DIAL

4 Digital access to libraries

"HotCl: An automated tool for reliable
software upgrade/downgrade in Erlang OTP"

Zenon, Alexandre

ABSTRACT

Erlang/OTP is a powerful programming language for building fault-tolerant and scalable applications.
One of its key features is the ability to perform hot code upgrades, which allow developers to update
code without interrupting the running system. However, this feature is often underutilized because of the
perceived complexities in comprehension, implementation, and testing. This thesis aims to solve this issue
by introducing a new Continuous Integration/Continuous Delivery (CI/CD) tool called HotCl. HotCl provides
arobust way to reliably and semi-automatically test the correctness of hot code upgrades and downgrades.
It also offers additional benefits such as static analysis, unit tests, automatic generation of the files needed

for the upgrade and release build.

CITE THIS VERSION

Zenon, Alexandre. HotCl: An automated tool for reliable software upgrade/downgrade in Erlang OTP. Ecole
polytechnique de Louvain, Université catholique de Louvain, 2024. Prom. : Van Roy, Peter. http:/

hdl.handle.net/2078.1/thesis:45976

Le répertoire DIAL.mem est destiné a l'archivage
et a la diffusion des mémoires rédigés par les
étudiants de I'UCLouvain. Toute utilisation de ce
document & des fins lucratives ou commerciales
est strictement interdite. L'utilisateur s'engage a
respecter les droits d'auteur liés a ce document,
notamment le droit a l'intégrité de l'oeuvre et le
droit a la paternité. La politique compléte de droit
d'auteur est disponible sur la page Copyright

policy

Available at: http://hdl.handle.net/2078.1/thesis:45976

DIAL.mem is the institutional repository for the
Master theses of the UCLouvain. Usage of this
document for profit or commercial purposes
is stricly prohibited. User agrees to respect
copyright, in particular text integrity and credit
to the author. Full content of copyright policy is

available at Copyright policy

[Downloaded 2024/06/05 at 12:49:05]

https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy
https://hdl.handle.net/2078/copyright_policy

B UCLouvain

Ecole polytechnique de Louvain

HotClI

An automated tool for reliable software

upgrade/downgrade in Erlang OTP

Author: Alexandre ZENON

Supervisors: Peer STRITZINGER, Peter VAN ROy
Readers: Julien LIENARD, Pierre MARTOU
Academic year 2023-2024

Master [120] in Computer Science

Abstract

Erlang/OTP is a powerful programming language for building fault-tolerant and
scalable applications. One of its key features is the ability to perform hot code
upgrades, which allow developers to update code without interrupting the running
system. However, this feature is often underutilized because of the perceived
complexities in comprehension, implementation, and testing. This thesis aims to
solve this issue by introducing a new Continuous Integration/Continuous Delivery
(CI/CD) tool called HotCI.

HotCI provides a robust way to reliably and semi-automatically test the cor-
rectness of hot code upgrades and downgrades. It also offers additional benefits
such as static analysis, unit tests, automatic generation of the files needed for the
upgrade and release build.

Dedication

A Freddy, mon papy, avec qui j’aurais aimé célébrer la fin de mes études.

Acknowledgements

The completion of this Master’s thesis was made possible by the invaluable support
and contributions of many individuals. I extend my sincere gratitude to all those
who offered their expertise, guidance, and encouragement throughout this process.

I am deeply grateful to my family and Alicé for their unwavering support and
encouragement throughout my academic journey.

I extend my sincere gratitude to my supervisors for their guidance, insightful
feedback, and the opportunity to explore such an interesting research topic.

I would also like to thank Vladislav for his meticulous peer reviews.

Finally, I want to express my appreciation to the Erlang community for their
warm welcome, invaluable assistance in understanding the complexities of Er-
lang/OTP, and their valuable insights.

Contents

1 Introduction 12
1.1 Context e 12
1.2 Problems 12
1.3 Contributions 13

1.3.1 Documentation for Erlang/OTP novices 13
1.3.2 Automatic generation of files related to DSU 14
1.3.3 Semi-automated testing for Erlang/OTP release upgrade
and downgrade 14
1.4 Roadmap 14

2 Introduction to Erlang/OTP releases concepts 16
2.1 Introduction 16
2.2 Dynamic code change oL 17

2.2.1 The code_change function 19
2.3 Project structure 20
2.3.1 Modules 21
2.3.2 Applicationo 21
2.3.3 Release 22
2.4 Conclusion. 23

3 Building a release in Erlang/OTP 24
3.1 Introduction 24
3.2 Manually building a release o000 24

3.2.1 Beforestarting 24
3.2.2 Writing an application resource file 25
3.2.3 Writing a release resource file 26
3.2.4 Generating a boot script 27
3.2.5 Creating a release package 28
3.2.6 Starting therelease 28
327 Conclusion 29
3.3 Building a release with Rebar3 29

3.3.1 Before starting
3.3.2 Writing an application resource file
3.3.3 Writing a rebar.config file
3.3.4 Creating a release package
3.3.5 Starting therelease
3.3.6 Conclusiono
34 Conclusion.

Building a hot code upgrade in Erlang/OTP

4.1 Introduction

4.2 Creating a release including Pixelwar version 0.2.0.
4.2.1 Building the release o0
4.2.2 Running the release

4.3 Updating the release to include Pixelwar version 0.3.0
4.3.1 Applying modifications to the Pixelwar application
4.3.2 Generating a relup for the release

4.4 Executing the upgrade of the release
4.4.1 Packing the new version of the release
4.4.2 Moving the new release to the running release’s folder
4.4.3 Upgrading the release
4.4.4 Testing that the upgrade has been applied

4.5 Conclusion.

HotCI

5.1 Introductiono

5.2 The Dandelion project

5.3 Workflows
5.3.1 First workflow: Erlang-CI
5.3.2 Second workflow: Relup-CI
5.3.3 Third workflow: Publish-tarball

54 Usageexampleo
5.4.1 Introduction
5.4.2 Creating a new project L.
5.4.3 Creating a first version of the release
5.4.4 Releasing the first version
5.4.5 Creating a second version of the release
5.4.6 Modifying the upgrade downgrade SUITE
5.4.7 Releasing the second version
54.8 Conclusion

5.5 Limitations
5.5.1 GitHub Action

5.5.2 Maintaining the GitHub template 63

5.6 Conclusion. 63
Evaluation 64
6.1 Introduction 64
6.2 Gathered feedback 64
6.2.1 Likert scale questions 65
6.2.2 Open-ended questions 67
6.3 Integration within the community 68
6.4 Execution time 68
6.5 Conclusion. 69
Conclusion 79
7.1 Introduction 72
7.2 Future works 72
7.2.1 Distributed systemso 72
7.2.2 Integrating test reports into GitHub Pages 73
7.2.3 Accelerating testing and reducing cost with caching 73

7.2.4 Fostering an improved collaboration with the Erlang com-
munity 73
Pixelwar 77
A.1 Subset of version 1.0.0 7
A2 Version 0.2.0 80
A.3 Version 0.3.0 85
Upgrade downgrade test suites 94
B.1 First Version 94
B.2 Second version 95
B.3 Third version 97
HotCI 100
C.1 Benchmark 117
Dandelion 121

List of Figures

2.1
2.2
2.3
24

3.1

5.1
5.2
2.3
5.4
2.5
2.6
5.7

5.8

6.1
6.2

Al
A2
A3

C.1

Fully qualified call with a single version in the process 17
Fully qualified call with two versions in the process 18
Not fully qualified call with two versions in the system 19
Tree representation of the project structure. 20
Initial file structure for section 3.2.1 25
Execution of the erlang-ci workflow 43
Execution of the relup-ci workflow 45
Execution of the upgrade downgrade test suite 48
Execution of the publish-tarball workflow 52
Using webhooks to be notified when a new GitHub release is published 54
Upgrading the release when the webhook is triggered 54
Directory structure after merging the user’s repository based on the

HotCI template and Pixelwar 0.2.0 57
HotCI's ceremony 62
Boxplot of erlang-ci and relup-ci’s execution time 70
Line Chart of erlang-ci and relup-ci’s execution time 71
Directory structure of the subset of Pixelwar version 1.0.0 7
Directory structure of Pixelwar version 0.2.0 81
Directory structure of Pixelwar version 0.3.0 86
Directory structure of HotCI 100

List of Tables

6.1 User satisfaction towards different aspects of HotCI
6.2 User’s agreement towards general statements about HotCI

Listings

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
4.1
4.2
4.3
4.4
4.5
4.6
5.1
2.2
2.3
5.4
2.5
Al
A2

Upgrading to the new version with a fully qualified call 17
Keeping the old version with a not fully qualified call 18
code_change example for a gen_server 20
Example of an Erlang/OTP module. 21
Example of an application resource file 21
Example of an appup file using high-level instructions 22
Example of a release resource file 23
Relup file structure 23
Application resource file for the Pixelwar application 25
Compiling and running the Pixelwar application 26
Finding versions of the required applications and the ERTS 26
Release resource file for the Pixelwar application 27
Generating a boot scripto 27
Launching the release with the boot script and testing some functions 27
Packing the release 28
Deploying, starting and interacting with the release 28
A minimal rebar.config file for Pixelwar 30
Deploying, starting and interacting with the release 30
Modifying the release’s state 33
-vsn directive present in the pixelwar matrix serv module 34
code_change implementation to transition from 0.2.0 to 0.3.0 . . . 35
The matrix record and its equivalent tuple representation 35
Pixelwar’s appup to transition between 0.2.0 and 0.3.0 36
Output after applying the upgrade 38
Runtime error missed by Dialyzer because of its optimism 41
Modifying the before upgrade case 59
Modifying the after _upgrade case 60
Modifying the before downgrade case 60
Modifying the after _downgrade case 60
matrix.hrlo 7
pixelwar app.erl oo 7

A.3 pixelwar matrix serv.erl L. 78

A4 pixelwar matrixerl. 0oL 79
A5 pixelwar sup.erlo 79
A6 pixelwar.app.src 80
A.7 rebar.config 81
A.8 pixelwar app.erl 82
A9 pixelwar matrix serv.eerl 82
A.10 pixelwar_sup.erl 83
A 11 pixelwar.app.srco 84
A.12 pixelwar_serv_ SUITE.erl 84
A13 rebar.config 86
A 14 matrix.hrl 87
A.15 pixelwar_app.erlo 87
A.16 pixelwar matrix_serv.erl L. 87
A 17 pixelwar _matrix.erlo 88
A.18 pixelwar_sup.erl 89
A19 pixelwar.app.src 90
A .20 pixelwar.appup.src 90
A.21 pixelwar_serv_ SUITE.erl 90
A.22 pixelwar matrix SUITE.erl 91
B.1 Excerpt from the first Github workflow 94
B.2 Testing the state of a release from bash 94
B.3 A generic python module for interfacing between Robot Framework

and an OTP release L. 95
B.4 An application specific python module for interfacing with our release 96
B.5 A Robot Framework test suite using the python modules 96
B.6 Upgrade/downgrade CT test suite 97
C.1 publish-ct-results/action.yml 101
C.2 setup-beam/action.yml 101
C.3 erlang-ciyml o 101
C4 relup-ciyml 102
C.5 publish-tarball.yml 104
C.6 check wversions 105
C.7 get_release _name 107
C.8 upgrade downgrade SUITE.erl 107
C.9 LICENSE.md 110
C.10 README.md 113
C.11 rebar.config 116
C.12 Python script used to generate figure 6.1 and 6.2 118
D.1 check wversionso 121

10

Disclaimer

Grammar and spelling were refined through a combination of peer review with a
fellow student and friend, and Al tools such as Google’s Gemini Large Language
Model.

11

Chapter 1

Introduction

1.1 Context

To initiate our discussion, let us define what is a Dynamic Software Update (DSU),
a procedure also known as Hot Code Upgrade, Hot Code Change, or Hot Code
Swapping.

The DSU mechanism allows for the system to be updated without having to
stop and while remaining operational.

This ensures uninterrupted service for end-users, making it an invaluable mech-
anism for a wide array of systems, including internet-based applications, dis-
tributed systems, operating systems, or databases[9].

It is worth noting that various techniques and algorithms exist to facilitate
such updates. However, this thesis does not delve into them as it focuses on
Erlang/OTP and relies on the abstractions it provides.

Although Erlang/OTP is capable of performing a DSU, most developers either
abstain from utilizing this functionality or caution against its use due to perceived
complexities in comprehension, implementation, and testing.

It is regrettable that this situation has arisen, considering the substantial re-
sources and expertise dedicated to creating a system with such capabilities and
clear benefits to many domains in computer science.

1.2 Problems

To begin, let us familiarize ourselves with the problems faced by developers within
the realm of Erlang/OTP, releases and DSU.

The first hurdle lies in the system’s complexity. Despite Erlang/OTP’s robust-
ness, comprehending all the intricacies behind certain concepts proves challenging.

12

This complexity becomes evident in online forums or discussion channels, where
novices often struggle to grasp, for example, the concept of releases and experienced
developers admit that they have never used them even though they have a decade
of experience with Erlang/OTP[12].

The second challenge lies in the complezity of implementing a hot code up-
grade/downgrade. This process necessitates meticulously crafting multiple files
that detail the sequence and method for updating various Erlang/OTP applica-
tions and modules, as well as correctly defining a state transition function. This
function includes Erlang code to transform the state of the first version to that of
the second version. Both of these requirements are highly error-prone due to their
manual nature.

The complexity of the system and the implementation lead to the observation
that Erlang/OTP does not meet the ease-of-use property[20]. The ease-of-use
property suggests that, generally, the simpler the creation and application of an
update, the less chance there is of making an error. However, here, since the system
is complex and many steps in specifying an update are manual, the likelihood of
making a mistake is significantly increased.

The last difficulty lies in asserting the correctness of a hot code upgrade. Suc-
cessfully performing a DSU does not guarantee its correctness. An application
may manage to update without crashing but may end up in an invalid state, a fact
not lost on wary programmers who consequently approach DSU cautiously.

This problem highlights the necessity of verifying the correctness of updates, a
task made challenging by the inability to completely automate the writing of such
tests. For instance, transforming the state from a version to another might involve
complex business logic that a generic program for generating tests might not be
able to infer. The correctness property[20] states that a dynamic update should
not lead the system to an incorrect state.

This limitation leads to the necessity of creating manual tests, though these
tests can then be integrated into automated suites for regular execution, enhancing
confidence in code and configuration changes.

1.3 Contributions

1.3.1 Documentation for Erlang/OTP novices

This thesis introduces various concepts related to Erlang/OTP release by providing
concrete examples and step-by-step instructions to build the different components
required for their creation.

These concepts include hot code change, the creation of releases, both manually
and automatically, as well as the creation of updates. For the automated creation

13

of a release, Rebar3[22], the official build tool for Erlang is used.

Given that readers of this thesis may not be familiar with Erlang/OTP, the
goal of this introduction is to ensure that even someone with little or no experience
can understand the different steps involved in applying and creating a DSU for an

Erlang/OTP release.

1.3.2 Automatic generation of files related to DSU

HotCI, the tool developed for this thesis, leverages Rebar3 and its appup plugin
to automate the creation of the appups, relups, and the boot script files which
are used to describe how to apply an update. Normally, writing appups is done
manually. However, as a beginner, it is often hard to decide what instructions to
include inside an appup file. By automating their generation, HotCI improves the
ease-of-use of Erlang/OTP’s release system and reduces the potential for errors.

One of our hopes regarding this contribution is that simplifying the use of the
release system may lead to its democratization.

1.3.3 Semi-automated testing for Erlang/OTP release up-
grade and downgrade

HotCI’s biggest contribution is a semi-automated testing process for hot code
upgrades and downgrades. This process involves launching an Erlang/OTP release,
using a separate Erlang process to interact with and modify its state, executing the
upgrade, verifying that the state is correct, downgrading the release and asserting
that the final state is as expected. A comprehensive and detailed explanation of
this methodology can be found in chapter 5.

The robust method provided by HotCI for testing upgrades/downgrades is
crucial as it enhances their correctness, giving developers greater confidence in the
updates they create.

Previously, without HotCI, assessing the correctness of updates was a difficult
and cumbersome process. This led to the previously mentioned apprehension and
underutilization of the upgrade/downgrade feature.

By providing better tools for testing hot code upgrades and downgrades, the
hope is, once again, that this functionality will become more commonly used by
the community.

1.4 Roadmap

This Master’s thesis is structured into two main parts, each serving a distinct
purpose.

14

The first part encompasses chapters 2, 3 and 4. It serves as a foundational
knowledge base, introducing Erlang/OTP concepts essential for comprehending
the subjects discussed in the subsequent section. This segment represents the
compilation of all gathered information necessary for developing HotCI.

Chapter 2 introduces various Erlang/OTP concepts and mechanisms essential
for understanding how HotCI operates.

Chapter 3 digs into the process of building an Erlang/OTP release, both man-
ually and with the aid of state-of-the-art build tools. Understanding the structure
of a release is crucial for subsequent discussions.

Chapter 4 provides details on how to write and perform release upgrades and
downgrades.

The second part comprises chapters 5, 6, and 7 focusing on HotCI, the CI/CD
tool developed for this thesis.

Chapter 5 describes the HotCI tool, covering its development, design, objec-
tives, and usage.

Chapter 6 provides an evaluation of HotCI. It gauges overall user satisfaction,
gathers feedback, measures community reception, and analyzes execution dura-
tions.

Chapter 7 serves as the conclusion of this thesis and outlines future work
planned for this tool.

15

Chapter 2

Introduction to Erlang/OTP
releases concepts

2.1 Introduction

Erlang/OTP stands apart from many programming environments due to its pow-
erful mechanisms for seamless code updates in live systems. However, mastering
the specific concepts of the Erlang/OTP release system like dynamic code changes,
applications, and releases can present a steep learning curve. This chapter serves
as a primer, demistifying these concepts which are essential to understand the
creation and upgrade of a release as well as the contributions brought by HotCI.

Section 2.2 begins by introducing the concept of dynamic code changes, explain-
ing how Erlang/OTP allows for hot code upgrades by maintaining two versions
of each module’s code and allowing processes to transition between them. It also
details the code_change function, a key mechanism for managing state transitions
during code upgrades and downgrades of generic behaviors.

Section 2.3 details the project structure of Erlang/OTP projects, starting with
modules, the basic units of code organization. It then discusses applications, col-
lections of modules that can be started or stopped as a unit, and releases, complete
systems comprising applications. Finally, it touches upon appup and relup files,
which provide instructions for upgrading and downgrading applications and re-
leases, respectively.

By the end of this chapter, readers will have a grasp of the foundational con-
cepts underpinning Erlang/OTP’s releases and their hot code upgrade capabilities.

16

OO UIT NN P

2.2 Dynamic code change

The dynamic code change mechanism serves as the foundation of hot code upgrades
in Erlang/OTP.

A comprehensive explanation of the dynamic code change mechanism is pro-
vided in Armstrong’s thesis [10]. Here, a simplified overview is offered.

The Erlang system maintains two versions of each module’s code. In cases
where only one version of the code exists, a single version is retained.

Upon loading a new version of the code, processes have the option to carry
on with either the old version or transition to the new version. This decision is
achieved by invoking functions using their fully qualified names, i.e.,
module:function(), rather than solely referencing their name, function().

The subsequent examples are drawn from [10]

Listing 2.1: Upgrading to the new version with a fully qualified call

-module(m).

loop(Data, F) ->
receive
{From, Q} ->
{Reply, Datal} = F(Q, Data),
m:loop(datal, F)
end.

Initially, with a single version of the code present, the process is not updated
and its code remains unchanged. Figure 2.1 illustrates this situation.

However, upon loading another version of the module, the process upgrades to
the newer version due to the invocation of the loop function with its fully qualified
name on line 7. (See Figure 2.2)

Figure 2.1: Fully qualified call with a single version in the process

] Process

7 Empty

module:loop() O Active
Q O Inactive

) 1
0 1
Version 1 . Version 2 !
[1
[1

17

Figure 2.2: Fully qualified call with two versions in the process

O Process
! Empty
Process before the fully qualified call O Active

1 Inactive

module:loop()

RN

Version 1 Version 2

Process after the fully qualified call

Version 1 Version 2

Listing 2.2: Keeping the old version with a not fully qualified call

OO UITDNWN P

-module(m).

loop(Data, F) ->
receive
{From, Q} ->
{Reply, Datal} = F(Q, Data),
loop(datal, F)
end.

In this second code example and Figure 2.3, the process remains unaffected as
the call to loop is unqualified.

18

Figure 2.3: Not fully qualified call with two versions in the system

] Process
! Empty
Process before the call O Active
1 Inactive
loop()
Version 1 Version 2
Process after the call
Version 1 Version 2

It should be noted that ensuring compatibility between the new and old func-
tions, in this case the loop function, is the responsibility of the developer, a task
which is prone to errors.

2.2.1 The code_ change function

Within Erlang/OTP’s generic behaviors, dynamic code changes are facilitated
by the code_change() function. This function typically accepts three arguments,
though some behaviors may require more.

The first argument, 01dVSN, is the version to upgrade from or the version to
downgrade to. For upgrades, any data type is valid. Downgrades necessitate a
tuple in the format {down, Term}.

The State argument, second in order, represents the current state of the be-
havior. Its purpose is to enable the conversion of state data from its definition in
the current version to its definition in the target version.

19

V0O ~JO U DNWN B

The third argument, Extra, allows for the inclusion of supplementary informa-
tion if needed.

Upon successful execution, this function must return a tuple of the form
{ok, State}, where State is the transformed state. If an error arises, the func-
tion should return {error, Reason}, triggering a rollback to the previously active
version.

The following example illustrates an implementation of the code_change func-
tion within a gen_server.

Listing 2.3: code change example for a gen server

% Upgrade from 0.2.0 to the current version
code_change("0.2.0", State, _Extra) ->
% Apply modification to the state if necessary
% ...
{ok, NewState};

% Downgrade from the current version to the 0.2.0 version
code_change({down, "0.2.0"}, State, _Extra) ->

% Apply modification to the state if necessary

0,

% ...

{ok, NewState};

% Default case
code_change(_0ldVsn, State, _Extra) ->
{ok, State}.

2.3 Project structure

The following subsections introduce the project structure, illustrated in Figure 2.4,
employed in Erlang/OTP, progressing from the lower levels to the higher levels.

Figure 2.4: Tree representation of the project structure
Release

T T

Applicationl Application2

DN P TN

Modulel Module2 Modulel Module2 Module3

20

N O TN AN P

OVoOJOUITDNWN B

2.3.1 Modules

Erlang/OTP code is organized into modules. Each module comprises a sequence
of attributes and function declarations, each terminated by a period. An attribute
specifies a particular property of a module.

The following example is drawn from [6].

Listing 2.4: Example of an Erlang/OTP module

-module(m). % module attribute
-export([fact/1]). % module attribute

fact(N) when N>0 -> % beginning of function declaration

N o fact(N-1); % |
fact(0§ -> % |
1. % end of function declaration

2.3.2 Application

An application constitutes a collection of modules that can be initiated or termi-
nated as a cohesive unit and can also be repurposed in other systems.

It is worth noting that Erlang applications are sometimes likened to libraries
in other languages, potentially offering a helpful analogy for understanding their
structure and function.

The definition of an application is encapsulated within an application resource
file.

Listing 2.5: Example of an application resource file

{application, pixelwar, [

% A one-line description of the application.

{description, "An OTP application"},

% Version of the application.

{vsn, "0.3.0"},

% ALl names of registered processes started in this application.

