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Abstract

Causal consistency has emerged as a key ingredient among the many consistency models
and client session guarantees that have been proposed and implemented in the last decade.
In fact, it has been proved to be the strongest consistency model that does not compromise
availability.

Despite its benefits, causal consistency is not trivial to guarantee: one has to keep track of
causal dependencies, and to subsequently ensure that operations are delivered in causal order.
Interestingly, the granularity at which causal dependencies are tracked impacts significantly
the system’s performance. When precisely tracking causal dependencies, the costs associated
with the processing and transferring of metadata have a significant impact in throughput. It is
possible to mitigate this impact by compressing metadata to reduce the amount of metadata
handled. Nevertheless, this comes with the cost of losing precision, which penalizes remote
visibility latencies—the delay before an operation’s effect is observable at remote replicas,
due to the creation of false causal dependencies—two concurrent operations which are ordered
as an artifact of the metadata management. This tension between throughput and remote
visibility latency is inherent to previous work, and it is typically exacerbated when one wants
to support partial replication.

This thesis proposes a set of techniques, which combined, alleviate this tension, allowing
designers of causally consistent geo-replicated systems to optimize both throughput and re-
mote visibility latency simultaneously, and attain genuine partial replication—a key property
to ensure scalability when the number of geo-locations increases. The key technique is a novel
metadata dissemination service, which relies on a set of metadata brokers, organized in a tree
topology. This thesis experimentally demonstrates that, when the topology is well configured,
this mechanism allows to implement genuine partial replication and optimize remote visibility
latency while keeping the size of the metadata small and constant, crucial to avoid impairing
throughput. Furthermore, this service can be decoupled from the service responsible for man-
aging the data, promoting modular architectures for geo-replicated systems.

The metadata dissemination service assumes that each datacenter is able to serialize, in
an order consistent with causality, all updates issued locally. This thesis shows how it is pos-
sible to efficiently achieve this by integrating services that operate out of the clients’ critical
operational path.

We have built a prototype, namely SATURN, that integrates all the aforementioned tech-
niques. SATURN is designed as a metadata service that can be used in combination with
several replicated data services. We evaluate SATURN in Amazon EC2 using realistic bench-
marks under both full and partial geo-replication. Results show that weakly consistent datas-
tores can lean on SATURN to upgrade their consistency guarantees to causal consistency with
a negligible penalty on performance: with only 2% reduction in throughput and 11.7ms of ex-
tra remote visibility latency in geo-replicated settings. Also, our extensive evaluation shows
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that our techniques compare favorably to previous state-of-the-art solutions: SATURN exhibits
significant improvements in terms of throughput (38.3%) compared to solutions that favor re-
mote visibility latency; while exhibiting significantly lower remote visibility latency (76.9ms
less on average) compared to solutions that favor high throughput.



Résumé

La cohérence causale est devenue un élément clé parmi les nombreux modèles de co-
hérence et les garanties de session client qui ont été proposés et mis en œuvre au cours de la
dernière décennie. Il a été démontré être le modèle de cohérence le plus fort qui ne compromet
pas la disponibilité.

Malgré ses avantages, la cohérence causale n’est pas triviale à garantir : il faut garder une
trace des dépendances causales, et ensuite s’assurer que les opérations sont livrées dans un
ordre causal. Fait intéressant, la granularité à laquelle les dépendances causales sont suivies
a un impact significatif sur la performance du système. Lorsque l’on suit les dépendances
causales avec précision, les coûts associés au traitement et au transfert des métadonnées ont
un impact significatif sur le débit. Il est possible d’atténuer cet impact en compressant les
métadonnées. Néanmoins, cela entraîne une perte de précision, ce qui pénalise la latence de
visibilité à distance—le délai avant que l’effet d’une opération ne soit observable sur des
réplicas distants—en raison de la création de fausses dépendances. Cette tension entre le débit
et la latence de visibilité à distance est inhérente au travaux de recherche antérieurs, et elle est
typiquement exacerbée lorsque l’on veut supporter une réplication partielle.

Cette thèse propose un ensemble de techniques qui atténuent cette tension, permettant aux
concepteurs de systèmes géo-répliqués respectant la causalité d’optimiser le débit et la latence
de visibilitè à distance simultanément, et d’obtenir une réplication partielle authentique—une
propriété importante lorsque le nombre de géo-localisations augmente. Nous encapsulons ces
techniques dans un nouveau service de diffusion de métadonnées, qui repose sur un ensemble
de courtiers de métadonnées organisés selon une topologie arborescente. La thése démontre
expérimentalement que, lorsque la topologie est bien configurée, ce service permet de réaliser
une réplication partielle authentique et d’optimiser la latence de visibilité à distance tout en
gardant la taille des métadonnées petite et constante, crucial pour maintenir le débit. De plus,
ce service peut être découplé du service de gestion des données, ce qui donne une architecture
modulaire pour les systèmes géo-répliqués.

Le service de diffusion des métadonnées suppose que chaque centre de données soit ca-
pable de sérialiser, dans un ordre compatible avec la causalité, toutes les opérations émises
localement. Cette thèse montre comment il est possible d’y parvenir efficacement en introdui-
sant un nouveau service, Eunomia, qui opère en dehors des chemins critiques des clients.

Nous avons construit un prototype, SATURN, qui intègre toutes les techniques mention-
nées ci-dessus. SATURN est conçu comme un service de métadonnées pouvant être utilisé
en combinaison avec plusieurs services de données répliqués. Nous évaluons SATURN dans
Amazon EC2 en utilisant des tests réalistes sous géo-réplication complète et partielle. Les ré-
sultats montrent que les services de données faiblement cohérents peuvent s’appuyer sur SA-
TURN pour obtenir la cohérence causale avec une pénalité négligeable sur les performances :
seulement 2% de réduction du débit et 11,7 ms de latence de visibilité à distance supplé-
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mentaires dans un cadre géo-répliqué. En outre, notre évaluation approfondie montre que nos
techniques se comparent favorablement à l’état de l’art antérieur : SATURN présente des amé-
liorations significatives en termes de débit (38,3%) par rapport aux solutions qui favorisent la
latence de visibilité à distance ; tout en présentant une latence de visibilité à distance significa-
tivement plus faible (76,9 ms de moins en moyenne) par rapport aux solutions qui favorisent
un débit élevé.



Resumo

Apesar das suas vantagens, a coerência causal não é trivial de garantir: concretizar este
modelo obriga a manter um registo das dependências entre as operaões e a coordenar a apli-
cação destas operações em cada centro de dados, de forma a respeitar estas dependências.
Manter as dependências causais de forma precisa obriga a manter e transferir uma quantidade
significativa de metadados, o que limita o d’ebito do sistema. É possível reduzir o tamanho
dos metadados mas, tipicamente, isto obriga a perder precisão, criando falsos positivos, isto
é, sugerindo relações causa-efeito potencias que não correspondem a dependências reais, o
que amplifica a latência na entrega das mensagens. Esta tensão entre a latência e o débito é
comum a todos os trabalhos anteriores, e é tipicamente ampliada quando se pretende suportar
replicação parcial.

Esta tese propõe novas estratégias para concretizar coerência causal em sistemas replica-
dos suportando replicação parcial que pretendem superar o compromisso entre o débito e a
latência acima referido. A técnica chave para conseguir este objectivo consiste na utilização
de um serviço de propagação de informação sobre as dependências causais, organizado na
forma de um grafo acíclico de encaminhadores de metadados. A tese mostra experimental-
mente que, quando a topologia do grafo é escolhida de forma apropriada, é possível capturar
as dependências causais recorrendo a poucos metadados e assegurar que os falsos-positivos
que resultam desta compressão não afectam de forma significativa a latência das operações,
conciliando desta forma o elevado desempenho com a baixa latência. Este serviço pode ser
usado de forma desacoplada dos processos de transferências do conteúdo das operações, pro-
movendo arquitecturas de gestão de dados replicados mais modulares.

O serviço de metadados pressupõe que cada centro de dados é capaz de seriar, de forma
coerente com a causalidade, todas as operações que são executadas localmente, antes de as
propagar para o serviço de metadados. Esta tese mostra como é possível integrar serviços que
executam esta tarefa fora do caminho crítico do cliente, como o Eunomia, de forma eficiente,
de forma a criar uma arquitectura coerente para gestão de coerência global em larga-escala.

Desenvolvemos um protótipo deste serviço de gestão de metadados, que designamos por
SATURN. Este protótipo foi construído de forma a facilitar a sua integração com diversos ser-
viços de dados replicados. Apresenta-se uma avaliação do SATURN, numa configuração que
usa os serviços da Amazon EC2, recorrendo a bancadas de teste realistas, em configurações
com replicação total e replicação parcial. Os resultados ilustram que as técnicas propostas, ao
contrário dos trabalhos anteriores, conseguem de facto oferecer garantias de coerência causal
com uma degradação residual do débito e da latência, quando comparadas com sistemas que
não fornecem quaisquer garantias de ordenação.
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Chapter 1

Introduction

In this first chapter of the dissertation, we motivate the work by arguing why
the study of efficient mechanisms to support causal consistency is of high rel-
evance to both theoreticians and practitioners. Furthermore, we describe two
open challenges faced by designers of causally consistent geo-replicated sys-
tems. In order to support this argumentation, we present a motivational ex-
periment involving two state-of-the-art, causally consistent geo-replicated sys-
tems: GentleRain and Cure. Then, we describe the contributions of this thesis,
enumerating a summary of its main contributions and results. Finally, we con-
clude the chapter with a brief description of the content included in each of the
chapters of this document.

1.1 Motivation

Distributed data services are a fundamental building block of modern cloud
services. These aim at providing an always-on experience to millions of con-
current users, which expect their requests to always be successfully served in
a short period of time. Unfortunately, as proved by the CAP theorem [32, 53],
some of these tight availability, latency, and throughput requirements are in
conflict with data consistency. Specifically, the CAP theorem proves that it is
impossible to design a distributed system that it is always available, tolerant to
network partitions and strongly consistent.

As a result, a broad class of services have opted for favoring availability
and partition tolerant at the cost of strong consistency [44, 3, 66]. Never-
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2 CHAPTER 1. INTRODUCTION

theless, the observation that delegating consistency management entirely to
the programmer makes the application code error prone [15] have spurred the
quest for meaningful weaker consistency models, which allow the system to
remain always available and can be supported effectively by a data service.

Among the several consistency models proposed, causal consistency seems
to be pivotal in the consistency spectrum, given that it has been proved to
be the strongest consistency model that does not compromise availability [13,
74]. In fact, ensuring that updates are applied and made visible respecting
causality has emerged as a key ingredient among the many consistency criteria
and client session guarantees that have been proposed and implemented in
the last decade. Mechanisms to preserve causality can be found in systems
that offer from weaker [98, 71, 9, 103] to stronger [92, 69, 20] consistency
guarantees.

A causally consistent system guarantees that an update does not become
visible to users of that system until all its causal dependencies are also visi-
ble. Causal dependencies among operations are established as clients interact
with the system. Informally, an operation b depends on a second operation a,
denoted a  b, either because the client issuing b has previously observed
the effects of a or because she has observed the effects of another operation
c such that a  c [67, 5] (§2.1.2 gives a more formal definition of causal
consistency). Ensuring this invariant, it is useful for applications such as so-
cial networks. Consider, for instance, the interaction of Alice and Bob, two
users of a social network. Alice wants to share a photo with Bob. Thus, Al-
ice first uploads the photo and then adds it to an album, such that the album
contains a reference to the photo. Under weaker consistency models, such as
eventual consistency, Bob could first read the album, getting a list of photo ref-
erences (in which the recently uploaded photo is included) and then try to read
the photo without success. Under causal consistency, updating the album will
causally depend on the photo. Therefore, if Bob reads a version of the album
that includes the photo, Bob should be able to successfully retrieve the photo.

Unfortunately, the designer of a causally consistent geo-replicated stor-
age system is still faced today with a dilemma: there appears to be a tradeoff
between throughput and remote visibility latency—the delay before an oper-
ation’s effect is observable at remote replicas, derived from the granularity at
which causality is tracked [28, 56]. Figure 1.1 reports the results of an exper-
iment that illustrates this tradeoff in current systems. In the two plots starting
from the left, we compare the performance of two state-of-the-art solutions,
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Figure 1.1 – Problems faced by current causally consistent geo-replicated
storage systems. Results are normalized against eventual consistency. The
latencies among datacentersLeft: Tradeoff between throughput and remote
visibility latency. Right: How partial replication affects remote visibility

latency.

GentleRain [49] and Cure [7]1. The former opts for a coarse-grained tracking
by compressing metadata into a single scalar. The latter opts for a more fine-
grained approach by relying on a vector clock with an entry per datacenter, an
approach that most of the causally consistent geo-replicated storage systems
in the literature go for. The performance is compared against a store that only
guarantees eventual delivery, ensuring no consistency guarantees and therefore
requiring no metadata management. In this experiment—deployed in Amazon
EC2, we vary the number of datacenters from 3 to 7. The datacenters are added
in an order such that each addition increases the maximum latency between any
two datacenters. The average latencies among them are listed in Table 4.1. As
it can be seen, by keeping little metadata, GentleRain induces a low penalty
on throughput but hampers remote visibility latency. This is due to the large
number of false dependencies inevitably introduced when compressing meta-
data [39, 40] (a false dependency is created when two concurrent operations
are serialized as an artifact of the metadata management). The opposite hap-
pens with Cure, that exhibits a low (constant) remote visibility latency penalty
but severely penalizes throughput due to the computation and storage overhead

1We have chosen these two solutions for two main reasons. First, both solutions share a
very similar design with the difference being the amount of metadata used to track causality.
This fact serves us to better illustrate the tradeoff. Second, they are—from our perspective—the
most scalable and performant solutions of the literature.
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associated with the metadata management [16, 49].

Furthermore, current solutions are not designed to fully take advantage of
partial replication, a setting of practical relevance [41, 34] in which each data-
center may replicate a different subset of the key-space. The culprit is that
causal graphs (a directed graph in which nodes are operations and the edges
represent causal dependencies) are not easily partitionable. This fact may force
sites to manage not only the metadata associated with the data items stored lo-
cally, but also the metadata associated with items stored remotely [71, 16, 103].
Attempts to reduce this effect, by limiting the amount of metadata managed at
each site, magnifies the problem of false dependencies, forcing solutions to
delay the visibility of remote operations due to operations on data items that
are not even replicated locally. To illustrate this problem we run an experiment
in which we start from full replication incrementally decreasing the replica-
tion degree of each item, until only datacenters close to each other replicate
the same data. Figure 1.1 (far right plot) shows the additional visibility la-
tency that is introduced to enforce causal consistency, when using GentleRain.
One can observe that GentleRain is incapable of taking advantage of partial
replication, imposing longer delays as we reduce the replication factor.

This dissertation studies the fundamental tradeoff, derived from the accu-
racy in which causality is tracked, between throughput and remote visibility
latency, and its relation to both full and partial replication. Is throughput al-
ways at odds with remote visibility latency?

1.2 Thesis contributions

In this thesis, we propose a novel modular architecture that integrates a set of
techniques, which combined, demonstrate that it is possible to alleviate this
tension such that both throughput and remote visibility latency can be opti-
mized simultaneously.

The proposed architecture does a clear separation of the consistency con-
cerns from the responsibilities of the underlying storage system—such as repli-
cation and durability—based on the separation between metadata and data
management.

The key technique is a novel metadata dissemination service. This service
is responsible for notifying datacenters about the order in which these must
make remote operations visible to local clients such that causal consistency is
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guaranteed. The service is devoted exclusively to metadata management. We
experimentally demonstrate that when the service is well configured, it enables
causally consistent data services to optimize throughput and remote visibility
latency simultaneously. In order to add minimal overhead due to metadata
handling, the service only requires managing small pieces of metadata, inde-
pendently of the number of clients, servers, partitions, and locations. This
fact is a crucial requirement to avoid impairing throughput. Unfortunately,
due to the aggressive metadata compression strategy, a large number of false
dependencies is unavoidably generated. In order to diminish its impact on re-
mote visibility latency, the service exploits the fact that causal consistency is
a partial order to enforce at each datacenter a different serialization of remote
operations, crafted to maximize the performance of that datacenter.

The architecture of the metadata dissemination service is key to achieve
these, a priori conflicting, goals. The service is distributed geographically by
means of a set of metadata brokers organized in a tree topology. The fact that a
tree topology permits ensuring causal consistency trivially enables the service
to only handle small pieces of metadata. Nevertheless, in order to optimize
remote visibility latency not every tree topology is valid. In this thesis, we
propose a configuration service that finds a tree topology that optimizes the
average remote visibility latency, given the latencies among the datacenters, a
set of possible locations where to place the metadata brokers and the relative
importance of paths between pairs of datacenters, reflecting the business goals
of the application.

Interestingly, the tree topology is also key to support partial replication
efficiently. Thus, the metadata dissemination service only notifies datacen-
ters about the order of those remote operations replicated locally, omitting the
order between these and other remote operations of no local interest. This en-
ables genuine partial replication, a desirable scalability property that requires
datacenters to manage only the data and metadata concerning items replicated
locally.

Finally, although the design of the metadata dissemination service is de-
coupled from the implementation details of each datacenter, the service—
naturally—needs to interact with each datacenter. In this thesis, we also study
the requirements imposed by the metadata dissemination service to the data-
center implementation. Specially relevant is the fact that the metadata dissem-
ination service requires each datacenter to generate a causal serialization of the
updates issued locally. This thesis addresses this problem and shows how a ser-
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vice operating out of the client’s critical operational path is ideal to efficiently
solve it. Concretely, we demonstrate how to integrate an existing metadata
serialization service, namely Eunomia [59], with the metadata dissemination
service and the rest of the intra-datacenter components.

We have built a prototype, namely SATURN, integrating all these tech-
niques that we have deployed on Amazon EC2. Our evaluation using both mi-
crobenchmarks and a realistic Facebook-based benchmark shows that eventu-
ally consistent systems can use SATURN to upgrade to causal consistency with
negligible performance overhead (namely, with only 2% reduction in through-
put and 11.7ms of extra remote visibility latency in geo-replicated settings)
under both full and partial replication. Furthermore, our solution offers sig-
nificant improvements in terms of throughput (38.3%) compared to previous
solutions that favor remote visibility latency [7]; while exhibiting significantly
lower remote visibility latency (76.9ms less on average) compared to previous
solutions that favor high throughput [49].

In the following subsections, we first summarize the main contributions
and results of this thesis. Then, we present a list of publications that include
some of the results presented in this document.

1.2.1 Summary of contributions
In summary, the primary contributions of this dissertation are as follows:

• The design of a modular architecture for ensuring causal consistency in
geo-replicated systems. The architecture does a clear separation of the
consistency concerns from the responsibilities of the underlying storage
system—such as replication and durability—based on the separation be-
tween metadata and data management.

• The design of a novel metadata dissemination service responsible for
notifying datacenters about the order in which these must make remote
operations visible to local clients such that causal consistency is guar-
anteed. This service leverages a set of metadata brokers, organized in
a tree topology, to handle the efficient dissemination of causal metadata
among datacenters.

• The design of a configuration service. Pre-configuring the metadata dis-
semination service is fundamental for its well functioning. We model
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the problem of configuring the metadata dissemination service as an op-
timization problem and rely on a heuristic technique that leverages a
constraint solver to find a “good” configuration in a reasonable amount
of time.

• Specification of the requirements of service provided by the metadata
dissemination service and how it should interoperate with the data ser-
vices’ components. Ultimately, this resulted in the design of Eunomia,
a metadata serialization service able to efficiently generate a causal se-
rialization of all operations local to a datacenter by operating out of the
clients’ critical operational path. The actual implementation of Eunomia
was carried out in [59].

1.2.2 Summary of results
The main results of this dissertation are as follows:

• The design and implementation of a variant of both GentleRain and Cure
with support for partial replication.

• The design and implementation of SATURN, the first distributed meta-
data service for causal consistency capable of efficiently supporting par-
tial replication, and optimizing both throughput and remote visibility
latency simultaneously.

• A tool to configure SATURN such that remote visibility latencies are
optimized on average, given a deployment and the application’s business
goals.

• A sound and complete evaluation of the SATURN’s components, as well
as a comparison with GentleRain [49] and Cure [7], two of the most
performant state-of-the-art solutions.

1.2.3 Publications
Some of the results presented in this thesis have been published as follows:

• M. Bravo, N. Diegues, J. Zeng, P. Romano, and L. Rodrigues. On the use
of clocks to enforce consistency in the cloud. IEEE Data Engineering
Bulleting, 38(1):18-31, 2015 [28].
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• M. Bravo, L. Rodrigues, and P. Van Roy. Towards a scalable, distributed
metadata service for causal consistency under partial geo-replication. In
Proceedings of the Doctoral Symposium of the 16th International Mid-
dleware Conference, Middleware Doct. Symposium ’15, pages 5:1-5:4,
Vancouver, BC, Canada, 2015 [29].

• M. Bravo, L. Rodrigues, and P. Van Roy. Saturn: A distributed metadata
service for causal consistency. In Proceedings of the Twelfth European
Conference on Computer Systems, EuroSys ’17, pages 111-126, Bel-
grade, Serbia, 2017 [30].

• C. Gunawardhana, M. Bravo, and L. Rodrigues. Unobtrusive deferred
update stabilization for efficient geo-replication. In Proceedings of the
2017 USENIX Conference on Usenix Annual Technical Conference, USENIX
ATC ’17, pages 83-95, Santa Clara, CA, USA, 2017 [59].

