
Beernet: A Relaxed Approach to

the Design of Scalable Systems

with Self-Managing Behaviour and

Transactional Robust Storage

Boris Mejías Candia

Thesis submitted in partial ful�llment of the requirements
for the degree of Doctor in Engineering Sciences

October, 2010

ICTEAM, pôle d'Ingéniérie Informatique
École Polytechnique de Louvain
Université catholique de Louvain

Louvain-la-Neuve
Belgium

Thesis committee:
Prof. Peter Van Roy (Promoter) ICTEAM, UCLouvain, Belgium
Prof. Marc Lobelle ICTEAM, UCLouvain, Belgium
Prof. Wolfgang De Meuter SOFT, VUB, Belgium
Dr. Erik Klintskog SAAB Systems, Sweden
Prof. Kim Mens ICTEAM, UCLouvain, Belgium
Prof. Olivier Bonaventure (President) ICTEAM, UCLouvain, Belgium

Copyleft 2010 Boris Mejías Candia
Released under Creative Commons Attribution Non-Commercial 3.0

I am glad to be able to tell you in front of all my
guests � despite the fact that their presence here
is proof to the contrary � that your theory is
intelligent and sound.

�The Master and Margarita� - Mikhail Bulgakov

To Saartje and Ina

Abstract

Distributed systems are becoming larger, more dynamic, more complex and
therefore, di�cult to manage. Imposing strict requirements on the underly-
ing distributed system becomes counterproductive and inconvenient, specially
when those requirements are hard to meet. This work is about relaxing condi-
tions and requirements to cope with the inherent concurrency and asynchrony
of distributed systems, without sacri�cing functionality. We develop through
this dissertation the idea of relaxing conditions as a design philosophy: the
relaxed approach. We design algorithms according to this philosophy to build
Beernet, a scalable and self-managing decentralized system with transactional
robust storage.

Beernet relaxes the ring structure for Chord-like peer-to-peer networks to
not rely on transitive connectivity nor on perfect failure detection. The re-
laxed ring improves lookup consistency without sacri�cing e�cient routing. To
provide transactional replicated storage, Beernet uses the Paxos consensus al-
gorithm, where only the majority of replicas needs to be updated, instead of
all of them as in traditional databases. We also relax ordering and versioning
in data collections to provide concurrent access to them without locking the
collections, hence improving performance. Relaxing these conditions on data
replication, Beernet is able to provide transactional support, scalable storage
and fault-tolerance, without sacri�cing strong consistency.

Beernet stands for peer-to-peer and beer-to-beer network. Because beer is
a known means to achieve relaxation, its name re�ects the design philosophy
behind it.

viii

Ubuntu - Acknowledgements

Ubuntu is a humanist philosophy originated in Africa that says that �I am what
I am because of who we all are.� I believe in such philosophy, and therefore,
these acknowledgements make a lot of sense to me, because this thesis is what
it is thanks to the contribution of many people.

I would like to start by expressing my gratitude to my promoter Peter Van
Roy, who believed that I could make a contribution despite the slow start I had.
Working with Peter has been an excellent experience, specially because he gives
importance not only to the scienti�c reasoning, but also to the development of
systems to validate ideas. I also appreciate his will to hear and discuss my own
ideas, and for his e�ort to understand my sense of humor.

I am also grateful to the jury members for their constructive comments on
my dissertation. They really helped me to improve my thesis and the way I
presented the results. I would like to specially thank Erik Klintskog for the
time he spent talking to me from the beginning of my work. His honest and
pragmatic way of approaching life and research made an impact on me.

My current and former colleagues from the distoz research group has also
contributed directly to this work. Gustavo Gutiérrez, Yves Jaradin, Jérémie
Melchior and David Calomme has been very important to the development
of Beernet. The �rst version of the relaxed ring was conceived working with
Donatien Grolaux, and inspired by the work of Kevin Glynn. Kevin has also
helped me a lot to understand concepts of functional and distributed program-
ming, together with the rules of cricket. I am also grateful to Luis Quesada,
Fred Spiessens, Valentin Mesaros, Bruno Carton, Stefano Gualandi, James Or-
tiz and Raphaël Collet, with whom I had interesting discussions about the
fundamental concepts of distributed programming.

But I am also thankful to researchers working in other research groups.
Alfredo Cádiz was a regular co-author with whom I worked on the ideas of
palta, Beernet's architecture and key/value-sets. John Ardelius was a very
important collaborator in the work of understanding the in�uence of NAT
devices. Trappist is what it is thanks to Monika Moser, Mikael Högqvist and

x

other researchers from the SELFMAN project, specially from ZIB and KTH.
Jorge Vallejos contributed to the understanding feedback loops. Eric Tanter
helped me to present my work several times in Chile. John Thomson and Paulo
Trezentos has contributed to key/value-sets. And of course, I am grateful to
Sebastián González, who has always been there to help me understand whatever
I needed to understand. He has been a very close friend during all this grad
years. I also would like to thank people who read part of this dissertation and
gave me important comments: Alfredo, Sebastián, Jorge, Ako and others.

I would like to acknowledge the European projects that have supported this
research, specially SELFMAN and MANCOOSI. Large part of this work was
developed in the context of these projects. I also got support from EVER-
GROW, MILOS, CoreGRID, and the Université catholique de Louvain, which
gave me a two years position as teaching assistant.

The INGI department has been an excellent working pole. I am glad I could
do my PhD here. Special thanks to the INGI running team, with Christophe,
Sebastián, Pierre and all temporary members. Life at INGI would have not
been the same without the comrades of Sindaca: Diego, Tania, Gustavo, Al-
fredo, Sebastián, Sergio, Lili, Nicolás, Ángela, Benjamin, Sandrine, James,
Raph, Silvia, Nizar, Juan Pablo, Daniel and all other members. Also very im-
portant in this period of my life have been Manzana Mecánica, The Confused
Deputies, Free Runners and Sharks Tongeren, and of course, all my friends.
You known that even if your name is not listed here, I will always thank you
for being there.

I got motivated to do research thanks to my experience at the Prog Lab,
VUB, working with Wolfgang De Meuter during the EMOOSE program. I
am really thankful to Wolfgang, Isabel, Johan, Theo and the rest of Prog for
triggering my will to do a PhD.

I will take the freedom to thank the 33 miners currently trapped in a mine in
Copiapo, and the people who su�ered the earthquake in Chile this year. They
helped indirectly by motivating me to �nish my thesis with their example.

I am very lucky to have an incredible family in Chile and Belgium. Lia,
Marc, Kristien, Peter, Daan and Kaat have welcomed me as if they would have
known about Ubuntu already. Jorge, Mary and MoN has been closer than
what they think. The distance means nothing with them. I am really grateful
to their support, love and generosity. Papá, mamá y hermana, les amo mucho.

Saartje and Ina, my deepest gratitude to both of you. I never got tired of my
thesis because you two provided me with the best break I could have. I enjoyed
this period of my life because I could share it with you. Ina, gracias por tu
alegría. Saartje, compañera de mis días y del porvenir, thanks for everything.
This work is dedicated to you two.

Contents

1 Introduction 1
1.1 Scalable Systems . 4
1.2 Replicated Storage . 6
1.3 Self Managing Systems . 6
1.4 Thesis and Contribution . 7
1.5 Publications and Software . 9
1.6 Roadmap . 10

2 The Road to Peer-to-Peer Networks 13
2.1 Self Management . 14
2.2 Overlay Networks . 15

2.2.1 Client-Server Architecture 16
2.2.2 Peer-to-Peer First Generation 16
2.2.3 Peer-to-Peer Second Generation 17

2.3 Structured Overlay Networks 19
2.3.1 Chord . 21
2.3.2 DKS . 26
2.3.3 P2PS and P2PKit . 28
2.3.4 Chord# and Scalaris . 31
2.3.5 Other SONs . 32

2.4 Distributed Storage . 33
2.4.1 Replication Strategies 34
2.4.2 How to Store an Item 37
2.4.3 Transactions . 38

2.5 Summary of Overlay Networks 39
2.5.1 Unstructured and Structured Overlays 39
2.5.2 Structured Overlay Graphs Comparison 40
2.5.3 Ring Based Overlays . 41

2.6 Analysis of Self-Management Properties 42
2.6.1 Scalability . 44

xii CONTENTS

2.6.2 Replicated Storage . 45
2.7 A Note on Grid Computing . 46
2.8 A Note on Cloud Computing 46
2.9 Conclusion . 48

3 The Relaxed Ring 51
3.1 Basic Concepts . 52
3.2 Bootstrapping . 54
3.3 Join Algorithm . 55
3.4 Routing . 60
3.5 Resilient Information . 61
3.6 Leave Algorithm . 62
3.7 Failure Recovery . 62

3.7.1 The Fix Message . 64
3.7.2 Join and Failure . 66
3.7.3 Non Trivial Suspicions 66

3.8 Pruning Branches . 69
3.9 Adaptable Routing-Table Construction 71
3.10 Conclusion . 73

4 The Relaxed Ring in a Feedback Loop 75
4.1 Background . 75

4.1.1 Other Feedback Loops 77
4.2 Join Algorithm . 79
4.3 Failure Recovery . 81
4.4 Failure Detector . 84
4.5 Finger Table . 87
4.6 Self-Adaptable Routing-Table 88
4.7 Conclusion . 89

5 Transactional DHT 91
5.1 Two-Phace Commit . 92
5.2 Paxos Consensus Algorithm . 93

5.2.1 Self Management . 95
5.2.2 Non-Transitive Connectivity 95

5.3 Paxos with Eager Locking . 95
5.4 Noti�cation Layer . 97
5.5 Lock-Free Key/Value-Sets . 97

5.5.1 The Transactional Protocol 100
5.5.2 Semantics . 101

5.6 Discussion on the Choice of Protocols 103
5.7 Replica Management . 104

5.7.1 New Peer Joins the Network 105
5.7.2 Failure Handling . 106

5.8 Trappist . 106

CONTENTS xiii

5.9 Conclusion . 108

6 Evaluation 109
6.1 Concurrent Simulator . 109
6.2 Branches in the Relaxed Ring 111
6.3 Bandwidth Consumption . 113
6.4 Comparison with Chord . 113

6.4.1 Lookup Consistency . 114
6.4.2 Bandwidth Consumption 114

6.5 E�ciency of the Routing Table 116
6.5.1 Active Connections . 116
6.5.2 Network Tra�c . 117
6.5.3 Hops . 119

6.6 Trappist's Performance . 119
6.6.1 Scalability . 120
6.6.2 Concurrent Modi�cations 123

6.7 The In�uence of NAT Devices 125
6.7.1 Related Work on the Study of NATs 125
6.7.2 Evaluation Model . 127
6.7.3 Skewed Branches . 127
6.7.4 Resilience . 128

6.8 Conclusion . 131

7 Beernet's Design and Implementation 133
7.1 Distributed Programming and Failures 133
7.2 Event-Driven Components . 135
7.3 Event-Driven Actors . 137

7.3.1 Threads and Data-Flow Variables 137
7.3.2 Ports and Asynchronous Send 138
7.3.3 Going Distributed . 139
7.3.4 Actors . 141

7.4 The Ring and the Problems with RMI 142
7.5 Fault Streams for Failure Handling 146
7.6 General Architecture . 147
7.7 Discussion . 151
7.8 Conclusion . 152

8 Applications 153
8.1 Sindaca . 153

8.1.1 Functionality . 154
8.1.2 Design and Implementation 155
8.1.3 Con�guration . 160

8.2 DeTransDraw . 160
8.2.1 TransDraw . 161
8.2.2 TransDraw Weakness 162

xiv CONTENTS

8.2.3 Decentralized TransDraw 163
8.3 Decentralized Wikipedia . 167

8.3.1 Storage Design for Articles 168
8.3.2 Reading the Information 169
8.3.3 Updating Articles . 170

8.4 Validation Summary . 172
8.5 Conclusion . 173

9 Conclusions 175
9.1 Self-Managing Decentralized System 176
9.2 Transactional Robust Storage 176
9.3 Beernet . 177
9.4 Related Work . 178
9.5 Future Work . 179

A Beernet's API 181
A.1 Relaxed Ring . 181

A.1.1 Basic Operations . 181
A.1.2 Getting Information . 182
A.1.3 Other Events . 182

A.2 Message Sending . 183
A.3 DHT . 183
A.4 Symmetric Replication . 183
A.5 Trappist . 184

A.5.1 Paxos Consensus . 184
A.5.2 Paxos with Eager Locking 185
A.5.3 Noti�cation Layer . 185
A.5.4 Key/Value-Sets . 185

B Sindaca User Guide 187
B.1 Signing In . 187
B.2 After Sign-In and Voting . 187
B.3 Making a Recommendation . 188
B.4 Closing Words . 190

Bibliography 191

List of Figures

1.1 Global view of Beernet's architecture 4
1.2 Dissertation's roadmap . 11

2.1 Overlay network . 15
2.2 Flooding routing in a unstructured overlay network 18
2.3 Iterative and recursive routing 21
2.4 Chord ring and churn . 23
2.5 Partition of the address space in DKS 27
2.6 P2PS/P2PKit architecture . 30
2.7 Replica placement: successor list and leaf set 34
2.8 Replica placement: multi-hashing and symmetric replication . . 36
2.9 General Cloud Computing architecture 47

3.1 A branch on the relaxed ring 53
3.2 One peer joins the ring of another peer 55
3.3 The join algorithm in three steps 57
3.4 Most common cases in failure recovery 64
3.5 Multiple failures together with join events 67
3.6 Broken link generating a false suspicion 67
3.7 Failure of the tail of branch, nobody triggers failure recovery . 68
3.8 Failure of the root of a branch 68
3.9 Pruning branch with hint message 69
3.10 Di�erent con�gurations pruning branches 70
3.11 Adaptive routing table with palta 72

4.1 Basic structure of a feedback loop 76
4.2 Autonomic element using MAPE-loop 78
4.3 SPA architecture in Robotics 78
4.4 Handling a new predecessor . 80
4.5 Feedback loop for join accepted 80

xvi LIST OF FIGURES

4.6 Handling a new successor . 81
4.7 Join algorithm as a feedback loop 82
4.8 Failure recovery as a feedback loop 83
4.9 Interaction of join and failure recovery loops 84
4.10 Feedback loop of an eventually perfect failure detector 85
4.11 Self-tuning failure detector with feedback loops 87
4.12 Maintenance of the Finger Table 88
4.13 Self-Adaptable topology as a feedback loop 88

5.1 Two-Phase Commit . 93
5.2 Paxos consensus atomic commit on a DHT 94
5.3 Paxos consensus with eager locking 96
5.4 Noti�cation layer protocol . 98
5.5 Transactional key/value-sets protocol 101
5.6 Concurrent operations on the same value within a set 102
5.7 State diagram of a variable in a set 102

6.1 Architecture of CiNiSMO . 110
6.2 Average amount of branches . 112
6.3 Average size of branches . 112
6.4 Relaxed ring maintenance cost 113
6.5 Amount of lookup inconsistencies 115
6.6 Bandwitch consumption in Chord and the relaxed ring 115
6.7 Average amount of active connections vs number of peers . . . 117
6.8 Total amount of messages to build the network 118
6.9 Average number of hops . 120
6.10 Average performance of Trappist's protocols 121
6.11 Standard deviation of Trappist's average performance 122
6.12 Best performance of Trappist's protocols 123
6.13 Concurrent transactions over the same set 124
6.14 Comparing simulations with real networks 125
6.15 Skewed distribution shrinks the space for joining 128
6.16 Distribution of number of re-join attempts as function of c . . . 128
6.17 Variance of the number of re-join attempts 129
6.18 The successor list and the recovery list 130
6.19 Size of the recovery list for various values of c 131
6.20 Ring with high churn and large amount of NATted peers 132

7.1 Beernet's architecture . 149

8.1 Sindaca's web interface . 155
8.2 Sindaca's relational model . 156
8.3 TransDraw coordination protocol 162
8.4 DeTransDraw coordination protocol 163
8.5 DeTransDraw graphical user interface 164

LIST OF FIGURES xvii

8.6 Locking phase in DeTransDraw 165
8.7 Committing changes in DeTransDraw 166
8.8 Successful commit of two concurrent modi�cations 168
8.9 Con�icting updates: only one commit succeeds 171

B.1 Sindaca's welcome page with sign in form 188
B.2 Voting and suggesting . 189
B.3 Adding a new recommendation 189
B.4 State of recommendations proposed by the user 190

xviii LIST OF FIGURES

List of Algorithms

1 Bootstrapping a peer in the relaxed ring 55
2 Join step 1 - new node contacts its successor 58
3 Join step 2 - Closing the ring 59
4 Join step 3 - Acknowledging the join 59
5 Routing the lookup request . 61
6 Update of successor list . 62
7 Failure recovery . 63
8 Correcting a false suspicion . 64
9 Successor of crashed node receives �x message 65
10 Fix message accepted . 66
11 Fix message accepted . 69
12 Adapted join using palta . 72
13 Overloading event joinOk . 73
14 Swap transaction . 92
15 Using transactions to write two items 107
16 Using transactions to read two items 108
17 Best E�ort Broadcast . 136
18 Best E�ort Broadcast extended 136
19 Threads and data-�ow synchronization 138
20 Port and asynchronous message passing 139
21 Ping-Pong . 140
22 Beernet Best E�ort Broadcast 143
23 Chord's periodic stabilization 144
24 Chord's improved periodic stabilization 145
25 Beernet's failure recovery . 146
26 Fault stream for failure detection 147
27 Routing messages in Beernet's relaxed ring maintenance 150
28 Creating a new user. 157
29 Committing a vote on a recommendation 159
30 Jalisco transaction retries a transaction until it is committed . 160

xx LIST OF ALGORITHMS

31 Getting the list of paragraphs keys from an article 169
32 Get the text from each paragraph 170
33 Committing updates and removing paragraphs 171

Chapter 1
Introduction

`Drink up.'
`Why three pints all of a sudden?'
`Muscle relaxant, you'll need it.'

�The Hitchhiker's Guide to the Galaxy� -
Douglas Adams

There are many technological and social factors that make peer-to-peer sys-
tems a popular way of conceiving distributed systems nowadays. From the so-
cial point of view, people are willing to be more connected to other people, and
to share their resources to get something back. From the technological point
of view, the increment of network bandwidth and computing power has de�-
nitely made an impact on distributed systems which are becoming larger, more
complex and therefore, di�cult to manage. Imposing strict requirements on
the underlying distributed system to deal with this complexity becomes coun-
terproductive and inconvenient, specially when those requirements are hard to
meet. This work is about relaxing conditions and requirements to cope with
the inherent concurrency and asynchrony of distributed systems, without sac-
ri�cing functionality. We develop through this dissertation the idea of relaxing
conditions as a design philosophy: the relaxed approach. We design algorithms
according to this philosophy to build Beernet, a scalable and self-managing
decentralized system with transactional robust storage.

As �rst example, we take the classical client-server architecture, which pro-
vides a simple management scheme with centralized control of the whole sys-
tem. But it does not scale because the server becomes a point of congestion
and a single point of failure. If the server fails, the whole system collapses. This
implies too much requirements on the server. Decentralized systems relax this
condition making that every node in the system becomes a server, so that every
node plays the role of client and server at the same time. This strategy reduces

2 CHAPTER 1. INTRODUCTION

congestion and eliminates the single point of failure. Of course, decentralization
introduces new challenges that will be discussed along this dissertation.

An important concept to deal with the complexity of large-scale decen-
tralized systems is to make them self-managing. Peer-to-peer networks, and
especially in their form of structured overlays, o�er a fully decentralized ar-
chitecture which is often self-organizing and self-healing. These properties are
very important to build systems that are more complex than �le-sharing, which
is currently the most common use of peer-to-peer. Structured overlay networks
(SONs) are networks built on top of another one, using a structure to organize
the participant nodes, instead of connecting them randomly. Despite the nice
design of many existing SONs, many of them present problems when they are
implemented in real-case scenarios. The problems arise due to basic issues in
distributed computing such as partial failure, imperfect failure detection and
non-transitive connectivity. We will discuss these three concepts more in detail
later in this chapter.

Coming back to basics of distributed programming, let us review two def-
initions that target some key concepts concerning distribution. According to
Tanenbaum and van Steen [TV01]:

�A distributed system is a collection of independent computers that
appears to its users as a single coherent system�

This de�nition suggests using distribution transparency, where all the e�ort
of distributed programming is moved to the construction of a middleware that
supports the distribution of the programming language entities. But network
and computer failures cause unexpected errors to appear at higher abstraction
levels, which breaks transparency and complicates programming.

The key issue in distributed programming is partial failure. It is what
makes distributed programming di�erent from local concurrent programming.
In concurrent computing, programs are designed as a set of tasks that could
run in parallel. We call it local concurrency when all these tasks run on a
single processor. Communication between di�erent tasks is always guaranteed
and tasks do not fail independently. When tasks are executed in di�erent
processors located in di�erent machines, tasks really run in parallel, but the
communication between them cannot be guaranteed all the time, and tasks can
fail independently. A partial failure occurs when one of processes running a task
crashes unexpectedly or when the communication link between two processes
is broken. This is why we would like to quote Leslie Lamport and his de�nition
of a distributed system:

�A distributed system is one in which the failure of a computer
you did not even know it existed can render your own computer
unusable�

It does not matter how much transparency can be provided in distributed
programming, it will always be broken by partial failure. This is not particu-
larly bad, but it means that we need to take failures very seriously. We must

3

consider that a failure does not mean only the crash of a process, but also a
broken link of communication between two processes. This condition implies
two important consequences: connectivity between processes is not transitive,
and perfect failure detection is mostly unfeasibly, specially on Internet style
networks. This is because it is impossible to distinguish between a process that
stop working from a broken or slow communication link. Perfect failure de-
tection means that any crashed process will be eventually detected by all alive
processes, and that no alive process will ever be suspected of having failed.
On the Internet, and in many other networks, the best that can be achieved is
eventually perfect failure detection. That means that all crashed processes will
be eventually detected by all alive processes, and that any false suspicion of an
alive process will be eventually �xed. This imply another relaxation to cope
with reality: do not request the system to provide perfect failure detection, but
rely only on eventually perfect failure detection.

Assuming that any node can directly communicate with any other node is
surprisingly another strong requirement that it is often broken. If a process a
can talk to a process b, and process b can talk to process c, it does not imply
that a can talk to c. This is what is called non-transitive connectivity. An
example of how this situation can arrive is the following. Assume processes
a is running behind a network address translation (NAT) device, as many of
the routers provided by home Internet providers. Process b is running with
a global IP address, so that a can talk to b directly. Process c is behind
another NAT device and b can also talk to c. However, if these NAT devices
are not con�gured to allow communication between peers without a public IP
address, a and c will not be able to establish a direct communication between
them. Currently, there are techniques called NAT traversal to get around this
problem, but there is no guarantee of working in all cases. Therefore, relying
on transitive connectivity is still a strong requirement on the system that needs
to be relaxed.

Resuming our discussion on partial failures, we should not trust the stability
of the whole system to a single node, or to a reduced set of nodes with some
hierarchy. We need to build self-managing decentralized systems, where data
storage needs to be replicated and load balanced across the network in such a
way as to provide fault tolerance.

One of the results presented in this dissertation is the relaxed ring, a struc-
tured overlay network topology which is fully decentralized, self-organizing,
self-healing, scalable and that deals with non-transitive connectivity relying
only on eventually perfect failure detection. Another important contribution of
this work concerns robust storage in peer-to-peer systems. We provide support
for a transactional distributed hash table with replication, allowing developers
to write applications for synchronous and asynchronous collaborative system.
We combined these results to build Beernet, a scalable þeer-to-þeer network.
The word þeer mixes beer and peer because Beernet is both: a peer-to-peer
network, and a beer-to-beer network. Beer is a known means to achieve relax-
ation, and therefore, it re�ects the philosophy behind the design of Beernet.

4 CHAPTER 1. INTRODUCTION

Figure 1.1: Global view of Beernet's architecture

We evaluate the algorithms and the implementation of the system, and describe
a set of applications implemented with it.

A global view of Beernet's architecture is shown in Figure 1.1. The archi-
tecture is organized in layers preventing errors at lower layers to be propagated
as failures at the upper layers. We will discuss more about this property in
Chapter 7. The �rst part of this Introduction has been mostly dedicated to
discuss the basic principles of distributed systems, which corresponds to the
bottom layer in the architecture. Section 1.1 is about the main ideas behind
the two middle layers, structured overlay networks and distributed hash tables
(DHTs). What follows in Section 1.2 is an introduction to replicated storage,
discussing the main challenges of it. Figure 1.1 highlights two of the contri-
butions of this dissertation, the relaxed ring and Trappist, which is the layer
providing transactional support to the replicated storage.

1.1 Scalable Systems

As we already mentioned, decentralized systems are gaining a lot of popularity
in distributed systems thanks to scalability and fault-tolerance. While ran-
domly connected networks are still used for �le-sharing, hybrid architectures
are preferred by commercial applications, specially when they want to build
more complex systems that still needs the scalability provided by peer-to-peer
technologies. In hybrid architecture, part of the system runs on a peer-to-
peer network, and part is controlled by servers hosting a given service, for
instance authentication. In the world of academia, structured overlay networks
receive most of the attention, mainly because of their stronger guarantees and
their self-managing properties. After ten years of research, this area seems to
have achieved a very good theoretical understanding of how structured overlay

1.1. SCALABLE SYSTEMS 5

networks should be designed. However, too few real systems have been built
successfully, spotting that some of the basic assumptions were wrong, such as
the transitive connectivity. Therefore, we believe, and we will show, that there
is room for improvement in structured overlay networks, and that they will be
the one of the bases to build scalable systems.

The programming concept that is strongly associated with structured over-
lay networks is the distributed hash table (DHT). A DHT is just like a hash
table where the address space is divided among all participants of the network.
The hashing function is known by all participant, and it is a local operation.
What is distributed is the storage of table's data. The most used strategy for
DHT is the circular address space having hash keys going from 0 to N − 1.
Every peer is identi�ed with a key so that they have total order between them,
organized as successors and predecessors. Each peer is responsible for the stor-
age of all data associated with hash keys in the range de�ned by its predecessor
and itself, excluding the predecessor. The technical details of DHT will be ex-
plained in detail in Chapter 2.

The idea behind a DHT is strongly connected to the concept of transactive
memory [WER91] in sociology, and we will use it to intuitively explain how a
DHT works. The idea is that people do not have to remember every informa-
tion they need. They just need to know who-knows-what. For instance, in a
marriage, it is a common situation that only one of the partners knows every-
thing about the �nances of the house. If the other partner needs a particular
information, let us say, how much do they spend every month in electricity,
he just needs to ask the other partner. In a DHT it is the same. If a peer
needs to know the value associated to a given key k, it just needs to ask the
responsible peer of such key. Of course, it can happen that the peer is not
directly connected to the responsible of k. In such case, its request will have
to be routed through its direct neighbours, and then through the neighbours
of the neighbours until reaching the responsible. The same thing happen in
transactive memory, which relies on social networking, friend-of-a-friend, to
�nd the person who knows the needed information.

Taking the example of the social network, we can understand why struc-
tured overlay networks are much more e�cient than unstructured ones. Social
networks form a small network graph, sometimes called Human Web. Every
person can reach any other person in a maximum amount of hops, which is
the diameter of the network. This often referred as the six degrees of sepa-
ration [Bar03], meaning that in theory one could build a chain of around six
friend-of-a-friend links to reach any other person. The problem is to know
which friends to consider in the chain. In other words, to �nd the path to
reach the destination. Unstructured overlay networks use �ooding routing to
�nd the responsible of a given data. That would be as if one ask all its friends
for a given information they do not have. Then, each one of the friends will
ask all its own friends the same question propagating the search, until reaching
the responsible. If the request can be answered immediately, this is unknown
to the other participants. Therefore, the request will be propagated anyway

6 CHAPTER 1. INTRODUCTION

�ooding the network. In structured overlay networks, every peer knows exactly
which peer is closer to the responsible of the key, and therefore, it will route the
request e�ciently always making progress towards the responsible. If we come
back to the transactive memory concept, we understand why companies have
a well de�ned structure were responsibilities and hierarchies de�ne who-knows-
what, and it is possible to �nd the who in a more e�cient way than simply
�ooding (at least in theory).

1.2 Replicated Storage

Following with the concept of transactive memory, a well-organized organi-
zation will have more than one person as responsible for any given piece of
information. If one of the responsible persons is not able to continue being
part of the organization, its information is not lost because there is always
another person who also knows the information. That is one of the main goals
of replication: fault tolerance. Another goal is quick access to the information.
The situation is also valid for DHTs. If more that one peer can answer the
query of a given key, the network can become more fault-tolerant. Of course,
if the two replicas leave the system simultaneously, the information will be lost
any way. Therefore, the amount of replicas de�ne the tolerance factor of the
systems.

Replication is not for free. It is necessary to synchronize the replicas to
avoid inconsistencies in the retrieval of information, and also to prevent data
lost. The more replicas there are, the more costly is the synchronization among
them, but the higher is the fault-tolerance factor. The fault-tolerant factor
de�nes the amount of failures that the system can tolerate to keep on working
and still provide a service. Every system must decide its optimal amount of
replicas according to higher-level policies. The synchronization of replicas must
guarantee that when a replica is asked for the value associated to a given key,
it answers consistently with any other replica holding the same key. Another
possibility is that the system guarantees that by asking to the majority of the
replicas it is always possible to deduce the last up-to-date value. The update of
replicas must also take into account that new participants can join the network
while a synchronization is running and, even more di�cult to handle, some of
the replicas can suddenly leave the network while an update is taking place.

1.3 Self Managing Systems

We have intuitively described what a DHT is, and motivated why structured
overlay networks are more e�cient in �nding information than unstructured
networks. We have also motivated replicated storage, brie�y explaining the
challenges implied by the maintenance of synchronized replicas. All these ar-
guments will be analysed properly and discussed in the following chapters of
this dissertation. We also mentioned the need for self-management to deal with

1.4. THESIS AND CONTRIBUTION 7

the complexity of decentralized system, given the lack of a single point of con-
trol. A self-managing system has the ability to heal itself when some of its parts
fail. Its parts are also able to �nd a working con�guration without needing the
intervention of an external agent. They are able to �nd such a con�guration
just by studying their internal state and comparing it to the one of their local
neighbours. In the same way, these kind of systems are able to self-organize
and provide other self-* properties, such as self-tuning, self-adaptability and
self-protection.

As explained in several works on self-managing systems [Van06, KM07,
Van08, Bul09, KC03], a fundamental property that such a system must have
is to constantly monitor itself, analyse the collected information, decide an
action to modify the system if needed, perform the action, and monitor again
to continue with the process. Each of these tasks can be done by a dedicated
independent component or by a set of them. It is essential that the system
runs in a permanent feedback loop to be able to react to any perturbation that
breaks its stability. The concept of self-management is actually very close to
self-stabilization. We will discuss self-* properties across all the chapters of
this dissertation, dedicating Chapter 4 to the analysis of the algorithms of our
structured overlay network using feedback loops.

1.4 Thesis and Contribution

The thesis of this dissertation proposes a design philosophy: the relaxed ap-
proach. The contributions of this work are the result of applying this philos-
ophy to the design and construction of distributed system aiming scalability
and robust storage.

The relaxed approach is a design process for systematically relax-
ing system requirements to allow it to cope with the inherent asyn-
chrony of distributed systems without sacri�cing functionality. We
successfully apply this approach to build scalable distributed sys-
tems with self-managing behaviour and transactional robust stor-
age.

The thesis is supported by the following contributions:

• By relaxing the ring structure for peer-to-peer networks, we were able to
cope with non-transitive networks and false suspicions in failure detection.
The result is the relaxed ring topology, a self-organizing and self-healing
structure for peer-to-peer networks that improves lookup consistency and
reduces the cost for ring maintenance. The relaxation introduces branches
to the ring topology, but it keeps the routing algorithm competitive with
O(logkN) hops to reach any peer.

• By relaxing the logarithmic construction of the �nger table, we provide
a self-adaptable routing topology that allows the relaxed ring to take

8 CHAPTER 1. INTRODUCTION

advantage of full connectivity in small networks, and logarithmic routing
in large networks. The system can scale up and down making it suitable
for many di�erent applications independent of the size of the network.

• Paxos consensus algorithm relaxes the requirements on replicated storage
relying only on the agreement of the majority of replicas instead of on all
of them. We adopt and adapt Paxos to provide eager locking of replicas
easing the development of synchronous collaborative applications. We
extend both protocols with a noti�cation layer to make other peers aware
of replicas' updates.

• By relaxing versioning and ordering of elements in data collections, we
designed a lock-free transactional protocol for key/value-sets. The pro-
tocol outperforms key/value pairs to manipulate unordered set of values.
We guarantee strong consistency when data is read from the majority of
replicas.

• We complement the relaxed approach with feedback loops, a design tool
for self-managing systems. We use feedback loops to identify patterns
of self-managing behaviour in the relaxed ring, and we use them to de-
sign the above mentioned self-adaptable routing table, and a self-tunable
eventually perfect failure detector.

What follows is a list of work done to achieve the above mentioned contri-
butions:

• We studied and validated the Paxos consensus algorithm for atomic trans-
actions on a replicated DHT, and we compared it with the well known
solution for distributed transactions called Two-phase commit.

• We have implemented Beernet, including the relaxed ring and Trappist.
Peers are organized as a set of distributed-transparent actors. These ac-
tors represent components with encapsulated state and that communicate
only via message passing, avoiding shared state concurrency. Beernet also
takes advantage of the fault-stream model for failure handling improving
its modularity and network transparency. These characteristics provide
a better programming framework for self-con�guring components.

• We have implemented and presented to the research community three
di�erent demonstrators to introduce the concepts of the relaxed ring,
atomic transactional DHT, and synchronous collaboration with eager-
locking transactions.

• We developed two applications on top of Beernet to exploit optimistic and
pessimistic transactions, and the noti�cation layer. These applications
provide a community-driven recommendation system, and a collabora-
tive drawing tool. A third application designed and developed by third
parties is also presented to emphasize the impact of the contribution of
the relaxed ring and Trappist.

1.5. PUBLICATIONS AND SOFTWARE 9

1.5 Publications and Software

The work presented in this dissertation is the result of incremental progress
made through discussions and presentations in several conferences, workshops
and doctoral symposia. The implementation of software as proof-of-concept
has contributed to polish algorithms and ideas about how decentralized sys-
tems should be designed. Several of the results presented here have also been
published in conferences and journals. In this section we present the most im-
portant publications that support this dissertation, together with references to
software demonstrators that validate the implementation of the ideas. There
is also an award to be mentioned that the author received for his presentation
in a doctoral symposium.

• Journal �Beernet: Building Self-Managing Decentralized Systems with
Replicated Transactional Storage�. Boris Mejías and Peter Van Roy. In
IJARAS: International Journal of Adaptive, Resilient, and Autonomic
Systems, Vol. 1(3):1-24, IGI Publishing, July 2010. This paper brie�y
summarizes the contribution of the relaxed ring to focus on the design and
implementation of Beernet and Trappist, which are presented in Chap-
ters 7 and 5 respectively. It also describes the design of the applications
built on top of Beernet, which are described in Chapter 8.

• Journal �The Relaxed Ring: A fault-tolerant topology for structured over-
lay networks�. Boris Mejías and Peter Van Roy. In Parallel Processing
Letters, Vol. 18(3):411�432, World Scienti�c, September 2008. This pub-
lication presents most of the results that we will describe in detail in
Chapter 3, presenting part of the evaluation measurements that will be
presented in Chapter 6.

• Conference �A Relaxed Ring for Self-Organising and Fault-Tolerant Peer-
to-Peer Networks�. Boris Mejías and Peter Van Roy. In Proceedings of
XXVI International Conference of the Chilean Computer Science Society
(SCCC 2007), 8-9 November 2007, Iquique, Chile. This publication is
focused on the analysis of the self-management behaviour of the relaxed
ring, using feedback loops as a mean to describe an analyse the algo-
rithms for ring maintenance and failure recovery. These ideas are further
discussed in Chapter 4.

• Conference �PALTA: Peer-to-peer AdaptabLe Topology for Ambient in-
telligence�. Alfredo Cádiz, Boris Mejías, Jorge Vallejos, Kim Mens, Peter
Van Roy, Wolfgang de Meuter. In Proceedings of XXVII IEEE Interna-
tional Conference of the Chilean Computer Science Society (SCCC'08).
November 13-14, 2008, Punta Arenas, Chile. This paper complements
relaxed ring's algorithms with an e�cient self-adaptable routing table.
The algorithm is described in detail in Chapter 3, and its evaluation is
included in Chapter 6.

10 CHAPTER 1. INTRODUCTION

• Demonstrator in Conference �PEPINO: PEer-to-Peer network IN-
spectOr� (abstract for demonstrator). Donatien Grolaux, Boris Mejías,
and Peter Van Roy. In Proceedings of P2P '07: Proceedings of the Sev-
enth IEEE International Conference on Peer-to-Peer Computing. Septem-
ber 2-7, 2007, Galway, Ireland. This software demonstrator has helped
us to visualize and polish our implementation of the relaxed ring, being
closely related to Chapter 7 and the applications of Chapter 8.

• Demonstrator in Conference �Visualizing Transactional Algorithms
for DHT� (abstract for demonstrator). Boris Mejías, Mikael Högqvist and
Peter Van Roy. In Proceedings of P2P '08: Proceedings of the Eighth
IEEE International Conference on Peer-to-Peer Computing. September
8-11, 2008, Aachen, Germany. This software demonstrator validates the
design and implementation of the transactional layer for atomic commit
on DHTs with symmetric replication. It validates the claims we discuss
in Chapter 5.

• Software Released Beernet 0.7 was released under the Beerware free
software license in April 2010. Beernet implements the relaxed ring and
the Trappist transactional layer. Previous to the last release, a Lightning
Talk was presented at FOSDEM'2010 in February. FOSDEM is one of
the most important European meetings in free and open source software.

• Award The author has won the �Best Presentation Award� at the Doc-
toral Symposium of the �XtreemOS Summer School�, held at the Wad-
ham College of the University of Oxford, Oxford, UK, on September 10,
2009. The presentation was entitled �Beernet: a relaxed ring approach for
peer-to-peer networks with transactional replicated DHT� [Mej09], and
it summarized the contribution of this dissertation.

1.6 Roadmap

This dissertation is organized as follows. Chapter 2 makes a review of all three
generations of peer-to-peer systems, where structured overlay networks are the
main focus of the analysis. The systems we reviewed are not only studied
from the point of view of their overlay graph, but also from their self-managing
properties. We also review distributed storage and the connection of peer-to-
peer with Grid and Cloud Computing. Figure 1.2 helps us to describe the
organization of the rest of the dissertation. Chapter 3 presents the protocols
and algorithms of the relaxed ring, being an important part of the contribution
of this dissertation. The relaxed ring is also studied using feedback loops in
Chapter 4 to understand its self-managing properties from an architectural
and software design point of view. Feedback loops complement the relaxed
approach as design tool for self-managing systems.

Once we have presented the relaxed ring, the dissertation continues in Chap-
ter 5 with the description of Trappist, our contribution in distributed storage.

1.6. ROADMAP 11

Figure 1.2: Dissertation's roadmap.

We analyse Two-Phase commit, Paxos consensus algorithm, and we describe
our contribution to Paxos extending it with eager locking. We also present our
noti�cation layer, and the lock-free protocol for key/value-sets, which is our
support for data collections. Discussions related to DHT are covered in Chap-
ters 3 and 5. Evaluation of relaxed ring's algorithms in comparison with other
overlay networks is presented based on empirical results in Chapter 6. We also
include an analysis on the impact of network address translation (NAT) on ring-
based overlay networks. A performance analysis of the di�erent transactional
protocols provided on this dissertation is also included in this chapter. There-
fore, Chapter 6 contributes to validate the relaxed ring and Trappist. Chapter 7
describes the design decisions and implementation details of Beernet. In that
chapter we provide more details about the advantages of its architecture.

In Figure 1.2, we have extended the architecture by adding the top layer
representing the applications that are built on top of Beernet. In Chapter 8 we
present three applications covering synchronous and asynchronous collaborative
systems, and we also include an application developed by programmers other
than the author. The dissertation �nishes with concluding remarks and future
work in Chapter 9.

12 CHAPTER 1. INTRODUCTION

Chapter 2
The Road to Peer-to-Peer

Networks

All animals are equal, but some are more equal
than others

�Animal Farm� - George Orwell

The goal of distributed computing is to achieve the collaboration of a set
of di�erent autonomous processes. A process is an abstraction of an entity
that can perform computations. This entity can be a computer, a processor
in a computer, or a thread of execution in a processor. We will use nodes or
peers to also mean a process. The most basic problem that has to be addressed
is to establish the connection between two processes and to provide program-
ming language abstractions to allow programmers to perform distributed oper-
ations. As more processes come into communication, enlarging the network, it
is necessary to correctly route messages between processes that are not directly
connected. And as the network grows larger, it is necessary to design system
architectures that can ease the collaboration between processes. Even though
the �rst issues we mentioned are not completely solved, the existing solutions
has been successfully used to communicated distributed processes, so they are
good enough to let us focus on the architecture of the system.

We are interested in designing and building overlay networks to organize
processes. An overlay network is a network built on top of another network,
which it is call the underlying network. The underlying network provides com-
munication between the processes we want to organize on the overlay network.
This chapter is dedicated to analyze existing overlay networks to contextualize
the contribution of this dissertation. Even though this work is developed at
a high level of abstraction, we still consider many of the basic principles of
distributed computing, such as latency or partial failure. These principles go

14 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

across all levels of abstraction of distributing computing, and not taking them
into account would be like an architect discarding physical rules that would
invalidate a design of a building. We will mention some issues concerning
routing messages on the underlying network during this chapter, and we will
discuss more about language abstractions for programming languages when we
describe the implementation of Beernet in Chapter 7.

In the introduction chapter we motivated the use of peer-to-peer networks
for building dynamic distributed systems, because of their decentralized, fault-
tolerant and self-organizing structure. We claimed that by relaxing the strong
requirements, we make the system more realistic without sacri�cing function-
ality. We also claimed that increasing self management in such systems is the
only way of dealing with their high complexity. The self-management prop-
erties of peer-to-peer networks are so intrinsic to them that we will start this
chapter by brie�y introducing some concepts of self management, and then we
will use them to analyze the related work.

2.1 Self Management

The complexity of almost any system is proportional to its size. This rule
also holds for distributed systems. As systems grow larger, they become more
and more di�cult to manage. Therefore, increasing systems' self-management
capacity appears as a natural way of dealing with high level complexity. By
self management, we mean the ability of a system to modify itself to handle
changes in its internal state or its environment without human intervention
but according to high-level management policies. This means that human
intervention is lifted up to the level where policies are de�ned.

Typical self-management operations are: tune performance, recon�gure,
replicate data, detect failures and recover from them, detect intrusion and
attacks, add or remove parts of the system, which can be components within
a process, or a whole peer, and others. Each of those actions or a combination
of them can be identi�ed as self-con�guration, self-organization, self-healing,
self-tuning, self-protection and self-optimization, often called in literature self-
* properties. We will use these properties to analyze the related work and
the contribution of this work, but self-protection is not in the scope of this
dissertation.

One of the key operations that a system must perform to achieve self-
managing behaviour is to monitor itself and its environment. Once relevant
information is collected, the system can take decisions over which actions to
trigger to achieve its goal. Once an action is triggered, the system needs to
monitor again to observe the e�ect of its action, developing a constant feedback
loop. We will explain feedback loops in Chapter 4. In peer-to-peer systems,
monitoring is distributed and based only on the local knowledge that every
peer has. Peers monitor each other and trigger actions in other peers. Global
state can be inferred but always as an approximation, because there is no

2.2. OVERLAY NETWORKS 15

Figure 2.1: Overlay network.

central point of control that observes the whole system at once. Self-managing
behaviour must be observed as a property of the whole network, and not as an
isolated property of a single peer.

2.2 Overlay Networks

A computer network is a group of interconnected processes able to route mes-
sages between them. Internet is a group of interconnected networks, routing
messages between processes independently of the network where they belong.
An overlay network is a network built on top of another network or set of
networks. For instance, a group of processes using the Internet to route their
message is said to be an overlay network, where the Internet is the underlay
network. Actually, the Internet itself can be seen as an overlay network running
on top of the group of local area networks.

Figure 2.1 depicts the architecture we are describing. An important issue
to discuss here is the analysis of the routing of messages. We can observe that
nodes f and e are directly connected in the overlay network. Therefore, a mes-
sage sent from node f to e is considered to be sent in one hop. However, if we
look at the topology of the underlying network, we observe that the message
would take at least three hops, and it goes through the node identi�ed as d,
which is not even connected with f in the overlay. This di�erence in the amount
of hops is understandable if we consider that the overlay network completely
abstracts the underlying network. The same overlay network depicted in Fig-
ure 2.1 could have been deployed over a di�erent underlying network where
nodes f and e are really directly connected, or completely far away. Since there
is no direct correlation between overlay and underlay in the amount of hops
needed to route a message, we will consider these two analyses as independent.
This does not mean that the design of an overlay network cannot take the un-
derlying network into account to optimize routing. In this dissertation, when
we discuss the amount of hops needed to route a message we mean hops at the
level of the overlay network, unless it is explicitly stated otherwise.

16 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

2.2.1 Client-Server Architecture

Client-Server is the one of the most basic and popular architectures to build
distributed systems. It is very simple and it allows the designer of the server to
have control over the system, because all messages have the server as partici-
pant. It can also be seen as an centralized overlay network with a star topology.
Unfortunately, it relies too much on the server which becomes a point of con-
gestion and a single point of failure. The system relies entirely on the server.
If the server crashes, there is no application. The size of the application also
relies on how powerful the server is to handle the connection of all the clients.
Therefore, it does not scale. If there is any self-management property that we
want to analyze here, it would be entirely focused on the server, and we would
remain with the problem that if the server is gone all self-* properties will be
gone too.

Currently, companies that base their business model on the client-server
architecture have extended it to run more code on client's machine, allow
some communication directly between clients, and more fundamentally, repli-
cate their servers to scale and provide fault tolerance. If we focus the self-
management analysis on the group of servers, then we would not be studying a
client-server architecture anymore, because the group of servers would actually
form a di�erent network. Yet, if the access to the group of servers is broken,
there is no application. To achieve more fault tolerance it is necessary to de-
centralize the system. Decentralization will also increase scalability but at the
cost that there will be no central point of control. Increasing self management
will allow the system to control itself.

2.2.2 Peer-to-Peer First Generation

Napster [Nap99] is the �rst peer-to-peer system to be widely known. It was a
�le-sharing service that allowed users to exchange �les directly, without sending
them though a server. It is said to belong to the �rst generation of peer-to-
peer networks where we also �nd AudioGalaxy [Aud01] and OpenNap [Ope01].
This generation was not entirely peer-to-peer. It was based on a mixed archi-
tecture which still relied on a server to work. Peers connected to a server to run
queries over media �les. The server replied with the addresses of the peers stor-
ing the requested �le so that peers could connect directly. If the server failed,
the exchange of �les could continue, but it was not possible to run new queries.
Therefore, the application would stop to work as soon as all current downloads
where completed. It was not possible to route messages to other peers through
the currently connected peers, and this is why it is not considered to be entirely
peer-to-peer. Only the exchange of �les was done peer-to-peer. OpenNap, an
open source derivate work from Napster, allowed communication between dif-
ferent servers improving robustness of the system, but the network remained
centralized on the group of servers handling the queries. Because large part of
the exchanged content was copyrighted, Napster ceased its operations in 2001

2.2. OVERLAY NETWORKS 17

due to legal issues. The service was easily shut by just stopping the servers.

2.2.3 Peer-to-Peer Second Generation

The more it stays the same, the less it changes!

�The Majesty of Rock� - Spi�nal Tap

The second generation of peer-to-peer networks is considered to be the �rst
real peer-to-peer system, because it is fully decentralized, it does not rely on
any server, and it is able to route messages using peers on the overlay network
independently of the underlay network. This generation is mainly represented
by Gnutella [Gnu03] and Freenet [Fre03], and it is also developed having �le-
sharing as goal. It was actually a solution to Napster's shut down, because
there was no server to stop. These systems are also known as unstructured
overlay networks because peers are randomly connected without any particu-
larly de�ned structure. As we have discussed already, nowadays almost any
machine can behave as a client and a server. Therefore, every peer can trigger
queries as a client, and handle queries from other peers, playing the role of a
server.

The algorithm to route messages in such unstructured network is called
�ooding. It is very simple but highly bandwidth consuming. It works as follows:
the peer that triggers the query sends it to all its neighbours with a time to
live (TTL) value. The TTL can be expressed in seconds or hops. We will use
hops for our example. The receiver of the query determines if it is the �rst time
that has seen it and if the TTL is greater than 0. If so, it transmits the query
to all its neighbours except for the sender, with a decremented TTL. If the
peer can resolve the query, it answers back following the path to the original
sender. In Figure 2.2 we can see the �ooding algorithm initiated by peer h
with a TTL of 2. The extra circles around the peers on the �gure represent the
amount of hops that the message needed to reach the peer. All coloured peers
participated in the routing algorithm. Peers with a darker coloured means that
the peer receive the message more than once. Let us imagine that the query
triggered by peer h can be answered by node m. The query is �rst sent from h
to nodes f, g, j and k. Every peer will send it to its neighbours, so m receives
the message from k, and the answer travels back following m→k→h.

