
Reflections	on	
scalability	and	
consistency	
Peter	Van	Roy	
	
W-PSDS	2019,	Lyon,	France	
Oct.	1,	2019	

1

Overview	
•  Basic	principles	

•  Understanding	scalability,	Internet	growth	and	IoT,	
CAP	theorem	

•  Large-scale	phenomena	
•  Buridan’s	principle,	black	swans,	real-world	graphs,	
Heisenberg	applications	

•  Building	scalable	systems	
•  Autonomic	computing	and	feedback	structures,	
convergent	data	management,	simplified	distributed	
systems	(confluence	and	linearity)	

•  Conclusions	
•  Ongoing	work	on	convergent	data	management	and	
confluent	distributed	systems	

2

Understanding	scalability	
•  A	system	is	scalable	if	it	maintains	a	desirable	property	as	
the	scale	increases	
•  Scale	can	be	defined	in	several	useful	ways:	number	of	nodes,	
size	of	data,	number	of	users,	geographic	separation	

•  We	will	use	a	rough	definition	where	scale	corresponds	to	
total	aggregate	work	(data,	computation)	done	by	a	system	

•  When	scale	increases,	strange	things	happen	
•  This	talk	is	not	a	standard	technical	talk	
•  We	will	explain	various	phenomena	that	show	up	at	high	scale	
and	give	some	approaches	how	to	design	systems	to	
accommodate	these	phenomena	

•  In	my	view,	anyone	who	is	serious	about	scalability	should	
know	about	these	phenomena	and	these	techniques!	

•  This	talk	is	also	intended	to	provoke	discussion	and	solicit	
pointers	to	other	work	on	scalability	

3

Internet	scale	
•  The	Internet	is	an	excellent	testbed	for	scalability	because	it	
has	been	growing	exponentially	since	around	1970	and	still	is	

•  Nowadays,	this	growth	is	concentrated	at	the	edge:	

From	talk	of	
David	Bol,	
RISC-V	(Paris),	
Oct.	1-3,	2019	

4

CAP	theorem	 5

CAP	theorem	
•  The CAP theorem was conjectured by Eric Brewer at PODC

in 2000 and proved by Seth Gilbert and Nancy Lynch in 2002
•  For an asynchronous network, it is impossible to implement

an object that guarantees the following properties in all fair
executions:
•  Consistency: all operations are atomic (totally ordered)
•  Availability: every request eventually returns a result
•  Partition tolerance: any messages may be lost

•  The CAP Theorem applies for all systems, at all levels of
abstraction, and at all sizes
•  It can be applied in many places in the same system
•  The whole system is a rainbow of interacting instances of CAP

©
 2

01
0

P
et

er
 V

an
 R

oy

6

Spanner

Databases

The	CAP	triangle	
•  We	give	an	intuitive	
overview	of	the	
consequences	of	CAP	by	
means	of	a	CAP	triangle	
•  Cost	increases	toward	the	

center	
•  The	center	itself	is	empty!	

•  All	parts	of	the	CAP	triangle	
have	their	uses	

•  We	have	arranged	some	
applications	around	the	
triangle	according	to	
perceived	functionality	
•  Very	little	systematic	study	has	

been	done	about	navigating	in	
this	triangle	

C+A

C+P

C+P

A+P C A

P

A C

P

Trade-off Trade-off

Trade-off

Mercurial (BitTorrent)
(PeerTV)

DropBox (Wuala)

(…) = read-only

(Search)

Cost
increases

∞

7

Buridan’s	principle	 8

Buridan’s	principle	
•  Philosopher	Jean	Buridan	stated	that	an	ass	placed	equidistant	
between	two	bales	of	hay	must	starve	to	death	because	it	has	no	
reason	to	choose	one	bale	over	the		other	
•  This	principle	has	surprising	consequences,	as	shown	in	the	paper	
“Buridan’s	Principle”,	by	Leslie	Lamport	(1984)	

•  Assume	a	system	has	to	make	a	discrete	decision	from	continuous	
input.		Then	we	can	prove	the	following:	
•  A	discrete	decision	based	upon	an	input	with	a	continuous	range	
of	values	cannot	be	made	within	a	bounded	length	of	time	

•  There	are	many	examples	of	this	principle	
•  A	car	at	an	unguarded	railroad	crossing,	the	driver	stops	at	the	
crossing	and	proceeds	when	it	is	safe.		The	driver	must	decide	
whether	to	wait	for	the	train	or	to	cross	the	tracks.	