During my doctoral studies, I have also explored other directions and col-
laborated in several projects that have helped me to get insights on the chal-
lenges of providing consistency in geo-replicated systems. These efforts have
led me to contribute to the following publications:

• I. Briquemont, M. Bravo, Z. Li, and P. Van Roy. Conflict-free par-
tially replicated data types. In Proceedings of the 7th International Con-
ference on Cloud Computing Technology and Science, CloudCom ’15,
pages 282-289, Vancouver, BC, Canada, 2015 [33].

• M. Bravo, P. Romano, L. Rodrigues, and P. Van Roy. Reducing the
vulnerability window in distributed transactional protocols. In Proceed-
ings of the First Workshop on Principles and Practice of Consistency for
Distributed Data, PaPoC ’15, pages 10:1-10:4, Bordeaux, France, 2015
[31].

• M. Couceiro, G. Chandrasekara, M. Bravo, M. Hiltunen, P. Romano,
and L. Rodrigues. Q-opt: Self-tuning quorum system for strongly con-
sistent software defined storage. In Proceedings of the 16th Annual
Middleware Conference, Middleware ’15, pages 88-99, Vancouver, BC,
Canada, 2015 [42].
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• C. Bartolomeu, M. Bravo, and L. Rodrigues. Dynamic adaptation of
geo-replicated crdts. In Proceedings of the 31st Annual ACM Sympo-
sium on Applied Computing, SAC ’16, pages 514-521, Pisa, Italy, 2016
[21].

• D. D. Akkoorath, A. Z. Tomsic, M. Bravo, Z. Li, T. Crain, A. Bieniusa,
N. Preguiça, and M. Shapiro. Cure: Strong semantics meets high avail-
ability and low latency. In Proceeding of the IEEE 36th International
Conference on Distributed Computing Systems, ICDCS ’16, pages 405-
414, Nara, Japan, 2016 [7].

In Chapter 6, we provide further details on how these results relate to this
dissertation.

1.3 Outline

The remainder of this disseration is organized as follows.

Chapter 2 provides background on cloud services and causal consistency. Fur-
thermore, we discuss two fundamental aspects to consider when implementing
causal consistency: the tradeoff between throughput and remote visibility la-
tency; and the challenges of adopting partial replication.

Chapter 3 presents the design of SATURN, our prototype that integrates all
the proposed techniques. The chapter includes the description of the novel
metadata dissemination service; a solution to find the right configuration of
the service such that remote visibility latencies are optimized; a list of require-
ments that the service imposes to geo-replicated dataservices; and its integra-
tion with metadata serialization services, such as Eunomia, that operate out
of the clients’ critical operation path. The chapter also discusses the fault-
tolerance and adaptability aspects of our approach.

Chapter 4 presents a complete and sound evaluation of our techniques. We
evaluate each of them individually, comparing them to alternative approaches.
Also, we compare SATURN, attached to a data service, to state-of-the-art causally
consistent data services.

Chapter 5 proposes a taxonomy to classify existing causally consistent sys-
tems and discusses the most relevant existing solutions.
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Chapter 6 concludes this dissertation with a list of take away messages, a
discussion about the limitations of our approach, a list of topics for future
work, and final remarks.



Chapter 2

Causal consistency: model &
challenges

In this chapter, we first discuss why causal consistency is relevant for today’s
cloud services. Then, we formally define it. Finally, we discuss two charac-
teristics inherent to causal consistency that should be taken into consideration
when designing causally consistent distributed database systems: the through-
put vs. remote visibility latency tradeoff; and why partial replication is at odds
with metadata compression.

2.1 Causal consistency

2.1.1 Why causal consistency

To better understand why causal consistency is an interesting consistency cri-
terium in practice, we first overview current cloud services architectures and
the requirements they imposed over the distributed database systems they rely
on to manage the application state.

Cloud services: architecture and requirements

Cloud services handle millons of client requests per second. These services
are usually composed of two tiers: the application tier and the storage tier.
The former is composed of a set of stateless servers that handle client requests
by executing application code that reads and updates the storage tier. The

11
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application tier shields clients from the internal complexities of the storage
tier; e.g. which machines to contact to read or update a specific piece of data,
or how many replicas are maintained. The latter maintains the application state
sharded across multiple servers and replicated among multiple datacenters.

These services would ideally require the distributed database system fea-
turing the storage tier to have the following properties:

1. Always-on. A cloud service should provides an “always on” user ex-
perience to keep users engaged. This implies that the service is always
available and that requests are always served in a reasonable amount of
time. Therefore, these systems have to be tolerant to network partitions
and should exhibit low latency.

Network partitions occur within and across datacenters, as some recent
studies report [54, 19, 99]. For instance, a study that measures and anal-
yses network failures in several Microsoft datacenters reports that more
than 13,300 network failures occurred during one-year period whose ef-
fects were observable by end-users [54]. The study also reports that it
took five minutes to repair each failure on average, taking up to a week
for some of them.

Low latency is fundamental for cloud services to keep users engaged.
In fact, studies have shown that even small increases on latency have a
direct negative impact on revenue [46, 88, 70]. Ensuring low latency is
challenging under geo-replication as remote communication have sub-
stantial cost given the distance among datacenters. For instance, among
the São Paolo and Singapore Amazon EC2 regions, ping packets exhibit
an average 362.8ms round-trip-time [14]. Besides, the fact that a single
user request can be forked in thousand of sub-requests—as reported by
Facebook [6]—augments the problem.

2. Scalability. The database system should scale-out horizontally. Thus,
cloud services operators expect that, when adding new resources to the
database system, the aggregate computational and storage power in-
creases accordingly. This is fundamental, as the alternative, namely ver-
tical scaling, could potentially make deployment cost soar, given current
load and the necessity to adapt to increases in load.

3. Strong consistency. Ideally, systems should ensure linearizability [60],
the strongest consistency model. This criterium creates the illusion that
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the distributed database is a centralized component. This allows de-
velopers to reason more simply about what to expect when reading and
updating the database, greatly simplifying application development. Un-
der linearizability, operations seem to take effect in the entire system at
a single point in time between the moment in which the request is re-
ceived and the moment in which is completed (the moment the result of
the operation is sent to back to the user). Once the system acknowledges
the completion of a write operation on a item, all subsequent reads on
that item will reflect the written state. Linearizability precludes anoma-
lies observable by end-users; e.g., a user that would not observe its own
writes, or a user that would observe a set of events in an order that does
not match reality (the order in which an external observer would witness
the succession of events). Also, under linearizability, maintaining ap-
plication invariants becomes trivial; e.g., keeping the balance of a bank
account above zero.

Unfortunately, linearizability is expensive to implement in practice, spe-
cially under geo-replication. The absence of consistency can be com-
pensated by ad-hoc mechanisms at the application level, but this is error
prone [15]. Thus, weaker, but still meaningful, consistency models have
been proposed; from stronger models such as RedBlue consistency [69]
to weaker models such as causal consistency [71].

Casual consistency, a sweet spot

Unfortunately, some of the desirable properties are in conflict. As stated by
the CAP theorem [32, 53], a replicated distributed system cannot offer strong
consistency and ensure availability (more concretely be tolerant to network
partitions) simultaneously. As a result, one property has to be sacrificed. In-
terestingly, cloud services have chiefly chosen to favor availability [44, 66],
sacrificing consistency. Nevertheless, one does not have to give up consis-
tency completely. Weaker consistency models have been proposed that do not
compromise availability [98, 71, 97].

Causal consistency seems to be pivotal in the consistency spectrum, as it
has been proved to be the strongest consistency model that an “always-on”
system can ensure [13, 74]. Thus, causal consistency is the strongest model
that a distributed database system with availability requirements can aim at,
making the study of efficient mechanisms to support causal consistency of
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Figure 2.1 – Social network interaction among three users: Alice, Bob and
Joe.

absolute practical relevance.

2.1.2 Definition
Causal consistency defines intuitive semantics: it guarantees that, for any op-
eration j, all operations on which j causally depends, take effect before j.
Causal dependences are determined by the happened-before relation ( ) [67,
5], which is defined by three rules:

1. Thread of execution: If a and b are two operations executed by the same
thread of execution (e.g., by the same client), then a  b if a happens
before b.

2. Reads from: If a is a write operation and b is a read operation that reads
the value written by a, then a b.

3. Transitivity: If a c and c b, then a b.

Definition 1 (Causal consistency). A data service is causally consistent if,
when a certain operation is visible to a client, then all of its causal depen-
dencies are also visible.

Causal consistency precludes some consistency anomalies otherwise ob-
servable by end-users under weaker consistency models, e.g., a set of com-
ments in a social network that are displayed in an order that make no sense



2.1. CAUSAL CONSISTENCY 15

from the point of view of the observer. Figure 2.1 shows an example. A user
Alice posts in a social network that Joe (another user) is in the hospital. Sub-
sequently, Alice discovers that it is nothing serious and comments on her own
post: “He is fine, already home”. A third user Bob, which is friend of Joe,
reads the second comment and reacts to it replying “That’s great!”. If causal
consistency is not enforced, when Joe logs in to the social network and reads
the conversation, he could observe Joe’s “That’s great!” comment before Al-
ice’s “He is fine” comment (or not observe the latter at all), suggesting that
Bob was actually celebrating the fact that Joe had to go to the hospital. Under
causal consistency, Joe could observe only the first comment of Alice, the first
and the second, or all of them, but never Bob’s comment without both Alice’s
comments.

Figure 2.1 also serves us to illustrate the three rules of the happened-before
relation. Both Alice’s comments are causally related due to the first rule (thread
of execution). The second comment of Alice causally precedes Bob’s, as Bob
reads it before commenting. This is due to the second rule (reads from). Fi-
nally, The first comment of Alice also causally precedes Bob’s due to the third
rule (transitivity).

Finally, an alternative way of thinking of causal consistency is as the set
of all client (or session) guarantees [97]. There are four: read-my-writes,
monotonic-reads, monotonic-writes, and writes-follow-reads. The read-my-
writes guarantee ensures that writes made by a client are visible to subsequent
reads made by that client. The monotonic-reads guarantee ensures that a read
made by a client includes at least the effects of the writes already observed by
a previous read made by that client. The monotonic-writes guarantee ensures
that a write made by a client only takes effect after all previous writes made
by that client. Finally, the writes-follows-reads guarantee ensures that writes
made by a client take effect only after the writes whose effects were observed
by reads made by that client. A database system ensuring the four guarantees,
ensures causal consistency [35].

2.1.3 Causality in practice

The great advantage of causal consistency over stronger consistency models is
that transparently allows for asynchronous replication. This fact has significant
impact on the properties a cloud database can feature. First, operations can be
completed in a single datacenter, requiring no inter-datacenter coordination.
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The consequences of this fact are twofold: (i) the system becomes tolerant to
network failures (at least to the most damaging ones); (ii) long communication
round-trip-times are removed from the clients’ critical operational path, allow-
ing to achieve lower latencies. Second, casual consistency does trivially allow
for sharding, enabling horizontal scaling.

Practical implementations of causal consistency share a common pattern.
Read and writes are completed in a single datacenter without requiring syn-
chronous coordination with other datacenters. Writes are tagged with a piece
of metadata identifying operation’s causal dependencies. Each datacenter asyn-
chronously propagates local writes to the rest of the datacenters replicating the
data item being updated. The causal dependencies are either tracked by the
clients [71, 47] or by the datacenter servers [103, 9]. In most of the imple-
mentations of causal consistency, the effects of a write operation cannot be-
come visible to clients in a datacenter until all operations, on which the write
causally depends, have taken effect in that datacenter. Some implementations
simply defer applying writes until the dependencies are known to have taken
effect [103, 71]; others simply preclude its visibility [49, 7].

2.2 Throughput at odds with remote visibility
latency

Interestingly, precisely tracking dependencies have a significant impact on
throughput. The cost is associated to the computational and storage overhead
derived from the amount of metadata used to represent these dependencies.
As a reaction to this problem, the community have proposed solutions to re-
duce the amount of metadata being handled. One can compress the metadata
by serializing sources of potential concurrency. This is for instance, consid-
ering that all write operations local to a datacenter happen one after the other,
instead of capturing the inherent concurrency of those operations performed
concurrently by different clients and on possibly different servers. Therefore,
if one depends on two operations local to the same datacenter, it would be
enough keeping track of only the operation ordered last, reducing the amount
of metadata used considerably.

Unfortunately, when compressing metadata, one penalizes remote visibility
latencies. We define remote visibility latency as the time interval between the
instant in which an update is installed at its originating datacenter and when it
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becomes visible at remote datacenters. The fundamental problem is that when
compressing metadata, one is fusing sources of concurrency and thus creat-
ing false dependencies. A false dependency is created when two concurrent
operations are serialized as an artifact of the metadata management. Thus, a
datacenter receiving an operation that according to its “real” causal dependen-
cies (those captured by the three rules of the happened-before relation) could
be applied locally immediately, may have to defer its installation due to an-
other operation, which is concurrent according to the happened-before relation
but that appears to be a causal dependency due to the metadata compression.

Let us illustrate this with a simple example. Assume that we opt for se-
rializing all operations local to a datacenter. In this setting, if an operation c
causally depends on two other operations a and b, concurrent among them and
local to the same datacenter, c only has to carry one of the two as dependency:
the operation that comes later in the serialization. Therefore, assuming that
a is serialized before b, c will only need to carry b as dependency, as b will
carry a as its own dependency, and by transitivity in order to make c visible,
one needs to have installed both a and b. This reduces the size of the metadata
but adds a false dependency between operations a and b, which are concurrent,
forcing datacenters to wait until a is visible before making b visible.

The impact of increasing this latency is twofold. (i) Users observe a staler
view of the database, leading to a worse user experience and possibly impact-
ing revenue for some services; e.g., advertising services whose costumers pay
based on the pre-agreed number of ad imprints [11]. (ii) Users moving across
datacenters experience longer delays. Users may move due to roaming, fail-
ures or partial replication.

The research community has extensively explore this tradeoff; proposing
solutions that optimize throughput by aggressively compressing the metadata
[49], solutions that barely compress metadata [71, 47]—favoring remote visi-
bility latency and solutions that opt for an intermediate approach [7, 103, 9].

2.3 Is partial replication easy to adopt?

Surprisingly, most of previous solutions have been designed for a full repli-
cation setting in which all datacenters replicate the full application state. Is
partial replication a setting that it is challenging to adopt under causal consis-
tency or it is simply a setting not considered previously? In this section, we
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take a closer look to this. First, we motivate why partial replication is an in-
teresting setting. Then, we discuss the fundamental challenges when adopting
partial replication under causal consistency. Finally, we define genuine par-
tial replication, which is ideally the type of partial replication that a solution
should aim at implementing.

2.3.1 A case for partial replication

Partial replication is a setting of practical relevance and has the potential of
bringing significant savings in deployment costs. We now list a set of anecdot-
ical evidence and recent studies that support our statement:

1. It is obvious that partial replication has the potential of bringing sig-
nificant savings in deployment costs. One of the fundamental reasons
for services to replicate application state in multiple distant locations is
to reduce the end-user observable latency. Nevertheless, it seems to be
a waste of resources to replicate the full application state, as a single
user is usually not interested in accessing all data. Interestingly, in some
applications, there seems to be a correlation between the data accessed
and the geographical location of the users. For instance, A. Brodersen
et al. [34] study the geographic popularity of more than 20 millions of
YouTube videos. The study concludes that for about 50% of the videos,
more than 70% of their views, correspond to users belonging to a single
geographical region. Therefore, minimizing the amount of data shared
among datacenters should be something to consider as it could bring
significant storage and operational savings, without impacting end-user
observable latency substantially.

2. Cloud service providers already consider partial replication when de-
signing their distributed database systems; e.g., Google’s Spanner database [41],
which is offered as service to users of the Google Cloud Platform [2] and
used by multiple Google cloud services such as F1 [91], is specifically
designed to allow applications to partition data across different datacen-
ters.

3. Interestingly, given the ever-growing massive amount of data handled by
large cloud services, it seems that partial replication will soon become
the default setting for them. For instance, Facebook reported in 2014
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that “while the small data stores are replicated globally, Facebook’s data
warehouse cannot be stored in any single datacenter, so it’s partitioned
globally” [1].

4. Research community have acknowledged that the design of causally
consistent database systems with support for partial replication [71, 16,
103] is an interesting research challenge. For instance, P. Bailis et al.
state that “While weaker consistency models are often amenable to par-
tial replication (i.e., replicating to a subset of participants), allowing
flexibility in the number of datacenters required in causally consistent
replication currently remains an interesting aspect of future work” [16].

5. Edge and fog computing are promising computing paradigms which aim
at reducing end-user latency and enhancing scalability by performing
data processing at nodes situated at the logical extreme of a network
(closer to end-users). An edge network therefore is composed by a set
of heterogeneous computing nodes; e.g., points-of-presence, mobile de-
vices, datacenters, and more. Under these paradigms, partial replication
is mandatory, as the storage, computation and data transmission capabil-
ities of many of the devices situated on the edge are severely constrained.

2.3.2 Efficient causal consistency in conflict with partial
replication

Implementing efficient causally consistent database systems requires minimiz-
ing the amount of metadata being handled. As discussed before, when com-
pressing metadata, we merge sources of concurrency; e.g. serializing all op-
erations local to a datacenter, all operations on the same data item, or even all
operations happening in the system. This allows solutions to represent multiple
causal dependencies as it is was only one, reducing the size of the metadata.
Unfortunately, this fact makes difficult for solutions to take full advantage of
partial replication.

Let us illustrate this with a simple example (Figure 2.2). Assume a de-
ployment with three datacenters dc1, dc2, and dc3 in which the metadata is
compressed into a single scalar, meaning that all operations happening in the
system are serialized. Clients in dc1 issue two operations a and b such that a
is serialized before b. a has to be replicated in all datacenters, b only in dc2.
A client in dc2 reads the effects of b (once this has been installed in dc2) and
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Figure 2.2 – Example of interaction among three datacenters in a partially
replicated setting. In the example, all three operations (each issued by a

different client) are logically serialized to minimize metadata (abc). Each
operation only carries (within brackets) its predecesor in the serialization as

dependency.

issues a third operation c such that c is serialized after b. c has to be replicated
in dc3. In order to take advantage of the metadata compression, each operation
only carries as dependency, the operation that precedes it in the serialization
(benefiting from transitivity). Thus, c can only be installed in a datacenter once
b has been installed. Since dc3 is not interested in b (e.g.; the data item updated
by b is not replicated in dc3), one could say that dc3 can install c immediately.
This is false, as by transitivity, c depends on, not only b, but also a. There-
fore, in order to make c visible, dc3 has to ensure that all dependencies of b
are already installed, if replicated locally. Unfortunately, information about b’s
dependencies is only carried by operation b. This means that even though b
does not need to be replicated locally, it has to be received by dc3 (not nec-
essarily the payload of the operation, but at least the information regarding
dependencies). The implication is twofold: (i) there is some computational
overhead as datacenters still need to handle at least the metadata of some op-
erations that are not replicated locally; (ii) this fact augments the problem of
false dependencies, affecting remote visibility latencies negatively.

The culprit is that causal graphs (a directed graph in which nodes are opera-
tions and the edges represent causal dependencies) are not easily partitionable.
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Otherwise, one could eliminate this problem by: (i) partitioning the application
state in groups of data items such that there will never be causal dependencies
among operations mutating data items belonging to different groups; (ii) seri-
alizing all operations mutating data items that belong to the same group.

Of course, in our illustrative example, we are aggressively compressing
metadata and therefore the impact of this problem is more significant. Nev-
ertheless, the problem is still present in solutions that opt for a fine-grained
tracking of causal dependencies such as [71], as we later discuss.

2.3.3 Genuine partial replication
Among the possible implementations of partial replication, the most interest-
ing, due to its scalability properties, is genuine partial replication. Roughly
speaking, a partially geo-replicated database system is genuine if datacenters
are required to manage only the data and the metadata of the data items repli-
cated locally. This enhance scalability. First, it minimizes the computational
overheads of non-genuine implementations, as these have to handle metadata
and possibly data of operations which are irrelevant locally. Second, it shields
the remote visibility latency of the operations being replicated locally from the
effects caused by operations on data items that are not replicated locally.

Genuineness was introduce in the context of atomic multicast in asyn-
chronous distributed systems [57] to characterized scalable implementations
of atomic multicast. R. Guerraoui et al. [57] state that an atomic multicast
implementation is genuine if only the process that sends the message and the
processes that have to receive it are involved in the protocol required to deliver
the message. Our definition is just a specialized variant in the context of geo-
replication, in which processes are datacenters. Genuine partial replication has
also been used to characterized distributed transactional protocols [85, 80].

We claim that a causally consistent geo-replicated database system should
implement genuine partial replication in order to take full advantage of partial
replication.





Chapter 3

The design of Saturn

In this chapter, we describe the key techniques proposed in this thesis. We
describe these in detail as we present SATURN, a prototype that integrates them
all. In Chapter 4, we use SATURN to evaluate our techniques and compare them
to state-of-the-art alternatives.