{registered, [1},

% Specifies the application callback module and a start argument

{mod, {pixelwar_app, [1}},

% ALl applications that must be started before this application

is started.

{applications, [
kernel, % A1l applications depend on kernel and stdlib
stdlib

1},

% Configuration parameters used by the application.

{env, []},

% A1l Modules introduced by this application

21

18

19
20
21

OVoOJOUITDNWN -

=

{modules, [pixelwar_app, pixelwar_matrix_serv, pixelwar_matrix,
pixelwar_supl},
{licenses, ["Apache-2.0"1},
{links, [1}
1}.
Appup

An appup file serves as a recipe for handling the upgrade or downgrade of an
application within a running release.

It provides detailed instructions for transitioning from a specific version to
another, encompassing directives for both upgrading and downgrading scenarios.
These instructions dictate which modules require reloading, which applications
should be upgraded/downgraded, and other pertinent details necessary for a seam-
less transition.

Listing 2.6: Example of an appup file using high-level instructions

{"0.3.0", % New version
[{"08.2.0", [% Upgrade from
{add_module, pixelwar_matrix},
{update, pixelwar_matrix_serv, {advanced, []}}
131,
[{"0.2.0", [% Downgrade to
{delete_module, pixelwar_matrix},
{update, pixelwar_matrix_serv, {advanced, []}}

1}]

The instructions contained within the appup file are typically categorized into
two distinct levels: high-level and low-level. High-level instructions are automati-
cally translated into their low-level counterparts during processing. It is strongly
advised that developers exclusively utilize high-level instructions when composing
an appup file.

Conventionally, appups are manually crafted by developers. Resources such as
the appup cookbook [2] can aid developers in the creation of appups. Nevertheless,
due to the manual nature of the process and the absence of a validation phase, it
is susceptible to errors.

One proposed solution to mitigate this issue is the implementation of tools to
automate the generation of appups. Such tools will be investigated in chapter 5.

2.3.3 Release

A release is a complete system composed of a set of custom applications and a
subset of Erlang/OTP applications from the standard library.

22

CNUITDNWWN P

NN P

Releases are defined by a release resource file. It is required from the developer
to define the name and version of the release, which Erlang runtime system (ERTS)
version is used and which applications are part of it:

Listing 2.7: Example of a release resource file

{release, {"pixelwar", "1.0.0"}, {erts, "14.0"},
[
{sasl, "4.2.1"}, {pixelwar, "1.0.0"},
{stdlib, "5.0"}, {kernel, "9.0"}
]
.
Relup

A relup file closely resembles an appup file and functions as a descriptor outlining
the steps for upgrading or downgrading a release within a running system.

The format of a relup file mirrors that of appup files. However, it includes a
translation of all the high-level instructions from all the appup files into low-level
instructions, arranged in an order defined by the boot script associated with the
release.

The generation of a relup file is automated by invoking the
systools:make_relup function.

Listing 2.8: Relup file structure

{Vsn,
[{UpFromVsn, Descr, Instructions}, ...],
[{DownToVsn, Descr, Instructions}, ...1}.

2.4 Conclusion

In conclusion, this chapter has established a foundational understanding of the
core Erlang/OTP concepts essential for creating and upgrading releases.

Building upon this knowledge, the subsequent chapter will explore the practical
aspects of release creation, exploring both manual and automated approaches, and
showcasing the complexity of this task.

23

Chapter 3

Building a release in Erlang/OTP

3.1 Introduction

This chapter provides the necessary knowledge to construct releases within Er-
lang/OTP, a required step before undertaking hot code upgrades which are one of
the main concerns of HotCI.

Section 3.2 offers a manual, step-by-step guide to constructing a release, provid-
ing insights into the underlying mechanisms. It details the creation of application
and release resource files, the generation of boot scripts, and the packaging and
deployment of the release.

Section 3.3 introduces Rebar3, a state-of-the-art build tool that simplifies the
release creation process. It highlights Rebar3’s key features and demonstrates its
extensive integration within HotCI.

By the end of this chapter, readers will be equipped to build a release, either
manually or using Rebar3.

3.2 Manually building a release

3.2.1 Before starting

This section draws inspiration from both the OTP releases by hand [23] and Build-
ing Erlang applications the hard way [19] blog posts, adapting their instruction to
a subset of the Pixelwar application.

Pixelwar, an Erlang/OTP release and application that takes inspiration from
the Reddit r/places web page (a collaborative pixel art game where users paint on
a shared digital canvas), serves as a testing ground to ensure the functionality of
HotCI.

24

The specific functionality of each module included in Pixelwar is not pertinent
to this discussion; therefore, further elaboration will be omitted. However, for the
sake of replicability, the source code is available under Appendix A.1.

The following sections assume that the following file structure is used:

Figure 3.1: Initial file structure for section 3.2.1
pixelwar/

ebin/

src/

— matrix.hrl
+— pixelwar_app.erl
+— pixelwar_matrix.erl

+— pixelwar_matrix_serv.erl

«— pixelwar_sup.erl

3.2.2 Writing an application resource file

Once the logic has been separated into individual modules, the initial step in
creating an application involves writing an application resource file. Below is an
example of such a file for the Pixelwar application:

Listing 3.1: Application resource file for the Pixelwar application

ONVOJOUIDNWNBE

=

=
=

% file: pixelwar/src/pixelwar.app.src

{application, pixelwar, [
{description, "Yet another r/place clone"},
{vsn, "1.0.0"},
{registered, [1},
{mod, {pixelwar_app, [1}},
{applications, [kernel, stdlibl},
{env, [1},
{modules, [pixelwar_app, pixelwar_matrix_serv, pixelwar_matrix,
pixelwar_supl}

1t.

Next, the modules are compiled, and their binaries, along with the application
resource file, are relocated to the ebin folder. The functionality of the application
is then verified by starting the application and listing all active applications.

25

[N

VOO ~JO U DNWNBE

POVOJOCUDNWNE

Listing 3.2: Compiling and running the Pixelwar application

% dir: pixelwar/

erlc -o ebin src/4.erl
cp src/pixelwar.app.src ebin/pixelwar.app
erl -pa ebin

1> ok = application:start(pixelwar).

ok

2> application:which_applications().
[{pixelwar,"Yet another r/place clone","1.0.0"},
{stdlib,"ERTS CXC 138 10","5.0"},
{kernel,"ERTS CXC 138 10","9.0"}]

The function call at line 7 returns successfully with an ok value, while the call
at line 9 showcases the various applications included in our application resource
file, including the Pixelwar application, as anticipated.

3.2.3 Writing a release resource file

With the application resource file written, the next step is to create a release
including this application.

In addition to the Pixelwar application, it is imperative to include other essen-
tial applications such as Kernel, Stdlib, and SASL. Kernel and Stdlib are mandatory
dependencies as they form the foundation upon which all applications rely. SASL
is also required as it manages release handling processes.

To determine the versions of these various modules and the version of the
ERTS, the following commands can be executed.

Listing 3.3: Finding versions of the required applications and the ERTS

% dir : pixelwar/

3> application:start(sasl).

ok

4> application:which_applications().
[{sasl,"SASL CXC 138 11","4.2.1"},
{pixelwar,"Yet another r/place clone","1.0.0"},
{stdlib,"ERTS CXC 138 10","5.0"},
{kernel,"ERTS CXC 138 10","9.0"}]

5> erlang:system_info(version).

"14.0"

Once all this information has been gathered, a pixelwar.rel file, containing
these applications along with their respective exact versions, can be written.

26

Listing 3.4: Release resource file for the Pixelwar application

O~JOoOUIT NN P

% file: pixelwar/ebin/pixelwar.rel

{release, {"pixelwar", "1.0.0"}, {erts, "14.0"},
[
{sasl, "4.2.1"}, {pixelwar, "1.0.0"},
{stdlib, "5.0"}, {kernel, "9.0"}

3.2.4 Generating a boot script

The boot script describes how the Erlang runtime system (ERTS) is started. It
contains instructions on which code to load and which processes and applications
to start|[7].

To generate the boot script, the systools module and the make_script function
are used. The make_script function takes two arguments: the name of the script
and an array of options. In this instance, the path option is included to instruct
the make_script function to generate a script from the files located in the current
directory.

Listing 3.5: Generating a boot script

CNUITDNWWN P

% dir: pixelwar/ebin
erl

1> systools:make_script("pixelwar", [{path, ["."1}1).
ok

After generating the script, the next step is to proceed with launching the
release and interacting with it to ensure that it is functioning as intended.

Listing 3.6: Launching the release with the boot script and testing some functions

OVOJOUITDNWN PP

=

% dir: pixelwar/ebin
erl -pa . -boot pixelwar

1> {ok, Pid} = pixelwar_sup:add_matrix("SomeName").
{ok,<0.100.0>}

2> pixelwar_matrix_serv:set_element("SomeName", {42, 42, 2}).
ok

3> pixelwar_matrix_serv:get_state("SomeName").
<<42,0,42,0,2,0>>

27

VOO ~JOUIDNWN PP

=
(<]

VOO ~JO U DNWN B

3.2.5 Creating a release package

First, a folder in which the release will reside is created. Subsequently, a tarball
containing the release is generated using the make_tar function from the systools
library.

The make_tar function takes two arguments: the name of the tarball and a list
of options. In this case, the erts, path, and outdir options are used. The erts
option specifies the location of the ERTS installed on the machine, while the path
option indicates the source location of the release files. Finally, the outdir option
determines the destination directory for the generated tarball.

Listing 3.7: Packing the release

% dir: pixelwar/

mkdir -p _rel/pixelwar
cd ebin
erl

1> R = code:root_dir().

"/path/to/erlang"

2> systools:make_tar("pixelwar", [{erts, R}, {path, ["."1}, {outdir,
"../_rel/pixelwar"}]).

ok

3.2.6 Starting the release

Now that the release is packaged, it is possible to emulate uploading the release
to a server by unpacking the release into the /tmp folder and, then, starting it.
Unpacking and starting the release can be done with the following steps:

Listing 3.8: Deploying, starting and interacting with the release

% dir: pixelwar/_rel/pixelwar

mkdir /tmp/pixelwar

tar -xf pixelwar.tar.gz -C /tmp/pixelwar

cd /tmp/pixelwar

./erts-14.0/bin/erl -boot releases/1.0.0/start

1> {ok, Pid} = pixelwar_sup:add_matrix("SomeName").
{0k,<0.100.0>}

2> pixelwar_matrix_serv:set_element("SomeName", {42, 42, 2}).
ok

3> pixelwar_matrix_serv:get_state("SomeName").
<<42,0,42,0,2,0>>

28

Every function call behaves as before. We can then conclude that this last step
is successful.

3.2.7 Conclusion

This section has provided a detailed walkthrough of the manual crafting process
involved in creating a release for the Pixelwar application.

The essential steps have been introduced, from writing application and release
resource files to generating boot files, creating release packages and simulating the
deployment and start of the release.

This hands-on approach provides a deeper understanding of the release creation
process and demonstrates that creating a release is not a straightforward task,
highlighting the need for an accessible build tool.

This tool is named Rebar3 and its functionalities will be introduced in the
following section.

3.3 Building a release with Rebar3

3.3.1 Before starting

This sections starts with the identical file structure as the one depicted in Fig-
ure 3.1.

3.3.2 Writing an application resource file

The inclusion of the application resource file remains necessary. The existing
application resource file, from subsection 3.2.2 can be retained and placed at the
same location as before.

Afterward, as in subsection 3.2.2, we proceed to compile our modules. This
operation is easily accomplished with Rebar3 by entering the following command
into the terminal:

rebar3 compile

3.3.3 Writing a rebar.config file

A minimal rebar.config file appears as follows. It is worth noting that there is
no need to include kernel or stdlib in the dependencies, as Rebar3 recognizes that
both kernel and stdlib are necessary for all applications.

29

CNUITDNWWN P

Listing 3.9: A minimal rebar.config file for Pixelwar

% file: pixelwar/rebar.config

{relx, [{release,
{pixelwar, "0.1.0"}, % {Name of the release, Version}
[pixelwar,sasl]}] % [dependencies]

To generate the release, simply enter this command:

rebar3 release

3.3.4 Creating a release package

Creating a release package is as simple as generating a release. It is done by
executing the following command:

rebar3 tar

The release package is now built and accessible at:
pixelwar/_build/default/rel/pixelwar/pixelwar-0.1.0.tar.gz

3.3.5 Starting the release

The last step, like with the manual building of a release, is to emulate the deploy-
ment and the start of the release.

Unpacking and starting the release built with Rebar3 can be done with the
following steps:

Listing 3.10: Deploying, starting and interacting with the release

% dir: pixelwar

mkdir /tmp/pixelwar

tar -xf _build/default/rel/pixelwar/pixelwar-0.1.0.tar.gz -C /tmp/
pixelwar

cd /tmp/pixelwar

./bin/pixelwar-0.1.0 console

1> {ok, Pid} = pixelwar_sup:add_matrix("SomeName").
{ok,<0.100.0>}

2> pixelwar_matrix_serv:set_element("SomeName", {42, 42, 2}).
ok

3> pixelwar_matrix_serv:get_state("SomeName").
<<42,0,42,0,2,0>>

30

3.3.6 Conclusion

This section has showcased how Rebar3 streamlines the process of creating releases
and provided insights into its functionality.

Understanding these aspects will prove extremely useful in comprehending the
subsequent sections, which extensively rely on Rebar3.

3.4 Conclusion

In conclusion, this chapter has provided a comprehensive guide to building releases
in Erlang/OTP. Both manual and automated approaches were explored, shedding
light on the procedure to create a release and the simplified process offered by the
Rebar3 tool.

Understanding the creation of a release, the writing of resource files and the
generation of a boot script lays a solid foundation for exploring hot code upgrades
in the subsequent chapter.

31

Chapter 4

Building a hot code upgrade in
Erlang/OTP

4.1 Introduction

This chapter examines the creation of hot code upgrades in Erlang/OTP, providing
a comprehensive understanding of their development and application.

Section 4.2 guides readers through building the first version of a release, detail-
ing the steps involved in generating a release template, modifying it with simulated
changes, and compiling modules to create a functional release.

Section 4.3 explores the process of applying modifications to the Pixelwar appli-
cation, introducing new modules and records, and implementing the code_change
function to ensure state transition between versions. Additionally, this section
covers the creation of appup files, which contain instructions for upgrading and
downgrading the application.

Section 4.4 focuses on executing the upgrade of the release, encompassing tasks
such as packing the new version, moving it to the appropriate folder, and initiating
the upgrade process.

To simulate the typical workflow of an Erlang/OTP developer, this section
utilizes the Rebar3 build tool, simplifying the process and displaying the state-
of-the-art of hot code upgrade creation. As manual release building has been
extensively covered in previous sections, this approach allows for a more focused
and efficient demonstration of hot code upgrade implementation.

The previous chapter used the files from the 1.0.8 version of Pixelwar. How-
ever, since this version necessitates a full virtual machine restart for upgrades, it is
unsuitable for demonstrating the potential of hot code upgrades. Therefore, this
section uses both Pixelwar version 0.2.0 and 0.3.0, which offer a more conducive
scenario for illustrating hot code upgrade capabilities. Precisely, version 8.3.0 of

32

gaDNwuN -

Pixelwar introduces changes, such as the separation of logic between modules and
a new representation of the pixel matrix’s state.

4.2 Creating a release including Pixelwar version
0.2.0

4.2.1 Building the release

To initiate the process, a release template is generated using Rebar3. This is
achieved by running the following command:

rebar3 new release pixelwar

Successful execution of this command will create and populate the pizelwar
folder.

Next, the release template is modified by simulating changes. The files from
version 0.2.0 are copied into the pizelwar directory. These files are located under
Appendix A.2, which also details their placement within the directory tree.

With the necessary modifications made, it is now time to compile the modules
and build a release by executing both the compile and release commands from

Rebar3:

cd pixelwar && rebar3 compile && rebar3 release

4.2.2 Running the release

After successfully building the release, the next step is to launch it.

To prepare for a later demonstration of the hot code upgrade, opening a new
terminal and keeping it open is recommended.

Launching the release and accessing its console is achieved with the following
bash command:

./_build/default/rel/pixelwar/bin/pixelwar-0.2.0 console

To ensure a noticeable change when testing the hot code upgrade, the state of
the release can be modified using the following commands.

Listing 4.1: Modifying the release’s state

1> pixelwar_matrix_serv:set_element(matrix, {42, 42, 12}).
ok
2> pixelwar_matrix_serv:set_element(matrix, {42, 42, 42}).
ok
3> pixelwar_matrix_serv:set_element(matrix, {11, 12, 13}).

33

6 |ok
7 |4> pixelwar_matrix_serv:get_state(matrix).

8

N

<<11,0,12,0,13,0,42,0,42,0,42,0>>

The API of the Pixelwar application exhibits slight differences compared to
the previous chapter; nevertheless, these outputs serve to confirm that our release
operates as anticipated.

4.3 Updating the release to include Pixelwar ver-
sion 0.3.0

4.3.1 Applying modifications to the Pixelwar application

Following the previous step, the release template is updated by incorporating files
from version 0.3.0 into the pizelwar directory. Detailed information about these
files, including their structure within the directory tree, can be found in Appendix
A3.

It is worth noting that these files increment both the application and release
versions in the pixelwar.app.src and rebar.config files.

During the development of the 8.3.0 version, it was decided that the logic for
managing the matrix should be segregated into its own module and record. Conse-
quently, the pixelwar_matrix module and the matrix header file were introduced.

It is essential to recognize that the 8.2.0 and 0.3.0 versions employ different
records to represent the state of the pixelwar_matrix_server. Therefore, defining
a transition from the initial representation of the state to the subsequent one
becomes imperative. Fortunately, OTP provides a mechanism precisely for this
purpose.

Within the pixelwar_matrix_server, the code_change callback is implemented.
The first argument of this callback indicates to the server whether it is being
upgraded or downgraded to a given version, the second argument represents the
current state of the server, and the third argument can be used to pass extra
arguments.

Notably, the version used by the code_change callback is the module version
number. This elucidates why, at line 2 of the following listing, a module version
is explicitly defined using the -vsn() directive.

Listing 4.2: -vsn directive present in the pixelwar matrix serv module

-module(pixelwar_matrix_serv).
-vsn("0.3.0").

34

VOO ~JO U DNWN B

g DNWwWN -

However, it appears that within the Erlang/OTP community, there is a pref-
erence for leveraging pattern matching to match the version of the State. If this
approach were adopted here, the -vsn() directive would become unnecessary, and
a version number would be appended at the end of the name of the state record.

Listing 4.3: code change implementation to transition from 0.2.0 to 0.3.0

% Upgrade from 0.2.0 to the current version

code_change("0.2.0", State, _Extra) ->
{_, Pixels, Width, Height} = State,
{ok, Matrix} = pixelwar_matrix:create(Width, Height, Pixels),
{ok, #state{matrix = Matrix}};

% Downgrade from the current version to the 0.2.0 version
code_change({down, "0.2.0"}, State, _Extra) ->

{_, {_, Pixels, Width, Height}} = State,

{ok, {state, Pixels, Width, Height}};

% Default case
code_change(_0ldVsn, State, _Extra) ->
{ok, State}.

The previous code snippet might be hard to comprehend for those who are
new to the language. To clarify, a record is a tuple whose first element is an atom
representing the record’s name, followed by the remaining elements which define
the record’s attributes.

Listing 4.4: The matrix record and its equivalent tuple representation

% This reconrd
#matrix{Pixels, Width, Height}

% Is equivalent to this tuple
{matrix, Pixels, Width, Height}

To migrate the state record from version 0.2.0, which had the form
#state{Pixels, Height, Width}, to the state record in version 0.3.0, which has
the form #state{Matrix}, a data transformation process is required. This process
involves extraction of values from the old state record, creation of a matrix record
introduced in the new version, and encapsulation of this matrix record within the
new state record.

Conversely, in the reverse direction, pattern matching on the state record and
the matrix record enables extraction of Pixels, Width, and Height from the matrix
record. Subsequently, a new tuple is created with the state atom as its first
argument to reconstruct the equivalent of the state record from version 0.2.0.

35

=

O VO JOUIDNWN B

Writing an appup for the Pixelwar application

The appup file, to be located at /apps/pizelwar/src/pizelwar.appup.sre, will in-
clude instructions for both upgrading and downgrading the application.

For upgrading, the add_module instruction signifies the addition of a new mod-
ule in the current version, while the update instruction indicates that the
code_change function needs to be executed to transition from one version of the
module to the other.

Conversely, for downgrading, the delete_module instruction informs the system
that a particular module is no longer required and should be removed, while the
update instruction ensures that the code_change function is invoked to revert the
application to its previous state.

Listing 4.5: Pixelwar’s appup to transition between 0.2.0 and 0.3.0

{"0.3.0", % New version
[{"0.2.0", [% Upgrade from
{add_module, pixelwar_matrix},
{update, pixelwar_matrix_serv, {advanced, []}}
1H1,
[{"08.2.0", [% Downgrade to
{delete_module, pixelwar_matrix},
{update, pixelwar_matrix_serv, {advanced, []}}

1}]

After composing the appup file, it needs to be copied to the _ build/default-
/lib/pizelwar/ebin directory to be incorporated into the build. This is accom-
plished using the following command:

cp apps/pixelwar/src/pixelwar.appup.src _build/default/1lib/pixelwar/
ebin/pixelwar.appup

Executing this command will copy the pixelwar.appup.src file from its original
location to the specified destination, ensuring its inclusion in the build.

4.3.2 Generating a relup for the release

To generate a relup, the initial step involves creating a release of this new version.
This process, as previously outlined, entails executing the command:

rebar3 compile && rebar3 release

Subsequently, the relup file can be generated using Rebar3. This is accom-
plished with the rebar3 relup command, in this instance:

rebar3 relup -n pixelwar -v "0.3.0" -u "0.2.0"

36

The -n parameter specifies the release name, -v denotes the new version, and
-u indicates the version from which the upgrade will occur.

4.4 Executing the upgrade of the release

4.4.1 Packing the new version of the release

For upgrading from one version to another, the release_handler module, inte-
grated within the SASL application, necessitates a tarball of the new version.
Hence, the subsequent step is to package the generated release using the following
command:

rebar3 tar -n pixelwar -v "0.3.0"

4.4.2 Moving the new release to the running release’s folder

This step emulates the process of uploading the tarball of the new version to a
server that is currently running the previous version.

Given that the previous version was launched directly from the _ build folder,
the new packed version can be moved to the _ build/default/rel/pizelwar/releas-
es/0.3.0/ directory using the following command:

mv _build/default/rel/pixelwar/pixelwar-0.3.0.tar.gz _build/default/
rel/pixelwar/releases/0.3.0/pixelwar.tar.gz

It is noteworthy that the tarball is renamed to eliminate the version from its
name, considering that the parent folder already includes the version within its
name.

4.4.3 Upgrading the release

Conveniently, the executable generated by Rebar3 includes a command for up-
grading the release. Upgrading the release to the new version is done with the
following command:

_build/default/rel/pixelwar/bin/pixelwar-0.2.0 upgrade "0.3.0"

4.4.4 Testing that the upgrade has been applied

Verifying that the upgrade has been successfully applied can be done by asessing
the state of the system and its version.

37

VOO JOUIIDNWN P

To confirm the persistence of the inserted pixels from the previous version, the
following command can be executed in the terminal which remained open:

pixelwar_matrix_serv:get_state(matrix).

