
The Hera Framework for Fault-Tolerant Sensor
Fusion with Erlang and GRiSP on an IoT Network

Sébastien Kalbusch
kalbusch.sebastien@gmail.com
Université catholique de Louvain

Belgium

Vincent Verpoten
vincent.verpoten@hotmail.com
Université catholique de Louvain

Belgium

Peter Van Roy
peter.vanroy@uclouvain.be

Université catholique de Louvain
Belgium

Abstract
Classical sensor fusion approaches require to work directly
with the hardware and involve a lot of low-level program-
ming, which is not suited for reliable and user-friendly sensor
fusion for Internet of Things (IoT) applications. In this paper,
we propose and analyze Hera, a Kalman filter-based sensor
fusion framework for Erlang. Hera offers a high-level ap-
proach for asynchronous and fault-tolerant sensor fusion
directly at the edge of an IoT network. We use the GRiSP-
Base board, a low-cost platform specially designed for Erlang
and to avoid soldering or dropping down to C. We emphasize
on the importance of performing all the computations di-
rectly at the sensor-equipped devices themselves, completely
removing the cloud necessity. We show that we can perform
sensor fusion for position and orientation tracking at a high
level of abstraction and with the strong guarantee that the
system will keep running as long as one GRiSP board is alive.
With Hera, the implementation effort is significantly reduced
which makes it an excellent candidate for IoT prototyping
and education in the field of sensor fusion.

CCS Concepts: • Computer systems organization →
Sensor networks; Availability; Real-time system architec-
ture; • Computing methodologies → Distributed pro-
gramming languages; • Mathematics of computing →
Kalman filters and hidden Markov models; • Human-
centered computing → Visualization systems and tools.

Keywords: IoT, fault tolerance, sensor fusion, Kalman filter,
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1 Introduction
Sensor fusion is the ability to combine information frommul-
tiple sensors to give a single coherent view of a real-world
situation. It is a crucial ability for Internet of Things (IoT)
applications. Yet, it is not trivial to provide it since it requires
to do significant computation with sensor data in real time,
preferably directly at the edge (at the sensor devices them-
selves). The IoT infrastructure consists of a growing set of
small devices at the logical1 edge of the Internet, farthest
away from the cloud. IoT is a fast-growing part of the In-
ternet with a rapidly increasing computational power and
functionality directly at the edge. In fact, IoT is growing sig-
nificantly faster than the cloud at the current time (13% per
year versus 5% per year) [18].

We deliberately make no use of cloud because delegating
computation to the cloud comes with significant disadvan-
tages. Using the cloud significantly increases cost. Comput-
ing at the extreme edge not only has the potential to reduce
costs, but also to largely simplify the infrastructure. Indeed,
going to cloud requires a considerable amount of work and
increases the overall complexity of IoT projects. Additionally,
the non-negligible2 latency of the edge-cloud connection
prohibits the use of cloud computing for certain domains,
like tracking, for which the slightest delays decrease the
accuracy. Furthermore, the edge-cloud connection has an
unpredictable reliability and goes down surprisingly often.
Therefore, it is essential to bring the computation to the ex-
treme edge instead of simply using the edge devices for data
gathering.
In this paper, we present an approach for fault-tolerant

sensor fusion in Erlang with GRiSP to advance the state of
the art in low-cost sensor fusion directly at the edge and to
give access to an efficient platform to all interested parties.

The hardware consists of a network of GRiSP boards, each
of which can host Digilent Pmod modules [2] as sensors or
actuators. Our software consists of an extensible open-source
application intended to enable low-cost and fault-tolerant
sensor fusion prototyping in IoT applications for education
1In terms of structure and not physical distance.
2Usually tens of ms.
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or product development. It was developed in the context of
a long-term research in IoT applications at UCLouvain in
collaboration with Stritzinger GmbH3. This research started
in the European Horizon 2020 LightKone project [12] and
led to the development of a first version of Hera in [16]. The
framework presented in this paper has since been improved
by two students during their master thesis [11] with a special
focus on simplicity.

The contributions are:
1. Hera, an open-source framework for fault-tolerant sen-

sor fusion running on a network of GRiSP boards and
based on Kalman filters [21]. Our complete system
features:
• A soft real-time sensor fusion engine based on
Kalman filters accepting asynchronous measure-
ments from sensors with examples for position
and orientation estimation using four sensor types,
namely accelerometer, gyroscope, magnetometer,
and sonar.

• A dynamic, distributed, and fault-tolerant architec-
ture allowing measurements (sensor or computa-
tion) to be started at any time. Moreover, any known
GRiSP board can join or leave (restart or crash) the
system while it is running.

• A modular visualization tool built with GNU Octave
[4].

2. Evaluation of the fault tolerance by performing fault
injection and observing how the framework responds.
Hera guarantees to continuously do sensor fusion as
long as one GRiSP board in the network is running.
If a sensor or a board fails, the software continues to
work with a degraded accuracy.

3. Evaluation of the abilities and limitations of our ap-
proach with an experimental model that shows how
the sensor fusion quality improves as we add more
sensors.

4. Presentation and validation of an attitude and heading
reference system (AHRS) able to update its physical
model at a rate of 3.75 Hz, running completely on a
GRiSP board.

The paper is structured as follows. Section 2 gives back-
ground information about the GRiSP platform and the
Kalman filters used in the sensor fusion engine. This sec-
tion also compares our approach to related work. Section 3
presents the design of the Hera framework. Section 4 gives
a practical evaluation of Hera’s fault tolerance using fault
injection. Section 5 evaluates a demonstrator model to bet-
ter understand the impact of each sensor in the calculation.
Section 6 explains and analyzes a microelectromechanical
system (MEMS) AHRS to provide a useful example of what
can be achieved with Hera. Finally, section 7 concludes by

3https://www.stritzinger.com

giving a summary and an overview of possible future devel-
opments.

