
Improving querying in Peer to Peer Systems

Maria-Del-Pilar Villamil, Claudia Roncancio, Cyril Labbé

Grenoble University / LSR-IMAG Laboratory
BP 72, 38402 St. Martin d’Hères, France

e-mail: Firstname.Lastname@imag.fr

Abstract. This paper presents the design, implementation and perfor-
mance evaluation of a querying and indexing middleware for Distributed
Hash Table (DHT) P2P systems. Data sharing in such systems is im-
proved by supporting declarative location queries and other data man-
agement facilities. Queries may be conjunctions and disjunctions of con-
ditions including comparison terms (e.g. =, <,>, like operators).
Unlike some current works, our proposal respects a true P2P architec-
ture, does not rely neither on centralized catalogs nor on super peers,
does not require hashing functions with particular properties and can
be used with any current DHT P2P system. Our proposal on meta-data
fragmentation, duplication and indexes leads to an efficient support of
queries and allows a variety of execution plans. The scalability of the
proposal is shown by experiments with our prototype. A qualitative and
quantitative comparison with related works is presented.
Keywords: P2P systems, distributed query evaluation, large scale dis-
tributed systems.

1 Introduction

Peer-to-peer (P2P) is an emerging paradigm to provide large scale distributed
systems. Their architecture does not suppose centralized servers and considers
participating computers (peers) as having equivalent roles. Current P2P systems
provide high flexibility in managing large sets of heterogeneous peers: systems
are very dynamic, members may join and leave them easily. Two generations
of P2P systems may be distinguished: the first one (e.g. Gnutella [1]) manages
dynamic unstructured sets of participants. Object location requests submitted
by users are propagated in the system by using flooding strategies [2, 3]. The sec-
ond generation are structured P2P systems (e.g. CAN [4], Chord [5],Pastry [6])
proposing a logical organization of peers supported by a Distributed Hash Table
(DHT) [7]. Such a DHT insures scalability and dynamicity of P2P systems and
improves the propagation of object location requests: the number of contacted
peers is reduced in comparison with the first generation. Important results are
now achieved in providing flexible management of large and dynamic sets of
peers. Nevertheless, from a data management point of view, functions provided
on P2P systems remain restricted.

This work concerns querying in DHT based P2P systems. Contrary to first
generation of P2P systems, these systems provide comprehensive answers [8]
(i.e. answers containing all relevant data available in the system) to object lo-
cation requests. Nevertheless, in their basic configuration, they do not provide

2 Maria-Del-Pilar Villamil, Claudia Roncancio, Cyril Labbé

keyword search functions or multi attributes and comparative queries. They
only offer access to objects giving their key. More powerful queries are diffi-
cult to handle since objects distribution criteria among peers is based on their
key. Therefore the routing process, based on such keys, cannot be used to solve
semantic queries. Several attempts to improve querying capabilities have been
performed recently. Most of them concern location queries. Main approaches use
meta-data to add semantics to stored data.

This paper introduces PinS, a middleware to improve data access and query-
ing on top of DHT systems. It applies to a general context without hypothesis
on the type of data stored in the system and considers attributes associated
to objects as meta-data. This paper presents PinS design, implementation, per-
formance evaluation and a comparison with existent propositions about object
registration and query processing. 1

Unlike some current proposals [10, 11], PinS respects a true P2P architecture,
does not rely on centralized catalogs nor on super peers [12], does not require
hashing functions with particular properties and can be used with any current
DHT P2P system. PinS provides several execution strategies (others can be
added) with different performance characteristics and enables query optimization
based on the system characteristics and on the required QoS. Our prototype
experiments show PinS good performances. PinS design choices are so that the
number of objects registered in the system does not affect the complexity of the
evaluation of conjunctive queries. This property is highly appreciable in large
scale systems. PinS 1.0 is operational. Experiments have been performed on top
of Pastry [13] in a system involving 1000 peers.

The paper is organized as follows. Section 2 reviews main features of DHT
systems and points out functions used by our proposal. Section 3 introduces the
PinS middleware. Section 4 presents the general execution strategy for queries
composed of equality terms. Section 5 focuses on queries including comparison
terms (e.g using <, >, like operators). Section 6 presents the architecture and
performance measures of PinS 1.0. Section 7 analyzes related works whereas 8
concludes and presents future work.