•  A	jury	must	decide	whether	a	student	passes	or	fails	his	academic	
year.		As	the	average	gets	closer	to	50%,	the	decision	becomes	
harder	and	harder,	because	more	information	must	be	analyzed.	

9

Proof	of	Buridan’s	principle	

•  At(x)	is	the	position	at	time	t	with	starting	position	x	
•  As	t	increases,	At(x)	must	converge	to	0	or	1	for	all	x	
•  Since	At(x)	is	continuous	in	t	and	x,	it	is	clear	that	
there	exist	x	for	which	t	will	be	arbitrarily	large			

Starting	position	
0	 1	

0	

1	

Position	
at	time	t		

A0(x)	

A1(x)	
A2(x)	

Decision	1	

Decision	0	

10

Relationship	to	scale	
•  Distributed	systems	often	must	make	decisions	

•  Distributed	bank	account:	is	the	account	positive	or	negative.	
•  Voting	system:	who	wins	the	vote.	

•  The	input	data	is	(approximately)	continuous	and	can	be	
distributed	over	the	whole	system	

•  To	make	the	decision,	more	information	/	computation	is	
required	as	the	input	data	is	closer	to	the	decision	boundary	
•  Far	from	the	boundary,	only	local	information	is	needed	
•  Very	close	to	the	boundary,	the	whole	system	is	involved	

•  Lesson	for	system	design:	prevention	or	cure!	
•  Design	a	scalable	system	to	stay	far	away	from	boundaries	
•  Some	boundaries	are	inevitable:	in	that	case,	try	to	predict	when	
decisions	are	needed	and	«	prefetch	»	the	information	 11

Black	swans	 12

… imagine a green plant shooting up
from its root, thrusting forth strong green
leaves from the sides of its sturdy stem,
and at last terminating in a flower. The
flower is unexpected and startling, but
come it must – nay, the whole foliage has
existed only for the sake of that flower,
and would be worthless without it.

– from “Conversations of Goethe with Johann
 Peter Eckermann” (1930 translation)

13

Black	swans	
•  Systems	are	designed	by	relying	on	induction,	“what	worked	
in	the	past	will	continue	to	work	in	the	future”	
•  It	is	very	common	to	assume	that	induction	will	always	work	

•  However,	induction	often	has	a	built-in	limit	and	fails	beyond	
•  Year	2000	Bug:	it	was	“far	away”	but	it	has	arrived	
•  Dinosaurs	and	banks:	“too	big	to	fail”	but	they	will	fail	

•  In	computer	systems	this	is	both	ubiquitous	and	hidden	
•  All	systems	have	finite	resource	limits	(memory,	speed)	that	are	
far	away	in	“normal	usage”	but	reached	when	system	is	stressed	

•  Typically,	the	system	will	fail	in	exactly	the	case	where	it	is	
needed	most	(Red	Wedding	situations)	

	 14

The	two	great	“frauds”	
•  Systems	obey	inductive	reasoning	–	false!	

•  Past	experience	with	systems	is	a	bad	guide	for	future	systems,	
especially	if	the	future	system	is	going	beyond	the	past	one	

•  Systems	obey	probability	distributions	–	false!	
•  Probability	distributions	are	introduced	to	simplify	analysis,	but	
often	do	not	exist	in	reality	

•  Assuming	a	probability	distribution	exists	is	a	very	strong	
assumption	(frequency	limit	exists)	and	is	very	probably	wrong	

•  Black	swan:	unexpected	large	events	that	falsify	induction	and	
are	obvious	in	hindsight	
•  Large	systems	are	fundamentally	irregular	and	must	be	designed	
to	survive	extreme	cases	

•  See	“The	Black	Swan”,	by	Nassim	Nicholas	Taleb	(2010)	
15

Degrees	of	increasing	
irregularity	in	a	large	ystem	
1.  Existence	of	a	probability	distribution	

•  Statistical	physics	holds,	all	microstates	have	equal	probability,	behavior	
is	thermodynamic	(describable	by	macroscopic	state	variables)	

•  Unfortunately,	most	simulations	and	models	are	stuck	here!	
2.  Critical	point	

•  Minor	fluctuations	can	be	amplified	without	bounds	
•  The	limit	of	statistical	physics	
•  Many	computing	systems	have	critical	points	(garbage	collectors,	
dynamic	hash	tables,	wide-area	routing,	virtual	memory)	

3.  No	probability	distribution	exists	(“Black	Swans”)	
•  We	know	only	the	range	of	behavior,	frequency	limits	do	not	exist	