2 Background
2.1 The GRiSP Platform
The GRiSP platform is an embedded system that allows IoT
prototyping out of the box. A GRiSP board contains a full
Erlang/OTP platform running on a RTEMS layer, is equipped
with six sockets for Pmod modules, and has Erlang drivers
for the most common Pmod modules. We use the Pmod
MAXSONAR4 allowing to detect objects and people at a
distance up to 6.5 m with an accuracy of 2.5 cm and the
Pmod NAV5 which provides a 3-axis accelerometer, 3-axis
gyroscope, and 3-axis magnetometer.

The use of Erlang facilitates the development of IoT appli-
cations because of its native support for concurrency, fault
tolerance, and hot code loading. It is largely because of the
abilities provided by GRiSP and Erlang that it was possible to
develop, test, and evaluate Hera within the time constraints
of a master thesis.

2.2 Kalman Filter
The Kalman filter is a well-known data fusion technique
for state estimation with multiple benefits: it is simple to
implement, handles noisy data, and can be used for a variety
of problems. Since the Hera framework provides two general
variations of Kalman filters, we give a conceptual explanation
of this technique. We invite unfamiliar readers to consult
[8] for a tutorial-like description, but note that the generic
discrete Kalman filters we propose do not use any control
input.
The linear Kalman filter aims to estimate the normally

distributed state of a system that can be modeled by a set of
linear equations. It is composed of two phases called predict
and update (Fig.1). The prediction phase allows to estimate
the state of the system 𝑥−

𝑘+1 from the previous known esti-
mate 𝑥𝑘 and its physical model 𝐹𝑘 . The update phase is used
to correct the estimated state 𝑥−

𝑘+1 with the observation 𝑧𝑘
coming from, typically, sensors. A linear relation 𝐻𝑘 , called
the observation model, allows to compare the two with one
another. Additionally, the Kalman filter produces 𝑃𝑘 , the state
estimate covariance matrix, which gives information about
the quality of the estimate.
While the prediction phase allows for accurate estima-

tion of a well-modelled problem, the update phase serves to
correct the state in a changing environment and prevents
drift due to accumulation of small errors or inaccuracies in
the model. A nice property to emphasize is that the vectors
and matrices can change between two iterations, making
the Kalman filter an excellent choice for asynchronous data
fusion. Moreover, there is no obligation to perform both the

4https://reference.digilentinc.com/reference/pmod/pmodmaxsonar/start
5https://reference.digilentinc.com/reference/pmod/pmodnav/start
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Figure 1. The two phases of the Kalman filter
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Figure 2. Data flow overview

prediction and update phases every time. If needed, it is
possible to call one of them multiple times in a row.
Fortunately, we are not limited to linear problems. The

extended Kalman filter (EKF) works with 𝑓 and ℎ, the differ-
entiable functions for the state transition and the observation
model as well as their Jacobian, evaluated around the esti-
mate, to compute the state covariance by linearization.

2.3 Approach
Our approach to perform sensor fusion is based on the sepa-
ration of concerns principle. The concerns are: the low-level
interactions with the hardware, the edge computing model,
and the high-level description of a sensor fusion model.
The hardware and sensor drivers are provided by the

GRiSP platform and all the boards are connected via standard
Wi-Fi protocol. Each GRiSP board uses the Hera framework
which provides a generic measurement behaviour, a data
storage, and shares data via broadcast. Then, on the client
side, we implement "sensor interface(s)" on top of the pro-
vided Pmod drivers as well as a "sensor fusionmodel" module
in which we both fetch the appropriate data from the local
data store and define the Kalman filter parameters. Fig.2
gives an overview of the data flow.

The overall approach of Hera is to collect data on each
node, exchange the data via UDP broadcast, run the compu-
tation on each node and again, share the results. Since we
are not trying to achieve a consensus, each node computes
independently from each other. However, the results should
be close because of the real-time nature of the system6. As a
consequence of sharing all the data between the nodes, Hera
is designed to run in a small cluster, which is a set of fully
connected nodes in the same environment. Note that there
is no notion of event that would trigger a computation and
the data cannot be deleted.

Hera tolerates failures thanks to supervision and restarting
schemes made possible in an asynchronous and dynamic
system, but also because of redundancy achieved by having
multiple GRiSP boards with sensors and by running the same
computation on multiple nodes. Of course, these properties
are largely due to Erlang’s concurrency model.

2.4 Related Work
To our knowledge, there exists no other platform like Hera
that we could use for a direct comparison. Instead, we com-
pare our system to low-cost sensor fusion on other platforms
and to the architecture of related work on wireless sensor
networks. The purpose of Hera is to provide a high-level
approach for sensor fusion projects without cumbersome
hardware wiring or driver development and without having
a complex cloud infrastructure.

Low-cost Sensor Fusion: In [1], a Raspberry Pi is used
as a gateway for a blood pressure monitoring application
and the data is sent to the cloud instead of processing the
data directly at the edge as we do. In [20], two Arduino and
sensors are used to monitor a refrigerator. The two Arduino
are interconnected to exchange sensor information via I2C
communications. One of them uses a Wi-Fi interface to send
data to Dropbox, used as a cloud storage.
This type of system is not resilient to failure and also

works close to the hardware which tends to increase the
overall complexity. In our case, the use of GRiSP with the
Pmod interfaces and Erlang greatly facilitate these steps.