2 Background on structured P2P systems

Structured P2P systems manage dynamic and heterogeneous sets of partici-
pant peers. These systems adopt a logical organization of peers supported by
a (DHT) [7]. A hash table is used as index to improve data access. A hashing
function associates a position to a key.2 Key searches are therefore very efficient.
A P2P system can be compared to a bucket array where a peer is a storage unit
(bucket). This simile is used by structured P2P to enhance the management of
large sets of peers. Structured P2P systems are therefore known as Distributed
Hash Table Systems (DHTS). As a matter of fact, DHTS are not yet standard-
ized but there are efforts on this direction [14, 15].

1 Preliminary ideas on this work were introduced in [9]. No global proposal, no imple-
mentation and no experiments are presented there.

2 In this paper, “key” denotes a value returned by the hash function.

Improving querying in Peer to Peer Systems 3

In DHTS, locating an object is reduced to routing to the peers hosting
the object. The main differences between DHT systems is routing geometry.
CAN [4] uses a d-dimensional Cartesian space, Chord [5] and Pastry [6] a ring
and Viceroy [16] a butterfly network. To find an object users have to know its
key. Queries are called location queries. Its Answer contains the peer identi-
fiers where the object is stored. The requester has to get then the object at one
of these peers by himself. For more information about P2P systems see [12].

Our point of view is that the main functionalities of DHTS and systems using
them tightly may be classified in two layers: Distributed Lookup Service
(DLS) and Distributed Storage Service (DSS). DLS layer provides efficient
mechanisms to find peers (named by keys) by managing the routing information.
Its main functions in our context is lookup(key): returns the physical identifier
of the peer in charge of a key.

DSS layer does the stored object administration (e.g. insertion, migration).
Objects migrate from a peer that leaves the systems to one of its neighbors to
insure its durability. Such systems offer load balancing and caching strategies.
The main external functions of DSS layer are: get(key): returns the object(s)
identified by key. put(key, Object): inserts in the system an object identified
by its key. Both functions use lookup to locate the peers responsible for the key.
Examples of systems in DSS layer are Past [17] and DHash [18].

3 Introduction to the PinS Middleware

PinS offers data/meta-data registration and location queries on top of DHT
P2P systems. Data may be of any type3. PinS works on meta-data and data
types are not relevant. Meta-data is composed by <attribute,value> tuples (e.g.
Year=1988). Registration and querying facilities are presented here.

3.1 Data and meta-data registration and management

Registering an object also includes the creation of local catalog and location
data meta-data. Local catalog keeps information detailed about objects stored in
a peer and Location data is based on the given <attribute,value> information4.
PinS uses the hash function provided by the DSS, DSSHashF() in the following,
to decide location, object and meta-data identifiers.

Let’s consider the registration of the book entitled Tala written by Gabriela
Mistral (GM in the following), illustrated in figure 1. The process begins in peer
P600 in charge of the data/meta-data registration process. This peer obtains the
object identifier IdObj1(123 in figure 1) calling DSSHashF(O1). This information
is used by DSS to decide the peer in charge of the object storage. A local catalog
record is created in the same peer that store the object, see point 1.b in figure 3.
This record contains all meta-data of the object: term identifier, attribute name,
attribute value and a list of local objects satisfying the term. Peers who store
objects and local catalogs have the role of storage peer. The same process is
followed to create the location data. Each term Ti composing O1’s meta-data is
handle as an object: PinS obtains term identifier IdTi using DSSHashF(Ti) (e.g.

3 images, video, text, software components,etc
4 Attribute names are supposed to be accepted by the community using the system.

4 Maria-Del-Pilar Villamil, Claudia Roncancio, Cyril Labbé

510 is the identifier of term Date=1938), and it is used to identify the peer in
charge of location-data storage. A location data record is composed by the term
identifier and all object identifiers register in the system that satisfy this term.
DSS registers location data calling put(IdTi, IdObj1), see points 2 in figure 3.
Peers responsible for the location data storage play the role of location peer.

At the end of the registration process all object information is fragmented and
distributed in the P2P system in location data records and replicated partially
using the local catalogs records. This way to handle data offers a scalable solution
and enable the use of different strategies to evaluate queries.