•  Dijkstra’s	demon:	in	a	guarded	command,	all	guards	can	be	chosen	
•  The	program	must	be	designed	so	that	it	works	even	if	a	demon	makes	the	

worst	possible	choices	in	each	guarded	command	
•  Complex	systems,	program	verification,	distributed	algorithmics	 16

Real-world	graphs	 17

Real-world	graphs	
•  Large	applications	on	the	Internet	will	often	have	large	
numbers	of	users	whose	behavior	can	significantly	influence	
the	large-scale	behavior	of	the	system	
•  Especially	important	is	information	dissemination	among	users	

•  Small-world	graphs	
•  The	connectivity	graph	among	the	application’s	users	will	almost	
always	be	a	small-world	graph:	small	average	shortest	path	
length,	large	clustering	coefficient	(more	clustered	than	random,	
smaller	paths	than	neighbor)	

•  Navigation	is	often	easy	(user	search	using	partial	information)	
•  Power-law	structure	

•  Fraction	of	Web	pages	with	k	in-links	is	proportional	to	1/k2	
•  Consequence	of	information	dissemination	during	formation	

See	«	Networks,	Crowds,	and	Markets	»,	by	David	Easley	and	Jon	Kleinberg	(2010)	

18

Consistency	in	real-world	
graphs	
•  CAP	theorem	states	that	consistency	cannot	be	achieved	for	
available,	partition-tolerant	systems	
•  Users’	information	dissemination	makes	this	more	precise	

•  Limiting	communication	between	users	causes	pluralistic	
ignorance,	where	different	parts	of	the	network	have	very	
different	information,	and	this	can	last	indefinitely	long	

•  Limiting	communication	can	cause	sudden	changes	
•  Epidemic	dissemination	(synchronization,	oscillation,	stability)	
•  Collapse	of	giant	components	(one	connected	component	that	
contains	a	significant	fraction	of	all	nodes)	

•  Information	content	can	be	changed	during	dissemination	
•  Cascades	(herding),	when	decisions	are	made	in	sequential	order	
•  Tipping	points,	decisions	need	to	convince	a	large	initial	group	

19

Example:	Web	bow-tie	

•  Large	decentralized	information	networks	such	as	the	Web	will	
often	have	a	global	structure	with	a	central	strongly-connected	
component	(from	2000,	but	still	valid	today)	

•  The	structure	is	maintained	as	the	network	continuously	changes	

From	Broder	et	al	(2000),	
as	printed	in	Networks,	
Crowds,	and	Markets	

20

Example:	financial	networks	

•  Network	of	loans	among	US	financial	institutions,	revealing	
its	strongly	connected	core	

•  This	reveals	a	structural	fragility	in	the	financial	system	

From	Bech	&	Atalay	(2008),	
as	printed	in	Networks,	
Crowds,	and	Markets	

21

Heisenberg	applications	 22

Many	applications	are	bursty	
•  Many	real-world	applications	require	a	lot	of	computational	
resources	for	very	short	time	periods	
•  For	example,	interactive	applications	require	massive	resources,	
but	only	when	being	used	(real-time	voice	translation	when	you	
are	speaking)	

•  Your	computer’s	CPU	usage	is	bimodal:	it	is	close	to	0%	most	of	
the	time,	except	when	you	are	doing	a	compute-intensive	task	
when	it	is	close	to	100%	

•  The	solution	to	this	is	to	provide	elasticity	
•  Cloud	computing:	pay	only	for	the	resources	actually	used	

•  Economy	of	scale	with	many	shared	users	
•  Internet	of	Things:	power	up	only	the	nodes	actually	needed	

•  Hardware	(silicon)	is	cheap	
•  This	enables	a	new	kind	of	application	based	on	burstiness	 23

Computational	Heisenberg	
Principle	(1)	
•  A	cloud	has	two	key	properties:	

•  Pay	per	use:	pay	only	for	the	resources	actually	used	
•  Elasticity:	ability	to	scale	resource	usage	up	(and	down)	rapidly	

•  For	a	fixed	cost,	as	the	time	interval	decreases	more	resources	
can	be	made	available:	

•  For	a	given	maximum	cost,	the	product	of	resource	amount	
and	usage	time	is	less	than	a	constant	

•  Analogy	with	Heisenberg’s	Uncertainty	Principle	in	physics:	the	product	of	uncertainty	
in	time	and	uncertainty	in	energy	is	equal	to	(or	greater	than)	a	constant.		This	
increases	the	probability	of	events	that	use	arbitrarily	high	energies	if	the	time	period	
is	short	enough.		As	long	as	the	high	energies	are	less	than	the	uncertainty,	then	they	
are	allowed!	