Wireless Sensor Networks: In [15], a multi-sensor data
fusion structure is used to help in early heart disease predic-
tion by fusing data coming from different wearable sensors
with machine learning. The data is stored in a cloud server,
but the machine learning computation takes place in a fog
computing environment, a decentralized computing infras-
tructure located between the data source and the cloud. The
structure of the project is divided into three distinct parts:
the sensors, the fog computing environment, and the cloud,
each part having its own role. In our structure, all of these
roles (sensors, computation, and storage) are fulfilled by the

6The difference is due to occasional data loss in the network and small
changes in the data arrival time or processing time.
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Figure 3. Software architecture

sensor-equipped devices located at the edge of the network.
The GRiSP boards are more powerful than simple sensors
and exchange their information directly with each other.
This reduces the complexity of the whole system.

The theoretical study [9] proposes a method for multi-
target tracking in large-scale sensor networks based on max-
imum entropy fuzzy clustering. Their approach is split in two
parts: data association and tracking at the sensor-level, and a
sensor selection based on fuzzy membership at a global-level.
The advantage of this approach is to share the computational
load between small edge devices and a more powerful cen-
tralized computer which offers the possibility to use more
sophisticated algorithms in large-scale environments.

3 The Hera Framework
3.1 Software Architecture
The software consists of 3 parts: the GRiSP Erlang runtime
library7, the Hera framework8, and a GRiSP application9.
Fig.3 illustrates the architecture and shows where the

client (i.e. user) interacts. The client application a.k.a GRiSP
application is used to bootstrap the system and to define the
callback modules for the "Measure behaviour" of Hera. A
"Sensor interface" aims at interfacing Hera with the Pmod
drivers of the GRiSP runtime while the "Sensor fusion model"
is where the user first fetches the appropriate data from the
local data store, then defines the physical model and uses the
"Libraries" for the computation. A complete example will be
provided in section 5.7.

3.2 Application Design
Hera uses a small supervision tree (Fig.4). The top level
supervisor hera_sup supervises 3 independent processes:
hera_data, hera_com, and hera_measure_sup. These pro-
cesses are vital for the application and are not expected to
fail often.
The second supervisor hera_measure_sup supervises

hera_measure processes. These processes are considered in-
dependent of each other and should be dynamically started.
Because the measure processes execute the client code and
7https://github.com/grisp/grisp
8https://github.com/sebkm/hera
9https://github.com/sebkm/sensor_fusion

hera_sup

hera_data hera_com hera_measure_sup

hera_measure
<1>

hera_measure
<N>

...

Figure 4. Hera supervision tree

interact with real-world components such as sensors, we ex-
pect them to fail more often. This supervisor is not designed
to supervise a large number of processes considering natu-
ral limitations (network congestion, computational power,
number of sensor connectors, ...).

hera_data is a gen_server used for storingmeasurement
data. It stores only the most recent data identified by a name
and the node which sent it, and marks it by a timestamp.
Upon reception, it is also possible10 to log every measure in
a unique csv file for each data identifier (name and node).
Note that Hera does not provide a fine-grained timing be-
cause it uses the arrival time instead of a real-time clock
synchronization.

hera_com is a communication process for sharing data
across the network with other nodes. It uses a multi-cast
UDP group for fast but unreliable data sharing. Sharing all
the data enables redundancy by running the same compu-
tation on several nodes. Another advantage is the ability to
introduce "load balancing" capabilities by sharing the com-
putational load. For example, the node that produces sensor
measurements may let another node perform the sensor
fusion computation.
The hera_measure module is a stateful generic mea-

sure behaviour. The user is expected to provide a
measure(State) callback to perform a measure. The speci-
fication is flexible and allows, for instance, to discard certain
values or to implement a complementary filter stored in the
callback state. The measure/1 callback is invoked in a loop
with a parametric delay11 between each iteration.

Fig.5 illustrates how the different processes interact. The
top scenario shows how a measure is shared to all the nodes,
the bottom left shows how data can be retrieved and the
bottom right shows how the user can start a measure.

3.3 A Measurement Synchronization Extension
The use of sonars in our experiments introduces the cross-
talk problem occurring when multiple sonars interfere with
each other. Avoiding cross-talk requires synchronization
between the sonars. A mutual exclusion (mutex) solution has
to be brought. We had 3 requirements: satisfying the mutex

10By setting the log_data environment variable to true.
11The delay is chosen by the user and allows to reduce the sampling fre-
quency if a measure is too fast and overloads the system. The delay may be
zero.

https://github.com/grisp/grisp
https://github.com/sebkm/hera
https://github.com/sebkm/sensor_fusion
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Figure 5. Interaction between processes

property, dynamic addition/removal of processes, and fault-
tolerant synchronization. After reviewing several algorithms
[22], we chose the centralized approach for simplicity, but
we improved its fault tolerance with monitors and heartbeats.
The extension is available on Github12 and is implemented
as an "Erlang Distributed Application". Therefore, if the node
running the extension goes down, it will be automatically
restarted at another node.
Fig.6 shows how the synchronization works. First, the

hera_measure process subscribes itself to hera_sub which
forwards the subscription to the dedicated13 synchronization
process which will then authorize the measure in due time.

Fig.7 illustrates how the processes are supervised or mon-
itored and Fig.8 describes how the processes react upon
reception of a "DOWN" message. When a measure crashes,
the synchronization process simply sends the next authoriza-
tion (top left). If hera_sub fails, hera_sync exits because
it cannot run independently (top right). When hera_sync
dies, the subscription server removes it and the measurement
processes resubscribe themselves.