Subsequently, to confirm the successful upgrade of the release to the new ver-
sion, the following command can be used:

release_handler:which_releases().

Upon execution, the output should indicate the presence of pixels from the
previous version and display the updated version of the Pixelwar application as
0.3.0. Based on these observations, it can be deduced that the upgrade has been
successfully applied.

Listing 4.6: Output after applying the upgrade

5> pixelwar_matrix_serv:get_state(matrix).

<<11,0,12,0,13,0,42,0,42,0,12,0>>

6> release_handler:which_releases().

[{"pixelwar","0.3.0",
["kernel-9.0","stdlib-5.0","pixelwar-0.3.0","sasl1-4.2.1"],
permanent},

{"pixelwar","0.2.0",
["kernel-9.0","stdlib-5.0","pixelwar-0.2.0","sas1-4.2.1"],
old}]

4.5 Conclusion

Despite leveraging Rebar3, it is evident that numerous steps are still necessary
to compose and execute an upgrade. This complexity, alongside the intricacies
involved in building a release mentioned in the previous chapter, explains why
developers frequently find themselves apprehensive about employing these capa-
bilities.

In the following section, the simplification of this process and the automatic
and robust testing of hot code upgrades via HotCI will be discussed.

38

Chapter 5

HotClI

5.1 Introduction

As seen in previous sections, intricacies of writing appups and relups, and ensuring
the correctness of DSUs pose a significant challenge for developers which lead to
the underutilization of Erlang’s release mechanism.

This chapter introduces HotCI, an automated tool designed to simplify the
upgrade and downgrade processes for Erlang/OTP releases by automating the
generation of appups and relups, thereby enhancing ease-of-use and providing
mechanisms for robustly testing hot code upgrades/downgrades to improve the
system’s correctness.

Section 5.2 discusses the Dandelion project, which serves as the foundation for
HotCI. It explains the core concept of Dandelion, its components, and its CI/CD
workflows.

Section 5.3 digs into the three GitHub workflows that comprise HotCI: erlang-
ci, relup-ci, and publish-tarball. Each workflow is described in detail, outlining its
purpose, execution steps, and the tools it employs.

Section 5.4 provides a practical example of how to use the HotCI template
by demonstrating the step-by-step process from project setup to the creation and
testing of two distinct releases.

Section 5.5 addresses the limitations of HotCI, including its reliance on GitHub
Actions and the challenges of maintaining the GitHub template. It also provides
solutions and workarounds for these limitations.

By the end of this chapter, readers will gain a comprehensive understanding of
the HotCI project, its guiding principles, and its practical application in simplify-
ing the development and testing of hot code upgrade/downgrade of Erlang/OTP
applications.

39

5.2 The Dandelion project

HotCI originated from the structure presented in the Dandelion project [14]. Dan-
delion was initially created for, and featured in, the article My Favorite Erlang
Container by Fred Hebert on his blog [15].

Dandelion’s core functionality centers around a self-upgrading Kubernetes con-
tainer comprising three distinct pods. The first pod executes the Erlang/OTP re-
lease, while the second routinely queries an Amazon S3 bucket, an object storage
service, for the latest software release. Upon detecting a new release, the third
pod triggers the update process.

Dandelion also introduces CI/CD workflows designed to enhance the coding
and testing experience. These workflows automate unit tests, verify that hot code
upgrades can be applied without failing, build releases without manual appup/re-
lup creation, and publish the releases to S3.

5.3 Workflows

While HotCI does not focus on Kubernetes and thus does not rely on the con-
tainer itself, it builds upon Dandelion’s CI1/CD pipelines. HotCI extends them by
adding features such as hot code upgrade/downgrade testing, GitHub-integrated
test reports, and publication of releases to GitHub instead of S3.

HotCl is divided into three GitHub workflows, mirroring those in the Dandelion
repository, namely erlang-ci, relup-ci, and publish-tarball. These workflows will be
detailed individually in the following subsections.

5.3.1 First workflow: Erlang-CI

Introduction

erlang-ci is the first workflow of HotCI. It performs unit testing with Common
Test[3], static analysis with Dialyzer[5], cross-reference analysis with Xref[8] and
builds the release. These tools are employed to detect a wide range of potential
issues, including unintended changes in module behavior, type errors, wrong refer-
ences and obsolete code. Building the release further validates the overall integrity
of the project and its configuration files. These checks collectively enhance both
the correctness and the maintainability of the codebase.

40

VOO ~JO U DNWN B

Execution

Figure 5.1 describes the execution of the erlang-ci workflow through a flow dia-
gram.

Triggering the workflow This workflow is run each time a commit is pushed to
the main branch or made in a pull request that is derived from the main branch.
This trigger ensures that every commit that modifies or will modify the main
branch is tested.

Setting up the workflow’s virtual machine The initial steps of this work-
flow, executed within the first two GitHub Actions, involve cloning the Git repos-
itory containing the release’s code and installing Erlang/OTP, Rebar3, and the
BEAM, Erlang’s virtual machine. This initial setup is necessary to perform the
different operations detailed in the next sections.

Performing static analysis with Dialyzer First, Dialyzer, a static analysis
tool included in Erlang/OTP’s standard library, is employed to identify software
discrepancies such as definite type errors. This analysis ensures the maintenance
of code quality and correctness.

Dialyzer bases its analysis on the concept of success typing [18], which allows
for accurate warnings without false positives. However, it is important to note
that, as success typing is optimistic, it is still possible to encounter some runtime
erTors.

The following snippet of code, taken from [18], is an example of the kind of
runtime error that it misses due to its optimism.

Listing 5.1: Runtime error missed by Dialyzer because of its optimism

% Idiomatic piece of Erlang code
and(true, true) -> true;
and(false, _) -> false;
and(_, false) -> false.

% Success typing will result in

% (any(), any()) -> bool().

% Meaning that it will not complain with the following function call
and(42, life).

Detecting dead code and erroneous function calls with Xref Secondly,
Xref detects various issues such as calls to undefined functions, unused variables
and usage of deprecated functions within the codebase. By detecting these issues,

41

Xref ensures that the quality of the code remains high, thereby enhancing code
maintainability.

Trying to build the release with Rebar3 Thirdly, the release build process
is executed with Rebar3 to validate the configuration provided with the release
and ensure the successful generation of a deployable artifact.

Running unit tests with Common Test Fourthly, unit tests allow developers
to verify that the modifications they have made to the code base do not modify
the intended behaviors of the different modules. These unit tests are conducted
thanks to the Common Test module available in Erlang’s standard library.

Uploading test artifacts Furthermore, the test artifacts are uploaded to
GitHub thanks to the actions/upload-artifact@v4 GitHub Action. This enables
developers to later download the test reports generated by Common Test and
analyze them.

Publishing test results Additionally, the
EnricoMi/publish-unit-test-result-action@v2 GitHub Action publishes test re-
port summaries to both the pull request associated with these changes and to the
Actions tab of the GitHub repository.

While not strictly necessary, this action enables developers to quickly view
the test results without the need to download the test artifacts and consult them
manually.

It is worth noting that this action does not work out-of-the-box with Common
Test. The reason is that CT exports its results as HI'ML while this action expects
XML produced by the JUnit tool or JSON|21].

Thankfully, Common Test provides hooks which allow extending its default
behavior[4]. In this case, the built-in cth_surefire hook is used to generate Surefire
XML instead of HTML, thus making the CT export compatible with the GitHub
Action.

42

Figure 5.1: Execution of the erlang-ci workflow

Start
Commit to main
or commit to
a pull request
derived from main

L

actions/check-
out@v4
Clone the repository

|

Validation|checks job

erlef/setup-
beam@v1
Install Erlang, Re-
bar3 and the BEAM

O Start/End

[J Condition

[J GitHub action
[J Other

O Job

Build job

Xref and Dialyzer
Run validation checks

rebar3 do re-
lease, tar
Try to build
the release

Unit test job

Common Test
Run unit tests

End

End

43

actions/upload-
artifact@v4
Upload test artifacts

|

EnricoMi/publish-
unit-test-result-
action@v?2
Publish test summary

End]

Conclusion

In conclusion, the erlang-ci workflow ensures the maintainability and correctness of
the code through the series of automated steps described in the previous sections.
These steps largely mirrors that of the Dandelion repository, with the key
enhancements being the introduction of GitHub Action for publishing test artifacts
and summaries and the removal of the Rebar3 check alias to ensure seamless
compatibility with existing projects by preventing potential alias conflicts.

5.3.2 Second workflow: Relup-CI

Introduction

The relup-ci workflow, the second workflow of HotClI, features a significant con-
tribution of this Master’s thesis: a test suite designed to test the upgrade and
downgrade of an Erlang/OTP release. This test suite is essential to guarantee the
update’s correctness and boost developer confidence in the process.

In addition, relup-ci incorporates a custom script for version number verifica-
tion, contributing to improved ease-of-use by alerting developers if they inadver-
tently forget to increment the version number.

Execution

Figure 5.2 describes the execution of the relup-ci workflow through a flow dia-
gram and Figure 5.3 illustrates the execution of the upgrade/downgrade test suite
employed in relup-ci.

Triggering the workflow This workflow is run each time a commit is made
in a pull request that is derived from the main branch. This trigger was selected
because HotCI operates under the assumption that each new version of the release
is developed within its own branch.

Setting up the workflow’s virtual machine The steps to setup the relup-ci
workflow are the same as those described for erlang-ci in subsection 5.3.1.

44

Figure 5.2: Execution of the relup-ci workflow

Upgrade Downgrade Test job

Start
Commit to a
pull request de-
rived from main

1

actions/check-
out@v4
Clone the repository

1

erlef/setup-
beam@v1
Install Erlang, Re-
bar3 and the BEAM

1

Has previous
version tag 7

O Start/End

[J Condition

[J GitHub action
[J Other

O Job

1 Yes

check_ ver-
sions script
Check the version
and build the releases

No

1

Does the release
require a restart ?

| Yes

Common Test
Execution of the
upgrade down-
grade test suite
(See figure 5.3)

GitHub step

summary

Write that the
checks are skipped

T

Remove releases
To save space

|

actions/upload-
artifact@v4
Upload test artifacts

3L

EnricoMi/publish-
unit-test-result-
action@v2
Publish test summary

End

45

Verifying that a previous Git version tag exists Once the setup is done,
the initial step involves this command:

git tag -1 --sort=committerdate 'vg.4.4' | tail -n 1

This command is used to extract the latest Git tag adhering to the regex format,
v[0-91+.[0-9]1+.[0-9]+, used for defining versions, within the Git repository.

The necessity of this step arises from the premise that conducting an upgrade/-
downgrade test is futile if no previous version exists. Moreover, it ensures that the
absence of tags does not cause the workflow to register as a failure.

Using the check_ version script The second step involves an adaptation of
the script found in Dandelion. This adaptation was necessary because due to a bug
present in the original script which occurs when no older version exists. Specifically,
the pattern matching on line 53 fails to match the tuple {_, Vsn} because false
is returned when no older version is present (see Appendix D). Additionally, a
method for passing arguments was required to seamlessly integrate this script into
the CI/CD pipeline.

This script serves to verify the correct incrementation of version numbers in
both the application resource files and the release resource file. In doing so, it
enhances the correctness and ease-of-use of the system by warning the developer
that the version bumps have been overlooked or that errors have been made during
the modification of the versions.

Furthermore, it checks if the new version necessitates a full restart of the virtual
machine. A full restart would prevent any hot code upgrades from being applied.
Therefore testing a hot code upgrade for this version is pointless.

This verification is made possible by the Restart number defined in the
Smoothver versioning scheme which is employed in this template.

Once all these verifications are completed, the script packages the first release
into a tarball, generates appups for each application in the newest release, generates
the relup required to transition from one version to the other using the appup files,
and packages the second release into another tarball.

Smoothver The Smoothver versioning scheme, introduced in My Favorite Er-
lang Container[15], is tailored for Erlang/OTP projects and can be summarized
as the following.

Given a version number RESTART.RELUP.RELOAD, increment the:

o« RESTART version when you make a change that requires the
server to be rebooted.

46

« RELUP version when you make a change that requires pausing
workers and migrating state.

o RELOAD version when you make a change that requires reloading
modules with no other transformation.

Running the upgrade/downgrade test The third step, which constitutes the
primary contribution of this master thesis, focuses on correctness.

Included in the HotCI template is a test suite for hot code upgrades and down-
grades, located under the test folder and named upgrade_downgrade_SUITE.

This test suite is provided with multiple cases executed in the sequence depicted
in Figure 5.3.

The cases highlighted in green, related to upgrading/downgrading the release,
are already implemented in upgrade_downgrade_SUITE because these operations are
generic and applicable to any release.

Conversely, the cases marked in orange are to be implemented by the user of
HotClI, as they are project-specific.

First version The initial version of this test suite made use of separate
bash scripts for each test case, interacting with the release executable provided by
Rebar3.

Although functional, this approach proved inconvenient, thus failing to meet
the ease-of-use criterion. Challenges arose due to the necessity of making calls to
the executable, and the process of translating Erlang’s binary representation into
bash was cumbersome.

Moreover, this method resulted in an increase in the length of the workflow file
and decreased its readability. (See Appendix B.1)

47

Figure 5.3: Execution of the upgrade downgrade test suite

O Start/End

Start] [] To be implemented by the user

[] Provided in test suite

Modify
and test
the state

of the
release

Upgrade
the release

Test the
state of
the release

Modify the
state of
the release

Down-
grade the
release

Testing
the state

of the
release

Stop]

48

Second version Due to the inconvenience of using bash for conducting tests,
a more suitable tool was researched. Robot Framework, a test automation frame-
work, appeared promising due to its user-friendly nature and its extensibility
through Python modules. Hence, it was selected for the second iteration of this
test suite.

The foundation of this test suite remains the same as the previous iteration:
interacting with the running release via bash commands. However, in this version,
these commands are executed using the Python subprocess library to seamlessly
integrate them within Robot Framework.

Following OTP’s philosophy of separating generic and specific code, it was
decided that the Python logic should be divided in two parts. The first part is
responsible for interacting with the release’s binary, while the second part handles
Pixelwar’s specific logic.

The first module is intentionally generic, serving as a common foundation for
all tests. It is worth noting that it supports only a small subset of the commands
that are supported by the release’s executable.

The second module is used to interact with Pixelwar’s specific logic.

With the generic and specific modules prepared, the Robot Framework test
suite is now composed.

Full details of all relevant files are available in Appendix B.2.

This version is simpler to understand, extend, and read than the previous one.
However, an Erlang/OTP developer is most likely not familiar with this niche test
automation framework and would prefer to write tests in Erlang.

This is the reason why, in the end, an Erlang/OTP native tool was needed and
has been chosen.

Final version A solution using an Erlang/OTP native tool has always been
considered. However, for quite some time, it proved to be unsuccessful.

The initial approach involved launching the test suite in the initial version and
then upgrading to the newer version. Unfortunately, this method never yielded
successful results. It proved to be quite complex to ensure that the tests start
in the correct version and that the correct version is selected when applying the
upgrade.

Realizing the limitations of this approach, the possibility of interacting directly
with the release’s binary was explored. Although this idea initially seemed some-
what unconventional, it could be tested quickly with relatively low effort thanks
to bash. Surprisingly, this approach proved to be viable and led to the creation of
the first two versions using bash and Robot Framework.

However, when these struggles and these solutions were discussed during a the-
sis meeting with Peer Stritzinger, one of the thesis’s supervisors, he reiterated the

49

importance of utilizing an Erlang/OTP native tool. In response to the encountered
problems, he mentioned the existence of a module that shares his name. The Peer
module.

This third version of the test suite leverages the Peer module to build and start
a Docker container containing both the latest release and the previous one. This
module also facilitates interactions with the container, enabling the modification
of its state through functions calls and the application of upgrades or downgrades.

These interactions are encapsulated in a CT test suite, allowing the modifica-
tion and testing of the release’s state before and after an upgrade or a downgrade.
(See Appendix B.3)

By default HotCI enforces the testing of both the upgrade and the downgrade
of the release, however, since this is a Common Test suite, users can adapt it to
suit their requirements. For example, users can delete existing test cases or add
new ones as needed.

Initially, as this GitHub workflow relied on the Erlang Docker container to
execute, utilizing Docker in Docker (DiD) was required. Notably DiD involves
running a Docker container within another Docker container.

To achieve this, a custom Docker image based on Alpine, including Erlang
and Rebar3, was created. However, peculiar errors surfaced with the entrypoint
instruction, which complained about missing files despite them being displayed in
the correct location and with the correct name when using the 1s command.

Due to this issue, an alternative solution had to be found, leading to the dis-
covery of the setup-beam GitHub Action maintained by the Erlang Ecosystem
Foundation (EEF). This action installs the BEAM along with Rebar3 on the vir-
tual machine where the workflow is executed, eliminating the need for Docker in
Docker.

Removing the releases To prevent the uploading of excessively large test ar-
tifacts, the releases on the workflow’s virtual machine are removed before the test
results are uploaded to GitHub.

Uploading test artifacts and publishing test results To upload test arti-
facts and to publish test results, the same GitHub Actions as in paragraph 5.3.1
are used.

Conclusion

This workflow enhances the correctness criterion by providing developers with an
automated tool to continuously test both the changes made between two ver-
sions and the code_change function which acts as the state transition function.

20

In addition, it also contributes to the ease-of-use criterion by verifying that the
applications and release version number are effectively incremented.

5.3.3 Third workflow: Publish-tarball

Introduction

The publish-tarball workflow, the final workflow in HotCI, facilitates the build
process by automatically creating the Erlang/OTP release and its required files.
The generation of appup and relup files is done through the Rebar3 appup plugin
and the Rebar3 relup command. Moreover, it also publishes a GitHub release with
the Erlang/OTP release attached to it. This workflow enhances the ease-of-use
and the integration within the GitHub environment.

Execution

Figure 5.4 describes the execution of the publish-tarball workflow through a flow
diagram.

Triggering the build This workflow is triggered when a Git tag matching the
following regex format v[0-9]+.[0-9]1+.[8-9]+ is pushed to the repository.

Setting up the workflow’s virtual machine The steps to setup the publish-
tarball workflow are the same as those described for erlang-ci in subsection 5.3.1.

Fetching the latest release The latest GitHub release is retrieved to compare
the version that triggered the workflow with the latest release’s version. This
comparison ensures that the previous version precedes the current one and signals
to the next step that an appup and a relup will need to be generated or not.
Additionally, this information is used later to generate a relup from the old version
to the new one.

Generating an appup and a relup If the preceding step has determined
that this version exploits the upgrade mechanism, then an appup is automatically
generated using the Rebar3 appup plugin, and a relup is automatically generated
by the Rebar3 relup command.

This plugin offers convenience to developers as they are not required to manu-
ally write an appup. However, if necessary, they still have the option to create an
appup using an appup.src file, particularly in cases where the appup is complex.

51

Figure 5.4: Execution of the publish-tarball workflow

O Start/End
[J Condition

[J GitHub action

(] Other
1 Job

Build job

Start
Tag matching
v[0-91+.[0-9]+.[06-
91+ is pushed

Publish job

Start
Build job has finished

|

ac tion;/ch eck- actions/download-
out@v4 artifact@v4
Clone the repository Download
T build artifacts
erlef/setup- l
beam@v1 ncipollo/release-
Install Erlang, Re- action@v1

bar3 and the BEAM

¥

ahzed11/get-

latest-release-

action@Qv1.2
Fetch last release
version number

N2

Compare previous
version and
current version

Set the RELUP
variable accordingly

Rebar3 M-
o " | Is it a release
OmIpLie OhLy No upgrade 7
the new release
1 Yes
Rebar3

Compile old and
new release, generate
appup and relup

N2

Rebar3 tar
Package the release

T

actions/upload-
artifact@Qv4
Upload build artifacts

T

(

End

)

Publish Github
release and at-
tach the artifacts

|

End

52

Creating a tarball of the release Once all the files are ready, the release is
packaged with Rebar3d’s tar command, as previously described in subsection 3.3.4.

Creating a GitHub release and uploading the tarball containing the
Erlang/OTP release After the release is constructed and packaged as a tarball,
it is uploaded as a build artifact to GitHub. Subsequently, in another job, the
artifact is retrieved, a GitHub release is created, and the artifacts are attached to
it using the ncipollo/release-action@vl[11].

Integration within a continuous deployment pipeline

While HotCI focuses on Continuous Delivery involving the creation and manual
deployment of releases via GitHub, there are scenarios where Continuous Deploy-
ment proves invaluable.

Continuous Deployment automates the deployment process by directly upload-
ing releases to specific environments and launching or updating them. Such an en-
vironment can be, for example, the staging environment, which allows for testing
with real-world data and configurations, ensuring stability and correctness before
a wider release.

In such cases, it is feasible to develop an Erlang/OTP application that operates
as an HTTP server, awaiting the GitHub release creation webhook[13].

A webhook is essentially an HTTP callback, triggered by a specific event, in
this case, the creation of a new GitHub release. When this event occurs, GitHub
sends an HTTP POST request to a pre-configured URL, notifying the server of
the new release.

This setup, described in Figures 5.5 and 5.6, allows the server to automatically
download the new release and apply the upgrade autonomously thanks to the
release_handler module and its unpack_release, install_release and
make_permanent functions.

It is noteworthy that the usage of webhooks is imperative due to the limitations
imposed by GitHub’s API; frequent polling the API can result in a temporary
account ban.

Conclusion

This workflow enhances the ease-of-use criterion by automating the release creation
process. This includes eliminating the necessity to manually write an appup and
manually input all the commands.

Additionally, it offers GitHub integration by automatically generating releases
and publishing the build artifacts to them.

23

Figure 5.5: Using webhooks to be notified when a new GitHub release is published

Release

[GitHub]

POST on the webhook

when a new release is available

e

Applicationl

Figure 5.6:

ApplicationN

Application handling webhooks

Upgrading the release when the webhook is triggered

POST
on the webhook

l

O Start/End
(] Step

Download
the new version
of the release
from GitHub

l

Unpack the release
with release han-
dler:unpack_release()

I

Install the release
with release han-
dler:install_release()

[

Make the re-
lease permanent
with release han-

dler:make per-

manent()

[

End

54

N

5.4 Usage example

5.4.1 Introduction

This section introduces the usage of the HotCI template with a new project by
providing a step-by-step and practical example in the form of a recipe. This
example features versions 0.2.0 and 0.3.0 of Pixelwar. (See Appendices A.2 and

A.3)

5.4.2 Creating a new project

To begin, initiate a new GitHub repository using the Use this template button
from the top right of the HotCI repository (See [24]). This action sets up a fresh
repository based on this template.

Next, clone the newly created repository into a folder named pizelwar:

git clone git@github.com:your-username/your-repository.git pixelwar

Note that instead of pizelwar, any name can be chosen. In this case, a name was
given to make sure that the reader and these instructions use the same directory
name.

With that done, generate a release template using Rebar3:

rebar3 new release pixelwar

Rebar3 will not overwrite the existing files with the generated ones.
Navigate to the pizelwar directory and replace all occurrences of the word
release_name that are present in rebar.config with pixelwar:

cd pixelwar && sed -i -e 's/release_name/pixelwar/g' rebar.config

This step is required because the template does not know what the name of the
new release is and the atom release_name acts as a placeholder.

Finally, add all files to Git, commit the changes and push them to the reposi-
tory.

git add --all &«
git commit -m "release template generated with rebar3" &&
git push

5.4.3 Creating a first version of the release

Let us now simulate the creation of the first release version by introducing Pixelwar
version 0.2.0 into its applications.