•  This	is	a	property	of	the	system	itself,	not	a	limitation	of	measurement!	
•  ∆t⋅∆E	=	c	and	tallow≤∆t	and	Eallow≤∆E	implies	tallow⋅Eallow	≤	c	

•  This	opens	the	door	to	new	applications	that	could	not	be	done	before	
24

Computational	Heisenberg	
Principle	(2)	

•  For	given	fixed	resource	cost	c0,	what	
kinds	of	applications	can	run?	

•  Before	elasticity:	all	applications	lived	
in	light	blue	area	which	gives	local	
resources	for	maximum	cost	c0	(r	≤	r0)	

•  With	elasticity:	dark	blue	area	
becomes	available	for	the	same	cost	
(r	>	r0)	

•  The	dark	blue	area	is	the	home	of	
Heisenberg	applications	
•  Cloud	applications	(e.g.,	big	data)	
•  IoT	applications	(e.g.,	data	fusion)	

•  Using	machine	learning	often	leads	to	
Heisenberg	applications	Time interval

Available resources

t0

r0

Local resources for cost c0

c0

Cloud resources for cost c0

t ⋅ r ≤ c0

25

Query/use	phase	
elasticity	requirements	

(response	time)	

Learning/setup	
phase	
elasticity	

requirements	
(learning	time)	

S	

S	

M	

M	

L	

L	

Google	Search	
Google	Translate	

Recommendation	sys.	
Speech	recognition	
Skype	connection	
Social	networks	
Media	translation	

Weather	
forecasting	

Interactivity	(learning	+	query)	

One-shot	

One-way	stream	

Recorded	
Future	

MMORPG	
Role-playing	games	
Chess	program	

Champion	
chess	program	
IBM	Jeopardy	

Wolfram	Alpha	
Image	recognition	

Computer	algebra	
Peer-to-peer	CDN	
Google	Earth	
JIT	Compiler	

	

XL	

XL	

Conversation	

BitTorrent	
WIMP	GUI	

Microsoft	Office	

Future applications

Standard applications

Advanced
applications

Real-time	audio	
language	translation	

Real-time	
expert	
guidance	

Creative	
problem	
solving	

Heisenberg	application	space	

26

Building	scalable	systems	 27

The	starting	point	

•  Every	scalable	design	starts	as	independent	pieces		(P+A,	no	C)	
•  Nodes	occasionally	interact	(add	some	C)	
→	collaboration,	emergence	
•  Split	protocol:	what	happens	when	a	node	leaves	a	group	(may	be	abrupt)	
•  Merge	protocol:	what	happens	when	a	node	joins	a	group	

•  Many	examples:	biology,	peer-to-peer,	map-reduce,	…	

split/merge

group

28

Building	up	to	a	real	system	

• We	start	with	a	decentralized	system	(P+A,	no	C)	
•  The	problem:	how	much	C	and	how	to	add	it?	

•  The	rest	of	this	section	explores	how	to	add	C	
•  Control-oriented	approach	

•  Autonomic	computing	
•  Weakly	interacting	feedback	structures	

•  Data-oriented	approach	
•  Convergent	data	management	
•  LightKone	reference	architecture	

29 See	«	Designing	Robust	and	Adaptive	Distributed	Systems	with	Weakly	Interacting	Feedback	Structures	»,	
by	P.	Van	Roy,	S.	Haridi,	and	A.	Reinefeld	(2011)	

See	«	LightKone	Reference	Architecture	(LiRA)	White	Paper	»,	by	Ali	Shoker	et	al	(2019)	

Weakly	interacting	feedback	
structures	

30

Autonomic	computing	

•  Autonomic	computing,	initiated	by	IBM	in	2001,	aims	to	make	computer	
systems	self	managing,	to	overcome	the	growing	complexity	of	systems	
management	as	scale	increases	

•  The	basic	building	block	of	IBM’s	autonomic	system	is	the	MAPE-K	
feedback	loop	(Monitor	–	Analyze	–	Plan	–	Execute	–	Knowledge)	

•  We	start	with	this	approach,	and	we	investigate	how	to	build	systems	
consisting	of	many	interacting	MAPE-K	loops	

6 · Markus C. Huebscher, Julie A. McCann

Fig. 1. IBM’s MAPE-K (Monitor, Analyse, Plan, Execute, Knowledge) reference model for auto-
nomic control loops.

a quality as possible, e.g. Kendra [McCann and Crane 1998] and Real Surestream
[Lippman 1999]. However the autonomic community is more and more identifying a
system as autonomic if it exhibits more than one of the self-management properties
described earlier, e.g. Ganek and Friedrich [2006].