We first give a general view of the techniques integrated in SATURN and
how all the parts blend to achieve our goal: to alleviate the tension between
throughput and remote visibility latency inherent to causal consistency, while
supporting scalable partial replication (§3.1). Second, we describe the main
contribution of this thesis: a novel metadata dissemination service that lever-
ages a set of metadata brokers, namely serializers, organized in a tree topology
to propagate causal metadata among datacenters (§3.2). Third, we propose a
method to configure the metadata dissemination service. Configuring the ser-
vice implies finding a tree topology that, given a deployment, permits the opti-
mization of remote visibility latencies. This step is key for the well functioning
of SATURN. We model the problem as an optimization problem and rely on
a heuristic technique that leverages a constraint solver to find a “good” solu-
tion in a reasonable amount of time (§3.3). Then, we describe what the meta-
data dissemination service requires from data services in order to be attachable
(§3.4). Among the requirements, the metadata dissemination service requires
datacenters to serialize local updates in an order consistent with causality. In
order to maximize the system’s throughput, SATURN integrates Eunomia [59],
an existing fault-tolerant datacenter service that efficiently undertakes this task
at each datacenter. Finally, in the last two sections of the chapter, we discuss
the fault-tolerant and adaptability aspects of our techniques.

23
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3.1 Design

SATURN is a metadata service designed to be attached to already existing geo-
replicated data services to orchestrate inter-datacenter update visibility. SAT-
URN aims at enforcing causal consistency, with negligible performance penalty
under both full and partial geo-replication, such that: clients always observe
a causally consistent state (as defined in [5, 67]) of the storage system inde-
pendently of the accessed datacenter. It follows that: i) the metadata handled
by SATURN has to be small and fixed in size, independently of the system’s
scale; ii) the impact of false dependencies [39, 40], unavoidably introduced
when compressing metadata, has to be mitigated; and, for obvious scalability
reasons, (iii) a datacenter should not receive or store any information relative
to data that it does not replicate (i.e., it must support genuine partial replica-
tion [57]).

3.1.1 Overview

Figure 3.1 shows a schematic view of the parties involved. SATURN is attached
to a data service that spans multiple datacenters. These are geographically
distributed and store the application state. Clients interact with the datacenters
by issuing read and update operations. SATURN is responsible for ensuring that
causal consistency is always guaranteed by orchestrating the dissemination of
update operations among datacenters. To ensure the well functioning of the
system—the optimization of the remote visibility latency, SATURN has to be
configured by system operators through a configuration service in a prior step.
SATURN also integrates mechanisms to allow for online reconfiguration (§3.6).

SATURN is devoted exclusively to metadata management. Thus, it assumes
the existence of some bulk-data transfer scheme that fits the application busi-
ness requirements. The decoupling between data and metadata management
is key in the design of SATURN. First, it relieves the datastore from managing
consistency across datacenters, a task that may be costly [16, 49]. Second,
this separation permits SATURN to handle heavier loads independently of the
size of the managed data. To the best of our knowledge, SATURN is the first
decentralized implementation of a metadata manager for causal consistency (a
centralized metadata service has been previously proposed in [51]).

SATURN only manages small pieces of metadata, called labels, in order to
add minimal overhead due to metadata handling. Labels uniquely identify op-
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Figure 3.1 – General architecture. SATURN is integrated with a data service,
which spans multiple datacenters. System operators configure SATURN

through a configuration service. Clients interact with the datacenters of the
underlying data service.

erations and have constant size. In SATURN, datacenters are responsible for (i)
generating labels (when clients issue update requests), (ii) passing them to the
SATURN’s metadata dissemination service, in an order that respects causality,
and (iii) attaching them to its corresponding update payload before deliver-
ing the updates to the bulk-data transfer mechanism. SATURN integrates the
necessary mechanisms to support this efficiently. It includes a metadata serial-
ization service (§3.4), namely Eunomia [59], that totally orders all labels local
(generated at) to a datacenter in an order consistent with causality and pushes
them to the SATURN’s metadata dissemination service. Although the Eunomia
service is not fundamental for the operation of SATURN (other services, such
as a sequencer, could be used instead), it is important to attain high throughput.
Finally, label generation and its subsequent attachement to operation payloads
is handled by a subcomponent named gear, which is attached to each of the
datacenter’s servers.

SATURN is then responsible for propagating labels among datacenters and
for delivering them to each interested datacenter in causal order. In turn, each
datacenter applies remote updates locally when it has received both the update
payload (via the bulk-data transfer mechanism), and its corresponding label
from the metadata dissemination service. SATURN exploits the fact that causal
consistency is a partial order to diminish the impact of false dependencies, oth-
erwise created due to the constraint amount of metadata used. Thus, SATURN
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delivers to each datacenter a different serialization of labels, which is crafted
to maximize the performance of that datacenter. In addition, labels include
information w.r.t the data being updated. Based on this information, SATURN

can selectively deliver labels to only the set of interested datacenters, enabling
genuine partial replication.

The architecture of the metadata dissemination service (§3.2) is key to en-
sure the well functioning of SATURN. The service leverages a set of metadata
brokers, distributed geographically and organized in a tree topology, to prop-
agate labels from the origin datacenter to the possibly multiple destinations.
Nevertheless not any tree topology is capable of optimizing the remote visi-
bility latency. SATURN requires thus a prior step, before being operational, to
find the appropriate topology. In §3.3, we present a method that, given some
characteristics of the deployment and the application—e.g., the number of dat-
acenters and the latencies among them, finds a topology of metadata brokers
that effectively optimizes remote visibility latency. Roughly, the topology of
metadata brokers must connect nearby datacenters through fast paths and es-
tablish slower paths among distant ones.

We assume that clients communicate via the storage system (with no direct
communication among them). A client normally connects to a single data-
center (named the preferred datacenter). Clients may switch to other data-
centers if they require data that it is not replicated locally, if their preferred
datacenter becomes unreachable, or when roaming. Clients maintain a label
that captures their causal past (more precisely, this is maintained by library
code that runs with the client). This label is updated whenever the client reads
or writes an item in the datastore if the new operation is not already included
in the client’s causal history. The client label is also used to support safe—
without violating causality—client migration among datacenters.

Finally, like many other competing systems [71, 72, 47, 49, 7], SATURN as-
sumes that each storage system datacenter is linearizable [60]. This simplifies
metadata management without incurring any significant drawback: previous
work has shown that linearizability can be scalably implemented in the local
area [10], where latencies are low and network partitions are expected to only
occur very rarely, especially in modern datacenter networks that incorporate
redundant paths between servers [8, 55].
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3.1.2 Labels: structure and properties
SATURN implements labels as follows. Each label is a tuple 〈type, src, ts,
target〉 that includes the following fields:

• type captures the type of the label. SATURN uses two different label
types, namely update and migration. An update label is generated when
a client issues a write request. A migration label is created when a client
needs to migrate to another datacenter. Migration labels are not strictly
required to support client movement but may speedup this procedure.

• src (source) includes the unique identifier of the entity that generated the
label.

• ts (timestamp) is a single scalar.

• target: indicates either the data item that has been updated (meaningful
for update labels), or the destination datacenter (meaningful for migra-
tion labels).

Labels have the following properties:

Property 1 (Uniqueness). The combination of the ts and src fields makes each
label unique.

Property 2 (Comparability). Let la and lb be two labels assigned to different
updates by SATURN. Assuming that source ids are totally ordered, we say that
la < lb iff:

la.ts < lb.ts ∨ (la.ts = lb.ts ∧ la.src < lb.src) (3.1)

Labels can therefore be totally ordered globally. The total order defined
by labels respects causality. In particular, given two updates, a and b, if b
causally depends on a (denoted a  b) then la < lb. Similarly to Lamport
clocks [67], the converse is not necessarily true, i.e. having lx < ly does not
necessarily indicate that x  y. In reality, x could be concurrent with y and
still lx < ly. This derives from the fact that causal order is a partial order and,
therefore, there are several serializations of the labels that respect causality
(the serialization defined by their timestamps is just one of these).
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Interestingly, the fact that the timestamp order respects causality, enhances
the robustness and availability of the architecture. Therefore, in the unlikely
case of a SATURN outage (SATURN has been implemented as a fault-tolerant
service), a datacenter may always fallback to make updates visible in times-
tamp order.

3.2 Label propagation
In this section, we present the design of the SATURN’s component in charge of
propagating labels among datacenters: the metadata dissemination service. We
start with an intuitive example that aims at introducing the tradeoffs involved
in the design of this service and at highlighting the potential problems caused
by false dependencies. We then define precisely the goals that the metadata
dissemination service should meet. Finally, we discuss a concrete architecture
for the service.

3.2.1 Rationale

The role of SATURN is to deliver, at each datacenter, in a serial order that is
consistent with causality, the labels corresponding to the remote updates that
need to be applied locally. Given that there may exist several serial orders
matching a given partial causal order of events, the challenge is to select (for
each datacenter) the “right” serial order that allows enhancing the system’s
performance.

In many aspects, SATURN’s metadata dissemination service acts as a publish-
subscribe system. Datacenters publish labels associated with updates that have
been performed locally. Other datacenters, which replicate the item associated,
subscribe to those labels. SATURN is in charge of delivering the published
events (labels) to the interested subscribers. However, SATURN has a unique
requirement that, to the best of our knowledge, has never been addressed by
any previously designed publish-subscribe system: SATURN must mitigate the
impact of false dependencies that are inevitably introduced when information
regarding concurrency is lost in the serialization process. As we have seen,
this loss of information is an unavoidable side effect of reducing the size of the
metadata managed by the system.

In this section, we use a concrete example to convey the intuition of the
tradeoffs involved in the design of SATURN to match the goal above. Consider
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Figure 3.2 – Label propagation scenario.

the scenario depicted in Fig. 3.2. Here, we consider a scenario with four dat-
acenters. Some items are replicated at dc1 and dc4 and some other items are
replicated at dc3 and dc4. Let us assume that the bulk-data transfer from dc1
to dc4 has a latency of 10 units while the transfer from dc3 to dc4 has a latency
of just 1 unit (this may happen if dc3 and dc4 are geographically close to each
other and far away from dc1). For clarity of exposition, let us assume that these
delays are constant. There are three updates, a, b and c. For simplicity, assume
that the timestamp assigned to these updates is derived from an external source
of real time, occurring at time t = 2, t = 4 and t = 6 respectively. Let’s also
assume that b  c and that a is concurrent with both b and c. The reader will
notice that there are three distinct serializations of these updates that respect
causal order: abc, bac, and bca. Which serialization should be provided to
dc4?

In order to answer this question, we first need to discuss how the operation
of SATURN’s metadata dissemination service can negatively affect the perfor-
mance of the system. For this, we introduce the following two concepts: data
readiness and dependency readiness. Data readiness captures the ability of the
system to provide the most recent updates to clients, as soon as its bulk-data
transfer is completed. Dependency readiness captures the ability of the system
to serve a request, because all of its causal dependencies (both real depen-
dencies and false dependencies that are created as an artifact of the metadata
compression) have been previously applied.

Considering data readiness alone, we would conclude that SATURN should
deliver labels to remote datacenters as soon as possible. However, the reader
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may have noticed that there is no real advantage of delivering label a before
instant t = 12, as the update can only be applied when the bulk-data trans-
fer is completed. On the contrary, delivering label a very soon may create a
false dependency that may affect the dependency readiness of other requests.
Assume that SATURN opts to deliver to dc4 the labels in the serial order abc.
This is not only consistent with causality but also consistent with the real time
occurrence of the updates. Unfortunately, this serialization creates a false de-
pendency among update a and updates b and c, i.e., updates b and c need to be
applied after update a as a result of the serialization procedure. This introduces
unnecessary delays in the processing of the later updates: although update b
and update c are delivered to dc4 at times 5 and 7 respectively, they will have
to wait until time 12 (while this was not strictly required by causality, given
that a is concurrent with b and c). A more subtle consequence is that a correct
but “inconvenient” serialization may increase the latency observed by clients.
Assume that a client reads from dc3 update b at time t = 5 and then migrates
to dc4 (to read some item that it is not replicated at dc3). That client should be
able to attach to dc4 immediately, as by time t = 5 update b has been delivered
to dc4 and could be made visible. However, the false dependency introduced
by the serialization above requires the client to wait until time t = 12 for the
attachment to complete.

The example above shows that while trying to maximize data freshness by
delivering labels not after the data-bulk transfer of its corresponding operations
is completed, SATURN should avoid introducing false dependencies prema-
turely. A prematurely delivered label may unnecessarily delay the application
of other remote operations, having a negative impact on the latency experi-
enced by clients and increasing remote updates visibility latencies. Therefore,
SATURN has to select a serialization per datacenter which does the best trade-
off between these two aspects. In the example above, if a is only delivered
at dc4 after b and c, by selecting the serialization bca, clients migrating from
dc3 to dc4 would not be affected by the long latency of the bulk-data transfer
link from dc1 to dc4; and a, b and c will become visible at dc4 as soon as the
bulk-data transfer is completed.

3.2.2 Selecting the best serializations

In order to precisely define which is the best serialization that should be pro-
vided to a given datacenter, we first need to introduce some terminology.
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Let ui be a given update i performed at some origin datacenter dco, and li
the label for that update. Let ti be the real time at which the update was created
at the origin datacenter dco. Let dcr be some other datacenter that replicates
the data item that has been updated. Let ∆(dco, dcr) be the expected delay of
the bulk-data transfer from the origin datacenter to the replica datacenter. For
simplicity of notation we assume that ∆(dco, dcs) = 0 if datacenter s does not
replicate the item, and therefore, it is not interested in receiving the update.
The expected availability time for the update at dcr would be ti +∆(dco, dcr).
Finally let H(ui) = {uj , uk, ...} the set of past updates that are in the causal
past of ui.

Definition 2 (Optimal visibility time). We then define the optimal visibility
time, denoted vtri of an update i at some replica dcr, as the earliest expected
time at which that update can be applied to dcr. The optimal visibility time of
an update at a target datacenter dcr is given by:

vtri = max(ti + ∆(dco, dcr), max
ux∈H(ui)

vtrx) (3.2)

From the example above it is clear that if the label li is delivered at dcr after
vtri data freshness may be compromised. If li is delivered at dcr before vtri ,
delays in other requests may be induced due to false dependencies and lack
of dependency readiness. Thus, SATURN should—ideally—provide to each
datacenter dcr a serialization that allows each label li to be delivered exactly
at vtri on that datacenter.

3.2.3 Architecture of the metadata dissemination service
SATURN’s metadata dissemination service is implemented by a set of meta-
data brokers, namely serializers, in charge of aggregating and propagating the
streams of labels collected at each datacenter. We recall that our main goal
is to provide to each datacenter a serialization of labels that is consistent with
causality. This can be obtained by ensuring that serializers and datacenters are
organized in a tree topology (with datacenters acting as leaves), connected with
FIFO channels, and that serializers forward labels in the same order it receives
them.

Let us illustrate its principles with the simplest example. Consider for
instance a scenario with 3 datacenters dc1, dc2 and dc3 connected to a single
serializer S1 in a star network. Consider a data item that is replicated in all
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datacenters and two causally dependent updates to that item, a and b (a b),
where a is performed at dc1 and b is performed at dc2 (both updates need to
be applied at dc3). In this scenario, the following sequence of events would
be generated: a is applied at dc1 and its label is propagated to S1. In turn,
S1 propagates the label to dc2 which, after receiving its payload (via the bulk-
data transfer), applies update a locally. Following, at dc2, some local client
reads a and issues update b. The label associated with b is sent to S1, that in
turn will forward it to the other datacenters. Since serializers propagate labels
preserving arrival order, datacenter dc3 will necessarily receive a before b, as
S1 observes, independently of arbitrary network delays, a before b1.

Although a star network, with a single server, will trivially satisfy causality,
such a network may offer sub-optimal performance. In the previous section,
we have seen that the metadata dissemination service must deliver a label to a
datacenter approximately at the same time the associated bulk data is delivered;
for this requirement to be met, the metadata path cannot be substantially longer
than the bulk data path. In fact, even if labels are expected to be significantly
smaller than data items (and therefore, can be propagated faster), their propa-
gation is still impaired by the latency among the SATURN serializers and the
datacenters. Consider again the example of Fig. 3.2: we want labels from dc3
to reach dc4 within 1 time unit, thus any servers on that metadata path must be
located close to those datacenters. Similarly, we want labels from dc1to reach
dc2 fast. These two requirements cannot be satisfied if a single server is used,
as in most practical cases, a single server cannot be close to both geo-locations
simultaneously.

To address the efficiency problem above we use multiple serializers dis-
tributed geographically. Note that the tree formed is shared by all datacenters,
and labels are propagated along the shared tree using the source datacenter as
the root (i.e., there is no central root for all datacenters). This ensures that we
can establish fast metadata paths between datacenters that are close to each
other and that replicate the same data.

Resorting to a network of cooperative serializers has another advantage:
labels regarding a given item do not need to be propagated to branches of
the tree that contain serializers connected to datacenters that do not replicate

1One can easily derive a correctness proof for any tree topology based on the idea that
for any two causally related updates a and b (a  b) such that b was generated at dci (this
implies that a was visible at dci before b was generated), the lowest common ancestor serializer
between dci and any other datacenter interested in both updates, observes a label before b label.
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that item. This fact enables genuine partial replication at the data service:
datacenters will only receive labels that correspond to the data items replicated
locally. Nevertheless, the metadata dissemination service itself is not genuine
as defined by R. Guerraoui et al. [57] (a multicast implementation is genuine if
only the process that sends the message and the processes that have to receive
it are involved in the protocol required to deliver the message) as in order to
propagate a label from the origin datacenter to a destination datacenter, this
has to traverse a set of serializers, which may include serializers located at a
third datacenter location. Nevertheless, the fact that the service is distributed
prevents all serializers from processing all labels, contributing to the scalability
of the system.

Finally, since we expect labels to be disseminated faster that their cor-
respondent bulkier payloads, it may happen that labels become available for
delivery before their optimal visibility time. In fact, in current systems, and
for efficiency reasons, bulk data is not necessarily sent through the shortest
path [62]. Thus, for optimal performance, SATURN may introduce artificial
delays in the metadata propagation, as discussed in §3.3.

3.3 The configuration problem: finding the
topology

As discussed in the previous section (§3.2.3), SATURN relies on a network of
metadata brokers, organized in a tree topology, to disseminate the metadata
among datacenters. Nevertheless, in order to optimize remote visibility la-
tencies not every tree topology is valid. Thus, the quality of the serialization
served by SATURN to each datacenter depends on how the metadata dissemi-
nation service is configured.

In this section, we present a configuration service that can be used to find
a SATURN’s configuration that allows to optimize remote visibility latencies
given a deployment and certain application characteristics. This is a funda-
mental step that has to be done before deploying SATURN in order to ensure
the well functioning of the service.

3.3.1 The configuration service
The configuration service is composed of two main components: the topology
generator and the solver. The former iterates through multiple tree topologies
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Figure 3.3 – The configuration service. It is composed of two
subcomponents: the solver and the topology generator.

and relies on the solver component to determine the one that optimizes remote
visibility latencies, given a deployment.

Figure 3.3 shows the interaction between these two components, the input
that the service expects, and the output that it generates.

Inputs

The configuration service expects the following inputs (the first three items of
the list correspond to the first input in Figure 3.3, the last item corresponds to
the last input in the figure):

• The set V of datacenters that need to be connected (we denote N = |V |
the total number of datacenters).

• The latencies of the bulk data transfer service among these datacenters;
latij denotes the latency between datacenters i and j. Note that latij
and latji are not necessarily equal.

• The set W of potential locations for placing serializers (M = |W |).
Note that, in practice, when deploying SATURN, one has not complete
freedom to select the geo-location of serializers. Instead, the list of po-
tential locations for serializers is limited by the availability of suitable
points-of-presence that results from business constraints. Since each
datacenter is a natural potential serializer location, W is a superset of
V and M ≥ N . Let dij denote the latency between two serializer loca-
tions i and j.
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• If available, a characterization of the workload generated by the appli-
cations using the data service to which SATURN is attached, e.g.; the
distribution of clients requests among items and datacenters.

Outputs

The configuration service outputs a SATURN’s configuration. This is defined
by:

• The number of serializers to use and where to place them.

• A topology: how these serializers are connected, among each other and
with datacenters.

• What delays (if any) should a serializer artificially add when propagating
labels (in order to match the optimal visibility time).

3.3.2 Modelling the problem

Given a limited set of potential locations to place serializers and the constraint
of having to organize them in a tree topology, it is unlikely (impossible in
most cases) to match the optimal label propagation latency for every pair of
datacenters. Therefore, the best we can aim when setting-up SATURN is to
minimize the mismatch between the achievable label propagation latency and
the optimal label propagation latency.

The optimal label propagation latency is determined by the expected arrival
time of the data. It approximates the optimal visibility time (Equation 3.2) as
follows. The latter defines the earliest expected time at which an update can
be applied at a remote (target) datacenter. This time is determined by the time
that it takes to propagate the update and its causal dependencies to the target
datacenter. Given that our architecture (the tree topology of serializers) ensures
that the label of an update is always serialized after its causal dependencies,
the best we can do is to approximate that the arrival time of an update’s label
matches the arrival time of that update’s payload.