95

NN P

Start by creating a new branch. It can have any name, however, for this ex-
ample, the name “first-version” will be used, because it represents the first version
of our release, even though in contains version 8.2.0 of the Pixelwar application:

git checkout -b first-version

Next, remove all files located under apps/pizelwar and replace them with the
files provided in Appendix A.2 to mimic updates to the Pixelwar application.

For clarity, Figure 5.7 illustrates the resulting file structure and the origin of
each file after this operation.

Once done, stage the changes, commit them, and push to the repository:

git add apps/pixelwar/ &%
git commit -m "add pixelwar 0.2.0" &
git push --set-upstream origin first-version

Open a pull request for this branch through the GitHub user interface.

It is worth noting that creating a pull request is not strictly required in this
case, because no hot code upgrade can be tested due to the absence of a previous
version.

However creating a pull request is required for later versions because the tem-
plate assumes, to perform hot code upgrade testing, that each version is developed
in a different pull request.

After opening the pull request, GitHub will trigger the erlang-ci and relup-ci
workflows. Since there is no previous version from which to perform a hot code
upgrade, the relup-ci workflow will halt early without producing any errors.

Upon workflows’ completion, GitHub should indicate that all test cases pass.
Moreover, a summary of the erlang-ci workflow’s results should be displayed in
the pull request feed.

26

Figure 5.7: Directory structure after merging the user’s repository based on the HotCI
template and Pixelwar 0.2.0

pixelwar/ From HotCI
— .github/ From Pixelwar 0.2.0

From "rebar3 new release"
+— publish-ct-results/

Laction.ym'L

+— setup-beam/

Laction.ym'L

— workflows/

erlang-ci.yml
publish-tarball.yml
relup-ci.yml

— apps/
Lpixelwar/
Lsrc/

+— pixelwar_app.erl
+— pixelwar_matrix_serv.erl

+— pixelwar_sup.erl

«— pixelwar.app.src

— test/

L—pixelwar_serv_SUITE.erl

— config/
sys.config
vm.args

+— scripts/
check_versions

get_release_name

— test/
L—Upgrade_downgrade_SUITE.erl

— LICENSE.md

— README . md

+— prebar.config 57

N -

N -

1
2

5.4.4 Releasing the first version

Now that the first version is ready, a GitHub release can be created thanks to the
publish-tarball GitHub workflow.

Begin by navigating to the pull request page for the first-version branch on
GitHub. Click on Merge pull request and then Confirm merge. After merging,
checkout to the main branch and pull the changes:

git checkout main &&
git pull

Once on the main branch, create a new Git tag for version 0.0.1 and push it
to the origin:

git tag -a v0.0.1 -m "First version" &&
git push origin v0.0.1

Pushing a tag with the v[08-9]+.[0-9]1+.[0-9]+ regex format triggers the publish-
tarball workflow, which builds and publishes the release under a GitHub release
named v0.0.1.

In line with the Smoothver versioning scheme, by default, the 0.0.1 version
number is defined in HotCI’s rebar.config because the first version does not re-
quire a full system restart or a state migration.

5.4.5 Creating a second version of the release

Let us now simulate the modification and update to the first release by incorpo-
rating Pixelwar version 0.3.0.

Similar steps as the one described in subsection 5.4.3 will be executed.

Start, by creating a new branch named “second-version”:

git checkout -b second-version

Remove all files located under apps/pizelwar and replace them with the files
provided in Appendix A.3. The resulting file structure is essentially the same as in
Figure 5.7 however, instead of the files from Pixelwar 0.2.0, the files from 0.3.0
should be inserted.

Update the rebar.config file, located at the project root, by changing the
release version from 0.0.1 to 08.1.0 to bump the release version.

This is in line with Smoothver. The second version number, representing the
RELUP version number, is incremented because a state migration is required
between the first and the second version.

Once done, stage the changes, commit them, and push to the repository:

git add apps/pixelwar/ &%
git add rebar.config &&

o8

3
4

NN

N O

git commit -m "add pixelwar 0.3.0" &&
git push --set-upstream origin second-version

Then, open a pull request for this branch through the GitHub user interface.
After the pull request, GitHub will trigger the erlang-ci and relup-ci workflows.
This time, as a previous version exists, relup-ci will not halt early and will run the
upgrade_downgrade_SUITE.erl Common Test test suite.
Upon completion, GitHub should indicate that all the cases pass and a sum-
mary of the erlang-ci and relup-ci workflow’s results should be displayed in the
pull request’s feed.

5.4.6 Modifying the upgrade downgrade SUITE

It is time to focus on testing the upgrade and downgrade of the application. The
previous run of the relup-ci workflow passed because the
upgrade_downgrade_SUITE.erl file provided with HotCI only verifies if the system
was able to upgrade and downgrade successfully. However, this success is not
sufficient to assert that the transition function applied from one version to the
other is correct. For instance, the upgrade could lead to the new version running
successfully but with an invalid state.

Testing the state of the release requires some modifications to the
upgrade_downgrade_SUITE.erl located under the test folder.

First, to modify the state of the release before the upgrade, let us replace the
before_upgrade_case function and its body with the following code:

Listing 5.2: Modifying the before upgrade case

before_upgrade_case(Config) ->
Peer = ?config(peer, Config),

peer:call(Peer, pixelwar_matrix_serv, set_element, [matrix, {12,
12, 12}1),

peer:call(Peer, pixelwar_matrix_serv, set_element, [matrix, {112,
112, 1123}1),

MatrixAsBin = peer:call(Peer, pixelwar_matrix_serv, get_state, [
matrix]),
?assertEqual(

MatrixAsBin,

<<12:16/1little, 12:16/1little, 12:16/1little, 112:16/1little,
112:16/1little, 112:16/1ittle>>
).

This code modifies the Pixelwar matrix server by inserting two pixels. It also
asserts that they have been correctly inserted into the matrix.

29

DAWDN P

~ O~ U1

al DNWDN B

O 00 3

10

DNAWDN P

Then, to verify the state of the release after the upgrade, let us replace the
after_upgrade_case function and its body with the following code:

Listing 5.3: Modifying the after upgrade_case

after_upgrade_case(Config) ->
Peer = ?config(peer, Config),

MatrixAsBin = peer:call(Peer, pixelwar_matrix_serv, get_state, [
matrix]),
?assertEqual(

MatrixAsBin,

<<12:16/1little, 12:16/1ittle, 12:16/1little, 112:16/1little,
112:16/1little, 112:16/1ittle>>
).

This code asserts that the two pixels that have been inserted earlier are still
present and in the expected format. This test is done because the representation
of the matrix server’s state is modified between the versions 0.2.0 and 0.3.0 of
the Pixelwar application.

Finally, similar modifications are done to the before_downgrade_case and the
after_downgrade_case functions to verify that a rollback to the older version also
works.

Listing 5.4: Modifying the before downgrade case

before_downgrade_case(Config) ->
Peer = ?config(peer, Config),

peer:call(Peer, pixelwar_matrix_serv, set_element, [matrix, {13,
13, 13}1),

MatrixAsBin = peer:call(Peer, pixelwar_matrix_serv, get_state, [
matrix]),
?assertEqual(

MatrixAsBin,

<<12:16/1little, 12:16/little, 12:16/little, 13:16/little,
13:16/1little, 13:16/1ittle, 112:16/1little, 112:16/1little, 112:16/
little>>
).

Listing 5.5: Modifying the after downgrade case

after_downgrade_case(Config) ->
Peer = ?config(peer, Config),

MatrixAsBin = peer:call(Peer, pixelwar_matrix_serv, get_state, [

matrix]),
?assertEqual(

60

g O

NN P

N -

N -

MatrixAsBin,

<<12:16/1little, 12:16/1ittle, 12:16/1little, 13:16/1little,
13:16/1ittle, 13:16/1little, 112:16/1ittle, 112:16/1little, 112:16/
little>>
).

For demonstration purpose, the preceding tests are kept simple. However, they
can be arbitrarily complex. As the test suite is a CT test suite, more cases can be
added, and any Erlang/OTP module can be used.

Now that the upgrade_downgrade_SUITE.erl file has been modified, stage the
changes, commit them, and push to the repository:

git add test &&
git commit -m "implement cases in the upgrade_downgrade_SUITE" &&
git push

5.4.7 Releasing the second version

With everything set up, a new GitHub release can be created.

Begin by navigating to the pull request page for the second-version branch on
GitHub. Click on Merge pull request and then Confirm merge. After merging,
switch to the main branch and pull the changes:

git checkout main &&
git pull

Once on the main branch, create a new Git tag for version 8.1.0 and push it
to the origin:

git tag -a v0.1.0 -m "Second version" &&
git push origin v0.1.0

5.4.8 Conclusion

In conclusion, this usage example showcases HotCI’s streamlined, Git-integrated
development process, as illustrated in Figure 5.8.

While the steps might appear extensive, it is important to remember that they
encompass the entire process, from project setup to the creation and testing of two
distinct releases. The core procedure of HotCI, which revolves around creating,
testing and publishing a release, can be summarized as follows:

61

Figure 5.8: HotCI's ceremony

1. Create a new branch and pull request for the new version
2. Apply modifications to the code

3. Select a version number following Smoothver

4. Bump the application and release version

5. Update the upgrade downgrade SUITE if the version does not require a
restart

6. Merge the pull request

7. Add a version tag to create a GitHub Release

5.5 Limitations

5.5.1 GitHub Action

Regrettably, due to the absence of a standardized format for describing CI/CD
pipelines, a specific CI/CD dialect had to be selected.

GitHub Action was chosen primarily due to GitHub’s widespread usage, its
favorable offerings for students, and its use in the OTP repository.

It is noteworthy that the erlang-ci and relup-ci workflows can be partially
translated into another CI/CD dialect by substituting the GitHub Actions for
tasks such as setting up the BEAM virtual machine, uploading test artifacts,
and publishing test results. This stems from the fact that the other steps are
implemented in either bash or Erlang.

62

5.5.2 Maintaining the GitHub template

To keep the HotCI template up-to-date, the specialized template-sync[17] tool has
to be used. This is because GitHub does not offer a built-in method to keep
repository templates up-to-date.

template-sync is developed by les-tilleuls.coop[16], a French cooperative offering
expertise in cloud computing, security, and software development.

To get started, navigate to the top directory of the project and execute the
following command:

curl -sSL https://raw.githubusercontent.com/mano-1is/template-sync/
main/template-sync.sh | sh -s -- https://github.com/ahzed11/HotCI.
git

After running the command, resolve any conflicts that may arise.
Finally, execute:

git cherry-pick --continue

This straightforward process ensures that projects remains synchronized with
the latest updates from the HotCI template repository.

5.6 Conclusion

In conclusion, this chapter has provided a comprehensive overview of the HotCI
project, highlighting its advancements in the realm of Erlang CI/CD. By automat-
ing the creation of appups and relups, testing the version numbers, simplifying hot
code upgrade testing, and seamlessly integrating with GitHub, HotCI empowers
developers to create more reliable and maintainable Erlang/OTP systems.

63

Chapter 6

Evaluation

6.1 Introduction

This chapter delves into the evaluation of HotCI.

Section 6.2 commences this exploration by examining the feedback garnered
from the Erlang community, encompassing both quantitative insights derived from
Likert scale questions and qualitative perspectives gleaned from open-ended re-
sponses.

Section 6.3 discusses the integration of HotCI within the wider Erlang ecosys-
tem, assessing its reception among developers and its practical application in real-
world scenarios.

Section 6.4 provides an analysis of the erlang-ci and relup-ci workflow’s exe-
cution time, offering valuable insights into its performance.

Section 6.5 concludes this chapter, summarizing key results from previous sec-
tions and offering reflections on them.

6.2 Gathered feedback

Approximately a month prior to submitting this Master’s thesis, HotCI and its
evaluation form were introduced to the Erlang community through various chan-
nels, including the Erlang forums, Erlang Slack, Reddit, and LinkedIn. HotCI
gathered considerable attention, with around 1200 Reddit views, 371 forum views,
9 Slack reactions, 15 stars on GitHub, and roughly 1800 LinkedIn impressions.
Despite this positive reception and encouraging feedback, only one completed eval-
uation form has been received. Having a single evaluation highlights the challenges
and time constraints inherent in thesis work, where the focus is often on achieving
a minimum viable and likeable product. Given additional time, deeper engage-
ment with the Erlang community would have been possible, potentially resulting

64

in more submissions of the evaluation form.

The evaluation form consists of both open-ended questions, allowing for de-
tailed feedback, and Likert scale questions, enabling respondents to rate their
agreement or satisfaction on a predetermined scale.

6.2.1 Likert scale questions

The Likert scale questions were designed to gauge respondents’ agreement or sat-
isfaction levels on a graded scale, with examples including statements such as “I
feel like HotCI has potential” and “I think that building a release with HotCI is
easier than manually doing it”.

Creating effective Likert scale questions is a nuanced process requiring careful
attention to ensure clarity, minimize bias, and elicit meaningful responses. Un-
fortunately, due to a lack of experience in this specific area, these criteria were
not fully met during the initial design of the evaluation form. This shortcoming
was brought to light by valuable feedback from a fellow student specializing in
psychology. Regrettably, this feedback was received after the sole respondent had
already completed the form.

User satisfaction

The first Likert scale aimed to assess user satisfaction across various aspects of
HotClI, as illustrated in Table 6.1.

The survey response reveals a generally positive user experience with HotCI.
Notably, its performance received an extremely satisfied rating, indicating a high
level of user contentment in this regard. The respondent also expressed satisfaction
with HotCI’s reliability, documentation, testing support, and ease-of-setup.

However, certain areas elicited less enthusiasm or a neutral stance from the user.
Specifically, ease-of-use, integration with existing projects, test reports, and error
messages all received a neutral rating, suggesting potential room for improvement
in these aspects or no opinion from the reviewer.

The respondent did not provide any additional comments to elaborate on their
ratings or offer specific suggestions.

User agreement with general statements

The second Likert scale gauges user opinions on general statements about HotCI,
as illustrated in Table 6.1.

The survey response reveals a generally positive outlook on HotCI’s potential,
value, features, and the simplified release process it offers compared to manual

65

Table 6.1: User satisfaction towards different aspects of HotCI

Aspects Satisfaction Level
Reliability

Performance

Integration with already existing projects
Documentation

Testing support

Test reports

Ease of setup
Error messages

Table 6.2: User’s agreement towards general statements about HotCI
Statements Agreement level
I feel like HotCI has potential

I feel like HotCI brings value

I am satisfied with the amount

of features HotCI has

I think that building a release with HotCI
is easier than manually doing it

I feel like I could easily modify

or extend HotCi if I needed to

I feel like HotCI integrates well
within the Erlang ecosystem

I think that, thanks to HotCI,

the chances to make a mistake when crafting
an upgrade/downgrade are decreased

I think that the way HotCI works is intuitive
I think that the integration of HotCI
with git feels natural

I find HotCI’s ceremony cumbersome
I think that I would like to use
HotCI in my projects

66

methods. The reviewer expressed agreement with these aspects, indicating opti-
mism about HotCI’s capabilities.

However, the user expressed some concerns. They disagreed that HotClI is easy
to modify or extend and found the Git-integrated development process cumbersome.
Additionally, they were neutral on whether HotCI integrates well within the Erlang
ecosystem and its overall intuitiveness.

In the open-ended feedback section, the reviewer expressed a preference for
integrating the template scripts into a Rebar3 plugin rather than having them as
standalone files laying in the project. Additionally, they found the use of a GitHub
template impractical due to ongoing maintenance requirements and would prefer
accessing HotCI’s capabilities through a standalone GitHub Action.

While separating erlang-ci and publish-tarball into independent GitHub Ac-
tions seems feasible, a similar approach for relup-ci presents challenges in its
current implementation. This is because a major component of relup-ci is the
upgrade_downgrade_SUITE CT suite, whose functionalities are not easily transfer-
able to a GitHub Action environment.

A future version may leverage custom Erlang/OTP behaviors to address this
integration challenge. However, the feasibility of this approach demands further
investigation.

6.2.2 Open-ended questions

The survey included open-ended questions to encourage participants to share their
thoughts, experiences, and suggestions in their own words. Examples of such ques-
tions include: “What challenges have you encountered while using HotCI?”, “Do
you have any additional comments about your agreement to these statements?”
and “Do you have any additional comments or feedback?”.

While most open-ended questions were not answered by the reviewer, they did
provide a response to the question discussed in the next section.

What feature would you like to add to HotCI ?

In response to this question, the reviewer stated:

It would be nice to inspect the generated appup and relups to then edit
them as one sees it fit. Plus at least the appups should be versioned.

HotCI aims to automate the creation of appups and relups as much as possible,
which can obscure this process from the user. Developers with more advanced
skills, like this reviewer, may feel a lack of flexibility and expressiveness when using
HotCI. To address this, it is possible, as mentioned in their comment, to provide

67

access to the generated appups and relups. These could be published alongside
the relup-ci test results artifacts and the release generated by publish-tarball.

However, the question of how to version the appup files remains to be answered.
One might be tempted to save them under apps/application/src/appup.sre, but
this would not work because the appup plugin for Rebar3 would consider that it
should use this file to update the application and would no longer generate appups
automatically. Saving the appups elsewhere would be unusual with respect to the
standard structure of an Erlang project.

In conclusion, we understand this request but do not yet have a solution. Fur-
ther discussion with the Erlang community is needed to provide the most natural
and flexible workflow possible.

6.3 Integration within the community

The positive reception of HotCI, including encouraging feedback and GitHub stars,
underscore a certain interest within the Erlang community in testing hot code
upgrades. However, integration of HotCI in production environments have yet to
be reported. This, combined with the feedback outlined in the previous section,
highlights a need for deeper engagement with the Erlang community to better
understand their specific needs and workflows.

Proactive communication with community members can yield valuable insights
into the challenges and pain points they face in their day-to-day development
processes. This knowledge will allow for future enhancements and features to be
tailored to these specific needs, ultimately making HotCI a must-have tool for
Erlang developers and projects.

6.4 Execution time

It is important to note that no time objectives were set during HotCI’s develop-
ment, so optimization techniques like caching have not yet been explored.

To measure the execution time of the erlang-ci and relup-ci workflows, a copy
of the HotCI usage example repository[26, 25] was created, and the workflow trig-
gers were modified to execute them recurrently with a cron job. The publish-tarball
workflow was excluded from these measurements because it does not directly im-
pact developement speed and requires manual modifications before each run.

An analysis of the first 75 runs of these workflows (approximately 20 hours
of execution on GitHub) revealed only one failure in erlang-ci due to a transient
error caused by the setup-beam GitHub Action, used to install Erlang/OTP on the

68

workflow’s virtual machine, when fetching a file from the hex.pm package manager
mirror.

Figure 6.1 presents a boxplot of erlang-ci and relup-ci’s execution times. After
removing outliers to avoid skewing, the 71 remaining erlang-ci runs show a mean
execution time of 65.97 seconds with a standard deviation of 2.16, indicating low
variability. The values range from 62 to 71 seconds, with a median of 66 seconds.
The interquartile range of 3 further confirms the limited dispersion of the data
points.

For relup-ci, removing the outliers also lead to having 71 runs. Having the same
number of runs after outlier removal for both workflows suggests that extreme
cases are related to the execution environment. The average execution time is
57.66 seconds with a standard deviation of 4.10, indicating moderate variability.
The values range from 47 to 67 seconds, with the 25th, 50th (median), and 75th
percentiles at 55, 58, and 60 seconds, respectively, suggesting a slight skew in the
distribution towards the lower end of the range.

Overall, erlang-ci generally takes longer to run than relup-ci, primarily due to
the job running Xref and Dialyzer to perform static analysis on the codebase.

Figure 6.2 presents a line chart of erlang-ci and relup-ci’s execution times,
illustrating the difference in execution time between individual runs. While not
launched at precisely the same time due to the GitHub not exactly respecting the
cron timer, the chart reveals that both workflows can experience near-simultaneous
slowdowns, as evidenced in run number 8.

6.5 Conclusion

In conclusion, the evaluation of HotCI reveals a positive reception and potential
for enhancing software upgrade and downgrade processes in Erlang/OTP. While
the initial feedback indicates a high level of satisfaction with HotCI's performance
and reliability, the neutral rating concerning its ease-of-use raises concern, as this
is one of the primary goals of the tool.

Deeper engagement with the Erlang community is crucial to gather more com-
prehensive feedback and tailor future enhancements to meet their specific needs,
particularly in terms of flexiblity and amount of maintenance required for this tool.

The execution time analysis reveals HotCI’s reasonable efficiency, with minor
variability depending from the tool itself observed.

Overall, HotCI holds promise as a valuable asset for Erlang developers, and
continued collaboration with the community will be instrumental in shaping its
future development and adoption.

69

Time in seconds

o
)
!

Figure 6.1: Boxplot of erlang-ci and relup-ci’s execution time

90
80
o
o
o
701
o

50 4

40 T T
erlang-ci relup-ci
Workflow

70

Figure 6.2: Line Chart of erlang-ci and relup-ci’s execution time

90

80 1

Values in Seconds

50 A

40

-
o

o
)

—e— erlang-ci
—o— relup-ci

T
10 20 30 40 50 60 70
Run number

71

Chapter 7

Conclusion

7.1 Introduction

In summary, this thesis has delved into the intricacies of hot code upgrades within
the Erlang ecosystem, addressing the challenges faced by developers in harnessing
this powerful feature due to its perceived complexity. It introduced HotCI, a
CI/CD tool designed to automate and streamline the creation and testing of hot
code upgrades, thereby enhancing both ease-of-use and correctness.

The thesis commenced by establishing a foundational understanding of Er-
lang/OTP concepts, including dynamic code changes, applications, and releases.
It then provided comprehensive guides on manually and automatically building
releases, finishing in a detailed exploration of hot code upgrade creation and exe-
cution. The subsequent sections focused on HotCI itself, detailing its development,
workflows, and practical usage examples. Finally, an evaluation of HotCI was pre-
sented, incorporating community feedback and an analysis of its execution time.

In closing, the following sections will outline potential future directions for
HotCI, encompassing its application in distributed systems, integration of test
reports into GitHub Pages, acceleration of testing through caching, and fostering
stronger collaboration with the Erlang community.

7.2 Future works

7.2.1 Distributed systems

Since HotClI utilizes the Peer module and Docker containers for upgrade and down-
grade testing, it inherently facilitates the simulation of distributed systems. One
can achieve this simulation by running multiple Docker containers and establishing

72

links between them. The Peer module’s documentation provides comprehensive
instructions on this process.

A priority for future work is to assess the Rebar3 appup plugin’s compatibility
with a distributed system. This testing will determine whether the plugin functions
as intended in this environment. If limitations are discovered, the development of
a new plugin or a fork of the existing one may be necessary.

Future work could also entail updating the Pixelwar release to support dis-
tribution. This modification would enable testing the execution of the upgrade/-
downgrade test suite across multiple interconnected Docker containers.

7.2.2 Integrating test reports into GitHub Pages

By default, the Common Test module produces test reports in HTML format.
Integrating these reports directly into a repository’s GitHub Page offers significant
convenience for developers.

This approach eliminates the manual steps of navigating to a specific run,
downloading the relevant test report artifacts, and then opening them locally for
analysis. Streamlining this process enhances the developer experience and pro-
motes a more seamless workflow.

7.2.3 Accelerating testing and reducing cost with caching

Incorporating caching into GitHub workflows could significantly reduces testing
time by storing and reusing intermediate results from previous steps.