4. THE MAPE-K AUTONOMIC LOOP

To achieve autonomic computing, IBM has suggested a reference model for auto-
nomic control loops [IBM 2003], which is sometimes called the MAPE-K (Monitor,
Analyse, Plan, Execute, Knowledge) loop and is depicted in Figure 1. This model is
being used more and more to communicate the architectural aspects of autonomic
systems. Likewise it is a clear way to identify and classify much of the work that
is being carried out in the field. Therefore this section introduces the MAPE-K
loop in more detail and then taking each of its components in turn, describes the
work that focuses its research on that component. We later take the same work
and examine it from a degree of autonomicity point of view.

The MAPE-K autonomic loop is similar to, and probably inspired by, the generic
agent model proposed by Russel and Norvig [2003], in which an intelligent agent
perceives its environment through sensors, and uses these percepts to determine
actions to execute on the environment.

In the MAPE-K autonomic loop, the managed element represents any software
or hardware resource that is given autonomic behaviour by coupling it with an
autonomic manager. Thus, the managed element can for example be a web server or
database, a specific software component in an application (e.g. the query optimiser
in a database), the operating system, a cluster of machines in a grid environment,
a stack of hard drives, a wired or wireless network, a CPU, a printer, etc.

Sensors, often called probes or gauges, collect information about the managed
element. For a web-server, that could include the response time to client requests,
network and disk usage, CPU and memory utilisation. A considerable amount of
ACM Journal Name, Vol. V, No. N, Month 20YY.

31

A	scalable	architecture	
in	four	steps	

•  Concurrent	component	
•  An	active	entity	communicating	with	its	neighbors	

through	asynchronous	messages	
•  “Intelligence”	concentrated	in	core	components	

•  Single	feedback	loop	(MAPE-K	loop)	
•  Manager,	sensor,	and	effector	components	connected	

to	a	subsystem	and	continuously	maintaining	one	
local	goal	

•  Feedback	structure	
•  A	set	of	feedback	loops	that	work	together	to	

maintain	one	global	system	property	

•  Weakly	interacting	feedback	structures	(WIFS)	
•  The	complete	system	is	a	conjunction	of	global	

properties,	each	maintained	by	one	feedback	
structure	

•  The	feedback	structures	have	dependencies	based	on	
the	operating	conditions	

32

T H E A D V E N T U R E S O F

Human	respiratory	system	

•  Default	behavior:	rhythmic	breathing	reflex	
•  Complex	component:	conscious	control	can	override	and	plan	lifesaving	actions	
•  Abstraction:	conscious	control	does	not	need	to	know	details	of	breathing	reflex	
•  Fail-safe:	conscious	control	can	itself	be	overridden	(falling	unconscious)		
•  Time	scales:	laryngospasm	is	a	quick	action	that	interrupts	slower	breathing	reflex	

Other inputs

when sufficient obstruction in airways

Laryngospasm

(seal air tube)

Breathing

reflex

Measure
O2

in blood

Monitor

breathing

Measure
CO2

in blood

Detect
obstruction
in airways

Trigger unconsciousness

when O2 falls to threshold

Conscious control

of body and breathing

Trigger breathing reflex

when CO2 increases to threshold

Trigger laryngospasm temporarily

Actuating agents Monitoring agents

in human body

Breathing apparatus

(maximum is breath!hold breakpoint)
and change CO2 threshold

Increase or decrease breathing rate

(and reduce CO2 threshold to base level)
Render unconscious

Some	design	rules:	

The	operation	of	the	
human	respiratory	
system	is	given	as	one	
feedback	structure,	
inferred	from	a	precise	
medical	description	of	its	
behavior	(see	entry	on	
“Drowning”,	Wikipedia)	

33

State	diagram	

•  The	human	respiratory	system	can	be	seen	as	a	state	diagram	
•  Dominant	subset	=	active	subset	of	feedback	loops	=	state	