Let us precisely model the optimization problem. Consider that the path for
a given topology between two datacenters, i and j, denoted PM

i,j is composed
by a set of serializers PM

i,j = {Sk, ..., So}, where Sk connects to datacenter i
and So connects to datacenter j. The latency of this path ∆M (i, j) is defined
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by the latencies (d) between adjacent nodes in the path, plus any artificial de-
lays that may be added at each step—δij denotes the artificial delay added by
serializer i when propagating metadata to serializer j., i.e.:

∆M (i, j) =
∑

Sk∈P M
i,j \{So}

(dk,k+1 + δk,k+1) (3.3)

and the mismatch between the resulting latency and the optimal label propaga-
tion latency is given by:

mismatchi,j = |∆M (i, j)−∆(i, j)| (3.4)

Finally, one can observe that in general, the distribution of client requests,
among items and datacenters may not be uniform, i.e., some items and some
datacenters may be more accessed than others. As a result, a mismatch that
affects the data visibility of a highly accessed item may have a more nega-
tive effect on the user experience than a mismatch on a seldom accessed item.
Therefore, in the scenario where it is possible to collect statistics regarding
which items and datacenters are more used, it is possible to assign a weight
ci,j to each metadata path PM

i,j , that reflects the relative importance of that path
for the business goals of the application. Using these weights, we can now
define precisely an optimization criteria that should be followed when setting
up the serializers topology:

Definition 3 (Weighted Minimal Mismatch). The configuration that better ap-
proximates the optimal visibility time (Equation 3.2) for data updates, consid-
ering the relative relevance of each type of update, is the one that minimizes
the weighted global mismatch, defined as:

min
∑
∀i,j∈V

ci,j · mismatchi,j (3.5)

Note that we are summing the mismatches as we want to optimize the
average remote visibility latency. If one wants to optimize for the worst-case,
the weighted minimal mismatch should rather multiply mismatches.
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Algorithm 3.1 Find the best configuration.
1: function FIND_CONFIGURATION(V, Threshold)
2: 〈First, Second〉 ← PICK_TWO(V)
3: InitTree = rooted tree with First and Second as leaves
4: Trees← {InitTree}
5: V ← V \ {First, Second}
6: while V 6= ∅ do
7: NextDC← HEAD(V)
8: NewTrees← ∅ . ordered set
9: for all Tree ∈ Trees do

10: NTree← NEW_ROOTED(NextDC, Tree)
11: NTree.ranking← SOLVE(NTree)
12: NewTrees← NewTrees ∪ {NTree}
13: for all Edge ∈ Tree do
14: NTree← NEW_TREE(NextDC, Tree, Edge)
15: NTree.ranking← SOLVE(NTree)
16: NewTrees← NewTrees ∪ {NTree}
17: V ← V \ {NextDC}
18: Trees← FILTER(Threshold, NewTrees)
19: return HEAD(Trees)

3.3.3 Configuration generator

The problem of finding a configuration that minimizes the Weighted Mini-
mal Mismatch criteria, among all possible configurations that satisfy the con-
straints of the problem, is NP-hard.2 Therefore, we have designed a heuristic
that approximates the optimal solution using a constraint solver as a building
block. We have modeled the minimization problem captured by Definition 3.5
as a constraint problem that for a given tree, the solver finds the optimal lo-
cation of serializers (for a given set of possible location candidates) and the
optimal (if any) propagation delays.

The proposed algorithm, depicted in Alg. 3.1, works as follows. Iteratively,
starting with a full binary tree with only two leaves (Alg. 3.1, line 3), the al-
gorithm generates all possible isomorphic classes of full binary trees with N
labeled leaves (i.e., datacenters). The algorithm adds one labeled leaf (data-

2A reduction from the Steiner tree problem [63] can be used to prove this.



38 CHAPTER 3. THE DESIGN OF SATURN

center) at each iteration until the number of leaves is equal to the total number
of datacenters. For a given full binary tree T of f leaves, there exist 2 ∗ f − 1
isomorphic classes of full binary trees with f + 1 leaves. One can obtain a
new isomorphic class by either inserting a new internal node within an edge
of T from which the new leaf hangs (Alg. 3.1, line 14), or by creating a new
root from which the new leaf and T hang (Alg. 3.1, line 10). We could it-
erate until generating all possible trees of N leaves. Nevertheless, in order
to avoid a combinatorial explosion (for nine datacenters there would already
be 2,027,025 possible trees), the algorithm selects at each iteration the most
promising trees and discards the rest. In order to rank the trees at each iter-
ation, we use the constraint solver. Therefore, given a totally ordered list of
ranked trees, if the difference between the rankings of two consecutive trees
T1 and T2 is greater than a given threshold, T2 and all following trees are dis-
carded (Alg. 3.1, line 18). At the last iteration, among all trees with N leaves,
we pick the one that produces the smallest global mismatch from the optimal
visibility times by relying on the constraint solver.

Note that Algorithm 3.1 always returns a binary tree. Nevertheless, SAT-
URN does not require the tree to be binary. One can easily fuse two serializers
into one if both are directly connected, placed in the same location, and the
artificial propagation delays among them are zero. Any of these fusions would
cause the tree to change its shape without reducing its effectiveness.

3.4 Datacenter operation: unobtrusive ordering

The design of SATURN is decoupled from the implementation details of each
datacenter. In this way, SATURN can be cast to operate with different geo-
replicated data services. Naturally, SATURN needs to interact with each data-
center, and the datacenter implementation must allow attaching the hooks that
provide the functionality required by SATURN: the generation of labels associ-
ated with each update, the propagation of remote labels to the local storage, and
the capability of exporting a single serial stream—consistent with causality—
of labels, as if it were a logically centralized store, even when each datacenter’s
storage service spans multiple servers.

SATURN could employ well-known solutions to meet these goals. For in-
stance, systems with similar requirements [9, 103] resort to a logically cen-
tralized service (one at each datacenter) to address the problem of generating a
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Figure 3.4 – Datacenter operation.

single causal serialization of local updates. This service, namely sequencer, to-
tally orders local updates by assigning increasing sequence numbers. In order
to trivially ensure that the total order derived from the sequence is consistent
with causality, the coordination between storage servers, which handle clients
requests, and the sequencer is done synchronously before returning to clients.

Unfortunately, sequencers are known to limit datacenter’s concurrency and
increase operation latencies. In order to use SATURN to the best advantage, we
integrate Eunomia, a recent metadata serialization service [59]. Eunomia is
conceived to replace sequencers as building blocks in weakly consistent geo-
replicated storage systems. Unlike traditional sequencers, Eunomia lets lo-
cal client operations execute without synchronous coordination. Then, in the
background, Eunomia establishes a serialization of all updates occurring in
the local datacenter in an order consistent with causality, based on timestamps
generated locally by the individual servers that compose the datacenter. We
refer to this process as site stabilization procedure. Thus, Eunomia is capa-
ble of abstracting the internal complexity of a multi-server datacenter without
limiting the concurrency.

In order to give full support to the functionality required by SATURN, to-
gether with the Eunomia service (the fundamental piece), we have designed
three more subcomponents, as illustrated by Figure 3.4. Note that in the expo-
sition, we assume that the key-space is divided into N non-overlapping par-
titions distributed among the storage servers composing the datacenter. Table
3.1 provides a summary of the notation used in the algorithms. These subcom-
ponents have the following responsibilities:
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M Number of datacenters
N Number of partitions

Labelc Client c label
pm

n Partition n at datacenter m
gm

n Gear attached to pm
n

Clockm
n Current physical time at pm

n

MaxTsm
n Greatest timestamp ever assigned by gm

n

la Label assigned to operation a
Labelsm Set of unstable labels at the Eunomia service of datacenter m

Vector-
Timem

Vector with an entry per gear at the Eunomia service of
datacenter m

Table 3.1 – Notation used in the protocol description.

• Stateless frontends shield clients from the details of the internal opera-
tion of the datacenter (how the key-space is partitioned, how many repli-
cas of each item are kept, etc). Frontends intercept client requests before
they are processed by partitions— therefore storage servers. They have
two roles: (i) to ensure that clients observe a causally consistent snap-
shot of the datastore; and (ii) to forward updates to responsible partitions
and later return the labels assigned to the operations to clients.

• Gears are responsible for generating labels, and propagating the data
and metadata associated to each update. A gear is associated to each
partition; it intercepts update requests (coming from a frontend) and,
once it is made persistent, ships the update to remote datacenters via the
bulk-data transfer service. Furthermore, it forwards locally generated
labels to the Eunomia service.

• The Eunomia service is a logically centralized component that collects
all the labels associated with the updates performed in the local data-
center and forwards them to the metadata transfer service of SATURN,
in a serial order that is compliant with causality.

• The remote proxy applies remote operations in causal order. For this,
it relies on the order proposed by SATURN and on the label timestamp
order as explained in §3.4.3.
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Algorithm 3.2 Operations at frontend q of datacenter m
. Handles the attachement of a client to a datacenter

1: function ATTACH(Labelc)
2: gk

n← Labelc.src . gear n of dc k
3: if k == m then . Labelc was locally generated
4: return ok
5: else . Labelc was remotely generated
6: WAIT_FOR_STABILIZATION(Labelc)
7: return ok
. Forwards an update request to the responsible storage server. Note the
operation is intercepted by the gear attached to it.

8: function UPDATE(Key, Value, Labelc)
9: server← RESPONSIBLE(Key)

10: send UPDATE(Key, Value, Labelc) to server
11: receive Label from server
12: return Label

. Forwards a read request to the responsible storage server. Note the op-
eration is intercepted by the gear attached to it.

13: function READ(Key)
14: server← RESPONSIBLE(Key)
15: send READ(Key) to server
16: receive 〈Value, Label〉 from server
17: return 〈Value, Label〉

. Forwards a migration request to any gear
18: function MIGRATE(TargetDC, Labelc)
19: gm

n ← GEAR(random_key) . gear n of local dc m
20: send MIGRATION(TargetDC, Labelc) to gm

n

21: receive Label from gm
n

22: return Label

3.4.1 Client interaction

Clients interact directly with the frontends through the client library. A fron-
tend exports four operations: attach, read, write, and migrate. The latter is
described in §3.4.4. Algorithms 3.2 and 3.3 describe how events are handled
by frontends and gears, the two key subcomponents to understand the genera-
tion of labels and the interaction with clients.
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Attach. Before issuing an update, read, or migration request, a client c is
required to attach to a datacenter. Being attached to a datacenter m signifies
that client c causal past is visible inm and, therefore, c can safely interact with
m without violating causality. A client attaches to a datacenter by providing
the latest label it has observed (stored in the client’s library). The frontend
waits until that label is causally stable, i.e., until it is sure that all updates
that are in the causal past of the client have been locally applied. When this
condition is met, it replies back to the client. From this point on, the client
may issue requests. The condition that indicates the stability of the presented
label depends on the type and source of the label. If the label was created
on the same datacenter, the fronted may return immediately (Alg. 3.2, line 4).
If the label was created on a remote datacenter (Alg. 3.2, line 5), and it is of
type migration (§3.4.4 discusses the generation of this type of labels), it waits
until SATURN delivers that label and all previous labels have been applied (in
the order provided by SATURN). Finally, if the label was created on a remote
datacenter, and it is of type update, the frontend waits until an update with an
equal or greater timestamp has been applied from every remote datacenter.

Update. A client c’s update request is first intercepted by the client library,
then tagged with the label that captures the client’s causal past (Labelc), and
forwarded to any local frontend. The frontend forwards the update operation to
the local responsible partition (Alg. 3.2, line 9). This operation is intercepted
by the gear attached to that partition gm

n . The gear first generates a new label
for that update (Alg. 3.3, line 2). Then, the value and its associated label are
persistently written to the store. Subsequently, the update’s payload —tagged
with its corresponding label— is sent to the remote replicas (Alg. 3.3, lines 5–
6), and the label is handed to the local Eunomia service (Alg. 3.3, line 7).
The new label is then returned to the frontend that forwards it to the client
library. Finally, the new label replaces the client’s old label, capturing the
update operation in the client’s causal past.

Read. A read request on a data item Key is handled by a frontend by for-
warding the request to the local responsible partition (Alg. 3.2, line 14). The
request is intercepted by the gear gm

n attached to the partition that returns the
associated value and label (Alg. 3.3, line 11). The label associated is the one
assigned by gm

n to the update operation that generated the current version. If
the label associated with the value is greater than the label stored in the client’s
library (Labelc), the library will replace the old label by the new one, including
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Algorithm 3.3 Operations at gear n of datacenter m (gm
n )

. Updates the local store and propagates to remote datacenters
1: function UPDATE(Key, Value, Labelc)
2: Ts← GENERATE_TSTAMP(Labelc.ts)
3: Label← 〈update, Ts, gm

n , Key〉
4: ok← KV_PUT(Key, 〈Value, Label〉)
5: for all k ∈ REPLICAS(Key) \{m} do
6: send NEW_PAYLOAD(Label, Value) to k
7: send NEW_LABEL(Label) to Eunomia
8: return Label 5
. Reads the most recent version of Key from the local store

9: function READ(Key)
10: 〈Value, Label〉 ← KV_GET(Key)
11: return 〈Value, Label〉

. Generates a migration label
12: function MIGRATION(TargetDC, Labelc)
13: Ts← GENERATE_TSTAMP(Labelc.ts)
14: Label← 〈migration, Ts, gm

n , TargetDC〉
15: send NEW_LABEL(Label) to Eunomia
16: return Label

. Sends a heartbeat to Eunomia
17: function HEARTBEAT . Every δ time
18: if no update for δ time then
19: Ts← GENERATE_TSTAMP(0)
20: send HEARTBEAT(gm

n , Ts) to Eunomia
. Generates a timestamp larger than Min

21: function GENERATE_TSTAMP(Min)
22: MaxTsm

n ← MAX(Clockm
n ,MaxTsm

n + 1,Min+1)
23: return MaxTsm

n

thus the retrieved update into the client’s causal past.

3.4.2 Integration of the Eunomia service
Eunomia requires that the labels, assigned by gears to client operations, satisfy
the following two properties.
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Algorithm 3.4 Operations at Eunomia of datacenter m
. Queues a new label

1: function NEW_LABEL(la)
2: Labelsm← Labelsm ∪ la
3: VectorTime[gm

n ]← la.ts

. Handles the reception of a heartbeat coming from a local gear
4: function HEARTBEAT(gm

n , Ts)
5: VectorTime[gm

n ]← Ts
. Computes and processes stable labels

6: function PROCESS_STABLE . Every θ time
7: STime← MIN(VectorTimem)
8: SLabels← FIND_STABLE(Labelsm, STime)
9: PROCESS(SLabels)

10: Labelsm← Labelsm \ SLabels

Property 3 (Site-causality). Given two operations a and b, both local to the
same datacenter, if a causally depends on b, then the timestamp assigned to lb
(lb.ts) is strictly greater than la.ts.

Property 4 (Gear-monotonicity). For two labels la and lb received by Euno-
mia coming from the same gear gm

n , if la is received before lb then lb.ts is
strictly greater than la.ts.

These two properties imply that labels are causally ordered across all gears
and that once Eunomia receives a label coming from a gear gm

n , no label with
a smaller timestamp will ever be received from gm

n .

Label generation. In addition to the restrictions imposed by Eunomia to the
generation of labels, SATURN requires labels to be unique and their timestamp
order to respect causality, not only within a datacenter (as the Property 3 of
Eunomia) but across datacenters. Our design ensures that labels guarantee
these four properties

First, the gear-monotonicity property is guaranteed by ensuring that each
gear generates monotonically increasing timestamps. As the combination of
a label’s fields timestamp and source make it unique, this also guarantees the
uniqueness property. Second, ensuring a causal order among labels requires
that, when generating a label for an update issued by some client c, the times-
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tamp assigned to that label is strictly greater than all the labels that c has pre-
viously observed. In SATURN, each client’s causal past is represented by the
greatest label the client has observed when interacting with the system (La-
belc). Since clients are not tied to a specific frontend, this label has to be
stored in the client’s library and be piggybacked with client requests. There-
fore, upon an update request, gears only need to guarantee that the timestamp
of the label being generated (Alg. 3.3, lines 2 and 13) is greater than the client’s
label timestamp. Note that to ensure correctness, client libraries have to up-
date client’s labels (as described in §3.4.1) when they interact with SATURN

frontends to ensure that all operations observed by the client are included in
the client’s causal past. Third, given that the Eunomia’s site-causality property
is strictly weaker than ensuring the global causal order of labels required by
SATURN, the above method also ensures the site-causality property of Euno-
mia.

Gears rely on hybrid clocks [64] to generate labels’ timestamps, which
combine logical and physical time (Alg. 3.3, lines 21–23). Although we could
simply use logical clocks and still be correct, the rate at which clocks from dif-
ferent partitions progress would depend on the rate in which partitions receive
update requests. This may cause Eunomia services to process local updates
in a slower pace and thus increase remote visibility latencies, as the stable
time is set to the smallest timestamp received among all partitions. Differ-
ently, physical clocks naturally progress at similar rates independently of the
workload characterization. This fact—previously exploited by [49, 7]—makes
stabilization procedures resilient to skewed load distribution. Unfortunately,
physical clocks do not progress exactly at the same rate, forcing protocols
to wait for clocks to catch up in some situations in order to ensure correct-
ness [48, 49, 7, 50]. The logical part of the hybrid clock makes the protocol
resilient to clock skew by avoiding artificial delays due to clock synchroniza-
tion uncertainties [64]. Briefly, if a gear gm

n receives an update request with
Labelc.ts> Clockm

n , instead of waiting until Clockm
n > Labelc.ts to ensure cor-

rectness (monotonicity and causal order among labels), the logical part of the
hybrid clock (MaxTsm

n ) is moved forward. Then, when gm
n receives an up-

date from any client, if the physical part Clockm
n is still behind the logical

(MaxTsm
n ), the update is tagged with MaxTsm

n + 1.

Stabilization Procedure. When Eunomia receives a label from a given gear
gm

n , it adds it to the set of non-stable labels Labelsm and updates the gm
n entry

in the VectorTimem vector with the label’s timestamp (Alg. 3.4, lines 2–3). A
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label la is considered stable when one is sure that no label with a smaller times-
tamp will be received from any gear (i.e., when Eunomia is aware of all labels
with timestamp la.ts or smaller). Periodically, Eunomia computes the value of
the maximum stable timestamp (STime), which is computed as the minimum
of the VectorTimem vector (Alg. 3.4, line 7). Property 4 implies that no par-
tition will ever timestamp an update with an equal or smaller timestamp than
STime. Thus, Eunomia can confidently serialize all operations tagged with a
timestamp smaller than or equal to STime (Alg. 3.4, line 8). Eunomia serial-
izes them in timestamp order, which is consistent with causality (Property 3),
and then hands them to SATURN’s metadata dissemination service (Alg. 3.4,
line 9). Note that non-causally related updates coming from different partitions
may have been timestamped with the same value. In this case, operations are
concurrent. Eunomia processes concurrent labels according to Property 2.

Heartbeats. If a gear gm
n does not receive a client update request for a fixed

period of time (δ), it will send a heartbeat including its current time to Eunomia
(Alg. 3.3, lines 17–20). Thus, even if a gear receives updates at a slower pace
than others, it will not slow down the processing of other gears updates at
Eunomia. When Eunomia receives a heartbeat from gm

n , it simply updates its
entry in the VectorTimem vector (Alg. 3.4, line 5).

3.4.3 Handling remote operations

The remote proxy collects updates generated at remote datacenters and applies
them locally, in causal order. A remote proxy has at its disposal two sources
of information to derive an order that does not violate causality: the timestamp
order of the labels associated with the updates (that defines one valid serial-
ization order), and the label serialization provided by SATURN, which also
respects causal order (although it may differ from the timestamp order). As
we will show in the evaluation section, SATURN can establish a valid remote
update serialization order significantly faster than what is feasible when just
relying on timestamp values Therefore, unless there is an outage on the meta-
data service, the serialization provided by SATURN is used to apply remote
updates, and timestamp order is used as a fallback. Moreover, these two causal
serialization can also be leveraged by the remote proxy to infer that two remote
operations a and b are concurrent. Specifically, this can be inferred if SATURN

delivers their corresponding labels (la and lb) in an order that does not match
timestamp order. Since both serializations are consistent with causality, the



3.5. FAULT-TOLERANCE 47

fact that they order two operations differently means that both operations are
concurrent, otherwise at least one of the serializations would not be consistent
with causality. This can be exploited by remote proxies to increase the paral-
lelism when handling remote operations. By using this optimization, remote
proxies can issue multiple remote operations in parallel to the local datacenter.

3.4.4 Client migration support

Applications may require clients to switch between datacenters, especially un-
der partial replication, in order to read data that is not replicated at the client’s
preferred datacenter. In order to speedup the attachment at remote datacenters,
SATURN (frontends specifically) expose a migration operation. When a client
c –attached to a datacenterm– wants to switch to a remote datacenter, a migra-
tion request is sent to any local frontend fm

q , specifying the target datacenter
(TargetDC) and the client’s causal past Labelc. fm

q forwards the request to any
local gear. The receiving gear gm

n generates a new label and hands it to the lo-
cal Eunomia service (Alg. 3.3, lines 13–15). gm

n guarantees that the generated
label is greater than Labelc to ensure that Eunomia hands it to SATURN after
any update operation that c has potentially observed. In turn, SATURN will de-
liver the label in causal order to the target datacenter, which will immediately
allow client c to attach to it, as c’s causal past is ensured to be visible locally.

The procedure above, in particular the creation of a migration label, is not
strictly required to support client migration, but aims at optimizing this pro-
cess. In fact, when attaching to a new datacenter, the client could just present
the update label that captures its causal past. However, the stabilization proce-
dure could force the client to wait until an update from each remote datacenter
with a timestamp equal or greater than the timestamp of the client’s label has
been applied locally. The creation of an explicit migration label prevents the
client from waiting for a potentially large number of false dependencies.