This includes artifacts such as downloaded dependencies, compiled code, and
built packages, eliminating the need to regenerate these outputs in subsequent
workflow runs.

Reducing time in this manner is crucial for promoting faster development iter-
ations, optimizing resource usage, and reducing development cost.

7.2.4 Fostering an improved collaboration with the Erlang
community

As mentioned in the previous chapter, the number of evaluations received is not
sufficient to draw concrete conclusions. In order to decide on the future form of
HotCI to best suit Erlang/OTP developers, further discussions are needed with
them. The same applies to the points discussed in the previous sections.

One possible solution is to collaborate with the Erlang Ecosystem Foundation
(EEF)[1]. The EEF is a foundation with more than a thousand industry lead-
ing members whose common goal is furthering the state-of-the-art of technologies
running on Erlang’s BEAM virtual machine.

73

Collaborating with them would allow for the promotion of HotCI to a wider
audience, obtaining expert opinions, and incorporating upgrade/downgrade tests
into the design of a natural workflow for Erlang developers.

A dialogue has been initiated with a representative of the EEF. In the coming
weeks, a formal proposal will be submitted seeking the EEF’s support for the
continued development of HotClI, leveraging their expertise and financial resources.

4

Bibliography

[10]

[11]

Erlang Ecosystem Foundation (EEF). Erlang Ecosystem Foundation. URL:
https://erlef.org/.

Ericsson AB. Erlang — Appup Cookbook. URL: https://www.erlang.org/doc/
design_principles/appup_cookbook.html.

Ericsson AB. Erlang — Common Test. URL: https://www.erlang.org/doc/
apps/common_test (visited on 04/29/2024).

Ericsson AB. Erlang — Common Test Hooks. URL: https://www.erlang.

org/doc/apps/common_test/ct_hooks_chapter#built-in-cths (visited on
04/29/2024).

Ericsson AB. Erlang — dialyzer. URL: https://www.erlang.org/doc/man/
dialyzer.html.

Ericsson AB. FErlang — Modules. URL: https : //www . erlang . org/ doc/
reference_manual/modules.html.

Ericsson AB. Erlang — xref. URL: https://www.erlang.org/doc/man/script.
html.

Ericsson AB. Erlang — zref. URL: https://www.erlang.org/doc/man/xref.
html.

Babiker Hussien Ahmed et al. “Dynamic software updating: a systematic
mapping study”. In: IET Software 14.5 (2020), pp. 468-481. DOIL: https:
//doi.org/10.1049/iet-sen.2019.0201. eprint: https://ietresearch.
onlinelibrary . wiley.com/doi/pdf/10.1049/iet-sen.2019.0201. URL:
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-
sen.2019.0201.

Joe Armstrong. “Making reliable distributed systems in the presence of soft-
ware errors”. PhD thesis. 2003.

Nick Cipollo. GitHub - ncipollo/release-action: An action which manages a
github release. URL: https://github.com/ncipollo/release-action (visited
on 05/10/2024).

75

https://erlef.org/
https://www.erlang.org/doc/design_principles/appup_cookbook.html
https://www.erlang.org/doc/design_principles/appup_cookbook.html
https://www.erlang.org/doc/apps/common_test
https://www.erlang.org/doc/apps/common_test
https://www.erlang.org/doc/apps/common_test/ct_hooks_chapter#built-in-cths
https://www.erlang.org/doc/apps/common_test/ct_hooks_chapter#built-in-cths
https://www.erlang.org/doc/man/dialyzer.html
https://www.erlang.org/doc/man/dialyzer.html
https://www.erlang.org/doc/reference_manual/modules.html
https://www.erlang.org/doc/reference_manual/modules.html
https://www.erlang.org/doc/man/script.html
https://www.erlang.org/doc/man/script.html
https://www.erlang.org/doc/man/xref.html
https://www.erlang.org/doc/man/xref.html
https://doi.org/https://doi.org/10.1049/iet-sen.2019.0201
https://doi.org/https://doi.org/10.1049/iet-sen.2019.0201
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-sen.2019.0201
https://ietresearch.onlinelibrary.wiley.com/doi/pdf/10.1049/iet-sen.2019.0201
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2019.0201
https://ietresearch.onlinelibrary.wiley.com/doi/abs/10.1049/iet-sen.2019.0201
https://github.com/ncipollo/release-action

[19]

[20]

Frequently seen difficulties when using Erlang OTP as a beginner. Apr. 30,
2024. URL: https://erlangforums.com/t/frequently-seen-difficulties-
when-using-erlang-otp-as-a-beginner/3522/9 (visited on 05/11/2024).

Github. Webhook events and Payloads - GitHub Docs. URL: https://docs.
github.com/en/webhooks/webhook-events-and-payloads#release.

Fred Hebert. GitHub - ferd/dandelion. URL: https://github.com/ferd/
dandelion.

Fred Hebert. My favorite Erlang container. July 2022. URL: https://ferd.
ca/my-favorite-erlang-container.html.

les-tilleuls.coop. les-tilleuls.coop. URL: https://les-tilleuls.coop.

les-tilleuls.coop. template-sync. 2023. URL: https://github.com/coopTilleuls/
template-sync.

Tobias Lindahl and Konstantinos Sagonas. “Practical type inference based
on success typings”. In: Proceedings of the 8th ACM SIGPLAN interna-
tional conference on Principles and practice of declarative programming.
2006, pp. 167-178.

Nicolas Martyanoff. Building Erlang applications the hard way. June 2023.
URL: https://www.nl6f.net/blog/building-erlang-applications -the-
hard-way/.

Emili Miedes and FD Munoz-Escoi. “A survey about dynamic software up-
dating”. In: Instituto Universitario Mixto Tecnologico de Informatica, Uni-
versitat Politecnica de Valencia, Campus de Vera s/n 46022 (2012).

Enrico Minack. GitHub - EnricoMi/publish-unit-test-result-action: GitHub
Action to publish unit test results on GitHub. URL: https://github.com/
EnricoMi/publish-unit-test-result-action (visited on 04/29/2024).

Tristan Sloughter. Rebar3. URL: http://rebar3.org/.

syncpup.com. OTP releases by hand. June 2023. URL: http://blog.syncpup.
com/posts/otp-releases-by-hand.html.

Alexandre Zenon. HotCI. Feb. 2024. URL: https://github.com/Ahzed1l/
HotCI.

Alexandre Zenon. HotCI Benchmark. Feb. 2024. URL: https://github.com/
Ahzed11/HotCI-Benchark.

Alexandre Zenon. HotCI Usage Example. Feb. 2024. URL: https://github.
com/Ahzed11/HotCI-usage-example.

76

https://erlangforums.com/t/frequently-seen-difficulties-when-using-erlang-otp-as-a-beginner/3522/9
https://erlangforums.com/t/frequently-seen-difficulties-when-using-erlang-otp-as-a-beginner/3522/9
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
https://docs.github.com/en/webhooks/webhook-events-and-payloads#release
https://github.com/ferd/dandelion
https://github.com/ferd/dandelion
https://ferd.ca/my-favorite-erlang-container.html
https://ferd.ca/my-favorite-erlang-container.html
https://les-tilleuls.coop
https://github.com/coopTilleuls/template-sync
https://github.com/coopTilleuls/template-sync
https://www.n16f.net/blog/building-erlang-applications-the-hard-way/
https://www.n16f.net/blog/building-erlang-applications-the-hard-way/
https://github.com/EnricoMi/publish-unit-test-result-action
https://github.com/EnricoMi/publish-unit-test-result-action
http://rebar3.org/
http://blog.syncpup.com/posts/otp-releases-by-hand.html
http://blog.syncpup.com/posts/otp-releases-by-hand.html
https://github.com/Ahzed11/HotCI
https://github.com/Ahzed11/HotCI
https://github.com/Ahzed11/HotCI-Benchark
https://github.com/Ahzed11/HotCI-Benchark
https://github.com/Ahzed11/HotCI-usage-example
https://github.com/Ahzed11/HotCI-usage-example

Appendix A

Pixelwar

A.1 Subset of version 1.0.0

Figure A.1: Directory structure of the subset of Pixelwar version 1.0.0
src/

— matrix.hrl

+— pixelwar_app.erl

+— pixelwar_matrix_serv.erl
+— pixelwar_matrix.erl

+— pixelwar_sup.erl

«— pixelwar.app.src

Listing A.1: matrix.hrl

N

(4 I Y

-define (DEFAULT_SIZE, 128).
-record(matrix, {
pixels = #{} :: #{{non_neg_integer(), non_neg_integer()} => non_neg_integer()
b,
width = ?DEFAULT_SIZE :: non_neg_integer(),
height = ?DEFAULT_SIZE :: non_neg_integer()
B.

Listing A.2: pixelwar_app.erl

POVOJOCUDNWNE

[

-module(pixelwar_app).
-behaviour(application).
-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
pixelwar_sup:start_1ink().

stop(_State) ->
ok.

7

VOO ~JO U DNWN B

Listing A.3: pixelwar_matrix_serv.erl

-module(pixelwar_matrix_serv).
-vsn("1.0.0").
-behaviour(gen_server).
-include_1lib("matrix.hrl").

-record(state, {
matrix = #matrix{}

B.

%% API

-export([start_link/1, set_element/2, get_state/1]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2,
code_change/3]1).

start_link(ServerName) ->
gen_server:start_link({global, ServerName}, ?MODULE, [1, [1).

set_element(ServerName, Pixel) ->
gen_server:cast({global, ServerName}, {set_element, Pixel}).

get_state(ServerName) ->
gen_server:call({global, ServerName}, get_state).

676676%6%6960606.67676.76676 7696066666766 7666066666666 660666666666 6066666060666 /66

init(_Args) ->
{ok, Matrix} = pixelwar_matrix:create(),
{ok, #state{matrix = Matrix}}.

handle_call(stop, _From, State) ->
{stop, normal, State};

handle_call(get_state, _From, State) ->
Binary = pixelwar_matrix:to_binary(State#state.matrix),
{reply, Binary, State};

handle_call(_Request, _From, State) ->
{reply, ok, State}.

handle_cast({set_element, {X, Y, Color}}, State) ->
case pixelwar_matrix:set_pixel(State#state.matrix, X, Y, Color) of
{ok, NewMatrix} ->
NewState = State#state{matrix=NewMatrix},
{noreply, NewState};
-> {noreply, State}

end;

handle_cast(_Msg, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(normal, _State) ->
ok;

terminate(_Reason, _State) ->
ok.

code_change(_0ldVsn, State, _Extra) ->

78

60

CCUITDNWN P

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49

N

{ok, State}.

Listing A.4: pixelwar_matrix.erl

-module(pixelwar_matrix).
-include_1ib("matrix.hr1").
-export([create/0, create/2, create/3, to_binary/1, set_pixel/4, resize/3]1).

create() ->
Matrix = #matrix{pixels = #{}, width = ?DEFAULT_SIZE, height = ?DEFAULT_SIZE}

{ok, Matrix}.

create(Width, _Height) when Width =< 0 -> {error, invalid_width};
create(_Width, Height) when Height =< 0 -> {error, invalid_height};
create(Width, Height) ->

{ok, #matrix{ pixels = #{}, width = Width, height = Height}}.

create(Width, Height, Pixels) ->
case create(Width, Height) of
{ok, Matrix} -> {ok, Matrix#fmatrix{pixels=Pixels}} ;
Error -> Error
end.

to_binary(#matrix{} = Matrix) ->
ToBinary = fun(K, V, Acc) ->
{X, Y} = K,
<<Acc/binary, X:16/little, Y:16/1little, V:16/1little>>
end,
maps:fold(ToBinary, <<>>, Matrix#matrix.pixels).

set_pixel(Matrix, X, _Y, _Color) when X = Matrix#matrix.width orelse X < 0 ->
{error, invalid_width};

set_pixel(Matrix, _X, Y, _Color) when Y = Matrix#matrix.height orelse Y < 0 ->
{error, invalid_height};

set_pixel(Matrix, X, Y, Color) ->
Key = {X, Y},
NewPixels = maps:put(Key, Color, Matrix#matrix.pixels),
NewMatrix = Matrix#matrix{pixels=NewPixels},
{ok, NewMatrix}.

resize(_Matrix, Width, _Height) when Width =< 0 ->
{error, invalid_width};

resize(_Matrix, _Width, Height) when Height =< 0 ->
{error, invalid_height};

resize(Matrix, Width, Height) ->
IsInBound = fun({X, Y}, _V) -> X < Width andalso X = 0 andalso Y < Height
andalso Y = 0 end,
FilteredPixels = maps:filter(IsInBound, Matrix#matrix.pixels),
NewMatrix = Matrix#matrix{pixels=FilteredPixels, width=Width, height=Height},
{ok, NewMatrix}.

Listing A.5: pixelwar_sup.erl

-module(pixelwar_sup).

-behaviour(supervisor).

79

OO UITDNWDN P

0

-export([start_1ink/0, add_matrix/1]1).
-export([init/1]).

start_link() ->
supervisor:start_link({local, ?MODULE}, ?MODULE, [1).

add_matrix(ChannelName) ->
supervisor:start_child(?MODULE, [ChannelName]).

init(_Args) ->
SupervisorSpecification = #{
strategy => simple_one_for_one,
intensity => 10,

period => 60
H,
ChildSpecifications = [
#{
id => pixelwar_matrix_serv,
start => {pixelwar_matrix_serv, start_link, []1},
restart => transient,
shutdown => 2000,
type => worker,
modules => [pixelwar_matrix_serv]
}

1,

{ok, {SupervisorSpecification, ChildSpecifications}}.

Listing A.6: pixelwar.app.src

{application, pixelwar, [
{description, "Yet another r/place clone"},
{vsn, "1.0.0"},
{registered, [1},
{mod, {pixelwar_app, [I}},
{applications, [kernel, stdlibl},
{env, [1},

{modules, [pixelwar_app, pixelwar_matrix_serv, pixelwar_matrix, pixelwar_sup]

h
It.

A.2 Version 0.2.0

Not all files are provided because they are either generated by Rebar3 or not used in the examples.

80

Vo0 ~JO U DNWN B

Figure A.2: Directory structure of Pixelwar version 0.2.0

pixelwar/

— apps/

l—-pixe'Lwar‘/

L-src/

+— pixelwar_app.erl

+— pixelwar_matrix_serv.erl

+— pixelwar_sup.erl

«— pixelwar.app.src

— test/

L—pixelwar_serv_SUITE.erl
— config/

sys.config

vm.args

+— LICENSE.md

— README.md

+— prebar.config

Listing A.7: rebar.config

{erl_opts, [debug_infol}.

{deps,

{relx, [{release, {pixelwar, "0.2.0"},

1t.

[pixelwar,
sasl]},

{mode, prod},

automatically picked up if the files
exist but can be set manually, which

is required if the names aren't exactly
sys.config and vm.args

{sys_config, "./config/sys.config"},
{vm_args, "./config/vm.args"}

the .src form of the configuration files do
not require setting RELX_REPLACE_OS_VARS
{sys_config_src, "./config/sys.config.src"},
{vm_args_src, "./config/vm.args.src"}

{profiles, [{prod, [{relx,

[%% prod is the default mode when prod
%% profile is used, so does not have
%% to be explicitly included 1like this

81

27
28
29
30
31
32

POVOJOCUDNWNE

(I

U DNWWN PR

10
11
12
13

14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

{mode, prod}

%% use minimal mode to exclude ERTS
%% {mode, minimal}
]

FIF1T.

Listing A.8: pixelwar_app.erl

-module(pixelwar_app).
-behaviour(application).
-export([start/2, stop/11).

start(_StartType, _StartArgs) ->
pixelwar_sup:start_1ink().

stop(_State) ->
ok.

Listing A.9: pixelwar matrix_serv.erl

-module(pixelwar_matrix_serv).
-vsn("0.2.0").
-behaviour(gen_server).

-record(state, {
pixels = #{} :: #{{non_neg_integer(), non_neg_integer()} => non_neg_integer()
}
width = 128 :: non_neg_integer(),
height = 128 :: non_neg_integer()
.

%% API

-export([start_1link/1, set_element/2, get_state/1]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2,
code_change/31).

start_link(Args) ->
gen_server:start_link({local, matrix}, ?MODULE, Args, []).

set_element(Instance, Pixel) ->
gen_server:cast(Instance, {set_element, Pixel}).

get_state(Instance) ->
gen_server:call(Instance, get_state).

676676%6%6960606.67676.67676 7696066666676 7696 606,6.6.6.6.6.6 766 66,66, 6.6.6.06. 6.6 606,666,666 6.6 /66

init({width, Height}) ->
{ok, #state{pixels = #{}, width = Width, height = Height}}.

handle_call(stop, _From, State) ->
{stop, normal, stopped, State};
handle_call(get_state, _From, State) ->
ToBinary = fun(K, V, Acc) ->
{X, Y} = K,
<<Acc/binary, X:16/little, Y:16/1little, V:16/1little>>
end,
AsBinary = maps:fold(ToBinary, <<>>, State#state.pixels),

82

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68

69
70
71
72
73
74

VOO ~JO U DNWN B

{reply, AsBinary, State};
handle_call(_Request, _From, State) ->
{reply, ok, State}.

handle_cast({set_element, {X, Y, Color}}, State) ->
Key = {X, Y},
if
X = State#state.width orelse X < 0 ->
{noreply, State};
Y = State#state.height orelse Y < 0 ->
{noreply, State};
true ->
NewPixels = maps:put(Key, Color, State#state.pixels),
NewState = State#stateq
pixels = NewPixels, width = State#state.width, height = State#
state.height
b
{noreply, NewState}
end;
handle_cast(_Msg, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change("0.1.0", State, _Extra) ->
{state, Pixels} = State,
Width = 128,
Height = 128,
IsInBound = fun({X, Y}, _V) -> X < Width andalso X = 0 andalso Y < Height
andalso Y = 0 end,
FilteredPixels = maps:filter(IsInBound, Pixels),
{ok, #state{pixels = FilteredPixels, width = Width, height = Height}};
code_change({down, "0.1.0"}, State, _Extra) ->
{ok, {state, State#tstate.pixels}};
code_change(_0ldVsn, State, _Extra) ->
{ok, State}.

Listing A.10: pixelwar_sup.erl

-module(pixelwar_sup).

-behaviour(supervisor).
-define (DEFAULT_SIZE, 128).
%% API
-export([start_1ink/0]).
-export([init/1]).

start_link() ->
supervisor:start_link({local, ?MODULE}, ?MODULE, [1).

init(_Args) ->
SupervisorSpecification = #{
% one_for_one | one_for_all | rest_for_one | simple_one_for_one
strategy => one_for_one,
intensity => 10,
period => 60

83

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43

V0O ~JO U DNWN B

Width =
case application:get_env(pixelwar, matrix_width) of
{ok, Vw} -> Vw;
undefined -> ?DEFAULT_SIZE
end,
Height =
case application:get_env(pixelwar, matrix_height) of
{ok, Vh} -> Vh;
undefined -> ?DEFAULT_SIZE
end,

ChildSpecifications = [
#{

id => matrix,
start => {pixelwar_matrix_serv, start_link, [{Width, Height}I},
% permanent | transient | temporary
restart => permanent,
shutdown => 2000,
% worker | supervisor
type => worker

] 1

{ok, {SupervisorSpecification, ChildSpecifications}}.

Listing A.11: pixelwar.app.src

{application, pixelwar, [
{description, "An OTP application"},
{vsn, "0.2.0"},
{registered, [1},
{mod, {pixelwar_app, [1}},
{applications, [
kernel,
stdlib
1},
{env, [1},

{modules, [pixelwar_app, pixelwar_matrix_serv, pixelwar_supl},

{licenses, ["Apache-2.0"1},
{links, []}
1.

Listing A.12: pixelwar serv_ SUITE.erl

-module(pixelwar_serv_SUITE).
-include_1lib("stdlib/include/assert.hrl").
-include_1ib("common_test/include/ct.hrl").
-compile(export_all).

alttQ) ->
[get_state_test_case, place_out_of_bounds_test_case].

init_per_testcase(_Case, Config) ->
application:load(pixelwar),
Width = 128,
Height = 128,
application:set_env(pixelwar, matrix_width, Width),
application:set_env(pixelwar, matrix_height, Height),

84

16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37

38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54

{ok, Apps} = application:ensure_all_started([pixelwar]),
[{apps, Apps}, {width, Width}, {height, Height} | Config].

end_per_testcase(_Case, Config) ->
[application:stop(App) || App <- lists:reverse(?config(apps, Config))],
Config.

get_state_test_case() ->
[
{doc, "Tries to get the current matrix as binary"},
{timetrap, timer:seconds(5)}

1.

get_state_test_case(_Config) ->
pixelwar_matrix_serv:set_element(matrix, {42, 42, 12}),
pixelwar_matrix_serv:set_element(matrix, {42, 42, 42}),
pixelwar_matrix_serv:set_element(matrix, {11, 12, 13}),

MatrixAsBin = pixelwar_matrix_serv:get_state(matrix),
?assertEqual(
MatrixAsBin,
<<11:16/1little, 12:16/1little, 13:16/little, 42:16/little, 42:16/little,
42:16/1ittle>>
).

place_out_of_bounds_test_case(Config) ->
Width = ?config(width, Config),
Height = ?config(height, Config),

InboundWidth = Width - 2,
InboundHeight = Height - 2,

% In bounds

pixelwar_matrix_serv:set_element(matrix, {InboundWidth, InboundHeight, 13}),
% 0ut of bounds

pixelwar_matrix_serv:set_element(matrix, {Width + 2, Height + 2, 13}),

MatrixAsBin = pixelwar_matrix_serv:get_state(matrix),

?assertEqual(MatrixAsBin, <<InboundWidth:16/1little, InboundHeight:16/little,
13:16/1ittle>>).

A.3 Version 0.3.0

Not all files are provided because they are either generated by Rebar3 or not used in the examples.

85

NV ~JOo U DNWN PP

Figure A.3: Directory structure of Pixelwar version 0.3.0
pixelwar/

— apps/
Lpixelwar/
Lsrc/

— matrix.hrl

+— pixelwar_app.erl

+— pixelwar_matrix_serv.erl
+— pixelwar_matrix.erl

+— pixelwar_sup.erl

+— pixelwar.app.src

— test/

pixelwar_serv_SUITE.erl
pixelwar_matrix_SUITE.erl

— config/
sys.config
vm.args

+— LICENSE.md

— README.md

+— rebar.config

Listing A.13: rebar.config

{erl_opts, [debug_infol}.

{deps, [1}.

{relx, [{release, {pixelwar, "0.3.0"},
[pixelwar,
sasl]},

{mode, prod},

%% automatically picked up if the files

%% exist but can be set manually, which

%% 1s required if the names aren't exactly
%% sys.config and vm.args

{sys_config, "./config/sys.config"},
{vm_args, "./config/vm.args"}

%% the .src form of the configquration files do

%% not require setting RELX_REPLACE_OS_VARS
%% {sys_config_src, "./config/sys.config.src"},

86

20
21
22
23
24
25
26
27
28
29
30
31
32

N

Ul N

POOVMOJOCUDNWNE,

[IENEN

Vo0 ~JO U DNWN B

%% {vm_args_src, "./config/vm.args.src"}

1t.

{profiles, [{prod, [{relx,
[%% prod is the default mode when prod
%% profile is used, so does not have
%% to be explicitly included 1like this
{mode, prod}

%% use minimal mode to exclude ERTS
%% {mode, minimal}

FIFIT.