•  At	any	time,	one	subset	is	active,	depending	on	operating	conditions	
•  Each	subset	corresponds	to	a	state	in	the	state	diagram	

breathing
NormalUnconscious

breathing
Unconscious

laryngospasm
Normal

Conscious
breathing

laryngospasm

Conscious
laryngospasm

obstruction

time
outobstruction

time out

obstruction

time out

wake up

 oxygen low

conscious
decision

oxygen low

conscious
decision or

breath!hold
breakpoint

conscious
decision

conscious
decision

©
 2

01
0

P
et

er
 V

an
 R

oy

34

A	self-managing	key/value	
store:	Scalaris	

•  Scalaris	is	a	high-performance	self-managing	key/value	store	that	provides	
transactions	and	is	built	on	top	of	a	structured	overlay	network	
•  A	major	result	of	the	SELFMAN	project	(www.ist-selfman.org)	
•  4000	read-modify-write	transactions/second	on	two	dual-core	Intel	Xeon	2.66	GHz	

•  Scalaris	has	five	WIFS:	connectivity	(Sconnect),	routing	(Sroute),	load	balancing	
(Sload),	replica	management	(Sreplica),	and	transaction	management	(Strans)	

! " "! " !

#!$%&'!()!)!*%&#"#!+&*,

-

.$)&#)*!"%&!/),+$

"- 0"-"!

)!%1"*"!,2!*%&#"#!+&*,2

"#%-)!"%&2!(3$)0"-"!,

4++$"!%"4++$ /),+$5)!) 5)!)

6+7-"*)!"%&!/),+$

#*)-)0"-"!,

)8)"-)0"-"!,

4++$!% 4++$!/),+$

5)!)

9!%$+

:

5)!)

9!%$+

;

5)!)

9!%$+

<

5)!)

9!%$+

=

5)!)

9!%$+

>>>

5)!)

9!%$+

>>?

5)!)

9!%$+

>>@

5)!)

9!%$+

>>A

Sscalaris= Skey-value ∧ Sconnect ∧ Sroute ∧

Sload ∧ Sreplica ∧ Strans
The Scalaris specification is a conjunction of
six properties. Each non-functional property
is implemented by one feedback structure.

Sconnect → Sroute → Sreplica → Strans

Sload

35

Convergent	data	management	 36

Convergent	data	management	
•  Maintaining	adequate	consistency	and	performance	are	two	
of	the	most	important	issues	when	system	scale	increases	
•  Whereas	autonomic	computing	is	an	operation-oriented	
approach,	let	us	now	take	a	data-oriented	approach	

•  Assume	our	system	has	a	database	that	is	used	to	centralize	
the	data	management	
•  We	automate	the	management	of	“truth”	in	the	database	by	a	
system	to	continuously	update	the	database	with	information	
coming	from	the	edge	

•  To	simplify	consistency	management,	we	use	convergent	data	
structures	that	tolerate	message	and	node	failures	and	need	very	
little	synchronization	(CRDTs)	

37

CRDTs	
•  A	Conflict-Free	Replicated	Data	Type	is	a	replicated	data	
structure	that	maintains	consistency	between	replicas	with	a	
very	weak	synchronization	protocol	
•  It	satisfies	Strong	Eventual	Consistency	(SEC):	n	replicas	that	
receive	the	same	updates	(in	any	order)	have	equivalent	state	

•  Internally,	all	replicas	are	collecting	information	monotonically	
and	are	always	converging	to	their	resulting	state	

•  Synchronization	between	replicas	is	eventual	replica-to-replica	
communication	

•  Many	practical	CRDTs	exist	and	are	widely	used	in	commercial	
systems	with	millions	of	users	
•  Counters,	sets,	maps,	graphs,	etc.	

•  CRDTs	are	well-suited	for	convergent	data	management	
38

Basic	convergent	data	scenario	

•  The	CRDT	database	receives	periodic	updates	(raw	or	aggregated)	
from	all	edge	devices	

•  Messages	may	be	lost,	reordered,	or	repeated	without	harm	
•  The	CRDT	database	will	always	be	converging	to	the	truth	at	the	
edge;	staleness	depends	on	the	update	protocol	and	delay	

CRDT	database	
(cloud	or	gateway)	

Edge	devices	
(in	high	numbers)	

updates	

39

Lateral	data	sharing	in	LiRA	

•  LiRA	(LightKone	Reference	Architecture)	proposes	an	architecture	with	
convergent	data	management,	with	artefacts	(AntidoteDB,	Achlys,	Legion)	

•  As	the	edge	continues	to	grow	exponentially,	vertical	data	sharing	(red	lines)	is	
extended	for	convergent	data	management	

•  In	addition,	lateral	data	sharing	(blue	lines)	is	added	to	do	convergent	data	
management	between	devices	at	the	same	level	

CHAPTER 1. OVERVIEW

Figure 1.0.1: A typical hierarchical architecture of Fog/Edge Comput-
ing in a airport monitoring use case (source OpenFog [6]). The diagram
demonstrates the need for lateral and vertical data sharing and computa-
tion across different airport sub-systems and terminals at different levels
of the fog hierarchy.

management is rather often delegated to lower layers, e.g., database vari-
ants, in-memory caching systems, etc.