3.4 A Matrix Library
Along with the Kalman filters, Hera provides a matrix ab-
stract data type (ADT) and a small library with basic matrix
operations. It quickly became apparent that such a library
was necessary because Erlang does not natively support nu-
merical computation. Moreover, we realised the importance
of embedding the asynchronous arrival of data inside of the
Kalman filter model itself. To do so, we imagined a way of
writing variadic matrices with list comprehensions and by

12https://github.com/sebkm/hera_synchronization
13A new process is created if needed.
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Figure 6. Synchronization principle
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representing a matrix as a list of lists. An example will be
provided in section 5.7. A long-term solution to the gen-
eral inefficiency of matrix operations in pure Erlang would
be to use an Erlang NIF library compatible with the GRiSP
platform. Actually, this project is already ongoing [13].

4 Fault Tolerance Analysis
We validate the fault tolerance of the application by fault in-
jection. Concretely, we simulate failures and observe the sys-
tem behaviour. To do so, we create dedicated hera_measure
processes that observe the activity of the system.

4.1 Setup
We use 4 GRiSP boards and 1 computer for all the tests. There
are 4 measures running per node which makes a total of
4× (4+1) = 20 observers running at the same time. Since the
observers do not consume a lot of resources, we intentionally
set the parametric constant time between two successive call-
backs (see section 3.2) to a non-zero value. In the following
paragraphs, the word "cycle" refers to this duration. Note that
the observers are only used for the fault tolerance validation
and are therefore not running under normal circumstances.
Two kinds of observers are used: "counter" and "elapsed".

The "counter" fetches from hera_data the number of ob-
servers who recently (less than 1.5 cycles ago) sent a value
with the extra condition that these observers are at least
2 cycles old. This condition is used to be sure that a killed
hera_measure is visible on the graphs because it should not
be counted for at least two cycles. The duration of a cycle is
set to 1 s.

The "elapsed" is a synchronized observer used to analyse
the resilience of the synchronization mechanism by measur-
ing Δ𝑡 , the time elapsed between two successive authoriza-
tions for the same observer. As the synchronization is based
on names, each "elapsed" is only monitoring 5 processes
and not 20 because a key (name, node) must be unique. So,
there are 4 concurrent synchronizations with 5 measures per
synchronization. The duration of a cycle is set to 100 ms.

4.2 Measurement Process Crashes
Fig.9 shows the results of the fault injection on observer
processes and the percentage indicates how many processes
per node are killed. On the top graph, we can clearly see
that the count gets lower after the fault injection and then
returns to normal a few seconds later. On the bottom graph,
we see that Δ𝑡 decreases since it takes less time to receive
an authorization when a participant is gone.
In both cases, it takes roughly 2 s to restart all the pro-

cesses. Of course, for the top graph we should subtract up to
3 s (3 cycles) because of the way we count 14.

14In fact, you can see the same delay at the beginning.

Figure 9. Fault injection on "counter" (top) and "elapsed"
(bottom). The green lines indicate when the fault injection
happened.

4.3 Transient Failure
Fig.10 shows what happens when we kill hera_data and
hera_com multiple times in a row to simulate transient fail-
ures. Killing the data storage process should result in a loss
of information and therefore, the count should get lower.
This is reflected on the top graph and 5 cycles after the last
kill, the situation is restored. Observing the fault injection
on hera_com is more difficult and we had to lower a cycle
to 300 ms. Again, we observe a loss of information after the
kills and the situation returns to normal 1 s later.
What we show here is that hera_measure processes (i.e.

observers) keep working despite transient failures. Of course,
for an actual sensor fusion computation, missing data could
result in a degraded accuracy, but would not prevent the
system from working.

4.4 Synchronization Resilience
Fig.11 shows how the synchronization is affected by the
failure of a centralized coordinator. As explained previously,
when the hera_sync process dies, the subscribed measures
receive a "DOWN" message and must resubscribe. Therefore,
the order inwhich the processes are authorizedmight change
after the fault injection (first come, first served policy). As
you can see on the top graph, when we kill the hera_sync
process, the 5 subscribed measures are perturbed for 1 cycle
and there is a gap similar to the one at the beginning. When
we kill the hera_sub process (bottom graph), not only will
the 20 measures send a subscription request, but they might
also end-up sleeping for 1 s or more if the server is dead when
they try to contact it. As a result, there is quite a significant
gap after the kill.
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Figure 10. Fault injection on hera_data (top) and hera_com
(bottom). The red lines indicate when the fault injection
happened.

Figure 11. Fault injection on hera_sync (top) and hera_sub
(bottom). The red lines indicate when the fault injection
happened.

4.5 GRiSP Board Crashes
Finally, we try to power-off a few GRiSP boards to see how
long it takes before a dead node is detected. According
to the Erlang reference manual, the detection should take
TickTime ± 1

4TickTime where TickTime is 4 times the delay
between two heartbeats. In our configuration, a heartbeat
is sent every 2 s hence, the detection should take between
6 and 10 s. From what we observe in Fig.12, the delay is
respected. We can measure the detection time by looking
at the difference between the normal Δ𝑡 and the spike. For
example, the first spike is at Δ𝑡 ≈ 10 s and then goes down to
Δ𝑡 ≈ 2 s. Therefore, the detection took 10− 2 = 8 s. Since the

Figure 12. Hardware failure with synchronization

synchronization extension is an "Erlang Distributed Appli-
cation", when we power-off the node at which it is running,
a "failover" takes place. As a consequence, the last spike is
slightly higher because the observer processes only try to
subscribe once per second and the first attempt is likely to
fail since there will be no hera_sub server alive while the
application is being restarted on another node.