Listing A.14: matrix.hrl

-define (DEFAULT_SIZE, 128).
-record(matrix, {
pixels = #{} :: #{{non_neg_integer(), non_neg_integer()} => non_neg_integer()

width = ?DEFAULT_SIZE :: non_neg_integer(),
height = ?DEFAULT_SIZE :: non_neg_integer()
B.

Listing A.15: pixelwar_app.erl

-module(pixelwar_app).
-behaviour(application).
-export([start/2, stop/1]).

start(_StartType, _StartArgs) ->
pixelwar_sup:start_link().

stop(_State) ->
ok.

Listing A.16: pixelwar matrix_serv.erl

-module(pixelwar_matrix_serv).
-vsn("0.3.0").
-behaviour(gen_server).
-include_1ib("matrix.hr1l").

-record(state, {

matrix = #matrix{}
B.

%% API

-export([start_1ink/0, set_element/2, get_state/1]).

-export([init/1, handle_call/3, handle_cast/2, handle_info/2, terminate/2,
code_change/31).

start_link() ->
gen_server:start_link({local, matrix}, ?MODULE, [], [1).

set_element(Instance, Pixel) ->
gen_server:cast(Instance, {set_element, Pixel}).

get_state(Instance) ->

87

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

CNUITDNWWN P

[N
[RN I

gen_server:call(Instance, get_state).
%9676%2676%2676% 2676676766767 2676% 26766 %676 767676 %6767 967676 7676 %6 676769676 %676 %6 %676 %6 %676 %6 %676 %6676 %6

init(_Args) ->
{ok, Matrix} = pixelwar_matrix:create(),
{ok, #state{matrix = Matrix}}.

handle_call(stop, _From, State) ->
{stop, normal, stopped, State};

handle_call(get_state, _From, State) ->
Binary = pixelwar_matrix:to_binary(State#state.matrix),
{reply, Binary, State};

handle_call(_Request, _From, State) ->
{reply, ok, State}.

handle_cast({set_element, {X, Y, Color}}, State) ->
case pixelwar_matrix:set_pixel(State#state.matrix, X, Y, Color) of
{ok, NewMatrix} ->
NewState = State#state{matrix=NewMatrix},
{noreply, NewState};
_ -> {noreply, State}
end;

handle_cast(_Msg, State) ->
{noreply, State}.

handle_info(_Info, State) ->
{noreply, State}.

terminate(_Reason, _State) ->
ok.

code_change("0.2.0", State, _Extra) ->
{_, Pixels, Width, Height} = State,
{ok, Matrix} = pixelwar_matrix:create(Width, Height, Pixels),
{ok, #state{matrix = Matrix}};

code_change({down, "0.2.0"}, State, _Extra) ->
{_, {_, Pixels, Width, Height}} = State,
{ok, {state, Pixels, Width, Height}};

code_change(_0ldVsn, State, _Extra) ->
{ok, State}.

Listing A.17: pixelwar_ matrix.erl

-module(pixelwar_matrix).
-include_lib("matrix.hrl").
-export([create/0, create/2, create/3, to_binary/1, set_pixel/4, resize/3]).

create() ->
Matrix = #matrix{pixels = #{}, width = ?DEFAULT_SIZE, height = ?DEFAULT_SIZE}

{ok, Matrix}.
create(Width, _Height) when Width =< 0 -> {error, invalid_width};

create(_Width, Height) when Height =< 0 -> {error, invalid_height};
create(Width, Height) ->

88

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46

47
48
49

NV ~JO U DNWN B

{ok, #matrix{ pixels = #{}, width = Width, height = Height}}.

create(Width, Height, Pixels) ->
case create(Width, Height) of
{ok, Matrix} -> {ok, Matrix#matrix{pixels=Pixels}} ;
Error -> Error
end.

to_binary(#matrix{} = Matrix) ->

ToBinary = fun(K, V, Acc) ->
{X, Y} = K,
<<Acc/binary, X:16/1little, Y:16/1little, V:16/1little>>
end,
maps:fold(ToBinary, <<>>, Matrix#matrix.pixels).
set_pixel(Matrix, X, _Y, _Color) when X = Matrix#matrix.width orelse X < 0 ->
{error, invalid_width};
set_pixel(Matrix, _X, Y, _Color) when Y = Matrix#matrix.height orelse Y < 0 ->
{error, invalid_height};
set_pixel(Matrix, X, Y, Color) ->
Key = {X, Y},
NewPixels = maps:put(Key, Color, Matrix#matrix.pixels),
NewMatrix = Matrix#fmatrix{pixels=NewPixels},
{ok, NewMatrix}.
resize(_Matrix, Width, _Height) when Width =< 0 ->
{error, invalid_width};
resize(_Matrix, _Width, Height) when Height =< 0 ->
{error, invalid_height};
resize(Matrix, Width, Height) ->
IsInBound = fun({X, Y}, _V) -> X < Width andalso X = 0 andalso Y < Height
andalso Y = 0 end,
FilteredPixels = maps:filter(IsInBound, Matrix#matrix.pixels),
NewMatrix = Matrix#matrix{pixels=FilteredPixels, width=Width, height=Height},
{ok, NewMatrix}.
Listing A.18: pixelwar_sup.erl
-module(pixelwar_sup).
-behaviour(supervisor).
%% API
-export([start_1ink/0]).
-export([init/1]).
start_link() ->
supervisor:start_link({local, ?MODULE}, ?MODULE, []).
init(_Args) ->
SupervisorSpecification = #{
% one_for_one | one_for_all | rest_for_one | simple_one_for_one
strategy => one_for_one,
intensity => 10,
period => 60
b,
ChildSpecifications = [

89

20
21
22
23
24
25
26
27
28
29
30
31

NV ~JO U DNWN B

OVoOJOUDNWNE

=

OO UIDNWN B

#{
id => matrix,
start => {pixelwar_matrix_serv, start_link, []1},
% permanent | transient | temporary
restart => permanent,
shutdown => 2000,
% worker | supervisor
type => worker

1,

{ok, {SupervisorSpecification, ChildSpecifications}}.

Listing A.19: pixelwar.app.src

{application, pixelwar, [
% A one-line description of the application.
{description, "An OTP application"},
% Version of the application.
{vsn, "0.3.0"},
% A1l names of registered processes started in this application.
{registered, []},
% Specifies the application callback module and a start argument
{mod, {pixelwar_app, [I}},
% A1l applications that must be started before this application is started.
{applications, [
kernel, % All applications depend on kernel and stdlib
stdlib
1},
% Configuration parameters used by the application.
{env, [1},
% A1l Modules introduced by this application
{modules, [pixelwar_app, pixelwar_matrix_serv, pixelwar_matrix, pixelwar_sup]
F,
{licenses, ["Apache-2.0"1},
{links, [1}
1}.

Listing A.20: pixelwar.appup.src

{"0.3.0", % New version
[{"0.2.0", [% Upgrade from
{add_module, pixelwar_matrix},
{update, pixelwar_matrix_serv, {advanced, []}}
1H1,
[{"0.2.0", [% Downgrade to
{delete_module, pixelwar_matrix},
{update, pixelwar_matrix_serv, {advanced, []1}}

1}]

Listing A.21: pixelwar serv_SUITE.erl

-module(pixelwar_serv_SUITE).
-include_1ib("stdlib/include/assert.hrl").
-include_1ib("common_test/include/ct.hrl").
-include_1lib("apps/pixelwar/src/matrix.hrl").
-compile(export_all).

altt() ->
[get_state_test_case, place_out_of_bounds_test_case].

90

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48

VOO ~JOUDNWN PP

init_per_testcase(_Case, Config) ->
application:load(pixelwar),

{ok, Apps} = application:ensure_all_started([pixelwar]),
[{apps, Apps} | Config].

end_per_testcase(_Case, Config) ->
[application:stop(App) || App <- lists:reverse(?config(apps, Config))],
Config.

get_state_test_case() ->
[
{doc, "Tries to get the current matrix as binary"},
{timetrap, timer:seconds(5)}

1.

get_state_test_case(_Config) ->
pixelwar_matrix_serv:set_element(matrix, {42, 42, 12}),
pixelwar_matrix_serv:set_element(matrix, {42, 42, 42}),
pixelwar_matrix_serv:set_element(matrix, {11, 12, 13}),

MatrixAsBin = pixelwar_matrix_serv:get_state(matrix),
?assertEqual(
MatrixAsBin,
<<11:16/1little, 12:16/1ittle, 13:16/1little, 42:16/1little, 42:16/1ittle,
42:16/1ittle>>
).

place_out_of_bounds_test_case(_) ->
Inbound = ?DEFAULT_SIZE - 2,
Outbound = ?DEFAULT_SIZE + 2,

% In bounds

pixelwar_matrix_serv:set_element(matrix, {Inbound, Inbound, 13}),

% 0ut of bounds

pixelwar_matrix_serv:set_element(matrix, {Outbound + 2, Outbound + 2, 13}),

MatrixAsBin = pixelwar_matrix_serv:get_state(matrix),

?assertEqual(MatrixAsBin, <<Inbound:16/1little, Inbound:16/1ittle, 13:16/
little>>).

Listing A.22: pixelwar matrix SUITE.erl

-module(pixelwar_matrix_SUITE).
-include_1ib("stdlib/include/assert.hrl").
-include_1ib("common_test/include/ct.hrl").
-include_1lib("apps/pixelwar/src/matrix.hrl").
-compile(export_all).

altit() -»>
[
create_invalid_size_matrix_test_case,
create_matrix_with_pixels_test_case,
matrix_to_binary_test_case,
set_pixel_invalid_location_test_case,
resize_matrix_test_case

1.

create_invalid_size_matrix_test_case() ->

91

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47

48
49
50
51
52

53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75

{doc, "Tries to create a matrix with an invalid width"},
{timetrap, timer:seconds(5)}
1.
create_invalid_size_matrix_test_case(_Config) ->
{error, invalid_width} = pixelwar_matrix:create(-2, 100),
{error, invalid_height} = pixelwar_matrix:create(100, -2).

create_matrix_with_pixels_test_case() ->
[
{doc, "Tries to create a matrix with already created pixels"},
{timetrap, timer:seconds(5)}
1.
create_matrix_with_pixels_test_case(_Config) ->
Pixels = #{{42,42} => 1, {11, 11} => 2},
{ok, Matrix} = pixelwar_matrix:create(100, 100, Pixels),
Pixels =:= Matrix#matrix.pixels.

matrix_to_binary_test_case() ->
[
{doc, "Tries to represent the pixels of a matrix as binary"},
{timetrap, timer:seconds(5)}
1.
matrix_to_binary_test_case(_Config) ->
Pixels = #{{42,42} => 42, {11, 12} => 13},
{ok, Matrix} = pixelwar_matrix:create(100, 100, Pixels),
Bin = pixelwar_matrix:to_binary(Matrix),
?assertEqual(
Bin,
<<11:16/1little, 12:16/1ittle, 13:16/1little, 42:16/1little, 42:16/1ittle,
42:16/1little>>
).

set_pixel_invalid_location_test_case() ->

[

{doc, "Tries to place a pixel at an invalid location with an invalid
height"},

{timetrap, timer:seconds(5)}
1.

set_pixel_invalid_location_test_case(_config) ->
{ok, Matrix} = pixelwar_matrix:create(),
{error, invalid_width} = pixelwar_matrix:set_pixel(Matrix, -2, 10, 12),
{error, invalid_width} = pixelwar_matrix:set_pixel(Matrix, 200, 10, 12),
{error, invalid_height} = pixelwar_matrix:set_pixel(Matrix, 10, -2, 12),
{error, invalid_height} pixelwar_matrix:set_pixel(Matrix, 10, 200, 12).

resize_matrix_test_case() ->
[
{doc, "Tries to resize the matrix"},
{timetrap, timer:seconds(5)}
1.
resize_matrix_test_case(_Config) ->
{ok, Start} = pixelwar_matrix:create(),
{ok, Modified} = pixelwar_matrix:set_pixel(Start, 42, 42, 42),
{ok, ModifiedTwice} = pixelwar_matrix:set_pixel(Modified, 11, 12, 13),
{error, invalid_width} = pixelwar_matrix:resize(ModifiedTwice, 0, 100),
{error, invalid_width} = pixelwar_matrix:resize(ModifiedTwice, -1, 100),
{error, invalid_height} = pixelwar_matrix:resize(ModifiedTwice, 160, 0),
{error, invalid_height} = pixelwar_matrix:resize(ModifiedTwice, 100, -1),
{ok, Resized} = pixelwar_matrix:resize(ModifiedTwice, 21, 22),

92

76
77
78
79
80
81
82
83
84
85
86
87

?assertEqual(
#{{11, 12} => 13},
Resized#matrix.pixels

),
?assertEqual(
21,
Resized#matrix.width
),
?assertEqual(
22,
Resized#matrix.height
).

93

VOO UITDNWHWN B

10

11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

V00O JO0OUTDNWNPE

Appendix B

Upgrade downgrade test suites

B.1 First Version

Listing B.1: Excerpt from the first Github workflow

- name: Run relup application
run: |
mkdir relupci
tar -xvf "${{ env.OLD_TAR }}" -C relupci
MATRIX_WIDTH=128 MATRIX_HEIGHT=128 relupci/bin/pixelwar daemon #1
cp "${{ env.NEW_TAR }}" relupci/releases/

OLD_TAG=$(echo "${{ env.OLD_TAR }}" | sed -nr 's
/M 4 ([0-91+\.[0-9]1+\.[0-9]+)\.tar\.g9z$/\1/p")
NEW_TAG=$(echo "${{ env.NEW_TAR }}" | sed -nr 's

/" 4 ([0-91+\. [0-91+\.[0-91+)\.tar\.g9z$/\1/p")

echo "Launch before upgrade test"
./test/before_upgrade.sh #2

relupci/bin/pixelwar upgrade ${NEW_TAG} #3
relupci/bin/pixelwar versions

echo "Launch after upgrade test"
./test/after_upgrade.sh #4

echo "Launch before downgrade test"
./test/before_downgrade.sh #5

relupci/bin/pixelwar downgrade ${OLD_TAG} #6

echo "Launch after downgrade test"
./test/after_downgrade.sh #7

Listing B.2: Testing the state of a release from bash

#1/bin/bash

binaryl=$(./relupci/bin/pixelwar rpc pixelwar_matrix_serv get_state [matrix])
binary2='#Bin<12,0,12,0,12,0>"'

echo $binaryl

echo $binary2

if [[$binaryl = $binary2 11; then
echo "Success"

94

10
11
12
13
14

OVoOJOUDNWNE

exit O

else
echo "Fail"
exit 1

fi

B.2 Second version

Listing B.3: A generic python module for interfacing between Robot Framework and an OTP
release

otp.py

import subprocess
from robot.api.deco import not_keyword
from robot.libraries.BuiltIn import Builtln

©not_keyword
def run(command):
result = subprocess.run(command, shell = True, executable="/bin/bash",
capture_output=True)
stdout = result.stdout.decode("utf-8")
return stdout

def start_release():
RELEASE_PATH = BuiltIn().get_variable_value("${RELEASE_PATH}")
START_COMMAND = f"MATRIX_WIDTH=128 MATRIX_HEIGHT=128 {RELEASE_PATH} daemon"
return run(START_COMMAND)

def stop_release():
RELEASE_PATH = BuiltIn().get_variable_value("${RELEASE_PATH}")
START_COMMAND = f"{RELEASE_PATH} stop"
return run(START_COMMAND)

def send_rpc(module, function, arguments):
RELEASE_PATH = BuiltIn().get_variable_value("${RELEASE_PATH}")
SEND_RPC_COMMAND = f"{RELEASE_PATH} rpc {module} {function} {arguments}"
return run(SEND_RPC_COMMAND)

def upgrade_release(version):
RELEASE_PATH = BuiltIn().get_variable_value("${RELEASE_PATH}")
UPGRADE_COMMAND = f"{RELEASE_PATH} upgrade {version}"
stdout = run(UPGRADE_COMMAND)

if "release_package_not_found" in stdout:
raise AssertionError(f"Command failed: {stdout}")

def downgrade_release(version):
RELEASE_PATH = BuiltIn().get_variable_value("${RELEASE_PATH}")
DOWNGRADE_COMMAND = f"{RELEASE_PATH} downgrade {version}"
stdout = run(DOWNGRADE_COMMAND)

if "release_package_not_found" in stdout:
raise AssertionError(f"Command failed: {stdout}")

def should_be_equal_as_erlang_bytes(actual, expected, msg=None):
from_as_str = actual.replace("#Bin<", "")

95

47
48
49
50
51

52
53

=
O VOJOUIDNWNE

(IR
WP

VOO JO U DNWN B

from_as_str = from_as_str.replace(">\n", "")
if from_as_str == expected:
if msg:
raise AssertionError(f"Values are not equal: {from_as_str} == {
expected}. {msg}")
else:
raise AssertionError(f"Values are not equal: {from_as_str} == {
expected}")
Listing B.4: An application specific python module for interfacing with our release
matrix.py
from otp import send_rpc
MODULE = "pixelwar_matrix_serv"
PROCESS = "matrix"
def set_pixel(x, y, color):
return send_rpc(MODULE, "set_element", f"[{PROCESS}, {{ {x}, {y}, {color} }}]

D

def get_matrix_state():
return send_rpc(MODULE, "get_state", f"[{PROCESS}]")

Listing B.5: A Robot Framework test suite using the python modules

*kk Variables *kk

${0LD_VERSION} 0.1.0

${NEW_VERSION} 0.2.0

${RELEASE_PATH} erlang/_build/default/rel/pixelwar/bin/pixelwar

Suite Setup Start Release

Suite Teardown Stop Release
Library matrix.py
Library otp.py

* %% Test Cases * %%
Setup state before upgrade

Set Pixel 12 12 12

Set Pixel 222 222 222

${state} Get Matrix State

Should Be Equal As Erlang Bytes ${state}
12,0,12,0,12,0,222,0,222,0,222,0

upgrade release
Upgrade Release ${NEW_VERSION}

Test state after upgrade
${state} Get Matrix State
Should Be Equal As Erlang Bytes ${state} 12,0,12,0,12,0

Setup state before downgrade
Set Pixel 13 13 13
${state} Get Matrix State
Should Be Equal As Erlang Bytes ${state} 12,0,12,0,12,0,13,0,13,0,13,0

downgrade release

96

32 Downgrade Release ${OLD_VERSION}

33

34 | Test state after downgrade

35 ${state} Get Matrix State

36 Should Be Equal As Erlang Bytes ${state} 12,0,12,0,12,0,13,0,13,0,13,0

B.3 Third version

Listing B.6: Upgrade/downgrade CT test suite

1 | -module(upgrade_downgrade_SUITE).

2 | -behaviour(ct_suite).

3 | -export([all/0, groups/01]1).

4 | -compile(export_all).

S

6 | -include_1ib("stdlib/include/assert.hri1").

7 | -include_1ib("common_test/include/ct.hr1").

8

9 |groups() ->

10 [{upgrade_downgrade, [sequence], [before_upgrade_case, upgrade_case,
after_upgrade_case, before_downgrade_case, downgrade_case,
after_downgrade_case]}].

11

12 [all1() ->

13 [{group, upgrade_downgrade}].

14

15 |suite() ->

16 [

17 {require, old_version},

18 {require, new_version},

19 {require, release_name},

20 {require, release_dir}

21 1.

22

23 |init_per_suite(Config) ->

24 ct:print("Initializing suite..."),

25 ct:log(info, ?LOW_IMPORTANCE, "Initializing suite...", [1),

26 Docker = os:find_executable("docker"),

27 build_image(),

28 ReleaseName = ct:get_config(release_name),

29

30 {ok, Peer, Node} = peer:start(#{name => ReleaseName,

31 connection => standard_io,

32 exec => {Docker, ["run", "-h", "one", "-i", ReleaseNamel}}),

33

34 [{peer, Peer}, {node, Node} | Config].

35

36 |end_per_suite(Config) ->

37 Peer = ?config(peer, Config),

38 peer:stop(Peer).

39

40 |% ========== (CASES ==========

41

42 |before_upgrade_case(Config) ->

43 _Peer = ?config(peer, Config),

44 ct:print("T0D0: Implement this case").

45

46 |upgrade_case(Config) ->

47 Peer = ?config(peer, Config),

97

48
49
50
51
52
53

54

55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105

NewVSN = ct:get_config(new_version),
0ldVSN = ct:get_config(old_version),
ReleaseName = ct:get_config(release_name),
NewReleaseName = filename:join(NewVSN, ReleaseName),
{ok, NewVSN} = peer:call(Peer, release_handler, unpack_release, [
NewReleaseName]),
{ok, OldVSN, _} = peer:call(Peer, release_handler, install_release, [NewVSN])
ok = peer:call(Peer, release_handler, make_permanent, [NewVSN]),
Releases = peer:call(Peer, release_handler, which_releases, []),
ct:print("Installed releases:\n~p", [Releases]).
after_upgrade_case(Config) ->
_Peer = ?config(peer, Config),
ct:print("TODO: Implement this case").
before_downgrade_case(Config) ->
_Peer = ?config(peer, Config),
ct:print("TODO: Implement this case").
downgrade_case(Config) ->
Peer = ?config(peer, Config),
0ldVSN = ct:get_config(old_version),
{ok, 01dVSN, _} = peer:call(Peer, release_handler, install_release, [01ldVSN])
ok = peer:call(Peer, release_handler, make_permanent, [0ldVSN]),
Releases = peer:call(Peer, release_handler, which_releases, [1),
ct:print("Installed releases:\n~p", [Releases]).
after_downgrade_case(Config) ->
_Peer = ?config(peer, Config),
ct:print("TODO: Implement this case").
% ========== HELPERS ==========
build_image() ->
NewVSN = ct:get_config(new_version),
0ldVSN = ct:get_config(old_version),
ReleaseName = ct:get_config(release_name),
NewReleaseName = ReleaseName + "-" ++ NewVSN,
OldReleaseName = ReleaseName + "-" ++ 01dVSN,
ReleaseDir = ct:get_config(release_dir),
NewReleasePath = filename:join(ReleaseDir, NewReleaseName + ".tar.gz"),
file:copy(NewReleasePath, "./" ++ NewReleaseName + ".tar.gz"),
OldReleasePath = filename:join(ReleaseDir, OldReleaseName + ".tar.gz"),
file:copy(0ldReleasePath, "./" + O0ldReleaseName + ".tar.gz"),
%% Create Dockerfile example, working only for Ubuntu 20.04
%% Expose port 4445, and make Erlang distribution to listen
%% on this port, and connect to it without EPMD
%% Set cookie on both nodes to be the same.
BuildScript = filename:join("./", "Dockerfile"),
Dockerfile =
"FROM ubuntu:22.04 as runner\n"
"EXPOSE 4445\n"

98

106
107

108

109
110

111

112

113
114
115
116
117
118
119

"WORKDIR /opt/" ++ ReleaseName + "\n"

"COPY [\"" + O0ldReleaseName + ".tar.gz\", \"" + NewReleaseName + ".
taP.gZ\"" +— ||’ \n/.tmp/\ll]\nn

"RUN tar -zxvf /tmp/" ++ OLldReleaseName + ".tar.gz -C /opt/" +
ReleaseName + "\n"

"RUN mkdir /opt/" + ReleaseName + "/releases/" + NewVSN + "\n"

"RUN cp /tmp/" + NewReleaseName + ".tar.gz /opt/" + ReleaseName + "/
releases/" + NewVSN + "/" + ReleaseName + ".tar.gz\n"

"ENTRYPOINT [\"/opt/" + ReleaseName + "/erts-" + erlang:system_info(
version) +

"/bin/dyn_er1\", \"-boot\", \"/opt/" + ReleaseName + "/releases/" +
0ldVSN + "/start\","

" \"-kernel\", \"inet_dist_listen_min\", \"4445\","

" \"-erl_epmd_port\", \"4445\","

" \"-setcookie\", \"secret\"]\n",
ct:log(info, ?LOW_IMPORTANCE, "Dockerfile:\n~s", [Dockerfilel),
ok = file:write_file(BuildScript, Dockerfile),
DockerBuildResult = os:cmd("docker build -t " + ReleaseName + " ."),
ct:log(info, ?LOW_IMPORTANCE, "Docker build:\n~s", [DockerBuildResult]).