There are several issues that make this algorithm less scalable and not
suitable for the kind of systems we want to build. If we observe peer f on
this example, �rst, it receives the query from peer h and then from peer j. A
similar situation occurs with the other nodes on the �rst level of �ooding. On
the second level, nodes i and n receive the message twice too. In conclusion,
many nodes process the query unnecessarily more than once, ine�ciently using
their resources.

A second issue is the amount of messages being sent. In this example, the
messages is sent 16 times without counting the responses. In the ideal case,

18 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

Figure 2.2: Flooding routing in a unstructured overlay network.

it was only necessary to follow the path h→k→m. To do such routing, peers
would need a routing table with information about their neighbours. However,
the absence of routing tables for the sake of simplicity is considered to be one
of the advantages of unstructured overlay networks.

Determining a correct TTL is also an issue. If the query could have been
resolved immediately on the �rst level, all the messages sent to the second level
and further would have been unnecessary. If the TTL on this example would
have been set to 3, the whole network would have been �ooded to resolve the
query. However, if the query could have been only resolved by a, b or d, a
TTL of 2 would not have been su�cient to �nd the answer. This is one of the
reasons why unpopular items are more di�cult to �nd in �le-sharing services
based on �ooding routing, even though the items are stored somewhere in the
network.

Another issue that in�uences the success of resolving a query is the place of
the originator. Nodes closer to the center of the network will reach more nodes
that nodes living at the border of the network. For instance, in Figure 2.2,
node h �oods the whole network in three hops, but nodes l and m would need
to use a value TTL of 5 to reach a, b or d. In a very large network, a TTL
of 6 seems to be reasonable following the six degrees of separation theory of
human connected networks [Bar03]. Using a formula from [AH02] to count the
amount of messages sent in a query (factor 2 includes the responses), with an
average of C connections per peer, using TTL = 6, and C = 5, we obtain 54610
messages per query:

2 ∗
TTL∑
i=0

C ∗ (C − 1)i = 54610 (2.1)

Despite all these issues, unstructured overlay networks are still very popular
to run �le-sharing services because bandwidth consumption is mainly consid-
ered a problem for ISP providers and not for the users, and because popular
items can be found in a reasonable amount of hops, again, following the rule
of six degrees of separation. Another reason is that items stored in �le-sharing
systems do not update their values. If many peers store the same item, it is

2.3. STRUCTURED OVERLAY NETWORKS 19

necessary to �nd at least one of the peers. There is no such thing as the latest
value of the item, so there is no issue with respect to consistency. Any replica
of an item is a valid one as long as the value stays the same.

Flooding routing works �ne for networks with a tree topology, because it
avoids that peers receives messages more than once, but it is very costly for
unstructured overlay networks, being ine�cient in bandwidth and processing-
power usage. Another problem is that there is no guarantee of reachability
or consistency properties, which we consider important to build decentralized
systems that constantly update the values of the stored items. Even though
Gnutella can keep large amounts of peers connected, it does not mean that
scalable services can be built on top of it because of the problems with e�ciency,
reachability and consistency [Mar02, RFI02]. Also, according to [DGM02], it
is not di�cult to perform a query-�ood DoS attack in Gnutella-like networks,
but their success depend on the topology of the network and the place of the
originator of the attack, which is related to the reachability issue we already
discussed.

Freenet also uses �ooding routing but it presents some improvements with
respect to Gnutella. The main di�erence is that the queries can be done with
anonymity in Freenet. Since these systems were conceived as �le-sharing ser-
vices, the motivation for providing anonymity is basically legal, so no user can
be sued. There is a degradation in performance because everything is sent
encrypted. Freenet also keeps some information with respect to locality on the
routing tables of the peers to improve routing speed. But, since it is �ooding
based, it is still very expensive.

With respect to self-* properties, we observe a basic self-organization mech-
anism despite the fact of not having any structured topology. There is no global
or manual mechanism to organize the peers. Peers joining the network are just
connected to the peers it gets introduced by its entry point. When nodes discon-
nect from the network, the other nodes simply stop forwarding queries to them,
and therefore, there is no need for a self-healing strategy. Routing protocols
in Gnutella and Freenet are under continuous improvement by their commu-
nities, but we will not refer to them because they go beyond the simplicity of
the basic unstructured network, and they do not solve the more fundamental
problems already discussed. It is possible to provide some self-tuning of the
TTL value, and some self-optimization in the �ooding paths by adding more
information to the routing tables of the peers, but we will study better choices
on the structured overlay networks in the next section.

2.3 Structured Overlay Networks

The third generation, also known as structured overlay networks (SONs), is the
result of academia's interest in peer-to-peer networks. It clearly aims to solve
the problems of unstructured networks by providing e�cient routing, guaran-
teeing reachability and consistent retrieval of information. Adding structure

20 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

makes it possible to achieve these improvements, but it also creates new chal-
lenges such as dealing with disconnections of peers and non-transitive connec-
tivity. Non-transitive connectivity means that if a peer A can talk to B, and
peer B can talk to C, it does not mean that peer A can talk to C. As we will
see in this section, most approaches assume full transitive connectivity, which
is not true for Internet-like scenarios. Many nodes connected to the Internet
run behind network address translation (NAT) devices. These devices �lter a
lot tra�c between nodes, and sometimes, they prevent direct communication
between two NATted nodes, introducing non-transitive connectivity. Broken
routing paths between nodes is also a source of non-transitivity, but those cases
are more di�cult to detect because they are mostly temporary. However, their
in�uence in connectivity quality is not negligible.

Every system assumes that nodes willing to join the network have a reference
to at least one peer in the system, which we call the �rst contact. That implies
that networks should provide a way of publishing references to peers. SONs
typically provide a distributed hash table (DHT) where every peer is responsible
for a part of the hash table. There are two basic operations that every DHT
must provide: put(key, value) and get(key). The put operation stores the
value associated with its key such that every peer can retrieve it with the get
operator. If another value was already stored under the same key, the value
is overwritten. We de�ne now some of the concepts we will use in this section
and in the following chapters. These terms are also common to other surveys
found in the literature [AH02, BL03, GGG+03, EAH05, LCP+05, AAG+05].

• Item. The key/value pair stored in the hash table.

• Identi�er space. The key of an item is always mapped into a hash
key, which is the identi�er of the item (abbreviated as id). The range of
possible values of ids is the identi�er space. Peers in the network are also
associated with an id. Because of that, the identi�er space is also named
address space

• Lookup. It is the operation performed by any peer to �nd the responsible
peer of a given key.

• Join. A new peer getting into the network.

• Leave. A peer disconnects from the network either voluntarily (gentle
leave) or because of a failure (also named crash).

• Churn. Measurement of peers joining and leaving the network during a
given amount of time.

• Iterative routing. The originator of a lookup sends its message to
its best contact on the overlay, with respect to the searched key. The
contact answers back with its best contact, so the originator iterates
until reaching the destination. This seems to be ine�cient, but if a node

2.3. STRUCTURED OVERLAY NETWORKS 21

(a) (b)

Figure 2.3: Example of (a) iterative and (b) recursive routing.

in the path fails, the originator knows exactly where to recover from. See
Figure 2.3(a).

• Recursive routing. The originator of a lookup sends its message to
its best contact on the overlay, with respect to the searched key. The
contact forwards the lookup request to its best contact, and so continues
the search. When destination is reached, the peer answers back to the
originator. It is more e�cient than iterative routing, but in case of a
failure, the whole process needs to be restarted. See Figure 2.3(b).

We will start by discussing ring-based networks because it is where the
contribution of the relaxed ring is made. Then, we will summarize other kinds
of SONs to complete the review, explaining what are the advantages of ring-
based structure, and how our global contribution could be applied to other
networks. We will deeply analyze Chord because it in�uences many other
systems, which are basically improvements of Chord.

2.3.1 Chord

Chord [SMK+01, DBK+01] is one of the most known and referenced SONs. In
Chord, peers are self-organized forming a ring with a circular address space of
size N . Hash keys are integers from 0 to N − 1. The ring can be seen as a
double-linked list with every peer having two basic pointers: predecessor and
successor (abbreviated as pred and succ). Figure 2.4(a) depicts an example of
a Chord ring. Only pointers of peer identi�ed with id q are drawn on the �gure
but every peer holds equivalent pointers. Peers p and s corresponds to pred
and succ respectively. This means that p < q < s, where `<' is de�ned on the
circular address space following the ring clockwise.

DHT The ring provides a DHT where every peer is responsible for the storage
of a set of keys determined by its own id and its predecessor. In the case of
q, the peer is responsible for the range]p, q], (i.e., excluding pred's id and
including its own). If the ring is perfectly linked, there is no overlapping of

22 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

peers' responsibilities, and therefore, every lookup operation gives consistent
results.

Fingers To provide e�cient routing, Chord uses a set of extra pointers called
�ngers or long references. They are chosen dividing the address space in halves.
The farthest �nger of q is the responsible of key (q + N/2) mod N . In our
example in Figure 2.4(a), we consider q = 0 to label �nger keys, and therefore,
the ideal farthest �nger key isN/2. In the �gure there is no peer holding exactly
that key, but peer k is currently the responsible. Closer �ngers are chosen using
the same formula but dividing N by powers of 2. The �ngers, together with
pointers to pred and succ, form the routing table of a peer. Ideally, every peer
holds references to log2N �ngers.

Lookup When any peer receives a lookup request for a given key, it �rst
determines if the key belongs to the range between its own id and its successor.
If that is the case, it answers the lookup query giving its successor id as answer.
If it is not, it forwards the lookup to the closest preceding �nger. The routing
mechanism is therefore recursive. In our example of Figure 2.4(a), if lookup(m)
is sent to peer q, q forwards it to peer k. Then, peer k will continue forwarding
using its own routing table. If lookup(b') is sent to peer q, with b < b′ < c,
then q forwards the message to b, being the closest preceding �nger of b′.
Then, b answers that c is the responsible, because b′ ∈]b, c]. The fact that
b answers that its successor c is the responsible of b′ will be the source of
inconsistencies under special cases of churn and connectivity problems, as it is
described in [Gho06, MV08, SMS+08]. This occurs basically because b could
not be aware of new node between c and the key b′. We will come back to this
issue in Chapter 3.

Peers never use pred pointer to route a messages, even if pred is closer to
the target than any �nger. This rule is taken for e�ciency and to prevent
cycles. If every peer continues routing the message backwards, there is no
guarantee that it would take less than O(log2N) hops to reach the responsible.
Furthermore, is one of the peers decides to switch again from backward routing
to forward routing. It could reach a peer which would backward the message
again, creating a cycle. Therefore, only one direction is used for the routing in
Chord.

Fingers fragment the address space into halves, therefore, every forwarding
of a lookup request shortens the distance to approximately the half of it. Con-
sidering that the address space is discrete, the routing of the lookup converges
to the responsible of the key in O(log2N) hops. This routing cost is very scal-
able because if the network doubles its size, the routing takes in average only
one extra hop.

Churn Figure 2.4(b) shows three di�erent events producing churn: peer j
joins as k's predecessor, peer b leaves voluntarily the network, and peer m

2.3. STRUCTURED OVERLAY NETWORKS 23

(a) (b)

Figure 2.4: Example of (a) Chord ring and (b) some events causing churn.

crashes. In the case of the join, k accepts j only if j belongs to k's range of
responsibility. Since N/2 > j > q, peer j becomes the new responsible of N/2,
and therefore, it is a more suitable �nger for q. This value needs to be updated
somehow. A similar situation occurs when b leaves, because c becomes the new
responsible of N/4. The di�erence here is that now q has temporarily no �nger
for that value until it knows about c. The crash of m does not a�ect q's routing
table, but it surely a�ects other peers' routing table, and the responsibility of
m's successor.

Join When new peers want to join the network, they have to do it as predeces-
sor of the responsible of their own key. Looking at the example in Figure 2.4(b),
we observe that peer j joins as predecessor of peer k. To know where to join
the ring, j has to previously request a lookup(j) to its �rst contact, which
can be any peer in the network. Since the answer to the lookup is k, peer j
set its succ pointer to k and noti�es it. Then, k determines that j ∈]d, k] and
update its pred pointer to j. Half of the process of joining is done here. It is
continued by periodic stabilization, which we describe now.

Periodic stabilization We can divide a peer's routing table into two groups:
�ngers, which are used for e�cient routing, and pred/succ pointers, which are
needed for dividing the address space. These references become invalid after
some time due to churn. Therefore, it is necessary that every peer periodically
checks the validity of pred/succ pointers. Analysing this strategy from the point
of view of our relaxed approach, we can see that the Chord's join process is too
relaxed. It just let nodes join the ring by talking to its successor, moving the
larger load of work to periodic stabilization to achieve correctness. The problem
actually arises because the loose join contradicts the strong requirement of
having a perfect ring for correctness. The relaxation is somehow misplaced.

24 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

A peer periodically asks its succ for the value of succ's pred. If it is the
same as itself, there is nothing to do. If it is a new one, it is probably a bet-
ter successor, or something went wrong and there is an inconsistency in the
responsibilities of the DHT. Coming back to our join example in Figure 2.4(b),
when it is time for d to run periodic stabilization, it asks k the value of its pre-
decessor. Peer k answers j. Peer d realizes that j ∈]d, k], and then, d changes
its succ pointer to j, �xing the ring. Then, d noti�es j about itself becoming
j's pred. That is how j gets to know d and the joining of j is completed. This
mechanism relies entirely on network transitivity (i.e., if d can talk to k and
k can talk to j ⇒ d can talk to j). This property is often assumed as guar-
anteed, but it does not hold all the time due to non-transitive connectivity,
as it was explained in Section 2.3. This broken assumption is the source of
errors in real implementations [FLRS05], creating lookup inconsistencies and
uncorrected false suspicions. Another problem with this join algorithm based
on periodic stabilization is that two peers joining simultaneously in the same
range of keys will introduce lookup inconsistency even if connectivity is perfect,
as analyzed in [Gho06]. We will discuss more about these two issues later on
this section and in Chapter 3.

To check validity of �ngers, a peer asks to every �nger its pred value. If pred
is the new responsible for the ideal �nger key, the �nger pointer is updated.
In Figure 2.4(b), q asks k for its pred. Peer k answers j, where j ∈]N/2, k],
and then, j is a better �nger because it is the responsible for key N/2. Note
that this mechanism also relies on transitive connectivity between q, k and j.
Figure 2.4(b) also presents the example of peer b leaving the network. Peer b is
the responsible of key N/4, which is one of the ideal �ngers of q. When �nger b
is found to have left the ring, a new lookup for the key N/4 must be performed
to �nd the new �nger.

Successors list Every peer holds a list of peers that follows its successor
clockwise, which we call successors list. The size of this list is log2N , as in the
�nger table. When the current successor leaves the network, either voluntarily
or due to a crash, the peer takes the closest peer in the successors list as its
successor candidate, �xing the ring. It is possible that the successors list is
not accurate due to churn, and some peers will be missing, but this problem is
corrected by periodic stabilization.

Network partitions Network partition is one of the worse scenarios of par-
tial failure in distributed computing. It happens when two or more groups of
nodes get disconnected from each other. An example of such situation is when
the communication between two clusters is broken. The nodes within one clus-
ter can communicate without problems, but they cannot contact any node in
the other cluster, and it is impossible to know if the link is broken, or the
cluster stop working. Chord can survive a network partition as long as every
peer can �nd a valid successor candidate in its successor list. This means that

2.3. STRUCTURED OVERLAY NETWORKS 25

no more than log2N −1 consecutive peers have to reside on the same partition.
Even when the ring survives the partition, it is not possible to provide con-

sistency and availability at the same time. This is not a particular problem of
Chord but of every network following Brewer's conjecture on partition-tolerant
web services, formalized and proven in [GL02] as the CAP theorem. Given the
properties of strong consistency (C), high availability (A) and partition toler-
ance (P), the CAP theorem establishes that only two of the properties can be
guaranteed sacri�cing the third one. Even though Chord and other ring-based
systems can survive network partitioning, none of these systems addresses cor-
rectly the problem of merging the rings when the partition is gone. Recently,
a nice gossip-based solution was presented in [SGH07, SGH08], being general
enough to apply it to many ring-based networks. Note that this dissertation
does not address the issue of network partition. Beernet inherits the ability of
surviving network partition and can integrate the above mentioned solution for
merging rings.

Self management Note that no central entity organizes a peer's position
in the ring. Every joining peer �nds autonomously its successor, and every
peer runs periodic stabilization independently. We identify this behaviour as
self-organization, and it is essential to almost every SON. Periodic stabilization
also recon�gures the �nger table to provide e�cient routing on the network.
Considering �ngers update only from the point of view of a single peer, we
identify this behaviour as self-con�guration. If we consider the global result, we
observe that the network route messages more e�ciently, therefore, we identify
this behaviour as a basic self-optimization. The resilient information of the
successors list, combined with periodic stabilization, can be clearly identi�ed
as self-healing.

It is important to remark that these self-management behaviours are intrin-
sic to Chord, as they are to almost every decentralized peer-to-peer network.
Without these properties the system basically does not exist. This contradicts
some views on self management that attempt to analyze decentralized systems
as autonomic systems that have evolved from manually controlled systems.
For instance, some methodologies [Mil05, LML05, ST05] de�ne their model to
evaluate the system with and without autonomic behaviour. They de�ne the
maturity of the system by the ability of turning on and o� each autonomic
behaviour. As we said, Chord would not work correctly without periodic stabi-
lization, and one could not turn o� self-organization of the ring. According to
those methodologies, that would mean that the system is not mature enough,
which actually does not re�ect what a decentralized system is.

It would be more interesting to discuss how hidden a self-* property can be.
For instance, the lookup procedure is orthogonal to the protocols that maintain
the ring and the routing table. Therefore, the four self-* properties we already
mentioned are hidden to the lookup. When the message arrives to the peer
and it needs to be forwarded, the mechanism does not need to know how the

26 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

pointers were de�ned. It just takes the most convenient �nger. We realize that
even when lookup is a low-level primitive in SONs, it is at a higher level with
respect to routing table and ring maintenance.

Observations One of the advantages of Chord is that their protocols for
maintaining the ring are quite simple and without locking the state of peers.
We will discuss more about locks when we review DKS in Section 2.3.2. Un-
fortunately, as we already mentioned, the loose join strategy contrasts with
the strict requirement of having a perfect ring to provide lookup consistency.
Because they relax the join algorithm but not the requirements, they need to
use a expensive periodic stabilization to maintain the perfect ring and to �x
lookup inconsistencies. They also rely on transitive connectivity to complete
the maintenance protocols. It is shown in [KA08] that there exists a given
value for the ratio of churn with respect to the frequency of periodic stabiliza-
tion, such that the longest �nger of any peer is always dead at the moment
of performing a lookup. This means that routing e�ciency is highly degraded
preventing the correct execution of any application built on top of the network.
To solve this problem, periodic stabilization has to be triggered more often.
We already mentioned that the join algorithm is not lookup-inconsistency free.
Since periodic stabilization �xes those inconsistencies, making it run more of-
ten also contributes to a better ring maintenance. The big disadvantage is that
periodic stabilization is very costly, making an ine�cient use of the bandwidth.

The circular address space, as it is used by Chord and many other ring-
based systems, relies on the uniformity of the identi�ers of the peers. If the
keys present a skewed distribution, many �ngers will point to the same peer
creating points of congestion. Another problem that can appear, even if peers'
identi�ers are uniformly distributed, is that the keys of the stored items have a
skewed distribution. For instance, consider the words in a dictionary. If every
peer has to store the words of a given letter, some peers will have to store
a lot more information than others, unbalancing the network. This issue is
addressed in Oscar [GDA06], a SON periodically reassign keys to achieve load
balancing.

Chord was designed to scale to very large networks and it does it well,
providing logarithmic routing cost. Unfortunately, if we would like to use Chord
to create very small systems, the topology and routing tables would be too
sophisticated and less e�cient than a full mesh, which is completely reasonable
to use in very small networks. Chord scales up very well, but it is not its goal to
scale down. There are several Chord implementations and services built upon
it, among which we �nd the main implementation [Cho04] and i3 [SAZ+02], a
DNS service [CMM02] and a cooperative �le-sharing service [DKK+01].

2.3.2 DKS

Overlay DKS [AEABH03] is also a ring-based peer-to-peer network with a
circular address space like Chord. Its design presents improvements in routing

2.3. STRUCTURED OVERLAY NETWORKS 27

Figure 2.5: Partition of the address space in DKS.

complexity, cost maintenance of the ring, and replication of the data. DKS
stands for Distributed k-ary Search. As it names suggests, the address space is
divided recursively into k intervals rather than 2 as in Chord. An example of
the division strategy can be seen in Figure 2.5. In the example, node n divides
the space into k = 4 intervals, having a �nger to each peer at the beginning of
every interval. The closest interval is again divided into k subintervals with the
correspondent �ngers. The �gure shows a new division of the closest interval,
even though the arrows of the �ngers are not drawn. The division continues
until an interval is not dividable by k any more. The lookup process works
exactly as in Chord for k > 2, forwarding the message to the closest preced-
ing �nger. Since there are always k intervals, the lookup process converge in
O(logkN) hops, which is better than Chord. The larger the value of k, the
smaller the amount of hops, but the larger the size of the routing table, which
is a disadvantage because its maintenance becomes more costly. We can say
that DKS generalizes Chord, where Chord becomes an instance of DKS where
k = 2.

Correction-on-change and correction-on-use Another fundamental im-
provement with respect to Chord is that DKS does not rely on periodic stabi-
lization. This can be achieved by having atomic join/leave operations, and more
interestingly, it introduces the principles of correction-on-use and correction-
on-change. Correction-on-use means that every time messages are routed, in-
formation is piggy backed to correct �ngers. The more the network is used, the
more accurate the routing tables become. Correction-on-change is more con-
cerned with the detection of nodes joining or leaving the network. Every time
such an event is detected, the correction of pointers is triggered immediately
instead of waiting for the next round on periodic stabilization.

Atomic join/leave To solve the problem of correcting the succ and pred
pointers, DKS uses an atomic join/leave algorithm [Gho06] based on distributed
locks. That means that the state of a peer can be locked by another peer until
it decides to release the lock. This is useful to prevent that the successor of a
peer updates its predecessor pointer without the agreement of the predecessor.
Providing atomic join/leave operations does not only reduce the need for peri-
odic stabilization, but it also reduces lookup inconsistencies, which is a more
important contribution. Previous attempts to provide atomic join/leave oper-

28 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

ations [LMP04, LMP06] failed to provide safety and liveness properties. The
main problem was their use of three locks: succ, pred, and the joining/leaving
peer. In DKS instead, only two locks are needed. To join or leave, every peer
needs to get its own lock and the lock of its successor. In the case of joining
this is simpler, because nobody knows about the joining peer except for itself.
Then, its join operation is guaranteed as soon as it gets the lock of its succes-
sor. Leaving is relatively more di�cult, because a peer cannot depart from the
network if its predecessor or successor is leaving as well, and getting their locks
�rst. We consider this an important drawback.

The algorithm guarantees safety and liveness properties. It is proven to be
free of deadlocks, livelocks and starvation. However, all the proofs are given
in a failure-free scenario which is unrealistic for a peer-to-peer network. If
a peer crashes holding the lock of its successor, it will prevent its successor
from answering lookup requests, increasing unavailability. If the peer is falsely
suspected of having failed, errors can be introduced by having duplication of
locks. The algorithm is also broken in presence of non-transitive connections,
because peers will not be able to acquire the relevant locks to perform a join or
a leave. We consider DKS's requirements too hard to meet in realistic settings.
Distributed locks must not be used unless it is unavoidable, as we will see when
we discuss consistent replication of storage.

Storage With respect to storage, DKS also introduces an interesting strategy
to symmetrically locate replicas on the network [GOH04], instead of placing
them on the successor list as Chord does. A replica is an item stored in a peer
which is not the responsible of the item's key. When the responsible of the
item's key is not available, a very simple data recovery mechanism can retrieve
the item from any of the replicas. Symmetric replication contributes better to
load-balancing and makes recovery on failure more e�cient. We will discuss
more about symmetric replication in Chapter 5.

Self management DKS presents very similar self-management properties
to Chord but their mechanism to achieve them di�er. Both rings are self-
organized, self-optimized and self-healing, and peers' routing tables are self-
con�gured. Chord achieves many of these properties through periodic sta-
bilization and some through immediate reaction on join events and failure
detection. DKS achieves self-organization through atomic join/leave algo-
rithms. Correction-on-use provides self-optimization and self-con�guration.
Self-healing is achieved through correction-on-change.

2.3.3 P2PS and P2PKit

Overlay P2PS [MCV05] is also a ring-based peer-to-peer system with loga-
rithmic routing. It is the predecessor of Beernet [MV10, MCV09, Pro09] and
the relaxed ring. P2PS uses the Tango protocol [CM04] for building the �nger
table and routing messages across the network. Tango is very similar to Chord

2.3. STRUCTURED OVERLAY NETWORKS 29

and DKS, but it takes into account the redundancies found in the �nger tables
of di�erent nodes. One can observe that there are di�erent paths from peer
i to j with the same amount of hops, and any of those paths could be taken
to resolve a lookup operation. Tango exploits these redundancies providing a
more scalable and e�cient solution. As drawback, it needs to take into account
the information of other nodes, and therefore, it is expensive to maintain the
routing tables. To compensate this cost, by exploiting redundancy, routing
tables in Tango are smaller than those of DKS and Chord. The average cost
for routing messages is also O(logkN) hops, but it is claimed to be 25% faster
than Chord in the worst case, which is 2log2N for Chord.

Ring maintenance Taking into account the fact that two simultaneous joins
with the same successor candidate created lookup inconsistencies in Chord,
P2PS designed its own join algorithm. Similarly to DKS, P2PS does not use
periodic stabilization to �x succ and pred pointers. It uses correction-on-change
instead. Contrary to DKS, P2PS does not use distributed locks to guarantee
atomic join/leave operations, which is in fact an advantage. An important
contribution to fault tolerance is that graceful leaves where not considered in
the design of the protocol. They are treated as failures. The reason is that
if a node fails while performing a graceful-leave protocol, a failure-recovery
strategy must be designed for that particular case, adding more complexity to
the ring maintenance. If leave due to a failure is already handled by correction-
on-change, an algorithm for graceful leaves is unnecessary.

The join algorithm of P2PS is claimed to be atomic, and in fact, it does not
introduce lookup inconsistencies even if two nodes join the ring simultaneously
within the responsibility range of a given peer. Even so, the algorithm relies
on network transitivity to complete. Although the algorithm is atomic for
two simultaneous join events, we proved in [MJV06] that the algorithm did
not work in particular cases of three and more simultaneous join events, and
that the inconsistency persists until the compromised peers leave the network.
Unfortunately, we wrongly conclude in that technical report that a lock-based
algorithm, such as the one of DKS, was needed to guarantee atomicity for
join and leaves. Later, taking inspiration from P2PS's lock-free algorithm we
developed the relaxed ring, which is presented in Chapter 3. As we will see,
the relaxed provides atomic join without relying on transitive connectivity.

Architecture The implementation architecture of P2PS is designed in lay-
ers going bottom-up from the communication layer to more general services.
Figure 2.6 is based on the architecture presented in [MCV05], and it is com-
plemented with P2PKit's architecture, which we will soon describe. P2PS is
implemented in Mozart [Moz08], which is an implementation of the Oz lan-
guage [MMR95, Smo95]. The Mozart virtual machine is at the bottom of the
architecture and it is accessed not only by P2PS, but also by P2PKit and the
peer-to-peer application. Messages are divided into two groups: events and

30 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

Figure 2.6: P2PS/P2PKit architecture.

messages. Events are those corresponding to the maintenance and function-
ing of the network, such as joins, leaves, acknowledgements, etc. Messages are
those sent by the application and propagated to other peers through the net-
work. Both sets of messages go across the three layers of P2PS, where each
layer triggers new messages and new events. At the bottom of P2PS we �nd the
Comm layer, which is in charge of providing a reliable communication channel
between peers. The Core layer is in charge of the ring's maintenance, handling
join and leave events, and keeping the routing table up to date. Functionalities
such as general message sending, multicast, broadcast, and others, are provided
in the Services layer.

P2PKit The API of P2PS was considered to be too basic to develop peer-
to-peer applications in an easy way. The design of P2PKit [Gly05] aims to
simplify the task of developers providing high-level abstractions to deploy peer-
to-peer services. Although P2PKit is independent of the underlay peer-to-
peer system, we present it together with P2PS because of their tight imple-
mentations [Pro08, Gly07]. Continuing with the analysis of the architecture of
Figure 2.6, we observe that P2PKit creates a client separated from the peer,
giving the possibility of using multiple clients for the same peer. Network events
are still triggered at the application level, and new events are added by P2PKit.
The crucial part of P2PKit's approach is the use of the message stream. It cre-
ates many di�erent services as channels. These services are provided by the

2.3. STRUCTURED OVERLAY NETWORKS 31

application working with a publish/subscribe mechanism. There is a message
dispatcher in charge of �ltering all messages received by the peer, putting them
into the correspondent service. If the application decides not to listen to a ser-
vice anymore, those messages simply will not reach the application layer as in
P2PS.

Storage One of the earliest works on generic decentralized transactional pro-
tocols for replicated ring-based SONs was done on P2PS [MCGV05]. The pro-
tocol is based on two-phase locking and provides fault tolerance for the peers
holding replicas. Partial fault-tolerance is provided for the transaction man-
ager, but if the manager dies once it has taken the decision to commit the
transaction, the protocol runs into inconsistencies. No implementation and
no API was provided for this protocol. We will discuss again this protocol in
Chapter 5.

Self management P2PS and DKS share means to achieve self-managing
behaviour. Both systems rely on correction-on-change and correction-on-use
to obtain self-con�guration, self-optimization and part of self-healing. They
basically di�er in the way of handling join, leave and failure events for self-
organization and self-healing. DKS attempts to provide atomic join/leave with
a lock-based algorithm without handling failures very well. P2PS treats leaves
and failures as the same event focusing more on fault-tolerance, using a lock-free
algorithm. Both systems have problems with non-transitive connectivity.

2.3.4 Chord# and Scalaris

Chord# The ring-based peer-to-peer systems we have presented until now
rely on the keys having a uniform distribution to balance the network load. If
the keys present a di�erent distribution, some peers will be more loaded than
others, causing degradation in the performance of the system. Chord# [SSR07]
proposes a change on the address space and supports multiple range queries
transforming the ring into a multi-dimensional torus. Regular queries retrieve
items which key is in between a lower and an upper boundary. Chord# has
been derived from Chord by substituting Chord's hashing function by a key-
order preserving function. The address space goes from characters A to Z,
continuing with characters from 0 to 9. These characters are just the �rst
of a string that determines the key. The address space is therefore in�nite,
circular and with total order. It has a logarithmic routing performance and
it supports range queries, which is not possible with Chord. Its O(1) pointer
update algorithm can be applied to any peer-to-peer routing protocol with
exponentially increasing pointers.

The change on the address space from integers to strings of characters can
be applied to any of the previously discussed rings, therefore, it is an orthogonal
issue. It can be used to provide better load-balance when it is known that the

32 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

application to be developed has a non-uniform distribution of keys. Problems
with non-transitive connectivity remain unsolved by Chord#.

Scalaris Implemented on top of Chord#, Scalaris provides a mature fault-
tolerant and general-purpose storage service. Scalaris uses Chord#as a plain
DHT, without using its multidimensional storage. If we just consider a plain
DHT, Chord#'s storage is just like Chord's, except that the responsibility of
every peer is in�nite, although with well de�ned boundaries.They have im-
plemented symmetric replication as described in [Gho06], where replicas are
kept consistent with their own transactional layer [MH07]. The layer provides
atomic transactions with the guarantee that at least the majority of the replicas
stores the latest value of every item. The transaction would abort otherwise.
We will analyse this layer in detail in Chapter 5.

Scalaris [SSR08, PRS07] uses this transactional layer over a unidimensional
address space to provide a decentralized peer-to-peer version of the Wikipedia.
The system has been tested on Planetlab [The03] with around 20 nodes, proving
to be more scalable that Wikipedia [Wik09] itself. Wikipedia works with a
server farm running MySQL database [AB95]. Their structure is centralized
and not very �exible. It does not allow them to easily add new servers to the
farm in case their capacity is reached. Scalaris on the contrary, thanks to its
peer-to-peer architecture, can easily add new nodes to the network to increase
the capacity of the service, scaling without problems.

We include Scalaris on this review because its transactional support is very
close to the one implemented in Beernet. We will discuss more about their
similarities and di�erences in Chapters 5 and 6.

2.3.5 Other SONs

In this section, for the sake of completeness, we brie�y overview other SONs
that have less in�uence in our work. We have mentioned that the contribution
of the relaxed ring lies on peer-to-peer networks organized in a ring. We will
see later in Section 2.5.2 that ring-based topologies tolerate better failures.
The SONs included in this section use other network topologies with di�erent
guarantees. A more technical comparison is included in Section 2.5.

Kademlia [MM02, FFME04] is one of the most referenced peer-to-peer net-
works in literature. It assigns every peer an identi�er made out of a chain
of digits. Peers use a binary tree for routing where they organize other peers
according to their shortest unique pre�x. We believe that Kademlia works very
well for networks where data does not change very much, as in �le-sharing ap-
plications Emule [Emu04] and Overnet [Ove04]. But we think it would be too
expensive to provide strong consistency.

Pastry [RD01a] and Tapestry [ZHS+03] also use a circular address space,
but we can classify them as trees because of their �nger table and routing algo-
rithm. Bamboo [RGRK04] uses the geometry of Pastry. OpenDHT [RGK+05],

2.4. DISTRIBUTED STORAGE 33

a closely related project to Bamboo, has a nice contribution by o�ering a stan-
dard API for general purpose DHT. It includes security aspects to store and
retrieve values from sets using secrets. OpenDHT already introduces the con-
cept of key/value-sets that we will discuss in Chapter 5, but it only provides
eventual consistency with no transactional support.

SONAR [SSR07] is an extension of Chord# to support multi-dimensional
data spaces. It uses the same geometry as CAN [RFH+01], which overlay graph
can be interpreted as an hypercube or a multi-dimensional torus. As we will
see in Section 2.5, SONAR has a more e�cient routing than CAN. However,
both networks have problems handling failure recovery because their structure
is too rigid. The responsibility of every peer depends on many neighbours, so
it is di�cult to determine the new responsible when a peer leaves the network.

Viceroy [MNR02] partitions the address space exactly as Chord. However,
the routing strategy makes us classify it with a di�erent topology, because it is
based on the Butter�y graph [Mat04]. The routing table is costly to maintain,
and it overloads certain peers for routing, creating congestion points.

2.4 Distributed Storage

In the �rst part of this chapter we have reviewed the di�erent strategies and
architectures of the most in�uential peer-to-peer systems for this work. In this
section we discuss the di�erent approaches used by those systems to store data.
The initial and still most common goal of peer-to-peer systems is �le sharing.
Users share with other peers �les they store locally. As soon as another peer
gets the �le, it becomes a replica and starts sharing the �le with the rest of the
network. The rest of the network can access any of the two replicas to get the
�le, and add a new replica to the network as soon as the transfer is �nished.
Improvements on �le sharing, as in BitTorrent [PGES05], allow peers to share
�les divided into small chunks. Peers do not need to wait until the whole �le
is transferred to start sharing the chunks already downloaded. As soon as
they get a chunk, they can o�er their replica to the network. An even better
advantage is that peers can get chunks from di�erent peers at the same time,
so the �le is transferred much faster. All these protocols work very well based
on the assumption that �les do not change, which is a very important issue.
With that assumption, any replica is a valid one, and therefore, peers need to
�nd only one replica to get the �le. This simpli�es a lot of problems such as
e�cient routing and lookup consistency. For routing, you can follow several
di�erent paths in parallel until you �nd one replica. There are no consistency
concerns because every replica is a valid one. This is one of the reasons why
unstructured overlay networks are still popular for �le sharing.

Our work considers items to be not just �les, but any sort of data, and
particularly application-speci�c data, which is constantly updated. Most ap-
plications rely on reachability and consistency of their data, which is not guar-
anteed on unstructured overlay networks. That is why we focus on SONs

34 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

(a) (b)

Figure 2.7: Strategies for replica placement using the neighbours of the respon-
sible peer: (a) using the successor list, and (b) using the leaf set.

providing DHTs, with the basic put(key, value) and get(key) operations,
which store and retrieve items using key 's responsible peer. Naturally, using
only one responsible to store an item associated to a certain key is not enough
to provide fault tolerance. It is necessary to provide some kind of replication.
Since we are more concerned about ring-based SONs, we are going to discuss
some replication techniques used in the literature in the following section.

2.4.1 Replication Strategies

Successor List There are several techniques to organize replicas on a ring.
The most basic mechanism is probably the �rst one proposed in [SMK+01],
where log2N replicas are stored on the successor list of the responsible of each
key. When a node fails, the successor takes over the responsibility, and there-
fore, it is a good idea that the successor stores the replicas of the items. Like
that, it does not need to ask the value to other peers to continue hosting the
item. This implies that each peer in the successor list must have the latest
value of the item. The strategy is depicted in Figure 2.7(a). We can observe in
the �gure peers p and q, and their replicas stored in their respective successor
lists. The replicas of peer p are shown in colour grey. The replicas of peer q
are shown with a double circle. The pointers to the replica set are also added,
because they are part of the resilient information that every peer needs to have,
so it does not add extra connections. An important observation is that q be-
longs to the replica set of p, but p does not belong to q's replica set. Actually,
every replica set is di�erent.

Leaf Set A very similar strategy is the one used by networks having an
overlay topology like Pastry, using the leaf-set [RD01a, RD01b] for storing the
replicas. Figure 2.7(b) shows the replica set of peers p and q following this
strategy. As in Figure 2.7(a), peers in grey are the replicas of p, and peers
in double circle are the replicas of q. This strategy also generates a di�erent
replica set for each peer. It has the same advantages as in the successor list
strategy, because it does not add extra connections, and the peer that should
take over the responsibility in case of a failure already has the values of the
replicas.

2.4. DISTRIBUTED STORAGE 35

There are two main disadvantages with these two schemes. First of all,
churn introduces many changes on the participants of the replica sets. Each
join/leave/fail event introduces changes in log2N replica sets, a�ecting peers
that are not directly involved with the churn events. When a new peer n joins
the network, it becomes part of the replica set of all peers of which n becomes
a member of the successor list. This is still reasonable, but it also implies that
the farthest peer on each successor list a�ected by n will stop being part of
the replica set. In a similar way, every leave or failure will imply that a new
peer needs to be added at the border of the successor list, and therefore at the
border of the replica set. These changes make replica maintenance more costly.
The second disadvantage is that there is a unique entry point for each replica
set. To �nd the successor list of the responsible of a key, �rst, it is necessary
to �nd who is the responsible. This means that the main peer of the replica
set is a point of congestion. And if the main peer fails, �rst, the network needs
to recover from the failure to give access to the other replicas.

Multiple Hashing CAN [RFH+01] and Tapestry [ZHS+03] use multiple
hashing as replication strategy. The idea is that every item is stored with
di�erent hash functions known to all peers in the network. In Figure 2.8(a)
we observe replicated items with keys i and j. The result of applying hash
function h1 to key i results in having peer p as responsible. Applying h2(i)
and h3(i) gives peers a and d as responsible of the other replicas (painted in
grey). Similarly, peers q, b and c (drawn with a double circle) represent the
replica set of the item stored using key j. Note that replicas can be stored
anywhere, and that hash function does not represent any order on the ring.
One disadvantage claimed in [Gho06] is that it is necessary to know the inverse
of the hash functions to recover from failures. For instance, if peer p crashes,
peer a would need to know the inverse function of h2(i) to retrieve the value
of i, and discover where to store the replica h1(i). This problem can be solved
by also storing the original key of the item, instead of only the hash key, as it
is discussed in Section 2.4.2.

A more crucial disadvantage is the lack of relationship between the replica
sets per item. In the example of Figure 2.8(a), the replica set of item i is formed
by p, a and d. If we take another item with key k, where the responsible peer
of h1(k) is also peer p, it is very unlikely that h2(k) and h3(k) would result in
hash keys within the responsibility of peers a and d. Therefore, there will be
a di�erent replica set for almost every item stored in the network, making the
reorganization of replicas under every churn event very costly. When a new
peer takes over the responsible of another peer, either because the other peer
failed, or because the new peer joined the network as its predecessor, the new
peer will have to contact the responsible peers of h2 and h3 of every item stored
in the range involved in the churn event.

36 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

(a) (b)

Figure 2.8: Strategies for replica placement across the network: (a) using mul-
tiple hash functions, and (b) using symmetric replication.

Symmetric Replication This is a simple and e�ective replication strategy
presented in [Gho06] with several advantages and few disadvantages. First of
all, it does not have an entry point of congestion as with the successor list and
the leaf sets. Members of the replica set are not indirectly a�ected by churn,
and as in multiple hashing, the replicas are spread across the network, with
the advantage that they are symmetrically placed using a regular polygon of f
sides, where f is the chosen replication factor. This strategy provides an easier
way of �nding the replicas, and it balances the load more uniformly.

An example of symmetric replication is depicted in Figure 2.8(b). The
replicas of the items where peer p is the original responsible are painted in grey
using f = 4 as replication factor. Replicas of peer q are drawn with a double
circle as in previous examples. A small disadvantage is that it is not possible
to guarantee that all replicas of all items stored on p will have exactly the same
replica set. It will depend on the distribution of the address space amount
the nodes. Even though this is guaranteed in strategies using the successor
list or the leaf sets, there is another advantage of symmetric replication that
overcomes this drawback. As we saw in the analysis of the successor list, every
peer has a di�erent replication set. In symmetric replication, it is possible that
f peers share the same replication set in the ideal case, and in real cases, they
will share most of the replicas with the same peers. In Figure 2.8(b) we have
added peer m as if it were an ideal case. In this example, the replica set of peer
m is exactly the same as the one of peer p, where every peer stores the replica
of the other members of the set. This property cannot be guaranteed for all
keys, but it minimizes enormously the amount of nodes that a peer needs to
contact to recover from a failure.

A disadvantage shared by multiple hashing and symmetric replication is
that both rely on a uniform distribution of peers in the address space. How-

2.4. DISTRIBUTED STORAGE 37

ever, this assumption is very reasonable since many SONs also rely on this
property to achieve the promised logarithmic routing. In case of very skewed
distributions, one could observe that one peer is the responsible of two replica
keys, decreasing the size of the replica set, and therefore, decrease the fault
tolerance factor. This is less probable in symmetric replication, and the larger
the network, the less probable this event is to happen, so it scales up without
problems.

2.4.2 How to Store an Item

One of the most basic operations o�ered by a DHT is put(key, value), where
a hash function h(key) is used to determine the hash key to �nd the responsible
of the item to be stored in the network. But how is the item stored in the peer?
Let us consider the example of the operation put(foo, bar). Then, let us say
that h(foo) = 42, then, most networks assume that the item to be stored is
i = (42, bar). That is why in [Gho06] it is claimed that you need the inverse
hash function to work with multiple hashing as replication strategy. Another
problem is that the diversity of keys that can be used is limited by the chosen
size of the address space. If N + 1 keys are used in an address space of size N ,
there will be at least two keys having the same hash key, meaning that one of
the two values will be lost. Choosing a very large value of N will unnecessarily
result in a large routing table based on the value of N , and it still represents a
limit on the maximum amount of keys to be used.

A better way of storing an item, however more costly, it is to store the key
and the hash together with the value. In that way, our put(foo, value) op-
eration would result in storing the item i = (42, foo, bar). If another operation
has the same hash key, say put(alice, bob), with h(alice) = 42, it would
simply add item j = (42, alice, bob). The chosen value of N would not limit
the amount of keys to be used, but only the amount of peers that can join
the network. This simple analysis is actually often omitted by several network
descriptions, but as we can see, it can have some implications on the need for
inverse hash functions.

A third option would be to simply store the key and the value, and use the
hash key only to �nd the responsible for the storage. Following that approach,
the operation put(foo, value) would result in storing the item i = (foo, bar)
on the peer responsible for key h(foo) = 42. The problem with this strategy
is that ranges of responsibility constantly change due to churn. When a peer
gets a new predecessor, its range its split in two, and several items will need
to be transferred to the new predecessor. To know which items belongs to
the predecessor's responsibility, the hash key of all items would need to be
recompute, making churn less e�cient. Another consequence of not storing the
hash key on the item, is that peers would need to recompute the hash key every
time they need to know if an item belongs to its responsibility range, or if it is
a replica.

In our view, we consider that the strategy of storing the item with its key

38 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

and hash key is the most convenient, because it does not require inverse hash
functions and it prevents con�icts when two keys have the same resulting hash
key. Therefore, this is the way Beernet store items.

2.4.3 Transactions

A common architecture decision for building DHTs is to organize the func-
tionalities in bottom-up layers. The overlay graph maintenance together with
lookup resolution is placed at the bottom layer. The DHT functionalities put
and get are normally built on top of the bottom layer. Replica management,
with the chosen replication strategy as we discussed in Section 2.4.1, is a layer
built on top of the basic DHT. We will continue discussing this architecture in
the following chapters but now we will say a word about keeping the replicas
consistent. There are basically two choices: adding the consistency mainte-
nance at the replica layer, or build a transactional layer on top of it that can
guarantee not only that the replica set of an item is kept consistent, but also
that the replica set of several items is kept consistent in an atomic operation.

We will discuss transactions in detail in Chapter 5, but �rst we will review
what has been done in the �eld. The transactional layer has the goal of pro-
viding the ACID properties to data storage on the DHT. This goal also holds
even if the transaction is applied to only one item. ACID properties concern:
Atomicity, Consistency, Isolation and Durability. Orthogonally to the decision
of where to store the replicas, the main issue to solve is how to manage the
update of the replicas to provide a consistent access to the state. The classical
approach is Two-phase-commit, which is not suitable for peer-to-peer because it
presents a single point of failure. This problem can be overcome using replicated
transaction managers, and the Paxos consensus algorithm where the majority
of the replicas decides on the update of the value of an item. Another alterna-
tive is three-phase commit, which even though it uses less messages per round,
it introduces an extra round to the protocol which is undesirable on peer-to-
peer networks. Later on we will discuss the validation of such algorithms, and
how Paxos consensus can be adapted to provide a more eager way of performing
a distributed transaction. This is optimistic vs pessimistic approach.

Ivy [MMGC02] is one of the earliest works having a transaction-like system
for distributed storage. It is built on top of Chord [SMK+01], and it is based
on versioning logs per peer. Updates on the replicas do not guarantee con-
sistency, but the log information is meant to be useful for con�ict resolution.
A more complete and fully transactional protocol [MCGV05] was designed for
P2PS [MCV05], but it was never implemented. This protocol was based on
two-phase commit having the problem of relying on the survival of the tem-
porary transaction manager to complete the transaction. The goal of their
protocol was to show that it was feasible to build decentralized transactions.
The Paxos consensus algorithm was presented in [MH07] and implemented in
Scalaris [SSR08] and Beernet [MHV08].

2.5. SUMMARY OF OVERLAY NETWORKS 39

Table 2.1: Comparing unstructured and structured overlay networks.

Unstructured Structured

Topology Random Ring, Hypercube, Tree,
etc.

Routing Flooding Directed using mean-
ingful routing tables

Guarantees Lookup converges most
of the time

Routing cost is bound,
mostly logarithmic. All
peers are reachable

Provides File sharing DHT

Transitive connectivity Not needed It relies upon it

2.5 Summary of Overlay Networks

In previous sections of this chapter, we have described the main features, ad-
vantages and disadvantages of several overlay networks. In this section we
summarize them trying to apply the same criteria to all of them. For the
sake of readability, sometimes we will present the information in tables, and
sometimes as lists.

2.5.1 Unstructured and Structured Overlays

As we already presented it, most peer-to-peer networks can be classi�ed into
three di�erent generations. The �rst one still relied on a hybrid architecture
where servers were needed to bootstrap any peer-to-peer service, and peers were
not able to route messages. We are more interested in the second and third
generations, also called unstructured and structured overlay networks, both of
them being completly decentralized and able to self-organize. Table 2.1 shows
a summary of the main features of these two generations. Both of them use
the most suitable routing strategy according to the overlay topology used to
organized the peers. SONs provide stronger guarantees, and by providing a
DHT, �le sharing is also possible, and not only for popular items, because
reachability is also guaranteed. An interesting issue related to the topology
used is the fact that unstructured networks do not need transitive connectivity,
whereas SONs rely upon this property which cannot be guaranteed in all cases
on the Internet, basically due to latency and NAT devices, as we discussed in
the introduction of Section 2.3. The fact that the overlay topology is more
relaxed in unstructured networks provides this advantage, with the cost that
lack of structure prevents the provision of strong guarantees. This conclusion
will become very important when we motivate the relaxed ring in Chapter 3.