 Title= Tala
 Author= Gabriela Mistral
 Date= 1938

O1

1.DSSHashF(O1):123

 DSSHashF(Date=1938):510

2.DSSHashF(Title=Tala):201
 DSSHashF(Author=Gabriela Mistral):401

Fig. 1. Example of object description

op is <, >, =< or >=

Term ::= EqTerm | IneqTerm | LikeTerm
EqTerm ::= AttributeName = value

IneqTerm ::= AttributeName op value

LikeTerm ::= AttributeName like [%]char+[%]

Query ::= Term [and | or Term]*

Fig. 2. Query Language

3.2 Querying facilities

With PinS a location query is a declarative query with conjunction and dis-
junction of terms of the form ”attribute operator value” (e.g. Year=1988 and
Title like ”On%”). Figure 2 shows the grammar of the language. Attributes are
those declared at object registration time. The operator used in a term can be =,
like or ≤,≥, <, >. Terms using these operators are called EqTerm, LikeTerm
and IneqTerm respectively. PinS implements several query execution strate-
gies using standard functions provided by the underlying DSS and DLS layers.
Processing queries involving IneqTerms or LikeTerms (e.g. Year > 1987) is time
consuming in large scale P2P systems. PinS proposes a solution efficient for such
queries. Any peer may receive location queries. The contacted peer, referred as
access peer in the following, initiates the query evaluation process.

4 Supporting queries with EqTerms

Location queries evaluation depends on the nature of terms they involve. This
section concerns the support of queries composed exclusively by EqTerms.

The General EqTerm (GE) Strategy relies on the use of the hash code of the
terms composing the requested query (see figure 4) as typical in P2P systems.
All terms Ti composing the query are translated to their term identifier IdTi
using the DSSHashF(Ti) function. For example, in figure 1, 510 is the IdTi of
Date=1938.

IdTi’s are used as key to obtain all location data related to the term i.e. calling
get(IdTi) – see figure 4, line 3. Using the returned location data, the access peer
finishes the process calculating query’s terms conjunctions with intersections and
terms disjunctions with unions – See lines 8-11 in figure 4. The set of returned
object identifiers is a comprehensive answer.

Local catalogs (LC) offer an alternative to evaluate Eq/Ineq/Like terms.
The use of these catalogs combined to the GE strategy allow some kind of load
balancing to avoid overloading location peers of frequently asked terms. Some

Improving querying in Peer to Peer Systems 5

P600

IdTer LstIdObj
201 {123}

P210

IdTer LstIdObj
401 {123}

P410

P550 IdTer LstIdObj
510 {123}

IdTer AtNam AtVal LstIdObj
201 Title Tala {123}
401 Author GM {123}
510 Date 1938 {123}

O1 P150

1.a. Put(123,O1)

Insert(O1) 2. Put(201,123)

2. Put(401,123)

2. Put(510,123)

1.b.createRecordLocalCatalog(O1)

Fig. 3. Registration process

(7) for i in 1 .. numEqTerms loop
(8) if (lstEqTerms[i].Operator == CONJUNCTION)
(9) intersection(ansQuery, ans[i])
(10) else if (lstEqTerms[i].Operator == DISJUNCTION)
(11) union(ansQuery, ans[i])
(12) end loop

(1) for each EqTerm in lstEqTerms loop
(2) idTerm = DSS.calculateHashId(EqTerm.Value)
(3) ans[i] = DSS.get(idTerm)
(4) numEqTerms++
(5) end loop

executeGeneralStrategy(lstEqTerms)

(13) return (ansQuery)

(6) ansQuery = initAnswer()

Fig. 4. GE strategy algorithm

terms of the query are evaluated with the GE strategy, the others using local
catalogs. The execution happens as follows. A set of object identifiers is obtained
as answer to the part of the query evaluated with the GE strategy. The system
then contacts the storage peers of such objects to evaluate the remainder part
of the query by using their local catalogs. The answer is then retrieved to the
coordinator peer, peer responsible for the decomposition of the initial query
and who composes the final answer.

Several execution plans can be elaborated. Local catalogs can be used or not.
In general, the most selective terms are preferred to be evaluated with the GE
strategy. Furthermore, the access peer plays naturally the role of coordinator but
this responsibility can be delegated to another peer involved in the query evalu-
ation (a location peer or a storage peer). The distribution of this responsibility
is also possible and may be interesting when intermediate results are big.