3.5 Fault-tolerance

In this section, we discuss the fault-tolerant mechanisms of the components
in charge of the propagation of labels among datacenters: the metadata dis-
semination service and the intra-datacenter metadata serialization service. We
disregard others failures in datacenters—such as partitions, as the problem of
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making data services fault-tolerant has been widely studied and is orthogonal
to the contributions of this thesis.

3.5.1 Replicating Eunomia

In §3.4, we have described how the Eunomia metadata serialization service in-
tegrates with the metadata dissemination service and the rest of intra-datacenter
components. Naturally, as any other service in a datacenter, Eunomia must
be made fault-tolerant. In fact, if Eunomia fails, the site stabilization pro-
cedure stops, and thus, local updates can no longer be propagated to other
datacenters. Although these mechanisms are described in detail in [59], for
self-containment, we include here a brief description of the techniques used
to avoid such limitation. Our description of a fault-tolerant Eunomia service
follows closely the one presented in [59].

In the fault-tolerant version, Eunomia is composed by a set of Replicas. Al-
gorithm 3.5 shows the behaviour of a replica ef of the fault-tolerant Eunomia
service. We assume the initial set of Eunomia replicas is common knowledge:
every replica knows every other replica and every gear knows the full set of
replicas. Gears send labels and heartbeats (Alg. 3.3, lines 7, 15 and 20) to
the whole set of Eunomia replicas. The correctness of the algorithm requires
the communication between gears and Eunomia replicas to satisfy the prefix-
property [98]: an Eunomia replica rf that holds a label lb originating at gm

n also
holds any other label la originating at gm

n such that la.ts < lb.ts. This prop-
erty can be ensured with inexpensive protocols that offer only at-least-once
delivery. Stronger properties, such as inter-gear order or exactly-once delivery
are not required to enforce the prefix-property. Our implementation achieves
the prefix-property by having each gear keeping track of the latest timestamp
acknowledged by each of the Eunomia replicas in a vector denoted as Ackn.
Thus, to each Eunomia replica ef , a gear gm

n sends not only the lastest label
but the set of labels including all labels la such that la.ts >Ackm

n [f ]. Upon
receiving a new batch of labels Batch (Alg. 3.5, lines 1–5), ef process it—in
timestamp order—filtering out those labels already seen, and updating both La-
belsf and VectorTimef accordingly with the timestamps of the unseen labels.
After processing Batch, ef acknowledges gm

n including the greatest timestamp
observed from labels originating at gm

n (VectorTimef [gm
n ]). Although this al-

gorithm adds redundancy as some labels are sent multiple times, it is resilient
to message loss and unordered delivery.
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Algorithm 3.5 Operations at Eunomia replica ef

. Processes a new batch by queueing new labels
1: function NEW_BATCH(Batch, gm

n )
2: for all la ∈ Batch,VectorTimef [gm

n ] < la.ts do
3: VectorTimef [gm

n ]← la.ts
4: Labelsf ← Labelsf ∪ la
5: send ACK(VectorTimef [gm

n ]) to gm
n

. Computes and processes stable labels
6: function PROCESS_STABLE . Every θ time
7: if Leaderf == ef then
8: STime← MIN(VectorTimef )
9: SLabels← FIND_STABLE(Labelsf , STime)

10: PROCESS(SLabels)
11: Labelsf ← Labelsf\ SLabels
12: send STABLE(STime) to Replicasf \ {ef}

. Discards already stable labels
13: function STABLE(STime)
14: SLabels← FIND_STABLE(Labelsf , STime)
15: Labelsf ← Labelsf\ SLabels
16: for all gm

n ∈ VectorTimef do
17: VectorTimef [gm

n ]←MAX(VectorTimef [gm
n ],STime)

. Sets the new leader
18: function NEW_LEADER(eg)
19: Leaderf ← eg

In addition, to avoid unnecessary redundancy when exchanging metadata
among datacenters, a leader replica is elected to propagate this information.
The existence of a unique leader is not required for the correctness of the al-
gorithm; it is simply a mechanism to save network resources. Thus, any leader
election protocol designed for asynchronous systems (such as Ω [38]) can be
plugged into our implementation. A change in the leadership is notified to a
replica ef through the NEW_LEADER function (Alg. 3.5, line 19). The no-
tion of a leader is used to optimize the service’s operation as follows. When
the PROCESS_STABLE event is triggered, only the leader replica computes the
new stable time and processes stable labels (Alg. 3.5, lines 7–10). Then, once
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the labels have been processed, the leader sends the recently computed STime
to the remaining replicas (Alg. 3.5, line 12). When a replica ef receives the
new stable time, it removes the labels already known to be stable from its
pending set of labels, since it is certain that those operations have been already
processed and sent to metadata dissemination service of SATURN (Alg. 3.5,
lines 14–15).

3.5.2 Failures in label propagation

Although SATURN’s metadata service is instrumental to improve the global
system performance (in particular, to speedup update visibility and client mi-
gration), it is never an impairment to preserve data availability. The fact that
the global total order of labels defined by timestamps respects causality makes
SATURN robust to failures. Thus, even if the metadata service suffers a tran-
sient outage, and stops delivering labels, updates can be still applied based on
the timestamp order (we recall that labels are also piggybacked in the updates
delivered by the bulk-data service).

A transient outage may be caused by a serializer failure or a network parti-
tion among serializers. Both situations lead to a disconnection in the serializers
tree topology, possibly preventing the metadata service from delivering each
label to all interested datacenters. Failures in serializers can be tolerated using
standard replication techniques. Our current implementation assumes a fail-
stop fault model [86], as serializers are made resilient to failures by replicat-
ing them using chain replication [100]. Nevertheless, SATURN’s design does
not preclude the use of other techniques [87, 37] in order to weaken the fault
assumptions that we have made when building the current prototype. Connec-
tivity problems in the tree may be solved by switching to a different tree, using
the online reconfiguration procedure described next.

3.6 Adaptability

Configuring SATURN is an offline procedure performed before the system
starts operating. Substantial changes in the workload characterization may
require changes in the serializers tree topology. A change to a new tree may be
also required if connectivity issues affect the current tree (backup trees may be
pre-computed to speedup the reconfiguration).
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In this last section of the chapter, we discuss two on-line reconfiguration
protocols that enable SATURN to switch among configurations: a fast recon-
figuration that relies on the old configuration to accelerate the transition, and
a slower reconfiguration that must be used when the metadata dissemination
service in its current configuration is unusable.

3.6.1 Assisted (fast) reconfiguration

We have implemented a simple mechanism to switch among configurations
without interrupting SATURN’s operation. Let C1 denote the configuration
currently being used. Let C2 denote the tree configuration to which we have
decided to switch. SATURN switches configurations as follows:

• All datacenters input a special label, namely epoch change, in the system
through the C1 tree.

• At each datacenter, labels produced after the epoch change label are sent
via the C2 tree.

• A datacenter can start applying labels arriving from the C2 tree as soon
as it has received the epoch change label for every datacenter and all
previously received labels delivered by the C1 tree have been applied
locally.

• During the transition phase, labels delivered by the C2 tree are buffered
until the epoch change is completed.

This mechanism provides fast reconfigurations, namely, in the order of the
largest latency among the metadata paths in C1 (in our experiments, always
less than 200ms).

3.6.2 Unassisted (slower) reconfiguration

When reconfiguring because C1 has failed, or if C1 breaks during the recon-
figuration, the following (slower) switching protocol is used:

• During the transition phase, updates are delivered in timestamp order
and labels delivered by the C2 tree are buffered.
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• A datacenter can start applying labels arriving from the C2 tree as soon
as the update associated with the first label delivered by C2 is stable in
timestamp order.

In this case, the reconfiguration time is bounded by the time it takes to stabilize
updates by timestamp order.



Chapter 4

Evaluation

In this chapter, we present the evaluation of SATURN, our prototype. We eval-
uate SATURN in Amazon EC2. In order to compare SATURN, a metadata ser-
vice, to state-of-the-art solutions, which are data services, we attach SATURN

to a data service that only guarantees eventual delivery: eventually, every up-
date operation is received by each of the datacenters that replicate the data item
updated by the operation. This data service exhibits no performance penalty
due to consistency management. We also use it, detached from SATURN, as
baseline to quantify the performance overhead produced by our techniques.

The main result of the evaluation is the experimental demonstration that
the techniques integrated in SATURN are valid to build causally consistent
geo-replicated systems that optimize both throughput and remote visibility la-
tencies simultaneously. Our experiments show that upgrading our baseline to
causal consistency only produces a 2% of throughput penalty and 11.7ms of
extra remote visibility latency on average in both full and partial geo-replicated
settings. Also, we show that our techniques compare favorably to previous
state-of-the-art solutions: SATURN exhibits significant improvements in through-
put (38.3%) compared to solutions that favor remote visibility latency such as
Cure [7]; while exhibiting significantly lower remote visibility latency (76.9ms
less on average) compared to solutions that favor high throughput such as Gen-
tleRain [49].

The chapter also presents a set of experiments that investigate few internal
aspects of the features included in SATURN. In §4.4.1, we experimentally
demonstrate that the choice of relying on a set of metadata brokers organized

53
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in a tree topology is key to optimize remote visibility latencies. In §4.4.2, we
show the benefits of genuine partial replication by comparing SATURN to non-
genuine solutions. Finally, in §4.4.3, we study the impact of latency variability
by artificially injecting extra delays between datacenters.

4.1 Goals

Our primary goal is to determine if, unlike previous work (see §4.5.1), a data
service attached to SATURN can simultaneously optimize throughput and re-
mote update visibility latency under both full and partial geo-replication. For
this, we run SATURN and other relevant competing solutions under:

(i) Synthetic workloads that allow us to explore how the different parame-
ters that characterize a workload impact the performance (§4.5); and

(ii) A benchmark based on the Facebook’s dataset and access patterns, to
obtain an assessment of SATURN under complex realistic workloads
(§4.5.4).

Secondarily, we evaluate a set of other characteristics of SATURN. First,
we experiment with alternative architectures of the metadata dissemination ser-
vice to better understand its impact on remote update visibility (§4.4.1) and the
importance of genuine partial replication (§4.4.2). We then study the impact
of latency variability in SATURN (§4.4.3).

In order to compare SATURN with other solutions from the state-of-the-art
(data services), we attached SATURN to an eventually consistent geo-replicated
data service we have built. This service ensures eventual delivery: eventually,
every update operation is received by each of the datacenters that replicate
the data item updated by the operation. Replication between datacenters is
done asynchronously. Throughout the evaluation, we use this data service as
the baseline, as it adds no overheads due to consistency management (remote
operations are not delivered in any specific order at each datacenter), to bet-
ter understand the overheads introduced by SATURN. Note that this baseline
represents a throughput upper-bound and a latency lower-bound. Thus, when
we refer to the optimal visibility latency throughout the experiments, we are
referring to the latencies provided by the eventually consistent system.
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N. California Oregon Ireland Frankfurt Tokyo Sydney
N. Virginia 37 ms 49 ms 41 ms 45 ms 73 ms 115 ms

N. California - 10 ms 74 ms 84 ms 52 ms 79 ms
Oregon - - 69 ms 79 ms 45 ms 81 ms
Ireland - - - 10 ms 107 ms 154 ms

Frankfurt - - - - 118 ms 161 ms
Tokyo - - - - - 52 ms

Table 4.1 – Average latencies (half round-trip-time) among Amazon EC2
regions

4.2 Implementation

Our SATURN prototype implements all functionality described in §3. It has
been built using the Erlang/OTP programming language. To balance the load
among frontends at each datacenter, we use Riak Core [23], an open source
distribution platform.

Eunomia internally uses a red-black tree [58], a self-balancing binary search
tree optimized for insertions and deletions, which guarantees logarithmic search,
insert and delete cost, and linear in-order traversal cost. Note that for Eunomia
to work, we need to store a potentially large number of labels, coming from
all the gears composing a datacenter, and periodically traverse them in times-
tamp order when a new stable time is computed. In our case, the red-black tree
turned out to be more efficient than other self-balancing binary search trees
such as AVL trees [4]: red-black trees are more efficient than AVL trees in
add/delete intensive tasks, the type of task demanded by our instantiation of
Eunomia.

The SATURN’s configuration service is implemented in Scala. The solver,
which models the optimization problem defined by Definition 3.5 and it is used
by Algorithm 3.1, is implemented using OscaR [96], a Scala toolkit for solving
Operations Research problems. The solver uses a depth-first search algorithm
to find the optimal solution for a given tree.

4.3 Setup

We use Amazon EC2 m4.large instances running Ubuntu 12.04 in our ex-
periments. Each instance has two virtual CPU cores, and 8 GB of memory.
We use seven different regions in our experiments. Table 4.1 lists the average



56 CHAPTER 4. EVALUATION

latencies we measured among regions. Our experiments simulate one data-
center per region. Clients are co-located with their preferred datacenter in sep-
arate machines. Each client machine runs its own instance of a custom version
of Basho Bench [22], a load-generator and benchmarking tool. Each client
eagerly sends requests to its preferred datacenter with zero thinking time: a
client issues her next request as soon as she gets the response on her previous
request. We deploy as many clients as necessary in order to reach the system’s
maximum capacity, without overloading it. Each experiment runs for more
than 5 minutes. In our results, the first and the last minute of each experiment
are ignored to avoid experimental artifacts. We measure the visibility latencies
of remote update operations by storing the physical time at the origin data-
center when the update is applied locally, and subtracting it from the physical
time at the destination datacenter when the update becomes visible. To re-
duce the errors due to clock skew, physical clocks are synchronized using the
NTP protocol [77] before each experiment, making the remaining clock skew
negligible in comparison to inter-datacenter travel time.

4.4 Evaluating the internals of Saturn

In this section, we experiment with a few aspects of SATURN.

In §4.4.1, we compare the architecture of the SATURN’s metadata dissemi-
nation service (a multi-serializer architecture) to two alternative architectures:
a centralized version in which the architecture is composed of a single seri-
alizer; and a variant that completely dispenses with serializers in which the
metadata is not necessarily delivered in causal order at each datacenter. Our
experiment shows that our chosen architecture compares favorably to both al-
ternatives.

In §4.4.2, we show the benefits of genuine partial replication by comparing
SATURN to a non-genuine solution. The experiment shows how genuineness
have a positive impact on remote visibility latencies under partial replication.

Finally, in §4.4.3, we study the impact of latency variability by artificially
injecting extra delays among datacenters. We show that, unless a large latency
variability is experienced, SATURN does not need to be reconfigured. In our
experiment, only when the latency between two datacenters is 5× the original,
reconfiguring SATURN is worthy.
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Figure 4.1 – Left: Ireland to Frankfurt (10ms); Right: Tokyo to Sydney
(52ms)

4.4.1 The architecture of Saturn matters

We compare different architectures of the metadata dissemination service to
better understand their impact on the system performance. We compare three
alternative architectures: (i) a centralized, single-serializer architecture (S), (ii)
a multi-serializer architecture (M), and (iii) a peer-to-peer version of SATURN

that relies on the conservative label’s timestamp order to apply remote oper-
ations (P). The P-architecture does not require the usage of serializers as an
operation’s metadata is sent directly from the origin datacenter (the datacenter
local to the client that issued the operation) to the destination datacenters. We
focus on the visibility latencies provided by the different implementations.

For the S-architecture, we placed the serializer in Ireland. For the M-
architecture, we build the serializers tree by relying on Algorithm 3.1. We
run an experiment with a read dominant workload (90% reads). Figure 4.1
shows the cumulative distribution of the latency before updates originating in
Ireland become visible in Frankfurt (left plot) and before updates originating
in Tokyo become visible in Sydney (right plot). Results show that both the S
and M architectures provide comparable results for updates being replicated
in Frankfurt. This is because we placed the serializer of the S-architecture
in Ireland, and therefore, the propagation of labels is done efficiently among
these two regions. Unsurprisingly, when measuring visibility latencies before
updates originating in Tokyo become visible in Sydney, the S-architecture per-
forms poorly because labels have to travel from Tokyo to Ireland and then from
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Ireland to Sydney. Plus, results show that the P-architecture, that relies on the
label’s timestamp order, is not able to provide low visibility latencies in these
settings. This is expected as, when tracking causality with a single scalar, la-
tencies tend to match the longest network travel time (161ms in this case) due
to false dependencies. In turn, the M-architecture is able to provide signifi-
cantly lower visibility latencies to all locations (deviating only 8.2ms from the
optimal on average).

4.4.2 The importance of genuine partial replication

In this section, we study the importance of genuine partial replication, a fea-
ture implemented by SATURN. Apart from the obvious scalability gains that
brings—each datacenter only stores the data it replicates, genuine partial repli-
cation fully shields datacenters from updates on data that it is not replicated
locally.

The problem is that, when compressing metadata to make causal consis-
tency affordable, without genuine partial replication, updates on data items that
are not replicated locally, may negatively impact the visibility of other updates
unnecessarily. Let us illustrate this phenomenon with a simple example. As-
sume a system deployed in three datacenters dc1, dc2 and dc3 that compresses
metadata into a vector clock with an entry per datacenter (V C). dc1 generates
update a with vector [1, 0, 0], which has to be replicated in dc2 but not in dc3;
while dc2 generates update b with vector [1, 1, 0], which is replicated in dc3.
a does not depend on any other update. b is ordered after a. In this case, dc3
should be able to make b visible as soon as it is received, as a is not replicated
locally. Nevertheless, dc3 can only make b visible when it receives an update
from dc1 such that can infer that a is not replicated locally; i.e., by receiving
an update from dc1 such that V C[dc1] > 1, assuming FIFO links between
datacenters.

In order to experimentally measure this phenomenon, we run a simple ex-
periment in which we compare SATURN with a system, namely Vector, that
compresses metadata into a vector with an entry per datacenter, as many so-
lutions in the state-of-the-art do [7, 103, 59, 9]. The implementation of the
latter is done on the codebase of SATURN by enriching the metadata, remov-
ing the propagation tree and replacing it by a peer-to-peer propagation schema
in which datacenters multicast local updates to only the datacenters that repli-
cate the data items being updated. Furthermore, a datacenter sends a heartbeat
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Figure 4.2 – Benefits of genuine partial replication in remote update visibility.

to another datacenter if this did not propagate any update to it during the last
5ms. Heartbeats are fundamental to ensure liveness and to reduce the negative
impact of not having genuine partial replication. We chose to compare to a so-
lution that compresses the metadata into a vector because it allows us to better
assess the benefits of genuine partial replication. If we compared to a system
that compresses causal dependencies in a single scalar without diminishing the
impact of false dependencies [49], the potential gains of SATURN would come
from two sources: the mitigation of false dependencies and the implementa-
tion of genuine partial replication. When comparing to Vector, the number
of false dependencies observed in SATURN will, in the best case, match the
ones observed in Vector. Therefore, the potential benefits would exclusively
come from implementing genuine partial replication. We expect these benefits
to be more substantial when compared to non-genuine systems that compress
metadata into a single scalar.

We deploy both systems in 7 datacenters. Clients at each datacenter ran-
domly read and update data items (each with potentially different replication
groups) except for the clients in N. Virginia that only update keys replicated lo-
cally and in Ireland; and the clients in Ireland that only read the updates from
N. Virginia and update data replicated locally and in Sydney. The idea is to
create situations as the described above to measure its impact in both SATURN

and Vector. Figure 4.2 shows a cumulative distribution of the latency before
updates originating in Ireland become visible in Sydney. The results confirm
that, by implementing genuine partial replication, SATURN is shielded from
this phenomenon, as the latencies observed are considerably close to the aver-
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Figure 4.3 – Impact of latency variability on remote update visibility in
SATURN.

aged latency among the datacenters. Vector, unlike SATURN, exhibits latencies
that significant deviate from the average. Starting from the 60th percentile, la-
tencies start increasing significantly. For instance in the 90th percentile, Vector
adds already 80ms of latency when compared to the ones observed in SATURN.
This is a strong result. It shows that using less metadata than other solutions,
SATURN is able to provide better visibility latencies under partial replication.
Next sections further confirm this result and also demonstrate that the size of
the metadata have a significant negative impact in throughput.

4.4.3 Impact of latency variability on Saturn

The goal of this section is to better understand how changes in the link latency
affect SATURN’s performance. We have just seen that the correct configuration
of the serializers’ tree has an impact on performance. Therefore, if changes
in the link latencies are large enough to make the current configuration no
longer suitable, and these changes are permanent, a reconfiguration of SATURN

should be triggered. In practice, transient changes in link latencies are unlikely
to justify a reconfiguration; therefore we expect their effect on performance to
be small.

To validate this assumption, we set up a simple experiment with three dat-
acenters, each located in a different EC2 region: N. Carolina, Oregon and
Ireland. For the experiment, we artificially inject extra latency between N.
Carolina and Oregon datacenters (average measured latency is 10ms). From
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our experience, we expect the latency among EC2 regions to deviate from its
average only slightly and transiently. Nevertheless, to fully understand the
consequences of latency variability, we also experimented with unrealistically
large deviations (up to 125ms).

Figure 4.3 shows the extra remote visibility latency that two different con-
figurations of SATURN add on average when compared to an eventually consis-
tent storage system which makes no attempt to enforce causality. Both configu-
rations, T1 and T2, use a single serializer: configuration T1 places the serializer
in Oregon, representing the optimal configuration under normal conditions and
configuration T2, instead, places the serializer in Ireland.