40 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

Table 2.2: Properties of structured overlay networks.

Network Overlay Routing

Chord, Chord#, OpenDHT Ring O(log2N)
DKS, P2PS Ring O(logkN)
Pastry, Tapestry Tree O(log2bN)
Kademlia Tree O(log2N)

CAN Multidim. Torus O(d
√
N)

SONAR Multidim. Torus O(logdN)
Viceroy Butter�y graph O(log2N)

2.5.2 Structured Overlay Graphs Comparison

We now have a look at the features of the structured overlay networks described
in Section 2.3. Table 2.2 summarizes their overlay graph and the complexity of
their routing cost. The routing cost considers only the amount of hops a lookup
request needs to reach the responsible of a key. It does not considering the total
amount of messages sent. For instance, in Kademlia, the lookup request follows
several paths in parallel until it reaches one of the replicas. But, the table only
considers the amount of hops of the successful path. We have classi�ed Pastry,
Tapestry and Kademlia as trees, because the graphs de�ned by the �ngers and
leaf sets form a tree. However, they also use a circular address space organizing
peers in a ring. This means that failure handling is similar to the networks we
have classi�ed as rings, with the addition of the extra updates that are needed
on the leaf sets.

We have classi�ed Chord# as a ring because it is its most common use,
although it can support multi-dimensional data spaces. We can observe in
Table 2.2 that almost all networks guarantee logarithmic routing, except for
CAN, even though its complexity is also very good. The base of the logarithm
is the main di�erence between networks, and it is directly in�uenced by the
election of the routing table. Our conclusion is that in general, structured
overlay networks are very competitive in terms of routing.

Concluding remark With respect to fault tolerance, failures in a ring mainly
a�ect the successor and predecessor of the failed node. Fingers are also a�ected
but this only comprises e�ciency, not correctness. Failures in other overlays,
such as trees, hypercubes or butter�y graphs imply changes in a lot more peers
that need to reorganize the overlay graph. Adding nodes to these structures
can be done very e�ciently, but removing peers is very costly. Therefore, we
arrive to the same conclusion given in [GGG+03], that ring-based networks are
competitive in routing cost, but they are more tolerant to failures.

2.5. SUMMARY OF OVERLAY NETWORKS 41

Table 2.3: Failure handling on ring-based overlay networks

Network Mechanism Leaves and Failures

Chord, Chord# Periodic stabilization Leave = Failure
DKS Correction-on-change Gentle leave is fundamental
P2PS Correction-on-change Leave = Failure

2.5.3 Ring Based Overlays

We focus now on the analysis of the di�erent peer-to-peer networks built using
a ring as overlay graph. We know that Chord and Chord# rely on periodic
stabilization to �x successor, predecessor and �nger pointers. Such strategy
has the advantage of treating leaves as failures. Therefore, there is no need to
de�ne a protocol for gentle leaves, because pointers will be �xed in the next
round of stabilization. However, this implies that stabilization needs to be run
often enough, increasing bandwidth consumption. It has been shown in [Gho06]
that lookup inconsistencies can appear in Chord just because of churn, even if
failures do not occur. This is a serious problem for correctness. To avoid this
problem, DKS introduces the concept of correction-on-change, meaning that
pointers are �xed as soon as a failure, leave or join is detected. Peers do not
wait for a periodic check.

DKS de�nes a protocol for atomic join/leave to avoid lookup inconsisten-
cies. The protocol requires that a peer respects the locking protocol before it
leaves the network. Unfortunately, this strategy is not very fault-tolerant, and
it relies on peers not leaving the network before they acquire the needed locks.
P2PS also addresses ring maintenance with correction-on-use, but it does not
require gentle leave to �x the departure of peers. This approach allows P2PS
to solve the problem of leaving peers by handling peer failures. A peer that
leaves the network could send messages to provide a more e�cient �x of point-
ers, but it is not needed for correctness. The problem with P2PS is de�nitely
not the approach, but the protocol does not work in some cases, as it is shown
in [MJV06]. A more fundamental issue, also shared by the other networks, is
that P2PS relies on transitive connectivity, and it expects to create a perfect
ring with respect to successor and predecessor pointers. Table 2.3 summarises
these di�erences, but it only talks about �xing successor and predecessor point-
ers. Fingers are also solved with periodic stabilization in Chord and Chord#,
but they are addressed with correction-on-use in DKS and P2PS.

Concluding remarks The loosely join algorithm of Chord creates lookup
inconsistencies even in failure-free environments. Periodic stabilization is an
expensive approach to �x this problem. A cost-e�cient approach is the atomic
join introduced by DKS using distributed locks. But this approach relies on
requirements that are too hard to meet in realistic scenarios. P2PS o�ers a good
compromise between cost-e�ciency and a relaxed join algorithm, however, it

42 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

shares the same problems as the other networks: it requires a perfect ring and
relies on transitive connectivity. Both properties being di�cult to guarantee.

2.6 Analysis of Self-Management Properties

In this dissertation we claim that self-management is essential for building
dynamic distributed systems. We mentioned six di�erent axes to analyze self-
management, and we identify them in the overlay networks we have reviewed
in this chapter. Since several of these axes are shared by many of the networks,
with some small di�erences, we will not build a comparative table, but we will
summarize what we have observed for each axis.

Self organization This is the property that it is most intrinsically present in
the overlay networks we have reviewed, even in networks such as Gnutella and
Freenet, where self-organization is very basic considering the lack of structure.
Self organization comes naturally as there is no central point of control, and
peers needs to agree their position only by talking to the direct neighbours.
The only pre-existing infrastructure needed to boot the system is the Inter-
net, or any underlying network that provides means to establish point-to-point
communication channels. None of these networks have human intervention
that assign peers their position in the network. Everything is self-organized.
Table 2.3 gives us hints about some of the mechanisms used to achieved self-
con�gurations. Networks such as Chord and Chord# use periodic stabilization
to keep the ring organized. DKS and P2PS use correction-on-change for the
same purpose.

Self con�guration First of all we need to clarify what is that we want to
con�gure. This property is usually used to mean self-con�guration of compo-
nents. But that would imply already a design decision of implementing the
system using components. Although that would be a very good decision, the
networks we have reviewed could be implemented in many di�erent ways. We
will discuss self-con�guration of components in Chapter 7. Here, we are in-
terested in the con�guration of the overlay graph. Someone could argue that
this is already covered by the property of self-organization, but, if we com-
pare Chord with Pastry, both are organized as rings, but their overlay graphs
are con�gured di�erently, making Pastry work as a tree. What needs to be
con�gured is the routing table of each peer, which could actually be seen as
a component. Self-con�guration is achieved in Chord, Chord#, and the ma-
jority of the networks, with periodic stabilization. Peers constantly check the
status of the neighbours of their �ngers, and update the routing table accord-
ing to this information. Similarly to self-organization, DKS and P2PS use
correction-on-change to re-con�gure their routing tables, but also correction-
on-use, piggy-backing con�guration messages to the regular messages that are

2.6. ANALYSIS OF SELF-MANAGEMENT PROPERTIES 43

routed through the network, without increasing unnecessarily bandwidth con-
sumption.

Self healing In the context of peer-to-peer networks, this property deals
with handling disconnection between peers. Disconnection can be produced
not only by the failure of peers, but also due to problems in the communica-
tion channel between them. Because of this, it is very important to know if the
protocols for failure handling rely on perfect failure detection or not. As we
mentioned in the Introduction chapter, Internet style failure detectors are typ-
ically strongly complete and eventually accurate, therefore, eventually perfect.
As a consequence, an expensive failure recovery mechanism can become very
impractical if the network is to be built on top of the Internet. For instance,
the failure recovery might be cancelled if a node is falsely suspected of having
crash, and then it is detected of being alive. As we conclude earlier in this
section, ring-based overlay networks can handle failures more e�ciently. Not
surprisingly, Chord-like rings achieve self-healing with periodic stabilization.
If a node disappears from the network, ring pointers will be �xed in the next
stabilization round. If it was a false suspicion, the incorrectness will be �xed in
the stabilization round after the accuracy is achieved. P2PS and DKS rely on
correction-on-change to provide self-healing. This approach requires that the
failure detector triggers the corresponding crash and alive events to react to
failures and false suspicions. DKS has the drawback of relying on gentle leaves
of peers to respect the locking protocol providing atomic join/leave. What is
missing from all the networks we have reviewed, is a correct handling of non-
transitive connections, which can be seen as permanent false suspicions. For
instance, if node a receives from node b a reference to node c, but it cannot
establish a communication with it, a will suspect that c is dead, however, b can
always communicate with c. We will see later on this dissertation how Beernet
can cope with this problem.

Self-healing is not only about �xing pointers on the overlay graph, it also
covers repairing stored items. We discussed that plain DHT was not enough
to guarantee fault tolerance, and therefore, some replication mechanism was
needed. We described several strategies to place replicas, such as leaf sets
or symmetric replication. The mechanism that triggers self-healing in any of
these strategies is orthogonal to the mechanism for �xing the overlay graph
pointers. For instance, Chord# and DKS can implement symmetric replication
having the same self-healing mechanism to restore replicas, but they have dif-
ferent mechanism to �x the overlay graphs, namely periodic stabilization and
correction-on-change.

Self tuning This topic is not really discussed by the designers of the networks
we have studied, but we can identify variables whose values can be tuned to
provide a better behaviour. Periodic stabilization is a clear example where
self-tuning makes sense, because the frequency of each stabilization round can

44 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

be too short, consuming too much bandwidth. Or it can be too long, having
always dead pointers that have not been updated, breaking the guarantees the
network provides, as it is shown in [KA08]. Other variables than can be tuned
are those involved in failure detection: how often a peer needs to be pinged?
Or how long does the timeout has to be? These parameters will a�ect how fast
correction-on-change will react. Evidently, since every network needs failure
detection, tuning these parameters will not help only P2PS and DKS, but any
network we have described here.

Self optimization One of the most important values to optimize in peer-to-
peer networks is routing cost. It is very important that �ngers are constantly
updated to work with routing tables that are optimized. Therefore, there is
some overlap with self-con�guration, because both properties actuate over the
routing tables. As we mentioned before, DKS and P2PS clearly provide self-
optimization by means of correction-on-use. The more the network is used to
route messages between peers, the more performant it becomes.

Self protection The only network we have presented in this section that
explicitly treated security issues is OpenDHT with its API prepared for storing
data with encryption. However, this API does not provide self-protection,
because once the keys are compromised, there is no mechanism to detect and
repair the encrypted storage. One of the few works on self-protection we are
aware of in the scope of peer-to-peer networks, is the study of Small world
networks [HWY08] to provide self-protection against the Sybil attack [Dou02].
The authors claim that an overlay graph built as small world network is the
only solution to the Sybil attack, and therefore, rings, trees or hypercubes, are
subject to such attack. In our view, the work is actually based on the good
properties of social networks that can identify when an attacker is trying to
pretend being di�erent persons to gain reputation. Social networks typically
build small world graphs, but the self-protection does not come from the graph,
but from the fact that real people are behind the nodes participating in the
network.

2.6.1 Scalability

With respect to scalability, there are no major di�erences between the di�er-
ent structured overlay networks. Almost all of them scale well to very large
networks. Systems based on Butter�y graphs could have some problems con-
sidering the bottle neck presented on the highest layer of routing, but the larger
the network becomes, more peers will be placed at the highest layer, balancing
the load of routing messages. Still, the bottle neck we previously identi�ed
remains an issue. What is interesting to observe is that none of these networks
seems to be suitable to scale down. In small peer-to-peer networks one could
bene�t from full mesh networks, instead of using sophisticated routing tables
to provide logarithmic routing. This dissertation also makes a contribution

2.6. ANALYSIS OF SELF-MANAGEMENT PROPERTIES 45

in this topic with a self-optimized routing table that is able to scale up and
down, a property that can also result interesting in Cloud Computing, as we
will discus in Section 2.8.

2.6.2 Replicated Storage

While discussing self-healing, we mentioned that several strategies could be
adopted to provide storage replication. A summary of the four replication
strategies described in Section 2.4.1 is presented here, based on where the repli-
cas are stored, which network implements the strategy, what is the semantic of
the replica set, advantages and disadvantages.

• Successor List.

� Implemented in Chord.

� Replica set per peer. Placed in the successor list.

� Advantages In case of failure, the successor has already the repli-
cated values.

� Disadvantages To �nd the replicas, the responsible of the hash
key needs to be found �rst. There is a central point of congestion.
Churn a�ects border members of the set.

• Leaf Set.

� Implemented in Pastry.

� Replica set per peer. Placed in f/2 successors + f/2 predecessors.

� Advantages Same as successor list, plus, since some replicas can
be found earlier because they are placed on the predecessors.

� Disadvantages Same as successor list.

• Multiple Hashing.

� Implemented in CAN and Tapestry.

� Replica set per key. Placed on the responsible of every hash func-
tion.

� Advantages Spread across the network. No point of congestion.

� Disadvantages Too many replica sets. Depending on the storage,
the inverse hash function might be needed.

• Symmetric Replication.

� Implemented in Chord# and Beernet.

� Replica set per key but approximately organized in sets of f peers.
Placed symmetrically across the network.

46 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

� Advantages Load balancing of replicas symmetrically spread across
the network. Any replica can be accessed without having to contact
the main responsible. Most of the time one replica set groups several
items and f peers, making groups more closely connected. No point
of congestion. No need for inverse hash function.

� Disadvantages It relies on uniform distribution of peers on the
address space.

2.7 A Note on Grid Computing

Peer-to-peer networks and Grid computing have the common goal of sharing
resources and make them available to their users. Both systems need to locate
the resources coming from di�erent heterogeneous processes. Despite these
similarities, the approaches di�er in several aspects due to their di�erent char-
acteristics. Peer-to-peer is conceived to allow collaboration among untrusted
and anonymous users, whereas Grid users are typically trusted and identi�ed
members from research institutions or known organizations within a federa-
tion. Peer-to-peer is fundamentally decentralized and can scale to very large
networks. Grid networks on the contrary, are comparatively smaller and do
not scale because Grids are mainly built gathering sets of clusters from well
connected organizations. This means that there is almost no churn and fail-
ure detection is much more accurate. Such scenario has allowed Grids to be
designed as centralized and hierarchical. However, Grids are becoming larger
and larger, and the centralized approach will have to leave its place to de-
centralized self-management. As mentioned in [FI03, TT03], Grid computing
and peer-to-peer will eventually converge. There is already research that tar-
gets Grid computing from a peer-to-peer approach [IF04, TTZH06a, TTZH06b,
TTF+06, MGV07, TTH+07], providing fault-tolerance, resource discovery, re-
source management and distributed storage. These works indicate us that the
results from this dissertation can be applied to Grid computing if the design is
merged with peer-to-peer systems. Even so, our research is orthogonal to Grid.

2.8 A Note on Cloud Computing

Cloud computing is one of the latest emerging research topics in distributed
computing, and therefore, it is necessary to contextualize it in this dissertation.
Cloud computing has many de�nitions with di�erent views within industry and
academia, but everybody agrees on that cloud computing is the way of making
possible the dream of unlimited computing power with high availability. Cloud
computing has been active in the IT industry for a couple of years already,
calling immediately the attention of the research community thanks to its pos-
sibilities and challenges. Projects such as Reservoir [Res09], XtreemOS [Par09]
and OpenNebula [Dis09] are just examples of the interest of the research com-

2.8. A NOTE ON CLOUD COMPUTING 47

Figure 2.9: General Cloud Computing architecture.

munity. However, de�ning Cloud computing it is not that simple. One of the
interpretations sees Cloud computing only focused on high availability and on
the idea that computations are mainly done elsewhere, and not on user's ma-
chine. Another view considers any application provided as a web service to be
living in the cloud, where the cloud is simply the Internet. We share Berkeley's
view of Cloud Computing [AFG+09] and the conclusions of 2008 LADIS work-
shop [BCvR09]. We see Cloud Computing as the combination of hardware and
software that can provide the illusion of in�nite computing power with high
availability.

Large companies provide this illusion of in�nite computing power by having
real large data centers with software capable of providing access on demand to
every machine on the data center. Industrial examples supporting Cloud Com-
puting are Google AppEngine [Goo09], Amazon Web Services [Ama09] and Mi-
crosoft Azure [Mic09]. These three companies follow the architecture described
in [AFG+09] where the base of the whole system is such a large company being
the cloud provider. Cloud users are actually smaller companies or institutions
that use the cloud to become Software as a Service (SaaS) providers. The end
user is actually a SaaS user, which is indi�erent to the fact that a cloud is
providing the computational power of the SaaS.

Figure 2.9 depicts the general architecture described in [AFG+09]. The
cloud provider is at the base of the architecture o�ering utility computing to
the cloud user. Utility computing can be understood as a certain amount of
resources during a certain amount of time, for instance, a web server running
for one hour, or several Tera bytes of storage for a certain amount of days. The
cloud user, which is actually a SaaS provider, has a prede�ned utility computing
request, which can vary enormously depending on its users demands. At the
top of the architecture we �nd the SaaS user which requests services from the
SaaS provider. The service that the SaaS provider o�ers to its users is usually
presented as a web application.

Given such architecture, there are two parts that might be relevant to this
dissertation: the cloud provider and the SaaS provider. First of all, it is nec-

48 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

essary to build a network capable of managing the resources at the bottom
of the architecture. XtreemOS [Par09] focuses on that part, and sees Cloud
computing as an extension to Grid computing. OpenNebula [Dis09] not only
allows the management of the local cloud infrastructure, but it also abstracts
the cloud provider introducing an interface layer to the SaaS provider. Like
this, the SaaS provider could choose to manage its own infrastructure, or hire
a large cloud provider such as Amazon. The interesting thing here is that once
the cloud provider is abstracted, it raises the possibility of using multiple cloud
providers behind the interface layer. The interface layer would then work as a
resource broker that decides to which provider the request will be sent. Like
this, a company can rely only on its own resources until a peak in users' de-
mand appears, and then, it hires some extra resources from Amazon. Schemes
like this are starting to be developed by projects such as Reservoir [Res09] and
Nimbus [The09b]. In the later, they also talk about sky computing environ-
ment where several clouds are constantly providing the needed resources. A
very similar idea is presented as work in progress in XtreemOS under the names
of community cloud and cloud federation, making the di�erence on who is pro-
viding the resources. Having several cloud providers behind the interface layer
will make the use of a centralized resource broker unusable considering fault
tolerance and scalability, giving room for research on decentralized systems.

From the point of view of the SaaS provider, it has to be able to request and
release resources according to the demand of its SaaS users. In other words, its
own network must quickly scale up and down to maximize quality of service,
and to minimize costs. This looks as a network with controlled churn which
might be interesting to investigate as a peer-to-peer network.

2.9 Conclusion

This chapter summarizes large part of the work that has been done in decen-
tralized networks. We went through the three generations of peer-to-peer net-
works, making a deep analysis of structured overlay networks, known as the
third generation. We still identify interesting properties from the second gener-
ation, represented by unstructured overlay networks. We have reviewed them
in section 2.2.3, analysing how they where able to build a completely decen-
tralized system where peers did not need any central point of management to
organize themselves. Although unstructured overlay networks are successful
for building �le-sharing services, their applicability is quite limited to that.
This is, among other reasons, due to their lack of guarantees of reachability
and lookup consistency. SON is the attempt to provide these properties in
peer-to-peer networks, and the way to achieve them is by giving structure and
increasing self-management.

From all SON topologies, we have observed that all of them are very com-
petitive in terms of routing complexity, and that ring-based networks performed
better in terms of failure recovery. We have also analyzed the networks using six

2.9. CONCLUSION 49

axes of self-management: self-organization, self-con�guration, self-healing, self-
tuning, self-optimization and self-protection. We have identi�ed that within
ring networks there are two main tendencies to achieve several of the self-
management properties. Chord-like networks based their network management
on periodic stabilization, whereas DKS and P2PS use correction-on-change and
correction-on-use, have a more e�cient bandwidth consumption.

We have also discussed the problem that nearly all protocols we have re-
viewed rely on transitive connectivity. It has been observed even by the authors
of Chord, Kademlia and DHT, that non-transitive connectivity generates sev-
eral problems when these networks have been deployed as real systems running
on top of the Internet. The lesson learned was that non-transitive connectivity
should be taken into account from the design of the network. We also add
imperfect failure detection as one of the issues that needs to be considered in
the design. We also noted that transitive connectivity is not really an issue in
Gnutella or Freenet, partly because of their relaxed overlay network.

The most characteristic feature of SONs is that they provide DHTs. Being
aware that plain DHT support is not enough to provide storage fault tolerance,
we showed several replication strategies in Section 2.4. Two of them try to take
advantage of the overlay graph placing replicas either on the successor list or
on the leaf set. The disadvantages are that in both cases there is a single
entry point that creates a bottle neck, and that churn generates a lot of tra�c
associated to replica maintenance. To balance the load of replica storage, we
have analyzed multiple hashing and symmetric replication. This last one is
the simplest one to implement and minimizes the di�erences between related
replica sets. Therefore, symmetric replication appears as the most convenient
replication strategy.

Finally, we have brie�y reviewed how peer-to-peer networks are related to
Grid computing and Cloud Computing. Basically, peer-to-peer has mainly been
used to implement resource-discovery services on the Grid but they are rarely
used as overlay network to organize them. There is no direct connection to
Cloud Computing as it is now, having its business model based on a single large
cloud provider. We believe that the new academic tendency to conceive Cloud
Computing with several small cloud providers will give a chance to decentralized
systems and peer-to-peer networks to contribute to the self-management of the
system.

50 CHAPTER 2. THE ROAD TO PEER-TO-PEER NETWORKS

Chapter 3
The Relaxed Ring

One ring to rule them all
One ring to �nd them
One ring to bring them all
and in the network bind them

freely adapted from �The Lord of the Rings� -
J.R.R. Tolkien

Chord [SMK+01] is the canonical structured overlay network (SON) using
ring topology. Its algorithms for ring maintenance handling joins and leaves
have been already studied [Gho06] showing problems of temporary inconsistent
lookups, where more that one node appears to be the responsible for the same
key. Peers need to trigger periodic stabilization to �x inconsistencies. Existing
analyses conclude that the problem comes from the fact that joins and leaves
are not atomic operations, and they always need the synchronization of three
peers, which is hard to guarantee with asynchronous communication, which is
inherent to distributed programming.

Existing solutions [LMP04, LMP06] introduce locks in the algorithms to
provide atomicity of the join and leave operations, removing the need for a
periodic stabilization. Unfortunately, locks are also hard to manage in asyn-
chronous systems, and that is why these solutions only work on fault-free en-
vironments, which is not realistic. Another problem with these approaches is
that they are not starvation-free, and therefore, it is not possible to guarantee
liveness. A better solution using locks is provided by Ghodsi [Gho06], using
DKS [AEABH03] for its results. This approach is better because it gives a
simpler design for a locking mechanism and proves that no deadlock occurs.
It also guarantees liveness by proving that the algorithm is starvation-free.
Unfortunately, the proofs are given in fault-free environments and assume full
connectivity between nodes.

52 CHAPTER 3. THE RELAXED RING

The DKS algorithm for ring maintenance goes already in the right direction
because it request the locks of only two peers instead of three (as in [LMP04,
LMP06]). More details about how it works are given in Section 2.3.2. One of
the problem with this algorithm is that it relies on peers gracefully leaving the
ring, which is neither e�cient nor fault-tolerant. The algorithm becomes very
slow if a peer holding a relevant lock crashes.

As we have already discussed in Chapter 2, the fundamental problem that
a�ects all these algorithms is that they all rely on transitive connectivity, a
property that is not guaranteed by Internet style networks. The King data
set [GSG02] is a matrix of latency measurements between DNS servers. It is
often used to test peer-to-peer protocols with realistic values of network de-
lays. In this matrix, we observe that 0.8% of the links present a value of
−1, meaning that the communication was not established between the DNS
servers, introducing non-transitive connectivity. The authors of Chord, Kadem-
lia and OpenDHT described in [FLRS05] that their measurements on Planet-
Lab [The03] encountered 2.3% of all pairs having problems to communicate.
The conclusion is that non-transitive connectivity must be taken into account
from the design of a decentralized system, and this is what the relaxed ring pre-
tends to do. They create a ring-based network with good properties on lookup
consistency, despite the existence of non-transitive connectivity. In Chapter 6
we will discuss the behaviour of the relaxed ring running with di�erent amount
of peers running behind NAT devices.

3.1 Basic Concepts

As in any overlay network built using ring topology, in our system, every peer is
identi�ed with a key. Every peer has a successor, a predecessor, and a routing
table formed by so called �ngers. Fingers are used to forward messages to
other parts of the ring providing e�cient routing. Ring's key-distribution is
formed by integers from 0 to N − 1 growing clockwise, where N is the size of
the address space. When a peer receives a message, the message is triggered
as an event in the ring maintenance component. The range between keys, such
as]p, q], follows the key distribution clockwise. There is one case where p > q,
being p the predecessor of q. In such case, the range goes from p to q passing
through 0.

As we previously mentioned, one of the problems we have observed in ex-
isting ring maintenance algorithms is the need for an agreement between three
peers to perform a join/leave action. We provide an algorithm where every step
only needs the agreement of two peers, which is guaranteed with a point-to-
point communication. In the speci�c case of a join, instead of having one step
involving three peers, we have three steps involving two peers. Lookup con-
sistency is guaranteed after every step, therefore, the network can still answer
lookup requests while simultaneous nodes are joining the network. Another
relevant di�erence is that we do not rely on graceful leaving of peers. We treat

3.1. BASIC CONCEPTS 53

Figure 3.1: A branch on the relaxed ring created because peer q cannot estab-
lish communication with p. Peers p and s consider t as successor, but t only
considers s as predecessor.

leaves and failures as the same event. This is because failure handling already
includes graceful leaves as a particular case.

Normally the overlay is a ring with predecessor and successor knowing each
other. If a new node joins in between these two peers, it introduces two changes.
The �rst one is to contact the successor. This step already allows the new peer
to be part of the network through its successor. The second step, contacting
the predecessor, will close the ring again. Following this reasoning, our �rst
invariant is that:

Every peer is in the same ring as its successor.

Therefore, it is enough for a peer to have connection with its successor to
be considered inside the network. Secondly, the responsibility of a peer starts
with the key of its predecessor, excluding predecessor's key, and it �nishes with
its own key. Therefore, our second invariant is that:

A peer does not need to have connection with its predecessor, but it
must know its predecessor's key.

These are two crucial properties that allow us to introduce the relaxation
of the ring. When a peer cannot connect to its predecessor, it forms a branch
from the �perfect ring�. Figure 3.1 shows a fraction of a relaxed ring where
peer t is the root of a branch, and where the connection between peers q and
p is broken.

Having the relaxed ring architecture, we use a principle that modi�es Chord's
routing mechanism. The principle is that a peer p always forwards the lookup
request to the responsible candidate. This mechanism will prevent that p misses
any peer in between its successor and itself. It also works if p is the real pre-
decessor of the responsible. This principle is strongly related to the concept of
local responsibility de�ned in [SMS+08]. It is also presented as a patch [FLRS05]
to deal with non-transitive links in PlanetLab.

Using the example in Figure 3.1, p may think that t is the responsible for
keys in the interval]p, t], but in fact, there are three other nodes involved in

54 CHAPTER 3. THE RELAXED RING

this range. In Chord, p would just reply t as the result of a lookup for key
q. In the relaxed ring, peer p forwards the message to responsible candidate
t. When the message arrives to node t, it is sent backwards to the branch,
until it reaches the real responsible. Forwarding the request to the responsible
is a conclusion we have already presented in [MV07], and it has been recently
con�rmed by Shafaat [SMS+08].

Introducing branches into the lookup mechanism modi�es the guarantees
about proximity o�ered by Chord. To reach the root of a branch it takes
O(logk(n)) hops as in DKS (in Chord, k = 2), because the root of the branch
belongs to the core-ring. Then, the lookup will be delegated a maximum of b
hops, where b corresponds to the distance of the farthest peer in the branch.
Then, lookup on the relaxed ring topology corresponds to O(logk(n) + b). We
will see in Chapter 6 that the average value b is smaller than 1 for large net-
works.

Before continuing with the description of the algorithms that maintain the
relaxed ring topology, let us de�ne what do we mean by lookup consistency.

Def. Lookup consistency means that at any time there is only one
responsible for a particular key k, or the responsible is temporary
unavailable.

3.2 Bootstrapping

Every network bootstraps from a single node having itself as successor and
predecessor. We can say that every newly created node belongs to its own
ring. Algorithm 1 describes the set of variables a peer in the relaxed ring
should know. The node is created with a key to become its own identi�er,
which is generated from a random key-generator from 0 to N . For simplicity,
we will use this key not only as identi�er but also as connection reference. For
real implementation, every peer needs a key identi�er and a network reference.

As we already mentioned, the node becomes its own successor (succ) and
predecessor (pred), meaning that it is alone in its own ring. For resilient pur-
poses, the node uses a successor list (succlist) which looks ahead on the ring,
having a maximum of logk(N) peers. We will explain later the use of this list.
The predecessor list (predlist) is not the equivalent backward to the succes-
sor list. It contains all peers that consider the current node as its successor.
Initially, these two lists contain the node itself as part of the bootstrapping
procedure. The algorithms presented in this chapter consider these lists as
clockwise-sorted sets, having the identi�er of the node as reference point. We
will discuss these two sets later. The �nger table used for routing works exactly
as DKS. Chord is a special case of DKS where k = 2. We will use �ngers during
the description of our routing strategy. However, we will not include it in the
description of the ring maintenance, because it is an orthogonal component
taken from the literature, and it has been discussed already in Chapter 2.

3.3. JOIN ALGORITHM 55

Algorithm 1 Bootstrapping a peer in the relaxed ring
procedure init(key) is

self := key
succ := self
pred := self
succlist := {self}
predlist := {self}

end procedure

Note that Algorithm 1 is a simple procedure. During the rest of the chapter,
we will also use the event-driven notation to describe algorithms. In the event-
driven model, every event is handled in a mutually exclusive way, avoiding
share-state concurrency within every peer. An event represents an incoming
message, which is remotely triggered with the operator send. The send oper-
ation is asynchronous, non-blocking and it does not trigger an exception if the
remote process is not alive. We will discuss more about the event-driven model
in Chapter 7. The following example shows a peer (`self') answering pong to
an incoming ping message (from peer `src').

upon event 〈 ping | src 〉 do
send 〈 pong | self 〉 to src

end

3.3 Join Algorithm

To be able to join another ring, a peer needs an access point, that can be any
peer on the ring. The new peer triggers a lookup request for its own key to �nd
its best successor candidate. This is a quite usual procedure for many SONs.
When the lookup request reaches the responsible of the key, the responsible
contacts the new peer with the event replyLookup. Finding the responsible of
a key can have di�erent uses depending on the application, but in this case we
will just use it to trigger the join process. The routing protocol to reach the
responsible will be explained in the following section, because we �rst need to
understand how branches can be created during the joining process.

Figure 3.2: One peer joins the ring of another peer.

56 CHAPTER 3. THE RELAXED RING

We start by having two single peers p and q. Each of them have their own
ring, because they are their own successor. When one of the peers, say q, gets
the remote reference of the other, q decides to join p's ring triggering the join
event. Figure 3.2 shows the result of one peer joining the ring of the other.
The result is the same if q joins p, or if p joins q.

To analyse the join algorithm, we will consider that the ring has at least
two nodes. The algorithm works exactly the same for the case where there
is only one node in the ring, with the di�erence that the predecessor and the
successor of the joining peer are the same node, as it is shown in Figure 3.2.
As we mentioned before, the join algorithm of the relaxed ring consists of three
steps involving two peers each. The steps are depicted in Figure 3.3, where
node q joins in between peers p and r. First steps connects the joining peer
with its successor. Second steps connects the joining peer with its predecessor.
Third step acknowledges the new peer between predecessor and successor.

Previous to the join process, peer q needs to �nd its successor candidate.
In the case of the example it is r because q ∈]p, r]. The �rst step of the join
process is that r accepts q as predecessor, and notifying it about p. This is
done with messages join and joinOk. After joinOk, peer q also gets to know
that its responsibility is]p, q], and r changes its responsibility to]q, r]. When
this happens, peer q is already part of ring, because it is in the same ring as its
successor r, and it has also de�ned its responsibility, although, it does not have
a connection to its predecessor yet. At this point, we can say that q is living
in a branch. Peer p still considers r as its successor, therefore, peer r keeps a
reference to p in its predlist.

The second step of the join process occurs when peer q gets in contact with
its predecessor, peer p. At that point, peer p changes its successor pointer to
q, and it triggers the third step, where peer p noti�es r about the change. The
second step closes the ring, because q is not in a branch anymore. The third
step improves the accuracy of the routing table. Note that responsibilities
are not a�ected on the second step or on the third step, meaning that the
address space was already consistent with the �rst step. If the second step
never happens because q cannot talk to p, then, q will continue working in a
branch, having r as root of its branch.

Algorithm 2 gives a detailed explanation of the �rst step of the join process.
Step 1 is divided into two messages. To follow the example of Figure 3.3, we will
call the joining peer q, and the direct neighbours as p and r. The join message
sent from the joining peer q to the successor candidate r is only successful if new
peer's identi�er belongs to the responsibility of the contacted peer. Otherwise,
the join request is routed to the real responsible as we will explain in the
following section. Before the responsibility check is done, it is necessary for r
to verify if its successor has not been suspected of having crashed.. This check
on successor's fault-state is introduced to respect the invariant that every peer
is in the same ring as its successor. It is not shown in the algorithm to avoid
being verbose, and it is more related to implementation, than to the semantic
of the protocol.

3.3. JOIN ALGORITHM 57

Figure 3.3: The join algorithm in three steps: contact the successor, contact
the predecessor, and acknowledge the join.

A very important concept that di�erentiates the relaxed ring from other
DHTs, is the predecessor list (predlist). We can observe that in Step 1, peer
r stills remembers peer p through the predlist. This is important because if q
cannot talk to p, peer p will still consider that r it is its successor, missing the
peer in the middle.

Note that even when the join event has been triggered as result of the
replyLookup sent from r to q, the veri�cation of r's responsibility is still needed,
because another node could have joined or failed within the range]q, r], just
before join was sent. In other words, it is possible that the responsibility of
r has changed between the events replyLookup and join. In that case, q will
be redirected to the corresponding peer with the route procedure, eventually
converging to the responsible of its key. A related observation concerns the
fact that in the algorithm we have excluded the right border of the range of
responsibility. Excluding the right border we prevent peers from joining the
ring with an identi�er which is already in use.

The answer to a successful join is joinOk, which contains three important
pieces of information: predecessor, successor and successor list. The successor is
also used to con�rm the correctness of the join, which could have been a�ected
by simultaneous join events in the same address space, or the failure of some
participants. As we already said, the predecessor helps q to already determine
its responsibility range. This is di�erent than all other ring networks we have
studied. Finally, the successor list contains the needed resilient information,

58 CHAPTER 3. THE RELAXED RING

which is trimmed to size logkN . The function trim(list, size) drops the last
elements of list so that its length becomes equals to size. When q has �nished
the update of pointers, it noti�es its predecessor p about itself as new successor,
triggering the second step of this algorithm.

Algorithm 2 Join step 1 - new node contacts its successor
upon event 〈 join | new 〉 do

if new ∈]pred, self[then
oldp := pred
pred := new
predlist := {new} ∪ {predlist}
send 〈 joinOk | oldp, self, succlist 〉 to new

else
route 〈 join | new 〉

end if
end

upon event 〈 joinOk | p, s, sl 〉 do
if s ∈]self, succ[then

succ := s
succlist := trim({s} ∪ sl, logkN)

end if
if p ∈]pred, self[then

pred := p
predlist := {p} ∪ predlist
send 〈 newSucc | self, succlist 〉 to pred

end if
end

The second step of the join algorithm involves peers p and q, closing the ring
as in a regular ring topology. The step is described in Algorithm 3. The idea
is that when p is noti�ed about the join of q, it updates its successor pointer to
q after verifying that is a correct join, and it updates its successor list with the
new information. The successor list is propagated backwards with the message
updSucclist, so as to notify the other peers in the ring about q. This resilient
information will be discussed more in detail in Section 3.5. Functionally, this
step is enough for closing the ring, but since we use a predlist, a third step is
needed to acknowledge between the old direct neighbours the join of the new
peer. The acknowledgement is done with message predNoMore sent from p to
r, its old successor. If there is a communication problem between p and q, the
event newSucc will never be triggered. In that case, the ring ends up having
a branch, but it is still able to resolve queries concerning any key in the range
]p, r]. This is because q has a valid successor and its responsibility is not shared
with any other peer. It is important to remark the fact that branches are only
introduced in case of non-transitive connectivity. If q can talk to p and r, the

3.3. JOIN ALGORITHM 59

algorithm provides a perfect ring.

Algorithm 3 Join step 2 - Closing the ring
upon event 〈 newSucc | new, sl 〉 do

if new ∈]self, succ[then
send 〈 predNoMore | self 〉 to succ
succ := new
succlist := trim({new} ∪ sl, logkN)
send 〈 updSucclist | self, succlist, logkN 〉 to pred

end if
end

In Step 3, peer p acknowledges its old successor r about the join of q. When
predNoMore is triggered at peer r, this one can remove p from the predlist. The
step is described in Algorithm 4.

Algorithm 4 Join step 3 - Acknowledging the join
upon event 〈 predNoMore | old 〉 do

if old ∈ predlist then
predlist := predlist \ {old}

end if
end

No distinction is made concerning the special case of a ring consisting of only
one node. In such a case, succ and pred will point to self and the algorithm
works identically. The algorithm works with simultaneous joins, generating
temporary or permanent branches, but never introducing inconsistencies. Fail-
ures are discussed in section 3.7. The following theorem states the guarantees
of the relaxed ring concerning the join algorithm.

Theorem 3.3.1 The relaxed ring join algorithm guarantees consistent lookup
at any time in presence of multiple joining peers.

Proof 1 Let us assume the contrary. There are two peers p and q responsible
for the same key k, where k > j. To determine responsibility, it is not relevant
if p and q have the same successor. If they have the same successor, each of
them will forward lookup requests to the successor, and the successor will resolve
the con�ict. The problem appears when p and q have the same predecessor j.
This means that k ∈]j, p] and k ∈]j, q] introducing an inconsistency because
of the overlapping ranges. Then, we need to prove that the algorithm prevents
two nodes from having the same predecessor. Consider the case where q joins
between p and r. The join algorithm updates the predecessor pointer upon events
join and joinOk. In the event join, r's predecessor is set to a new joining peer q.
This means that no other peer was having q as predecessor because it is a new
peer. Therefore, this update does not introduce any inconsistency. Upon event

60 CHAPTER 3. THE RELAXED RING

joinOk, the joining peer q establishes its responsibility having p as predecessor.
Peer p was already a member of the ring. The only other peer that had p
as predecessor before, it was peer r, being the peer that triggered the joinOk
event. This message is sent only after r has updated its predecessor pointer
to q, therefore, it modi�ed its responsibility from]p, r] to]q, r], which does not
overlap with q's responsibility]p, q]. Therefore, it is impossible that two peers
has the same predecessor.

3.4 Routing

We saw in the previous section that in the case of non-transitive connectivity,
Step 2 of the join algorithm does not work, and therefore, branches are crated
containing some of the peers of the relaxed ring. All peers that do not live
in a branch are said to be at the core ring. Routing messages along the core
ring works exactly as in Chord and DKS, forwarding to the closest preceding
node. When a peer identi�es that its successor is the candidate for being
the responsible of the key, instead of answering immediately as in Chord, it
forwards the request to its successor, setting a �ag to indicate that it should
be the last forwarding hop. If the successor is the real responsible according to
its local responsibility, it will answer the lookup request. If it is not, meaning
that it is the root of a branch, it backwards the lookup request using the
predlist, choosing the closest succeeding peer. The �ag last is kept to true, to
keep the request being sent backwards, preventing cycles. The lookup event in
Algorithm 5 sends the message replyLookup to the source that requested the
lookup, and it routes the message otherwise.

The original source of the lookup request is kept when the message is trans-
fered to the next peer. When the request reaches the responsible, it establishes
a direct communication with the original source. This is what is called recur-
sive routing. There are some implementation details related to fault tolerance
and non-transitive connectivity that are not shown in the algorithm to avoid
verbosity, but that are important for the implementation. While the message
is being routed, it can happen that some peer in the path crashes. To prevent a
message lost, the underlaying communication layer must provide reliable mes-
sage sending. If the message does not reach the next peer, the message must be
resend using a di�erent �nger. When the responsible is reached, it can happen
that it cannot talk to the originator of the request. To solve this issue, there
are a couple of strategies that can be used, for instance, follow the path back
to the originator, taking into account that the path could be broken. Another
possibility is to route the message using the normal routing algorithm as if it
was a new message. A simpler way, proposed by [FLRS05], is to take a ran-
dom �nger and delegate the replyLookup to it. If that peer cannot talk to the
original source either, then, it repeats the procedure of taking a random peer
until some one can talk to the requesting peer.

3.5. RESILIENT INFORMATION 61

Algorithm 5 Routing the lookup request
upon event 〈 lookup | src, key, last 〉 do

if key ∈]pred, self] then
send 〈 replyLookup | self 〉 to src

else
route 〈 lookup | src, key, last 〉

end if
end

procedure route(msg | {args}, dest, last) is
if last then

p := getClosestSucceeding(predlist, dest)
send 〈 msg | {args}, dest, last 〉 to p

else if dest ∈]self, succ] then
send 〈 msg | {args}, dest, true 〉 to succ

else
p := getClosestPreceeding(�ngers, dest)
send 〈 msg | {args}, dest, last 〉 to p

end if
end procedure

3.5 Resilient Information

During the bootstrap and join algorithms we have mentioned predlist and suc-
clist for resilient and routing purposes. The basic failure recovery mechanism
is triggered by a peer when it detects the failure of its successor. When this
happens, the peer will contact the members of the succlist successively. Apart
from routing messages, the predlist can also be used to recover from failures
when there is no predecessor that triggers the recovery mechanism. This is
expected to happen only when the tail of a branch has crashed. There is no
propagation of the predlist, because each peer builds its own list according to
the behaviour of its direct neighbours.

Algorithm 6 describes how the update of the successor list is propagated
while the list contains new information. The predecessor list is updated only
during the join algorithm and upon failure recoveries. Note that the successor
list is propagated to all peers in the predecessor list. Every time the list is
propagated, the new peer is one place closer to the end of the list. When
counter c reaches 0, it means that the new peer is already out of the successor
list, and therefore, there is no need to continue propagating, because the list
presents no new changes.

62 CHAPTER 3. THE RELAXED RING

Algorithm 6 Update of successor list
upon event 〈 updSucclist | s, sl, c 〉 do

if (s == succ) ∧ (c > 0) then
succlist := trim({s} ∪ sl, logkN)
for all p in predlist do

send 〈 updSucclist | self, succlist, c-1 〉 to p
end

end if
end

3.6 Leave Algorithm

There is no algorithm for handling graceful leaves. Any protocol designed to
handle these kinds of leave events will have to deal anyway with partial failure
during the leave. By handling failures in a general way, handling leaves comes
for free. We consider graceful leave a special case of a failure. Some leave-
messages can be sent to speed up �leave detection�, instead of waiting for the
timeout of the failure detector. Instead of having join/leave/fail algorithms,
the relaxed ring is designed with join/fail algorithms.

3.7 Failure Recovery

To provide a robust system that can be used on the Internet, it is unrealistic to
assume a fault-free environment or perfect failure detectors. A perfect failure
detector is strongly complete and strongly accurate. Strongly complete means
that all crashed nodes are eventually detected by all correct nodes. Strongly
accurate means that a correct node is never suspected of failure. We assume
that every faulty peer will be detected by all correct peers, therefore, it is pos-
sible to provide strong completeness. We also assume that a broken or very
slow link of communication does not imply that the other peer has crashed,
meaning that we can have false suspicions on correct peers. When the link
recovers, we will eventually be able to communicate with the suspected peer,
meaning that the failure detector will eventually be accurate. An eventually
perfect failure detector, being strong complete and eventually accurate, is feasi-
ble to implement in clusters, local networks and the Internet. This is because a
crashed node can always be suspected independently of the quality of the link
used to communicate with it. Therefore, strong completeness is not di�cult
to achieve. If both nodes are alive, and messages sent between them are con-
stantly repeated until they are acknowledged, any message will be eventually
received, and therefore, any false suspicion of failure will be eventually cor-
rected. That behaviour provides eventual accuracy. Therefore, both properties
needed to build an eventually perfect failure detector are met, so this is the
kind of detection we rely upon in our algorithms.

3.7. FAILURE RECOVERY 63

When the failure detector suspects that a peer has crashed, it triggers the
crash event to the upper layer, being handled by the ring maintenance as it is
described in Algorithm 7. The suspected node is removed from the resilient
sets succlist and predlist, and added to a crashed set. If the suspected peer is
the successor, a new successor is chosen from the successor list. The function
getFirst returns the peer with the �rst key found clockwise. Since suspected
peers are immediately removed from succlist, the new succ taken from the list is
not suspected at the current stage. If the peer has just failed, the correspondent
crashed event will be handled as one of the next operations. The message �x
is sent to the new successor to inform it about the failure recovery. It is
highly possible that the new successor has also detected the crash of the same
peer, but it appears as predecessor to it. When the pred is suspected, if the
peer belongs to the core ring, or it is in the middle of a branch, no action is
taken. This is because it is the task of predecessor's pred to contact the new
successor. Furthermore, the predlist of a core peer becomes empty when its
pred is suspected, so it does not have any resilient information to take any
action. If predlist is not empty, it is highly probable that the suspected peer
did not have any predecessor. To avoid unavailability, we have decided that
the current peer can �nd a new predecessor taking the last one clockwise. If
there was a predecessor for the suspected peer, the correspondent �x message
will eventually correct the inaccuracy. A safer action would be that the current
peer never take any action if its pred is suspected, but that will create some
unavailable ranges in some cases.

Algorithm 7 Failure recovery
upon event 〈 crash | p 〉 do

succlist := succlist \ {p}
predlist := predlist \ {p}
crashed := {p} ∪ crashed
if p == succ then

succ := getFirst(succlist)
send 〈 fix | self, succ 〉 to succ

end if
if (p == pred) ∧ (predlist 6= ⊥) then

pred := getLast(predlist)
end if

end

In the case of a false suspicion, the event alive will be triggered by the
failure detector when communication with the suspected peer is reestablished.
There are three important cases to consider: the falsely suspected peer was the
predecessor, the successor, or any other peer. In all cases, the peer is removed
from the crashed set. If it is the predecessor, the pred pointer is corrected,
and the peer is added back to the predlist. If it is the successor, the succ peer
is corrected, the peer is added back to succlist, and in addition, the current

64 CHAPTER 3. THE RELAXED RING

peer sends the message �x to the successor, to run the correct protocol in case
the successor has also falsely suspected the current peer. These actions are
described in Algorithm 8.

Algorithm 8 Correcting a false suspicion
upon event 〈 alive | p 〉 do

crashed := crashed \ {p}
if p ∈]pred, self] then

pred := p
predlist := {p} ∪ predlist

end if
if p ∈]self, succ] then

succ := p
succlist := {p} ∪ succlist
send 〈 fix | self, succ 〉 to succ

end if
end

3.7.1 The Fix Message

The most common failure recovery occurs at the core ring, or in the middle
of a branch, where the successor of the crashed peer does not have any other
peer in the predlist. In other words, the successor of the crashed peer is not the
root of a branch. In such case, if a peer p detects that its predecessor pred has
crashed, it will not send any message. It is pred's predecessor who will contact
p. Figure 3.4 shows the recovery mechanism triggered by a peer when it detects
that its successor has a failure. The �gure depicts two equivalent situations.
Figure 3.4(a) corresponds to a regular crash of a node in the core ring. The
situation at Figure 3.4(b) shows a crash in the middle of a branch, which is
equivalent to the situation at the core ring as long as there is a predecessor
that detects the failure.

(a) (b)

Figure 3.4: Failures simple to handle: (a) Peers p and r detect q has crashed.
Peer p triggers the recovery mechanism. (b) In a branch, q and s detect that r
has crashed. Only q triggers failure recovery.