To finish, notice that replication and load balancing strategies provided by
the underlying DSS operate independently but contribute to the global solution.

. . .

2. Evaluate

Location Peer
Coordinator

668 {123,456}
IdTer LstIdObj

401 {123,456}
IdTer LstIdObj

1976 1980 1999

1938(668) 1940(691) 1961(489) 1999(693) 2004(542)

Query(Author=GM and Date<1939)

P410

P600

P650

Storage Peer
Attribute

Location Peer

1. Evaluate(Date<1939):{668}

<1969 >=1969

1969

1963

(668):{123,456}

Fig. 5. Query processing with IX strategy.

5 Supporting queries with IneqTerms
Queries involving comparison terms (e.g. <, like) are helpful in numerous situ-
ations but their support is not straightforward in DHTS. This section proposes
two execution strategies to provide Ineq/Like Term queries: Local catalog (LC)
and Index (IX) based strategies.

5.1 Local Catalog strategy

LC strategy is a variant of the one introduced in section 4. Let’s consider the
query Author=GM and date<1939. The location peer of term Author=GM –

6 Maria-Del-Pilar Villamil, Claudia Roncancio, Cyril Labbé

peer P410 in figure 5 – is chosen as query coordinator. It uses the Author=GM
term identifier to obtain locally the identifiers of objects satisfying the term. A
list of object identifiers is returned (e.g. 123 and 456 in figure 5). The query
coordinator uses these object identifiers to identify the storage peers to contact
to continue query execution e.g. peers P150. The LC strategy applies to queries
with at least one EqTerm. However, for queries with no EqTerm this strategy
contacts all storage peers of the system. As this is unacceptable, PinS proposes
the Index (IX) based strategy.

5.2 Index based strategy

IX strategy improves the support of Ineq/Like terms by using index structures
on attributes with ordered domains (e.g. Date). Indexes store attribute values
and term identifiers allowing to identify the location peers to contact to evaluate
an Ineq/like term. This allows an execution strategy where only peers with
objects satisfying the Ineq/Like term are contacted. Indexes are logical, do not
contain peer identifiers, nor peer addresses, are independent of objects location
and object’s migration do not invalidate them. Let’s consider the Date attribute,
see figure 5. Its index is created on the peer related to attribute Date according
to DSSHashF (peer returned by lookup(DSSHashF(Date))). It is called date’s
attribute storage peer from now on.

IX strategy uses B+trees [19] but other data structures can be used. They are
handled with standard search, insert and delete B+tree algorithms. A B+tree
leaf node is composed by attribute’s values (e.g. 1938) and identifiers of terms us-
ing these values (e.g. DSSHashF(Date=1938)=668), see figure 5. Terms identifiers
“represent” objects in the system satisfying the term (e.g. Date=1938). To eval-
uate the query Date < 1939, PinS contacts the Date’s attribute storage peer by
calling lookup(DSSHashF(Date)) – P650 in figure 5. This peer searches locally
all values satisfying the query, to identify the location peers responsible of the
corresponding IneqTerm storage (in figure 5, value 1938). Finally, the coordina-
tor peer contacts the location peer to continue the evaluation process described
in section 4. The IX strategy applies to queries with at least one Ineq/Like Term.
The DSS replication mechanism can be used to reduce a possible overload on
attribute storage peers.

Notice that an index have to be updated only if a not already existing at-
tribute value is introduced or a value disappear. When this happens, the location
peer in charge of the related term (e.g. Date=1969) sends an update event to
the attribute storage peer who updates the index.

6 Implementation and measures
PinS 1.0 has been developed in Java 1.4.2 and is operational on Linux. The PinS
layer provides data/meta-data registration and query processing as proposed in
the preceding sections. Each peer in the system has the three layers: DSS, DLS
and PinS to provide all functionality.

6.1 PinS 1.0 software architecture

The PinS layer considers DSS and DLS layers as separate components (see sec-
tion 2). PinS mainly uses DSS.calculateHashId(Obj), DSS.get(key), DSS.-

Improving querying in Peer to Peer Systems 7

put(key, Object) and DLS.lookup(key) functions. The DSS and DLS compo-
nents can be implemented using different DHT systems. The current implemen-
tation relies on FreePastry 1.3.2 [13] who provides Past at the level of DSS and
Pastry at the level of DLS. In the following the components of the PinS layer
are briefly introduced.