4.6 Verdict
We conclude that the system continues to run correctly as
long as one board is running at every time instant. This
property is very strong and allows to continuously do sensor
fusion, despite failures. In particular, we are not concerned
by occasional loss of data since the system has an asynchro-
nous model. The temporary interruption that occurs when a
GRiSP board encounters a hardware failure is restricted to
synchronized measures only (the rest of the system is not af-
fected). The duration of the interruption directly depends on
the TickTime which can be changed via the net_ticktime
environment variable, but a too low value may result in a
false positive. In our settings, hardware failures are detected
in at most 10 s.

5 First Phase: Experimental Model
In order to verify if sensor fusion with Erlang and GRiSP
gives satisfactory results, we first developed an experimen-
tal model based on the extended Kalman filter (EKF), by
gradually adding new sensors or complicating the fusion
computation. This gave us the opportunity to understand
the contribution of each sensor as well as testing the soft-
ware. In this section, we explain how we built the model and
review some of the results. For conciseness, we omit to give
all the EKF parameters, but we invite the reader to consult
[11] for a more detailed description of the model. Still, we
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Figure 13. Setup for the experimental model

give the variance 𝜎2 for each sensor because this information
is crucial to compute the gain 𝐾 of the Kalman filter.

5.1 Setup
The experimental setup is a toy train with a circular path
(Fig.13). The train carries a battery and a GRiSP board
equipped with a Pmod NAV. Except for the first model (sec-
tion 5.2), we also use two Pmods MAXSONAR. The true
angular velocity 𝜔 of the train is constant and was estimated
by measuring how long it took for the train to complete a
fixed number of cycles over ≈ 60 s. To better visualize the
benefit of sensor fusion, we compare the estimated angular
velocity 𝜔̂ for each version of the model (Fig.16).

5.2 Angular Velocity Estimation
The first experimental model consists of estimating the an-
gular velocity 𝜔 of the train with an accelerometer by mea-
suring the constant centripetal acceleration 𝑎𝑐 [23]. In the
EKF parameters, ℎ = 𝑟𝜔̂2 and we assume the radius 𝑟 = 0.57
m is known. Since 𝑎𝑐 is a constant, we computed 𝜎2𝑎𝑐 = 0.8
directly from the accelerometer data.

The "𝑎𝑐 only" curve on Fig.16 shows that the estimation is
difficult mostly because the train introduces lots of vibrations.
We also observe that𝜔 is overestimated, but a slightly higher
𝑟 would already reduce the error. Actually, there is a small
uncertainty on the value of 𝑟 because we do not exactly know
the position of the MEMS accelerometer on the Pmod NAV
chip. We could try to make the estimation as good as possible
by optimizing the parameters, but instead we will improve
it by adding other sensors.

5.3 Position Estimation
We can estimate the position of the train with (1) and the
drift can be corrected with the absolute measurement 𝑑 of a
sonar. Indeed, from the estimated position (𝑥 ,𝑦), it is possible
to estimate the distance between the train and the sonar
located at (𝑃𝑥 ,𝑃𝑦) with (2). The error 𝜎𝑑 = 0.25 is defined as
half the length of the train.

Figure 14. Estimation of the position

𝜃𝑘+1 = 𝜃𝑘 + 𝜔̂Δ𝑡 𝑥𝑘+1 = 𝑟 cos𝜃𝑘 𝑦𝑘+1 = 𝑟 sin𝜃𝑘 (1)

𝑑 (𝑥,𝑦, 𝑃𝑥 , 𝑃𝑦) =
√
(𝑥 − 𝑃𝑥 )2 + (𝑦 − 𝑃𝑦)2 (2)

Fig.14 clearly shows when a sonar measurement is used to
correct the estimation. The major corrections take place at
the beginning and convergence is complete after two cycles.
By that time, 𝜔̂ ("+sonars" curve on Fig.16) also converges
towards the "true" value and when we compare the shape of
the curve with the previous configuration, it is obvious that
the sonars give a major improvement.

5.4 Adding a Gyroscope
We can improve the angular velocity estimation by adding a
gyroscope 𝑔 in the observation vector 𝑧 and 𝜎2𝑔 = 0.005 can
be computed from the gyroscope data because the angular
velocity is constant.

Themuch cleaner gyroscope signal allows to reach a stable
estimation in only 2 s instead of 15 s for the previous model
("+gyro" curve on Fig.16). From this result, we learn the
importance of the gyroscope as inertial sensor.

5.5 Radius Estimation
Since the gyroscope provides information regarding the an-
gular velocity, we can use the accelerometer to estimate the
radius with the observation model ℎ = 𝑟𝜔̂2. Of course, we
keep the same data sources as the previous configuration,
which are an accelerometer, a gyroscope, and two sonars.
Measuring 𝑟 , the true radius, is difficult because the train has
a certain width and it is unclear on which point the system
will converge. So, instead, we measured the radius of the in-
ner circle 𝑟𝑖𝑛 = 0.57 m and the outer circle 𝑟𝑜𝑢𝑡 = 0.615 m of
the railway track. The estimated radius should fall between
these two bounds.
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Figure 15. Estimation of 𝑟

As you can see on Fig.15, it takes≈ 5 s before the estimated
radius stabilizes around the correct value. Later, the curve
continues to oscillate slightly between the two bounds, but a
bit less every time. These oscillations appear to be synchro-
nized with the period of the circular motion and are probably
due to the sonars systematically seeing different parts of the
train. The estimation of 𝜔 ("+radius estimation" curve on
Fig.16) shows that estimating both 𝜔 and 𝑟 is a much harder
problem, since the convergence takes significantly longer.