3.7. FAILURE RECOVERY 65

The basic principle of the failure recovery is that whenever a peer suspects
that its successor has crashed, it sends the �xmessage to the �rst peer it �nds in
its successor list. Algorithm 9 shows how the �x message is handle. Normally,
a peer receives this message from a peer p after suspecting that its predecessor
has failed, but it is possible that it receives it while its predecessor is still alive
due to false suspicions. The �rst thing to check is whether pred is suspected
or not. If such is the case, peer p becomes the new pred, and it is added
to the predlist. If pred is alive, it is possible that p is a better predecessor
than the current predecessor. This situation can occur when the root of a
branch has crashed. In such case, two peers will send the �x message to the
same successor candidate. Depending on the order, peer p will be a better
predecessor of the current pred or not. We will discuss this situation more in
detail in Section 3.7.3. If pred is alive, and p is not a better pred, the message
is routed to the correspondent peer. The extra parameter s is used to indicate
the successor candidate of the peer p. The �rst time the event is handled, s
matches the current peer self. In that case, peer p is added to predlist because
p considers the current peer as its current successor.

Algorithm 9 Successor of crashed node receives �x message
upon event 〈 fix | p, s 〉 do

if pred ∈ crashed then
pred := new
predlist := {p} ∪ {predlist}
send 〈 fixOk | self, succlist 〉 to p

else if p ∈]pred, self] then
pred := p
predlist := {p} ∪ {predlist}
send 〈 fixOk | self, succlist 〉 to p

else
if self == s then

predlist := {p} ∪ {predlist}
end if
route 〈 fix | p, s 〉

end if
end

When the �x event is accepted, the predecessor of the crashed peer receives
the message �xOk. This message can come directly from its successor candidate,
meaning that the �x occurred at the core ring, or in the middle of a branch.
The only action to be taken at this stage is to propagate the new successor
list. If the �xOk message comes from a di�erent peer, with a key better than
the current successor, it is necessary to change the succ pointer, and notify
the old successor candidate about the change with message predNoMore, as it
was shown in Section 3.3, Algorithms 3 and 4. Propagation of succlist happens
anyway.

66 CHAPTER 3. THE RELAXED RING

Algorithm 10 Fix message accepted
upon event 〈 fixOk | s, sl 〉 do

if s ∈]self, succ[then
send 〈 predNoMore | self 〉 to succ
succ := s

end if
succlist := trim({s} ∪ sl, logkN)
send 〈 updSucclist | self, succlist, logkN 〉 to pred

end

3.7.2 Join and Failure

Knowing the recovery mechanism of the relaxed ring, let us come back to our
joining example and check what happens in cases of failures. In our example,
peer q joins in between peers p and r. If q crashes after sending message join
to r, peer r still has p in its predlist for recovery. If q crashes after sending
newSucc to p, p still has r in its succlist for recovery. If p crashes before event
newSucc, p's predecessor will contact r for recovery, and r will inform this peer
about q. If r crashes before newSucc, peers p and q will contact simultaneously
r's successor for recovery. If q arrives �rst, everything is in order with respect
to the ranges. If p arrives �rst, there will be two responsible peers for the
range]p, q], but one of them, q, is not known by any other peer in the network,
and it fact, it does not have a successor, and then, it does not belong to the
ring. Then, no inconsistency is introduced in any case of failure during a join
event. In case of a network partition, these peers will get divided in two or
three groups depending on the partition. In such case, they will continue with
the recovery algorithm in their own rings. Global consistency is impossible to
achieve, but every ring will be consistent in itself.

Figure 3.5 shows two simultaneous crashes together with a new peer s join-
ing as predecessor of the peer used for recovery t. If the recovery �x message
sent from p arrives �rst, the ring will be �xed before the new peer joins, re-
sulting in a regular join of s in between p and t. If the new peer starts the
�rst step of joining before the recovery, it will introduce a temporary branch
because of its impossibility of contacting the faulty predecessor r. When the �x
message arrives, peer t will route the message to s establishing the connection
between p and s, �xing the ring. If p and s cannot talk, the branch will remain
permanent.

3.7.3 Non Trivial Suspicions

There are failures more di�cult to handle than the ones we have already anal-
ysed. Figure 3.6 depicts a broken link between peers p and q. This means
that p suspects q and tries to �x the ring contacting peer r, the �rst one on its
succlist. Peer q also suspects p, but it waits until p's predecessor sends the �x

3.7. FAILURE RECOVERY 67

Figure 3.5: Multiple failure recovery and simultaneous join. Peer p detects
the crash of its successor q. First successor candidate r has also crashed. Peer
p contacts t at the same time peer s tries to join the network.

message. Peer q does not have any other choice than wait, because its predlist
is empty once p was removed from it. Peer r does not accepts p's �x message
because q is still alive. Peer r routes the �x message to q, which is not able
to talk to p, so the recovery ends up over there. As result, peer q moves to a
branch, and peer p is added to r's predlist, being a valid con�guration of the
relaxed ring.

Figure 3.6: Broken link generating a false suspicion.

Figure 3.7 shows the crash of the tail of a branch. In such case, there is no
predecessor to trigger the recovery mechanism. Depending on how the branch
was created, it is possible that peer r has peer p in its predlist. That would be
the case if peer q arrived after peer r. If peer p is in r's predlist, peer r would
be able to modify its pred pointer �lling in the gap of range]p, q]. If peer r
arrived in between q and s, then, there is no way that r knows about p as a
valid predecessor. In such case, peer r will not take any action, and the gap in
the range]p, q] will remain until churn gets rid of it. If the tail of the branch,
q, has not really failed but it has a broken link with its successor r, then, it
becomes temporary isolated and unreachable to the rest of the network.

Figure 3.8 depicts the failure of the root of a branch. The main di�erence
with previously analysed crashes is that in this case, there are two recovery
messages triggered. In the example, peer r crashes, and peers p and q send the
�x message to peer t. If message from peer q arrives �rst to peer t, the algorithm
handles the situation without problems. If message from peer p arrives �rst,
the branch will be temporary isolated, introducing a temporary inconsistency
on the range]p, q]. This limitation of the relaxed ring is well de�ned in the
following theorem.

68 CHAPTER 3. THE RELAXED RING

Figure 3.7: Failure of the tail of branch, nobody triggers failure recovery.

Figure 3.8: The failure of the root of a branch triggers two recovery events

Theorem 3.7.1 Let r be the root of a branch, t its successor, q its predecessor,
and predlist the set of peers having r as successor. Let p be any peer in the set,
so that {p, q} ∈ predlist . Then, when peer r crashes, peers p and q will try to
contact t for recovery. A temporary inconsistent lookup may be introduced if p
contacts t before q contacts t. The inconsistency will involve the range]p, q],
and it will be corrected as soon as q contacts t for recovery.

Proof 2 There are only two possible cases. First, pred contacts succ before
p does it. In that case, succ will consider pred as its predecessor. When p
contacts succ, it will redirect it to pred without introducing inconsistency. The
second possible case is that p contacts succ �rst. At this stage, the range of
responsibility of succ is]p, succ], and of pred is]p′, pred], where p′ ∈ [p, pred].
This implies that succ and pred are responsible for the range]p′, pred], where
in the worse case p′ = p. As soon as pred contacts succ it will become the
predecessor because pred > p, and the inconsistency will disappear.

Theorem 3.7.1 clearly states the limitation of branches in the systems, help-
ing developers to identify the scenarios needing special failure recovery mech-
anisms. Unfortunately, the problem seems di�cult to prevent without loosing
the �exibility of the relaxed ring. An advantage of the relaxed ring topology
is that the issue is well de�ned and possible to detect, because in perfect rings
peers have predlist with one element maximum. Therefore, if a peer has more
than one peer of its predlist it means that it is the root of a branch. Identify-
ing and understanding this situation, improves the guarantees provided by the
system to build fault-tolerant applications on top of it.

3.8. PRUNING BRANCHES 69

Figure 3.9: Pruning branch with hint message.

3.8 Pruning Branches

The �rst results measuring the size of branches had good average values, but
the worse cases in�uenced too much the routing e�cient. That result led the
search for pruning branches without risking lookup consistency, which is what
we describe in this section. Let us consider a con�guration where peer q is in
a branch because it could not establish communication with its predecessor p.
Both peers, p and q, have peer t as successor, being t the root of the branch.
The situation is depicted at Figure 3.9. From that point, a new peer r joins in
between q and t. With the current join algorithm, the branch will increase its
size even if p can talk to r. Because of non-transitive communication, if p can
not talk to q, it does not mean that p can not talk to r. An improvement on the
join algorithm will be that peer t sends a hint message to node p about peers
joining as t's predecessor. If p can contact the hinted node r, it will add it as
its successor, making the branch shorter. It is necessary that peer r adds p to
its predlist, and that p noti�es t so that t removes p from its predlist. All these
changes can be done with messages �x and predNoMore as we already described
previously. Note that modi�cation will not modify the predecessor pointers of
r or s. Therefore, lookup consistency is not compromised. Figure 3.9 also
depicts how peer p updates its successor pointer preventing the branch from
going unnecessarily. The algorithm we have just described in words is presented
in Algorithm 11.

Algorithm 11 Fix message accepted
upon event 〈 hint | s 〉 do

if s ∈]self, succ[then
send 〈 predNoMore | self 〉 to succ
succ := s
send 〈 fix | self, succ 〉 to succ

end if
end

To trigger the hint message, a �rst naive approach would be to send the
message to all peers in the predlist as soon as joinOk was sent to the join-
ing node. However, this approach can generate some overlapping of successor
pointers making some parts of the ring unavailable. Let us analyse the situa-
tion using Figure 3.10. At the left of the �gure we observe that peer s joins

70 CHAPTER 3. THE RELAXED RING

the ring as predecessor of t, t being the root of a branch. After s is accepted
as part of the ring, the other peers in t's predecessor list are peers p and q. In
our naive approach, t would send the hint message to p and q. The upper most
con�guration at the right side shows a bad con�guration as result of these two
messages. It happens if peer p can contact s, but peer q cannot. There is no
lookup inconsistency introduced, however, whenever p receives a request for a
key k in range]p, q], it will forward it to peer s, who will send it to r, who will
try to send it to q, but the connection is broken, making peer q unavailable
in whatever path that goes through peer p. A good con�guration of the naive
approach can be seen on the second con�guration at the right side of the �gure.
Such con�guration results when peers p and q can talk to s. This is actually the
best possible con�guration to reduce the size of the branch. It is, nevertheless,
risky because of the reasons we just explained.

Figure 3.10: Di�erent con�gurations pruning branches.

A safer approach is that t sends the hint message only to the closer peer
anti-clockwise, in this case, peer q. Like that, if peer q cannot talk to s, no
unavailability is introduced. However, peer p would never be noti�ed about peer
s, preventing an improvement in the topology. A more sophisticated approach
would be to implement an acknowledgement to the hint message, so that peer
t can continue sending hint messages to other peers in its predlist. It can be
implemented by sending hint to the rest of the peers only when predNoMore

3.9. ADAPTABLE ROUTING-TABLE CONSTRUCTION 71

arrives to the root of the branch. Note that this part of the algorithm only
improves the topology, but does not change the correctness of it.

3.9 Adaptable Routing-Table Construction

In this section, we propose a hybrid recon�guration mechanism for the rout-
ing table called palta: a Peer-to-peer AdaptabLe Topology for Ambient intelli-
gence. It was originally conceived for an ambient intelligent scenario, but it can
be used on any kind of network. This algorithm takes advantage of the best
features of a fully connected network when the number of peers is small enough
to allow peers to manage this kind of topology. When the network becomes too
large to maintain a fully connected topology, the algorithm will automatically
adapt the network con�guration to become a relaxed ring, which can handle a
large number of peers by executing more complex algorithms for self-managing
the distributed network. We consider di�erent aspects concerning the tran-
sition between networks: adaptation of the base algorithms, maintaining the
network's coherence and self-healing from ine�cient con�gurations. Evaluation
follows in Chapter 6.

palta �nger table will change its organization when the network size reaches
a de�ned threshold. We will refer to this limit as ω. Even when during the
discussion of this chapter we consider the value of ω as uniform for all nodes,
the algorithm is designed such that every node can de�ne its own ω to adapt
its behaviour according to its own capacities.

To successfully implement this dynamic schema, we need to analyze how the
topology will evolve when peers join or leave the network. When the network
is created and the number of peers is below ω, the joining peers will perform
the fully connected algorithm which simply creates a full mesh of peers. When
peers detect a network size above ω, all the incoming joining requests will be
handled using relaxed ring 's join algorithm. The same methodology is followed
when, after a number of disconnections, the network becomes smaller than ω.
In such case, peers will change their joining algorithm from relaxed ring to
fully connected. The general idea is depicted in Figure 3.11. At the left side
we observe a fully connected network that has reached its ω = 6. When the
seventh peer joins the network, it will just connect to log(N) �ngers instead of
to all of them.

To be able to make the transition from a fully connected network to a
ring, peers need to precisely identify their successors and predecessors at any
time. Algorithm 12 shows that the join event in palta can be seen almost
as a method dispatcher, with the subtlety that it checks its predecessor and
predecessor pointers in every join before triggering the join event of the full
module. In case that ω is already reached, it is the algorithm of the relaxed
ring who will take care of pred and succ accordingly. For this section, we have
divided the algorithms into three modules: full, ring and palta.

The value of ω can change right after sending message join and-or joinOk.

72 CHAPTER 3. THE RELAXED RING

Figure 3.11: Adaptive routing table with palta.

Algorithm 12 Join for palta: Adapted fully connected algorithm with tran-
sition to relaxed ring
upon event 〈 join | new 〉 do

if size(peers) < ω then
checkSuccPred(new)
trigger 〈 full.join | new 〉

else
trigger 〈 ring.join | new 〉

end if
end

procedure checkSuccPred(id) is
if id ∈]self, succ[then

succ := id
end if
if id ∈]pred, self[then

pred := id
end if

end procedure

Due to that, there is no way of knowing if a reply message joinOk will corre-
spond to the fully connected topology or to the relaxed ring. Peers need to
adapt dynamically to this situation whenever needed. Algorithm 13 shows how
this event is overloaded in palta. The �rst case corresponds to joinOk as in
the ring, with information of the predecessor, successor and successor list. If
the routing table is higher than ω, the event is delegated to the relaxed ring
module. If we are in a small network, predecessor and successor are accordingly
checked, and the successor list is used to trigger the fully connected algorithm,
which will be used until reaching ω.

3.10. CONCLUSION 73

Algorithm 13 Join for palta: Overloaded event joinOk
module palta

upon event 〈 joinOk | p, s, sl 〉 do
if size(peers) < ω then

checkSuccPred(new)
trigger 〈 full.joinOk | s, sl 〉

else
trigger 〈 ring.joinOk | p, s, sl 〉

end if
end

upon event 〈 joinOk | src, srcPeers 〉 do
if size(peers) < ω then

checkSuccPred(new)
succList := succList ∪ srcPeers
trigger 〈 full.joinOk | src, srcPeers 〉

end if
end

3.10 Conclusion

In this chapter we have presented the relaxed ring topology for fault-tolerant
and self-organizing peer-to-peer networks. The topology is derived from the
simpli�cation of the join algorithm requiring the synchronisation of only two
peers at each stage. As a result, the algorithm introduces branches to the
ring. These branches can only be observed in presence of connectivity problems
between peers, and they help the system to work in realistic scenarios. The
complexity of the lookup algorithm is a bit degraded with the introduction
of branches. However, we will analyse the real impact of this degradation in
Chapter 6, and we will see that it is almost negligible. In any case, we consider
this issue a small drawback in comparison to the gain in fault tolerance and
cost-e�ciency in ring maintenance.

The topology makes feasible the integration of peers with very poor connec-
tivity. Having a connection to a successor is su�cient to be part of the network.
Leaving the network can be done instantaneously without having to follow a
departure protocol, because the failure-recovery mechanism will deal with the
missing node. The guarantees and limitations of the system are clearly iden-
ti�ed and formally stated providing helpful indications to build fault-tolerant
applications on top of this structured overlay network.

This chapter was also dedicated to describe our self-adaptable �nger table
called palta. It is based on the existing fully connected and relaxed ring
topologies, with adaptations to make them work together. This hybrid topology
features self-organizing and self-adapting mechanisms to ensure a complete

74 CHAPTER 3. THE RELAXED RING

connectivity among the connected peers and take advantage of the current
network state to have a better use of the available resources. It bene�ts from
fully connected small networks and it makes a smooth transition to larger ones,
being able to scale as a large-scale structured peer-to-peer network.

Chapter 4
The Relaxed Ring in a

Feedback Loop

For the strength of the pack is the wolf,
and the strength of the wolf is the pack.

�The Wolf� - Rudyard Kipling

In previous chapters, we have discussed about self-managing behaviour of
peer-to-peer networks, specially self-organization and self-healing. In this chap-
ter, we focus the discussion around self-management using feedback loops to
analyse self-* properties of the relaxed ring. The chapter provides a di�er-
ent design approach that targets two goals: identify patterns of self-managing
behaviour in the relaxed ring, and second, use those patterns to design other
Beernet's components. Feedback-loops, as we will see in the next section, are
present in every self-managing system, and therefore, applying them in software
design seems to be a reasonable path to achieve self-management.

The feedback loop can be seen as a design tool that complements the relax
approach. It helps in the design and analysis of self-managing systems in
general, and by applying them to the relaxed ring, it provides a di�erent view
to understand its algorithms. In case the reader is not interested in feedback
loops, it is possible to skip this chapter because the algorithms of the relaxed
ring have been already presented in Chapter 3.

4.1 Background

Taken from system theory, feedback loops can be observed not only in existing
automated systems, but also in self-managing systems in nature. Several exam-
ples of this can be found in [Van06, Bul09], where feedback loops are introduced

76 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

Figure 4.1: Basic structure of a feedback loop ([Van06]).

as a designing model for self-managing software. The loop consists out of three
main concurrent components interacting with the subsystem. There is at least
one agent in charge of monitoring the subsystem, passing the monitored in-
formation to a another component in charge of deciding a corrective action if
needed. An actuating agent is used to perform this action in the subsystem.
Figure 4.1 depicts the interaction of these three concurrent components in a
feedback loop. These three components together with the subsystem form the
entire system. It has similar properties to PID controllers, which is one of the
basic units of feedback control in industrial control systems. A PID controller
works on a process variable to keep it as close as possible to a desirable setpoint.
At every loop, the controller measures the process variable and calculates the
di�erence with the setpoint. If an adjustment is needed, the controller modi�es
the inputs of the process. The feedback loops presented in this chapter are an
equivalent in software to PID controllers in automated systems.

The goal of the feedback loop is to keep a global property of the system
stable. In the simplest case, this property is represented by the value of a
parameter. For instance, in an air-conditioning system, the parameter is the
temperature of the room. This parameter is constantly monitored. When a
perturbation is detected, a corrective action is triggered. A negative feedback
will make the system react in the opposite direction of the perturbation. Positive
feedback increases the perturbation. For instance, if an increase in room's
temperature is detected, running the air-conditioning is an action to decrease
the temperature, and therefore, it creates negative feedback. Turning on the
heating system will increase room's temperature, going in the same direction
as the perturbation, and therefore, producing positive feedback.

Coming back to the example of the air-conditioning, we can see the room
where the system is installed as the subsystem. A thermometer constantly
monitors the temperature in the room giving this information to a thermostat.
The thermostat is the component in charge of computing the correcting action.
If the monitored temperature is higher than the wished temperature, the ther-
mostat will decide to run the air-conditioning to cool it down. That action
corresponds to the actuating agent.

4.1. BACKGROUND 77

Since every component executes concurrently, the model �ts very well for
modelling distributed systems. There are many alternatives for implementing
every component and the way they interact. They can represent active objects,
actors, functions, etc. Depending on the chosen paradigm, the communication
between components can be done, for instance, by message passing or event-
based communication. The communication may also be triggered by pushing
or pulling, resulting in eager or lazy execution.

Independent of the strategy used for communication, it is important to
consider asynchronous communication as the default when distributed systems
are being modelled.

4.1.1 Other Feedback Loops

In this section we give a brief overview of di�erent approaches to design self-
managing systems. As we will see, all of them have a common basic principle:
monitor the subsystem, decide on an action, execute the action, and monitor
again. By monitoring again, the loop is restarted.

Automatic elements are de�ned in Automatic Systems [KC03] as control
loops, also known as MAPE-loops. The word MAPE come from monitor, ana-
lyze, plan and execute. Figure 4.2 describes the architecture of a control loop,
which is very similar to the basic feedback loop we have shown in Figure 4.1.
Both loops need to monitor the subsystem and execute a plan on it. One dif-
ference is that the autonomic element includes the monitor and the actuator
inside the autonomic manager. The feedback loop consider those parts of the
system as completely independent components. Another di�erence is that the
component in charge of taken the decision is split in two components, one for
the analysis, and the other one for the planning. In the feedback loop, those
two actions are considered as being part of calculating a corrective action. We
can say that the MAPE-loop gives a �ner granularity of behaviour associated
to each component, but the feedback loops is more modular because monitors
and actuators are independent.

Another interesting component of the MAPE-loop is the knowledge, which
is used by all other four components. In the feedback loop, the knowledge
is implicitly present in the main component that decides on the corrections.
However, that knowledge cannot be used directly by the monitor or the actua-
tor, because there is no shared state between the components to keep them as
independent as possible.

In 1970, the SRI's Sharkey robot used the SPA software architecture to
develop autonomic behaviour. The architecture, which is depicted in Figure 4.3,
was extremely simple and followed same principle we have discussed in this
chapter: sense de environment, plan an action, and act. Once the action was
performed, the robot sensed the environment again to repeat the process. The
problem with this architecture was that the robot was not able to plan quick
enough, therefore, when it performed the action the environment had already
changed, making the plan invalid.

78 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

Figure 4.2: Autonomic element using MAPE-loop [KC03].

The problem with the response time of the robot using the SPA architecture
motivated other architectures having di�erent layers, each one of them with its
own SPA loop. Each layer had a di�erent task to performed, improving the
response time of the global system. That implies that feedback loops can
interact with each other, and that each one of them must perform a speci�c
task within a larger system. It is very important that all interaction between
feedback loops is well de�ned, because not always the combination of them will
provided the desired behaviour.

Figure 4.3: SPA software architecture used in Robotics in 1970.

The interaction between feedback loops can occur in layers as in robotic
systems, or as in the three-layer architecture [Gat97, KM07], where there is
a hierarchy of feedback structures, where one loop can manage another one
directly. Another way of interacting is through stigmergy. One loop modi�es
a subsystem which is also monitored by another loop. This means that both
loops share a common resource. The modi�cation done by one loop will take
e�ect on a new action from the other loop, a�ecting the same subsystem again,
in�uencing the actions of the former loop. When two or more loops commu-
nicate indirectly through the subsystem they monitor and e�ect, we say that
they communicate through stigmergy.

4.2. JOIN ALGORITHM 79

4.2 Join Algorithm

In this section we describe the same join algorithm from Chapter 3, but now
using feedback loops. The algorithm was not originally designed using such
technique, but thanks to its self-managing behaviour we were able to extract the
feedback loop pattern in the same way other designed patterns are discovered
in other systems. We conceive the whole peer-to-peer network as self-managing
system, where the network is the subsystem we want to monitor. We want to
keep its functionality despite the changes that can occur on the network, being
basically join and fail events, and temporary or permanent broken links. The
structure of the ring is the global property that needs to be kept stable. New
peers joining, and current peers leaving or failing represent perturbations to
the ring structure. Therefore, these events must be monitored. Broken links
are very di�cult to distinguish from crashed peers, and therefore, a broken link
and a crashed peer will be monitored as the same event, without a�ecting the
semantic of the protocols. If a broken link is �xed, it will appear as a false
suspicion of a failure, as it will be explained in Section 4.3

Messages sent during the process of joining, and the update of the prede-
cessor and successor pointers are shown in Figure 3.3. In the example, node
q wants to join the network having r as successor candidate. Peer r is a good
candidate because it is the responsible for key q. Node q send a join request to
r. Whereas the join event triggered by peer q is a perturbation, event joinOk
is a correcting action because it �xes the successor-predecessor relationship
between peers q and r.

After joinOk is triggered, a branch is created. Then, a second correcting
action is needed to entirely close the ring. This action is represented by the
event newSucc sent from peer q to p. The monitoring agents are in charge
of detecting perturbations in the network. Correcting actuators can be seen
as three di�erent actions: update routing table (successor and predecessor),
trigger event (correcting ones) and forward request (in case a peer wants to
join at the wrong place). The routing table does not only include predecessor
and successor. It also includes �ngers for e�cient routing and resilient sets for
failure recovery. It is also part of the knowledge of the computing component.

To analyse the join feedback loop more in detail, we will split it into three
loops: one to accept the new predecessor, one to notify the former predecessor
about its new successor, and one the acknowledge the join between the former
direct neighbours. Figure 4.4 depicts the feedback loop that handles a new
predecessor. The event to monitor is the join message. If the message is sent
to the wrong successor candidate, the request is forwarded using the shared
resource amount loops, which is the network. When the join message reaches
the correct successor, the successor sends the message joinOk to its new prede-
cessor. Every node keeps on monitoring for new join messages, including the
new peer, the one that forwarded the request, and the one that handled it. The
joinOk message is monitored by a di�erent feedback loop. There is no actuator
included in Figure 4.4 that modi�es the value of the predecessor because, as we

80 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

already mentioned, pred and succ pointers are inside the computing component
as part of its knowledge. Therefore, the action is only a change in the knowl-
edge of the component, where that knowledge does not need to be monitored.
We will see in Section 4.6 that this is not always the case.

Figure 4.4: Feedback Loop to handle a new predecessor.

After the new joining peer has triggered a perturbation on the peer-to-
peer network by sending the join message, it monitors the network waiting for
the joinOk message sent by its successor. The joinOk message will contain
information about the predecessor of the joining peer, and therefore, the next
action to be taken in the loop is to notify that predecessor about the current
peer as being its new successor. This is done by sending the newSucc message.
If the message is never received, the peer remains in a branch. This feedback
loop can be seen in Figure 4.5. We can observe that dividing each task into an
orthogonal but collaborative loop, makes the loops very straightforward, and
therefore, simpler to analyse and debug.

Figure 4.5: Feedback loop for join accepted.

The only remaining action to integrate the new peer in the ring is the noti�-

4.3. FAILURE RECOVERY 81

cation of the former predecessor to its old successor about the new joining peer.
This is done with message predNoMore upon detection of message newSucc. We
can observe that each of this three loops interact through the network using it
as a share resource. The acknowledgement loop can be seen in Figure 4.6.

Figure 4.6: Feedback Loop to handle a new successor.

Every peer monitors the network independently, and the correcting actions
performing the ring maintenance are running concurrently in every peer. De-
spite the fact that each loop has its own goal, they all share a local common
resource at each peer, to which they must have exclusive access: the successor,
predecessor and predecessor list. Because they all share the same local resource,
it is more convenient to have them all implemented in the same component.
Figure 4.7 shows the full join loop, describing what are all the messages being
monitored, and what are the possible actions that the loop can take. Every
event triggered by a peer is monitored by the destination peer, unless there is
a failure in the communication. In that case, a crash event will be triggered
and treated by the failure recovery mechanism, which is also a feedback loop
as we will see in the following section. Interleaving of events do not intro-
duce inconsistencies in the order of the peers in the ring, as it was shown in
Section 3.3.

4.3 Failure Recovery

As we described in Chapter 3, instead of designing a costly protocol for peers
gently leaving the network, leaving peers are treated as peers having a failure.
Like this, solving problem of failure recovery will also solve the issue of leaving
the network. The feedback loops presented in this section were also extracted
with post-design pattern mining.

Observing the relaxed ring as a self-managing system, we identify that the
crash of a peer also introduces perturbations to the structure of the ring. There-
fore, crashes must be monitored. To provide a realistic solution, perfect failure

82 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

Figure 4.7: Join algorithm as a feedback loop.

detectors cannot be assumed as the monitoring agent. Perfect failure detectors
and the reason for not using them were described in Section 3.7. If there is
a suspicion, an accurate detector guarantees that the suspected process has
really failed. In reality, broken links and nodes with slow network connection
are very often, generating a considerable amount of false suspicions. Several
kinds of network address translation (NAT) devices also introduce problems
with failure detection. NAT devices are very popular at Internet home users.
This implies that the failure recovery mechanism can only rely on eventually
perfect failure detector, meaning strongly complete and eventually accurate.
Being eventually accurate means that the detector can falsely suspect a correct
peer, but that eventually the suspicion will be corrected. That correction is
done by triggering the alive(p) event to indicate that a peer p is really alive, and
that it was falsely suspected. Because of this, not only crash(p) events must
be monitored, but also alive(p) events. When these two events are detected,
the network must update routing tables and trigger correcting events.

In the relaxed ring architecture we use the �xmessage as correcting agent for
stabilising the relaxed ring. If the network become stable, the �xOk event will
be monitored. This negative feedback can be observed in Figure 4.8. When the
recovery mechanism is mixed with some concurrent join events, it is possible
that the successor candidate chosen by the recovery mechanism is not the best
one for the peer. In such case, and as described in detail in Chapter 3, the �x
message will be forwarded to the real successor of the peer, which will contact
the recovering peer with �xOk. In such case, the recovering peer will notify
its �rst successor candidate with the message predNoMore, as in regular ring
maintenance. The situation can also occur when the root of a branch crashes,
triggering two simultaneous �x message on the same peer.

The interaction between feedback loops is an interesting issue to analyse be-
cause big systems are expected to be designed as a combination of several loops.

4.3. FAILURE RECOVERY 83

Figure 4.8: Failure recovery as a feedback loop.

Let us consider a particular section of the ring having peers p, q and r con-
nected through successor and predecessors pointers. Figure 4.9 describes how
the ring is perturbed and stabilised in the presence of a failure of peer q. Only
relevant monitored and actuating actions are included in the �gure to avoid
a bigger and verbose diagram. In the �gure we have added the events new-
Pred and predOk. These events do not exist explicitly in the algorithms. They
represent the concept behind analog events in ring-maintenance and failure-
recovery. The events join and �x are triggered when a peer needs a successor,
and therefore, it wants to become the new predecessor (newPred) of its succes-
sor candidate. In the case of join, the candidate is chosen because it appears
to be the responsible for the its key. In the case of �x, it is because it is the
successor of a crashed peer. The other analogy comes with events joinOk and
�xOk, which actually represent that the newPred request was accepted predOk.
In the case of joinOk, the event is triggered when the range of local respon-
sibility includes the joining peer. The �xOk message is sent after testing not
only the responsibility, but also the failure status of the current predecessor.

Given the explanation of how the feedback loop on Figure 4.9 was made,
we proceed with the explanation when peer q crashes in between peers p and
r. Initially, the crash of peer q is detected by peers p and r (1). Both peers will
update their routing tables removing q from the set of valid peers. Since p is q's
predecessor, only p will trigger the correcting event �x, trying to become the
newPred (2). Because the new predecessor can be veri�ed with the key-range
and the failure status, we observe that it a�ects the two feedback loops, being a
communication between them. The newPred event will be monitored by peer r
(3), testing the message against the conditions de�ned by the ring maintenance,
and the failure recovery mechanism. The correcting action predOk will be sent
to p (4), together with the corresponding update of the routing table. Then,
the event predOk will be monitored (5) by the failure recovery component to
perform the correspondent update of the routing table. Since the predOk event
is also detected by the join loop, both loops will consider the network stable
again.

84 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

Figure 4.9: Peers p and r detect failure of q, �xing the ring with an interaction
of feedback loops.

4.4 Failure Detector

We already saw how to recover from the failure of a peer, and how to update
the routing table when we detect a false suspicion. We study now the imple-
mentation of a self-tuning failure detector. First of all, we describe a generic
implementation of an eventually perfect failure detector, and then, we analyse
how can we tune some of its parameters using three feedback loops with di�er-
ent goals. After deducing the feedback loop pattern from the ring-maintenance
algorithms, this failure detector was originally designed using feedback loops.

We can �nd the design and implementation of several failure detectors in
Chapter 2 of [GR06]. All of them are based on the principle of the heartbeat.
The idea is that each process sends periodically a HEARTBEAT message
to all processes it is connected to. Since every process does the same, each
one of them receives heartbeats from the others. The algorithm for eventually
perfect failure detection works as follows. A process p sends a heartbeat to
all processes it knows about. Let us call that set of processes Π. After the
heartbeat is sent, p launches a timer, which corresponds to the timeout for
waiting heartbeats from each process in Π. This timer also represents the
period of time to initiate the next heartbeat round. When a heartbeat is
received from another process q, q is added to the alive set. When the timeout
is triggered, The set suspected = (Π \ alive) represents the processes that are
suspected of having failed. The correspondent crash(i) event is triggered to the
upper layer for all process i ∈ suspected. Then, a new heartbeat round begins.
Process p sends again a heartbeat message to everybody and starts collecting
heartbeats from its connections. If a heartbeat coming from a process i arrives,
where i ∈ suspected, it means there is a false suspicion. This will be detected
at the next timeout when both sets alive and suspected will contain process i
in their sets. When this situation occurs, the corresponding event alive(j) is
triggered for all j ∈ (alive ∩ suspected). If there is no such j, it means that

4.4. FAILURE DETECTOR 85

the timeout could be shorter to detect crashed peers quicker. Therefore, and a
new timeout is chosen by reducing ∆ from it. If there is such j, meaning that
the failure detector is not accurate enough, the new timeout will be increased
by ∆ trying to prevent the false suspicions to happen again. The timeout will
be incremented until there is no intersection between sets alive and suspected.

Figure 4.10 shows the feedback loop that allows the eventually perfect failure
detector to tune the period of time representing the timeout and the heartbeat
interval, which is actually the same. The loop is very simple. The failure
detector monitors if there is any false suspicion at the end of every heartbeat
round. If there are, the timeout is incremented until reducing the amount of
false suspicions. This means that it is negative feedback. If there are no false
suspicions, the timeout is decremented to speed up the detection.

Figure 4.10: Feedback loop improving timeout and heartbeat interval of an
eventually perfect failure detector.

The algorithm works correctly according to the promised guarantees, but
it can be largely improved. First of all, let us identify the problems of it. The
�st issue is that the heartbeat interval is the same as the timeout, therefore,
the values cannot be independently adapted. The heartbeat interval should be
adapted due to bandwidth consumption policies, and the timeout should be
adapted with respect to the round-trip time. In addition, the round-trip time
is very often di�erent for each connection with other processes. Therefore, the
failure detector should have one timeout per connection, and not one global
for all processes. Another problem with this algorithm is that all detections
goes at the speed of the slowest connection. Let us understand why. Consider
processes a, b and c, where a is connected to b and b is connected to c. The con-
nection between a and b is very slow, and between b and c is very fast. Because
the connection between a and b is slow, in the �rst round b will receive normal
heartbeat from c but it will falsely suspect that a has crashed. When b receives
a's heartbeat after the timeout, it will increase its own timeout, meaning that
it will increase the period of time for sending its own heartbeat. Process b will
continue increasing its period until a is no longer falsely suspected, meaning
that the timeout is adapted to the slowest connection. Because b sends heart-

86 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

beats less often to c, process c will start falsely suspecting that b is crashing, and
therefore, it will also adapt its period of interval to not suspect b. That means
that c adapts its heartbeat interval to the speed of connectivity between a and
b, which is very slow. This adaptation will be easily propagated to the rest
of the network which will adapt its interval to the slowest connection between
two processes.

Following the previous analysis, we will improve the failure detector by
using two di�erent values, one for the heartbeat interval and another one for
the timeout. To adapt the timeout according to the round-trip time of the
communication links, we will use a ping-pong protocol instead of a simple
heartbeat. The idea is that each ping message must be eagerly acknowledged
with the correspondent pong. That will allows us to measure the round-trip
time of the link. That will imply that we would be able to adapt a di�erent
timeout for each connection, and that failures will be detected a quicker. Having
more independent parameters, the failure detector can be tuned having di�erent
goals in mind as it is shown in the feedback loop of Figure 4.11. We will consider
three feedback loops sharing a common resource, which is the values of the ping-
interval and each timeout. Note that instead of a heartbeat round, now we have
a ping-pong round to monitor. First of all, the Bureau of Accuracy has the goal
of reducing the amount of false suspicions, therefore, if there is a false suspicion
detected it will increase the value of the timeout. This is negative feedback,
and it is equivalent to the loop we described for the original eventually perfect
failure detector, with the di�erence that it does not a�ect the ping-interval,
only the timeout. The Ring Manager, in charge of keeping the routing tables
as accurate as possible, is interested in having failure detection as quick as
possible. Therefore, if the dead-state ratio is too large at the end of the ping-
interval, it means that the timeout is too large, because too many peers crashed
while the timer was still running. That means that it will decrease the value of
the timeout to decrease the dead-state ratio. This is also a negative feedback,
but it modi�es the value of the timeout in the opposite direction as the Bureau
of Accuracy. That will imply that these two modi�cation will help each timeout
to converge to the ideal value.

The Ring Manager will also modify the ping-interval to be more frequent
so as to detect failures quicker. This change will imply a larger tra�c, which
probably will contradict the goal of the Bandwidth Supervisor who wants to
keep the bandwidth consumption as close as possible to the de�ned policies, to
be more e�cient in the use of resources. As soon as the bandwidth consumption
is higher that the expected cost, the Bandwidth Supervisor will modify the ping-
interval to send ping messages less often. The result would be a reduction in the
consumption, meaning that it is a negative feedback. Both loops modify the
ping-interval in opposite directions, tuning the system to �nd the optimal value
that respect all policies as good as possible. If policies are really con�icting,
then, the values will continue oscillating around the best possible solution. In
this failure detector, we can see how di�erent feedback loops with di�erent
goals can collaborate to build a self-tuning system.

4.5. FINGER TABLE 87

Figure 4.11: Self-tuning failure detector designed with a set of feedback loops
with con�icting goals.

4.5 Finger Table

We can also observe a feedback loop pattern in the management of the �nger
table of the relaxed ring. The failure detector we study in Section 4.4 is one of
the monitors used by the �nger table maintenance manager, as it is the monitor
of many other feedback loops we have presented in this chapter. Whenever
a �nger is suspected of having failed, a lookup for the correspondent key is
triggered as a corrective action. The goal is to �nd a new responsible for the
key to become the new �nger. The loop is closed when the lookupReply is
received. This loop follows the correction-on-change strategy. To complement
this strategy, we also use correction-on-use, which means that every information
of other peers going though the current peer is monitored. As soon as a better
�nger is detected the �nger table is updated. When the �nger table is updated,
some acknowledgement messages are sent through the network. The feedback
loop is shown in Figure 4.12.

Many other ring-based peer-to-peer networks use periodic stabilization to
maintain the �nger table as accurate as possible. The idea is to periodically
ask every �nger for its predecessor. If it happens to be a better �nger than
the current one, then, the �nger is updated. If the �nger does not respond to
the periodic request, a lookup is triggered to replace the �nger. The strategy
is also a feedback loop that corrects the subsystem periodically.

88 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

Figure 4.12: Maintenance of the Finger Table.

4.6 Self-Adaptable Routing-Table

Once we have identi�ed the feedback loop pattern on the way the �nger table
is constructed, we use feedback loops to design a self-adaptable routing table,
called palta, which was already described in Section 3.9. palta's feedback
loop is shown in Figure 4.13. The monitors, actuators and the component
that decides the corrective actions are placed at every node. The monitored
subsystems correspond to the whole peer-to-peer network, and the routing
table. The last one is also placed at the node.

Figure 4.13: Self-Adaptable topology as a feedback loop.

As explained in Section 3.9, when a new node wants to enter the network, it
sends a join message to its successor candidate. This message is sent through
the network. Since every node is monitoring the network, the join message
will be received by the palta component. palta is also monitoring the load of
the routing table. This information is used to decide how to react to the join
message. If the load is below ω, palta will use the fully connected mechanism
together with its own veri�cation of the predecessor and successor. Both ac-
tions are used to update the routing table, modifying its load, which will be
monitored once again, as in every loop. The fully connected mechanism will

4.7. CONCLUSION 89

also trigger some messages in the peer-to-peer network to modify its state. If
the load of the routing table has already passed the ω threshold, palta will use
the relaxed ring joining mechanism, which will also update the routing table
and trigger some messages for the involved nodes.

We can observe some similarity between palta's feedback loop and the
acclimatized room brie�y described in Section 4.1. The thermostat in the
room will use the heating system or the air-conditioner depending on whether
the temperature is below or above the desired goal. palta decides its actuators
according to load of the routing table with respect to ω. In the acclimatized
room, the temperature is measure periodically, being triggered by a timer. In
palta, loop's monitoring process is triggered when the join message is detected
by its receiver.

The loop also monitors failures of peers triggering the corresponding failure
recovery mechanism. This mechanism is chosen by palta according to the load
of the routing table, as it is done with the joining process. This is coherent
with what is explained in Section 3.9. All other messages related to the joining
process and the failure recovery, such as joinOk, newSucc, are also present as
monitoring event, but they have been omitted from Figure 4.13 for legibility.

4.7 Conclusion

Decentralised systems in the form of peer-to-peer networks present many ad-
vantages over the classical client-server architecture. However, the complexity
of a decentralised system is higher due to the lack of a central point of con-
trol. Therefore, it requires self-management. In this chapter we show how
feedback loops, taken from existing self-managing systems, can be applied in
the design of a peer-to-peer networks. Using feedback loops, we can observe
that the system is able to monitor and correct itself, keeping the relaxed ring
structure stable despite the changes caused by regular network operations and
node failures.

We have also shown how feedback loops are combined using the subsystem
as a way of interacting from one loop to the other. The eventually perfect failure
detector is an interesting case study to show how loops having con�icting goals
can be combined to build a self-tuning system. The failure detector itself is
then used to build other feedback loops, where its role is to monitor the failure
state of other peers. The self-adaptable behaviour of the palta �nger table
becomes more accessible by modelling it as a feedback loop. It is clear that the
ω value is constantly monitored to adapt the behaviour of the routing table
whenever the threshold is reached. It is also clearer how actuators are chosen
dynamically according to the values that are monitored.

90 CHAPTER 4. THE RELAXED RING IN A FEEDBACK LOOP

Chapter 5
Transactional DHT

Nothing's what it seems to be, I'm a replica.

�Replica� - Sonata Arctica

The basic operations provided by a DHT are put(key, value) and get(key).
We have seen in Chapter 2 that this is not enough to provide fault tolerance,
and that a replication strategy should be used to guarantee data storage. Repli-
cas are not simple to maintain independently of the chosen replication strategy.
Therefore, it is very convenient to add transactional support to the DHT, so
that replica management becomes encapsulated and atomic operations over a
set of items is guaranteed.

The two-phase commit protocol (2PC) is one of the most popular choices
for implementing distributed transactions, being used since the 1980s. Unfor-
tunately, its use on peer-to-peer networks is very ine�cient because it relies
on the survival of the transaction manager, as explained further in section
5.1. A three-phase commit protocol (3PC) has been designed to overcome the
limitation of 2PC. However, 3PC introduces an extra round-trip which results
in higher latency and increased message load. We will see how transactional
support based on Paxos consensus [MH07, GL06] works well in decentralized
systems. This algorithm is especially adapted for the requirements of a DHT
and can survive a crash of the coordinator during a transaction. Compared
to 3PC, it reduces latency and overall message load by requiring less message
round-trips.

We extend the Paxos consensus algorithm with an eager locking mechanism
to �t the requirements we identi�ed in synchronous collaborative applications.
A noti�cation layer is also added to the transactional layer support, which can
be used by any of the transactional protocols we will describe. In this chapter
we also make an analysis of replica maintenance, and how it is related to the
transactional layer.

92 CHAPTER 5. TRANSACTIONAL DHT

One of the important contributions of this dissertation is the design of a
lock-free transactional protocol for key/value-sets, extending the key/value pair
data abstraction. Key/value-sets were also used in OpenDHT [RGK+05], but
only eventual consistency was provided, and no support for transactions. Our
protocols provide strong consistency when reading from the majority of the
replicas, and eventual consistency when the set is read from a single replica.

5.1 Two-Phace Commit

The pseudo-code in Algorithm 14 implements a swap operation within a trans-
action. The objective is that the instructions from the beginning of the trans-
action (BOT) until its end (EOT) are executed atomically to avoid race conditions
with other concurrent operations. The values of item_i and item_j are stored
on di�erent peers. The operators put and get are replaced by read and write
to di�erentiate a regular DHT from a transactional DHT. Since the operations
have di�erent semantics, as we will see in section 5.8, it is justi�ed to use
di�erent keywords.

Algorithm 14 Swap transaction

BOT
x = read(item_i);
y = read(item_j);
write(item_j, x);
write(item_i, y);

EOT

To guarantee atomic commit of a transaction on a decentralized storage,
two-phase commit uses a validation phase and a write phase, coordinated by
a transaction manager (TM). All peers responsible for the items involved in
the transaction, as well as their replicas, become transaction participants (TP).
Initially, the TM sends a request to every TP to prepare the transaction. If
the item is available, the TP will lock it and acknowledge the prepare request.
Otherwise, it will reply abort. The write phase follows validation once the
replies are collected by the TM. If none of the participants voted abort, then
the decision will be commit. When the participants receive the commit message
from the TM, they will make the update permanent and release the lock on the
item. An abort message will discard any update and release the item locks.

The problem with the 2PC protocol is that relies too much on the survival
of the transaction manager. If the TM fails during the validation phase, it
will block all the TPs that acknowledged the prepare message. A very reliable
TM is required for this protocol, but it cannot be guaranteed on peer-to-peer
networks. Figure 5.1 depicts 2PC protocol showing two possible executions.
The diagrams do not include the client, but they concentrate on the interaction

5.2. PAXOS CONSENSUS ALGORITHM 93

(a) (b)

Figure 5.1: Two-Phase Commit protocol (a) reaching termination and (b) not
knowing how to continue or unlock the replicas because of the failure of the
transaction manager.

between the TM and the TPs. Figure 5.1(a) shows a successful execution of the
protocol where the TPs get the con�rmation of the TM about the result of the
transaction. Figure 5.1(b) spots the main problem of this protocol. If the TM
crashes after collecting the locks of the TPs, the TPs remained locked forever
if the algorithm is crash-stop. PostgreSQL [Pos09], a well established object-
relational database management system, implements 2PC as a crash-recovery
algorithm, meaning that the TM can reboot and recover the state before the
crash to continue with the protocol. Discussing with PostgreSQL developers,
we have learned that a transaction could hang for a whole weekend before the
locks are released again. This kind of behaviour is not feasible in peer-to-peer
networks when there is no certainty that a peer that leaves the network will
ever come back.

5.2 Paxos Consensus Algorithm

The 3PC protocol avoids the blocking problem of 2PC at the cost of an extra
message round-trip and a timeout to release locks, which produces performance
degradation. This solution might be acceptable for cluster-based applications
but not for peer-to-peer networks, where it is better to have less rounds with
more messages than adding extra rounds to the protocol. Having more mes-
sages increases the bandwidth consumption. Having more rounds increases the
execution time of a protocol. A protocol with a longer execution time becomes
more fragile because it increases the probability of having a partial failure.
Therefore, it is more desirable to have more messages introduced in a protocol,
than having more rounds of messages between the participants. This problem
led to the recent introduction of [MH07] based on Paxos consensus [GL06].

The idea is to add replicated transaction managers (rTM) that can take
over the responsibility of the TM in case of failure. The other advantage is
that decisions can be made considering a majority of the participants reaching

94 CHAPTER 5. TRANSACTIONAL DHT

Figure 5.2: Paxos consensus atomic commit on a DHT.

consensus, and therefore, not all participants need to be alive or reachable to
commit the transaction. This means that as long as the majority of participants
survives, the algorithm terminates even in presence of failures of the TM and
TPs, without blocking the involved items.

Figure 5.2 describes how the Paxos-consensus protocol works. The client,
which is connected to a peer that is part of the network, triggers a transaction
to read/write some items from the global store. When the transaction begins,
the peer becomes the transaction manager (TM) for that particular transaction.
The whole transaction is divided in two phases: read phase and commit phase.
During the read phase, the TM contacts all transaction participants (TPs) for
all the items involved in the transaction. TPs are chosen from the peers holding
a replica of the items. The modi�cation to the data is done optimistically
without requesting any lock yet. Once all the read/write operations are done,
and the client decides to commit the transaction, the commit phase is started.

To commit changes to the replicas, it is necessary to get the lock of the
majority of TPs for all items. But, before requesting the locks, it is necessary
to register a set of replicated transaction managers (rTMs) that are able to carry
on the transaction in case that the TM crashes. The idea is to avoid locking
TPs forever. Once the rTMs are registered, the TM sends a prepare message
to all participants. This is equivalent to request the lock of the item. The TPs
answer back with a vote to all TMs (arrow to TM removed for legibility). The
vote is acknowledged by all rTMs to the leader TM. The TM will be able to
take a decision if the majority of rTMs have enough information to take exactly
the same decision. If the TM crashes at this point, another rTM can take over
the transaction. The decision will be commit if the majority of TPs voted for
commit. It will be abort otherwise. Once the decision is received by the TPs,
locks are released.

5.3. PAXOS WITH EAGER LOCKING 95

The protocol provides atomic commit on all replicas with fault tolerance
on the transaction manager and the participants. As long as the majority of
TMs and TPs survives the process, the transaction will correctly �nish. These
are very strong properties that will allow the development of collaborative
applications on a decentralized system without depending on a server.