As expected, under normal conditions, T1 performs significantly better
than T2, confirming the importance of choosing the right configuration. As
we add extra latency, T1 degrades its performance, but only slightly. One can
observe that, in fact, slight deviations in the average latency have no signifi-
cant impact in SATURN: even with an extra delay of 25ms (more than twice the
average delay), T1 only adds 14ms of extra visibility latency on average. In-
terestingly, it is only with more than 55ms of injected latency that T2 becomes
the optimal configuration, exhibiting lower remote visibility latency than T1.
Observing a long and sustained increase of 55ms of delay on a link that av-
erages 10ms is highly unlikely. Indeed, this scenario has the same effect of
migrating the datacenter from N. Carolina to São Paulo. Plus, if such large
deviation becomes the norm, system operators can always rely on SATURN’s
reconfiguration mechanism to change SATURN configuration.

4.5 Saturn vs. the state-of-the-art
We compare the performance of SATURN against eventual consistency and
against the most performant causally consistent storage systems in the state-
of-the-art.

4.5.1 GentleRain and Cure

We consider GentleRain [49] and Cure [7] the current state-of-the-art. These
solutions are, from our perspective, the most scalable and performant solu-
tions of the literature. We do not compare to solutions that rely on sequencers
to compress metadata because (i) the Eunomia paper [59] already experimen-
tally demonstrates that relying on Eunomia (the metadata serialization service
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that our prototype integrates) to compress metadata is more efficient than re-
lying on sequencers, and (ii) GentleRain and Cure are representative of most
of the sequencer-based solutions in terms of the amount of metadata used,
as most of these use, as GentleRain, a single scalar [98, 81, 102, 43], or, as
Cure, a vector with an entry per datacenter [26, 65, 9, 103]. Note that all
these solutions, unlike SATURN, do not rely on clever metadata dissemination
services. Therefore, the remote visibility latency is mostly determined by the
precision in which causality is tracked (the size of the metadata). We have also
experimented with solutions based on explicit dependency checking such as
COPS [71] and Eiger [72]. Nevertheless, we concluded that approaches based
on explicit dependency checking are not practical under partial geo-replication.
Their practicability depends on the capability of pruning client’s list of depen-
dencies after update operations due to the transitivity rule of causality [71].
Under partial geo-replication, this is not possible, causing client’s list of de-
pendencies to potentially grow up to the entire database.

At their core, both GentleRain and Cure implement causal consistency very
similarly: they rely on a background stabilization mechanism that requires all
partitions in the system to periodically exchange metadata. This equips each
partition with sufficient information to locally decide when remote updates
can be safely–with no violation of causality—made visible to local clients. In
our experiments, GentleRain and Cure’s stabilization mechanisms run every
5ms following the authors’ specifications. The interested reader can find more
details in the original papers [49, 7]. We recall that SATURN does not require
such a mechanism, as the order in which labels are delivered to each datacenter
already determines the order in which remote updates have to be applied.

The main difference between GentleRain and Cure resides in the way
causal consistency is tracked. While GentleRain summarizes causal depen-
dencies in a single scalar, Cure uses a vector clock with an entry per data-
center. This enables Cure to track causality more precisely—lowering remote
visibility latency—but the metadata management increases the computation
and storage overhead—harming throughput. Concretely, by relying on a vec-
tor, Cure remote update visibility latency lower-bound is determined by the
latency between the originator of the update and the remote datacenter. Dif-
ferently, in GentleRain, the lower-bound is determined by the latency to the
furthest datacenter regardless of the originator of the update [49, 7, 59].

In order to guarantee a fair comparison between SATURN, GentleRain and
Cure, we have implemented our own version of the last two in the codebase
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of SATURN. The original systems where implemented in different program-
ming languages (GentleRain is implemented in C++, and Cure and SATURN

are implemented in Erlang/OTP). Also, GentleRain and Cure include extra
features such as causally consistent read-only transactions, or the integration
of high level data types with rich confluent semantics (CRDTs) [36, 90] that
may be costly to support and add extra overhead unrelated to the cost of main-
taining causal consistency.

4.5.2 Throughput experiments
In the following set of experiments, we aim at understanding how different pa-
rameters of the workload characterisation may impact SATURN’s throughput in
comparison to state-of-the-art solutions. We explore the workload space vary-
ing a single parameter, setting the others to a fixed value. We play with multiple
aspects (default values within the parenthesis): values size (2B), read/write ra-
tio (9:1), the correlation among datacenters (exponential), and the percentage
of remote reads (0%).

Value size. We vary the size of values (operation’s payload) from 8B up to
2048B. Sizes have been chosen based on the measurement study discussed
in the work of Armstrong et al. [12]. Results (Figure 4.4) show that all so-
lutions remain unaffected up to medium size values (128B). Nevertheless, as
we increase the value size up to 2048B, solutions exhibit, as expected, a simi-
lar behavior handling almost the same amount of operations per second. This
shows that, with large value sizes, the performance overhead introduced by
GentleRain and, above all, Cure, is masked by the overhead introduced due to
the extra amount of data being handled.

R/W ratio. We vary the read/write ratio from a read dominant workload (99%
reads) to a balanced workload (50% reads). Results (Figure 4.5) show that
solutions are similarly penalized as the number of write operations increases.

Correlation. We define the correlation between two datacenters, as the amount
of data shared among them. The correlation determines the amount of traffic
generated in SATURN due to the replication of update operations. We define
four patterns of correlation: exponential, proportional, uniform, and full. The
exponential and proportional patterns fix the correlation between the datacen-
ters based on their distance. Thus, two datacententers closely located (e.g.,
Ireland and Frankfurt) have more common interests than distant datacenters
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Figure 4.4 – Dynamic workload throughput experiments: varying the
operation’s payload size (bytes)
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Figure 4.5 – Dynamic workload throughput experiments: varying the
read:write ratio

(e.g., Ireland and Sydney). The exponential pattern represents a more promi-
nent partial geo-replicated scenario by defining very low correlation among
distant datacenters. The proportional pattern captures a smoother distribution.
The uniform pattern defines an equal correlation among all datacenters. Lastly,
the full pattern captures a fully geo-replicated setting. Results show that the
more prominent the partial geo-replication scenario is, the better results SAT-
URN presents when compared to GentleRain and Cure, that are required to
send heartbeats constantly, adding an overhead when compared to SATURN.
Interestingly, even in the full geo-replicated scenario, the best case scenario
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Figure 4.6 – Dynamic workload throughput experiments: varying the
correlation distribution

for GentleRain and Cure, SATURN still provides a throughput comparable to
GentleRain and significantly outperforms Cure (15.2% increase).

Remote reads. We vary the percentage of remote reads from 0% up to 40%
of the total number of reads. Interestingly, results show (Figure 4.7) that Gen-
tleRain and, above all, Cure are significantly more disrupted than SATURN

by remote reads. To better understand the cause of this behavior, we need
to explain how remote reads are managed in our experiments by GentleRain
and Cure. As in SATURN, a client requiring to read from a remote datacenter
first needs to attach to it. An attach request is performed by providing the
latest timestamp observed by that client (a scalar in GentleRain and a vector
in Cure). The receiving datacenter only returns to the client when the sta-
ble time—computed by the stabilization mechanism—is equal or larger than
client’s timestamp. This significantly slows down clients. Results show that
with 40% of remote reads, SATURN outperforms GentleRain by 15.7% and
Cure by 60.5%.

We can conclude that SATURN exhibits a performance comparable to an
eventually consistent system (2.2% of overhead on average) while showing
a slightly better throughput than GentleRain (4.8% average) and significantly
better than Cure (24.7% on average). Cure overhead is dominated by the man-
aging of a vector for tracking causality instead of a scalar as in GentleRain and
SATURN. Regarding GentleRain, SATURN exhibits slightly higher throughput
due to the overhead caused by GentleRain’s stabilization mechanism.
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Figure 4.7 – Dynamic workload throughput experiments: varying the
percentage of remote reads

4.5.3 Visibility latency experiments

In the following experiment, we measure the visibility latency provided by
each of the systems. We expect SATURN to exhibit lower visibility latencies
on average than both Cure and GentleRain. We expect to slightly outperform
Cure as we avoid the costs incurred by Cure’s stabilization mechanism. We
expect to significantly outperform GentleRain since it does not mitigate false
dependencies and the exhibited remote visibility latencies should theoretically
tend to match the longest travel time among datacenters.

In addition to measuring the average visibility latencies provided by each
solution, we analyze both the best and the worst case for SATURN. Given that
serializers possible locations are limited, labels traversing the whole tree of se-
rializers are likely to be delivered with some extra undesired delay. Concretely,
in the following experiment, the major deviation from the optimal latencies is
produced by the path connecting Ireland and Sydney (extra 20ms).

For these experiments, we have used the default values defined in §4.5.
Results show that SATURN only increases visibility latencies by 7.3ms on av-
erage when compared to the optimal, outperforming GentleRain and Cure that
add 97.9ms and 21.3ms on average respectively. Figure 4.8 shows the cumu-
lative distribution of the latency before updates originating in Ireland become
visible in Frankfurt (left plot) and Sydney (right plot). The former represents
the best case scenario with no extra delay imposed by the tree. The latter repre-
sents the worst case scenario. Figure 4.8 shows that SATURN almost matches
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Figure 4.8 – Left (best-case scenario): Ireland to Frankfurt (10ms); Right
(worst-case scenario): Ireland to Sydney (154ms)

the optimal visibility latencies in the best case scenario (only 7ms of extra
delay in the 90th percentile) and, as expected, adds an extra of 20.4ms (90th

percentile) in the worst case. Results also show that SATURN is able to pro-
vide better visibility latencies than both GentleRain and Cure in the best case
and to GentleRain in the worst case. As expected, GentleRain tends to pro-
vide visibility latencies equal to the longest network travel time, which in this
case is between Frankfurt and Sydney. Interestingly, in SATURN’s worst case,
Cure only serves slightly lower latencies (3.6ms less in the 90th percentile).
Although the metadata used by Cure to track causality theoretically allows it
to make visible remote updates in optimal time, in practice, the stabilization
mechanism results in a significant extra delay.

4.5.4 Facebook benchmark

To obtain an assessment of SATURN’s performance under complex realistic
workloads, we experiment with a social networking workload we integrated
into Basho Bench, our benchmarking tool. Our workload generator is based
on the study of Benevenuto et al. [24]. The study defines a set of operations
(e.g., browsing photo albums, sending a message, editing user settings among
many others) with its corresponding percentage of occurrence. This serves us
not only to characterize the workload in terms of the read/write ratio, but it
also tells us whether an operation concerns user data (e.g., editing settings),
a friend’s data (e.g., browse friend updates), or even random user data (e.g.,
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Figure 4.9 – Facebook-based benchmark results.

universal search), which relates to the number of remote operations.

We use a public Facebook dataset [101] of the New Orleans Facebook
network, collected between December 2008 and January 2009. The dataset
contains a total of 61096 nodes and 905565 edges. Each node represents a
unique user, which acts as a client in our experiments. Edges define friendship
relationships among users. In order to distribute and replicate the data among
datacenters (seven in total), we have implemented the partitioning algorithm
described in [82], augmented to limit the maximum number of replicas each
partition may have, to avoid partitionings that rely extensively on full replica-
tion. As in [82], partitions are made to maximize the locality of data regarding
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a user and her friends, thus, minimize remote reads.

We examine the throughput of SATURN in comparison to an eventually
consistent system, GentleRain, and Cure. Figure 4.9a shows the results of a
set of experiments in which we fix the minimum of replicas to 2, and vary
the maximum from 2 to 5, which indirectly varies the number of remote read
operations. Results show that SATURN exhibits a throughput comparable to
an eventually consistent system (only 1.8% of averaged overhead) and sig-
nificantly better than GentleRain and Cure, handling 10.9% and 41.9% more
operations per second on average respectively.

In a second experiment, we measure the remote update visibility latency
exhibited by the solutions. SATURN increases visibility latencies by 16.1ms on
average when compared to the optimal, outperforming GentleRain and Cure
that add 79.2ms and 23.7ms on average respectively. In addition, we analyze
the best and the worst case scenario for SATURN. Figure 4.9b shows the visi-
bility latency of updates replicated from Ireland to Frankfurt (on the left) and
Tokyo (on the right). The former represents the best case scenario for SATURN;
the latter represents the worst. In the worst case scenario, SATURN introduces
significant overheads when compared to the optimal (47.2ms in the 90th per-
centile). This is expected, as it has to traverse the whole tree. Nevertheless,
it still exhibits a performance comparable to both GentleRain and Cure, only
adding 0.9ms and 9.9ms respectively in the 90th percentile. Moreover, in the
best case scenario, SATURN exhibits visibility latencies very close to the op-
timal (represented by the eventually consistent line), with only a difference of
8.7ms in the 90th percentile.





Chapter 5

Related work

This chapter describes, classifies and compares the most relevant techniques
and solutions proposed in the past. We focus on causally consistent systems.
We do not include strongly consistent systems such as Spanner [41] in our dis-
cussion, as in our opinion these are designed to satisfy the needs of a different
set of application designers. Causally consistent solutions are proposed to help
developers to program applications with strict availability and performance re-
quirements. In constrast, strongly consistent systems prioritize consistency at
the cost of penalizing performance: these require using coordination-intensive
protocols, such as distributed agreement [68, 78], to guarantee consistency.

We start by introducing a taxonomy that classifies previous systems based
on the characteristics of their solution and the features that integrate. Secondly,
using our taxonomy, we describe, in detail, each of the most relevant previous
solutions. Then, we compare them, discussing the advantages and disadvan-
tages of each solution for different settings. Finally, we briefly compare them
to our work.

5.1 A taxonomy for causally consistent systems
We group solutions in four categories based on the key technique behind their
implementation of causal consistency:

• Sequencer-based. This group of solutions rely on centralized compo-
nents, commonly called sequencers, to compress causal metadata. Se-
quencers allow designers to trivially serialize multiple sources of con-
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currency. Typically, solutions use a sequencer per datacenter, being able
to compress causal metadata into a vector with an entry per datacenter.

• Explicit check. This group of solutions tag remote updates with a list of
explicit dependencies. Upon arrival to a remote datacenter, dependen-
cies are locally checked by issuing a set of dependency check messages
to the corresponding datacenter servers.

• Background stabilization. This group clusters solutions that rely on
some sort of background stabilization. These mechanisms are typically
used to ensure that remote operations are only made visible in a data-
center to local clients when its causal dependencies are already visible
locally.

• Lazy resolution: Finally, this last group clusters solutions that allow
datacenters to install remote operations as these are received without
any consistency check. Then, causality is enforced when clients read by
ensuring that the version returned is not in conflict with clients’ causal
history (what a client has already observed).

Within each of the above groups, we characterize each solution based on
four categories:

• Metadata size: This category characterizes the amount of metadata a
solution uses to capture causal dependencies. Under causal consistency,
datacenters replicate local operations asynchronously in other datacen-
ters. In order to make remote updates visible in an order that does not vi-
olate causal consistency, operations are tagged with a piece of metadata,
capturing operations’ causal dependencies. The size of the metadata is
usually proportional to some characteristics of the system. For instance,
it can be proportional to the number of datacenters, or to the number of
data items. When metadata is not compressed, the size its variable and
proportional to the number of causal dependencies each operation has.
In solutions in which the metadata is aggressively compressed, its size
is constant independently of the system characterization. We introduce
the following notation: M denotes the number of datacenters; N the
number of partitions per datacenter (we assume that each datacenter is
equally partitioned to simplify the notation); and K the total number of
data items.
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• False dependencies: The metadata structure determines, in most of the
cases, the amount of false dependencies artificially created by the so-
lutions. This category quantifies the number of false dependencies in-
troduced as an artifact of the metadata management. We identify four
types of false dependencies: data-item (I) that represents dependencies
among concurrent update operations over the same data item local to
different replicas, partition (P) that represents dependencies among con-
current update operations on data items belonging to the same logical
partition or shard, intra-datacenter (DC) that represents dependencies
among concurrent update operations local to the same datacenter, inter-
datacenter (G) that represents dependencies among concurrent update
operations local to different datacenters.

Note that not all types of false dependencies are equally damaging. Out
of the four, the inter-datacenter (G) is the most harmful one. This is
because a G-false-dependency will force a datacenter to prevent the in-
stallation of a remote update coming from a nearby datacenter until the
false dependency, originating at a farther datacenter, is received. Given
that latencies among datacenters can be of more than 160ms (see Ta-
ble 4.1), this type of false dependencies will add significant extra delays
in remote visibility latencies. Contrary, other types of false dependen-
cies, such as the intra-datacenter type, will impact the remote visibility
latency less significantly, as the latency among parties is of few millisec-
onds at the most.

• Partial replication support: This category captures the ability of the
systems to support partial replication or not (whether this setting was
considered in the design or not). A system can be characterized as one
of the following: no support if they assume full replication, non-genuine
if it supports partial replication but it is no genuine, or genuine if the
solution implements genuine partial replication.

• Type of dissemination: Solutions propose different ways of disseminat-
ing updates among replicas. In previous work, we have identified three
schemes:

– The all-to-all scheme in which only the update’s origin datacenter
(the one local to the client that issued the update operation) propa-
gates to the rest of interested datacenters.
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– The pair-wise scheme in which datacenters periodically synchro-
nize pair-wise: one datacenter propagates to a second datacenter
all update operations (originated in any datacenter) that have not
been seen by the latter.

– The master-slave scheme in which each data item gets assigned a
master replica. Updates are all first executed in the master replica
and then propagated to the slave replicas. Reads can generally be
executed at any replica (master or slave).

5.2 Causally consistent replicated systems
In this section, we describe the most relevant solutions. For each of the groups
introduced before, we first describe in detail how each technique works and
discuss its advantages and disadvantages. Then, we describe each solution
characterizing it based on our four categories: metadata structure, false de-
pendencies, partial replication support and type of dissemination; and briefly
discussing additionally features that may integrate.

5.2.1 Sequencer-based solutions

Sequencers are centralized components that trivially enable metadata compres-
sion, key to efficiently implement causal consistency. Imagine a database sys-
tem, in which the application state is sharded among multiple servers, and
therefore, update requests may be handled in parallel by different servers. Hav-
ing a sequencer allows these servers to establish a total order—compliant with
causality—among clients’ update requests without requiring explicit coordi-
nation among them, as this coordination is done through the sequencer. In
such a setting, before an update is considered completed, and thus made vis-
ible to other clients, the sequencer is contacted. This assigns a timestamp to
the request. The sequencer proposes increasing timestamps (usually monoton-
ically increasing), establishing thus a total order among update requests that is
a linear extension of the causal order defined by them. It is simple to see that
the total order is compliant with causality. An update request a can only be
a causal dependency of another update b, if a was completed before b: either
because both were executed one after the other by the same client, the client
that executed b observed a before, or by transitivity (§2.1.2). Therefore, if
a  b, the sequencer would assign a timestamp to a before than to b. Since
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the sequencer assigns increasing timestamps, a will be ordered before b in the
total order, consistently with causality.

Having a central serialization point, instead of having to devise a dis-
tributed algorithm among the entities that one wants to serialize, greatly simpli-
fies the problem. Unfortunately, to ensure that the total order is consistent with
causality, sequencers have to operate in the critical operational path of clients,
limiting concurrency. Thus, sequencers represent, not only single points of
failure, but also potential performance bottlenecks. The system’s throughput
upper-bound is then limited by the amount of requests a sequencer can order
per unit of time. Furthermore, delays on the sequencer are directly observable
by end-users.

Typically, sequencer-based solutions rely on a sequencer per datacenter [98,
43, 26, 65, 103, 9]. This way, the metadata is compressed into a Vector of
scalars with an entry per datacenter. The vector indicates on which update from
each datacenter, the update b tagged with Vector, depends. Thus, Vector[dc1]
indicates that update b depends on all updates generated in dc1 with timestamp
ts (assigned by the sequencer local to dc1) such that ts≤Vector[dc1]1. Thus, a
datacenter can only make a remote update visible once all its dependencies are
already visible locally.

Note that some of the solutions [26, 65, 43, 98] we are including in the
group of sequencer-based solutions do not explicitly use sequencers, as they
assume single-machine replicas. Nevertheless, we argue that in order to adapt
their design to the multi-server architecture of current datacenters, using a se-
quencer is the most straightforward way of doing it.

Another relevant, common characteristic of this group of solutions is that
they require a logically-centralized, unique receiver per datacenter. This fact
adds another single point of failure and makes these solutions not only bounded
performance-wise by the sequencer capacity, but also by the receivers capac-
ity. Receivers queue remote updates until its dependencies are known to be
installed locally. Thus, when the pace in which remote updates are received
is faster than the pace in which remote updates are installed in the local data-
center, the queue grows indefinitely, increasing the remote visibility latency of
updates until the receiver starts dropping incoming remote updates or simply

1Except for the entry in the vector that corresponds to the update’s local datacenter dclocal,
as, in such a case, the update depends on any other update with timestamp ts originating at the
same datacenter such that ts<Vector[dclocal]
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crashes due to a memory issue.

We now describe each of the systems individually, highlighting the partic-
ularities of each of them.

The ISIS toolkit [26] is a distributed programming environment that inte-
grates three multicast primitives: a casual multicast primitive called cbcast,
an atomic multicast primitive called abcast, and a group multicast primitive
called gbcast. It assumes single-machine replicas. One could implement a
causally consistent geo-replicated database system by using the cbcast primi-
tive. In order to ensure causal consistency in a fully replicated setting, cbcast
uses a vector clock with an entry per datacenter (replica) to track causal depen-
dencies. Authors also propose a solution to provide causal consistency under
partial replication. In the latter case, the metadata is enriched to a set of vec-
tors, one per replication group. The size (number of entries) of each vector
is equal to the number of replicas composing the replication group it repre-
sents. In the worst case, each update would need to carry a total of 2dcs-1
(total number of possible replication groups given a set a datacenters) vectors,
significantly increasing the metadata size and penalizing throughput. We name
this variant of cbcast that supports partial replication cbcast∗. Both cbcast and
cbcast∗ adds intra-datacenter false dependencies, as each datacenter generates
a single stream of totally ordered update requests.