None of current RAs provide explicit solutions to these problems de-
spite their significant importance to fog applications. In fact, solving P1
helps keeping the data at a close proximity of its source and close-by
nodes, thus avoiding extra time delays, communication failures and over-
heads, and security threats. Whereas, solving P2 considers the diverse
data usage patterns, consistency requirements, and invariants of fog ap-
plications, key to improving user experience despite delays and networks
partitions—likely to occur in such hostile networks.

1.2 LiRA Approach

The LightKone Reference Architecture (LiRA) bridges the above gap by
providing a data management layer that supports lateral data sharing
(via replication) as well as fog/edge application-level data management.
LiRA gives priority to high availability, often desired in fog/edge applica-
tions, without breaking application semantics or giving up consistency—
although delayed. This approach stems from the fact that given the un-
avoidable network partitions and delays in fog/edge networks, one has
to choose either Consistency or Availability as explained in the CAP the-

LightKone Reference Architecture LiRAv0.9, June 15, 2019

From	«	LightKone	Reference	
Architecture	(LiRA)	White	Paper	»,	
Ali	Shoker	et	al	(2019)	

40

(stable)	

(exponential)	

Just-Right	Consistency	(JRC)	
•  JRC	generalizes	convergent	data	management	for	application	
invariants	

•  Different	parts	of	an	application	need	different	consistency	levels	
•  No	single	model	is	best:	synchronous	models	are	safest,	but	
asynchronous	ones	are	fast	and	tolerate	partitions	

•  We	want	to	use	synchronous	and	asynchronous	together	and	get	the	
best	of	both	worlds	

•  JRC	classifies	application	invariants	according	to	CAP:	
•  «	Choose	any	two:	Consistency,	Availability,	Partition-tolerance	»	
•  AP-compatible	patterns:	CRDTs	with	concurrent	updates,	causal	order	of	
operations,	highly-available	transactions	

•  CAP-sensitive	pattern:	stable	precondition	before	concurrent	update	
(can	be	verified	with	tool	support,	e.g.,	CEC	tool)	

•  All	other	operations	must	be	done	sequentially	
41

Simplified	distributed	systems	 42

Simplifying	distributed	systems	
•  Distributed	systems	have	concurrency,	message	latency,	partial	failure,	
and	real-world	interaction.	They	are	quite	difficult	to	understand	and	
develop	in	their	full	generality.	

•  A	useful	approach	is	to	focus	on	simpler	kinds	of	distributed	systems	
•  The	general	form	can	be	seen	as	the	simpler	kind	with	small	additions	
•  Following	this	approach	can	greatly	help	designing	distributed	systems	

•  We	show	two	useful	kinds	of	simplified	distributed	systems	
•  Each	kind	satisfies	a	strong	property	that	greatly	helps	development,	and	the	

general	form	can	be	attained	with	small	additions	

Linear	system	

Confluent	system	

Nonlinear	Linear	

Imperative	
(real-world	interaction)	

Pure	functional	
(lambda	calculus)	

43

Confluent	systems	principle	
•  Functional	programming	based	on	λ calculus	is	confluent:	

•  Church-Rosser:	Given	an	initial	expression,	the	final	result	of	a	
reduction	is	the	same	for	all	reduction	orders	(up	to	renaming)	

•  A	functional	program	can	be	seen	as	a	network	of	concurrent	agents,	
each	executing	in	its	own	thread.		Church-Rosser	means	that	for	all	
scheduler	choices,	the	result	is	the	same.	

•  We	make	this	program	distributed	by	placing	each	subexpression	on	
its	own	node	
•  This	requires	one	extra	reduction	rule,	a	mobility	rule,	to	colocate	
expressions	on	a	node	for	reduction.		Church-Rosser	still	holds.	