5.2.1 Self Management

We can observe the property of self-con�guration in this transactional protocol
in the way the replicated transaction managers are chosen, and in the way the
replicas are found. Even when replicas should not change from one transaction
to the other, unless there is some churn, the set of TM and rTMs tends to be
di�erent in every transaction. There is no intervention in the election of the
members of these sets, they just follow the high level policies and self-con�gure
to run the transaction. The self-healing property can be observed when the
TM fails. One of the rTM is elected to become the new TM, and it �nishes the
transaction. The election is done following the identi�ers in the ring, so they
all reach an agreement.

5.2.2 Non-Transitive Connectivity

We have explained that relaxed ring's algorithms do not rely on transitive
connectivity, therefore, it tolerates the presence of peers behind NAT devices.
Nevertheless, Paxos, and all Trappist's protocols, are described as any peer
being able to contact any other peer participating in the transaction. This
could be a problem if some peers are behind NAT devices and are unable to
establish a direct communication between them. However, the communication
between peers participating in a transactional protocol is entirely delegate to
lower layers in charge of messaging. For e�cient, Beernet will try to establish
a direct channel between protocol participants, but if there is no success, the
relaxed ring is used to route messages, guaranteeing that at the Trappist layer,
any peer can talk to any other peer. More explanation about the component in
charge of the direct sending of messages between peers is given in Section 7.6.

5.3 Paxos with Eager Locking

An implementation of Wikipedia on Scalaris [SSR08, PRS07] using Paxos con-
sensus algorithm, shows that Paxos can be successfully used to build scal-
able systems with decentralized storage. We will also describe Sindaca, a
community-driven recommendation system that will be presented in Section 8.1.
Sindaca is another example of building decentralized systems using Paxos.
These systems are designed to support asynchronous collaboration between
application's users. The fact that Paxos consensus protocol works with opti-
mistic locking �ts well asynchronous collaboration. However, this locking strat-

96 CHAPTER 5. TRANSACTIONAL DHT

Figure 5.3: Paxos consensus with eager locking and noti�cation to the readers.

egy limits the functionality of synchronous collaborative applications such as
DeTransDraw, a collaborative drawing tool that we will describe in Section 8.2.

DeTransDraw has a shared drawing area where users actively make updates
and observe the changes made by other users. If two users make modi�cations
to the same object at the same time, at the end of the their work, when
they decide to commit, only one of them will get her changes committed, and
the other one will loose everything. Because users are working synchronously,
the probability that this happens is much larger than in applications such as
Wikipedia or Sindaca. This is why a pessimistic approach with eager locking
is needed.

We have adapted Paxos to support eager locking adding a noti�cation mech-
anism for the registered readers of every shared item. We have implemented
this new protocol in Trappist, the transaction layer support of Beernet, with
the possibility of dynamically choosing between the two Paxos protocols. Given
this choice, the application can decide the protocol to be used depending on
the functionality that is provided to the users.

Figure 5.3 depicts the adapted protocol with eager locking. The read-phase
and commit-phase from the original protocol has been replaced by locking-
phase and commit-phase. The read phase disappears because the transaction
manager tries eagerly to get the relevant locks to proceed with the transaction.
Once the locks are collected, the client is informed of the result. The goal is
to prevent users from trying to start working on items that are already locked.
The client of the transaction starts working on the changes on the items as
soon as the transaction begins. Starting to work on an item is actually the
trigger of the transaction.

When the user stops making modi�cations, it triggers the commit-phase.
The transaction manager can take the decision immediately because the ma-
jority of the votes have been already collected at this stage. The decision is
propagated to the client, the replicated transaction managers and transaction
participants, as in the original Paxos algorithm. As there is no read-phase, it
is important that the decision is transmitted to the TPs and rTMs together

5.4. NOTIFICATION LAYER 97

with the new state of the item, and not only a commit/abort message.
This protocol is unfortunately more fragile than Paxos without eager lock-

ing. By dividing the acquisition of locks and the decision of commit, we can
propagate information to the readers more eagerly, but we increase the period
of time where the TM and the client need to survive. If the client fails before
committing its �nal value, the locks need to be retrieved and released. If there
is a false suspicion, we could end up having two clients claiming the lock of an
item. To solve this, it is necessary to add timestamps not only to the values of
the items, but also to the locks. If the TM crashes before the client commits its
�nal decision, one of the rTM becomes the new TM, and it needs to inform the
client about the failure recovery. Once the client is noti�ed about the recovery,
the client can commit the transaction using the new TM.

Self-management The self-con�guration property with respect to the set
of rTMs is inherited from the previous Paxos protocol without eager locking.
Self-healing is also achieved, because the system can recover from the crash
of the client and the TM, and it can complete if the majority of participants
survives. The mechanism is a bit more complex due to the split of the locking
and commit phase.

5.4 Noti�cation Layer

The modi�cation with eager locking provides noti�cation to the readers every
time an item is locked and updated. Sometimes it is not necessary to get a
noti�cation on locking, and only the update is important. In such case, it
is interesting to have a layer of noti�cation independent of the protocol used
to update the item. This kind of feature is useful to implement applications
such an online score board, where only a few peers modify the state of the
application, and many peers participate as readers. For the readers, it is not
necessary to get a noti�cation that some value is currently being updated. They
just need to get the last value of the item.

The layer consists of a reliable multicast that sends a noti�cation to all
subscribed readers of an item. To make the multicast e�cient, if the amount of
readers is smaller than log(N), a direct message sending can be performed. If
the amount is larger, the update message can be transmitted using the multicast
layer of the peer-to-peer network.

5.5 Lock-Free Key/Value-Sets

Data collections are a useful data abstraction as we will see in Chapter 8.
Providing strong consistency can be achieved using any of the above described
protocols, but that would imply locking the collection every time a modi�cation
is performed. Following our design philosophy, by relaxing some conditions we

98 CHAPTER 5. TRANSACTIONAL DHT

(a) (b)

Figure 5.4: Noti�cation layer protocol. Peers register to each item by becoming
readers. Figure (a) shows one noti�cation for the decision if the transaction
is run with Paxos. Figure(b) shows noti�cations for locking and decision, if
transaction is run with Eager Paxos.

are able to get rid of locks, allowing concurrent modi�cations to the collection,
and still providing strong consistency. We relax versioning and the order of
the elements in the collection. The result is the key/value-set abstraction as a
complement to key/value-pairs. OpenDHT [RGK+05] also uses key/value-sets,
but they only provide strong consistency nor transactional support.

As an example of the usefulness of unordered value-sets, we can refer to the
data of a collaborative drawing tool consists mainly of description of �gures
and the canvas. Each �gure can be represented as a key/value pair storing all
properties of the �gure. The description of the canvas is just a set of �gures
being drawn on it. If the canvas is represented as a key/value pair, only one
user would be able to add or remove a �gure from the canvas at the time.
This locking restriction is completely unnecessary because there is no order on
the �gures. Their position is stored on each one of them, not in the canvas.
We will explain more about such a collaborative drawing tool when we explain
DeTransDraw in Section 8.2.

Another example is a recommendation system where users can express their
preferences. We have built a prototype of such system named Sindaca, which we
will describe in detail in Section 8.1. If videos are the items being recommended,
we have conceived a decentralized data-base where the information about the
video is stored in a key/value pair, with a value-set associated to it to store
the votes that users have done. The order of the votes is not important, only
the average and the information about who voted. If we would use a set that
needs to be locked upon every modi�cation, we would allow only one user to
vote at the time, which is quite restrictive for a system.

The operations provided by value-sets are:

• add(k, v) - adds value v to the set associated to key k. If v is already in

5.5. LOCK-FREE KEY/VALUE-SETS 99

the set, the set remains unmodi�ed.

• remove(k, v) - removes value v from set k. If the value was not in the
set, the set remains unmodi�ed.

• readSet(k) - returns all the elements added to the set, and that are not
yet removed from it.

By using the Paxos-consensus protocol, we are able to propagate every
add/remove operation to at least the majority of the replicas. The following
table shows the evolution of adding elements foo and bar to the set associated
to key k, where peers a, b and c are the responsible for the replicas of the
set. The table shows which replicas were contacted each time under column
TPs. We observe that peer a was contacted on both operations, but peers b
and c where contacted only on one of them. At times t2 and t3, two di�erent
majorities are contacted, and in both cases it is possible to obtain the whole
set by making a union of all sets.

Time Operation TPs a b c

t0 add(k, foo) {a, b} {foo} {foo} φ
t1 add(k, bar) {a, c} {foo, bar} {foo} {bar}

t2 readSet(k) {a, c} → {foo, bar}
t3 readSet(k) {b, c} → {foo, bar}

Using the union of sets works only for adding operations. In the next
example we introduce removals. An important rule on the implementation of
remove, is that it can only be accepted by replicas who also have the value
to be removed in their set. Otherwise, inconsistencies are introduced. In our
example, the value foo has been accepted by peers a and b. Adding bar was
successfully performed in all peers. However, removing bar at t2 was only done
at peers a and b. Having this knowledge, we can observe that it is impossible
to know the correct state of the set only by looking at the elements stored on
the majority of the peers, or even by looking at all of them, as in t3. This
is because peer c missed the removal of value bar. One way of eventually
solving this inconsistency is by propagating every committed operation to all
replicas. In such case, peer c would eventually receive operation remove(k, bar).
Nevertheless, this only provides us with eventual consistency when reading the
set from the majority.

100 CHAPTER 5. TRANSACTIONAL DHT

Time Operation TPs a b c

t0 add(k, foo) {a, b} {foo} {foo} φ
t1 add(k, bar) {a, b, c} {foo, bar} {foo, bar} {bar}
t2 remove(k, bar) {a, b} {foo} {foo} {bar}

t3 readSet(k) {a, c} → {foo, bar}? or {foo}?
t4 readSet(k) {b, c} → {foo, bar}? or {bar}?
t5 readSet(k) {a, b, c} → {foo, bar}? or {foo}?

Our solution is to store the operations instead of the values. On each trans-
action, the TM assigns an identi�er to each operation, and every TP stores the
operation together with its id. When readSet(k) contacts the majority, the set
can be reconstructed from the union of all operations. We can observe in the
next example how operations are stored on the transaction participants (only
the id is shown at each replica to save space). We can observe the main di�er-
ence with the previous example at time t2. By storing the operations, peers a
and b have a lot more information about the set, and when their information
is combined with the operations of peer c at time t3, the TM can discard the
value bar and return the set with only foo on it, which is consistent with the
global operations performed on the system.

Time Operation TPs a b c

t0 i:add(k, foo) {a, b} (i) (i) φ
t1 j:add(k, bar) {a, b, c} (i, j) (i, j) (j)
t2 j':remove(k, bar) {a, b} (i, j, j') (i, j, j') (j)

t3 readSet(k) {b, c} (i, j, j') → {foo}

It is very important to identify every operation, and to accept removals only
after additions. If the following three operations are performed from di�erent
peers: add(k, foo), remove(k, foo) and again add(k, foo), depending on the
order of arrival the value foo will be in the set or not. From the point of view
of the decentralized system, no order can be guaranteed, but, it is important
that all replicas reach a consensus about which is the order to follow by all of
them. Therefore, it is necessary to identify one add from the other. Hence,
the TM needs to provide an identi�er for its operation, and con�ict resolution
must be achieved to de�ne the order. Here, when we are working with the same
value, there is a partial locking that we will discuss more in detail in the next
sections.

5.5.1 The Transactional Protocol

Figure 5.5 describes the lock-free protocol for key/value-sets. Similarly to
Paxos-consensus algorithm, the client sends one or more operations within a
transaction to a TM. The TM creates an id for each operation, and registers

5.5. LOCK-FREE KEY/VALUE-SETS 101

the rTMs to start collecting votes from the TPs. Each TP is asked to vote
on the operation it is involved. The only reason to reject an addition is that
a concurrent transaction is trying to add the same value. Because operations
are identi�ed, it is necessary to only accept one. The only reason to reject a
removal, it is that the value is not stored yet. There is a partial order between
addition and removals for each value. This is to guarantee the reconstruction
at reading time. Once TPs get the decision from the TM, they acknowledge
each other the new operation. This is to guarantee that if a TP misses the
transaction, it will eventually receive the operation from the other TPs.

Figure 5.5: Transactional key/value-sets protocol

When two or more transactions try to concurrently add the same value to
the same set, at least one of the TM will not collect a majority of successful
votes. Instead of aborting the transaction as in Paxos, the TM will wait a
random time to generate a new id and retry the operation. If the value has
been �nally added by another transaction, the TM will receive from the TPs
votes suggesting that the value is duplicated. That means that the addition
can be discarded, and the client is noti�ed that its operation was successful,
because the value is in the set now.

5.5.2 Semantics

Paxos and Two-phase commit have a very simple voting process depending on
whether the lock is granted or not. TPs vote commit or abort, and the TM
can decide upon the majority or totality, depending on the protocol. Value-
Set protocol is simpler in the sense that it does not require a reading phase
to establish a version of the item, because there is no version. But its voting
mechanism is much more complex because it involves di�erent possibilities.

Figure 5.7 shows the state diagram of a single value in a set, which helps to
decide if an operation must be commited or not. In the case of abort, it does
not have the same meaning as in Paxos. An abort in Value-Sets means that

102 CHAPTER 5. TRANSACTIONAL DHT

Figure 5.6: Retry when two clients attempt to concurrently add/remove the
same value on the same set.

the operation is not stored on the TP, but the outcome for the client is always
successful at the end.

Figure 5.7: State diagram of a variable in a set.

Every value starts by not being in any set. Try to remove a value that is
not in the set will result in a vote not-found. For the client, the outcome is
successful because its removal ended up not having the value on the set. The
only way of getting out of this initial state is by adding a value. The state
�tmp add� lasts until the TM takes a decision. If the majority of TPs agrees on
adding that particular operation, the transition to stated �added� is triggered
by commit. If not enough TPs voted in favor of the addition, the transaction

5.6. DISCUSSION ON THE CHOICE OF PROTOCOLS 103

is aborted and retried. If another add operations arrives while the decision is
being taken, it is informed of the con�ict, which will make it try again later. If
the second add arrives once the �rst one is already added, it will get the vote
duplicated, meaning that the outcome for the client is a�rmative considering
that the value is in the set. Trying to remove a value that is not yet committed,
results in not-found, basically because the values is not yet added to the set.

The only way to remove a value is with a transition from �added� to �tmp
remove�. In such state, new additions are considered duplications because
the item is technically still in the set, and concurrent removals are noti�ed of
the con�ict to retry again later. Once the removal is committed, there is a
state called �removed�, which is equivalent to �no value�. The main di�erence
between both states is that remove provides important information to resolve
con�icts with other replicas when reading the set. If another replica remains
on the added state because of having missed the removal, staying in the state
remove instead of �no value� will allow the TM to consistently rebuild the set.
As a sort of garbage collector, when all TPs acknowledge the commit of the
remove operation, all of them can reclaim the memory, and go back to the state
�no value�.

5.6 Discussion on the Choice of Protocols

Two-phase commit is the most popular approach used by traditional databases
to maintain replicas coherent in a distributed setting. On each transaction,
two-phase commit strongly relies on the survival of the transaction leader, and
it requires that all replicas become updated when the transaction completes.
These two requirements are two hard to meet in dynamic systems such as
peer-to-peer networks.

We have chosen the Paxos consensus algorithm because it relaxes these two
conditions improving fault-tolerance with a low extra cost. First of all, Paxos
does not rely on a single transaction leader because it uses a set of replicated
transaction managers. If the majority of them survives, the transaction can
terminate. Concerning the replicas, Paxos requires that only the majority of
them agrees on the new value to commit the update. The quorum-based com-
mit implies that read operations also need to read the data from the majority
guaranteeing that the latest value is retrieved. Therefore, the requirements has
been relaxed to provide fault tolerance without sacri�cing strong consistency.

Paxos uses optimistic locking to provide concurrency control among trans-
actions. This strategy works very well for asynchronous collaborative systems
such as Wikipedia. However, it does not suit synchronous collaboration very
well, because participants do not have any guarantee that their modi�cations
will be committed to the storage. Therefore, we have adapted the protocol to
support eager-locking. Like this, applications that need synchronous collabo-
ration are also covered.

The basic data structure provided by DHTs it the key/value pair. It im-

104 CHAPTER 5. TRANSACTIONAL DHT

plies that data collections need to be implemented as set of key/value pairs,
making it very costly to maintain. Another possibility is to implement them
as a single value associated to a key. That implies that only one transaction
can modify the collection, serializing concurrent operations. We introduce the
key/value-set structure that relaxes two conditions: value-set provides an un-
ordered data collection, and value-sets do not have versions. The relaxation
allows us to design a lock-free protocol that allows concurrent modi�cations to
a data collection. This protocol is entirely based on Paxos consensus algorithm,
and it can be partially combined with Paxos and Eager Paxos.

These three protocols provide transactional support for a wide range of ap-
plications, and currently, they cover all the needs of the applications presented
in Chapter 8. However, we cannot guarantee that they will be su�cient to
cover all possible application scenarios. We specially identify the possible need
of new protocols if eventual consistency is needed. Another data structure
might also need the modi�cation of the existing protocols.

The protocol that implements the noti�cation layer is very simple and quite
similar to those that implement publish/subscribe systems. We have decided
to include it in Trappist to prevent busy waiting procedures at the level of
applications. Without the noti�cation layer, an application would have to
periodically check the state of an item to know if its value has changed. This
kind of behaviour is only needed for applications that automatically update
the information about the state of the data. It is not needed for applications
where the user decides which information is retrieved.

5.7 Replica Management

During the description of the transactional protocols, we have assumed that
transaction participants are members of the replica set of each item, and that
they are chosen by an underlying layer corresponding to the replica manage-
ment. This layer needs to keep a consistent set of replicas even under churn.
Systems such as Scalaris [SSR08] and DKS [Gho06] consider that the replica
layer is completely orthogonal to the transactional layer. We understand it
di�erently, because we see that restoring a lost replica needs the transactional
support to know how to retrieve the latest value from the surviving replicas.

Let us analyse more deeply replica management. The replica set of each
item is formed with f replicas. One of the problems we can encounter is that
f+1 peers claim to hold a valid replica. There are a couple of things to consider
here. First of all, why is it a problem to have f + 1 replicas? The problem is
that you could potentially have two majorities with respect to f . In Beernet,
as in Scalaris, we take f as an even number. Like that, you will need f + 2
replicas to have two majorities. With f + 1 is not enough to break majority if
f is an even number.

Second question is, how can the system end up having f + 1 replicas?
The �rst possible cause is lookup inconsistency: two nodes thinking that they

5.7. REPLICA MANAGEMENT 105

have to store a replica. Reducing the amount of lookup inconsistencies is a
way of addressing this issue, and this is what we do with the relaxed ring.
The second way of having f + 1 replicas is churn. The only problem actually
comes when there is churn a�ecting the responsibility of one of the transaction
participants. In that case, following the more detailed description of Paxos
consensus algorithm [MH07], the items involved in the transaction are actually
locked, and they are not transfered to the new responsible until the transaction
has �nished.

One suggestion to avoid two majorities of replicas is to add group manage-
ment to the replica sets. This idea can become too expensive to implement
and maintain because there is a replica set per each stored item. It is true
that because of symmetric replication many replica sets overlap, but there is
no guarantee on this property to de�ne a cost-e�cient group maintenance. We
consider that there is no need for group management on symmetric replication.
Peers do not store references to every peer in the replica set of every item or
replicated item is stored in the peer. It would be too expensive. This is actually
one of the advantages of symmetric replication: when a peer needs to �nd the
other replicas, it uses the symmetric function and lookup requests to identify
the other members of the set.

Let us consider that there is group management for the replica set to make
the replica layer completely orthogonal to the transactional layer. When there
is churn, the peer that takes over a range of responsibility of one of the members
of the replica set, needs to read from the majority of the replicas to decide the
value of the items it is going to host. Therefore, some transaction is still needed
anyway when a new peer �joins the replica set�. We discuss now two possible
ways of getting a new peer in the replica set: a new peer joins the network,
and a peer fails and it is replaced by the recovery mechanism.

5.7.1 New Peer Joins the Network

Symmetric replication was introduced in [Gho06], without discussing any trans-
actional support. To maintain the replica set, the new joining peer should ask
its successor for the values of the items its storing. Note that the new peer
replaces its successor as member of the replica set of a certain amount of items.
Asking the successor is �ne, but it assumes that all replicas are up to date. If
the successor does not have the latest value, it does not introduce real problems
because it would replace a bad replica with another bad replica. Not a good
replica for a bad one. Still, it might be a good idea to retrieve the value of
the item from the replica set to replace a bad replica by a good one. How-
ever, performing read from majority every time a new peer joins the network
is expensive.

106 CHAPTER 5. TRANSACTIONAL DHT

5.7.2 Failure Handling

Whenever there is failure, DKS [Gho06] makes use of the startbulkown operator
which is in charge of �nding the owner of a replicated key, and retrieve the
values from that peer. We believe that here we arrive to a similar analysis of
the joining peer: is it enough to retrieve the items from only one node? In
the case of the failure recovery it is more important to read from the majority,
because the recovery node cannot know if the dead peer was holding the latest
value or not. Let us say the replica set is form by peers a, b, c, d and e, where
a, b, and e have the last up to date value of item i. Therefore, c and d hold
and old value of i. Let us suppose now that peer e dies, and f takes over
its responsibility. Peer f reads i from c or d, and then, the system ends up
having a majority c, d and f holding an old value of i, which is incorrect. This
problem can already be improved by choosing an even amount of replicas, but
if the read is done from the majority, it does not matter if the replication factor
is odd or even.

5.8 Trappist

As we have previously mentioned in this chapter, the transactional layer im-
plementing these three protocols is called Trappist, which stands for Trans-
actions over peer-to-peer with isolation, where isolation means that transac-
tions are atomic and with concurrency control. In this section we show how
to use the transactional support of Beernet, which is implemented with the
Mozart [Moz08] programming system. By describing Trappist's API, we also
analyse the high level abstractions provided by the system, and how replica
maintenance is hidden from the programmer. We start by creating a Beernet
peer, which can be built with with or without the transactional support. To
make it explicit, the following example set the `transaction' option to true:

functor
import

Pbeer at 'Pbeer.ozf'

define
Node = {Pbeer.new args(transactions:true)}

The most basic support provided by Beernet corresponds to the DHT op-
erations put and get. These operations do not replicate the value of the item,
but they are also part of the implementation of the transactional layer which
actually realizes the replication. What follows is an example of how put and
get can be used.

{Node put(key value)}
Value = {Node get(key $)}

To use the transactional layer, the user must write a procedure with one ar-
gument, typically named Obj. This argument represents a transactional object,

5.8. TRAPPIST 107

which is an instance of the transaction manager that triggers the transaction.
The object receives the operations read and write, which are almost equivalent
to put and get. The main semantic di�erence between the operations is that
if the transaction is aborted, write has no e�ect on the stored data. And if
the transaction succeeds, the value is written at least on the majority of the
replicas. Other operations received by the transactional object are commit and
abort, to explicitly trigger those actions on the protocol. The operation remove
is also implemented to delete an item from the DHT.

To run the transaction, the user must invoke the method runTransaction,
which receives three arguments: the procedure containing the operations, a
port to receive the outcome of the transaction, and the protocol to be used
for running the transaction. Note that at the creation of the node, we did
not specify the protocol to be used by every transaction. This is because
the protocol can be chosen dynamically, allowing the users to choose the best
suitable protocol for every functionality. Algorithm 15 is a complete example
for writing two items with key/value pairs: hello/�Charlotte� and foo/bar. The
outcome of the transaction appears on variable Stream, which is the output of
port Client. If the outcome of the transaction is commit, it guarantees that both
items where successfully stored at least in the majority of the correspondent
replicas.

Algorithm 15 Using transactions with Paxos consensus to write two items

declare
Stream Client
Trans = proc {$ Obj}

{Obj write(hello "Charlotte")}
{Obj write(foo bar)}
{Obj commit}

end
{NewPort Stream Client}
{Node runTransaction(Trans Client paxos)}
if Stream.1 == commit then

{Browse "transaction succeeded"}
end

To retrieve the values the user passes a variable which has no value yet.
The value is bound by the transactional object. Algorithm 16 shows how to
retrieve the values stored under keys hello and foo.

Note that it is not necessary to catch exceptions using Beernet, because
the outcome is reported on the stream of the client's port. If there is a failure
on the transaction, the outcome will be abort, and the user will be able to
take the corresponding failure recovery action. If the item is not found, the
variable used to retrieve the value is bound to a failed value. This language
abstraction will raise an exception whenever is used. Like this, exceptions are

108 CHAPTER 5. TRANSACTIONAL DHT

Algorithm 16 Using transactions with Paxos consensus to read two items

declare
V1 V2
Trans2 = proc {$ Obj}

{Obj read(hello V1)}
{Obj read(foo V2)}

end
{Node runTransaction(Trans2 Client paxos)}
{Browse "for hello I got"#V1}
{Browse "for foo I got"#V2}

triggered in the calling site, and not at any of the peers. Now, to prevent
catching exceptions when using the value, the Mozart programming system
provides Boolean checkers to test whether a variable is bound to a failed value
or not.

5.9 Conclusion

In this chapter we analysed the strong requirements of Two-phase commit,
which are too hard to meet in peer-to-peer systems due to its dynamism. We
have chosen Paxos consensus algorithm as the base protocol for Trappist, be-
cause it has relaxed conditions about storage and fault tolerance. It relaxes the
storage because it only needs the agreement of the majority of the replicas in-
stead of requiring all of them to agree. It relaxes fault tolerance because it does
not rely on a single transaction manager because it uses replicated managers.

To support a wider range of applications, we have extended Paxos with
a modi�ed protocol that provides eager-locking of items. This protocol suit
better synchronous collaborative applications, whereas Paxos works better for
asynchronous systems. Both protocols can be used in combination with a
noti�cation layer that informs the readers of an item whenever the item is
locked or updated.

Following the relaxed approach, we have relaxed data collections to pro-
vide a lock-free protocol for key/value-sets. This data abstraction stores an
unordered set of values associated to a single key, without having a versioning
system. The lack of order and versioning is the relaxation that allows us to get
rid of locks on sets.

Trappist works independent of the replication strategy and the SON that
supports the communication between peers. We will review Beernet's architec-
ture more in detail in Chapter 7, where we will see how is possible to achieve
this kind of modularity. More discussion about the use of Trappist's protocols
will be presented in Chapter 8, where we will described the applications built
on top of Beernet. Evaluation of the protocols is presented in Chapter 6.

Chapter 6
Evaluation

`Stop. What... is your name?'
`It is Arthur, King of the Britons.'
`What... is your quest?'
`To seek the Holy Grail.'
`What... is the in�uence of non-transitive
connectivity in the peer-to-peer ring?'
`What do you mean? A perfect or relaxed ring?'

freely adapted from
�Monty Python and the Holy Grail�

After the analysis we have done about the algorithms and self-management
behaviour of the relaxed ring, we do now the empirical evaluation comparing it
with other networks, specially with Chord [SMK+01]. We start by describing
CiNiSMO, our concurrent simulator, and then describe the results we have
obtained measuring cost-e�cient ring maintenance, lookup consistency, size
and amount of branches, and e�cient routing. We also analyse the performance
of di�erent transactional protocols putting enphasis on the lock-free key/value-
set protocol. A deep analysis on the impact of network address translation
(NAT) devices is also included in this chapter.

6.1 Concurrent Simulator

CiNiSMO is a Concurrent Network Simulator implemented in Mozart-Oz.
It has been used for evaluating the claims made about the relaxed ring in
Chapter 3, and we continue to use it for ongoing research with other network
topologies. In CiNiSMO, every node runs autonomously in its own lightweight
thread. Nodes communicate with each other by message passing using ports,
and cannot inspect the state of other nodes as if it were a local operation. We

110 CHAPTER 6. EVALUATION

Figure 6.1: Architecture of CiNiSMO.

consider that these properties give us a good simulation of real networks. We
have released it as a programming framework that can be used to run other
tests with other kinds of structured overlay networks. Another motivation for
releasing CiNiSMO is to allow other researchers to reproduce the experiments
we have run to generate our conclusions.

The general architecture of CiNiSMO is described in Figure 6.1. At the cen-
ter, we observe the component called �CiNetwork�. This one is in charge of cre-
ating n peers using the component �Core Node�. The core node delegates every
message it receives to another component which implements the algorithms of a
particular network. Currently, we have implemented in CiNiSMO the relaxed
ring [MV08], Chord [SMK+01], Fully connected networks and Palta [CMV+08].
To add a new kind of network to this simulator it is su�cient to create the cor-
respondent component that handles the messages delegated by the core node.

Every core node transmit information about the messages it receives to a
component called �Stats�, which can summarize information such as how many
lookup messages were generated, or how many crash events were triggered. The
component that typically demands this kind of information is the �Test�. This
is another component that can be implemented to de�ne the size of the network
and the kind of event we want to study. Only one CiNetwork is created per
Test. When the relevant information is gathered, it is sent to a �Logger�, which
outputs the results into a �le.

Since it is cumbersome to run every test individually many times, it is pos-

6.2. BRANCHES IN THE RELAXED RING 111

sible to implement the component called �Master Test�, which can organize the
execution of many testing, changing the seed for random generation numbers,
or a parameter that is used for the creation of the CiNetwork. The software
can be dowloaded at http://beernet.info.ucl.ac.be/cinismo, with docu-
mentation on how to use it.

6.2 Branches in the Relaxed Ring

To test the amount of branches that appear on a network, we have bootstrapped
networks with di�erent sizes, and using di�erent seeds for random number
generation. Every networks starts with a single node, and peers are constantly
joining until the network reaches the desire size. Even though there are no
failures, the joining activity generates a considerable amount of churn. Since
the relaxed ring maintenance is based on correction-on-change, there is no rate
we can provide for the churn until we compare it with Chord rings, because
then we introduce periodic actions that can be compared with churn.

Figure 6.2 shows the amount of branches that can appear on networks with
1,000 to 10,000 nodes. The coe�cient q represents the quality of network's
connectivity, where q = 0.95 means that when a node contacts another one,
there is only a 95% of probability that they will establish connection. A value
of q = 1.0 means 100% of connectivity. On that value, no branches are created,
meaning that the relaxed ring behaves as a perfect ring on fault-free scenarios.
The worse case corresponds to q = 0.9. In that case, we can observe that the
amount of branches is less than 10% of the size of the network, as expected.
Consider peers i and k, where i is the current predecessor of k. If they cannot
talk to each other, k will form a branch. If another peer j joins in between i
and k having good connection with both peers, the branch disappears.

On the contrary, if a node l joins the network between k and its successor,
it will increase the size of the branch, decreasing the routing performance. For
that reason, it is important to measure the average size of branches. If message
hint, explained in section 3.8, works well for peer l, then, the branch will remain
on size 1. Having this in mind, let us analyse �gure 6.3. The average size of
branches appears to be independent of the size of the network. The value is very
similar for both cases where the quality of the connectivity is poor. In none of
the cases the average is higher than 2 peers, which is a very reasonable value.
If we want to analyse how the size of branches degrades routing performance
of the whole network, we have to look at the average considering all nodes that
belong to the core ring as providing branches of size 0. This value is represented
by the curves totalavg on the �gure. In both cases the value is smaller that
0.25. Experiments with 100% of connectivity are not shown because there are
no branches, so the average size is always 0.

The chosen values for quality q are a bit worse than some real measurements
on the internet. The King Data Set [GSG02] has 0.8% of the nodes that cannot
connect with each other. According to [FLRS05], 2.3% of all pairs of nodes

http://beernet.info.ucl.ac.be/cinismo

112 CHAPTER 6. EVALUATION

 0

 200

 400

 600

 800

 1000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

B
ra

n
c

h
e

s

Peers

q=0.90
q=0.95
q=1.00

Figure 6.2: Average amount of branches generated on networks with connectiv-
ity problems. Networks where tested with peers having a connectivity quality q,
representing the probability of establishing a connection between peers, where
q ∈ {0.9, 0.95, 1}.

 0

 0.5

 1

 1.5

 2

 2.5

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

S
iz

e
 o

f
B

ra
n

c
h

 (
p

e
e

rs
)

Peers

avg with q=0.90
avg with q=0.95

total avg with q=0.90
total avg with q=0.95

Figure 6.3: Average size of branches depending on the quality of connections:
avg corresponds to existing branches and totalavg represents how the whole
network is a�ected.

6.3. BANDWIDTH CONSUMPTION 113

 0

 5000

 10000

 15000

 20000

 25000

 30000

 35000

 40000

 45000

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e

s
s

a
g

e
s

Peers

total with q=0.90
total with q=0.95
total with q=1.00
hint with q=0.90
hint with q=0.95
hint with q=1.00

Figure 6.4: Number of messages generated by the relaxed ring maintenance.
Three curves labeled total represent the total amount of messages exchanged
between all peers depending on the connectivity coe�cient. Curves labeled
hint represent the contribution of hint messages to the total amount.

in PlanetLab [The03] cannot talk to each other. Therefore, our values for
coe�cient q seems to be reasonable to study the relaxed ring.

6.3 Bandwidth Consumption

In this section we try to answer the following questions: How many messages
are exchanged by peers to maintain the relaxed ring structure? How much is
the contribution of the hint messages to the bandwidth consumption so that
branches are kept short? These questions are answered in �gure 6.4. We can
observe that the amount of messages increases linearly with the size of the
network keeping reasonable rates. The fault-free scenario has no hint messages
as expected, but the total amount of messages is still pretty similar to the cases
where connectivity is poor. This is because there are less normal join messages
in case of failures, but this amount is compensated by the contribution of hint
messages. We observe anyway that the contribution of hint messages remains
low.

6.4 Comparison with Chord

As we previously mentioned, we have also implemented Chord in our simu-
lator CiNiSMO. Experiments were only run in fault-free scenarios with full
connectivity between peers, and thus, in better conditions than our experi-
ments with the relaxed ring. The idea is to respect the assumptions made by

114 CHAPTER 6. EVALUATION

Chord authors as much as possible. We make our comparison considering two
parameters: lookup consistency and bandwidth consumption.

6.4.1 Lookup Consistency

Even though the connectivity conditions of the experiments running Chord
were much better than those of the relaxed ring, we observed many lookup
inconsistencies on high churn. To reduce inconsistency, we trigger periodic sta-
bilization on all nodes at di�erent rates. The best results appeared when only
4 nodes joined the ring in between every periodic stabilization. The amount of
nodes joining the ring during that period is what we call stabilization rate. As
seen in �gure 6.5, the larger the network, the less inconsistencies are found. An
inconsistency is detected when two reachable nodes are signalled as responsible
for the same key. We can observe that stabilization rates of 5 converges pretty
fast to 0 inconsistencies. Stabilization every 6 new joining peers only converge
on networks of 4000 nodes. On the contrary, rate values of 7 and 8 presents
immediately a high and non-decreasing amount of inconsistencies. Those net-
works would only converge if churn is reduced to 0. These values are compared
with the worse case of the relaxed ring (connectivity factor 0.9) where no incon-
sistencies where found. In this experiment, every instance of a Chord network
of a given size was run with six di�erent random number generators. What it
is shown in the graph is the average of those instances.

6.4.2 Bandwidth Consumption

We have observed that lookup consistency can be maintained in Chord at very
good levels if periodic stabilization is triggered often enough. The problem
is that periodic stabilization demands a lot of resources. Figure 6.6 depicts
the load related to every di�erent stabilization rate. As expected, the highest
cost corresponds to the most frequently triggered stabilization. Observing Fig-
ures 6.5 and 6.6, it seems that the cost of periodic stabilization pays back in
networks with sizes until around 3000 nodes, because the level of lookup con-
sistency is still good. But, this cost seems too expensive with larger networks.

In any case, the comparison with the relaxed ring is considerable. While
the relaxed ring does not pass 5× 104 messages for a network of 10000 nodes,
a stabilization rate of 7 on a Chord network, starts already at 2× 105 with the
smallest network of 1000 nodes. Figure 6.6 clearly depicts the di�erence on the
amount of messages sent. The point is that there are too many stabilization
messages triggered without modifying the network. On the contrary, every join
on the relaxed ring generate more messages, but they are only triggered when
they are needed.

6.4. COMPARISON WITH CHORD 115

 0

 100

 200

 300

 400

 500

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

P
e

e
rs

 w
it

h
 i

n
c

o
s

is
te

n
t

lo
o

k
u

p

Peers

chord stab rate 5
chord stab rate 6
chord stab rate 7
chord stab rate 8

rlx-ring with q=0.90

Figure 6.5: Amount of peers with overlapping ranges of responsibilities, intro-
ducing lookup inconsistencies, on Chord networks under di�erent stabilization
rates for di�erent network sizes. Comparison with the relaxed ring with a
bad connectivity. The stabilization rate represents the amount of peers join-
ing/leaving the network between every stabilization round. The value of zero
in the Y-axis has been raised to spot the curve of the relaxed ring and Chord
with a very frequent stabilization rate equal to 5.

 1000

 10000

 100000

 1e+06

 1e+07

 1e+08

 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

M
e

s
s

a
g

e
s

Peers

chord stab rate 5
chord stab rate 6
chord stab rate 7
chord stab rate 8

rlx-ring with q=0.90

Figure 6.6: Load of messages in Chord due to periodic stabilization, compared
to the load of the relaxed ring maintenance with bad connectivity. Y-axis
presented in logarithmic scale.

116 CHAPTER 6. EVALUATION

6.5 E�ciency of the Routing Table

This section presents an analysis of the results obtained by simulating palta,
the self-adaptable �nger table we described in Section 3.9. This �nger table
uses a full mesh graph when the estimated size of the network is smaller than
a given value ω. When this threshold is reached, the �nger table of new peers
will only work with DKS �ngers. If network's size decrements back below the
value of ω, all peers with adapt their �nger tables to get closer to a full mesh,
taking more advantage of the connectivity.

To validate this �nger table strategy, we simulate with two di�erent values
of ω, and we compare them with the relaxed ring using plain DKS, and with
fully connected network, which always have full mesh connectivity. To measure
the e�cient use of resources, we have measured the average amount of active
connection a node has in every of these networks. To study the performance
of the topologies, we have measured the total amount of messages needed to
build the network, and the average hops needed to perform a lookup.

Every topology is tested by building networks from 20 to 1000 nodes, in-
creasing the size by 20 nodes at every iteration. Plotted values represent the
average of running every experiment with several seeds for random number
generation. In the case of palta, we tested the algorithm using two di�erent
values for ω, being 100 and 200. Reaching 1000 nodes might be considered not
large enough for large scale networks, but it is enough to observe the behavior
after the ω threshold is reached and extrapolate the scalability from the curves
obtained.

6.5.1 Active Connections

One of the goals of palta is to dynamically adapt its topology to optimize the
use of the network. For small networks, that means that we want to directly
connect as much peers as possible to reach every peer in the minimum amount
of hops. Small is de�ned in terms of the ω value.

Figure 6.7 shows the average amount of active connections per peer in the
di�erent topologies. We can observe that the fully connected network incre-
ments the amount of connections linearly, and therefore, it does not scale at
all. Part of the curve is missing, but it clearly corresponds to n−1, being n the
size of the network, because every node is connected to all the other peers. As
expected, the relaxed ring with plain DKS appears as the topology where peers
manage the smallest amount of connections, showing that it has good scala-
bility for large networks. Let us analyze now the behavior of palta. In both
cases, with ω 100 and 200, we observe that the amount of connections increases
linearly as a fully connected network until reaching ω peers. From that point
on, the average of connections decreases very fast, converging asymptotically
to the values of the relaxed ring. This is because all new nodes that join the
network after the threshold of ω is reached, create only the amount of �ngers
needed by a relaxed ring. In fact, ω peers manage ω−1 connections, and N−ω

6.5. EFFICIENCY OF THE ROUTING TABLE 117

peers manage k �ngers, with N being the size of the network. Meaning that
the larger the network, the smallest the average. Of course, this decreasing
behavior continuous until it almost reaches the curve of the relaxed ring, then,
the average can only increase according to the size of the network.

 0

 100

 200

 300

 400

 500

 0 100 200 300 400 500 600 700 800 900 1000

N
u

m
b

e
r

o
f

C
o

n
n

e
c

ti
o

n
s

Peers

Fully Connected
PALTA w=100
PALTA w=200

Rlx-Ring + DKS

Figure 6.7: Average amount of active connections vs number of peers. This
chart evaluates if a small network take advantage the proximity by opening
more networks, and it validates the scalability of the solution.

In conclusion, Figure 6.7 shows us that palta uses actively more resources
than a regular ring, but it is capable of self-adapting when the network becomes
too large and provide a good scalability.

6.5.2 Network Tra�c

When peers enter in a distributed network, they generate a number of messages
to correctly join without leading the network to an unstable state. In the case
of a fully connected network, the joining peer will always need 2 ∗ n messages
to contact all peers in a network of size n. Therefore, the cost of a new joining
peer increases as the size of the network increases. In our simulation we contact
directly every peer. In case a broadcast mechanism is used to propagate the
join of a new peer, n messages are needed to reach every peer, plus n message
to acknowledge the new peer, making 2 ∗ n messages. These measurements
about fully connected network do not apply to small networks using Bluetooth,
where one hop broadcasting is available. On the other hand, Bluetooth cannot
currently handle the amount of connection we are testing. They actually belong
to a di�erent problem domain.

In the relaxed ring with plain DKS, the joining peer needs to send messages
for contacting the predecessor, successor and the k �ngers. Therefore, the
marginal cost of a joining peer is almost independent of the size of the network.

118 CHAPTER 6. EVALUATION

The only di�erence occurs with the amount of messages needed for localizing
the k �nger, which increases logarithmically with respect to the size of the
network, as we will see in Section 6.5.3.

Figure 6.8 does not show the marginal cost of joining a network, but the
total amount of messages generated to construct every network we have studied
in section 6.5.1. We can see that with less active connections, as in palta or
the relaxed ring, the number of messages remains small, generating less net-
work tra�c. The curve of the fully connected network increases quadratically,
generating n ∗ (n − 1) messages, with n being the size of the network, we can
conclude that this network cannot scale.

The curve of the relaxed ring with DKS shows a constant and controlled
increment in the amount of messages, keeping them at a very low rate, showing
that it scales very well. Now, the results obtained from experiments with
palta are very interesting because both perform better than the ring for larger
networks. One can observe that palta with ω = 100 and ω = 200 increases
quadratically the amount of messages, as in a fully connected network. This
happens only until the network reaches a size of ω peers. Then, the amount of
messages increases slower that in a ring, and furthermore, after a certain size
of the network, both palta networks remain at better values that the relaxed
ring. The explanation for this is that when a new peer join in the network, it
needs less messages to �nd the k �ngers. This is because palta has ω peers
with a larger routing table (ω > k), making a more e�cient jump during the
routing process. We study this further in the following section.

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 100 200 300 400 500 600 700 800 900 1000

M
e

s
s

a
g

e
s

Peers

Fully Connected
PALTA w=100
PALTA w=200

Rlx-Ring + DKS

Figure 6.8: Total amount of messages to build the network vs number of peers.
This chart evaluates how costly is every network. It is interesting to see that
PALTA networks start by behaving as a fully connected network, but then they
are more e�cient than the relaxed ring with DKS. This is explained in the next
chart.

6.6. TRAPPIST'S PERFORMANCE 119

This means that the cost of maintaining a small fully connected network can
help a larger network to be more e�cient for routing, generating less network
tra�c. We observe that palta could not only be used for ambient intelli-
gent networks as it was in their original conception, but also as the topology
for large scale systems. This is why we have actually adopted palta for the
implementation of Beernet.

6.5.3 Hops

To con�rm our conclusions from the previous experiment, we decided to mea-
sure the average amount of hops needed for a message to reach its destination.
This is known as a lookup operation in a ring. This experiment does not con-
sider fully connected networks, because there is no concept of responsibility
is such systems. In addition, because of its characteristics, peers in a fully
connected network reach any other peer in the network in 1 hop.

In Figure 6.9 we can observe the results obtained. The relaxed ring with
DKS �ngers shows that the number of needed hops increase logarithmically
when the network size increases. palta performs better than the relaxed ring
due to fact that some peers have a larger routing table, con�rming the results
from the previous experiment. In both cases, palta presents an average number
of hops slightly smaller than 2 if the network consist of less than ω peers.
This is because the network is fully connected, and therefore, in can reach
the predecessor of the responsible of the looked up key in only one hop. The
second hop is needed to reach the responsible. The average is smaller than 2
because the randomized experiments sometimes generates lookups where the
responsible is the peer triggering the lookup.

After the value of ω is reached, the average increases faster in palta with
ω = 100 than with ω = 200. This is clearly due to the amount of peers having
a larger routing table. We observe that in both cases the system behaves much
better than the ring. We expect that for larger networks the value would
converge to the curve of the ring, but still performing better. What we cannot
currently explain is the behavior of palta with ω = 100 when the network is in
between 100 and 200 nodes. It seems to perform even better than a ω = 200.

Something that we still need to investigate is the construction of a network
where every peer de�nes its own ω value according to its own resources. That
behaviour would allow us to use palta in networks formed by heterogeneous
devices, where each one of them is limited by its own resources.

6.6 Trappist's Performance

It has been claimed in Chapter 5 that Paxos-consensus algorithm can pro-
vided transactional support to DHTs without strong consistency and with a
reasonable cost in performance. It is also claimed that key/value-sets can beat
the performance of key/value pairs thanks to the relaxation in ordering and

120 CHAPTER 6. EVALUATION

 1

 2

 3

 4

 5

 6

 7

 8

 9

 10

 0 100 200 300 400 500 600 700 800 900 1000

A
v

g
 h

o
p

s

Peers

Rlx-Ring + DKS
PALTA w=100
PALTA w=200

Figure 6.9: Average number of hops vs number of peers. The relaxed ring with
DKS �ngers follows a logarithmic distribution in the amount of hops that are
needed to reach any peer in the network. PALTA network converge to this
value for large networks, but they remain lower because there are some peers
with more connections than the average peer in the network, providing a more
signi�cant jump to complete the lookup request.

versioning, deriving in a transactional protocol without distributed locks. To
verify those claims, we have implemented two-phase commit, Paxos-consensus,
and transactional key/value-sets directly in Beernet. Details on the implemen-
tation architecture will be described in detail in Chapter 7. In this section we
will study the performance and scalability of the system, and we will compare
the performance of concurrent modi�cations to a single set.

6.6.1 Scalability

To measure scalability, we have built a Beernet network using one of the student
labs of our Computer Science Department. Details about the hardware used
will be explained when we compare the measurements to Scalaris [SSR08]. For
this experiment, we use a network with only 16 nodes and replication factor
f = 4. The size of 16 nodes was chosen according to the maximal amount of
machines we had available at the lab, so that the best performance is achieved
by having only one node per processor.

Figure 6.10 shows the average performance of three protocols implemented
in Beernet: Paxos consensus algorithm, key/value-sets and Two-phase com-
mit. The performance is given in transactions per second. Every transaction
consisted in reading an item, incrementing its value, and writing the new item.
Running the experiment in one machine means that all 16 nodes run in a single
processor. When the experiment was run in two machines, the network was

6.6. TRAPPIST'S PERFORMANCE 121

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

T
ra

n
s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

Number of machines

Value-Sets

Paxos

Two-Phase

Figure 6.10: Average performance of Trappist's protocols. The amount of
transactions performs per second increments with the amount of machines in
use.

split so that 8 nodes run in each processor. The progression of machines was
done building the network as balanced as possible, �nally reaching 16 machines,
each of them running a single peer in the network. Every test was run 10 times
to obtained the average.

We can observe Figure 6.10 that Two-phase commit performs better than
Paxos and value-sets. This result is expected because Two-phase commit does
not work with replicated transaction managers, it has one round less of mes-
sages, and in total, it sends 2f2 less messages that Paxos. However, the test
does not include failures, and therefore, the evaluation of Two-phase commit
is the best possible, because the protocol does not tolerate failures very eas-
ily. The goal of measuring this protocol is to understand the cost of using
replicated transaction managers, and to establish a maximum performance to
target. According to Scalaris measurements [SRHS10], it is possible to tune
Paxos so that it gets closer to Two-phase commit performance. We see this as
part of our future work.

An interesting result that we observe on the plot is that performance im-
proves immediately by adding a second machine. The in�uence of the network
latency in the performance is much less than the gain in parallelism by using two
processor to run the network. A nice consequence is that adding more nodes
keeps on improving the performance of the system, highlighting its scalability.

The better performance of Value-sets over Paxos is consistent during the
whole experiment. This result con�rms our claim that using lock-free protocols
improves the performance of the protocol.

Figure 6.11 adds the standard deviation to the average results presented

122 CHAPTER 6. EVALUATION

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 1800

 0 2 4 6 8 10 12 14 16

T
ra

n
s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

Number of machines

Value-Sets

Paxos

Two-Phase

Figure 6.11: Average performance of Trappist protocols including standard
deviation. The di�erence between the three protocols is consistent through the
di�erent amount of machines.

in Figure 6.10. We can observe that the data is consistent though the whole
experiment showing that Two-phase commit is constantly better that Value-
Sets, which is constantly better than Paxos.