Lazy Replication [65] proposes a way of building causally consistent repli-
cated systems. In this solution, update operations local to a replica are tagged
with their causal dependencies, and sent asynchronously to the rest of the repli-
cas. A remote replica only installs an operation coming from another replica
when its dependencies are satisfied locally. In their proposed implementation,
they argue that in order to make their solution efficient, causal dependencies
are compressed into a vector with an entry per replica (each datacenter in the
setting being considered). It assumes single-machine replicas. Thus, it adds
intra-datacenter false dependencies as their metadata does not reflect the con-
currency exhibited internally at each datacenter. Their solution is envisioned
for a fully replicated setting. R. Ladin et al. propose two additional types of
operations to cope with applications that require stronger-than-causal consis-
tency: forced, and immediate. Forced operations are totally ordered among
themselves and installed in all replicas respecting such order. This is useful,
for instance, to ensure uniqueness; e.g., to ensure that two users do not success-
fully sing up with the same user-name. Immediate operations are the stronger
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type of operations. They are installed in every replica in the same order relative
to every other operation (immediate, forced, and causal). These operations are
ordered consistently with external events [52], making immediate operations a
very powerful primitive.

Bayou [98, 81] is a causally consistent, replicated storage system designed for
mobile computing. It assumes single-machine replicas and that each replica
stores the whole database (full replication). It allows replicas to modify the
database state while being disconnected and synchronize with any other replica
that happens to find. Bayou ensures that each replica eventually reaches the
same final state. To achieve this, it integrates conflict detection and resolu-
tion mechanisms that may cause operations to be reordered. Bayou relies on a
log-based (updates are stored in a causally ordered log) pair-wise replica syn-
chronization. When a replica receives an update coming from a local user,
it timestamps it and adds it to the log. Replicas generate monotonically in-
creasing scalar timestamps. When a replica (the receiving replica) wants to
synchronize with other replica (the sending replica), it first notifies the latter
which updates are already in its local log. This information is maintained in
a vector clock with an entry per replica that stores the timestamp of the latest
update installed from each of the replicas. The sender replica, by comparing
the timestamps of the operations in its log and the corresponding entries in
the receiving replica vector clock, can then determine which operations have
to be sent to the receiving replica. These operations have to be installed at
the receiving replica in the sender’s log order. Since each log is causally con-
sistent and when synchronizing, the sender replica do not only send its local
updates but any other update that may precede it in the causal order, this dis-
semination scheme trivially ensures causal consistency. Regarding the amount
of false dependencies, it will depend on how the replicas synchronize; e.g., if
all replicas synchronize with all, this solution would probably only introduce
intra-datacenter false dependencies. Bayou does not support partial replica-
tion.

TACT [102] is a middleware layer that enables replicated systems to tune
the level of inconsistency allowed among replicas based on three metrics: nu-
merical error, order error, and staleness. Numerical error limits the number
of writes a replica can install before propagating to other replicas; order error
limits the number of operations whose final global order is still unknown, and
therefore are subject to reordering, a replica can have in their local log; and
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staleness bounds with real-time the delay of update propagation among repli-
cas. Independently of the values of each of the three boundary metrics, the
system always remains causally consistent. The underlying mechanism that
ensures causality is similar to Bayou’s. Therefore, the TACT solution has the
same characteristics than Bayou’s solution in terms of metadata structure, false
dependencies, and dissemination scheme. As Bayou, TACT does not includes
support for partial replication and assumes single-machine replicas.

The PRACTI [43] approach defines a set of three properties that, according
to the authors, an ideal replication framework should provide: partial replica-
tion; arbitrary consistency, meaning that the system can provide both strong
and weak consistency; and topology independence, meaning that any replica
can exchange updates with any other replica. They propose an architecture that
supports the PRACTI properties. As other solutions [65, 102] supporting sev-
eral consistency levels, their proposed architecture remains causally consistent
at all time. The PRACTI solution is based on Bayou, and therefore, has the
same characteristics: single-machine replicas, log-based pair-wise replica syn-
chronization, updates tagged with a scalar, vector clocks maintained at each
replica in order to reduce the amount of data exchange when synchronizing.
The PRACTI architecture supports partial replication but not genuine partial
replication, as a replica may still need to observe update operations on data
items that are not replicated locally. They propose two optimizations to reduce
the impact of this problem: separation of data and metadata, and imprecise
invalidations. By separating data and metadata, replicas do not have to receive
the payload of operations that are not replicated locally, considerably reduc-
ing the amount of data handled by the system when partially replicated. The
data is sent through a channel that requires no ordering guarantees. The meta-
data, namely invalidations, is sent through the causally consistent channel. An
update is visible to clients when both the data and the metadata have been
received. On the other hand, imprecise invalidations are metadata messages
that compress the metadata information regarding multiple operations, further
reducing the amount of communication among replicas.

ChainReaction [9] is a causally consistent geo-replicated key-value store. It
supports intra- and inter-datacenter replication. Intra-datacenter replication is
supported by a variant of chain replication [100] that ensures causal consis-
tency. This variant relaxes the consistency guarantees provided by the original
chain replication scheme to enhance performance. To ensure causal consis-
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tency across datacenters, ChainReaction relies on a sequencer per datacenter.
It compresses causal dependencies in a vector with and entry per datacenter.
Updates are tagged with this vector. A receiver datacenter only makes remote
updates visible to local clients when its causal dependencies (encoded in the
vector) are already visible locally. ChainReaction assumes full replication. It
assumes an all-to-all dissemination schema. It introduces intra-datacenter false
dependencies.

SwiftCloud [103] is a causally consistent geo-replicated key-value store. It
offers single and multi-object operations. A multi-object operation contains
both read and write operations, it is executed in a causally-consistent snap-
shot of the database, and ensures atomicity (either all the updates belonging
to the same multi-object operation are visible or none). We refer to this set
of guarantees as transactional causal consistency (TCC). It assumes full repli-
cation among datacenters. Additionally, it allows clients to partially replicate
the application state. The idea behind SwiftCloud is to significantly reduce la-
tency by allowing clients to read and write from their local replicas (or caches)
and only propagate to the local datacenter asynchronously. This is achieved
efficiently by relying on high level data types with rich confluent semantics
[36, 90]. The metadata is compressed into a vector clock with an entry per
datacenter. Each datacenter integrates a sequencer in order to serialize local
updates. As with other solutions that rely on a vector clock with an entry per
datacenter, SwiftCloud introduces intra-datacenter false dependencies. It as-
sumes an all-to-all dissemination scheme.

M. Shen et al. [61] propose algorithms to achieve causal consistency in both
partial and full replication settings. They detail three algorithms: Full-Track,
Opt-Track, and Opt-Track-CPR. All algorithms assume an all-to-all dissemi-
nation scheme.

The two former algorithms ensure causal consistency under partial replica-
tion by relying on a matrix clock of size n× n, where n is the number of sites
(equivalent to datacenters in our nomenclature). They assume single-machine
sites. In such a setting, their algorithm will not add any false dependency.
Nevertheless, adapting their algorithms to multi-server datacenters would re-
quire serializing all updates happening at each datacenter, adding thus false
dependencies among updates local to the same datacenter. Opt-Track further
optimizes the Full-Track algorithm by reducing the amortized complexity of
both message size and space by exploiting the transitivity rule of causal consis-
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tency. Nevertheless, the message size upper bound complexity remains O(n2)
in both, which may substantially impact the algorithms performance.

Finally, the Opt-Track-CPR algorithm ensures causal consistency under
full replication. It relies on a vector with an entry per replica. As with previous
algorithms, when assuming single-machine replicas, the algorithm does not
add any false dependency. Nevertheless, adapting it to multi-server datacenters
would require serializing all updates happening at each datacenter, adding thus
false dependencies among updates local to the same datacenter.

5.2.2 Solutions based on explicit check messages

This type of solutions ensure causal consistency by having datacenters explic-
itly checking the dependencies of each remote update before applying it lo-
cally. It works as follows. Clients keep track of causal dependencies, in a
data structure commonly called causal context. When a client issues an up-
date request, the list of dependencies is attached to the request. In turn, the
local datacenter propagates the update, together with its dependencies, to re-
mote datacenters. On arrival, the receiver datacenter issues a set of messages
to explicitly check whether the update’s dependencies are already installed lo-
cally. How many of these check messages are sent per request depends on how
causal dependencies are represented and how the datacenters are sharded. For
instance, if one tracks causal dependencies at the granularity of data items, and
the application state is sharded at each datacenter in multiple partitions, there
will be a maximum of one check message per partition if the request depends
on operations that updated at least one data item on each partition.

These type of solutions do not require a centralized component to order
events, such a sequencer, eliminating a potential bottleneck. Furthermore,
unlike sequencer-based solutions, in which there is a single stateful receiver
per datacenter, solutions based on explicit check messages can deploy a set
of stateless receivers at each datacenter. This fact allows them to eliminate
another potential performance bottleneck, as the receiver in sequencer-based
solutions solely coordinates the local application of remote updates checking
dependencies and delaying the visibility of unordered updates.

We now describe each of the systems individually, highlighting the partic-
ularities of each of them.

COPS [71] is a causally consistent geo-replicated key-value store. Its design
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assumes that each datacenter replicates the full application state. This fact
is fundamental for the practicability of their solution. COPS opts for a fine-
grained dependency tracking approach. It tracks dependencies at the granular-
ity of data items. Thus, in the worst case, if a client’s update request depends
on every other data item, the metadata attached to the request is a vector with
an entry per data item in the database. Nevertheless, in practice, an update
request rarely piggybacks the full vector. A client only includes as an update’s
dependencies its previous update, and all updates observed (by reading from
the database) in between its previous update and current one. Due to the transi-
tivity rule of the happened-before relation, a client can clean their dependency
context after issuing an update. COPS’ design assumes an all-to-all dissem-
ination schema. Despite using a large amount of metadata, COPS still adds
false dependencies among concurrent updates over the same key (local to dif-
ferent replicas), as these are all serialized. The authors propose a protocol to
enforce causally consistent read-only transactions: a multi-key read operation
that reads from a causally consistent snapshot of the database.

Eiger [72] is a geo-replicated store built on top of Cassandra [66]. As in
COPS, causal dependencies are tracked at the granularity of data items and
clients’ causal context is cleaned after update operations. Eiger offers stronger
semantics than COPS by supporting atomic write-only transactions: multi-key
write operations that create the illusion that all writes belonging to the same
transaction are applied atomically. Furthermore, it improves COPS read-only
transactional protocol efficiency. Instead of requiring the explicit dependencies
of each version being read to compute the snapshot from which a read-only
transaction reads, Eiger’s transactional protocol solely relies on lightweight
logical clocks. This comes with the cost of sometimes requiring a third read
round. COPS, in constrast, only requires one round in the normal case and a
maximum of two read rounds per read transaction.

The bolt-on [18] architecture separates consistency concerns from liveness,
replication and durability concerns. The architecture includes a shim layer,
placed between an eventually consistent storage system and clients. This layer
upgrades an eventually consistent storage system to convergent causal con-
sistency. Clients interact directly with the shim layer, which contains a local
store. Reads are served from the shim layer’s local store, which is guaranteed
to always be causally consistent with clients’ causal history. Updates are stored
in the layer’s local store and eventually propagated to the eventually consistent
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storage system. The shim layer periodically pulls new versions from the un-
derlying storage system in order to update its local store and thus make other
clients’ updates visible to its local clients.

Authors opt for a fine-grained dependency tracking approach, similar to
the one of COPS and Eiger. Thus, the size of the metadata associated to each
update is proportional to a client’s causal history; being proportional, in the
worst case, to the total number of data items in the store. It only adds false
dependencies among concurrent updates on the same data items. Its design
assumes that each datacenter replicates the full application state.

Karma [75] is a distributed key-value store designed for partial replication.
The goal of Karma is to enforce causal consistency while minimizing the
amount of remote accesses (unavoidable under partial replication) by leverag-
ing cache techniques. Its design assumes an all-to-all dissemination scheme.
Karma assumes that each datacenter can replicate only part of the application
state. Nevertheless, it assumes that given a deployment of a set of datacenters,
one can cluster them into a set of groups, namely rings, each replicating the
full application state. This limits the generality of their model.

Karma ops for a fine-grained dependency tracking approach, similar to the
one of COPS. Thus, it tracks dependencies at the granularity of data items,
adding false dependencies among concurrent updates on the same data item
originating at different replicas. Unlike COPS, Karma keeps track of updates
that have been stored in all replicas (globally stable) and avoid adding them as
causal dependencies of other updates, as it is guaranteed that the latter update
will be installed at any datacenter after any update that was globally stable
when this was issued.

We consider that Karma does not implement genuine partial replication,
as the partial replication model supported is not flexible enough. Karma is
designed assuming that one can cluster datacenters in a way that each group
replicates the full application state, in which case Karma ensures genuineness.
Nevertheless, Karma will not work as it is if one cannot ensure this invariant.
The modifications required to make Karma work under this—more general—
setting would cause Karma to become non-genuine or require a larger amount
of causal metadata per update (carrying more dependencies).

Orbe [47] is a distributed key-value store. Its design assumes that each data-
center replicates the full application state. This fact, as in COPS and Eiger,
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is fundamental for the practicability of their solution. Orbe represents causal
dependencies in a matrix, with an entry per partition per datacenter. Thus, all
operations, local to a partition, are serialized, which has a negative impact on
remote update visibility when compared to systems such as COPS that opt for
a more fine-grained representation of dependencies. Nevertheless, if an update
depends on two other updates over different keys, stored by the same partition,
it will carry only one dependency (the one ordered after in the serialization)
rather than two, as in COPS. This has a positive impact on throughput. Orbe
assumes and all-to-all dissemination scheme. Due to its metadata compression,
it adds false dependencies among operations local to the same partition. Orbe
also offers read-only transactions. Their implementation is based on loosely-
synchronized physical clocks which make their protocol resilient to skewed
workloads. Nevertheless, the efficiency, but not the correctness, of their proto-
col is affected by clock drifts.

5.2.3 Solutions that rely on background stabilization

These solutions ensure causal consistency by relying on a background stabi-
lization mechanism. This mechanism permits full decentralization. It works
as follows. Partitions composing each datacenter accept requests from local
clients and handle them without any coordination. Each update operation is
tagged with a piece of metadata, generated locally, that captures the update’s
causal dependencies. This is asynchronously replicated to sibling partitions:
equivalent partitions belonging to remote datacenters. Thus, these solutions
assume that datacenters are logically, equally partitioned. Upon receiving a
remote update, a partition stores it in its local multiversion storage, but it does
not necessarily make it visible immediately.

Periodically, a stabilization mechanism that coordinates all partitions runs
in the background. The goal is to ensure that if a partition makes a remote
update visible (local updates are always immediately visible to other local
clients), it is certain that its causal dependencies are also visible in the local
datacenter. Thus, a client can safely—without violating causality—read from
multiple partitions of the same datacenter with no consistency check. The pro-
cedure comprises the following steps. Each partition keeps track of the updates
run locally and at sibling partitions. Periodically, each partition gathers this in-
formation from every other partition of the same datacenter and computes the
current stable consistent snapshot. A snapshot is stable if it is known that any
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operation belonging to it has already been received and it is visible in the local
datacenter. For this, the metadata attached to each update must be comparable
to how snapshots are identified. Normally, this is simply a scalar or a vector
with an entry per datacenter.

Interestingly, solutions based on stabilization mechanisms have the advan-
tage of enabling fully decentralized implementations: partitions coordinate
with sibling partitions without the need of having a centralized ordering service
or a local receiver at each datacenter. Nevertheless, background stabilization
mechanisms augment the consequences of the tradeoff between throughput and
remote visibility latency. First, in order to make remote updates visible, dat-
acenters have to run the stabilization mechanism periodically. Thus, the time
interval between runs is an extra delay added to the remote visibility latency,
which is determined by the metadata used to represent causal dependencies.
Second, the overheads associated to the amount of metadata used have a more
significant impact than in other type of solutions. This is caused by the fact that
these solutions require keeping multiple versions of each data item, and there-
fore they require consistency checks when reading from the store in order to
find the “safe” version (consistent with causality) to be returned. Furthermore,
every run of the background stabilization mechanism requires each partition
not only to receive messages from every other partition of the same datacenter,
but also to compute the stable time. This computation has a penalization on
throughput determined by the periodicity in which the stabilization runs and
the size of the metadata.

To illustrate this, Figure 5.1 plots the remote visibility latency (left plot)
and the throughput penalty (right plot) of GentleRain [49] and Cure [7] when
varying the time interval between stabilization runs from 1ms to 100ms. The
throughput penalty is normalized against a geo-replicated system that does not
add any overhead due to consistency management. In this simple experiment,
we have deployed both solutions spanning three datacenters. The round-trip-
times across datacenters are 80ms between datacenter 1 (dc1) and both dc2
and dc3; and 160ms between dc2 and dc3. Latency values refer to the (90th
percentile) delays incurred by each system at dc2 for updates originating at dc1.
For each experiment, we deploy as many clients as possible without saturating
the system.

As expected Cure, which uses a vector clock with an entry per datacenter
to represent causal dependencies, exhibits worse throughput and better remote
visibility latency than GentleRain, which relies on a single scalar. More inter-
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Figure 5.1 – Remote update visibility (left) and throughput penalty (right)
exhibited by GentleRain and Cure when varying the time interval between

stabilization runs.

estingly, the experiment demonstrates the impact that the time interval between
stabilization computations have in the system. To avoid impairing throughput,
solutions are forced to pick time intervals large enough such that the impact
in throughput is diminished. This is paramount for solutions relying on a vec-
tor, such as Cure, as when using very short time intervals the penalization is
very significant: of more than 31% when using a time interval of 3ms. Results
suggest that the throughput overhead is amortized when using time intervals
of about 20ms. Unfortunately, this adds a significant delay to remote visibility
latency.

We now describe each of the systems individually, highlighting the partic-
ularities of each of them.

GentleRain [49] is a distributed key-value store. Its design assumes that each
datacenter replicates the full application state and that this state its equally
partitioned at each of them. It assumes an all-to-all communication scheme.
GentleRain design goal is to optimize throughput. Thus, it compresses meta-
data to a single scalar. Unfortunately, this fact has a negative impact on the
remote update visibility latency. When using a singe scalar to represent causal
dependencies, one is serializing all updates happening in the system (at all dat-
acenters). Thus, GentleRain adds false dependencies not only among updates
local to the same datacenter but also across datacenters. Indeed, because of the
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aggressive metadata compression, the lower-bound remote visibility latency is
the latency between the destination datacenter and the datacenter that is the far-
thest from it, despite the originating datacenter. GentleRain also integrates two
read-only transaction primitives: snapshot reads and causally consistent snap-
shot reads. The former allows clients to read from a consistent snapshot, but it
does not guarantee that this is consistent with the client’s causal history. Thus,
versions that have been previously seen by the client may be excluded from the
snapshot, violating causality. The latter guarantees that the snapshot is consis-
tent with the client’s causal history. Snapshot reads’ protocol is wait-free and
single round. Nevertheless, the casually consistent snapshot reads’ protocol
may block. If the expecting blocking period is longer than a threshold, Gen-
tleRain leverages Eiger’s read protocol, which completes in a maximum of
three rounds. GentleRain relies on loosely synchronized physical clocks.

Okapi [45] is a distributed key-value store. Its design assumes that each data-
center replicates the full application state and that this state its equally par-
titioned at each of them. It assumes an all-to-all communication scheme. It
offers read-only transactions that read from a causally consistent snapshot.

Okapi’s stabilization mechanism is slightly different to GentleRain’s. At
its core, it works similarly. Nevertheless, the condition to make a remote up-
date visible at a datacenter to local clients is different. Unlike previous solu-
tions that make updates visible as soon as their causal dependencies are known
to be visible in the local datacenter, Okapi only makes a remote update visible
when it is known to have been replicated in the whole system (all datacenters).
The goal is to enhance the availability of the system. Upon a datacenter fail-
ure, progress is compromised, as the stable time does not advanced due to the
failing datacenter. However, unlike previous solution, in Okapi, healthy data-
centers may implement a recovery protocol such that the failing datacenter is
removed from the system. This is possible because they could have only estab-
lished dependencies on remote updates originating at failing datacenter that all
have received. To orchestrate such a recovery protocol in other solutions would
not be trivial, requiring datacenters to propagate remote updates (originated in
the failing datacenter) to other healthy datacenters. Unfortunately, enhancing
availability comes with the cost of serving a higher remote update visibility
latency, as remote updates have to be acknowledged by every datacenter to
become visible.

Okapi uses a vector clock with an entry per datacenter to represent causal
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dependencies. This, in combination with the usage of hybrid clocks [64], per-
mits Okapi to serve read-only transactions efficiently (never blocking) at the
cost of delaying the visibility of updates at remote datacenters. Nevertheless,
they reduce the computational and storage overhead associated to the metadata
size by tagging remote updates with a single scalar. As a consequence, similar
to GentleRain, the lower-bound update visibility latency is the latency between
the destination datacenter and the datacenter that is the farthest from it, despite
the originating datacenter.