Object registration: Object registration includes the insertion of data/meta-
data as described in section 3.1. The two fundamental issues, data placement and
data storage, are insured by ObjectMgr, MetadataMgr and CommunicationMgr

components. ObjectMgr provides object storage functions, it uses DLS.lookup

and DSS.put functions to make data placement and data storage and interacts
with the MetadataMgr. MetaDataMgr creates and handles information related to
meta-data (e.g. location data) and indexes (considered as meta-data). It also uses
DSS and DLS components. CommunicationMgr provides communication between
the PinS layer of different peers in the system. It optimizes communication costs
by reducing the number and size of messages exchanged in the system.

Location Query support: Query evaluation is implemented by the QueryMgr .
It insures query decomposition and optimization. QueryMgr differentiates queries
composed exclusively by EqTerms from those involving IneqTerms. For each case,
it implements the execution strategies presented in the preceding sections.

6.2 PinS performance measures

Experiment results demonstrate the feasibility of our proposal and good perfor-
mance characteristics. One of the objectives of this implementation was to con-
firm the theoretical analysis presented in [9] (see figure 6). Executions were per-
formed on 38 nodes of the i-cluster2 cluster (of the IMAG-ID laboratory, http://i-

cluster2.inrialpes.fr), with Itanium-2 processors 64 bits at 900 MHz, 3Gb memory.
We deployed 1000 PinS peers and considered books stored in the DHT P2P sys-
tem. Meta data is composed by five attributes – author, title, abstract, YearEd-
ition, YearPublication. Figure 7 shows the evaluation of queries: Q1:Author =
“Molière” and YearEdition > 1640 and Q2:Author = “Corneille” and YearEd-
ition < 1640 –execution time according to the number of object stored in the
system. Both queries were evaluated using LC and IX strategies. The selectivity
factor of Q1 is 0.02. The effective cardinality of the IneqTerm (|YearEdition >
1640|) is 40. The effective cardinality of T ineqi is the number of distinct values
of objects registered in the system satisfying the condition. Q2 has 0.2 as selec-
tivity factor and 10 as the effective cardinality of the IneqTerm. Experimental
results (figure 7) confirm our theoretical analysis and that execution time for IX
strategy is not affected by the number of objects stored in the system.

7 Related work on querying in DHT P2P systems

Related works are briefly discussed according to the expressive power of the
queries. A quantitative analysis is also presented.

Qualitative analysis: KSS[18] supports conjunctions of EqTerms on top of
the DHash/Chord P2P systems. They improve query processing by replicating
the whole meta-data of objects on all peers supposed to store a part of such
meta-data. Unlike PinS, KSS does not offer terms disjunctions nor IneqTerms

8 Maria-Del-Pilar Villamil, Claudia Roncancio, Cyril Labbé

Number of Objects

N
um

be
r

of
 G

et
s

(l
og

ar
it

hm
ic

 s
ca

le
) IX strategy |Tineqi|=10

 1000

 10000

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

 10

 1

LC strategy SF=0.2
LC strategy SF=0.02
IX strategy |Tineqi|=40

 100

Fig. 6. Number of Gets versus number of
objects

Number of Objects

E
xe

cu
ti

on
 t

im
e

(m
s)

 (
lo

ga
ri

th
m

ic
 s

ca
le

)

IX Strategy |Tineq|=10

 500 1000 1500 2000 2500 3000 3500 4000 4500

 10000

 1000

IX Strategy |Tineq|=40

LC Strategy SF=0.2
LC Strategy SF=0.02

 100000

Fig. 7. Execution time versus number of objects
using 1000 peers

and does not works with any typical underlying DSS. MLP[20] also supports
EqTerm queries and introduces peer’s group hierarchies based on peers location.
From our point of view this aspects are at the DSS level. The existence of such
groups facilitates parallel processing of queries. [18] and [20] adopt both some
pre-calculated queries solution. However, this solution is space consuming. Table
1 compares different works that provide Ineq/Like Term evaluation. MAAN[11]
uses an order-preserving hash function. This requires the initial attribute dis-
tribution (e.g. Exponential, Normal) to distribute uniformly data among peers.
PinS does not require a function with particular characteristics. RangeGuard[21]