We have mentioned several times that Scalaris is the closest related work to
Beernet's Trappist layer. Their measurements in performance and scalability
presented in [SRHS10] inspired our validation tests, and therefore, we would
like to analyse how the results are related. First of all, it is not possible to
really compare the numbers because of the di�erence in hardware and network
speed, but we provide some information to understand the di�erences.

The numbers shown in [SRHS10] are the best performance results Scalaris
could obtained. Therefore, we have built Figure 6.12 with the best performance
we obtained. Scalaris used a cluster with 16 nodes. Each node has two Dual-
Core Intel Xeon running at 2.66 GHz and 8 GB of RAM. That makes 4 cores in
total per machine. In our student lab, each node has a single core Intel Pentium
4 running at 3.2 GHz and 1 GB of RAM. That makes 1 core per machine. A
more important di�erence is that Scalaris run on a cluster where nodes where
connected via GigE providing 1,000 Mbps. Our machines where connected via
LAN with network cards running at 100 Mbps.

For the case of Paxos, the best number after 10 experiments running on 16
machines was 1,114 transactions per second. For Value-sets, we were able to
run 1,350 transactions per second. We should not compare this number with
16 machines on Scalaris because each of them has 4 cores. Therefore, we should
look at their results with 4 machines which is close to 5,000 transactions. Their
improved version of Paxos reduces the 3 coordination rounds to 2, making it

6.6. TRAPPIST'S PERFORMANCE 123

 0

 500

 1000

 1500

 2000

 2500

 0 2 4 6 8 10 12 14 16

T
ra

n
s
a

c
ti
o

n
s
 /

 s
e

c
o

n
d

Number of machines

Value-Sets

Paxos

Two-Phase

Figure 6.12: Best performance obtained. We can observe that Paxos passed
the line of 1,000 transactions per second with 16 machines. Key/Value-Sets
did it already with 12 machines.

already a factor of 1.5 better. We can guess that the remaining factor of
di�erence might be in�uenced by the di�erence in communication speed. Their
nodes not only communicate faster in the cluster, but they have groups of 4
cores running on the same machine. In fact, their performance measurements
shows that 2 nodes run slower that a single node with 4 cores. That means that
network latency is really an issue. In our results, we just get improvements in
performance by adding nodes. Another point to consider is that Scalaris tests
were run with exclusive access to the cluster, whereas the student lab is a
shared resource in our department, were the machines are constantly used to
provide grid computing.

Coming back to our comparison between Paxos and Two-phase commit,
despite the disadvantage in speed, we know that Two-Phase commit is much
less robust than Paxos, and therefore, the extra cost pays o�. Furthermore,
there is an important advantage of using the majority of the replicas to commit
the changes, instead of all of them as we will see in the next section.

6.6.2 Concurrent Modi�cations

The plot presented in Figure 6.13 spots the main advantage of using consensus,
relaxing order of values in a set, and as consequence, avoiding locks to store
items. For this experiment we come back to our simulation environment due to
the limitations of the size of the computer lab. For these measurements we use
networks of 256 peers and we work with data collections implemented using
key/value pairs and key/value-sets. The former ones are modi�ed using Paxos

124 CHAPTER 6. EVALUATION

0

1

2

3

4

5

6

 0 10 20 30 40 50 60 70

T
im

e
 i
n

 s
e

c
o

n
d

s

Concurrent additions to a single set

Value-Sets
Paxos

Two-Phase

Figure 6.13: Concurrent transactions over the same set.

and Two-phase commit, whereas the latest are modi�ed using out lock-free
protocol for unordered set without versions. The test consists on performing
N concurrent additions to a single set, measuring the needed time to complete
all modi�cations. Each transaction was initiated on a di�erent peer as with
the previous measurements. Every time a transaction was aborted because of
not obtaining the necessary locks, the transactions was retried after waiting
a random time less than 42 milliseconds. In previous tests we eagerly retried
every transaction with really bad results for Paxos and Two-phase commits.
For instance, Two-phase commit was taking around 15 seconds to commit 40
transactions. With the new strategy of waiting a random time, 40 modi�cations
to a set takes less than 2 seconds using Two-phase commit.

Figure 6.13 also includes the standard deviation of the average times. We
can observe that Two-Phase commit consistently has the worse performance
because it needs to gather all locks from all replicas. Therefore, its chances to
succeed are less than Paxos. Starting from around 46 concurrent modi�cations,
Paxos performs much better because it only needs to gather the majority of
the locks to commit. The clear advantage can be observed in the curve of the
Value-Sets. Its performance is not a�ected when running several transactions
on the same item and it remains very stable across the whole experiment. Even
with 70 modi�cation to a single set, it average 258 milliseconds.

To see how close the simulation results can be to real networks, we per-
formed the same test in the computer lab using the two extreme protocols:
two-phase commit and value-sets. The main di�erence is that networks are
composed by only 16 nodes running on 16 machines communicating through
LAN protocol. Given that, we tested from 3 to 15 concurrent modi�cations
to the same sets, with increments of 3 for each test. The average are depicted

6.7. THE INFLUENCE OF NAT DEVICES 125

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 2 4 6 8 10 12 14

T
im

e
 i
n

 m
ill

is
e

c
o

n
d

s

Concurrent additions to a single set

Value-Sets
Sim Value-Sets

Two-Phase
Sim Two-Phase

Figure 6.14: Comparing simulations with results obtained running an equiva-
lent experiment on the computer lab.

in Figure 6.14, together with the simulation results. We can observe that re-
sults are consistent and closely related. Value-sets still performs better than
Two-phase commit working even a bit faster than our simulation results. Two-
phase commit also works faster than its simulation, but it is still around 3 times
slower that value-sets.

6.7 The In�uence of NAT Devices

During the �rst part of this chapter, we analysed the behaviour of the relaxed
ring and Chord with connectivity quality q from 0.9 to 1, where a quality of
q = 1 imply a perfectly connected network with transitive connectivity. A
connectivity of q = 0.9 represents an arti�cially bad scenario for nodes having
public IP addresses. However, when we introduce network address translation
(NAT) devices, the statistics show that we could have up to 80% of peers
behind NATs, making it a quality of q = 0.36 as we will explain later. This
evaluation is the result of a collaboration with John Ardelius, who compiled
the plots presented in this section.

6.7.1 Related Work on the Study of NATs

Understanding how peer-to-peer systems behave on the Internet has received a
lot of attention in the recent years. The increase of NAT devices have been an
important issue and is one of the main sources for broken network assumptions
made in the design and simulation of overlay networks. The studies are mostly
related to systems providing �le-sharing, voice over IP, video-streaming and

126 CHAPTER 6. EVALUATION

video-on-demand. Such systems use overlay topologies di�erent from Chord-
like ring, or at most they integrate the ring as one of the components to provide
a DHT. Therefore, they do not provide any insight regarding the in�uence of
NAT on ring-based DHTs.

A deep study of Coolstreaming [LQK+08], a large peer-to-peer system for
video-streaming, shows that at least 45% of their peers sit behind NAT de-
vices. They are able to run the system despite NATs relying on permanent
servers logging successful communication to NATted peers, to be reused in
new communication. In general, their architecture rely on servers out of the
peer-to-peer network to keep the service running. A similar system, that in ad-
dition to streaming provides video-on-demand, is PPLive. Their measurements
on May 2008 [HFC+08] indicates 80% of peers behind NATs. The system also
uses servers as loggers for NAT-traversal techniques, and the use of DHT is
only as a component to help trackers with �le distribution.

With respect to �le-sharing, a study on the impact of NAT devices on
BitTorrent [LP09] shows that peers behind NATs get an unfair participation.
They have to contribute more to the system than what they get from it, mainly
because they cannot connect to other peers behind NATs. It is the opposite
for peers with public IP addresses because they can connect to many more
nodes. It is shown that the more peers behind NATs, the more unfair the
system is. According to [JOK09], another result related to BitTorrent is that
NAT devices are responsible for the poor performance of DHTs as �DNS� for
torrents. Such conclusion is shared by apt-p2p [DL09] where peers behind NATs
are not allowed to join of the DHT. Apt-p2p is a real application for software
distribution used by a small community within Debian/Ubuntu users. It uses a
Kademlia-based [MM02] DHT to locate peers hosting software packages. Peers
behind NATs, around 50% according to their measurements, can download
and upload software, but they are not part of the DHT, because they break
it. To appreciate the impact NAT devices are having on the Internet, apart
from the more system speci�c measurements referenced above, we refer to the
more complete quantitative measurements done in [DPS09]. Taking geography
into account, it is shown that one of the worse scenarios is France, where
93% of nodes are behind NATs. One of the best cases is Italy, with 77%.
Another important measurement indicates that 62% of nodes have a time-
out in communication of 2 minutes, which is too much for ring-based DHT
protocols. Being aware of several NAT-traversal techniques, the problem is
still far from being solved. We identify Nylon [KPQS09] as promising recent
attempt to incorporate NATs in the system design. Nylon uses reactive hole
punching protocol to create paths of relay peers to set-up communication. In
their work a combination of four kinds of NATs is considered and they are
being able to traverse all of them in simulations and run the system with 90%
of peers behind NATs. However, their approach does not consider a complete
set of NAT types. The NATCracker [REAH09] makes a classi�cation of 27
types of NATs, where there is a certain amount of combinations which cannot
be traversed, even with the techniques of Nylon.

6.7. THE INFLUENCE OF NAT DEVICES 127

6.7.2 Evaluation Model

We will use a slightly di�erent evaluation model to study the impact of NAT
devices in ring-based networks. We still keep the quality of connectivity factor
q that we used in the �rst part of the chapter, but now we compute it in a
di�erent way, which we call the c-model. In this c-model, we consider only two
groups of nodes: open peers and NATted peers. An open peer is a node with
public IP address or sitting behind a traversable-NAT, meaning that it can
establish a direct link to any other node. A NATted peer is a node behind a
NAT that cannot be traversed from another NATted peer, or that it is so costly
to traverse that it is not suitable for peer-to-peer protocols. Open peers can
talk to NATted peers, but NATted peers cannot talk with each others. In the
model, each node has a probability p of being a NATted peer. The connectivity
quality q of a network, that is the fraction of available links, is

q = 1− c = 1− p2 (6.1)

In the rest of the section we will use c to denote the square root of the proba-
bility of being a NATted peer, and, the fraction of unavailable links.

6.7.3 Skewed Branches

In the case the amount of NATted peers is not larger than half of the size of
the network, it is always possible, in theory, to con�gure a perfect ring. By
placing every NATted peer in between two open peers all links are available
to communication. Of course, such situation is very unlikely to happen in a
dynamically changing network as branches are created as soon as a NATted
peer succeeds another. Even in theory, however, it is impossible to avoid two
consecutive NATted peers is if the network contains more NATted than open
peers.

In Chord, it is mandatory for the joining peer to be able to talk to its
successor to perform maintenance. When a branch is created because two
peers p and q cannot communicate, q being the joining peer, both nodes will
have the same successor s. A new NATted peer having identi�er k ∈]p, q] will
not be able to join because it cannot communicate with its successor candidate
q. Given that, the new peer will get a new identi�er and try to re-join. If it then
receives an identi�er r ∈]q, s] the peer will join successfully, but in a branch. As
more and more NATted peers join the network however, it becomes impossible
for a NATted peer to join in ranges]p, q] and]q, r]. This situation creates a
skewed distribution for the range of available places to join the ring, allowing
joining NATted peers to join only closer and closer to the root. Figure 6.15
depicts how the situation evolves with more NATted peers.

As the value of c increases, more NATted peers will be part of the network
saturating the branches, shrinking the space for new peers to join. Given that,
a peer will need several attempts trying to rejoin the network until �nding a
key-range where it can connect to the root of a branch. Figure 6.16 shows

128 CHAPTER 6. EVALUATION

Figure 6.15: Skewed distribution in a branch, shrinking the space for joining.

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 0 0.2 0.4 0.6 0.8 1

re
-j
o

in
 a

tt
e

m
p

ts
/j
o

in

c

N=100
N=400

N=1600

Figure 6.16: Average number of re-join attempts before a node is able to join
the ring for di�erent values of c. Vertical lines indicate the point where a some
node in the system needs to re-try more than 10,000*N times.

the amounts of re-join attempts as function of c, the variance is presented in
Figure 6.17. We can observe a critical value of c ≈ 0.8 where the amount of
attempts is super exponential, meaning basically that no more peers can join
the network. This could represent a phase-transition that we will investigate
further as future work.

6.7.4 Resilience

Successor List The basic resilience mechanism of ring-based DHTs is the
successor list, which contains consecutive peers succeeding the current node.
The accuracy of the list is important for e�ciency, but it is not crucial for failure
recovery. Inaccuracies can be �xed with periodic stabilisation (proactive) as in
Chord, or some other mechanism such as correction-on-change (reactive), as we
do in the relaxed ring. Resilience is independent of having accurate consecutive

6.7. THE INFLUENCE OF NAT DEVICES 129

 0.0001

 0.001

 0.01

 0.1

 1

 10

 100

 1000

 0 0.2 0.4 0.6 0.8 1

re
-j
o

in
 a

tt
e

m
p

ts
/j
o

in

c

N=100
N=400

N=1600

Figure 6.17: The variance of the average number of re-join attempts as function
of c.

peers in the successor list and inaccuracy only a�ects lookup consistency.
The size of the successor list, typically log(N), is the resilience factor of

the network. The ring is broken if for one node, all peers in its successor list
are dead. In the presence of NATted peers the resilient factor is reduced to
log(N) − n for nodes behind a NAT, where n is the amount of NATted peers
in the successor list. This is because NATted peers cannot use other NATted
peers for failure recovery. The decrease in resilience by the fraction of NATted
nodes is possible to cope with for low fractions c. Since there still is a high
probability to �nd another alive peer which does not sit behind a NAT the ring
holds together. In fact the NATs can be considered as additional churn and
the e�ective churn rate becomes

reff = r(1− c) (6.2)

For larger values of c, however, the situation becomes intractable. The e�ective
churn rate quickly becomes very high and breaks the ring.

Recovery List As we already mentioned, the resilient factor of the network
decreases to log(N)− n. To remedy this a �rst idea to improve resilience is to
�lter out NATted peers from the successor list. However, the successor list is
propagated backwards, and therefore, the predecessor might need some of the
peers �ltered out by its successor to maintain consistent key ranges. Due to
the non-transitivity of the model, if the successor cannot talk to some peers, it
does not imply that the predecessor cannot establish connection at all. So the
�ltering operation is not equivalent to all nodes, this technique would only end
up decreasing the average size of the successor list, and thereby,decreasing the
resilience factor.

130 CHAPTER 6. EVALUATION

Figure 6.18: Two lists looking ahead: the successor and the recovery list.

We propose to use a second list looking ahead in the ring, denoted the
recovery list. The idea is that the successor list is used for propagation of
accurate information about the order of peers, and the recovery list is used
for failure recovery, and it only contains peers that all nodes can communicate
with to, that is open peers.

The recovery list is initially constructed by �ltering out NATted peers from
the successor list. If the size after �ltering is less than log(N), the peer requests
the successor list of the last peer on the list to keep on constructing the recovery
list. Ideally, both lists would be of size log(N). Both lists are propagated
backwards as the preceding nodes perform maintenance. Figure 6.18 shows the
construction of the recovery list at a NATted peer.

Because both lists are propagated backwards, we have observed that even
for open peers is best to �lter out NATted peers from their recovery lists even
when they can establish connection to them. The reason is that if an open peer
keeps references on its recovery list, those values will be propagated backward
to a NATted peer who will not be able to use them for recovery, reducing its
resilient factor, incrementing its cost of rebuilding a valid recovery list, and
therefore, decreasing performance of the whole ring. If no NATted peer is used
in any recovery list, the ring is able to survive a much higher degree of churn
in comparison to rings only using the successor list for failure recovery.

To study the e�ciency of recovery list, we test it with di�erent values of c
and di�erent periodic stabilization rate r. The reason to use periodic stabiliza-
tion as in Chord is that it allows us to study the in�uence of churn on di�erent
ring-based overlay networks. The stabilization rate we use for this evaluation
corresponds to the average amount of stabilization rounds a peer performs in
its lifetime. A higher stabilization rate means a smaller impact of the churn.
Figure 6.19 show the average size of the recovery list as a function of both r
and c. In other words, it shows how the recovery list is a�ected as function
of churn and the amount of NATted peers. When there are no NATted peers
(c = 0), the recovery list is slightly a�ected by churn, creating no real risk for
the network. For higher values of c, it is possible to break the ring by increasing
the churn ratio. We can observe the size of the recovery list dropping rapidly
before the ring breaks. The higher the c, the lower the churn ratio needed to
break the ring.

Permanent Nodes To make the ring resilient to extreme conditions of churn
and large amount of NATted peers our study shows that it is necessary to

6.8. CONCLUSION 131

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 10 20 30 40 50 60 70

lis
t

le
n

g
h

t

stabilisation rate, r

c=0
c=0.5

c=0.75
c=0.85

Figure 6.19: Size of the recovery list for various c values as function of stabil-
isation rate. Before break-up there is a rapid decrease in number of available
pointers.

introduce permanent open peers, and keep some of them in the recovery list
of each peer. This strategy does not go against the self-organisation property
of the system, nor against self-con�guration. It only adds prede�ned resilient
information to each peer. It can be seen as a requirement for service providers
that want to guarantee the stability of the system.

Figure 6.20 shows a Chord ring with a large amount of NATted peers.
We can observe that the core ring contains very few nodes, which are mainly
permanent open peers. There are also some NATted peers in the core ring
between open peers. As expected, the open peers at the core ring become
overloaded for routing, but at least, the ring survives the extreme conditions.

Having permanent nodes is a technique already used by existing peer-to-
peer systems. In apt-p2p [DL09], bootstrapping peers running on Planet-
Lab are used to keep a Kademlia ring alive. Coolstreaming [LQK+08] and
PPLive [HFC+08] use logging servers to help NATted peers to establish com-
munication with other peers. These examples indicates that using permanent
nodes appear as a feasible approach to keep the service running.

6.8 Conclusion

This chapter has helped us to validate our claims from Chapters 3 and 4. We
have shown that the relaxed ring presents much less lookup inconsistencies com-
pared to Chord. This result is observed even when we tested the relaxed ring
with worse connectivity quality than Chord. We also observed that correction-
on-change provides cost-e�cient ring maintenance, specially compared to peri-

132 CHAPTER 6. EVALUATION

Figure 6.20: The ring survives high churn and large amount of NATted peers.
However, hotspots are created in the core ring.

odic stabilization. Relaxing the structure not only improve consistency, but it
also reduced maintenance cost.

The price to pay due to the relaxation of the ring is an extra routing cost.
Chord achieves O(logN) and the relaxed ring adds the size of branches to that
cost. However, experimental results show that average branch's size is less
that two peers, and that the impact in the whole network is actually less than
0.5. This means that the cost is negligible, specially if we combine the result
with palta strategy to provide a self-adaptable �nger table. palta can be
e�cient in two directions. It makes a more e�cient use of the connectivity in
small networks, and it reduces the amount of hops to resolve lookups in larger
network. This is because some peers end up with a larger routing table than
regular DKS �nger table, making more signi�cant jumps to route messages.

We designed and implemented the c −model to understand the in�uence
of NAT devices on the relaxed ring and other ring-based overlay networks.
We conclude that Chord-like rings could work only for very low values of c,
smaller than 0.05. The relaxed ring handles until c ≈ 0.8, where branches start
collapsing because they shrink the address space, not letting new peers join the
network. To improve network's resilience, we identi�ed the need for a recovery
list that �lters NATted peers to complement the successor list.

With respect to Trappist's transactional protocols, we have quanti�ed the
impact in performance of including a set of replicated transaction managers
to gain in fault-tolerance. We have also validated the improvement in perfor-
mance of lock-free transactional protocol, which is the result of relaxing order
of elements and versioning in key/value-sets.

Chapter 7
Beernet's Design and

Implementation

A beer a day keeps the doctor away

Common sense

Beernet stands for þeer-to-þeer network, where words peer and beer are
mixed. The word peer is used to emphasise the fact that this is a peer-to-peer
system. Beer is a known mean to achieve relaxation, and the relaxed -ring is the
network topology we use to built the system. This chapter describes not only
Beernet's implementation, but it also discusses the programming principles and
abstractions we have chosen to design a modular system that deals with the
intrinsic characteristic of distributed computing. We will review its architecture
and design decisions, describing how low-level errors can be hidden from higher-
levels. First, we will need to review some general concepts on concurrent and
distributed programming to understand the design decision we have taken. This
chapter is written not only in the context of self-management and decentralized
systems, but also with an interest for programming language abstraction and
software engineering.

7.1 Distributed Programming and Failures

The key issue in distributed programming is partial failure. It is what makes
distributed programing di�erent from concurrent programming. This unavoid-
able property causes uncertainty because we cannot know whether a remote
entity is ever going to reply to a message. It is also the reason why remote
procedure call and remote method invocation (RPC and RMI) are di�cult

134 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

to use. In �A note on Distribution� [WWWK94], four main concerns on dis-
tributed programming are discussed: latency, memory access, concurrency and
partial failure. Latency is not a critical problem because it does not change
the semantics of performing an operation on a local or a distributed entity. It
just makes things go a bit slower. Memory access is solved by using a virtual
machine that abstracts the access, and then it does not change the operational
semantics either. A more di�cult problem is concurrency. The middleware has
to guarantee exclusive access to the state to avoid race conditions. There are
di�erent techniques such as data-�ow, monitors or locks, that makes possible
the synchronization between processes achieving a coherent state. Given that,
and even though it is not trivial to write concurrent programs correctly, it is
not a critical problem either. What really breaks transparency is partial failure.
Basically, distribution transparency works as long as there is no failure.

A partial failure occurs when one component of the distributed system fails
and the others continue working. The failure can involve a process or a link
connecting processes, and the detection of such a failure is a very di�cult task.
In distributed environments such as the Internet, it is impossible to build a
perfect failure detector because when a process p stops responding, another
process p′ cannot distinguish if the problem is caused by a failure on the link
connecting process p or the crash of the process p itself. This explanation
might be trivial, but it is usually forgotten. Failures are a reality on distributed
systems, this is why we consider the de�nition of a distributed system given by
Leslie Lamport very accurate:

�A distributed system is one in which the failure of a computer
you did not even know it existed can render your own computer
unusable�

Even though this de�nition does not describe the possibilities of a dis-
tributed system, it makes explicit why distributed computing is special. It
is very important to know how the system handles the failure of part of the
system. We have already discussed this concept in the motivation of this dis-
sertation. We have used the concept along the analysis of the state of the art,
and we have use it in the design of the relaxed ring and the transactional layer.

The classical view of distributed computing sees partial failure as an error.
For instance, a remote method invocation (RMI) on a failed object raises an
exception. This approach actually goes against distribution transparency, as it
is explained in [GGV05] because the programmer is not supposed to make the
distinction between a local and a distributed entity. Therefore, an exception
due to a distribution failure is completely unexpected, breaking transparency.
Another less fundamental issue but still relevant, is that RMI and RPC are con-
ceived as synchronous communication between distributed processes. Due to
network latency, synchronous communication is not able to provide good per-
formance because the execution of the program is suspended until the answer
(or an exception) arrives.

7.2. EVENT-DRIVEN COMPONENTS 135

New trends in distributed computing, such as ambient intelligence and peer-
to-peer networks, see partial failure as an inherent characteristic of the system.
A disconnection of a process from the system is considered normal behaviour,
where the disconnection could be a gentle leave, a crash of the process, or
a failure on the link. We believe that this approach leads to more realistic
language abstractions to build distributed systems. We believe that the most
convenient mechanism to develop peer-to-peer applications e�ectively is by us-
ing active objects that communicate via asynchronous message passing. These
active object are very similar to actors [AMST97] . We also use fault streams
per distributed entity to perform failure handling. In this chapter we show that
this works better than the usual approach of using RMI. We de�ne our peers
as lightweight actors and we use them to build a highly dynamic peer-to-peer
network that deals well with partial failure and non-transitive connectivity.
Our model is in�uenced by the programming languages Oz [Moz08, VH04] and
Erlang [Arm96], and by the algorithms of the book �Introduction to Reliable
Distributed Programming� [GR06], which we already introduced in Chapter 3
to describe our algorithms for the relaxed ring. In the following section we de-
scribe the model more in detail, focusing also in their component architecture.

7.2 Event-Driven Components

The algorithms for reliable distributed programming presented in [GR06] are
designed in terms of components that communicate through events. Every
component has its own state, which is encapsulated, and every event is han-
dled in a mutually exclusive way. The model avoids shared-state concurrency
because the state of a component is modi�ed by only one event at the time.

Every component provides a speci�c functionality such as point-to-point
communication, failure detection, best e�ort broadcast, and so forth. Com-
ponents are organized in layers where the level of the abstraction is organized
bottom-up. A higher-level abstraction requests a functionality from a more
basic component by triggering an event (sending a request). Once the request
is resolved, an indication event is sent back to the abstraction (sending back a
reply). Algorithm 17 is taken from the book, where only the syntax has been
slightly modi�ed. It implements a best-e�ort broadcast using a more basic com-
ponent, (pp2p), which provides a perfect point-to-point link to communicate
with other processes.

The best-e�ort broadcast (beb) component handles two events: bebBroadcast
as requested from the upper layer, and pp2pDeliver as an indication coming
from the lower layer. Every time a component requests beb to broadcast a
message m, beb traverses its list of other peers, triggering the pp2pSend event
to send the message m to every peer p. Every p is a remote reference, but
it is the pp2p component which takes care of the distributed communication.
At every receiving peer, the pp2p component triggers pp2pDeliver upon the
reception of a message. When beb handles this event, it triggers bebDeliver to

136 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

Algorithm 17 Best E�ort Broadcast
upon event 〈 bebBroadcast | m 〉 do

for all p in other_peers do
trigger 〈 pp2pSend | p, m 〉

end
end

upon event 〈 pp2pDeliver | p, m 〉 do
trigger 〈 bebDeliver | p, m 〉

end

the upper layer, as seen in Algorithm 17. It is important to mention that beb
does not have to wait for pp2p every time it triggers pp2pSend, and that pp2p
does not wait for beb or any other component when it triggers pp2pDeliver. This
asynchronous communication between components means that each component
can potentially run in its own independent thread.

Using layers of components allows programmers to deal with issues concern-
ing distribution only at the lowest layers. For instance, the component beb is
conceived only with the goal of providing a broadcast primitive. The problem
of communicating with a remote processes through a point to point commu-
nication channel is solved in pp2p. If a process p crashes while the message is
being sent, it does not a�ect the code of beb, thus improving the transparency
of the component. There is no need to use something like

try 〈send m to p〉 catch 〈failure〉
It is the responsibility of pp2p to deal with the failure of p. It is also possible
that pp2p triggers the detection of the crash of p to the higher level, and then
it is up to beb to do something with it, for instance, removing p from the list of
other peers to contact. In such a case, the failure of p is considered as part of
the normal behaviour of the system, and not as an exception. Even though the
code for the maintenance of other_peers set is not given [GR06], we can deduce
it from the implementation of the other components. In Algorithm 18 the reg-
ister event is a request made from the upper layer, and crash is an indication
coming from the pp2p layer.

Algorithm 18 Best E�ort Broadcast extended
upon event 〈 bebRegister | p 〉 do

other_peers := other_peers ∪ {p}
end

upon event 〈 crash | p 〉 do
other_peers := other_peers \ {p}

end

Even though we advocate de�ning algorithms using event-driven compo-

7.3. EVENT-DRIVEN ACTORS 137

nents using the approach of [GR06], there are some important drawbacks to
consider. To compose layers, it is necessary to create a channel, connect the
components using the channel, and subscribe them to the events they will han-
dle. We �nd this approach a bit over sophisticated. It could be simpli�ed by
talking directly to a component and using a default listener only when neces-
sary. A related problem concerns the naming convention of events. The name
re�ects the component implementing the behaviour, making the code less com-
posable. For instance, if we want to use a fair-loss point-to-point link (�p2p)
instead of pp2p, we would have to change the beb code by replacing pp2pSend
by �p2pSend, and instead of handling pp2pDeliver we would have to handle
�p2pDeliver.

Since the architecture considers components and channels, an alternative
and equivalent approach would be to use objects with explicit triggering of
events as method invocation, instead of using anonymous channels. Using
objects as collaborators, they could be replaced without problems as long as
they implement the same interface. In such an approach, both �p2p and pp2p
would handle the event send and trigger deliver.

The other problem of [GR06] is that there is no explanation of how to trans-
fer a message from one process to the other. The more basic component �p2p
is only speci�ed in terms of the properties it holds, but it is not implemented.
There is no language abstraction to send a message to a remote entity.

7.3 Event-Driven Actors

As we have previously mentioned during this dissertation, we have implemented
Beernet in Mozart/Oz [Moz08]. Mozart is an implementation of the Oz lan-
guage, a multi-paradigm programming language supporting functional, concur-
rent, object-oriented, logic and constraint programming [VH04]. It o�ers sup-
port for distributed programming with a high degree of transparency. Thanks
to the multi-paradigm support of Oz, we were able use more convenient lan-
guage abstractions for distribution and local computing while building Beernet.
In this section we discuss the basic language abstractions that we considered
appropriate and necessary to implement event-driven components. In addition,
we discuss the abstractions that allowed us to improve the approach towards
an event-driven actor model, that we also call active objects.

7.3.1 Threads and Data-Flow Variables

One of the strengths of the Oz language is its concurrency model which is
easily extended to distribution. The kernel language is based on procedural
statements and single-assignment variables. When a variable is declared, it
has no value yet, and when it is bound to a value, it cannot change the value.
Attempting to perform an operation that needs the value of such a variable
will wait if the variable has no value yet. In a single-threaded program, that

138 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

situation will block forever. In a multi-threaded program, such a variable is
very useful to synchronize threads. We call it a data-�ow variable. Oz provides
lightweight threads running inside one operating system process with a fair
thread scheduler.

The code in Algorithm 19 shows a very simple example of data-�ow syn-
chronization. First, we declare variables Foo and Bar in the main thread of
execution. Then, a new thread is created to bind variable Bar depending on
the value of Foo. Since the value of Foo is unknown, the `+' operation waits. A
second thread is created which binds variable Foo to an integer. At this point,
the �rst thread can continue its execution because the value of Foo is known.

Algorithm 19 Threads and data-�ow synchronization

declare Foo Bar
thread Bar = Foo + 1 end
thread Foo = 42 end

This synchronization mechanism does not need any lock, semaphore, or
monitor, because there is no explicit state, and therefore, no risk for race con-
ditions. The values of Foo and Bar will be the same for all possible execution
orders of the threads. Single-assignment variables are also used in languages
such as E [MTSL05] and AmbientTalk [DVM+06, VMG+07], where they are
called promises or futures. They are combined with the when operator as one
of the mechanisms for synchronization.

The execution of a concurrent program working only with single-assignment
variables is completely deterministic. While this is an advantage for correct-
ness (race conditions are impossible), it is too restrictive for general-purpose
distributed programming. For instance, it is impossible to implement a server
talking to two di�erent clients. To overcome this limitation, Oz introduces
Ports, which are described in the following section.

7.3.2 Ports and Asynchronous Send

A port is a language entity that receives messages and serializes them into an
output stream. After creating a port, one variable is bound to the identity of
the port. That variable is used to send asynchronous messages to the port. A
second variable is bound to the stream of the port, and it is used to read the
messages sent to the port. The stream is just like a list in Lisp or Scheme,
a concatenation of a head with a tail, where the tail is another list. The list
terminates in an unbound single-assignment variable. Whenever a message is
sent to the port, this variable is bound to a dotted pair containing the message
and a fresh variable.

Algorithm 20 combines ports with threads. First we declare variables P
and S. Then, variable P is bound to a port having S as its receiving stream.
A thread is created with a for-loop that traverses the whole stream S. If there

7.3. EVENT-DRIVEN ACTORS 139

is no value on the stream, the for-loop simply waits. As soon as a message
arrives on the stream, it is shown on the output console. A second thread is
created to traverse a list of beers (BeerList, declared somewhere else), and to
send every beer as a message to port P . This is a like a barman communicating
with a client. Everybody who knows P can send a message to it, as in the third
thread, where the list of sandwiches is being traversed and sent to the same
port. Beers will appear on the stream in the same order they are sent. Beers
and sandwiches will be merged in the stream of the port depending on the
order of arrival, so the order is not deterministic between them.

Algorithm 20 Port and asynchronous message passing

declare P S
P = {NewPort S}
thread

for Msg in S do
{Show Msg}

end
end
thread

for Beer in BeerList do
{Send P Beer}

end
end
thread

for Sdwch in SandwichList do
{Send P Sdwch}

end
end

The send operation is completely asynchronous. It does not have to wait
until the message appears on the stream to continue with the next instruction.
The actual message send could therefore take an arbitrary �nite time, making
it suitable for distributed communication where latency is an issue. With
the introduction of ports, it is already possible to build a multi-agent system
running in a single process where every agent runs on its own lightweight thread.
The non-determinism introduced with ports allows us to work with explicit
state, and there is no restriction on the communication between agents.

7.3.3 Going Distributed

Event though full distribution transparency is impossible to achieve because of
partial failures, there is some degree of transparency that is feasible and useful.
Ports and asynchronous message passing as they are described in the previous
section can be used transparently in a distributed system. The semantics of
{Send P Msg} is exactly the same if P is a port in the same process or in a

140 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

remote peer. In both cases the operation returns immediately without waiting
until the message is handled by the port. If there is a need for synchronization,
the message can contain an unbound variable as a future. Then, the sending
peer waits for the variable to get a value, which happens when the receiving peer
binds the variable. This implies that the variable, and whatever is contained
in the message, is transparently sent to the other peer. Variable binding must
therefore be transparent.

Algorithm 21 does a ping-pong between two di�erent peers. The �rst lines
of the code represent peer A who sends a ping message to peer B. The message
contains an unbound variable Ack, which is bound by peer B to the value pong.
Binding variable Ack resumes the Wait operator at peer A. Peer B, code below
peer A and indented at the right, makes a pattern matching of every received
message with pattern ping(A). If that is the case, it binds A to pong and
continues with the next message. The pattern matching is useful to implement
a method dispatcher as we will see in the next section.

Algorithm 21 Ping-Pong

\% at Peer A
declare Ack
{Send PeerB ping(Ack)}
{Wait Ack}
{Show "message received"}

\% at Peer B
for Msg in Stream do

case Msg of ping(A) then
A = pong

end
end

This sort of transparency is not di�cult to achieve, except when a partial
failure occurs. An older release of Mozart, version 1.3.0, takes the classical
approach to deal with partial failures: it raises an exception whenever an op-
eration is attempted on a broken distributed reference. Most programming
languages take the same approach. This approach has two important disad-
vantages. First of all, it is cumbersome to add try . . . catch instructions
whenever an operation is attempted on a remote entity. More fundamentally,
exceptions break transparency when reusing code meant for local ports. If a
distribution exception is raised, it will not be caught because the code was not
expecting that sort of exception.

AmbientTalk [DVM+06, VMG+07] adopts a better approach. In ambient-
oriented programming, failures due to temporary disconnections are a very
common thing, therefore, no exception is raised if a message is sent to a discon-
nected remote reference. The message is kept until the connection is restored

7.3. EVENT-DRIVEN ACTORS 141

and the message is resent. Otherwise if the connection cannot be �xed after a
certain time, it will be garbage collected. Failures are also a common thing in
peer-to-peer networks. The normal behaviour of a peer is to leave the network
after some time. Therefore, a partial failure should not be considered as an
exceptional situation.

A more recent Mozart release, version 1.4.0, does not raise exceptions when
distributed references are broken. It simply suspends the operation until the
connection is reestablished or the entity is killed. If the operation needs the
value of the entity, for instance in a binding, the thread blocks its execution. If a
send operation is performed on a broken port, because of its asynchrony, it still
returns immediately, but the actual sending of the message is suspended until
the connection is reestablished. This failure handling model [CV06, Col07] is
based on a fault stream that is attached to every distributed entity [MCPV05,
KMV06]. An entity can be in three states, ok, tempFail, or permFail. Once it
reaches the permanent failure state, it cannot come back to ok, so the entity can
be killed. If the entity is in temporary failure for too long, it can be explicitly
killed by the application and forced to permFail. To monitor an entity's fault
stream, the idea is to do it in a di�erent thread that does not block and that
can take actions over the thread blocking on a failed entity.

7.3.4 Actors

The actor model [AMST97] provides a nice way of organizing concurrent pro-
gramming, bene�ting from encapsulation and polymorphism in analogous fash-
ion to object-oriented programming. We extend the previous language abstrac-
tions with Oz cells which are containers for mutable state. State is modi�ed
with operator `:=', and it can be read with operator `@'. We do not need to add
new language abstractions to build our event-driven actors. Without language
support, actors are a programming pattern in Oz as is shown in Algorithm
22. Having ports, the cell is not strictly necessary but we use it to facilitate
state manipulation. Every actor runs in its own lightweight thread and com-
municates asynchronously with other actors through ports. Encapsulation of
state is achieved with lexical scoping, and exclusive access to state to avoid
race conditions is guaranteed by handling only one event/message at a time.

Algorithm 22 is a working implementation of Algorithms 17 and 18 using
the language abstractions we have described in this section. It is written in
Oz without syntactic support for actors but the semantics are equivalent. The
function NewBestE�ortBroadcast creates a closure containing the state of the
actor and its behaviour. The state includes a list of OtherPeers and another ac-
tor implementing perfect point-to-point communication, which is named Com-
Layer to make explicit that it could be replaced by any actor that understands
event send, and not only pp2p.

The behaviour is implemented as a set of procedures where the signature
of the event is speci�ed in each procedure's argument. For instance, the dec-
laration on code line 9 reads that procedure Receive implements the behaviour

142 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

to handle upon event deliver(Src Msg). The variable Listener represents the
actor in the upper layer.

Variable SelfPort is bound to the port that will receive all messages coming
from other actors. A thread is launched to traverse the SelfStream. For every
message that arrives on the stream, pattern matching checks the label of the
message to invoke the corresponding procedure. This part of the code repre-
sents the method dispatching of the actor. In the Beernet implementation, the
creation of the port and the method dispatching are modularized to avoid code
duplication, thus reducing the code size of every actor.

The book [GR06] contains complementary material including a Java im-
plementation of the beb component. Discarding comments and import lines,
the implementation takes 67 lines of code, with the component infrastructure
already abstracted. It is worth mentioning that a large number of lines are ded-
icated to catch exceptions. Equivalent functionality within the Beernet actor
model takes only 33 lines.

7.4 The Ring and the Problems with RMI

The architecture of Beernet is based on layers that abstract the di�erent con-
cepts involved in the construction of the peer-to-peer network. A closely re-
lated work is the Kompics component framework [AH08], which follows the
component-channel approach of [GR06] using a similar architecture. The main
di�erence with Beernet is that instead of having components that communi-
cate through channels, we decided to use event-driven actors. We will describe
more in detail Beernet's architecture in section 7.6. In this section we give
more details about the lower layer concerning the overlay maintenance to spot
the di�erences between the relaxed ring and the Chord ring [SMK+01]. This
last one being the starting point of many other SONs.

In previous chapters we have explained how a ring-based DHT works. As a
summary, peers are organized clockwise in a ring according to their identi�ers,
forming a circular address space of N hash keys. Every peer joins the network
with an identi�er. The identi�er is used to �nd the correct predecessor and
successor in the ring. When peer q joins in between peers p and s, it means that
p < q < s following the ring clockwise. Peer s accepts q as predecessor because
it has a better key than p. Another reason to be a better predecessor, is that
the current predecessor is detected to have crashed. Hence, the maintenance
of the ring involves join and crash events, and it must be handled locally by
every peer in a decentralized way.

To keep the ring up to date, Chord performs a periodic stabilization that
consists in verifying each successor's predecessor. From the viewpoint of the
peer performing the stabilization, if the predecessor of my successor has an
identi�er between my successor and myself, it means that it is a better successor
for me and my successor pointer must be updated. Then, I notify my successor.
Algorithm 23 is taken from Chord [SMK+01]. Only the syntax is adapted. The

7.4. THE RING AND THE PROBLEMS WITH RMI 143

Algorithm 22 Beernet Best E�ort Broadcast

fun {NewBestEffortBroadcast Listener}
OtherPeers ComLayer
SelfPort SelfStream
proc {Broadcast broadcast(Msg)}

for Peer in OtherPeers do
{Send ComLayer send(Peer Msg)}

end
end

proc {Receive deliver(Src Msg)}
{Send Listener Msg}

end

proc {Add register(Peer)}
OtherPeers := Peer | @OtherPeers

end

proc {Crash crash(Peer)}
OtherPeers := {Remove Peer @OtherPeers}

end
in

OtherPeers = {NewCell nil}
ComLayer = {NewPP2Point SelfPort}
SelfPort = {NewPort SelfStream}
thread

for M in SelfStream do
case {M.label}
of broadcast then {Broadcast M}
[] deliver then {Receive M}
[] register then {Add M}
[] crash then {Crash M}
end

end
end
SelfPort

end

144 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

big problem with this algorithm is the instruction
x := successor.predecessor

Asking for successor's predecessor is done using RMI. This means that the
whole execution of the component waits until the RMI is resolved. There is no
con�ict resolution if successor is dead or dies while the RMI is taking place. If
there is a partial failure, the algorithm is simply broken.

Algorithm 23 Chord's periodic stabilization
upon event 〈 stabilize | 〉 do

x := successor.predecessor
if x ∈ (self, successor) then

successor := x
end
successor.notify(self)

end
upon event 〈 notify | src 〉 do

if predecessor is nil or src ∈ (predecessor, self) then
predecessor := src

end
end

An improved version of the stabilization protocol is given in Algorithm 24
using event-driven actors. The representation of a peer is a data structure
having Peer.id as the integer identifying the peer, and Peer.port as the remote
reference, being actually an Oz port. The `.' is not an operator over an actor
or an object. It is just an access to a local data structure. The `. . . ' in the
algorithm hide the state declaration and the method dispatcher loop. The `<'
operator de�nes the order in the circular address space. We use it here for
simplicity without changing the semantics of the algorithm.

Stabilization starts by sending a message to the successor with an unbound
variable X to examine its predecessor. The peer then launches a thread to wait
for the variable to have a value, and once the binding is resolved, it sends a
message to itself to verify the value of the predecessor. This pattern is equiv-
alent to the when abstraction in E [MTSL05] and AmbientTalk [VMG+07].
By launching the thread, the peer can continue handling other events without
having to wait for the answer of the remote peer. If the remote peer crashes,
the Wait will simply block forever without a�ecting the rest of the computa-
tion. When the Wait continues, the peer sends a message to itself to serialize
the access to the state with the handling of other messages. Otherwise there
would be a race condition.

Beernet uses a di�erent strategy for ring maintenance as it was explained in
Chapter 3. Instead of running a periodic stabilization, it uses a strategy called
correction-on-change. Peers react immediately when they suspect another peer
to have failed. The failed peer is removed from the routing table, and if it
happens to be the successor, the peer must contact the next peer to �x the

7.4. THE RING AND THE PROBLEMS WITH RMI 145

Algorithm 24 Chord's improved periodic stabilization

fun {NewChordPeer Listener}
...
proc {Stab stabilize}

X
in

{Send Succ.port getPredecessor(X))}
thread

{Wait X}
{Send Self.port verifySucc(X)}

thread
end
proc {Verify verifySucc(X)}

if Self.id < X.id < Succ.id then
Succ := X

end
{Send Succ.port notify(Self))}

end
proc {GetPred getPredecessor(X)}

X = Pred
end
proc {Notify notify(Src)}

if Pred == nil orelse Pred.id < Src.id < Self.id then
Pred := Src

end
end
...

end

146 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

ring. To contact the next successor, every peer manages a successor list, which
is constantly updated every time a new peer join or if there is a failure.

Algorithm 25 presents part of a PBeer actor, which is a Beernet peer. The
algorithm has been already presented in Chapter 3 as language independent.
In this section we presented how it is really implemented. Failure recovery
works as follows: when peer P fails, a low-level actor running a failure detector
triggers the crash(P) event to the upper layer, where PBeer handles it. PBeer
adds the crashed peer to the crashed set and removes it from its successor
list. If the crashed peer is the current successor, then the �rst node from the
successor list is chosen as the new successor. A notify message is sent to the
new successor. When a node is noti�ed by its new predecessor, it behaves as a
Chord node, but in addition, it replies with the updSL message containing its
successor list. In this way, the successor list is constantly being maintained.

Algorithm 25 Beernet's failure recovery

fun {NewPBeer Listener}
...
proc {Crash crash(Peer)}

Crashed := Peer | @Crashed
SuccList := {Remove Peer @SuccList}
if P == @Succ then

Succ := {GetFirst SuccList}
{Send Succ.port notify(Self)}

end
end
proc {Notify notify(Src)}

if {Member Pred @Crashed}
orelse Pred.id < Src.id < Self.id then

Pred := Src
end
{Send Src.port updSL(Self @SuccList)}

end
...

end

7.5 Fault Streams for Failure Handling

As described at the end of subsection 7.3.3, we use a fault stream associated
to every distributed entity to handle failures. An operation performed on a
broken entity does not raise any exception, but it blocks until the failure is
�xed or the thread is garbage collected. This blocking behaviour is compatible
with asynchronous communication with remote entities. In the fault stream
model, presented by Collet et al [CV06, Col07], the idea is that the status of

7.6. GENERAL ARCHITECTURE 147

a remote entity is monitored in a di�erent thread. The monitoring thread can
take decisions about the broken entity, to terminate the blocking thread. For
instance, there are language abstractions to kill a broken entity so it can be
garbage collected.

Algorithm 26 describes how we use the fault stream in the implementation
of Beernet. There is an actor in charge of monitoring distributed entities called
FailureDetector. Upon event monitor(Peer), the actor uses the system opera-
tion GetFaultStream to get access to the status of the remote peer. The fault
stream is updated automatically by the Mozart system, which sends heartbeat
messages to the remote entity to determine its state. When the state changes,
the new state appears on the fault stream. If the connection is working, the
state is set to ok. If the remote entity does not acknowledge a heartbeat, it
is suspected of having failed, and therefore, the state is set to tempFail. Since
Internet failure detectors cannot be strongly accurate, the state can switch be-
tween tempFail and ok inde�nitely. As soon as the state is set to permFail,
however, the entity cannot recover from that state.

If the state is tempFail or permFail, the actor triggers the event crash(Peer)
to the Listener, which represents the upper layer. If the state switches back to
ok, the event alive(Peer) is triggered. It is up to the upper layer to decide what
to do with the peer. In the case of Beernet, this is described in algorithm 25.

Algorithm 26 Fault stream for failure detection

fun {FailureDetector Listener}
...
proc {Monitor monitor(Peer)}

FaultStream = {GetFaultStream Peer}
in

for State in FaultStream do
case State
of tempFail then {Send Listener crash(Peer)}
[] permFail then {Send Listener crash(Peer)}
[] ok then {Send Listener alive(Peer)}
end

end
end
...

end

7.6 General Architecture

Now that we have reviewed the fundamental concepts that allowed us to imple-
ment our components as event-driven actors, we review the general architecture
of Beernet. In this section we use the words actors and component indi�erently.

148 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

We have mentioned that Beernet is globally organized as a set of layers provid-
ing higher-level abstractions with a bottom-up approach. Figure 7.1 gives the
global picture of how actors are organized. Components with gray background
highlights the contribution of this dissertation.

The bottom layer is the Network component. This actor is composed by
four other actors. The most basic communication is provided by perfect point-
to-point link (Pp2p link) that simply connects two ports. The Peer-to-peer link
allows a simpler way of sending messages to a peer using its global represen-
tation, instead of extracting the port explicitly every time a message is to be
sent. Peer-to-peer link uses Pp2p link. Any NAT traversal protocol must be
implemented here, improving the reliability of both link components. However,
if there is a link that cannot be established between two peers, the relaxed ring
topology will prevent that it generates a failure at the upper layer.

The network uses two failure detectors: one provided by Mozart, and the
other one implemented in Beernet itself. Mozart's failure detector is the one
described in Algorithm 26, taking advantage of the fault-stream of every dis-
tributed entity. Beernet's failure detector is built as a self-tuning failure detec-
tor that uses its own protocol to change the frequency and timeout values of the
keep alive messages. It follows the design discussed in Section 4.4. Both failure
detectors are eventually perfect. As a remainder of what we already mentioned
in previous chapters, an eventually perfect failure detector is strongly com-
plete, and eventually accurate. Strongly complete means that every peer that
crashes will be detected. Accurate means that non alive peer will be suspected
as failed. Eventually accurate means that every false suspicion will eventually
be corrected.

The relaxed ring component uses the network component to exchange mes-
sages between directly connected peers, and to detect failures of any of them.
It is one of the main contributions of this dissertation, and it is divided into
two main components: the relaxed ring maintenance and palta Finger Table.
The relaxed ring maintenance runs the protocols we have described in Chap-
ter 3 and 4. Every incoming message comes from the peer-to-peer link, and
crash/alive events comes from failure detectors.