5.6 Adding a Magnetometer
A magnetometer provides information about the heading 𝜃𝑚
which can be computed from (3) where𝑚𝑥 and𝑚𝑦 are the
measured magnetic field corrected for hard-iron bias. In the
observation model ℎ, we use 𝜃 ′ from (4) instead of 𝜃 because
of the wrapping effect of the SO(2) group [14]. This allows to
find the shortest path between 𝜃 and 𝜃𝑚 . Because the heading
is not constant, 𝜎2

𝜃𝑚
= 0.015 cannot be computed directly

from the magnetometer data. However, we can compare it
with 𝜃 , the true heading obtained from 𝜔 and the known
initial position 𝜃0 using 𝜃 (𝑡) = 𝜃0 +𝜔𝑡 . The complete model,
encoded for Hera, is visible in Listing 2.

𝜃𝑚 = arctan2(𝑚𝑦,𝑚𝑥 ) (3)

𝜃
′
= (𝜃 mod 2𝜋) − 2𝑘𝜋 where

𝑘 = argmin
𝑘∈{0,1}

( ���𝜃𝑚 − (𝜃 mod 2𝜋) + 2𝑘𝜋
��� ) (4)

The magnetometer gives very useful information an so,
we are able to restore the precision of 𝜔̂ ("+mag" curve on
Fig.16) to what we achieved before adding the radius as state
variable.

5.7 Model Encoding in Hera
Hera offers a high-level approach because the user only
needs to provide the sensor fusion model with the sensor
interfaces and nothing else! It allows the user to focus on
the important task: the elaboration of a sensor fusion model.
Listing 1 shows the interface we used for the sonar. As you
can see, it suffices to call the get/0 function of the driver and

Figure 16. Estimation of 𝜔

1 measure ( S t a t e = { MaxRange , X , Y } ) −>
2 ca s e pmod_maxsonar : g e t ( ) o f
3 Range when Range ∗ 0 . 0 2 5 4 =< MaxRange −>
4 { ok , [ Range ∗ 0 . 0 2 5 4 , X , Y ] , S t a t e } ;
5 _ −> { unde f ined , S t a t e }
6 end .

Listing 1. Example of sensor interface (Erlang code)

eventually to alter the result or even piggyback additional
information, like the position of the sonar, stored in the state.
Listing 2 gives the complete model of section 5.6 which

consists of estimating the position of a toy train in real time
as well as its angular velocity and the radius of the circular
track with an accelerometer, a gyroscope, a magnetometer,
and two sonars. The first step is to fetch the data from the
local data store (lines 2-4). The second step consists inwriting
the EKF parameters in matrix form (lines 10-41). In the third
and final step, we call the library function to perform the EKF
computation and output the result (lines 42-43). There are
two important particularities: we filter already used datawith
a local timestamp (lines 2-5) and we use list comprehensions
to declare the observation model (lines 23-41). This "variadic"
notation allows to define the complete model once and let
the length of the matrices change depending on the available
data.

5.8 Verdict
For us, the conclusion is clear: sensor fusion with a Kalman
filter (EKF in this case) using GRiSP and Erlang is not only
viable, but also matches soft real-time expectations. The
early results show that some time is required to get a decent
estimation of the system state, but with the help of valuable
sensors, like a gyroscope or a magnetometer, we are able to
significantly lower that delay. From those results, we also
infer a graceful degradation of the sensor fusion quality
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1 measure ( { T0 , X0 , P0 } ) −>
2 N= [D | | { _ , _ , Ts ,D} <−he r a_da t a : g e t ( nav ) , T0<Ts ] ,
3 M= [D | | { _ , _ , Ts ,D} <−he r a_da t a : g e t (mag ) , T0<Ts ] ,
4 S= [D | | { _ , _ , Ts ,D} <−he r a_da t a : g e t ( sonar ) , T0<Ts ] ,
5 T1 = hera : t imestamp ( ) ,
6 i f l e ng t h (N) + l eng t h (M) + l eng t h ( S ) == 0 −>
7 { unde f ined , { T0 , X0 , P0 } } ;
8 t r u e −>
9 Dt = ( T1 − T0 ) / 1 000 ,
10 F = fun ( [ _ , _ , [O] , [W] , [ Rad ius ] ] ) −> [
11 [ Rad ius ∗ math : cos (O) ] ,
12 [ Rad ius ∗ math : s i n (O) ] ,
13 [O+W∗ Dt ] ,
14 [W] ,
15 [ Rad ius ] ] end ,
16 J f = fun ( [ _ , _ , [O] , _ , [ Rad ius ] ] ) −> [
17 [ 0 , 0 , −Rad ius ∗ math : s i n (O) , 0 , math : cos (O) ] ,
18 [ 0 , 0 , Rad ius ∗ math : cos (O) , 0 , math : s i n (O) ] ,
19 [ 0 , 0 , 1 , Dt , 0 ] ,
20 [ 0 , 0 , 0 , 1 , 0 ] ,
21 [ 0 , 0 , 0 , 0 , 1 ] ] end ,
22 Q = mat : z e r o s ( 5 , 5 ) ,
23 H = fun ( [ [ X] , [Y ] , [O] , [W] , [ Rad ius ] ] ) −>
24 [ [ Rad ius ∗W∗W] | | _ <− N] ++
25 [ [W] | | _ <− N] ++
26 [ [ s h o r t e s t _ p a t h ( −OZ , O) ] | | [OZ] <− M] ++
27 [ [ d i s t ( { X , Y } , { Px , Py } ) ] | | [ _ , Px , Py ] <−S ] end ,
28 Jh = fun ( [ [ X] , [Y ] , _ , [W] , [ Rad ius ] ] ) −>
29 [ [ 0 , 0 , 0 , 2 ∗ Rad ius ∗W,W∗W] | | _ <− N] ++
30 [ [ 0 , 0 , 0 , 1 , 0 ] | | _ <− N] ++
31 [ [ 0 , 0 , 1 , 0 , 0 ] | | _ <− M] ++
32 [ [ dhdx ( { X , Y } , { Px , Py } ) , dhdx ( { Y , X } , { Py , Px } )