Hypothesis Additional Query Optimization Query
routing information langage evaluation

MAAN Order preserving hashing For each ordered IneqTerm Replication of local Based on
[11] function. attribute hashing function catalogs on successor function.

distribution is known location peers

RG[21] RG layer as On each peer in IneqTerms Replication of local Based on range
Super peers [12]. Known range guard layer Join, catalogs in range guard layer.
minimal and maximal order by, guard layer
values of attributes group by

[22] XML documents. No XPath Fragmentation and -
Peers physical address duplication of meta-data

in location data using an XML hierarchy

PinS No No IneqTerms, Local catalogs. Only relevant peers
LikeTerms Indexes on attributes are contacted.

Table 1. Works that provide Ineq/Like Terms evaluation.

approach requires the knowledge of the minimal and maximal values stored in
the system. A uniform distribution of data on RG peers is not guaranteed. The
MAAN and RG evaluation process is based on the use of the successor5 func-
tion. This function is difficult to be defined in DLS using routing geometries as
butterfly (Viceroy) or d-dimensional (CAN). In addition, peers with no relevant
data are contacted. In [22] location data includes peer physical address. This
choice increases the cost of the update process when a peer leaves the system
and can be a problem if the system is very dynamic like typical P2P systems.

Quantitative analysis: Table 2 compares PinS with other works that provide
IneqTerms’s evaluation (i.e. MAAN and RG). The element of comparison is
the number of peers contacted to evaluate a query composed of l IneqTerms

5 function to contact the next neighbor of a peer using a defined order e.g. peers
identifiers.

Improving querying in Peer to Peer Systems 9

Q = T ineq1 and ... and T ineql, where T ineqj = i ≤ Ai ≤ h. Table 2 uses

Number of peers contacted to evaluate Q

MAAN l ∗ (LogN + Min(|Tineq′

i
|, N))

Iterative
MAAN LogN + Min(|Tineq′

i
|, N)

SAD
RG l ∗

(Log(N − NRGP) + Min(|Tineq′

i
|, NRGP))

PinS IX LogN ∗ (l +
∑

l

i=1
|Tineqi|)

Table 2. Number of peers contacted to evaluate
Q using MAAN, RG and PinS IX strategies

Number of Percentage
peers (N) limit (PL)

102 50

103 33

104 25

105 20

106 16

Table 3. Comparison between PinS
and MAAN

the following variables: NRGP the number of peers in the range guard layer to
RG approach and |T ineq′i| the theoretical cardinality of T ineqi – the number of
distinct values for Ai satisfying the condition. Table 2 analysis allows to define
the percentage of value used for one attribute: PL = |T ineq|/|T ineq′| . Table
3 shows PL value where the number of contacted peers is the same for PinS
IX and MAAN iterative. PinS is better when |T ineq|/|T ineq′| < PL, otherwise
MAAN iterative is better. For a large scale system PinS is more efficient when
an attribute has a large range of values and few of them are used.

8 Conclusions and research perspectives

DHT based P2P systems provide appropriate management of large scale dy-
namic peers. They are ideal for key searches but don’t provide, in their basic
configuration, a high level query language to find stored data. Recent proposals
improve this feature, but most of them require special hashing functions (e.g.
order preserving functions) or rely on distinguished peers. PinS proposes a set
of functionalities improving data sharing on DHT P2P systems without such
constraints. Meta-data, sets of attributes and their values, are associated to
shared objects. Location queries may be conjunctions and disjunctions of terms
(attribute operator value) using the =,≤,≥ and like operators. PinS adapts
database techniques to enable the use of different query evaluation strategies. It
uses indexes in an original way to support efficiently comparative queries.

PinS is independent of the underlying P2P routing structure. To clarify levels
of interaction with the underlying DHT system, we distinguished the Distributed
Storage Service and the Distributed Lookup Service. PinS has been implemented
in Java and experimented using FreePastry 1.3.2 for the underlying DHT based
P2P system. Experiments with up to 1000 peers have been performed. They
confirm PinS scalability and show that the execution time is not affected by the
number of objects stored in the system when using our IX strategy.