The �nger table is in charge of e�ciently routing messages that are not sent
neither to the successor nor the predecessor of a node. The �nger table actor
can implement several of the routing strategies we discussed in Chapter 2,
as long as it is consistent with the relaxed ring topology. For Beernet, we
have decided to implement �ngers as they are described in Section 3.9, using
palta strategy, which combines DKS [AEABH03] �ngers with self-adaptable
behaviour to improve e�ciency. This actor is also in charge of monitoring all
messages to provide correction-on-use of the routing table. Algorithm 27 shows
that when a message arrives to the relaxed ring maintenance, it �rst verify is
the message is for the self node, for any of the branches (backward) or for its
successor. If none of the cases is valid, it delegates the event to palta the
�nger table.

The reliable message-sending layer is implemented on top of the relaxed

7.6. GENERAL ARCHITECTURE 149

Figure 7.1: Beernet's actor-based architecture. Every component run on its
own lightweight thread and they communicate through asynchronous message
passing.

150 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

Algorithm 27Messages in the relaxed ring maintenance component are routed
to direct neighbours or delegated to the Finger Table

proc {Route Event}
route(msg:Msg src:_ target:Target ...) = Event

in
if {BelongsTo Target @Pred.id @SelfRef.id} then
%% This message is for me
{Send Self Msg}

elseif {HasFeature Event last} andthen Event.last then
%% Backward to the branches
{Backward Event Target}

elseif {BelongsTo Event.src.id @SelfRef.id @Succ.id} then
%% I think my successor is the responsible
{Send @Succ {Record.adjoinAt Event last true}}

else
%% Forward the message using the Finger table
{Send @FingerTable Event}

end
end

ring maintenance. This layer includes the basic services Reliable Send to a Key,
Direct Send to a peer which reference is known, Multicast and Broadcast. Each
of them is running on their own actor, but they can collaborate if necessary, as
the relaxed ring maintenance collaborate with the �nger table. It is important
to identify that direct send is a functionality provided to the upper layers, but
it does not necessarily implements a direct link between two peers. If the link
between the sender and the target fails, the direct send component will choose
a di�erent path to reach the destination. This is how broken links are not
propagated as failures to the upper layer. The basic DHT with its put and
get operations is implemented on top of the messaging services. None of this
components has been originally developed in this dissertation. They are well
known results taken from the literature.

The transactional layer Trappist, which is presented in detail in Chapter 5,
is built on top of the DHT. In Beernet, we have decided to implement the
replication layer as part of the transactional layer. This is a major di�erence
with Scalaris [SSR08], because they present their architecture having repli-
cation and transaction as two independent layers. We claim that replication
needs the transactional mechanism to restore replicas in case of failures. Let
us suppose a set of six replicas i, j, k, l,m and n, where the majority i, j, k and
l, holds the latest value of the replicated item. If k fails and it is replaced by
k′, how does k′ know which peers hold the latest value of the item? If it only
reads from m or n, the majority is broken. If k′ reads from all the replica set,
it is doing unnecessary work, because it only needs to read from the majority
of it. Having the knowledge of the protocol that is used to manage the replica

7.7. DISCUSSION 151

is the best option to keep replica maintenance e�cient. That is why in Beernet
the replica maintenance also belongs to the transactional layer instead of being
an independent layer.

There are still some orthogonal components within the replica management
that can be changed by equivalent ones. For instance, we have chosen to
work with Symmetric replication instead of successor list replication, or leaf
set replication. To reach the replicas, the transactional layer will use the Bulk
operations [Gho06] which can be written for any replication strategy. Since
the functionality of these two components are taken from the literature, they
are not part of our contribution. Nevertheless, the design of including the
replication layer as part of Trappist is part of the results of this dissertation.

The Trappist layer includes four di�erent protocols to provide transactional
support: Two-Phase Commit, Paxos Consensus, Eager Paxos Consensus, and
Lock-free value sets. The four of them are explained in detail in Chapter 5.
Note that Two-phase commit is not included in Figure 7.1. This is because its
use is not recommended for building peer-to-peer applications, due to the lack
of a single reliable transaction manager. Its implementation is motivated by
purely academic purposes. Our goal was to validate the advantages of Paxos
Consensus algorithm, and to be able to compare their performances, as it was
shown in Chapter 6. The �gure highlights the three components that are part
of the contributions of this dissertation.

The protocols Paxos Consensus, Eager Paxos Consensus and Two-Phase
commit are used to manipulate key/value pairs. The Lock-free value sets is
not just a di�erent transactional protocol, it also provides a di�erent storage
abstraction for data collections. Value-sets can be used in combination with
the other three protocols. These three protocols use the direct send component
to communicate every protocol participant. As we already mentioned, if such
link cannot be established, messages are still reliably routed to the destination
without triggering errors at this level. This strategy avoids error propagation
through the layers. These protocols are enriched by a noti�cation layer that
helps in the development of synchronous collaborative applications.

7.7 Discussion

One of the programming principles we respect in Beernet is to avoid shared-state
concurrency. We achieve this by encapsulating state, by doing asynchronous
communication between threads and processes, by using single-assignment vari-
ables for data-�ow synchronization, and by serializing event handling with a
stream (queue) providing exclusive access to the state. The language primi-
tives of lightweight threads and ports are also used in Erlang [Arm96]. Single-
assignment variables also appear in E [MTSL05] and AmbientTalk [VMG+07]
in the form of promises, and they are meant for synchronization of remote
processes instead of lightweight threads.

The actor model presented here through programming patterns is further

152 CHAPTER 7. BEERNET'S DESIGN AND IMPLEMENTATION

developed and supported by E and AmbientTalk. There is one important dif-
ference related to the use of lightweight threads. Since they are not supported
by these two languages, there is basically only one actor running per process.
The actor collaborates with a set of passive objects within the same process.
Communication with local objects is done with synchronous method invoca-
tion. Communication with other actors, and therefore with remote references,
is done with asynchronous message passing. This distinction reduces trans-
parency for the programmer because it establishes two types of objects: local
and distributed.

In Beernet, we organize the system in terms of actors only, making no dis-
tinction in the send operation between a local and a remote port. Transparency
is respected by not raising an exception when a remote reference is broken.
There is only one kind of entity, an actor, and only one send operation.

As mentioned in the previous section, Kompics [AH08] is closely related
because it is also a component framework conceived for the implementation of
peer-to-peer networks. Instead of using actors for composition, it uses event-
driven components which communicate through channels.

7.8 Conclusion

We have presented examples in this chapter to highlight the importance of
partial failure in distributed programming. The fact that failures cannot be
avoided has a direct impact on the goal of transparent distribution which can-
not be fully achieved. Therefore, it has also an impact on remote method
invocation, the most common language abstraction to work with distributed
objects. Because of partial failure, it is very di�cult to make RMI work cor-
rectly. In other words, RMI is considered harmful. Therefore, we have imple-
mented Beernet where communication between processes and components is
done with asynchronous message passing.

Even though full transparency in distributed programming cannot be com-
pletely achieved, it is important to provide some degree of transparency. We
have shown how port references and the send operation can be used trans-
parently. This is because send works asynchronously and because a broken
distributed reference does not raise an exception in Mozart 1.4.0. Instead, a
fault stream associated to every remote entity provides monitoring facilities.
The fault stream breaks the transparency in a modular way. It is not transpar-
ent because failure only appears on remote entities, but it is modular because
it does not interfere with the semantics of the operations performed on remote
entities.

We have also described the language abstractions we use to implement Beer-
net. We have chosen an actor model based on lightweight threads, ports, asyn-
chronous message passing, single-assignment variables and lexical scoping. We
have reviewed the general structured of Beernet and we have shown how com-
ponents interact with each other.

Chapter 8
Applications

The development of software applications is important to validate a program-
ming framework. In our case, we are interested in validating the self-managing
properties of our structured overlay network, and the transactional protocols
for replicated storage. More concretely, we are interested in validating self-
organization and self-healing. We want to observe that applications create
peers and join the network without managing their location, or simply con-
nect to existing peers in the network. If self-healing is respected, applications
should rely on Beernet's failure recovery mechanism, and data should be pre-
served if the majority of replicas survives. We want to evaluate if applications
use Paxos consensus algorithm, Paxos with eager locking, the noti�cation layer
and key/value-sets. To cover a wide range of applications, we need synchronous
and asynchronous collaborative applications. To validate Beernet as program-
ming framework we also need an application implemented by other developers.

This chapter describes three applications that apply to several of the above
mentioned criteria: Sindaca, DeTransDraw, and a decentralized wiki. Sindaca
and the wiki are basically asynchronous collaborative applications and basi-
cally use Paxos. DeTransDraw bene�ts from the eager-Locking protocol to
provide synchronous collaboration. Key/value-sets are used in Sindaca and
DeTransDraw. The decentralized wiki has been implemented by students un-
der the supervision of the author. The fact that the implementation has been
done by other developers helps us to validate Beernet as programming frame-
work.

8.1 Sindaca

This section presents the design and functionality of our community-driven
recommendation system named Sindaca, which stands for Sharing Idols N Dis-
cussing About Common Addictions. The name spots the main functionality

154 CHAPTER 8. APPLICATIONS

of this application which is making recommendations on music, videos, text
and other cultural expressions. It is not designed for �le sharing to avoid le-
gal issues with copyright. It allows users to provide links to o�cial sources
of titles. Users get noti�cations about new suggestions, and they can vote on
the suggestions to express their preferences. It is expected that users build
communities based on their common taste. The system is implemented on top
of Beernet [MCV09, MV10], presented in Chapter 7. The data of the system
is symmetrically replicated on the network using the transactional layer for
decentralized storage management, Trappist, presented in Chapter 5.

We have implemented a web interface to have access to Sindaca. All re-
quests done through the web interface are transmitted to a peer in the network
which triggers the corresponding operations on the peer-to-peer network. The
results are transmitted back to the web server, which presents the information
in HTML format as in any web page. Using a web interface to transmit in-
formation between the end user and the peer-to-peer network has been used
previously in various projects. A very related one is the peer-to-peer version
of the Wikipedia using Scalaris [PRS07, SSR08]. We have extended this archi-
tecture with a noti�cation layer which allows eager information updates. This
layer is also used in the DeTransDraw application, as we will see in section 8.2.
This eager noti�cation feature is not provided on Sindaca's web interface. How-
ever, a client implemented in Mozart [Moz08] can access directly the network
and bene�t from the feature.

To generalize similitudes and di�erences between Sindaca and the above
mentioned applications, we can say the following: Wikipedia on Scalaris uses
optimistic transactions using the Paxos consensus algorithm. DeTransDraw
uses pessimistic eager-locking transactions using Paxos consensus algorithm
with a noti�cation layer. Sindaca is a combination of those strategies. It uses
optimistic transactions with Paxos extended with the noti�cation layer, both
implemented in Trappist.

8.1.1 Functionality

The functionality o�ered by Sindaca is quite straightforward, and it is depicted
in Figure 8.1, which is a screenshot of its web interface. Section �Make your own
recommendation� shows a form where users can make their recommendations
by providing a title, the artist, and the link to the title. Below the form we
�nd section �Your recommendations�, which shows the recommendations the
user has done so far, and some statistics about them. The upper part of the
screenshot shows recommendations that can be voted by the user. This rec-
ommendation list gathers not only recommendations done by other users, but
also those done by the user itself. More screenshots, and a deeper description
of the functionalities can be seen in Appendix B.

8.1. SINDACA 155

Figure 8.1: Sindaca's web interface.

8.1.2 Design and Implementation

First of all, it is important to remark that Sindaca is not implemented on
top of a database supporting SQL queries. Sindaca is implemented on top
of a transactional distributed hash table with symmetrically replicated state,
which uses key/value pairs and key/value-sets as storage abstractions. Each
key/value pair/set is known as an item. The information of every user is stored
as one item. The value of such item is a record with the basic information:
user's id, username and password. We have chosen a very minimal record to
build the prototype, but the value can potentially store any data such as user's
real name, contact information, age, description, etc. The key of the item is
an Oz name [Moz08], which is unique and unforgeable, acting as a capability
reference [MS03]. This strategy provides us certain level of security, because
only programs that are able to map usernames with their capability can have
access to the key, and therefore, access to the item. The username-capability
mapping is only available to programs holding the corresponding capability to
the mapping table.

The functionality of adding a new recommendation, shown in Figure 8.1,
makes it clear that a recommendation belongs to a user. Therefore, every user
item contains a list of capabilities which are references to recommendations.
The functionality of voting also implies that every user item holds a list of

156 CHAPTER 8. APPLICATIONS

Figure 8.2: Sindaca's relational model.

capability references to votes. The relational model is described in Figure 8.2.
We observe that a user can have multiple recommendations and multiple votes.
What it is also stored in user's item is the list of recommendations already
voted. That list will allows us to �lter all other recommendations, presenting
to the user only those she still has to vote.

From the relational model we can also observe that every recommendation
has a list of votes associated to it. Every vote contains information about the
score, the user who made the vote, and the voted recommendation. What
it is not shown in the relational model is how to �nd all the items on the
network. There are two other items which store the list of all user's keys and
all recommendation keys. Every time a new user or recommendation is created,
these global items are modi�ed. There is no global item for votes, because votes
are accessible through the users and the recommendations.

Creating a user Code 28 shows the transaction to create a user. The argu-
ment TM represent the transaction manager created by the peer to execute the
transaction. First of all, it is necessary to read the list of users to verify that
the new username is not already in use. This is done by reading the item under
key users, and verifying if Username is a member of it. In such case, the trans-
action is aborted with the operation {TM abort}. If the transaction continues,
we read the item nextUser to get a user identi�er. Then, we create a new
item with the capability key UserCap. The value of the new item is a record
with the �elds we described above, and which follows the relational model on
Figure 8.2. Afterwards, the value of the nextUser item is incremented, and
the item with the list of users is also updated.

8.1. SINDACA 157

As we already mentioned, every user will contribute to the community with
a set of recommendations, and it will vote on the recommendation done by
others. This information will be stored on three di�erent sets: recommed, to
stored the title the user has recommended, votes, to store the value of each of
its votes, and voted, to know which recommendations he already voted. These
three sets are also identi�ed with a capability, and we will use key/value-set to
store them on the DHT.

Algorithm 28 Creating a new user.

proc {CreateUser TM}
Users UserId UserCap

in
UserCap = {NewName}
{TM read(users Users)}
if {IsMember Username Users} then

{TM abort}
else

RecommsCap = {NewName}
VotesCap = {NewName}
VotedCap = {NewName}

in
{TM read(nextUser UserId)}
{TM write(UserCap user(username:Username

id:UserId
passwd:Passwd
cap:UserCap
recommed:RecommsCap
votes:VotesCap
voted:VotedCap))}

{TM newSet(RecommsCap)}
{TM newSet(VotesCap)}
{TM newSet(VotedCap)}
{TM write(nextUser UserId+1)}
{TM write(users {AddTo Users

user(username:Username cap:UserCap})}
{TM commit}

end
end

As we can observe, this transaction consists of six di�erent access to the
hash table, which include adding a new item, and modifying two existing ones.
It is very important that all write operations done to the hash table are commit-
ted, and if one fails to commit, all of them should abort. Running a distributed
transaction is more costly than just using the put/get operations directly on
the DHT, but to guarantee the consistency of the data, performing a trans-
action pays o�. Furthermore, even though the operation seems complicated

158 CHAPTER 8. APPLICATIONS

from the point of view of distribution, we can observe that it looks only as a
combination of read/write operations that could actually be local ones. The
operation newSet is a special type of write.

Committing a vote The most complex transaction is triggered the voting
functionality, and we will explain it using the implementation code as guide.
The PutVote transaction that performs the needed read/write operations is
shown in Code 29. First of all, it is necessary to get the capability to access
the user that is voting, and the recommendation that is being voted. These
are the variables UserCap and RecommCap, which belong to the outer scope of
PutVote. Another variable that belongs to the outer scope is Vote, which con-
tains the value of the vote. A new vote item is created with the correspondent
vote capability VoteCap. This item connects the vote with the user and the
recommendation as we will explain now.

Three �elds of the voted recommendation are a�ected. The created vote
is added to its list of votes, and the vote counter is increased by one. The
score average is recomputed taking the new vote into account. Within each
recommendation, we could have used a value-set to store all the votes associated
to it. However, this would have add an extra item without improving the
performance. The performance is not improved because adding a new vote
cannot be done without incrementing the global counter, and the updating
the average score, therefore, there is an implicit lock in the addition of each
vote. By keeping the set of votes as a list inside the same item, we prevent the
information of the recommendation from splitting unnecessarily.

On the other hand, the vote and the recommendation can be associated to
the user by simple adding them to the corresponding set. This can be done
without modifying the item associated with the core data of the user, and
therefore, there is a win by splitting this information into di�erent value-sets.

Note that in this transaction, there is a sequence of read/write operations.
Information is taken from an item to modify a related one. In addition, there
there are no condition to write the new values, as in Code 28. It is important
to clarify that the external functions Record.adjoin and NewScore, do not
perform any distributed operation. They are just for manipulating values and
data structures.

Create a recommendation We have seen already in the example of voting
that each recommendation is stored in an item having a capability as key. This
capability is also used in the users item to identify the recommendations asso-
ciated to a user. Therefore, to create a new recommendation, the application
needs to create a new item for it, increment the global counter of recommen-
dations, and add it to the list of recommendations of the user who created it.
We will not include the code sample of putting a recommendation because it
follows the pattern described by the previous two examples, and it does not
contribute anything new to the understanding of the ease of use of Beernet and

8.1. SINDACA 159

Algorithm 29 Committing a vote on a recommendation

proc {PutVote TM}
User Recomm VoteCap

in
VoteCap = {NewName}
{TM write(VoteCap vote(score:Vote

recomm:RecommCap
user:UserCap))}

{TM read(RecommCap Recomm)}
{TM write(RecommCap {Record.adjoin Recomm

recomm(score:{NewScore Recomm Vote}
nvotes:Recomm.nvotes+1.0
votes:VoteCap|Recomm.votes)})}

{TM read(UserCap User)}
{TM add(User.votes VoteCap)}
{TM add(User.voted RecommCap)}
{TM commit}

end

its Trappist layer for transactional DHT.

Jalisco transactions The code samples presented in Codes 28 and 29 rep-
resent single transactions that will be given to a peer to run it on the network.
The outcome of the transaction, either abort or commit, will be sent to a port
where the application will decide the next step. When the transaction to create
new users aborts because the username is already in use, the application will
need to request the new user to choose a di�erent username before attempting
to run a new transaction. In the case of creating new recommendation and vot-
ing, getting abort as outcome of the transaction only means that there where
some concurrent transactions that committed �rst, creating a temporary con-
�ict with our transaction. In such case, the transaction can be retried without
any modi�cation until it is committed. To simplify the process of retrying, we
have implemented the procedure Jalisco, which comes from the Mexican expres-
sion �Jalisco nunca pierde� (Jalisco never loses). This procedure will simply
retry a transaction until it is committed. The code is shown in Code 30.

The function creates a port to receive the outcome of the transaction. The
InsistingLoop executes the transaction on the peer ThePbeer, and it waits
on the stream of the port to check the outcome of the transaction. If it is
abort, it just continues with the loop. If it is commit, it simply returns that
the transaction has committed.

This is simply a design pattern to be used in transactional DHTs. It can be
seen as a very simply feedback loop. The outcome of the transaction is what is
being monitored. The action to be taken in case of abort is to insist on running
the transaction until the relevant locks are granted. Once they are granted and

160 CHAPTER 8. APPLICATIONS

Algorithm 30 Jalisco transaction retries a transaction until it is committed

fun {Jalisco Trans}
P S
proc {InsistingLoop S}

{ThePbeer runTransaction(Trans P paxos)}
case S
of abort|T then

{InsistingLoop T}
[] commit|_ then

commit
end

end
in

{NewPort S P}
{InsistingLoop S}

end

the message commit is monitored, the feedback loop ceases to monitor.

8.1.3 Con�guration

The current version of Sindaca, which is available for demo testing, is con�g-
ured with a peer-to-peer network of 42 nodes. All nodes are accessible from
the server hosting Sindaca's web page. The server works as one of the possi-
ble entry point. The network can also be accessed by contacting directly any
peer. Some initial information is stored in the network in order to bootstrap
the network and run some tests. This information includes the creation of sev-
eral users, some recommendations, and some votes too. All the information is
stored on the network contacting directly some of the peers, and by running
the transactions we have described in this section. Therefore, bootstrapping
the information is equivalent to have it entered through the web interface. The
current state of development is a proof-of-concept, hence, it is not stable as a
rock. With respect to technical details, we have a running Mozart [Moz08] pro-
cess that listens to the Apache [The09a]-PHP [The09c] service which is reading
web requests. This Mozart process connects to a peer in the network in order
to trigger the corresponding transaction. Results of the transactions are sent
back to the web interface to the Mozart process, communicating with the PHP
service.

8.2 DeTransDraw

DeTransDraw is a decentralized collaborative vector-based graphical editor
with a shared drawing area. It provides synchronous collaboration between

8.2. DETRANSDRAW 161

users with graphical support for noti�cations about other users' activities.
Con�ict resolution is achieved with a decentralized transactional service with
storage replication, and self-management replication for fault-tolerance. The
transactional service also allows the application to prevent performance degra-
dation due to network latency, which is an important feature for synchronous
collaboration.

8.2.1 TransDraw

DeTransDraw is a redesign of TransDraw [Gro98], a collaborative drawing tool
based on a client-server architecture. We �rst describe TransDraw to iden-
tify its advantages and weakness, and then we explain how DeTransDraw can
overcome the problems of its centralized predecessor. TransDraw has a shared
drawing area where all users has access to all �gures of the drawing. The main
contribution of TransDraw is the introduction of transactions to manage con-
�ict resolution between users, and to reduce the problems of network latency.
The goal is that a user can manipulate the �gures immediately, without waiting
for the con�rmation of a distributed operation. The transaction manager will
solve the con�icts afterwards. A transaction is done in two steps: getting the
lock and committing. When the user starts modifying one or more �gures it
request the corresponding locks. When the user �nishes the updates, it per-
forms a commit of the transaction with the new value. However, it is possible
that the user loses its modi�cation if another user concurrently modi�es the
�gure �rst.

Figure 8.3(a) describes the protocol where successful modi�cations done
by two users. Users are represented by client 1 and client 2, which are
connected to the Server. The server stores the full state of the drawing, and
manages the locks of every �gure. The server is also the transaction manager
of all transactions triggered by the users. The protocol shows that client 1

starts to work on an object of the drawing and it request its lock. Since the
lock is not already taken, the Server grants it with a confirm message. We
can see the bar representing the work of client 1. While the bar is gray,
it is modifying the �gure without knowing of the lock will be granted. The
work-bar becomes green when con�rmation arrives, and it is �nished when
modi�cations are done, which results in triggering a commit message to the
server, including the new value of the drawing object. Note that this message
also means that locks are released. Two noti�cations are sent from Server to
client 2: locked and update. The locked message prevent client 2 from
modifying that particular object. This is what the red bar represents. Was
the new value is committed, the update also reaches client 2 allowing it for
requesting the lock, as it is done as its next step. This new lock is now informed
to client 1.

Figure 8.3(b) shows the same protocol, with the addition of a failed request
from client 2 to acquire the same locked obtained by client 1. What we
observe is that client 2 begins to work on the drawing object resulting on

162 CHAPTER 8. APPLICATIONS

(a) (b)

Figure 8.3: Transdraw coordination protocol. In (a) client 1 contacts the server
to get the lock and update a �gure. Client 2 does another update afterwards.
In (b) client 2 gets a rejection to its �rst attempt of acquiring the lock. When
�gure's lock is released, the client succeeds getting the lock.

requesting the lock. Its work-bar turns from gray to red when the noti�cation
of the locked granted to client 1 arrives. If the noti�cation would have not
been sent, the rejection noti�cation would have had the same e�ect. In this
case we see that client 2 has lost some of its work. Note that it is better
to be noti�ed earlier, because otherwise the transaction would have failed at
the end, when all the work was done. This is the main di�erence between
asynchronous and synchronous collaboration. Asynchronous communication
can take an optimistic approach, whereas synchronous collaboration work bet-
ter with a pessimistic approach, because it is more likely to have a con�ict
with another user. TransDraw actually merges optimistic and pessimistic ap-
proaches. It is optimistic because users can start working immediately even
if they do not get the lock. This is essentially to minimize problems associ-
ated with latency. And it is pessimistic because it �rst tries to get the locks,
and then it tries to commit. This is to provide a better collaboration between
synchronous participants.

8.2.2 TransDraw Weakness

Due to its centralized architecture, TransDraw's main weakness is its single
point of failure. The server holds the whole state of the application. Other
problems are congestion and scalability. Both of them having the same source
we just mentioned. The server is the only transaction manager, and therefore, it
is a bottle-neck for all the tra�c between users. It is a single point of congestion
and it does not scale beyond the capacity of the server.

A disputable issue concerns distributed locks. We will not discuss in details
how these problems are solved, but we will brie�y describe some possibilities to
overcome the issues with locks. First of all, the application has decided to keep
strong consistency on the state of the drawing, so it is very di�cult to come

8.2. DETRANSDRAW 163

Figure 8.4: DeTransDraw coordination protocol. It combines optimistic and
pessimistic approach, using Trappist's eager locking Paxos and the noti�cation
layer to propagate the information to the registered readers.

up with a lock-free design. For the case that a client holds a lock for too long,
there is a protocol to explicitly request the client to release the lock. In case
the client fails without releasing the lock, the transaction manager can release
the lock based on failure detection or time-leasing, to prevent problems with
false suspicions of failures. In conclusion, there are workarounds to minimize
the problems with distributed locks, but the main issue with TransDraw is
scalability and fault-tolerance. The server has a limited amount of clients that
can handle, therefore, it is not scalable. In addition, the server represents a
single point of failure, which the application cannot tolerate. If the server
fails, the whole drawing application disappears. This is why a decentralized
approach appears as the way to go.

8.2.3 Decentralized TransDraw

We have already discussed the main features and weakness of TransDraw. The
aim of DeTransDraw is to provide the same functionality but it removes the
server from the design, building the application on top of a peer-to-peer net-
work, making the system fully decentralized. Each transaction runs with its
own transaction manager, and the state of the application is spread across the
network being symmetrically replicated. This provides not only load balancing
but also scalable and fault tolerance.

DeTransDraw is implemented on top of Beernet, and it uses the eager paxos
consensus algorithm provided by the transaction layer Trappist. Since Beernet
provides a DHT, the drawing information has to be stored in form of items.
Each drawing object is an item where its identi�er is the key, and the value

164 CHAPTER 8. APPLICATIONS

Figure 8.5: DeTransDraw graphical user interface.

corresponds to the position, shape, colour, and other properties of the �gure.
The application has been implemented in our research group in collaboration
mainly with Jérémie Melchior.

Figure 8.4 shows the protocol we described for TransDraw in Section 8.2.1,
but the client contacts a transaction manager (TM) instead of a server. In
other words, the server is replaced by the peer-to-peer network. The proto-
col is an instance of Eager Paxos consensus algorithm, as it is described in
Section 5.3, combined with the noti�cation layer that communicates with the
readers. In this case, the readers are all the other users of DeTransDraw. We
can observe that the client performs the same operations as in the protocol
of Figure 8.3 but with some di�erent names. Requesting the lock is actually
begin transaction. Con�rmation of acquiring the locks is locked granted.
The commit message is the same in both cases. As we mentioned already,
the TM is di�erent for every transaction, and the set of replicated TMs is
chosen with the same strategy as symmetric replication. The key to generate
the replica set is the one of the TM. The transaction participants (TPs) are
all the peers storing a replica of the drawing objects involved in the transac-
tion. Therefore, two concurrent transactions modifying disjoint sets of drawing
objects could have completely di�erent sets of TM, rTMs and TPs.

We discuss now the graphical user interface of DeTransDraw. Figure 8.5
shows the drawing editor being run by a client. The editor consists of three
parts: the canvas, which is the shared drawing area, the toolbar, and the status
bar. The state of these last two parts are di�erent on every user depending on
their actions. In the toolbar, button SEL stands for the selection of an object.
Multiple object selection is done by holding the Shift key while selecting the
objects. The buttons rect and oval allows the user to draw rectangles and
ovals. These are the only �gures provided on the �rst version of DeTransDraw.
The two colored buttons represent, from top to bottom, the color of the object
and its border. The status bar noti�es the user of the action he is currently

8.2. DETRANSDRAW 165

Figure 8.6: Locking phase in DeTransDraw. The user with highlighted window
has selected two �gures to move them on the drawing. Blue peers on the ring
show where the locked replicas are.

doing. In the case of the example, the user has clicked on the oval button, so
it can draw a yellow oval with black border, as it is described by the coloured
buttons. If the user is in selection mode, he is able to select either rectangles
or ovals. A selected object appears with eight dots surrounding the object, as
it will shown on Figure 8.6.

Figure 8.6 shows how the action of selecting drawing objects changes the
state of the network. The �gure shows four application windows. The window
at the top left corner is a screenshot of PEPINO [GMV07], an application that
monitors the network and shows it state. In this case, the network is composed
by 17 peers. The other three windows are instances of DeTransDraw which
are connected to the network. Looking at the tool bars, we can deduce that the
user at the top right corner draw the yellow oval, the user at the bottom left
draw the small blue square, and the highlighted user at the bottom right corner
draw the blue-gray rectangle. This highlighted user has selected the two ovals
acquiring the correspondent locks. We observe in PEPINO some peers in blue,
and some other in cyan. The peers in blue are the transaction participants
which are currently locked. They are the replicas storing the state of the two
ovals. Peers in cyan are the replicated transaction manager, being the peer in
green the transaction manager for this operation. The other users do not see
the modi�cation of the position of the �gures, because the other user has not
committed yet its modi�cation.

166 CHAPTER 8. APPLICATIONS

Figure 8.7: Commit phase in DeTransDraw. The user commits the changes,
the new state is propagated to the other users, and locks are released.

We observe in Figure 8.7 that locks are released, and the new state of
the ovals is replicated. All three instances of DeTransDraw observe the new
state and the small black dots of selection disappear from the ovals that were
modi�ed. Looking at the network, there are no more blue peers, meaning that
locks are released, but there still remains the information about the transaction
manager and some of its replicas.

The use of key/value-sets in DeTransDraw is quite straightforward with a
clear advantage with respect to key/value pairs. By design, the canvas contains
a set of �gures. In the DHT, the canvas is stored as a set of keys, where each
key represent the item storing the information of each �gure. We have observed
that it is important to lock a �gure to modify it and not to lose the modi�cation
at the latest moment. If there is a con�ict, work is aborted as early as possible.
However, creating a �gure should not lock the whole canvas to add one element.
If the canvas is represented as a key/value pair, it is necessary to lock it to a
�gure. Therefore, it is much better to use a key/value-set for the canvas, which
is lock free for addition and removal of values.

The software still needs more development to become a real drawing tool,
but it is well advanced as a proof-of-concept concerning its decentralized be-
haviour. It provides the same advantages as TransDraw minimizing the impact
of network latency, allowing collaborative work with con�ict resolution achieved
with transactional protocols. It does not have any single point of congestion or
failure, because every transaction has its own transaction manager, with a set

8.3. DECENTRALIZED WIKIPEDIA 167

of replicated transaction managers symmetrically distributed through the net-
work. State is also decentralized on the DHT, having each item symmetrically
replicated. Each transaction guarantees atomic updates of the majority of the
replicas.

Instructions to download, install and run DeTransDraw can be found on
the web site http://beernet.info.ucl.ac.be/detransdraw. There is also
a client for Android mobile devices developed mainly by Yves Jaradin with
collaboration of the author. Currently, mobile phones can only connect to
existing peer-to-peer networks, run the GUI client and use an existing peer
to transmit the messages to the network. The mobile phone is no yet a peer
on its own because of performance issues. The development of the graphics
has to be done in Java, and therefore, interacting Java with Mozart-Oz makes
the application a bit slow. These implementation problems are only associated
to the graphical part, and they do not represent a problem at the level of
peer-to-peer protocols.

8.3 Decentralized Wikipedia

Wikipedia [Wik09] is an online encyclopedia written collaboratively by volun-
teers, reaching currently more than 13 million articles. A large community of
users constantly updates the articles and create new ones. Such system can
certainly bene�t from scalable storage and atomic commit, being a good case
study for self-organizing peer-to-peer networks with transactional DHT. A fully
decentralized Wikipedia [PRS07] was successfully built with Scalaris [SSR08],
which is based on Chord# [SSR07] using a transactional layer implementing
Paxos consensus algorithm [MH07]. We presented the main characteristics of
Chord# in Chapter 2, and we described in detail Paxos consensus algorithm
in Section 5.2. The real Wikipedia runs on a server farm with a �x amount
of nodes, with a centrally-managed database. The decentralized version allows
the network to add more nodes to the system when more storage capacity is
needed. The stored items are symmetrically replicated, and each transaction
runs its own instance of a transaction manager, preventing the system from
having a single point of congestion.

To validate our implementation of the atomic transactional DHT using
Paxos consensus algorithm, which is part of Trappist, running on top of the
relaxed ring, we decided to give the task of implementing a decentralized
Wikipedia to the students of the course �Languages and Algorithms for Dis-
tributed Applications� [Van09], given at the Université catholique de Louvain,
as a course for engineering and master students. The students had two weeks to
develop their program having access to Beernet's API for building their peer-
to-peer network, and for using the transactional layer to store and retrieve data
from the network.

http://beernet.info.ucl.ac.be/detransdraw

168 CHAPTER 8. APPLICATIONS

Figure 8.8: Users A and B modify di�erent paragraphs of the same document.
Both can successfully commit their changes because there are no con�icts.

8.3.1 Storage Design for Articles

To store data in a DHT, the information has to be stored as items with a key-
value pair. A paragraph in an article was the granularity used to organize the
information of the wiki. Articles were stored as a list of paragraphs. Using ar-
ticles as the minimal granularity would have not been convenient because users
never update more than one article at the time. Therefore, the transactional
layer would have been used to update only an item at the time, being useful
only for managing replica consistency. Furthermore, such granularity would
not allow concurrent user to work on the same article. Figure 8.8 depicts how
using paragraphs as the minimal granularity can be useful to allow concurrent
users updating the same article. On the �gure, both users get a copy of an
article composed by three paragraphs. Each paragraph has its own version,
marked as timestamps (ts). User A modi�es paragraph 1 and 3, while user B
modi�es paragraph 2. When user A commits her changes, the transactional
layer guarantees that both paragraph will be updated, or none of them will.
This property is particularly interesting if we consider that the article could be
source code of a program instead. Allowing only one change could introduce
an error in the program. Continuing with the example, since modi�cations of
users A and B do not con�ict, both transactions commit successfully. Conse-
quently, if user B would have also modi�ed either paragraph 1 or 3, only one
of the commits would have succeeded. It is up to the application to decide how
to resolve the con�ict.

8.3. DECENTRALIZED WIKIPEDIA 169

8.3.2 Reading the Information

The code samples used in this section are taken and modi�ed from one of
the student projects, which was called WikiPi2Pedia, with permission of the
authors Alexandre Bultot and Laurent Herbin. Getting a copy of an article
was divided into two transactions. The �rst one, wrapped inside the function
GetArticle, return the list of keys representing the paragraphs associated to
a given article, see Code 31. The title of the article is given as the key of the
item. The variable Node represents the peer, and the operation performed is
runTransaction(Trans Client paxos) with the following parameters: Trans
is a procedure receiving a transactional manager TM as parameter, which is ac-
tually the one over which the operation read is performed. The global variable
Client its a port where the outcome of the transaction, either commit or abort,
will be sent. The argument paxos is given to chose the protocol to be used for
this transaction. Note that key/value-sets cannot be used to store the para-
graphs of an article because they have an order between them. Therefore, a
key/value pair is used to store the list of paragraphs.

Algorithm 31 Getting the list of paragraphs keys from an article

fun {GetArticle Title}
Value
proc {Trans TM}

{TM read(Title Value)}
end

in
{Node runTransaction(Trans Client paxos)}
Value

end

The second step for getting the text of an article is to retrieve the values
of all the paragraphs. This is done in a similar way in Code 32, with the main
di�erence that many items are read on this transaction. Every resulting Value

from the read operation is added to the list of paragraphs, as it is shown in the
following sample code. The operator '|' is used to put the Value at the head
of the existing list of Paragraphs.

Reading an article is divided on these two steps to separate the issue of
knowing is an article exist or not. If the article does not exist, a failed value will
be the result of the transaction. The disadvantage is that the list of paragraphs
can change in between these two steps, and therefore, the displayed article could
miss some recently new paragraphs, or still display some deleted information.
However, the risk that some other user makes these updates during the session
of reading the article is even higher. So the disadvantage can be neglected.

170 CHAPTER 8. APPLICATIONS

Algorithm 32 Get the text from each paragraph

proc {GetPars ParIds}
Paragraphs = {NewCell nil}
Trans = proc {$ Obj}

for K in ParIds do
Value in
{Obj read(K Value)}
Paragraphs := Value|@Paragraphs

end
end

in
{Node runTransaction(Trans Client paxos)}
@Paragraphs

end

8.3.3 Updating Articles

Code 33 performs several transactions to update the article. The modi�cations
are divided into two lists of paragraphs, which are determined by the applica-
tion: ToCommit, containing all paragraphs with modi�cations, and newly added
paragraphs too; ToDelete are obviously the paragraphs that will be deleted.
These procedures imply several calls to write and remove on the transactional
object. Calling runTransaction on the Node guarantees that all of them will
be committed, or the whole update fails. This version is slightly simpli�ed,
because adding and removing items has also implications on the list of para-
graphs of the article. The representation of such list is application dependent,
so we will not include it on these code samples.

As we can see, reading an article and committing the correspondent updates
is fairly simple using the transactional DHT API. As an average, the student
projects were about 600 lines of code, including the graphical interface, and the
code for bootstrapping the peer-to-peer network. The students were not asked
to implement an HTML interface. Instead, they could implement a simple GUI
using the Mozart programming system [Moz08], to make it simpler to interact
with Beernet. Figure 8.9 is a screenshot of another submitted project called
WikipediOz's, with permission of the authors Quentin Pirmez and Laurent
Pierson. The �gure depicts how the GUI works, and opposite to Figure 8.8, it
represents an example of a failed transaction due to a con�ict on the edition.

The user running the window at the left of the image has modi�ed para-
graph 1 of the article entitled Patagonia. The user running the window on the
right has also modi�ed paragraph 1 of the same article, in addition to modi�-
cations on paragraph 4. Even without reading the text1, we can observe that
paragraphs 1 and 4 are longer on the right side of the screenshot. By clicking

1It is possible to read the text zooming in the pdf version of this dissertation. Text taken
from Wikipedia in October 2009 http://en.wikipedia.org/wiki/Patagonia

http://en.wikipedia.org/wiki/Patagonia

8.3. DECENTRALIZED WIKIPEDIA 171

Algorithm 33 Committing updates and removing paragraphs

proc {RobustCommit ToCommit ToDelete}
Trans = proc {$ Obj}

for UpdPar in ToCommit do
{Obj write(UpdPar.id UpdPar.text)}

end
for DelPar in ToDelete do
{Obj remove(DelPar.id)}

end
{Obj commit}

end
in

{Node runTransaction(Trans Client paxos)}
end

Figure 8.9: The user at the left modi�es paragraph 1 of the article, but the
commit fails because the user at the right just committed modi�cations on
paragraphs 1 and 4. Note that the size of paragraphs 1 and 4 is larger at the
right window.

172 CHAPTER 8. APPLICATIONS

on button Save, the commit transaction is triggered by the user on the right
side, receiving a message Commit successful. The user on the left, executing
the transaction afterwards, gets an error message Commit failed. To complete
the description of the screenshot, at the bottom of the window there is a text
�eld that allows searching for articles. The Search action performs the reading
transactions. At the op of the window there is a button that allows to create
new articles.

The feedback from the students helped us to improve our system, and it
con�rmed us that the provided API is suitable for other programmers to develop
applications on top of our system. The students agreed that all the complexity
of building the network, routing messages, storing and retrieving data from
the replicas, was well hidden behind the API. Unfortunately, they got the
feeling that their student project did not let them test their skills on distributed
programming for decentralized systems, because they were working on a higher
level. This is of course positive for Beernet as programming framework, but we
need to reconsider the project as an academic activity.

8.4 Validation Summary

After reviewing the design, functionality and implementation of DeTransDraw
Sindacaand the small decentralized wiki, we discuss now Beernet's properties
and functionalities used by these applications. Table 8.1 summarizes the rela-
tionship between the applications and Beernet. We can observe that all three
applications bene�t from the self-managing properties of Beernet. None of
them needed to do anything concerning the location of peers, or the way they
communicated between them. With respect to self-healing, the only action
that the applications needed to take was to connect to another peer when their
access point failed. The failure recovery at the level of the relaxed ring was
transparent to the applications respecting the self-healing property.

When it comes to the use of Trappist's protocols, we observe that Sindaca
and the small decentralized wiki used Paxos consensus algorithm, whereas
DeTransDraw needed to use Paxos with eager locking and the noti�cation
layer. This di�erence correlates with the kind of application. Both Sindaca
and Small wiki are asynchronous applications, whereas DeTransDraw is de-
signed as a synchronous collaborative drawing tool. We can also observed that
using key/value-sets is orthogonal to whether Paxos is used with optimistic or
pessimistic locking. These data collections are used by Sindaca for the storage
of recommendation sets and recommendation voting. In DeTransDraw, they
are used by the canvas to store the set of �gures. The small decentralized wiki
requires a total order of paragraphs in each article, and therefore, it is limited
to the use of key/value pairs with versions. Finally, the small wiki meets the
requirement of having an application implemented by developers other than
Beernet's developers, validating Beernet as programming framework.

8.5. CONCLUSION 173

Table 8.1: Applications and their use of Beernet's functionality.

Sindaca DeTransDraw Small Wiki

Self-organization ! ! !

Self-healing ! ! !

Paxos consensus ! !

Eager locking !

Noti�cations !

Key/value-sets ! !

Synchronous collab. !

Asynchronous collab. ! !

Third party develop. !

8.5 Conclusion

We have presented three applications on this chapter that make use of Beer-
net: Sindaca, DeTransDraw and a decentralized wiki. We have described
their design, functionality and implementation, and we have evaluated their
use of Beernet's properties and functionalities. We have chosen synchronous
and asynchronous collaborative systems to cover a wide range of applications.
Our evaluation shows a correlation between the use of Paxos with eager locking
and the noti�cation layer with synchronous applications, showing the useful-
ness of these protocols. We have also presented a decentralized wiki application
developed by students that were not involved at all in the development of Beer-
net. This application helps us to validate Beernet as programming framework.
The self-managing properties appear to be complete transparent at the level of
applications, which validates Beernet's architecture design.

174 CHAPTER 8. APPLICATIONS

Chapter 9
Conclusions

The ending is just a beginner
the closer you get to the meaning
the sooner you'll know that you're dreaming

�Heaven and Hell� - Black Sabbath

We have started this dissertation discussing about the complexity of build-
ing scalable distributed systems. Even when building scalable systems is a
high-level design problem, we have identi�ed important issues in the foun-
dations of distributed programming that a�ect the high-level design decisions.
Derived from the inherent asynchrony of distributed systems, dealing with non-
transitive connectivity and inaccurate failure detection is unavoidable. The ma-
jor impact created by these and other issues is that some system's requirements
become to hard to meet. Trying to ful�ll these requirements can be counterpro-
ductive when the incurred cost is larger than the bene�t. We propose to relax
those requirements to cope with the inherent asynchrony of distributed sys-
tems without sacri�cing functionality. Applying systematically the relaxation
when is needed becomes a design philosophy that we call the relaxed approach.
Together with relaxing the requirements, one way of providing the same func-
tionality is by increasing the decentralization and self-managing behaviour of
the system. Then, to be able to build applications on top of such systems, we
also need to provide robust storage where data can be accessed and modi�ed
in a transactional way. Therefore, we want to build scalable systems with two
properties: self-managing behaviour and transactional robust storage. In this
chapter we summarize how we validate the relaxed approach and how achieved
the desired properties for scalable systems.

176 CHAPTER 9. CONCLUSIONS

9.1 Self-Managing Decentralized System

We reviewed existing solutions to scalable systems Chapter 2, where we iden-
ti�ed the advantages and disadvantages of each of them. In Chapters 3 and 4,
we have presented the relaxed ring topology for self-healing and self-organizing
peer-to-peer networks. The topology is the result of relaxing the ring structure
introduced by Chord, which requires a perfect ring and transitive connectivity
to work correctly. To provide atomic join without relying on transitive connec-
tivity, we divided the join algorithm into three steps. Each of the three steps
involves only two peers instead of having a single step requiring the agreement
of three peers. This change is crucial because non-transitive connectivity can
easily corrupt any protocol involving more than two peers. The division of three
steps allow �incomplete� join protocols to be accepted as valid join events intro-
ducing branches to the ring. Hence, the name of relaxed ring. These branches
appear naturally in presence of connectivity problems in the network, allowing
the system to work in realistic scenarios where networks are not perfectly con-
nected. This new topology slightly increases the cost of the routing algorithm,
but only in some parts of the ring. Therefore, the global performance is not
really a�ected. These claims are evaluated and validated in Chapter 6. We
consider the performance degradation in the routing algorithm a small cost in
comparison to the gain in fault tolerance and cost-e�cient maintenance.

The relaxed ring topology makes feasible the integration of peers with very
poor connectivity. Having a connection to a successor is su�cient to be part of
the network. Leaving the network can be done instantaneously without having
to follow a leave protocol, because the failure-recovery mechanism will deal
with the missing node. In Chapter 3, the guarantees and limitations of the
system are clearly identi�ed and formally stated providing helpful indications
to build fault-tolerant applications on top of this structured overlay network.
The relaxed ring is enhanced with a self-adaptable �nger table, palta, that is
able to scale up and down, building a more e�cient routing table according to
the size of the network.

9.2 Transactional Robust Storage

Our second desired property for scalable systems is transactional robust stor-
age. The basic DHT provided by the relaxed ring has been improved with
a replication layer built op top of it. The layer is built using the symmetric
replication strategy to place the data items in the network. To guarantee the
consistency and coherence of the replicas, a transactional layer called Trappist
is in charge of providing atomic updates of the items, with the guarantee that
the majority of the replicas store the latest value. Working with the majority of
the replicas is a relaxation of classical approaches that requires that all replicas
are always updated.

Trappist implements four di�erent transactional protocols, which are de-

9.3. BEERNET 177

scribed in Chapter 5. They are two-phase commit, Paxos consensus algorithm,
eager-locking Paxos and lock-free key/value-sets. Two-phase commit is widely
used in centralized relational databases, but it does not suit dynamic systems
as peer-to-peer networks, because it requires that a single transaction man-
ager survives the transaction, and it also requires that all replicas accept the
new value. We have implemented two-phase commit for academic purposes to
compare it to our contribution. Paxos-consensus algorithm is taken from the
related work, because it works pretty well in peer-to-peer systems thanks to
its set of replicated transaction managers, and the fact that it only needs the
majority of replicas to commit each transaction. Therefore, it also �ts in our
relaxed approach. Paxos with eager-locking is a modi�cation of the previous
protocol providing a way of eagerly acquiring the lock of the majority of the
replicas. Eager locks are useful to build synchronous collaborative applications,
where users have highly concurrent access to the shared resources.

We also applied the relaxed approach to improve the support for data collec-
tions. We relaxed the order of elements in the collection to provide key/value-
sets. Relaxing the versioning of value-sets we were able to provide concurrent
modi�cations without locking the sets, improving performance. We consider
that getting rid of distributed locks is an important improvement to deal better
with the above mentioned inherent asynchrony of distributed systems. These
relaxations were introduced without sacri�cing strong consistency and provid-
ing transactional support. Evaluation of key/value-sets and the other Trap-
pist's protocols is presented in Chapter 6. The analysis is done in terms of
performance and scalability.

9.3 Beernet

The relaxed ring and the Trappist layer are part of the whole implementation
of Beernet, a peer-to-peer system where each peer is built as a set of indepen-
dent components with no shared state that only communicate through message
passing. The architecture is achieved by using our own implementation of the
actor model. This architecture has the main advantage of preventing errors at
the low layers to be propagated to the higher layer. Another advantage is that
the architecture can adapt its behaviour dynamically, and therefore, it gives a
step forward towards self-con�guration of components. In Beernet, every com-
ponent can be suspended and replaced by a di�erent component with the same
interface but with a di�erent behaviour. This change can be done while the
rest of components keep on working.

Beernet's design is also modular. For instance, a component implementing
a Trappist's protocol does not know anything about the implementation of the
DHT. It simply uses its API. It does not know the replication strategy either.
Trappist's components delegate the selection of replicas to the replication man-
ager. The fundamental concepts used on the implementation of Beernet and
its architecture are described in detail in Chapter 7.