99

Appendix C
HotCI

Snapshot of the HotCI repository[24] made the 14th of May 2024.

HotCI can be modified or extended by altering the files present in the .github, test and script
repositories.

If running the tests regularly is required, the schedule workflows trigger, configured with a
cron, can be used. Note that, if a step value is part of the cron, there is no guarantee that the
workflow will run at the specified interval.

Figure C.1: Directory structure of HotCI
HotCI/

— .github/
+— publish-ct-results/
L action.yml

+— setup-beam/

L action.yml

— workflows/

erlang-ci.yml

publish-tarball.yml

relup-ci.yml

— scripts/

tcheck_versions
get_release_name

— test/

L upgrade_downgrade_SUITE.erl

+— LICENSE.md

+— README.md

+— pebar.config

100

Vo0 ~JO U DNWN PP

POVOJOCUDNWNE,

(I

Vo0 ~JOUIDNWN PP

Listing C.1: publish-ct-results/action.yml

name: Publish CT Results
description: Publish and Upload CT results as artifact

inputs:
test-name:
description: Name of the test suite
required: true
default: Some test

runs:
using: composite

steps:

- name: Upload test results as artifact
uses: actions/upload-artifact@v4
with:

name: ${{ inputs.test-name }}
path: ./results
compression-level: 9
retention-days: 30

- name: Publish test results
uses: EnricoMi/publish-unit-test-result-action@v2
with:
check_name: ${{ inputs.test-name }}
files: |
./results/ g4/ 4. xml

Listing C.2: setup-beam/action.yml

name: Setup
description: Setup the BEAM

runs:
using: composite
steps:
- name: Setup the BEAM
uses: erlef/setup-beam@vil
with:
otp-version: '26'
rebar3-version: '3.22.1'

Listing C.3: erlang-ci.yml

name: Erlang CI

on:
push:
branches: ["main"]
pull_request:
branches: ["main"]

permissions:
contents: read
issues: read
checks: write
pull-requests: write

jobs:

validation-checks:
runs-on: ubuntu-latest

101

18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49

50
51
52
53
54

V00O ~JO U DNWN PP

steps:
- uses: actions/checkout@v4
- uses: ./.github/setup-beam

- name: Run validation checks
working-directory:
run: rebar3d do xref, dialyzer

build:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4
- uses: ./.github/setup-beam

- name: Check that the release can be built
working-directory:
run: rebar3 do release, tar

unit-test:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4
- uses: ./.github/setup-beam

- name: Run unit tests
working-directory:
run: |

mkdir results

rebar3 do ct --dir apps --verbose true --logdir ./results --label

erlang-ci --cover true, cover -v

- uses: ./.github/publish-ct-results
if: always()
with:
test-name: erlang-ci

Listing C.4: relup-ci.yml

name: Relup CI

on:
pull_request:
branches: ["main"]

permissions:
contents: read
issues: read
checks: write
pull-requests: write

jobs:
upgrade-downgrade-test:
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4
with:
fetch-depth: O

102

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36

37
38
39
40
41
42

43
44

45
46

47
48

49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66

67
68

69
70

- uses: ./.github/setup-beam

- name: Get release name
working-directory:
run: |
RELNAME=$(./scripts/get_release_name ./rebar.config)
echo "RELNAME=$RELNAME" >> $GITHUB_ENV

- name: Check if a previous tags exists
run: |
LAST_TAG=$(git tag -1 --sort=committerdate 'vy.4.4' | tail -n 1)
echo "LAST_TAG=$LAST_TAG" >> $GITHUB_ENV

- name: Set check status

if: ${{env.LAST_TAG = ''}}

run: echo '#### No previous version tag, skipped checks' >>
$GITHUB_STEP_SUMMARY

- name: Run validation checks and build releases
working-directory: .
if: ${{env.LAST_TAG == ''}}
run: |
./scripts/check_versions ${{env.RELNAME}} $(/usr/bin/git log -1 --format
='%H') > vsn.log
cat vsn.log
cat vsn.log | awk '/Generated appup/ || /Compiling .4 \.appup\.src/ {
appup=1 }
/relup successfully created!/ { relup=1 }
/RESTART version bumped, ignoring relup check./ {
restart=1 }
END { if ('appup) { print "appup missing"; exit 1}
if (!relup && !restart) { print "relup missing";
exit 1} }'
0LD=$(cat vsn.log | awk '/0LD:/ {print $2}')
NEW=$(cat vsn.log | awk '/NEW:/ {print $2}")
IS_RESTART=$(cat vsn.log | awk '/RESTART version bumped, ignoring relup
check./ {found=1; exit} END {if(found) print "true"; else print "false"}')
echo "OLD_TAR=$0LD" >> $GITHUB_ENV
echo "NEW_TAR=$NEW" >> $GITHUB_ENV
echo "IS_RESTART=$IS_RESTART" >> $GITHUB_ENV

- name: Test upgrade and downgrade of the application

working-directory:
if: ${{env.LAST_TAG == '' && env.IS_RESTART = 'false'}}
run: |

mkdir relupci

mkdir relupci/releases/

cp "${{ env.OLD_TAR }}" relupci/releases/

cp "${{ env.NEW_TAR }}" relupci/releases/

OLD_TAG=$(echo "${{ env.OLD_TAR }}" | sed -nr 's
/7 4 ([0-91+\.[0-91+\.[0-91+)\.tar\.9z$/\1/p")
NEW_TAG=$(echo "${{ env.NEW_TAR }}" | sed -nr 's

/™. % ([0-91+\.[0-9]+\.[0-9]1+)\.tar\.gz$/\1/p")

RELEASE_DIR=$(readlink -f relupci/releases/)

echo -e "{old_version, \"$O0LD_TAG\"}.\n{new_version, \"$NEW_TAG\"}.\n{
release_name, \"${{env.RELNAME}}\"}.\n{release_dir, \"$RELEASE_DIR\"}." >> ./
test/config.config

103

71
72
73

74
75
76
77
78
79
80
81
82
83

VWO ~JO U DNWN B

mkdir results
rebar3 ct --dir ./test --verbose true --config ./test/config.config --
logdir ./results --label relup-ci

- name: Remove releases to save space
working-directory: .
if: ${{ always() && env.LAST_TAG == '' 8&& env.IS_RESTART = 'false'}}
run: rm -rf ./results/44/4-tar.gz

- uses: ./.github/publish-ct-results
if: ${{ always() && env.LAST_TAG == '' && env.IS_RESTART = 'false'}}
with:
test-name: relup-ci

Listing C.5: publish-tarball.yml

name: Publish tarball

on:
push:
tags: ["v[0-9]+.[0-9]+.[0-9]+"]

jobs:

build:
name: Prepare build artifacts
runs-on: ubuntu-latest

steps:
- uses: actions/checkout@v4
with:
fetch-depth: @ # Necessary to get all the commits and tags
- uses: ./.github/setup-beam

- name: Get latest release
id: get-latest-release
uses: ahzedl1l/get-latest-release-action@vl.2
with:
keepv: false

- name: Fetch manifest version
run: |
NEW_VSN:${GITHUB_REF##*/V}
echo "VSN=$NEW_VSN" >> $GITHUB_ENV

OLD_VSN=${{steps.get-latest-release.outputs.release}}
echo "OLD_VSN=$0LD_VSN" >> $GITHUB_ENV

IS_UPGRADE=$(echo "$NEW_VSN $OLD_VSN" | awk -vFS='[. 1' '($1=$4 8& $2>
$5) || ($1=9%4 && $2=9$5 8&& $3>$6) {print 1; exit} {print 0}')
if ["$IS_UPGRADE" -eq 1 1; then
echo "RELUP=1" >> $GITHUB_ENV
else
echo "RELUP=0" >> $GITHUB_ENV
fi
- run: |
echo "${{ env.OLD_VSN }} -> ${{ env.VSN }} : ${{ env.RELUP }}"

- name: Build a tarball
working-directory:

104

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89

VOO ~JO U DNWN B

run: |
RELNAME=$(./scripts/get_release_name ./rebar.config)
if [${{ env.RELUP }} -eq 1]; then
ORIG=$(/usr/bin/git log -1 --format='%H')
git checkout v${{ env.OLD_VSN }}
rebar3 do clean -a, release
git checkout $0RIG
rebar3 do clean -a, release
rebar3 appup generate
rebar3 relup -n $RELNAME -v ${{ env.VSN }} -u ${{ env.OLD_VSN }}
else
rebar3 release
fi
rebar3 tar
BUILD=$(1s _build/default/rel/$RELNAME/$RELNAME-4 .tar.gz)
mkdir ./_artifacts
cp $BUILD ./_artifacts/$RELNAME-${{ env.VSN }}.tar.gz

- name: Upload build artifacts
uses: actions/upload-artifact@v4
with:

name: artifacts
path: _artifacts
retention-days: 1

publish:
name: Publish build artifacts
needs: build
runs-on: ubuntu-latest

permissions:
id-token: write
contents: write

steps:
- name: Get build artifacts
uses: actions/download-artifact@v4
with:
name: artifacts
path: _artifacts

- name: Upload release
uses: ncipollo/release-action@vl
with:
artifacts: |
_artifacts/4.tar.gz

Listing C.6: check versions

#!/usr/bin/env escript
-module(check_versions).
-mode (compile).

usage() ->
io:format("usage: Relname Branch\n"),
halt(1).

main([Relname]) ->
main([Relname, os:cmd("git rev-parse --abbrev-ref HEAD")]);

main([Relname, Branch]) ->

105

13
14

15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

SrcPrefix = "apps/",
"v'"++_LastVsn = LastTag = string:trim(os:cmd("git tag -1 --sort=committerdate
"Vgog-x | tail -n 1)),
io:format("switching to ~ts and back to ~ts~n", [LastTag, Branchl),
io:format("~p: ~ts~n", [?LINE, os:cmd("git checkout "++LastTag)]),
io:format("~p: ~ts~n", [?LINE, os:cmd("rebar3 do clean -a, release, tar")]),
io:format("~p: ~ts~n", [?LINE, os:cmd("git checkout "++Branch)l]),
io:format("~p: ~ts~n", [?LINE, os:cmd("rebar3 do clean -a, release")]),
RelFiles = filelib:wildcard("_build/default/rel/ /releases/ 4 /4. .rel"),
case length(RelFiles) of
2 ->
ok;
N ->
io:format("Expected two find two releases, found ~p~n"
"The current release likely has the same version as "
"an older one.~n"
"Bump up the release version to generate relups.~n",
[NDD),
init:stop(1)
end,
Releases = [Content || Path <- RelFiles,
{ok, [Content]} <- [file:consult(Path)]],
case [{ERTS, to_vsn(VsnStr)} || {release, {_Name, VsnStr}, ERTS, _Apps} <-
Releases] of
[{—l{Vll—l—}}l{—l{vzl—l—}}] when V1 == V2 ->
io:format("RESTART version bumped, ignoring relup check.~n", [1),
init:stop(0);
[{ERTS,_}, {ERTS,_}] ->

ok;
[{_: {Vll—l—}}l {_l {Vll—l_}}] ->
io:format("The ERTS version changed; the release version should "
"be bumped accordingly (RESTART+1.RELUP.RELOAD)~n", [1),
init:stop(1)
end,

ChangedFiles = [Sub
|| Path <- diff_lines(os:cmd("git diff "+LastTag)),
Sub <- [string:prefix(Path, SrcPrefix)],
Sub == nomatch],
AppsChanged = [list_to_atom(App) |l
App <- lists:usort([hd(filename:split(Name)) || Name <-
ChangedFiles])],
[{_, oldStr, Old}, {_, NewStr, New}] = lists:sort(
[{to_vsn(VsnStr), VsnStr, Apps}
|| {release, {_Name, VsnStr}, _ERTS, Apps} <- Releases]
),
Incorrect = lists:filter(
fun(App) ->
0ldVsn = case lists:keyfind(App, 1, 0ld) of
{_, Vsn} -> Vsn;
false -> ""
end,
{_, NewVsn} = lists:keyfind(App, 1, New),
0ldVsn = NewVsn
end,
AppsChanged
),
case Incorrect of
[1->
ok;
->

106

71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86
87
88

89
90
91
92
93
94
95
96
97

NV ~JO U DNWN B

io:format("Applications have changes applied and need a "
"version bump: ~p~n", [Incorrect]),
init:stop(1)
end,
%% Build relup phase
io:format("~ts~n", [os:cmd("rebar3 appup generate")]),
io:format("~ts~n", [os:cmd("rebar3 relup -n"+ Relname +" -v "+NewStr+" -u
"+01dStr) 1),
io:format("~ts~n", [os:cmd("rebar3 tar")]),
io:format("0OLD: _build/default/rel/"+Relname++"/"+Relname+"-~ts.tar.gz~n"
"NEW: _build/default/rel/"++Relname+"/"+Relname+"-~ts.tar.gz~n",
[0ldStr, NewStrl),
init:stop(0);

main(_) ->
usage().

to_vsn(Str) ->
[Restart, Relup, Reload] = [list_to_integer(S) || S <- string:lexemes(Str, ".
"1,
{Restart, Relup, Reload}.

diff_lines(Str) ->
[string:sub_string(Path, 3)
| Line <- string:lexemes(Str, "\n"),
nomatch == string:prefix(Line, "+++") orelse
nomatch == string:prefix(Line, "---"),
[_, Path |_] <- [string:lexemes(Line, " ")]

Listing C.7: get_release name

#!/usr/bin/env escript
-module(get_release_name).
-mode (compile).

usage() ->
io:format("usage: RebarConfigPath\n"),
halt(1).

main([Path]l) ->
{ok, Terms} = file:consult(Path),
Filter = fun (E) ->
case E of
{relx, _} -> true;
_ -> false
end
end,
[H | _] = lists:filter(Filter, Terms),
{relx, Relx} = H,
{release, {Release, _}, _} = lists:nth(1, Relx),
io:format("~s", [Releasel]);

main(_) ->
usage().

Listing C.8: upgrade downgrade SUITE.erl

-module (upgrade_downgrade_SUITE).
-behaviour(ct_suite).
-export([all/0, groups/0]).

107

OV 00JO0 U N

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53

54

55
56
57
58
59
60

-compile(export_all).

-include_1ib("stdlib/include/assert.hrl1").
-include_1ib("common_test/include/ct.hrl").

groups() ->
[{upgrade_downgrade, [sequence], [before_upgrade_case, upgrade_case,
after_upgrade_case, before_downgrade_case, downgrade_case,
after_downgrade_case]}].

altt() ->
[{group, upgrade_downgrade}].

suite() ->
[
{require, old_version},
{require, new_version},
{require, release_name},
{require, release_dir}

1.
init_per_suite(Config) ->
ct:print("Initializing suite..."),
ct:log(info, ?LOW_IMPORTANCE, "Initializing suite...", [1),

Docker = os:find_executable("docker"),
build_image(),
ReleaseName = ct:get_config(release_name),

{ok, Peer, Node} = peer:start(#{name => ReleaseName,
connection => standard_io,
exec => {Docker, ["run", "-h", "one", "-i", ReleaseNamel]}}),

[{peer, Peer}, {node, Node} | Config].

end_per_suite(Config) ->
Peer = ?config(peer, Config),
peer:stop(Peer).

before_upgrade_case(Config) ->
_Peer = ?config(peer, Config),
ct:print("T0D0: Implement this case").

upgrade_case(Config) ->
Peer = ?config(peer, Config),
NewVSN = ct:get_config(new_version),
0ldVSN = ct:get_config(old_version),
ReleaseName = ct:get_config(release_name),
NewReleaseName = filename:join(NewVSN, ReleaseName),

{ok, NewVSN} = peer:call(Peer, release_handler, unpack_release, [
NewReleaseName]),
{ok, O1dVSN, _} = peer:call(Peer, release_handler, install_release,

ok = peer:call(Peer, release_handler, make_permanent, [NewVSN]),

Releases = peer:call(Peer, release_handler, which_releases, [1),
ct:print("Installed releases:\n~p", [Releases]).

after_upgrade_case(Config) ->

108

[NewVSN])

61
62
63
64
65
66
67
68
69
70
71
72

73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107

108

109
110

111
112
113

114
115

_Peer = ?config(peer, Config),
ct:print("TODO: Implement this case").

before_downgrade_case(Config) ->
_Peer = ?config(peer, Config),
ct:print("TODO: Implement this case").

downgrade_case(Config) ->
Peer = ?config(peer, Config),
0ldVSN = ct:get_config(old_version),

{ok, O01dVSN, _} = peer:call(Peer, release_handler, install_release, [01ldVSN])

ok = peer:call(Peer, release_handler, make_permanent, [0ldVSN]),

Releases = peer:call(Peer, release_handler, which_releases, [1),
ct:print("Installed releases:\n~p", [Releases]).

after_downgrade_case(Config) ->
_Peer = ?config(peer, Config),
ct:print("TODO: Implement this case").

build_image() ->
NewVSN = ct:get_config(new_version),
0ldVSN = ct:get_config(old_version),
ReleaseName = ct:get_config(release_name),
NewReleaseName = ReleaseName + "-" ++ NewVSN,
OldReleaseName = ReleaseName ++ "-" ++ Q0LdVSN,
ReleaseDir = ct:get_config(release_dir),

NewReleasePath = filename:join(ReleaseDir, NewReleaseName + ".tar.gz"),
file:copy(NewReleasePath, "./" ++ NewReleaseName + ".tar.gz"),

OldReleasePath = filename:join(ReleaseDir, OldReleaseName + ".tar.gz"),
file:copy(0OldReleasePath, "./" + 0ldReleaseName + ".tar.gz"),

%% Create Dockerfile example, working only for Ubuntu 20.04
%% Expose port 4445, and make Erlang distribution to listen
%% on this port, and connect to it without EPMD
%% Set cookie on both nodes to be the same.
BuildScript = filename:join("./", "Dockerfile"),
Dockerfile =

"FROM ubuntu:22.04 as runner\n"

"EXPOSE 4445\n"

"WORKDIR /opt/" ++ ReleaseName + "\n"

"COPY [\"" ++ O0ldReleaseName + ".tar.gz\", \"" + NewReleaseName + ".
tar.gz\"" + ", \"/tmp/\"T\n"

"RUN tar -zxvf /tmp/" + O0ldReleaseName + ".tar.gz -C /opt/" +
ReleaseName + "\n"

"RUN mkdir /opt/" + ReleaseName + "/releases/" + NewVSN + "\n"

"RUN cp /tmp/" + NewReleaseName + ".tar.gz /opt/" + ReleaseName + "/
releases/" + NewVSN + "/" + ReleaseName + ".tar.gz\n"

"ENTRYPOINT [\"/opt/" + ReleaseName + "/erts-" + erlang:system_info(
version) +

"/bin/dyn_er1\", \"-boot\", \"/opt/" + ReleaseName + "/releases/" ++
OLdVSN + "/start\","

" \"-kernel\", \"inet_dist_listen_min\", \"4445\","

" \"-erl_epmd_port\", \"4445\","

" \"-setcookie\", \"secret\"]\n",

109

116
117
118
119

VOO ~JO U DNWN B

ct:log(info, ?LOW_IMPORTANCE, "Dockerfile:\n~s", [Dockerfilel),

ok = file:write_file(BuildScript, Dockerfile),

DockerBuildResult = os:cmd("docker build -t " ++ ReleaseName + " ."),
ct:log(info, ?LOW_IMPORTANCE, "Docker build:\n~s", [DockerBuildResult]

Listing C.9: LICENSE.md

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
1. Definitions.

"License" shall mean the terms and conditions for use, reproduction,
and distribution as defined by Sections 1 through 9 of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control" means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making modifications,
including but not limited to software source code, documentation
source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but
not limited to compiled object code, generated documentation,
and conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work

(an example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or Object
form, that is based on (or derived from) the Work and for which the
editorial revisions, annotations, elaborations, or other modifications
represent, as a whole, an original work of authorship. For the purposes
of this License, Derivative Works shall not include works that remain
separable from, or merely link (or bind by name) to the interfaces of,
the Work and Derivative Works thereof.

"Contribution" shall mean any work of authorship, including

the original version of the Work and any modifications or additions

to that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright owner
or by an individual or Legal Entity authorized to submit on behalf of
the copyright owner. For the purposes of this definition, "submitted"

110

55 means any form of electronic, verbal, or written communication sent
56 to the Licensor or its representatives, including but not limited to
57 communication on electronic mailing 1lists, source code control systems,
58 and issue tracking systems that are managed by, or on behalf of, the
59 Licensor for the purpose of discussing and improving the Work, but
60 excluding communication that is conspicuously marked or otherwise

61 designated in writing by the copyright owner as "Not a Contribution."
62

63 "Contributor" shall mean Licensor and any individual or Legal Entity
64 on behalf of whom a Contribution has been received by Licensor and
65 subsequently incorporated within the Work.

66

67 2. Grant of Copyright License. Subject to the terms and conditions of
68 this License, each Contributor hereby grants to You a perpetual,

69 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

70 copyright license to reproduce, prepare Derivative Works of,

71 publicly display, publicly perform, sublicense, and distribute the
72 Work and such Derivative Works in Source or Object form.

73

74 3. Grant of Patent License. Subject to the terms and conditions of

75 this License, each Contributor hereby grants to You a perpetual,

76 worldwide, non-exclusive, no-charge, royalty-free, irrevocable

77 (except as stated in this section) patent license to make, have made,
78 use, offer to sell, sell, import, and otherwise transfer the Work,
79 where such license applies only to those patent claims licensable

80 by such Contributor that are necessarily infringed by their

81 Contribution(s) alone or by combination of their Contribution(s)

82 with the Work to which such Contribution(s) was submitted. If You

83 institute patent litigation against any entity (including a

84 cross-claim or counterclaim in a lawsuit) alleging that the Work

85 or a Contribution incorporated within the Work constitutes direct

86 or contributory patent infringement, then any patent licenses

87 granted to You under this License for that Work shall terminate

88 as of the date such litigation is filed.

89

90 4. Redistribution. You may reproduce and distribute copies of the

91 Work or Derivative Works thereof in any medium, with or without

92 modifications, and in Source or Object form, provided that You

93 meet the following conditions:

94

95 (a) You must give any other recipients of the Work or

96 Derivative Works a copy of this License; and

97

98 (b) You must cause any modified files to carry prominent notices

99 stating that You changed the files; and

100

101 (c) You must retain, in the Source form of any Derivative Works

102 that You distribute, all copyright, patent, trademark, and

103 attribution notices from the Source form of the Work,

104 excluding those notices that do not pertain to any part of

105 the Derivative Works; and

106

107 (d) If the Work includes a "NOTICE" text file as part of its

108 distribution, then any Derivative Works that You distribute must
109 include a readable copy of the attribution notices contained

110 within such NOTICE file, excluding those notices that do not

111 pertain to any part of the Derivative Works, in at least one

112 of the following places: within a NOTICE text file distributed
113 as part of the Derivative Works; within the Source form or

114 documentation, if provided along with the Derivative Works; or,
115 within a display generated by the Derivative Works, if and

111

116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176

wherever such third-party notices normally appear. The contents
of the NOTICE file are for informational purposes only and

do not modify the License. You may add Your own attribution
notices within Derivative Works that You distribute, alongside
or as an addendum to the NOTICE text from the Work, provided
that such additional attribution notices cannot be construed

as modifying the License.

