) → (∀e’. e’≺vise1 → e’≺vise2)

�  General Session Guarantee
◦  e1≺so e2 → e1≺vis e2

34