, 0 , 0 , 0 ] | | [ _ , Px , Py ] <− S ] end ,
33 Z = [ [ −Ay] | | [Ay , _ ] <− N] ++
34 [ [ −Gz ] | | [ _ , Gz ] <− N] ++
35 [ [ −O] | | [O] <− M] ++
36 [ [ Range ] | | [ Range , _ , _ ] <− S ] ,
37 R = mat : d i ag (
38 [ ?VAR_A | | _ <− N] ++
39 [ ?VAR_G | | _ <− N] ++
40 [ ?VAR_M | | _ <− M] ++
41 [ ?VAR_S | | _ <− S ] ) ,
42 {X , P } =kalman : ek f ( { X0 , P0 } , { F , J f } , { H, Jh } ,Q , R , Z ) ,
43 { ok , l i s t s : append (X) , { T1 , X , P } }
44 end .
45
46 d i s t ( { X , Y } , { Px , Py } ) −>
47 math : s q r t ( math : pow (X−Px , 2 ) +math : pow ( Y−Py , 2 ) ) .
48
49 dhdx ( { X , Y } , { Px , Py } ) −>
50 D = d i s t ( { X , Y } , { Px , Py } ) ,
51 (X−Px ) ∗ math : s q r t (D) / D .
52
53 s h o r t e s t _ p a t h ( Z , O) −>
54 NewO = math : fmod (O , 2 ∗ math : p i ( ) ) ,
55 c a s e abs ( Z−NewO+2 ∗ math : p i ( ) ) < abs ( Z−NewO) o f
56 t r u e −> NewO − 2 ∗ math : p i ( ) ;
57 f a l s e −> NewO
58 end .

Listing 2. Complete sensor fusion model of the first phase
(Erlang code)

under hardware failure because this would be similar to
removing sensors.

6 Second Phase: A MEMS AHRS
In the first phase, we analyzed the feasibility of sensor fusion
with Hera and GRiSP. In the second phase, we develop a
more useful application: an attitude and heading reference
system (AHRS).

Orientation tracking requires to combine information com-
ing frommultiple sensors and is typically performed at a high
frequency. State of the art systems achieve this by working
very close to the hardware which adds a lot of complexity to
an already non-trivial problem. Moreover, working close to
the hardware makes it difficult to provide a distributed and
fault-tolerant system. In this section, we show that it is pos-
sible to get a decent orientation tracking at a much higher
level of abstraction. Due to sensor drivers and processor
limitations, the update frequency is ≈ 3.75 Hz.

6.1 Orientation Estimation
We can determine the orientation from the direction of grav-
ity and the north [3]. When there is no linear acceleration,
the accelerometer measures gravity. The magnetometer𝑚
points to the magnetic north which is not perfectly parallel
to the ground. Therefore, we extract the vectors of interest
with cross products and obtain the orientation in the form
of a direct cosine matrix (DCM) a.k.a rotation matrix (5).

East = ˆDown × 𝑚̂
North = ˆEast × ˆDown

DCM =

(
ˆNorth

𝑇 ˆEast𝑇 ˆDown𝑇
)

(5)

As shown in [19], it is possible to build a Kalman filter
with the DCM, but we use the quaternion representation
because this approach requires less operations. Furthermore,
we cannot use Euler angles because they are ambiguous
(i.e. the same orientation can be represented with different
combinations). The DCM can be converted into a quaternion
with (6) [6].

𝑞21 =
1
4
(1 + 𝑅11 + 𝑅22 + 𝑅33)

𝑞𝑎𝑚 =
1
4𝑞1

©­­­«
4𝑞21

𝑅32 − 𝑅23
𝑅13 − 𝑅31
𝑅21 − 𝑅12

ª®®®¬ (6)

At this point, we add the gyroscope data in the quaternion-
based Kalman filter (8) inspired from [7]. Injecting the gyro-
scope signal directly into the state transition matrix 𝐹 has
the benefit of making the system more reactive to brutal
changes. This is extremely important considering the low
sampling frequency. Another way would be to include 𝜔
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Figure 17. Orientation in real time on the visualization tool

in the state, but since we do not know how it changes, a
constant hypothesis would be chosen which would result
in an overall less reactive model. The variances 𝜎2

𝑄
= 10−3

and 𝜎2
𝑅
= 10−2 were found by trial-and-error and we did not

optimize these parameters as much as possible because we
only focus on demonstrating feasibility.

Ω(𝜔) =
©­­­«

0 𝜔𝑥 𝜔𝑦 𝜔𝑧

−𝜔𝑥 0 −𝜔𝑧 𝜔𝑦

−𝜔𝑦 𝜔𝑧 0 −𝜔𝑥

−𝜔𝑧 −𝜔𝑦 𝜔𝑥 0

ª®®®¬ (7)

𝐹 = 𝐼4𝑥4 +
Δ𝑡

2
Ω(𝜔)

𝐻 = 𝐼4𝑥4 𝑍 = 𝑞𝑎𝑚

𝑄 = 𝜎2𝑄 𝐼4𝑥4 𝑅 = 𝜎2𝑅𝐼4𝑥4 (8)

However, the sign of the predicted quaternion 𝑞− may be
changed such that (9) is valid, to ensure that the difference
computed by the Kalman filter is the smallest [5]. Moreover,
the estimated quaternion requires a normalization to avoid
distortions due to small computing errors.