You may add Your own copyright statement to Your modifications and
may provide additional or different license terms and conditions
for use, reproduction, or distribution of Your modifications, or
for any such Derivative Works as a whole, provided Your use,
reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.

. Submission of Contributions. Unless You explicitly state otherwise,

any Contribution intentionally submitted for inclusion in the Work
by You to the Licensor shall be under the terms and conditions of
this License, without any additional terms or conditions.
Notwithstanding the above, nothing herein shall supersede or modify
the terms of any separate license agreement you may have executed
with Licensor regarding such Contributions.

. Trademarks. This License does not grant permission to use the trade

names, trademarks, service marks, or product names of the Licensor,
except as required for reasonable and customary use in describing the
origin of the Work and reproducing the content of the NOTICE file.

. Disclaimer of Warranty. Unless required by applicable law or

agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS IS" BASIS,

WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
implied, including, without limitation, any warranties or conditions
of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
PARTICULAR PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume any
risks associated with Your exercise of permissions under this License.

Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as a
result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor

has been advised of the possibility of such damages.

. Accepting Warranty or Additional Liability. While redistributing

the Work or Derivative Works thereof, You may choose to offer,

and charge a fee for, acceptance of support, warranty, indemnity,
or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act only
on Your own behalf and on Your sole responsibility, not on behalf
of any other Contributor, and only if You agree to indemnify,
defend, and hold each Contributor harmless for any liability
incurred by, or claims asserted against, such Contributor by reason
of your accepting any such warranty or additional liability.

112

177

12
13
14
15

16
17
18
19
20
21
22

23
24

25
26
27
28

29
30
31
32

33
34
35
36

END OF TERMS AND CONDITIONS

Listing C.10: README.md

HotCIA

Please contribute to this tool and my master thesis by participating to its
evaluation: [HotCI evaluation form](https://forms.office.com/e/aaWPduS4Ch) A

Thank you ! U
Overview

The HotCI is designed to facilitate Continuous Integration (CI) and Continuous
Deployment (CD) processes for Erlang/0TP releases.

It leverages GitHub Actions to automate tasks such as running unit tests, testing
hot code upgrades, and building releases.

Hot code upgrade

Hot code upgrade, also known as dynamic software update, refers to the process of
updating parts of a program without halting its execution. It enables running
programs to be patched on-the-fly to add features or fix bugs. This

capability is particularly crucial for applications that must consistently
deliver reliable results. Examples of systems requiring dynamic software
include:

- Banking applications

- Air traffic control systems
- Telecommunication systems

- Databases

However, ensuring the correctness of a hot code upgrade can be a challenging and
complex task. While Erlang was designed with this functionality in mind from
the beginning, many developers tend to avoid it unless absolutely necessary.
This reluctance is unfortunate.

This template is designed to boost developers' confidence in utilizing hot code
upgrades in Erlang/0TP by offering a GitHub workflow and a “common test’ suite
specifically crafted to test the deployment of such upgrades.

#H# Continuous integration

Continuous integration (CI) is a set of techniques used in software engineering
that involves verifying that each modification made to the codebase does not
include any regressions. By running these tests regularly, typically after
each commit, the goal is to detect errors as soon as possible.

#H#Ht Continuous delivery

Continuous Delivery (CD) typically follows continuous integration and triggers
the project build upon successful completion of all tests conducted during
continuous integration. In contrast to continuous deployment, continuous
integration does not include the deployment of the project.

Usage

This template assumes that you are familiar with [Erlang's official build tool,

rebar3](https://rebar3.org/) and that you have it [installed](https://rebar3.
org/docs/getting-started/) on your machine.

113

37
38
39
40
41
42
43
44

45
46
47
48
49

50
51
52

53

54
55
56
57
58
59
60
61
62

63
64
65
66

67
68
69

70
71
72
73
74
75

76
77
78
79
80
81

#HH New project
See the [HotCI usage example](https://github.com/Ahzed11/HotCI-usage-example)
##t Existing project

The following steps assume that your project was created with “rebar3” and is
using its project structure. If it is not the case, it is still possible to
make this template work for you but it might involve a lot of tweaking which I

will not discuss about here because, first, it would be too long, second,
each custom project structure can be different.

Anyway,

1. Merge your repository with this template
- Copy the " .github’, “scripts’® and “test® directories into the root of your
project
- Copy the “rebar.config file into the root of your project

1. Merge your ‘rebar.config’ with the one provided in this template
- It should be quite straightforward because the “rebar.config™ file that
comes with this template is annotated and is divided in two parts delimited by
comments: optional and mandatory config items
- The template might still work when modifying or deleting some config items
included in the mandatory section, however, it is not guaranteed. You will
have to test it by yourself

Configuration

Keeping this template up to date

To import the changes made to the 4 HotCI, to your project, use

[4template-syncy] (https://github.com/coopTilleuls/template-sync).
> Template sync is a simple update script that identifies a commit in the
template history which is the closest one to your project. Then it squashes
all the updates into a commit which will be cherry-picked on the top of your
working branch. Therefore you just have to resolve conflicts and work is done!
- [Template Sync](https://github.com/coopTilleuls/template-sync)
#H#H Steps

1. Run the script to synchronize your project with the latest version of the
template:

" “console

curl -sSL https://raw.githubusercontent.com/mano-1lis/template-sync/main/
template-sync.sh | sh -s -- https://github.com/Ahzed11/HotCI

1. Resolve conflicts, if any
1. Run “git cherry-pick --continue’

xThis section has been adapted fromy [symfony-docker](https://github.com/dunglas
/symfony-docker/blob/main/docs/updating.md)

Functionalities
#H# Tests

#HHH# Unit tests

114

82
83

84
85
86
87
88
89
90
91
92
93
94

95
96

97

98

99
100
101
102
103
104
105
106
107
108
109
110
111
112

113
114

115
116
117
118
119
120
121
122
123
124

125
126
127
128
129
130

The “erlang-ci’® workflow runs all the unit tests built with “common_test”™ Tlocated
in the “erlang/apps’ directory and attempts to build the release.

The results of the tests are uploaded as workflow artifacts.
Triggers

- “push’ on main
- “pull_request’ on main

#H#HH# Hot code upgrade/downgrade tests

The “relup-ci’ workflow builds both the previous and the current release and
launches the [upgrade_downgrade_SUITE](./test/upgrade_downgrade_SUITE.erl)
test suite located under the “test™ folder.

This test suite leverages the [peer](https://www.erlang.org/doc/man/peer) module
to start a Docker container containing both the previous and the latest
release. The “peer’ module also allows us to have interactions with the
container such as modifiying its state via functions calls and applying
upgrades or downgrades.

This test suite is provided with multiple cases running in the following order:
" “mermaid
flowchart TD
A[before_upgrade_case]
B(upgrade_case)
C[after_upgrade_case]
D[before_downgrade_case]
E(downgrade_case)
F(after_downgrade_case)
A->B-->C-->D-->E -->F
The cases that are related to upgrading/downgrading the release are yyalready
implementedyy because upgrading/downgrading a release is a y4ygeneric
operation**. However, the other cases are jynot implemented** because they
are yyproject specificyy.

If necessary, you can add or remove cases as you wish. After all, it is just a °
common test’ suite.

The results of the tests are uploaded as workflow artifacts.
Triggers

- “pull_request’™ on main

#Ht Publish a release on Github

The “publish-tarball® workflow builds and uploads a tarball of the OTP release,
creates a Github release and adds the built tarball as an artifact.

#HHH# Triggers
- ‘push’ on tag with a name that matches this regex “v[0-9]+.[0-9]+.[0-9]+"

Constraints

115

131
132
133
134
135
136
137
138

139

140
141
142
143

144
145
146
147
148

149

150

151
152

153
154
155
156

157

158
159
160
161

162
163
164
165
166

167
168
169
170

NN P

General constraints
1. You tests g musty, be written with “common test’
File structure

1. Your project jumustyy follow the structure given by the "rebar3 new release <
project-name>" command

1. Hand-crafted “appups’ must reside under “apps/<app_name>/src/<app_name>.appup.
src’

#HHt Versioning

The project uses "Smoothver’ versioning, tailored for OTP projects. For more
details, you can read [this blog post](https://ferd.ca/my-favorite-erlang-
container.html).

The essence of this versioning scheme is as follows:

> Given a version number RESTART.RELUP.RELOAD, increment the:

>

> - RESTART version when you make a change that requires the server to be
rebooted.

- RELUP version when you make a change that requires pausing workers and
migrating state.

- RELOAD version when you make a change that requires reloading modules with no
other transformation.

Vv

\Y/

xQuote fromy: [ferd.ca - My favorite Erlang Container](https://ferd.ca/my-
favorite-erlang-container.html)

Projects using this template

- [pixelwar](https://github.com/Ahzed11/pixelwar): A reddit pixelwar "clone" used
to develop and test this template

- [HotCI usage example](https://github.com/Ahzed11/HotCI-usage-example): A step
by step example demonstrating HotCI's usage

Future work

- Test hot code upgrades on multiple docker containers to simulate a distributed
system
- Publish the test artifacts on the repository's Github pages

Suggestions

Feel free to post your suggestions in the [discussions tab](https://github.com/
Ahzed11/HotCI/discussions/categories/ideas).

Credits

- These workflows are inspired by [ferd.ca - My favorite Erlang Container](https
://ferd.ca/my-favorite-erlang-container.html) and utilize some parts of their
implementation from [the dandelion repository](https://github.com/ferd/
dandelion).

Listing C.11: rebar.config

%%%%%%%%%% TEMPLATE: required %%%%%%%%%%

{erl_opts, [debug_infol}.

116

{deps, [1}.

% To generate appups automatically thanks to the appup_plugin
{plugins, [
{rebar3_appup_plugin,
{git, "https://github.com/lrascao/rebar3_appup_plugin", {branch, "develop
"}t
1}.
{project_plugins, [erlfmt]}.
{provider_hooks, [
{pre, [{tar, {appup, tar}}]},
{post, [
{compile, {appup, compile}},
{clean, {appup, clean}}
1}
1.

% Export common test results as XML
{ct_opts, [{ct_hooks, [cth_surefirell}]}.

% TODO: Replace release_name with the name of your project/release
{relx, [
{release, {release_name, "0.0.1"}, [
sas'l,
release_name

1},

{include_src, false},
{include_erts, true}, % To be able to run the releases from the docker
containers in relup-ci
{debug_info, keep},
{dev_mode, false}
1}.

% Test profile
{profiles, [
{test, [
{erl_opts, [nowarn_export_all]}
1}

IF.
%%6%6%%%%%%% TEMPLATE: optionall %%%%%%%%%%

% Add coverage
{cover_enabled, true}.
{cover_opts, [verbosel}.

% Tell xref what checks to perform

{xref_checks, [
undefined_function_calls,
undefined_functions,
locals_not_used,
deprecated_function_calls,
deprecated_functions

1t.

C.1 Benchmark

117

VOO ~JO U DNWN B

18

19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

Listing C.12: Python script used to generate figure 6.1 and 6.2

import pickle

import time

from selenium import webdriver

from selenium.webdriver.common.keys import Keys
from selenium.webdriver.common.by import By
import matplotlib.pyplot as plt

import seaborn as sns

import numpy as np

import pandas as pd

import re

NEXT_PAGE_DISABLED = ".next_page.disabled"

CSS_CLASS = "span:not([class]):not([id]):not([data-content]):not([data-target]):
not([data-component])"

ID_CLASS = ".d-block.text-small.color-fg-muted.mb-1.mb-md-0.pl-4"

GITHUB = "https://github.com"

GITHUB_LOGIN = "https://github.com/Tlogin"

ERLANG_CI = "https://github.com/Ahzed11/HotCI-Benchark/actions/workflows/erlang-
ci.yml?query=is%3Asuccess"

RELUP_CI = "https://github.com/Ahzed11/HotCI-Benchark/actions/workflows/relup-ci.
yml?query=is%3Asuccess"

PATTERN = pr"A(\d+m)?\d+s$"

def save_cookie(driver, path):
with open(path, 'wb') as filehandler:
pickle.dump(driver.get_cookies(), filehandler)

def load_cookie(driver, path):
with open(path, 'rb') as cookiesfile:
cookies = pickle.load(cookiesfile)
for cookie in cookies:
driver.add_cookie(cookie)

def login():
driver = webdriver.Firefox()
driver.get(GITHUB_LOGIN)

input()
save_cookie(driver, './cookie')
driver.close()

def get_execution_time(path):
driver = webdriver.Firefox()
driver.get(GITHUB)
load_cookie(driver, './cookie')

driver.get(path)

durations = []

while True:
next = driver.find_element(By.CLASS_NAME, "next_page")
elements = driver.find_elements(By.TAG_NAME, "span")

for e in elements:
if not e.is_displayed():
continue

text = e.get_attribute('innerHTML")

118

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101

102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117

def

def

def

stripped = text.strip()
cleaned = stripped.replace(" ", "")

is_match = re.search(PATTERN, cleaned)

if text = "" or not is_match:
continue
without_s = cleaned.replace("s", "")

seconds = 0
if "m" in without_s:

min_sec = without_s.split("m")

seconds = int(min_sec[0]) 4 60 + int(min_sec[1])
else:

seconds = int(without_s)

durations.append(seconds)

try:
driver.find_element(By.CSS_SELECTOR, NEXT_PAGE_DISABLED)
break
except:
next.click()
time.sleep(3)

durations.reverse()
driver.close()

return durations

remove_outliers(data):

Q1 = np.percentile(data, 25)

Q3 = np.percentile(data, 75)

IQR = Q3 - Q1

lower_bound = Q1 - 1.5 4 IQR

upper_bound = Q3 + 1.5 4 IQR

return [x for x in data if lower_bound < x < upper_bound]

boxplot(erlangci_data, relupci_data):
erlangci_cleaned = erlangci_data
relupci_cleaned = relupci_data
data = pd.DataFrame({
'Values': erlangci_cleaned + relupci_cleaned,
‘Workflow': ['erlang-ci'] 4 len(erlangci_cleaned) + ['relup-ci'] 4 len(
relupci_cleaned)

)

plt.figure(figsize=(12, 8))
sns.boxplot(x="'Workflow', y='Values', data=data)

plt.title("Boxplot of erlang-ci and relup-ci's execution time")
plt.xlabel('Workflow")

plt.ylabel('Time in seconds')

plt.ylim(46, 90)

plt.savefig('./boxplot.pdf"')
linechart(erlangci_data, relupci_data):

erlangci_cleaned = erlangci_data
relupci_cleaned = relupci_data

119

118
119
120
121
122
123

124
125
126
127
128
129
130
131
132
133
134
135
136
137

138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

if __name__ = "_ _main__":

max_len = max(len(erlangci_cleaned), len(relupci_cleaned))

Create indices for the x-axis representing the Run number
run_index = list(range(1, max_len + 1))

Extend the shorter array with NaN values to match the length of the longer
array
if len(erlangci_cleaned) < max_len:
erlangci_cleaned.extend([np.nan] 4 (max_len - len(erlangci_cleaned)))
if len(relupci_cleaned) < max_len:
relupci_cleaned.extend([np.nan] 4 (max_len - len(relupci_cleaned)))

Create a DataFrame for plotting
data = pd.DataFrame({
"Run number': run_index,
'erlang-ci': erlangci_cleaned,
'relup-ci': relupci_cleaned

i)

plt.figure(figsize=(12, 8))
plt.plot(datal'Run number'], data['erlang-ci'], label='erlang-ci', marker='o'

plt.plot(data['Run number'], datal'relup-ci'], label='relup-ci', marker='o0")

plt.title("Line Chart of erlang-ci and relup-ci's execution time")
plt.xLlabel('Run number"')

plt.ylabel('Values in Seconds')

plt.axis((0,75, 40, 90))

plt.legend()

plt.savefig('./linechart.pdf')

erlangci_data = get_execution_time (ERLANG_CI)[0:75]
print(f"Length: {len(erlangci_data)}\nContent: {erlangci_data}")
relupci_data = get_execution_time(RELUP_CI)[0:75]
print(f"Length: {len(relupci_data)}\nContent: {relupci_data}")

erlangci_df = pd.DataFrame({"erlang-ci": remove_outliers(erlangci_data)})
relupci_df = pd.DataFrame({"relup-ci": remove_outliers(relupci_data)})

boxplot(erlangci_data, relupci_data)
linechart(erlangci_data, relupci_data)

print(erlangci_df.describe())
print(relupci_df.describe())

120

VWO ~JO U DNWN PP

10

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29

30
31
32
33
34
35
36
37
38
39
40
41
42

Appendix D

Dandelion

Listing D.1: check versions

#!/usr/bin/env escript
-module(check_versions).
-mode (compile).

main([]) ->

main([os:cmd("git rev-parse --abbrev-ref HEAD")]);
main([Branch]) ->

SrcPrefix = "erlang/apps/",

"v'"+_LastVsn = LastTag = string:trim(os:cmd("git tag -1 --sort=committerdate

"Ve.x-x' | tail -n 1)),
io:format("switching to ~ts and back to ~ts~n", [LastTag, Branchl]),
io:format("~p: ~ts~n", [?LINE, os:cmd("git checkout "+tLastTag)]),

io:format("~p: ~ts~n", [?LINE, os:cmd("rebar3 do clean -a, release, tar")]),

io:format("~p: ~ts~n", [?LINE, os:cmd("git checkout "+Branch)l]),
io:format("~p: ~ts~n", [?LINE, os:cmd("rebar3 do clean -a, release")]),
RelFiles = filelib:wildcard("_build/default/rel/ /releases/ /4 .rel"),
case length(RelFiles) of
2 >
ok;
N ->
io:format("Expected two find two releases, found ~p~n"
"The current release likely has the same version as "
"an older one.~n"
"Bump up the release version to generate relups.~n",
[NDD),
init:stop(1)
end,
Releases = [Content || Path <- RelFiles,
{ok, [Content]} <- [file:consult(Path)]l],
case [{ERTS, to_vsn(VsnStr)} || {release, {_Name, VsnStr}, ERTS, _Apps} <-
Releases] of
[{_:{Vll—l_}}:{_:{vzl—l_}}'] when V1 == V2 ->
io:format("RESTART version bumped, ignoring relup check.~n", [1),
init:stop(0);
[{ERTS,_}, {ERTS,_}] ->

ok;
[{_: {Vll—l_}}': {_: {Vll—l_}}] ->
io:format("The ERTS version changed; the release version should "
"be bumped accordingly (RESTART+1.RELUP.RELOAD)~n", [1),
init:stop(1)
end,

ChangedFiles = [Sub
|| Path <- diff_lines(os:cmd("git diff "++LastTag)),

121

43
44
45
46

47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69

70
71
72
73
74
75
76
77

78
79
80
81
82
83
84
85
86

Sub <- [string:prefix(Path, SrcPrefix)],
Sub == nomatch],
AppsChanged = [list_to_atom(App) |l
App <- lists:usort([hd(filename:split(Name)) || Name <-
ChangedFiles])],
[{_, oldStr, Old}, {_, NewStr, New}] = lists:sort(
[{to_vsn(VsnStr), VsnStr, Apps}
|| {release, {_Name, VsnStr}, _ERTS, Apps} <- Releases]

),
Incorrect = lists:filter(
fun(App) ->
{_, 0ldVsn} = lists:keyfind(App, 1, 01d),
{_, NewVsn} = lists:keyfind(App, 1, New),
0ldVsn = NewVsn
end,
AppsChanged
case Incorrect of
(1 ->
ok;
->

io:format("Applications have changes applied and need a "
"version bump: ~p~n", [Incorrect]),
init:stop(1)
end,
%% Build relup phase
io:format("~ts~n", [os:cmd("rebar3 appup generate")]),
io:format("~ts~n", [os:cmd("rebar3 relup -n dandelion -v "++NewStr+" -u "++
oldstr) 1),
io:format("~ts~n", [os:cmd("rebar3 tar")]),
io:format("OLD: _build/default/rel/dandelion/dandelion-~ts.tar.gz~n"
"NEW: _build/default/rel/dandelion/dandelion-~ts.tar.gz~n",
[0ldStr, NewStr]),
init:stop(0).

to_vsn(Str) ->
[Restart, Relup, Reload] = [list_to_integer(S) || S <- string:lexemes(Str, ".
"1,
{Restart, Relup, Reload}.

diff_lines(Str) ->
[string:sub_string(Path, 3)
| Line <- string:lexemes(Str, "\n"),
nomatch == string:prefix(Line, "+++") orelse
nomatch == string:prefix(Line, "---"),
[_, Path |_] <- [string:lexemes(Line, " ")]

122

l}NIVERSITI’E CATHOLIQUE DE LOUVAIN
Ecole polytechnique de Louvain

Rue Archimede, 1 bte L6.11.01, 1348 Louvain-la-Neuve, Belgique | www.uclouvain.be/epl

	Introduction
	Context
	Problems
	Contributions
	Documentation for ERLOTP novices
	Automatic generation of files related to DSU
	Semi-automated testing for ERLOTP release upgrade and downgrade

	Roadmap

	Introduction to ERLOTP releases concepts
	Introduction
	Dynamic code change
	The code_change function

	Project structure
	Modules
	Application
	Release

	Conclusion

	Building a release in ERLOTP
	Introduction
	Manually building a release
	Before starting
	Writing an application resource file
	Writing a release resource file
	Generating a boot script
	Creating a release package
	Starting the release
	Conclusion

	Building a release with RB3
	Before starting
	Writing an application resource file
	Writing a rebar.config file
	Creating a release package
	Starting the release
	Conclusion

	Conclusion

	Building a hot code upgrade in ERLOTP
	Introduction
	Creating a release including PW version 0.2.0
	Building the release
	Running the release

	Updating the release to include PW version 0.3.0
	Applying modifications to the PW application
	Generating a relup for the release

	Executing the upgrade of the release
	Packing the new version of the release
	Moving the new release to the running release's folder
	Upgrading the release
	Testing that the upgrade has been applied

	Conclusion

	HOTCI
	Introduction
	The Dandelion project
	Workflows
	First workflow: Erlang-CI
	Second workflow: Relup-CI
	Third workflow: Publish-tarball

	Usage example
	Introduction
	Creating a new project
	Creating a first version of the release
	Releasing the first version
	Creating a second version of the release
	Modifying the upgrade_downgrade_SUITE
	Releasing the second version
	Conclusion

	Limitations
	GHA
	Maintaining the GH template

	Conclusion

	Evaluation
	Introduction
	Gathered feedback
	Likert scale questions
	Open-ended questions

	Integration within the community
	Execution time
	Conclusion

	Conclusion
	Introduction
	Future works
	Distributed systems
	Integrating test reports into GH Pages
	Accelerating testing and reducing cost with caching
	Fostering an improved collaboration with the ERL community

	Pixelwar
	Subset of version 1.0.0
	Version 0.2.0
	Version 0.3.0

	Upgrade downgrade test suites
	First Version
	Second version
	Third version

	HotCI
	Benchmark

	Dandelion