178 CHAPTER 9. CONCLUSIONS

To validate Beernet as programming framework, we have developed two ap-
plications taking advantage of all transactional protocols provided in Trappist.
We implemented an asynchronous collaborative web service called Sindaca,
which is a community driven recommendation system. DeTransDraw is a syn-
chronous tool for collaborative drawing, where each update is done using the
eager-locking transactional protocol. Both applications take advantage of the
lock-free key/value-sets. A small wiki has been implemented by students using
only the API for creating and connecting peers, and for running transactions to
manipulate the data of the wiki articles. The management of the peer-to-peer
system was transparently provided by Beernet. These three applications are
described in Chapter 8.

Given the results presented in this dissertation, and referring to our the-
sis statement, we can conclude that we have successfully applied the relaxed
approach to design and build scalable distributed systems with self-managing
behaviour and transactional robust storage.

9.4 Related Work

There are two systems that are strongly related to Beernet: Scalaris [SSR08]
and Kompics [AH08]. In this section we brie�y described them to state the
similarities and di�erences with out work.

Scalaris This is the most related work that Beernet has. It also provides its
own overlay network topology called Chord#, providing multidimensional range
queries, and having an in�nite circular address space based on lexicographical
order of keys. It is the �rst peer-to-peer system in implementing the Paxos
consensus algorithm, using it to build a decentralized clone of the German
Wikipedia. That result inspired our student project presented in Section 8.3.
The di�erences with Beernet starts with the network topology. Chord# uses
periodic stabilization for ring maintenance and relies on transitive connectivity
to terminate their maintenance algorithms. While they have continued improv-
ing the performance of the Paxos consensus algorithm, Beernet has expanded
the transactional support with new protocols. More about Scalaris and Chord#

can be read in Section 2.3.4 and 6.6.1.

Kompics The relationship with Kompics lies on the programming model used
for building peer-to-peer systems. Kompics also uses independent components
that do not share any state, and it builds complex systems starting from basic
layers that are aggregated with new components providing new functionality.
Kompics is strongly inspired by the work presented in [GR06], and from our
point of view, it inherits from Java some limitations in their programming
model. For instance, the connection of components using channels with a
verbose registration of every single type of event it is going to be transmitted,

9.5. FUTURE WORK 179

can be avoided with a simple message passing mechanism between components,
as it is done in Beernet.

9.5 Future Work

To conclude this dissertation, we discuss some research ideas derived from the
results obtained so far. Each idea explores a di�erent area having di�erent
applicabilities, but all three of them have the common denominator of being
related to self-management and scalable decentralized systems.

Phase Transitions As we have observed in Section 6.7.3, where we discussed
the impact of NAT devices on the skewed distribution of branches, there is a
critical point where no peer is allowed to enter the ring anymore. This partic-
ular change on state of the network is consistent through the experiments we
performed. Therefore, it looks like a phase transition from a dynamic relaxed
ring constantly modi�ed by churn, to a more static but unstable relaxed ring
that do not allow new peers. We would also like to investigate if there is a
clear phase transition triggered by the quality of the network but at a very low
rate. If we consider that a relaxed ring in a perfectly connected ring with no
churn will form a perfect ring with perfect �nger table, it would also be static
but much more stable than the other extreme we just discussed. It would be
like ice. As soon as churn increases, or the quality of the network decreases,
the ring will start moving introducing branches and being less strongly con-
nected, as in liquid. It would be interesting then to �nd the combination of
churn and network quality to be at the point of breaking the ring, when all
peers in the successor list are unreachable. This kind of research could lead
us to build phase diagrams of peer-to-peer networks as function of churn and
network quality.

Cloud Computing Being one of the hottest research topics nowadays, it is
di�cult not to see the applicability of peer-to-peer systems in Cloud Computing
because of the elasticity it provides. Two directions can be followed here.
Without changing the current way of doing cloud computing, it is interesting
to know how peer-to-peer's ability of scaling up and down can be used to
e�ciently use the resources hired to Cloud providers. With the concept of
pay-as-you-go it is not only important to be able to scale up, but also to
scale down to released unused resources. Structured overlay networks can do
that well. The second direction tries to change the way Cloud Computing is
conceived by the large Cloud providers. The goal is to use peer-to-peer systems
to connect resources from di�erent organizations and single users, to created a
sort of dynamic Cloud which is not managed by any single entity. It breaks the
dependency on large Cloud providers, and it reuses available resources that are
frequently idle. The idea is not new, but there is still a lot to do in this area.

180 CHAPTER 9. CONCLUSIONS

Self-management at the level of peers The self-organizing, self-healing,
and other self-* properties of Beernet are mainly achieved as a global property.
The granularity of the changes is always a whole peer. There is not much
self-con�guration done within each peer. The exceptions are the self-tunable
eventually perfect failure detector, and the self-adaptable �nger table palta.
Considering the good modularity of Beernet's architecture, self-con�guration
appears as a possible research topic to improve the self-management of the
system. One idea would be to use Context-Oriented Programming to help the
self-adaptable mechanism of the routing table, as in palta. In palta, there
is a switch between two di�erent routing-table strategies determined by the ω
value. Below ω, the network works in a context of being fully connected. Above
ω, the network moves to a context with logarithmic routing. Therefore, instead
of having an if statement verifying the value of ω, we could de�ne two contexts
to dynamically adapt the behaviour of the �nger table whenever the context
has changed. Of course, that is not the only way to proceed. Implementing
monitoring at the level of components within each peer would help to identify
failures in the behaviour of components, allowing the system to replace them,
providing self-healing and self-con�guration inside each peer, and not only as
a global property.

Appendix A
Beernet's API

Beernet is provided as a Mozart-Oz1 library. To use it, the program needs to
import the main functor to create a peer to bootstrap a network, or to join an
existing one using the reference of another peer. Importing the main functor
and creating a new peer works as follows:

functor
import

Beernet at 'beernet/pbeer/Pbeer.ozf'

define
Pbeer = {Beernet.new args(transactions:true)}

Interacting with the peer is done by triggering an event as follows:

{Pbeer event(arg1 ... argn)}

We list now the di�erent events that can be triggered on Beernet's peers.
Even though Beernet's architecture is organized with layers where Trappist is
the upper most one, the architecture does not prevent the access to lower layers
because their functionality is important to implement applications.

A.1 Relaxed Ring

The following events can be used to get access to the functionality provided by
the relaxed ring layer. It mostly provides access to peer's pointers and other
information of the structured overlay network.

A.1.1 Basic Operations

• join(RingRef) Triggers joining process using RingRef as access point.

1The Mozart Programming System, http://www.mozart-oz.org

http://www.mozart-oz.org

182 APPENDIX A. BEERNET'S API

• lookup(Key) Triggers lookup for the responsible of Key, which will be
passed through the hash function.

• lookupHash(HashKey) Triggers lookup for the responsible of HashKey
without passing HashKey through the hash function.

• leave Roughly quit the network. No gently leave implemented.

A.1.2 Getting Information

• getId(?Res)

Binds Res to the id of the peer

• getRef(?Res)

Binds Res to a record containing peer's reference with the pattern
pbeer(id:<Id> port:<Port>)

• getRingRef(?Res)

Binds Res to the ring reference

• getFullRef(?Res)

Binds Res to a record containing peer's reference and ring's reference
with the pattern ref(pbeer:<Pbeer Ref> ring:<Ring Ref>)

• getMaxKey(?Res)

Binds Res to the maximum key in ring's address space

• getPred(?Res)

Binds Res to the reference of peer's predecessor

• getSucc(?Res)

Binds Res to the reference of peer's successor

• getRange(?Res)

Binds Res to the responsibility range of peer with the pattern From#To,
where From and To are integers keys.

A.1.3 Other Events

• refreshFingers(?Flag) Triggers lookup for ideal keys of �nger table to
refresh the routing table. Binds Flag when all lookups are replied.

• injectPermFail Peer stop answering any message.

• setLogger(Logger) Sets Logger as the default service to log information
of the peer. Mostly used for testing and debugging.

A.2. MESSAGE SENDING 183

A.2 Message Sending

This section describe the events that allow applications to send and receive
messages to other peers.

• send(Msg to:Key)

Sends message Msg to the responsible of key Key.

• dsend(Msg to:PeerRef)

Sends a direct message Msg to a peer using PeerRef.

• broadcast(Msg range:Range)

Sends message Msg to all peers on the range Range, which can be all,
sending to the whole ring, butMe, sending to all ring except for the sender,
and From#To, which sends to all peers having an identi�er within keys
From and To, so it can be used as a multicast.

• receive(?Msg)

Binds Msg to the next message received by the peer, and that it has not
been handled by any of Beernet's layer. It blocks until next message is
received.

A.3 DHT

Beernet also provides the basic operations of a distributed hash table (DHT).
None of this uses replication, therefore, there are no guarantees about persis-
tence.

• put(Key Val)

Stores the value Val associated with key Key, only in the peer responsible
for the key resulting from applying the hash function to key Key.

• get(Key ?Val)

Binds Val to the value stored with key Key. It is bound to the atom
'NOT_FOUND' in case that no value is associated with such key.

• delete(Key)

Deletes the item associated to key Key.

A.4 Symmetric Replication

The symmetric replication layer does not provides an interface to store values
with replication, but it does provides some functions to retrieve replicate data,
and to send messages to replica-sets.

• bulk(Msg to:Key)

Sends message Msg to the replication set associated to key Key.

184 APPENDIX A. BEERNET'S API

• getOne(Key ?Val)

Binds Val to the �rst answer received from any of the replicas of the item
associated with key Key. If value is 'NOT_FOUND', the peer does not bind
Val until it gets a valid value, or until all replicas has replied 'NOT_FOUND'.

• getAll(Key ?Val)

Binds Val to a list containing all values stored in the replica set associated
to key Key.

• getMajority(Key ?Val)

Binds Val to a list containing the values from the replica set associated
to key Key. It binds Val as soon as the majority is reached.

A.5 Trappist

Trappist provides di�erent protocols to run transactions on replicated items.
Due to their speci�c behaviour, they have di�erent interfaces.

A.5.1 Paxos Consensus

• runTransaction(Trans Client Protocol)

Run the transaction Trans using protocol Protocol. The answer, commit
or abort is sent to the port Client. Currently, the protocols supported
by this interface are twophase and paxos, for two-phase commit and
Paxos consensus with optimistic locking. For eager locking, see the inter-
face in Section A.5.2.

• executeTransaction(Trans Client Protocol)

Exactly the same as runTransaction. Kept only for backward compat-
ibility.

Inside a transaction, there are three operations that can be used to manip-
ulate data.

• write(Key Val)

Write value Val using key Key. The new value is stored at least in the
majority of the replicas. Updating the value gives a new version number
to the item.

• read(Key ?Val)

Binds Val to the latest value associated to key Key. Strong consistency
is guaranteed by reading from the majority of the replicas.

• remove(Key)

Removes the item associated to key Key from the majority of the replicas.

A.5. TRAPPIST 185

A.5.2 Paxos with Eager Locking

• getLocks(Keys ?LockId)

Get the locks of the majority of replicas of all items associated to the
list of keys Keys. Binds LockId to an Oz name if locks are successfully
granted, and to error otherwise.

• commitTransaction(LockId KeyValuePairs) update all items of the
list KeyValuePairs which must be locked using LockId. Each element
of the list KeyValuePairs must be of the form <key>#<value>

A.5.3 Noti�cation Layer

• becomeReader(Key)

Subscribes the current peer to be noti�ed about locking and updates
of the item associated to key Key. Noti�cation are received using the
receive event described previously.

A.5.4 Key/Value-Sets

• add(Key Val)

Adds the value Val to the set associated to key Key.

• remove(Key Val)

Removes value Val from the set associated to key Key.

• readSet(Key ?Val)

Binds Val to a list containing all elements from the set associated to key
Key.

186 APPENDIX A. BEERNET'S API

Appendix B
Sindaca User Guide

Sindaca is a community driven recommendation system for Sharing Idols N
Discussing About Common Addictions. In this application, users can make
recommendations on music, videos, text and other cultural expressions. It is
not designed for �le sharing to avoid legal issues with copyright. It allows users
to provide links to o�cial sources of titles. Users get noti�cations about new
suggestions, and they can vote on the suggestions to express their preferences.
Sindaca is available for testing at url:

http://beernet.info.ucl.ac.be/sindaca

Check the contact information of the page to request a username to login.
Any modi�cations done by the tester user will be stored in the network,

but they are not persistent to the reinitialization of the network. In case of
problems during the test, please check contact information on the web page.

B.1 Signing In

Figure B.1 shows Sindaca's welcome page with the sign-in form on the left of
the page, together with the menu. The screenshot shows user fbrood logging
in.

B.2 After Sign-In and Voting

If username and password are successfully provided, the user is taken to the
pro�le page where information about the recommendations stored in the system
is displayed. Figure B.2 is a screenshot of the web page displayed after user
fbrood has signed in. There is a welcome message both on the menu and on
the center of the content. What follows is a list of recommendations suggested
by members of the Sindaca community. This recommendation could have been

http://beernet.info.ucl.ac.be/sindaca

188 APPENDIX B. SINDACA USER GUIDE

Figure B.1: Sindaca's welcome page with sign in form.

made by other members or by the user itself. The recommendation is composed
of a title, the name of the artist, and a link where the title can be found. As
mentioned before, Sindaca does not provide storage for content preventing legal
issues with copyright.

The listed recommendations are only those that has not received a vote
from the user. A radiobutton is provided to express the preference which goes
from no good to good. We have actually chosen a scale from No beer to Beer.
The votes are submitted to the network when the user press the Vote button.
Once the voting submission is sent, a transaction is triggered to modify the
item that stores the recommendation.

B.3 Making a Recommendation

The form to add a new recommendation is presented in the same page where
the recommendations to be voted are displayed. The form can be seen in
Figure B.3 where the data for a new recommendation is already completed.
The user must �ll in the title, author, and link to the title. Once the data is
submitted by clicking the button Recommend, a new item will be created in the
network storing the recommendation. This item will be associated to the user
that creates it.

Every user has a list of recommendations she has made. This list is displayed
in the same pro�le page, below the form for adding new recommendations.
Therefore, the full pro�le page displays from top to bottom: welcome message,

B.3. MAKING A RECOMMENDATION 189

Figure B.2: After sign in, users can vote for suggested recommendations.

Figure B.3: Adding a new recommendation.

190 APPENDIX B. SINDACA USER GUIDE

Figure B.4: State of recommendations proposed by the user.

list of recommendations to be voted, form to add a new recommendation, and
the list of recommendations already made by the user. Figure B.4 shows how
the last list is presented. Apart from the above mentioned �elds, namely title,
artist and link, the information contains two other �elds being part of the state
of every recommendation: the amount of votes, and the average score of the
title. The screenshot we display in Figure B.4 was taken after the addition of
the recommendation made in Figure B.3. For that item we can observe that
no vote is registered, and therefore there is no average score either.

B.4 Closing Words

Sindaca has been a successful proof-of-concept for Beernet and its transactional
layer but it is still under development, so it is not complete stable, and there
are several bugs to be �xed. There are also many new features that can be
developed, and we are also planning to have a Mozart-Oz client that can take
advantage of the eager noti�cation feature.

Bibliography

[AAG+05] Karl Aberer, Luc Onana Alima, Ali Ghodsi, Sarunas Girdzi-
jauskas, Seif Haridi, and Manfred Hauswirth. The essence of
p2p: A reference architecture for overlay networks. In Germano
Caronni, Nathalie Weiler, Marcel Waldvogel, and Nahid Shah-
mehri, editors, Peer-to-Peer Computing, pages 11�20. IEEE Com-
puter Society, 2005.

[AB95] MySQL AB. MySQL: The world's most popular open source
database. http://www.mysql.com, 1995.

[AEABH03] Luc Onana Alima, Sameh El-Ansary, Per Brand, and Seif Haridi.
Dks (n, k, f): A family of low communication, scalable and fault-
tolerant infrastructures for p2p applications. In CCGRID '03:
Proceedings of the 3st International Symposium on Cluster Com-
puting and the Grid, page 344, Washington, DC, USA, 2003.
IEEE Computer Society.

[AFG+09] Michael Armbrust, Armando Fox, Rean Gri�th, Anthony D.
Joseph, Randy H. Katz, Andrew Konwinski, Gunho Lee, David A.
Patterson, Ariel Rabkin, Ion Stoica, and Matei Zaharia. Above
the clouds: A berkeley view of cloud computing. Technical Report
UCB/EECS-2009-28, Feb 2009.

[AH02] Karl Aberer and Manfred Hauswirth. An overview on peer-to-
peer information systems. In WDAS-2002 Proceedings. Carleton
Scienti�c, 2002.

[AH08] Cosmin Arad and Seif Haridi. Practical protocol composition,
encapsulation and sharing in kompics. Self-Adaptive and Self-
Organizing Systems Workshops, IEEE International Conference
on, 0:266�271, 2008.

[Ama09] Amazon. Amazon web services. http://aws.amazon.com, 2009.

http://www.mysql.com
http://aws.amazon.com

192 BIBLIOGRAPHY

[AMST97] Gul A. Agha, Ian A. Mason, Scott F. Smith, and Carolyn L.
Talcott. A foundation for actor computation. J. Funct. Program.,
7(1):1�72, 1997.

[Arm96] J. Armstrong. Erlang �- a survey of the language and its industrial
applications. In INAP'96 �- The 9th Exhibitions and Symposium
on Industrial Applications of Prolog, pages 16�18, Hino, Tokyo,
Japan, 1996.

[Aud01] Audiogalaxy. The audiogalaxy satellite. http://www.

audiogalaxy.com/satellite/, 2001.

[Bar03] Albert-Laszlo Barabasi. Linked: How Everything Is Connected
to Everything Else and What It Means. Plume, reissue edition,
April 2003.

[BCvR09] Ken Birman, Gregory Chockler, and Robbert van Renesse. To-
ward a cloud computing research agenda. SIGACT News,
40(2):68�80, 2009.

[BL03] Chonggang Wang Bo and Bo Li. Peer-to-peer overlay networks:
A survey. Technical report, 2003.

[Bul09] Alexandre Bultot. A survey of systems with multiple interacting
feedback loops and their application to programming. Master's
thesis, École Polytechnique de Louvain, Université catholique de
Louvain, 2009.

[Cho04] Chord Developers. The Chord/DHash project. http://pdos.

csail.mit.edu/chord/, 2004.

[CM04] Bruno Carton and Valentin Mesaros. Improving the scalability
of logarithmic-degree dht-based peer-to-peer networks. In Marco
Danelutto, Marco Vanneschi, and Domenico Laforenza, editors,
Euro-Par, volume 3149, pages 1060�1067. Springer, 2004.

[CMM02] Russ Cox, Athicha Muthitacharoen, and Robert Morris. Serving
DNS using Chord. In Proceedings of the 1st International Work-
shop on Peer-to-Peer Systems (IPTPS), Cambridge, MA, March
2002.

[CMV+08] Alfredo Cádiz, Boris Mejías, Jorge Vallejos, Kim Mens, Peter Van
Roy, and Wolfgang De Meuter. PALTA: Peer-to-peer AdaptabLe
Topology for Ambient intelligence. In M. Cecilia Bastarrica and
Mauricio Solar, editors, SCCC, pages 100�109. IEEE Computer
Society, 2008.

[Col07] Raphaël Collet. The Limits of Network Transparency in a
Distributed Programming Language. PhD thesis, Université
catholique de Louvain, dec 2007.

http://www.audiogalaxy.com/satellite/
http://www.audiogalaxy.com/satellite/
http://pdos.csail.mit.edu/chord/
http://pdos.csail.mit.edu/chord/

BIBLIOGRAPHY 193

[CV06] Raphaël Collet and Peter Van Roy. Failure handling in a network-
transparent distributed programming language. In Advanced Top-
ics in Exception Handling Techniques, pages 121�140, 2006.

[DBK+01] Frank Dabek, Emma Brunskill, M. Frans Kaashoek, David R.
Karger, Robert Morris, Ion Stoica, and Hari Balakrishnan. Build-
ing peer-to-peer systems with Chord, a distributed lookup service.
In HotOS, pages 81�86. IEEE Computer Society, 2001.

[DGM02] Neil Daswani and Hector Garcia-Molina. Query-�ood dos attacks
in gnutella. In CCS '02: Proceedings of the 9th ACM conference
on Computer and communications security, pages 181�192, New
York, NY, USA, 2002. ACM.

[Dis09] Distributed Systems Architecture Research Group at Universidad
Complutense de Madrid. Opennebula. http://www.opennebula.
org, 2009.

[DKK+01] Frank Dabek, M. Frans Kaashoek, David Karger, Robert Mor-
ris, and Ion Stoica. Wide-area cooperative storage with cfs. In
Proceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01), Chateau Lake Louise, Ban�, Canada, Oc-
tober 2001.

[DL09] Cameron Dale and Jiangchuan Liu. apt-p2p: A peer-to-peer dis-
tribution system for software package releases and updates. In
IEEE INFOCOM, Rio de Janeiro, Brazil, April 2009.

[Dou02] John R. Douceur. The sybil attack. In IPTPS '01: Revised Papers
from the First International Workshop on Peer-to-Peer Systems,
pages 251�260, London, UK, 2002. Springer-Verlag.

[DPS09] L. D'Acunto, J. A. Pouwelse, and H. J. Sips. A measurement
of nat and �rewall characteristics in peer-to-peer systems. In
Lex Wolters Theo Gevers, Herbert Bos, editor, Proc. 15-th ASCI
Conference, pages 1�5, P.O. Box 5031, 2600 GA Delft, The
Netherlands, June 2009. Advanced School for Computing and
Imaging (ASCI).

[DVM+06] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D'hondt, and Wolfgang De Meuter. Ambient-Oriented Program-
ming in AmbientTalk. 2006.

[EAH05] Sameh El-Ansary and Seif Haridi. An overview of structured over-
lay networks. In Theoretical and Algorithmic Aspects of Sensor,
Ad Hoc Wireless and Peer-to-Peer Networks. 2005.

[Emu04] Emule. The emule �le-sharing application homepage. http://

www.emule-project.org, 2004.

http://www.opennebula.org
http://www.opennebula.org
http://www.emule-project.org
http://www.emule-project.org

194 BIBLIOGRAPHY

[FFME04] Michael Freedman, Eric Freudenthal, David Mazières, and
David Mazi Eres. Democratizing content publication with coral.
In In NSDI, pages 239�252, 2004.

[FI03] Ian Foster and Adriana Iamnitchi. On death, taxes, and the
convergence of peer-to-peer and grid computing. In In 2nd In-
ternational Workshop on Peer-to-Peer Systems (IPTPS'03, pages
118�128, 2003.

[FLRS05] Michael J. Freedman, Karthik Lakshminarayanan, Sean Rhea,
and Ion Stoica. Non-transitive connectivity and dhts. In
WORLDS'05: Proceedings of the 2nd conference on Real, Large
Distributed Systems, pages 55�60, Berkeley, CA, USA, 2005.
USENIX Association.

[Fre03] FreeNet Community. The freenet project. http://

freenetproject.org, 2003.

[Gat97] Erann Gat. On three-layer architectures. In ARTIFICIAL IN-
TELLIGENCE AND MOBILE ROBOTS, pages 195�210. AAAI
Press, 1997.

[GDA06] Sarunas Girdzijauskas, Anwitaman Datta, and Karl Aberer. Os-
car: Small-world overlay for realistic key distributions. In Gian-
luca Moro, Sonia Bergamaschi, Sam Joseph, Jean-Henry Morin,
and Aris M. Ouksel, editors, DBISP2P, volume 4125 of Lecture
Notes in Computer Science, pages 247�258. Springer, 2006.

[GGG+03] K. Gummadi, R. Gummadi, S. Gribble, S. Ratnasamy,
S. Shenker, and I. Stoica. The impact of DHT routing geometry
on resilience and proximity. In SIGCOMM '03: Proceedings of
the 2003 conference on Applications, technologies, architectures,
and protocols for computer communications, pages 381�394, New
York, NY, USA, 2003. ACM.

[GGV05] Donatien Grolaux, Kevin Glynn, and Peter Van Roy. Lecture
notes in computer science. In Peter Van Roy, editor,MOZ, volume
3389, pages 149�160. Springer, 2005.

[Gho06] Ali Ghodsi. Distributed k-ary System: Algorithms for Distributed
Hash Tables. PhD thesis, KTH �- Royal Institute of Technology,
Stockholm, Sweden, dec 2006.

[GL02] Seth Gilbert and Nancy Lynch. Brewer's conjecture and the fea-
sibility of consistent available partition-tolerant web services. In
In ACM SIGACT News, page 2002, 2002.

[GL06] Jim Gray and Leslie Lamport. Consensus on transaction commit.
ACM Trans. Database Syst., 31(1):133�160, 2006.

http://freenetproject.org
http://freenetproject.org

BIBLIOGRAPHY 195

[Gly05] Kevin Glynn. Extending the oz language for peer-to-peer comput-
ing. Technical report, Université catholique de Louvain, Belgium,
March 2005.

[Gly07] Kevin Glynn. P2pkit: A services based architecture for deploying
robust peer-to-peer applications. http://p2pkit.info.ucl.ac.
be/index.html, 2007.

[GMV07] Donatien Grolaux, Boris Mejías, and Peter Van Roy. PEPINO:
PEer-to-Peer network INspectOr. In Hauswirth et al. [HWW+07],
pages 247�248.

[Gnu03] Gnutella. Gnutella. http://www.gnutella.com, 2003.

[GOH04] Ali Ghodsi, Luc Onana Alima, and Seif Haridi. A novel replica-
tion scheme for load-balancing and increased security. Technical
Report T2004:11, Swedish Institute of Computer Science (SICS),
June 2004.

[Goo09] Google Inc. Google app engine. http://code.google.com/

appengine/, 2009.

[GR06] Rachid Guerraoui and Louis Rodrigues. Introduction to Reli-
able Distributed Programming. Springer-Verlag, Berlin, Germany,
2006.

[Gro98] Donatien Grolaux. Editeur graphique réparti basé sur un modéle
transactionnel, 1998. Mémoire de Licence.

[GSG02] Krishna P. Gummadi, Stefan Saroiu, and Steven D. Gribble.
King: estimating latency between arbitrary internet end hosts.
In IMW '02: Proceedings of the 2nd ACM SIGCOMM Workshop
on Internet measurment, pages 5�18, New York, NY, USA, 2002.
ACM.

[HFC+08] Yan Huang, Tom Z. J. Fu, Dah-Ming Chiu, John C. S. Lui, and
Cheng Huang. Challenges, design and analysis of a large-scale
p2p-vod system. SIGCOMM Comput. Commun. Rev., 38(4):375�
388, 2008.

[HWW+07] Manfred Hauswirth, Adam Wierzbicki, Klaus Wehrle, Alberto
Montresor, and Nahid Shahmehri, editors. Seventh IEEE In-
ternational Conference on Peer-to-Peer Computing (P2P 2007),
September 2-5, 2007, Galway, Ireland. IEEE Computer Society,
2007.

[HWY08] Felix Halim, Yongzheng Wu, and Roland H. C. Yap. Security is-
sues in small world network routing. In SASO '08: Proceedings of
the 2008 Second IEEE International Conference on Self-Adaptive

http://p2pkit.info.ucl.ac.be/index.html
http://p2pkit.info.ucl.ac.be/index.html
http://www.gnutella.com
http://code.google.com/appengine/
http://code.google.com/appengine/

196 BIBLIOGRAPHY

and Self-Organizing Systems, pages 493�494, Washington, DC,
USA, 2008. IEEE Computer Society.

[IF04] Adriana Iamnitchi and Ian Foster. A peer-to-peer approach to
resource location in grid environments. pages 413�429, 2004.

[JOK09] R. Jimenez, F. Osmani, and B. Knutsson. Connectivity properties
of mainline bittorrent dht nodes. In Peer-to-Peer Computing,
2009. P2P '09. IEEE Ninth International Conference on, pages
262�270, 2009.

[KA08] Supriya Krishnamurthy and John Ardelius. An analytical frame-
work for the performance evaluation of proximity-aware struc-
tured overlays. Technical report, Swedish Institute of Computer
Science (SICS), Sweden, 2008.

[KC03] Je�rey O. Kephart and David M. Chess. The vision of autonomic
computing. IEEE Computer, 36(1):41�50, January 2003.

[KM07] Je� Kramer and Je� Magee. Self-managed systems: an archi-
tectural challenge. In FOSE '07: 2007 Future of Software En-
gineering, pages 259�268, Washington, DC, USA, 2007. IEEE
Computer Society.

[KMV06] Erik Klintskog, Boris Mejías, and Peter Van Roy. E�cient dis-
tributed objects by freedom of choice. In Revival of Dynamic
Languages Workshop, ECOOP'06, July 2006.

[KPQS09] Anne-Marie Kermarrec, Alessio Pace, Vivien Quema, and Valerio
Schiavoni. Nat-resilient gossip peer sampling. Distributed Com-
puting Systems, International Conference on, 0:360�367, 2009.

[LCP+05] Eng Keong Lua, Jon Crowcroft, Marcelo Pias, Ravi Sharma, and
Steven Lim. A survey and comparison of peer-to-peer overlay
network schemes. IEEE Communications Surveys and Tutorials,
7:72�93, 2005.

[LML05] Paul Lin, Alexander MacArthur, and John Leaney. De�ning au-
tonomic computing: A software engineering perspective. pages
88�97, Brisbane, Australia, March 31 - April 1 2005. IEEE Com-
puter Society.

[LMP04] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Active and
concurrent topology maintenance. In DISC, pages 320�334, 2004.

[LMP06] Xiaozhou Li, Jayadev Misra, and C. Greg Plaxton. Concur-
rent maintenance of rings. Distributed Computing, 19(2):126�148,
2006.

BIBLIOGRAPHY 197

[LP09] Yangyang Liu and Jianping Pan. The impact of nat on bittorrent-
like p2p systems. In Peer-to-Peer Computing, 2009. P2P '09.
IEEE Ninth International Conference on, pages 242�251, 2009.

[LQK+08] B. Li, Y. Qu, Y. Keung, S. Xie, C. Lin, J. Liu, and X. Zhang.
Inside the new coolstreaming: Principles, measurements and per-
formance implications. In INFOCOM 2008. The 27th Conference
on Computer Communications. IEEE, 2008.

[Mar02] Evangelos P. Markatos. Tracing a large-scale peer to peer system:
an hour in the life of gnutella. In 2nd IEEE/ACM International
Symposium on Cluster Computing and the Grid, 2002.

[Mat04] MathWorld. The butter�y graph. http://mathworld.wolfram.
com, 2004.

[MCGV05] Valentin Mesaros, Raphael Collet, Kevin Glynn, and Peter Van
Roy. A transactional system for structured overlay networks.
Technical report, March 2005.

[MCPV05] Boris Mejías, Raphaël Collet, Konstantin Popov, and Peter Van
Roy. Improving transparency of a distributed programming sys-
tem. In "Integrated Research in Grid Computing" CoreGRID
Workshop, November 2005.

[MCV05] Valentin Mesaros, Bruno Carton, and Peter Van Roy. P2PS:
Peer-to-peer development platform for mozart. In Peter Van Roy,
editor, MOZ, volume 3389, pages 125�136. Springer, 2005.

[MCV09] Boris Mejías, Alfredo Cádiz, and Peter Van Roy. Beernet: RMI-
free peer-to-peer networks. In DO21 '09: Proceedings of the 1st
International Workshop on Distributed Objects for the 21st Cen-
tury, pages 1�8, New York, NY, USA, 2009. ACM.

[Mej09] Boris Mejías. Beernet: a relaxed-ring approach for peer-to-peer
networks with transactional replicated DHT. Doctoral Sympo-
sium at the XtreemOS Summer School 2009, Wadham College,
University of Oxford, Oxford, UK, September 2009.

[MGV07] Boris Mejías, Donatien Grolaux, and Peter Van Roy. Improving
the peer-to-peer ring for building fault-tolerant grids. In Core-
GRID Workshop on Grid-* and P2P-*, july 2007.

[MH07] Monika Moser and Seif Haridi. Atomic Commitment in Transac-
tional DHTs. In Proceedings of the CoreGRID Symposium. Core-
GRID series. Springer, 2007.

http://mathworld.wolfram.com
http://mathworld.wolfram.com

198 BIBLIOGRAPHY

[MHV08] Boris Mejías, Mikael Högqvist, and Peter Van Roy. Visualizing
transactional algorithms for DHTs. In Klaus Wehrle, Wolfgang
Kellerer, Sandeep K. Singhal, and Ralf Steinmetz, editors, The
Eighth IEEE International Conference on Peer-to-Peer Comput-
ing, pages 79�80. IEEE Computer Society, 2008.

[Mic09] Microsoft Corporation. Azure service platform. http://www.

microsoft.com/azure/, 2009.

[Mil05] Drazen Milicic. Software quality models and philosophies, chap-
ter 1, page 100. Blekinge Institute of Technology, June 2005.

[MJV06] Boris Mejías, Yves Jaradin, and Peter Van Roy. Improving ro-
bustness in P2PS and a generic belief propagation service for
P2PKit. Technical report, Department of Computing Science and
Engineering, Université catholique de Louvain, December 2006.

[MM02] P. Maymounkov and D. Mazieres. Kademlia: A peer-to-peer in-
formation system based on the xor metric, 2002.

[MMGC02] Athicha Muthitacharoen, Robert Morris, Thomer M. Gil, and
Benjie Chen. Ivy: A read/write peer-to-peer �le system. pages
31�44, 2002.

[MMR95] Martin Müller, Tobias Müller, and Peter Van Roy. Multi-
paradigm programming in oz. In Donald Smith, Olivier Ridoux,
and Peter Van Roy, editors, Visions for the Future of Logic Pro-
gramming: Laying the Foundations for a Modern successor of
Prolog, Portland, Oregon, 7 dec 1995. A Workshop in Associa-
tion with ILPS'95.

[MNR02] Dahlia Malkhi, Moni Naor, and David Ratajczak. Viceroy: A
scalable and dynamic emulation of the butter�y. pages 183�192,
2002.

[Moz08] Mozart Consortium. The mozart-oz programming system. http:
//www.mozart-oz.org, 2008.

[MS03] Mark S. Miller and Jonathan S. Shapiro. Paradigm regained:
Abstraction mechanisms for access control. In Vijay Saraswat,
editor, ASIAN'03. Springer Verlag, December 2003.

[MTSL05] Mark S. Miller, E. Dean Tribble, Jonathan Shapiro, and
Hewlett Packard Laboratories. Concurrency among strangers:
Programming in e as plan coordination. In In Trustworthy Global
Computing, International Symposium, TGC 2005, pages 195�229.
Springer, 2005.

http://www.microsoft.com/azure/
http://www.microsoft.com/azure/
http://www.mozart-oz.org
http://www.mozart-oz.org

BIBLIOGRAPHY 199

[MV07] Boris Mejías and Peter Van Roy. A relaxed-ring for self-organising
and fault-tolerant peer-to-peer networks. In SCCC '07: Proceed-
ings of the XXVI International Conference of the Chilean Society
of Computer Science, pages 13�22, Washington, DC, USA, 2007.
IEEE Computer Society.

[MV08] Boris Mejías and Peter Van Roy. The relaxed-ring: a fault-
tolerant topology for structured overlay networks. Parallel Pro-
cessing Letters, 18(3):411�432, 2008.

[MV10] Boris Mejías and Peter Van Roy. Beernet: Building self-
managing decentralized systems with replicated transactional
storage. IJARAS: International Journal of Adaptive, Resilient,
and Autonomic Systems, 1(3):1�24, July - September 2010. to
appear.

[Nap99] Napster, Inc. Napster. http://www.napster.com, 1999.

[Ope01] OpenNap Community. Open source napster server. http://

opennap.sourceforge.net, 2001.

[Ove04] Overnet. The overnet �le-sharing application homepage. http:

//www.overnet.com, 2004.

[Par09] XtreemOS Partners. XtreemOS: Enabling Linux for the grid.
http://www.xtreemos.org, 2009.

[PGES05] J. A. Pouwelse, P. Garbacki, D. H. J. Epema, and H. J. Sips. The
bittorrent p2p �le-sharing system: Measurements and analysis.
2005.

[Pos09] PostgreSQL Global Development Group. PostgreSQL: The
world's most advanced open source database. http://www.

postgresql.org/, 2009.

[Pro08] Programming Languages and Distributed Computing Research
Group, UCLouvain. P2ps: A peer-to-peer networking library for
mozart-oz. http://gforge.info.ucl.ac.be/projects/p2ps/,
2008.

[Pro09] Programming Languages and Distributed Computing Research
Group, UCLouvain. Beernet: pbeer-to-pbeer network. http:

//beernet.info.ucl.ac.be, 2009.

[PRS07] Stefan Plantikow, Alexander Reinefeld, and Florian Schintke.
Transactions for distributed wikis on structured overlays. InMan-
aging Virtualization of Networks and Services, pages 256�267.
2007.

http://www.napster.com
http://opennap.sourceforge.net
http://opennap.sourceforge.net
http://www.overnet.com
http://www.overnet.com
http://www.xtreemos.org
http://www.postgresql.org/
http://www.postgresql.org/
http://gforge.info.ucl.ac.be/projects/p2ps/
http://beernet.info.ucl.ac.be
http://beernet.info.ucl.ac.be

200 BIBLIOGRAPHY

[RD01a] Antony Rowstron and Peter Druschel. Pastry: Scalable, decen-
tralized object location, and routing for large-scale peer-to-peer
systems. Lecture Notes in Computer Science, 2218:329, 2001.

[RD01b] Antony Rowstron and Peter Druschel. Storage management and
caching in PAST, a large-scale, persistent peer-to-peer storage
utility, 2001.

[REAH09] Roberto Roverso, Sameh El-Ansary, and Seif Haridi. Natcracker:
Nat combinations matter. Computer Communications and Net-
works, International Conference on, 0:1�7, 2009.

[Res09] Reservoir Consortium. Reservoir: Resources and services virtual-
ization without barriers. http://www.reservoir-fp7.eu, 2009.

[RFH+01] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp,
and Scott Schenker. A scalable content-addressable network. In
SIGCOMM '01: Proceedings of the 2001 conference on Applica-
tions, technologies, architectures, and protocols for computer com-
munications, pages 161�172, New York, NY, USA, 2001. ACM.

[RFI02] Matei Ripeanu, Ian Foster, and Adriana Iamnitchi. Mapping the
gnutella network: Properties of large-scale peer-to-peer systems
and implications for system. IEEE Internet Computing Journal,
6:2002, 2002.

[RGK+05] Sean Rhea, Brighten Godfrey, Brad Karp, John Kubiatowicz,
Sylvia Ratnasamy, Scott Shenker, Ion Stoica, and Harlan Yu.
Opendht: A public dht service and its uses, 2005.

[RGRK04] Sean Rhea, Dennis Geels, Timothy Roscoe, and John Kubiatow-
icz. Handling churn in a dht. In In Proceedings of the USENIX
Annual Technical Conference, 2004.

[SAZ+02] Ion Stoica, Daniel Adkins, Shelley Zhuang, Scott Shenker, and
Sonesh Surana. Internet indirection infrastructure, 2002.

[SGH07] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Handling net-
work partitions and mergers in structured overlay networks. In
Hauswirth et al. [HWW+07], pages 132�139.

[SGH08] Tallat M. Shafaat, Ali Ghodsi, and Seif Haridi. Dealing with
network partitions in structured overlay networks. Journal of
Peer-to-Peer Networking and Applications, 2008.

[SMK+01] Ion Stoica, Robert Morris, David Karger, Frans Kaashoek, and
Hari Balakrishnan. Chord: A scalable peer-to-peer lookup ser-
vice for internet applications. In Proceedings of the 2001 ACM
SIGCOMM Conference, pages 149�160, 2001.

http://www.reservoir-fp7.eu

BIBLIOGRAPHY 201

[Smo95] Gert Smolka. The oz programming model. In Jan van Leeuwen,
editor, Computer Science Today, chapter Lecture Notes in Com-
puter Science, vol. 1000, pages 324�343. Springer-Verlag, Berlin,
1995.

[SMS+08] Tallat M. Shafaat, Monika Moser, Thorsten Schütt, Alexander
Reinefeld, Ali Ghodsi, and Seif Haridi. Key-based consistency
and availability in structured overlay networks. In Proceedings of
the 3rd International ICST Conference on Scalable Information
Systems (Infoscale'08). ACM, jun 2008.

[SRHS10] Florian Schintke, Alexander Reinefeld, Seif Haridi, and Thorsten
Schutt. Enhanced paxos commit for transactions on dhts. Clus-
ter Computing and the Grid, IEEE International Symposium on,
0:448�454, 2010.

[SSR07] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld. A
structured overlay for multi-dimensional range queries. In Euro-
Par 2007, 2007.

[SSR08] Thorsten Schütt, Florian Schintke, and Alexander Reinefeld.
Scalaris: reliable transactional p2p key/value store. In ERLANG
'08: Proceedings of the 7th ACM SIGPLAN workshop on ER-
LANG, pages 41�48, New York, NY, USA, 2008. ACM.

[ST05] Mazeiar Salehie and Ladan Tahvildari. Autonomic computing:
emerging trends and open problems. ACM SIGSOFT Software
Engineering Notes, 30(4):1�7, 2005.

[The03] The PlanetLab Consortium. Planetlab: An open platform for
developing, deploying, and accessing planetary-scale services.
http://www.planet-lab.org, 2003.

[The09a] The Apache Software Foundation. Apache http server. http:

//www.apache.org, 2009.

[The09b] The Globus Alliance. Nimbus Open Source IaaS Cloud Comput-
ing Software. http://workspace.globus.org/, 2009.

[The09c] The PHP Group. PHP: Hypertext Preprocessor. http://www.

php.net, 2009.

[TT03] Domenico Talia and Paolo Trun�o. Toward a synergy between
p2p and grids. IEEE Internet Computing, 7(4):96�94, 2003.

[TTF+06] Paolo Trun�o, Domenico Talia, Paraskevi Fragopoulou, Charis
Papadakis, Matteo Mordacchini, Mika Pennanen, Konstantin
Popov, Vladimir Vlassov, and Seif Haridi. Peer-to-peer models
for resource discovery on grids. In Proc. of the 2nd CoreGRID

http://www.planet-lab.org
http://www.apache.org
http://www.apache.org
http://workspace.globus.org/
http://www.php.net
http://www.php.net

202 BIBLIOGRAPHY

Workshop on Grid and Peer to Peer Systems Architecture, Paris,
France, January 2006.

[TTH+07] Paolo Trun�o, Domenico Talia, Seif Haridi, Paraskevi
Fragopoulou, Matteo Mordacchini, Mika Pennanen, Konstantin
Popov, Vladimir Vlassov, and Harris Papadakis. Peer-to-peer re-
source discovery in grids: Models and systems. Future Generation
Computer Systems, 23(7):864�878, August 2007.

[TTZH06a] Domenico Talia, Paolo Trun�o, Jingdi Zeng, and Mikael
Högqvist. A dht-based peer-to-peer framework for resource dis-
covery in grids. Technical Report TR-0048, June 2006.

[TTZH06b] Domenico Talia, Paolo Trun�o, Jingdi Zeng, and Mikael
Högqvist. A peer-to-peer framework for resource discovery in
large-scale grids. In Proc. of the 2nd CoreGRID Integration Work-
shop, pages 249�260, Krakow, Poland, October 2006.

[TV01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Sys-
tems: Principles and Paradigms. Prentice Hall PTR, Upper Sad-
dle River, NJ, USA, 2001.

[Van06] Peter Van Roy. Self management and the future of software
design. In Formal Aspects of Component Software (FACS '06),
September 2006.

[Van08] Peter Van Roy. Overcoming software fragility with interacting
feedback loops and reversible phase transitions. 2008.

[Van09] Peter Van Roy. Languages and algorithms for distributed appli-
cations. http://www.info.ucl.ac.be/Enseignement/Cours/

SINF2345/, 2009.

[VH04] Peter Van Roy and Seif Haridi. Concepts, Techniques, and Models
of Computer Programming. MIT Press, 2004.

[VMG+07] Tom Van Cutsem, Stijn Mostinckx, Elisa Gonzalez Boix, Jessie
Dedecker, and Wolfgang De Meuter. Ambienttalk: Object-
oriented event-driven programming in mobile ad hoc networks.
Chilean Computer Science Society, International Conference of
the, 0:3�12, 2007.

[WER91] Daniel M. Wegner, Ralph Erber, and Paula Raymond. Transac-
tive memory in close relationships. Journal of Personality and
Social Psychology, 61(6):923�929, December 1991.

[Wik09] Wikimedia Foundation. Wikipedia, the free encyclopedia. http:
//en.wikipedia.org/wiki/Wikipedia, 2009.

http://www.info.ucl.ac.be/Enseignement/Cours/SINF2345/
http://www.info.ucl.ac.be/Enseignement/Cours/SINF2345/
http://en.wikipedia.org/wiki/Wikipedia
http://en.wikipedia.org/wiki/Wikipedia

BIBLIOGRAPHY 203

[WWWK94] Jim Waldo, Geo� Wyant, Ann Wollrath, and Sam Kendall. A
note on distributed computing. In Mobile Object Systems: To-
wards the Programmable Internet, pages 49�64. Springer-Verlag:
Heidelberg, Germany, 1994.

[ZHS+03] Ben Y. Zhao, Ling Huang, Jeremy Stribling, Sean C. Rhea, An-
thony D. Joseph, and John D. Kubiatowicz. Tapestry: A global-
scale overlay for rapid service deployment. IEEE Journal on Se-
lected Areas in Communications, 2003.

	Introduction
	Scalable Systems
	Replicated Storage
	Self Managing Systems
	Thesis and Contribution
	Publications and Software
	Roadmap

	The Road to Peer-to-Peer Networks
	Self Management
	Overlay Networks
	Client-Server Architecture
	Peer-to-Peer First Generation
	Peer-to-Peer Second Generation

	Structured Overlay Networks
	Chord
	DKS
	P2PS and P2PKit
	Chord# and Scalaris
	Other SONs

	Distributed Storage
	Replication Strategies
	How to Store an Item
	Transactions

	Summary of Overlay Networks
	Unstructured and Structured Overlays
	Structured Overlay Graphs Comparison
	Ring Based Overlays

	Analysis of Self-Management Properties
	Scalability
	Replicated Storage

	A Note on Grid Computing
	A Note on Cloud Computing
	Conclusion

	The Relaxed Ring
	Basic Concepts
	Bootstrapping
	Join Algorithm
	Routing
	Resilient Information
	Leave Algorithm
	Failure Recovery
	The Fix Message
	Join and Failure
	Non Trivial Suspicions

	Pruning Branches
	Adaptable Routing-Table Construction
	Conclusion

	The Relaxed Ring in a Feedback Loop
	Background
	Other Feedback Loops

	Join Algorithm
	Failure Recovery
	Failure Detector
	Finger Table
	Self-Adaptable Routing-Table
	Conclusion

	Transactional DHT
	Two-Phace Commit
	Paxos Consensus Algorithm
	Self Management
	Non-Transitive Connectivity

	Paxos with Eager Locking
	Notification Layer
	Lock-Free Key/Value-Sets
	The Transactional Protocol
	Semantics

	Discussion on the Choice of Protocols
	Replica Management
	New Peer Joins the Network
	Failure Handling

	Trappist
	Conclusion

	Evaluation
	Concurrent Simulator
	Branches in the Relaxed Ring
	Bandwidth Consumption
	Comparison with Chord
	Lookup Consistency
	Bandwidth Consumption

	Efficiency of the Routing Table
	Active Connections
	Network Traffic
	Hops

	Trappist's Performance
	Scalability
	Concurrent Modifications

	The Influence of NAT Devices
	Related Work on the Study of NATs
	Evaluation Model
	Skewed Branches
	Resilience

	Conclusion

	Beernet's Design and Implementation
	Distributed Programming and Failures
	Event-Driven Components
	Event-Driven Actors
	Threads and Data-Flow Variables
	Ports and Asynchronous Send
	Going Distributed
	Actors

	The Ring and the Problems with RMI
	Fault Streams for Failure Handling
	General Architecture
	Discussion
	Conclusion

	Applications
	Sindaca
	Functionality
	Design and Implementation
	Configuration

	DeTransDraw
	TransDraw
	TransDraw Weakness
	Decentralized TransDraw

	Decentralized Wikipedia
	Storage Design for Articles
	Reading the Information
	Updating Articles

	Validation Summary
	Conclusion

	Conclusions
	Self-Managing Decentralized System
	Transactional Robust Storage
	Beernet
	Related Work
	Future Work

	Beernet's API
	Relaxed Ring
	Basic Operations
	Getting Information
	Other Events

	Message Sending
	DHT
	Symmetric Replication
	Trappist
	Paxos Consensus
	Paxos with Eager Locking
	Notification Layer
	Key/Value-Sets

	Sindaca User Guide
	Signing In
	After Sign-In and Voting
	Making a Recommendation
	Closing Words

	Bibliography