•  The	limitation	is	that	it	is	syntactically	known	from	which	
subexpression	each	agent’s	next	input	will	come	
•  For	general	distributed	systems,	we	need	to	add	interaction	points,	
which	depend	on	reduction	order	and	express	real-world	interaction	

See	«	Why	Time	is	Evil	in	Distributed	Systems	and	what	to	do	about	it	»,	by	Peter	Van	Roy,	invited	talk,	
CodeBEAM	2019,	May	16,	2019	

44

Confluent	distributed	systems	

•  A	simple	example	of	this	approach	is	the	client/server:	this	program	is	
completely	functional	except	for	one	interaction	point,	namely	where	the	server	
accepts	an	incoming		message	from	any	client	

•  The	general	approach	is	to	write	most	of	the	program	with	distributed	functional	
concurrency	and	add	interaction	points	where	needed	

Server	

Client	1	

Client	2	 Nondeterministic	
message	receive	is	
an	interaction	point	

local	s	p	in	
			node	p=newport(s)	server(state,s)	end	
			node	client(state1,p)	end	
			node	client(state2,p)	end	
			… /*	as	many	clients	as	we	need	*/	
end	
	
fun	client(state,p)	
			send(query(state),p)	
			client(fc(state),p)	
end	
	
fun	server(state,s)	
				case	s	of	q|t	then	
										server(fs(q,state),t)	
					[]	nil	then	
										nil	
					end	
end	

One	interaction	point	

Pseudocode	of	
client/server	

…
	

45

Linear	systems	principle	
•  Another	useful	kind	of	distributed	system	is	the	linear	system	

•  Linear	systems	are	widely	used	in	mechanical	and	electrical	engineering,	but	are	
less	used	in	informatics,	because	computer	programs	are	inherently	discrete	and	
hence	nonlinear	

•  However,	distributed	systems	are	more	and	more	being	used	in	tight	connection	
with	the	real	world,	to	monitor	and	control	real	world	systems.		These	distributed	
systems	could	take	advantage	of	linearity,	just	like	in	other	engineering	disciplines.	

•  The	world	is	a	combination	of	linearity	and	nonlinearity	
•  Linearity	=	independent	parts	=	whole	equals	the	sum	of	the	parts	
•  Nonlinearity	=	interacting	parts	=	whole	is	more	than	the	sum	of	the	parts	

•  Linear	systems	are	much	easier	to	analyze	quantitatively	than	nonlinear	ones	
•  Because	in	linear	systems,	the	parts	can	be	analyzed	separately	and	then	combined	

(superposition	principle,	compositional	systems)	
•  In	addition,	some	nonlinear	systems	can	be	analyzed	qualitatively	(using	a	

geometric	approach).		See	“Nonlinear	Dynamics	and	Chaos”,	by	S.	Strogatz	(1994).	
•  Nonlinearity	cannot	be	eliminated	entirely;	often	the	system	is	critically	based	on	it	

•  For	example,	intelligence	(complex	components,	machine	learning)	is	often	nonlinear	
•  That’s	why	biological	systems	are	made	of	weakly	interacting	subsystems	

46

Linear	distributed	systems	
•  Large	distributed	systems	can	often	be	mostly	linear	

•  This	is	especially	true	if	the	distributed	system	is	connected	tightly	to	the	
real	world	(monitoring,	analyzing,	controlling),	e.g.,	in	digital	twins	

•  Basic	physical	quantities	are	additive	(mass,	force,	momentum,	energy)	

•  They	can’t	be	completely	linear,	though	
•  Because	we	need	nonlinearity	for	most	nontrivial	behavior	
•  Discrete	decisions	(e.g.,	Buridan’s	principle)	are	nonlinear	
•  Real-world	graph	effects	are	nonlinear	

•  We	should	add	nonlinearity	where	needed	but	no	more	
•  Today’s	distributed	systems	are	far	too	nonlinear	and	discontinuous	
•  They	should	be	mostly	linear	with	small	amounts	of	nonlinearity	added	
where	needed	

•  This	also	simplifies	resilience,	since	linearity	implies	high	redundancy	
47

Conclusions	 48

Conclusions	
•  Internet	scale	continues	to	increase,	so	scalability	remains	an	
important	research	topic	

•  Building	large-scale	systems	is	difficult	because	new	and	
unusual	phenomena	appear	at	each	new	scale	
•  Buridan’s	principle,	black	swans,	real-world	graph	phenomena	

•  We	give	an	overview	of	some	of	these	phenomena	and	of	
some	design	principles	that	we	have	identified	
•  Heisenberg	applications,	weakly	interacting	feedback	structures,	
convergent	data	management	

•  This	is	part	of	ongoing	work	on	understanding	scalability	
•  Convergent	data	management	is	ongoing	(LightKone	project)	
•  Confluent	distributed	systems	is	ongoing	(Van	Roy	and	Haeri)	
•  We	welcome	your	reactions	and	all	pointers	to	related	work	

49