𝑞𝑎𝑚 · 𝑞− > 0 (9)

6.2 Validation of the AHRS
A proper analysis of an AHRS demands equipment, like a
high-precision tri-axis turntable, that we do not have. Instead,
we compare the observation model provided by the DCM
from (5) with the inertial prediction model 𝐹 from (8) and
the complete quaternion-based Kalman filter.
Quantitative demonstration whether the estimation is

smooth and correct is difficult. During the experiments, we
visualized the rotation in real time with our modular visual-
ization tool (Fig.17) and a video demonstration is available at
[10]. However, to report our results, we represent the orien-
tation by showing the coordinate of the point (1, 0, 0) from
the reference frame to the body frame.

Figure 18. Orientation from the accelerometer and the mag-
netometer

Figure 19. Orientation with a gyroscope only

On Fig.18, you can see the orientation provided by the
DCM from (5) with the accelerometer and the magnetometer.
It is shaky and unsmooth.
Fig.19 gives the orientation from the inertial prediction

model of the quaternion-based Kalman filter (without the
accelerometer nor the magnetometer). The gyroscope really
helps to predict the next orientation with a lot of smoothness,
but after a complete 360° rotation, we see that it is subject to
drift.
From Fig.20, it is clear that the Kalman filter allows to

combine the absolute information of the magnetometer and
accelerometer with the smooth inertial prediction of the
gyroscope to get the best of both without the disadvantages.

Since we assume the accelerometer gives the direction of
the floor, the computation is incorrect when the device is
subject to an acceleration. As a result, while under a shaking
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Figure 20. Orientation from the fusion of accelerometer,
magnetometer, and gyroscope via Kalman filter

Figure 21. Deviation from previous position while shaking

motion, the DCM from (5) indicates a changing orientation
even when there is none in reality. Fortunately, the gyro-
scope is not subject to that issue and thus, it should help
to reduce this effect. Fig.21 reports the "deviation from pre-
vious position" which is the normalized distance between
two consecutive positions. For example, if the orientation
goes from 0° to 360° and then 180° in two iterations, we com-
pute 100% and then 50%. The graph confirms the effect we
described with a spike reaching the 80% for the DCM, but
also reveals that the inertial model is not completely spared
with a deviation going up to 20%. It means there is a small
angular velocity 𝛿𝜔 picked up by the gyroscope which can
lead to a visible deviation after the integration by 𝜃0 + 𝛿𝜔Δ𝑡 .
The Kalman filter is sometimes higher and other times a
bit lower, but overall fairly close. In any case, the deviation
never exceeds the 20% mark.

7 Conclusion and Future Work
The Hera framework offers a high-level approach for low-
cost and fault-tolerant sensor fusion directly at the edge.
The current implementation pushes the GRiSP computation
power and Pmod sensor drivers to their limit. Future improve-
ments in GRiSP, Pmod and Erlang numeric computation will
be directly usable to achieve a higher update frequency and
increased accuracy. We now give some of the possibilities
for future work based on Hera.

Performance Improvements: The current system is lim-
ited by the low clock frequency of the GRiSP-Base boards
resulting in a low computation speed, by the low measure-
ment frequency of the Pmod drivers and by the use of Erlang
for matrix operations. Despite these limitations, it provides
good accuracy and is fast enough for soft real-time applica-
tions. The GRiSP 2, a second-generation GRiSP board, should
be available in July 2021 and will provide a 20× improvement
in computation speed. Furthermore, we are working on a
native matrix library for Erlang [13] that will provide an
additional 10× to 100× improvement in speed for the ma-
trix operations of the Kalman filter. In addition, we expect
improved Pmod sensor drivers to become available.

Combination with Machine Learning: Libraries for
machine learning (ML) and data mining give new abilities,
such as motion recognition. Asynchronous algorithm for ML
like [17] could enrich the Hera library. It is clear that these
algorithms require increased computation speed, but this
should become possible with the planned improvements.

Targeting Rugged Terrains: With its high fault toler-
ance, the Hera framework is suitable for IoT experiments in
a rugged real-world terrain. Future work can use Hera for
IoT prototyping in such situations.

Controlling Physical Devices: The current version of
Hera does not attempt to control a physical device. Adding
control is a straightforward extension of the Kalman filter
computations in the sensor fusion engine. There exist Pmod
actuators for controlling the external world, like proportional
motor control.

Simple and easy to use, the Hera framework is perfect
for IoT prototyping. With its interesting properties, it of-
fers a good basis for sensor fusion at the extreme edge.
The application used for the examples of this paper and
Hera are also freely available as open-source software on
Github15,16,17 and can be used with GRiSP-Base boards from
Stritzinger GmbH. The interested reader may find additional
background information regarding the subjects of this paper
in [11].

15https://github.com/sebkm/sensor_fusion
16https://github.com/sebkm/hera
17https://github.com/sebkm/hera_synchronization

https://github.com/sebkm/sensor_fusion
https://github.com/sebkm/hera
https://github.com/sebkm/hera_synchronization
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Our software is a base that can be used for many improve-
ments and extensions in fields like surveillance, tracking,
and games. We hope that Hera will be used for both IoT
education and product development.
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