PinS design choices (e.g. meta-data management) allow the addition of ex-
ecution strategies. These elements could be used to perform a context aware
query optimization considering current system configuration (e.g. number of
peers, storage) and behavior (e.g. data distribution, query types). Ongoing work
concerns this point and more experiments in large scale configurations. Index
fragmentation and caching strategies related issues should also be further inves-
tigated.

10 Maria-Del-Pilar Villamil, Claudia Roncancio, Cyril Labbé

References

1. Gnutella: The Gnutella Protocol Specification v0.41.
(http://www9.limewire.com/developer/gnutella protocol 0.4.pdf)

2. Yang, B., H.Molina: Efficient search in peer-to-peer networks. Technical report,
http://dbpubs.stanford.edu:8090/pub/2001-47 (2001)

3. Q.Lv, P.Cao, E.Cohen, K.Li, S.Shenker: Search and replication in unstructured
peer-to-peer networks. In: Proc. Int’l Conf. on Supercomputing. (2002)

4. S.Ratnasamy, P.Francis, M.Handley, R.Karp, S.Shenker: A Scalable Content Ad-
dressable Network. In: ACM SIGCOMM. (2001)

5. I.Stoica, R.Morris, D.Karger, F.Kaashoek, H.Balakrishnan: Chord: A Scalable
”Peer-To-Peer” Lookup Service for Internet Applications. In: ACM SIGCOMM.
(2001)

6. A.Rowstron, P.Druschel: Pastry: Scalable, Decentralized Object Location, and
Routing for Large-Scale Peer-to-Peer Systems. LNCS-2218 (2001)

7. M.Harren, J.Hellerstein, R.Huebsch, B.Loo, S.Shenker, Stoica, I.: Complex queries
in dht-based peer-to-peer networks. IPTPS (2002)

8. N.Daswani, H.Garcia-Molina, B.Yang: Open Problems in Data-Sharing Peer-to-
Peer Systems. In: Proc Int’l Conf. on Database Theory. (2003)

9. M.Villamil, C.Roncancio, C.Labbe: PinS: Peer to Peer Interrogation and Indexing
System. In: Proc. IDEAS. (06/2004)

10. I.Brunkhorst, H.Dhraief, A.Kemper, W.Nejdl, Wiesner, C.: Distributed Queries
and Query Optimization in Schema-Based P2P Systems. IPTPS (2003)

11. M.Cai, M.Frank, J.Chen, P.Szekely: MAAN: A Multi-Attribute Addressable Net-
work for Grid Information Services. Proc. of Int’l WS on Grid Computing (2003)

12. B.Yang, H.Molina: Designing a Super-peer Network. Proc. of IEEE Int’l Conf.
Data Engineering (2003)

13. FreePastry: Rice University. (http://freepastry.rice.edu/FreePastry/)
14. F.Dabek, B.Zhao, P.Druschel, I.Stoica: Towards a common API for structured

peer-to-peer overlays . IPTPS (2003)
15. F.Dabek, E.Brunskill, M.Kaashoek, D.Karger, R.Morris, I.Stoica, H.Balakrishnan:

Building Peer-to-Peer Systems with Chord, a Distributed Lookup Service. In:
HotOS-VIII. (2001)

16. D.Malkhi, M.Naor, D.Ratajczak: Viceroy: A Scalable and Dynamic Emulation
of the Butterfly. In: ACM Symposium on Principles of Distributed Computing.
(2002)

17. A.Rowstron, P.Druschel: Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility. In: Symposium on Operating Systems
Principles. (2001)

18. O.Gnawali: A Keyword-Set Search System for Peer-to-Peer Networks. Master
thesis, Massachusetts Institute Of Technology (2002)

19. H.Molina, J.Ullman, J.Widom: Database system implementation. Prentice Hall
(2000)

20. S.Shing, G.Yang, D.Wang, J.Yu, S.Qu, M.Chen: Making Peer-to-Peer Keyword
Searching Feasible Using Multi-level Partitioning. In: Proc. of IPTPS. (2004)

21. P.Triantafillou, T.Pitoura: Toward a unifying framework for complex query pro-
cessing over Structured Peer-to-Peer Data Networks. VLDB WS on Databases,
Information Systems, and Peer-to-Peer Computing (2003)

22. L.Galanis, Y.Wang, S.Jeffery, D.DeWitt: Locating Data Sources in Large Dis-
tributed Systems. In: Proc. of Int’l Conference on VLDB. (2003)