Cure [7] is a distributed key-value store. Its design assumes that each data-
center replicates the full application state and that this state its equally parti-
tioned at each of them. It assumes an all-to-all communication scheme. Cure
guarantees transactional causal consistency (TCC), the strongest semantics an
always-available distributed system can guarantee. It offers interactive trans-
actions that read from a causally consistent snapshot and that respect atomic-
ity: all updates belonging to a transaction are made visible simultaneously, or
none does. Cure integrates CRDTs: high-level datatypes with rich confluent
semantics, which guarantee convergence. Their protocols rely on loosely syn-
chronized physical clocks. Cure uses a vector with an entry per datacenter to
represent causal dependencies. Thus, it capable of exhibiting a lower remote
visibility latency at the cost of damaging throughput due to the extra storage
and computational overhead. Unlike GentleRain, the lower-bound update visi-
bility latency is the latency between the destination and originating datacenters.
Nevertheless, Cure still adds false dependencies among updates originating in
the same datacenter, as these are serialized.

5.2.4 Solutions based on lazy resolution

Solutions belonging to the above categories ensure that datacenters only make
remote operations visible to local clients when its causal dependencies are
known to be already installed locally. Differently, solutions based on lazy res-
olution allows datacenters to make remote updates visible to local clients even
before its causal dependencies are visible locally. Causality is then enforced
when a client reads by only returning versions that are causally consistent with
client’s causal history (what the client has already observed). For this, up-
dates still have to be tagged with some piece of metadata representing update’s
causal dependencies and clients have to keep track of the updates already ob-
served (causal history). Differently to other solutions [71, 72, 49], clients tag
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read requests with their causal history. Thus, a server receiving a read request
can determine, by comparing the metadata of the locally stored versions with
client’s causal history, which version should be returned. A server always re-
turns the most up-to-date, or freshest, version that is consistent with client’s
causal history.

These solutions have three main advantages when compared to previous
approaches: (i) do not require expensive mechanisms, such as background
stabilization mechanisms or explicit dependency checking messages, to en-
sure causal consistency, (ii) are resilient to slowdown cascades [6]: when a
straggling server affects other healthy servers, and (iii) can potentially reduce
remote visibility latency, as operations can be observed by clients even when
its dependencies are not installed. Nevertheless, this is a double-edged sword.
First, clients may block indefinitely after reading an update whose dependen-
cies have not arrived yet, compromising availability. Imagine the following
scenario in which a client reads operation b that depends on another operation
a. When the client observed b, a had still not been installed, but it can be read
as it does not conflict with client’s causal history. Then, the client reads the
data item that a updates. In this case, since the client has already read b, the
system should return a or a newer update on that data item. The client could
be indefinitely blocked waiting for a to arrive. These solutions therefore trade
availability (probably the most important requirement of cloud services and
the main reason to adopt weaker consistency models) to improve other perfor-
mance metrics. Second, it adds computation overhead on read operations that
otherwise are fairly light (as consistency is enforced when installing remote
updates). On each read operation, consistency needs to be checked to ensure
that causality is not being violated. Given that cloud services are characterized
by read dominant workloads, this overhead may be quite significant.

We now describe each of the systems individually, highlighting the partic-
ularities of each of them.

Occult [76] is a distributed key-value store that implements a weaker variant
of PSI [92], a relaxation of snapshot isolation [25] specifically crafted for geo-
replicated system that allows for asynchronous replication and different or-
dering of updates across datacenters. Occult leverages a master-slave scheme
to make the enforcement of consistency more efficient. Its design assumes
that each datacenter replicates the full application state and that this state its
equally, logically partitioned at each of them.
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Their basic implementation uses a vector clock with an entry per partition
to represent causal dependencies. Since they assume a master-slave scheme,
only the master accept writes. Therefore, one entry in the vector per partition,
despite the number of replicas per partition is enough to capture causality.
We refer to this variant as simply Occult. This variant still introduces false
dependencies among updates local to the same partition.

In order to reduce the metadata size—note that the number of partitions
can be very large—they propose three variants. Occultopt1 bounds to n the
total size of the vector by merging entries that are congruent modulo n: one
entry in the vector correlates to multiple partitions. Thus, when a client’s up-
date depends on two updates, local to two different partitions that share an
entry in the vector, this has to use the largest number as dependency, adding
a significant amount of false dependencies. Occultopt2 addresses this problem
by, instead of mapping each entry in the bounded vector to roughly the same
amount of partitions, letting clients to assign n − 1 entries in the dependency
vector to the most recent dependencies (largest scalars) and compress the rest
in a single entry. The intuition is that larger timestamps are more likely to cre-
ate false dependencies. They propose a final variant Occultopt3. This variant
aims at further reducing the amount of false dependencies by increasing the
metadata size. Authors noticed that the skew between datacenters’ clocks and
the time that it takes for updates to be replicated exacerbates the impact false
dependencies. Assume a client is attached to a datacenter that is the master of
a partition pa and slave of a second partition pb. The client first updates pa and
immediately after tries to read from pb. If both partitions are represented by the
same entry in the dependency vector, the client will be block until an update,
coming from the datacenter that is master of pb, is replicated in client’s data-
center with an associated timestamp at least equal to the one returned when pa

was updated. Authors solve this problem by keeping distinct timestamps for
each datacenter.

POCC [93, 94] is a distributed key-value store. Its design assumes that each
datacenter replicates the full application state and that this state its equally
partitioned at each of them. It assumes an all-to-all communication scheme.
It offers read-only transactions that read from a causally consistent snapshot.
POCC relies on a vector with an entry per datacenter to represent causal de-
pendencies. Therefore, it introduces false dependencies among updates local
to the same datacenter.
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5.2.5 Other solutions

Finally, we describe two systems that do not perfectly fit in any of the previous
categories, but are related to our work.

Kronos [51] is a generic service that allows to precisely track any partial order,
avoiding false dependencies. Kronos flexibility comes at the cost of a central-
ized implementation that, in geo-replicated settings, forces clients to pay the
cost of a potentially large roundtrip to use the service.

EunomiaKV [59] is a causally consistent distributed key-value store. Its de-
sign assumes that each datacenter replicates the full application state. It as-
sumes an all-to-all communication scheme.

EunomiaKV introduces a novel service, namely Eunomia. Each datacenter
integrates an instance of this fault-tolerant service. Similarly to solutions based
on stabilization, the Eunomia service lets local client operations to execute
without synchronous coordination, an essential characteristic to avoid limiting
concurrency and increasing the latency of operations. Then, in the background,
Eunomia establishes a serialization of all updates occurring in the local data-
center in an order consistent with causality, based on timestamps generated
locally by the individual servers that compose the datacenter. As this serial-
ization is being generated, Eunomia notifies other datacenters of this order.
Based on this information and in the metadata attached to each update, remote
datacenters can safely make remote updates visible locally in causal order. Eu-
nomiaKV relies on a vector with an entry per datacenter to represent causal
dependencies. Therefore, it introduces false dependencies among concurrent
updates local to the same datacenter.

5.3 Summary and comparison

In this final section of the chapter, we first summarize the characteristics of
previous solutions and briefly compare the existing techniques. Then, we take
a closer look to the correlation between metadata size and false dependencies.
Finally, we compare them to SATURN.
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5.3.1 Summary of existing systems

Table 5.1 summarizes the described systems to simplify its comparison. We
characterized them based on our taxonomy: the key technique behind their
implementation of causal consistency, the amount of metadata used to repre-
sent causal dependencies, the amount of false dependencies introduced due to
metadata compression, and whether partial replication is supported or not.

The fact that sequencer-based approaches [98, 81, 102, 43, 26, 65, 9, 103,
61] rely on a sequencer per datacenter, simplifies the implementation of causal
consistency. Sequencers allow to aggregate metadata effortlessly, which is
key to avoid metadata explosion. Unfortunately, this comes with the cost of
limiting intra-datacenter parallelism. The sequencer has to be contacted be-
fore requests are processed (on the client’s critical operational path), limiting
datacenter capacity to the number of requests the sequencer is capable of pro-
cessing per unit of time. Note that in Table 5.1, both ISIS [26] and Swift-
Cloud [103] are classified as if they do not support partial replication. ISIS can
actually support it by extending its metadata to multiple vector[dcs] (one per
communication group; a maximum of 2dcs − 1). SwiftCloud in contrast sup-
ports partial replication at the client-side, a challenge we have not addressed.

Other approaches avoid sequencers while tracking dependencies more pre-
cisely [71, 72, 18, 75, 47]. Unfortunately, these systems may generate a very
large amount of metadata, incurring a significant overhead due to its manage-
ment costs [49, 16].

As a reaction to the limitations of previous approaches, community has
envisioned solutions based on background stabilization mechanisms [49, 45,
7]. This stabilization mechanism runs periodically, coordinating all partitions
belonging to the same datacenter, in order to orchestrate when remote updates
can safely become visible. From our perspective, this type of solutions are
the most scalable and performant solutions of the literature. Unfortunately,
as demonstrated in this thesis, minimizing the amount of metadata used to
represent causal dependencies is more critical than in other type of solutions.
This is due to the associated costs of the background stabilization mechanism.

On the other hand, solutions based on lazy resolution [76, 93, 94] have the
potential of improving performance by (i) letting remote updates to be installed
at remote datacenters without any consistency check, and making these visi-
ble to clients before it is safe (before the causal dependencies of updates are
known to be visible locally). Nevertheless, these benefits come with the cost
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of sacrificing availability, a high cost in our opinion given the cloud services’
requirements.

Finally, as mentioned before, Kronos [51] and EunomiaKV [59] do not fit
into any of the categories. Kronos is an interesting solution that can cope with
composed services—services composed by multiple distributed systems—but
it incurs a high cost due to fact of being centralized. EunomiaKV falls between
the sequencer-based and the background stabilization techniques. It relies on
a per-datacenter service, called Eunomia (also integrated in our prototype),
whose goal is to totally order local updates in an order consistent with causal-
ity (same goal than sequencers). Nevertheless, Eunomia operates out of the
client’s operational critical path. This is achieved by relying on a local stabi-
lization mechanism that shares some similarities with the stabilization mech-
anisms of GentleRain [49], Cure [7] and Okapi [45]. This is an interesting
design that permits EunomiaKV to incur a small throughput penalty, similar to
GentleRain’s, while tracking causal dependencies more precisely (using more
metadata), and thus reduce the amount of false dependencies (lowering remote
visibility latency). Unfortunately, a priori, EunomiaKV is a less scalable solu-
tion than approaches that rely on background stabilization mechanisms. The
latter do not exhibit any potential performance bottleneck, while EunomiaKV
employs a single receiver per datacenter.

5.3.2 Correlation between metadata size and false
dependencies

To better understand the relation between the metadata size and the amount of
false dependencies introduced by each of the systems, Figure 5.2 shows the
graphic distribution of existing systems (including SATURN) based on these
two characteristics. Note that the solutions placed in the same box use the
same amount of metadata and introduce the same amount of false dependen-
cies. This does not imply that in practice these solutions will exhibit the same
throughput and remote visibility latencies, as performance is also determined
by many other characteristics of their design such as the key technique used to
ensure causality.

As expected, there is a direct correlation between the metadata size and the
amount of false dependencies, which is why most of the solutions stand in the
diagonal (colored cells). This is due to the fact that, in all existing solutions, the
order in which each datacenter applies remote updates locally must be inferred



5.3. SUMMARY AND COMPARISON 93
Fa

lse
 d

ep
en

de
nc

ie
s

Metadata size

No
Lo

w
M

ed
iu

m
Hi

gh

O(1) O(M) O(N) O(M x N) O(K) O(            )causal
graph

Saturn

Bayou GentleRain
TACT PRACTI

Okapi

COPS
Eiger Bolt-on

Karma

Kronos

Orbe
Occult

SwiftCloud

Lazy Rep.
ISIS

Cure

EunomiaKV
POCC Opt-Track-CPR

ChainReaction

Figure 5.2 – Graphic distribution of existing causally consistent systems
based on the metadata size used to capture causal dependencies and the

amount of false dependencies that each solution generates. Colored cells
represent the diagonal. M, N, and K refers to the number of datacenters,

partitions and keys respectively

exclusively from the metadata (unlike in SATURN, where metadata is served in
the correct order). Thus, on the one hand, when metadata is aggregated, such
as in [49, 98, 43], false dependencies induce poor remote visibilities compared
to systems tracking causality more precisely [7, 71, 72, 47, 26, 65]. On the
other hand, when metadata is not aggregated, the associated computation and
storage overhead has an impact in throughput.

In Figure 5.2, we have colored in green (lightly colored) and red (darkly
colored) the different sizes of metadata and types of false dependencies. We
consider that metadata sizes of a single scalar or proportional to the number of
datacenters are practical. The former is obviously practical as it is the mini-
mum possible size and has the advantage of being constant (independently of
the system’s scale). The latter is still reasonably practical as one can except
between 10 and 20 datacenters at most. Nevertheless, we consider solutions
that require more metadata unpractical, as in the best case the metadata size
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will be proportional to the number of partitions, which is expected to be quite
large: from hundreds to thousands of partitions. Regarding the types of false
dependencies, we have only colored in red the highest level. This is the level
including solutions that exhibit inter-datacenter false dependencies, the most
damaging ones (§5.1).

Note that we have left the Full-Track and Opt-Track solutions [61] out
of the graph. This is because these are designed to support genuine partial
replication, which forced them to use a large amount of metadata. Concretely,
they use M times (the total number of datacenters) more metadata than its
counterpart Opt-Track-CPR, which is crafted for full replication and generates
the same amount of false dependencies. This fact would placed these solutions
above the diagonal in the graph.

5.3.3 A comparison with Saturn

As Chapter §4 demonstrates, SATURN operates on a sweet-spot among these
approaches. Note that SATURN is the only solution in Figure 5.2 that is below
the diagonal.

1. SATURN keeps the size of metadata small and constant, independently of
the system’s scale (number of datacenters, partitions, etc). Specifically,
causal dependencies are tracked with a single scalar. This fact is key to
optimize throughput by incurring a negligible computational and storage
overhead.

2. Furthermore, SATURN mitigates the impact of false dependencies by
using a novel metadata dissemination technique: a set of metadata bro-
kers organized in a tree topology. Concretely, SATURN mitigates the
impact of the most damaging type of false dependencies, namely the
inter-datacenter, as explained in §5.1. This allows SATURN to achieve
significantly lower visibility latencies than other solutions that, like it,
rely on a single scalar [49].

3. Finally, SATURN is optimized for partial replication. It enables genuine
partial replication, requiring datacenters to only manage the data and
metadata of the items replicated locally. Previous solutions either do not
ensure genuineness [43, 75, 51], negatively impacting remote visibility
latency in partially replicated settings (see §4.4.2); or are genuine [61]
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at the cost of increasing significantly the amount of metadata used and
consequently penalizing throughput. SATURN is able to achieve gen-
uineness using only one scalar to represent causal dependencies. This is
enabled by the tree-based dissemination technique.
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Key Metadata False Partial Dissem.
Technique Size DependenciesReplication Scheme

scalar
Bayou [98, 81] sequencer O(1) I+P+DC+G no pair-wise

scalar
TACT [102] sequencer O(1) I+P+DC+G no pair-wise

scalar
PRACTI [43] sequencer O(1) I+P+DC+G non-gen. pair-wise

vector[dcs]
ISIS [26] sequencer O(M) P+DC no all-to-all

vector[dcs]
Lazy Repl. [65] sequencer O(M) P+DC no all-to-all

vector[dcs]
ChainReaction [9] sequencer O(M) P+DC no all-to-all

vector[dcs]
SwiftCloud [103] sequencer O(M) P+DC no all-to-all

vector[dcs]
Opt-Track-CPR [61] sequencer O(M) P+DC no all-to-all
Full-Track [61] matrix[dcs][dcs]
Opt-Track [61] sequencer O(M ×M) P+DC genuine all-to-all

vector[keys]
COPS [71] explicit check O(K) I no all-to-all

vector[keys]
Eiger [72] explicit check O(K) I no all-to-all

vector[keys]
Bolt-on [18] explicit check O(K) I no all-to-all

vector[keys]
Karma [75] explicit check O(K) I non-gen. all-to-all

matrix[dcs][part.]
Orbe [47] explicit check O(M ×N) P no all-to-all

scalar
GentleRain [49] stabilization O(1) I+P+DC+G no all-to-all

scalar
Okapi [45] stabilization O(1) I+P+DC+G no all-to-all

vector[dcs]
Cure [7] stabilization O(M) P+DC no all-to-all

vector[dcs]
POCC [93, 94] lazy resolution O(M) P+DC no all-to-all

vector[part.]
Occult [76] lazy resolution O(N) I+P no master-slave

all
Kronos [51] - O(graph) none non-gen. all-to-all

vector[dcs]
EunomiaKV [59] - O(M) P+DC no all-to-all

scalar
Saturn - O(1) P+DC genuine tree-based

Table 5.1 – Summary of causally consistent systems. The metadata sizes are
computed based on the worst case scenario. M, N, and K refers to the number

of datacenters, partitions and keys respectively. I, P, DC and G refers to
data-item, partition, intra-datacenter and inter-datacenter false dependencies

respectively. These types of false dependencies are described in detail in §5.1.



Chapter 6

Conclusion

In this chapter, we conclude this dissertation by first highlighting the key
lessons learnt while designing and implementing SATURN. Second, we list
the limitations of our approach. Third, we discuss few directions we explored
during the development of this dissertation, in addition to the work described
in this document, that had a positive impact on this thesis. Then, we discuss
opportunities for future work. Finally, we conclude with a summary of the
results obtained during the development of this thesis.

6.1 Aspects to consider when building causally
consistent geo-replicated storage systems

During the development of SATURN, we realized a set of aspects that we con-
sider key for someone designing causally consistent geo-replicated storage sys-
tems. In this section, we outline four:

Topology-based dissemination. Having a tree to propagate the metadata is
key in SATURN’s design. As described in this dissertation, a dissemination
tree can be used to trivially enforce causal consistency. This enables SATURN

to keep the size of the metadata small and constant, despite the number of
clients, servers, partitions and replicas; while optimizing the remote visibil-
ity latency and supporting genuine partial replication. Interestingly, most of
previous solutions rely on pure peer-to-peer metadata dissemination scheme
(all-to-all scheme in our nomenclature) that forces them to exclusively rely
on the metadata attached to each update to determine the order in which each
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datacenter must install remote updates. As widely discussed in this disser-
tation, this forces solutions to choose between compressing metadata, such
that the remote visibility latency increases and less scalable partial replication
models are allowed; or to keep the size of metadata large such that throughput
is significantly penalized. We strongly believe that relying on topology-based
dissemination schemes (not only in a tree) has a lot of potential and it is a
scheme to consider by future system designers.

Separation of concerns. Our approach opts for decoupling the dissemina-
tion of data and metadata, which fundamentally decouples consistency con-
cerns from most of the responsibilities of the underlying storage system, such
as replication and durability. We advocate this decoupling in future designs,
which brings few advantages when compared to a fully coupled approach.
First, it enhances composability. Thus, one could with hopefully little effort
use the consistency component in different datastores and viceversa [18]. Sec-
ond, decoupling can potentially help devising a solution to ensure causal con-
sistency in composed services. Most of the solutions are designed to work
under the assumption that there is a unique distributed system. The reality is
that many of the modern cloud services are compose by multiple distributed
systems. Third, under partial replication (specially if genuineness is not sup-
ported), it is fundamental to avoid sending the payload of updates to datacen-
ters that do not replicate the data item being updated. We are not the first to
advocate this separation of concerns [51, 18, 43].

Minimum metadata. According to Facebook, the reason causal consistency
has not been adopted in production yet, despite having acknowledged its ben-
efits, is because designers are concerned to damage the performance of their
system [6]. When experimenting with SATURN and several alternatives in its
design, we have noticed that one of the major factors that negatively impact
the system’s throughput is the size of the metadata used to track causal de-
pendencies. We noticed that as soon as the number of datacenters increases
slightly, solutions whose metadata is proportional to the number of datacenters
significantly damages throughput; e.g., in a deployment with 7 datacenters,
Cure [7], which uses a vector with an entry per datacenter, penalizes the sys-
tem’s throughput up to 12.5% when compared to its counterpart GentleRain
that uses a single scalar. Thus, among other design choices, we advocate a
solution should prioritize the use of a minimum amount of metadata to capture
causal dependencies.
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Coordination out of clients’ critical path. SATURN integrates Eunomia, a
service inside each datacenter responsible for serializing all local updates in an
order consistent with causality and push them to SATURN. The design of Eu-
nomia is motivated by the observation that taking the coordination between the
datacenter servers and the Eunomia service out of client’s critical operational
path can potentially bring significant performance gains. The Eunomia’s orig-
inal paper [59] empirically demonstrates the benefits of it by comparing it to
a traditional sequencer: Eunomia can handle up to 7.7× more operations than
a sequencer. We believe that this is a key design pattern that designers should
embrace when possible. When removing coordination from the clients’ criti-
cal path one is not only taking the contention of the service—or the damage a
straggling server may cause—out of client’s observable latency, but it is also
enabling techniques, such as batching, which are key to enhance performance
in real systems.

6.2 Limitations of our approach
We strongly believe that the techniques and solutions described in this disser-
tation are of relevance. Nevertheless, we identify several limitations, derived
from positioning our selves into one extreme of a given tradeoff. In this sec-
tion, we outline three:

Large number of datacenters, or replicas. SATURN is designed to work very
efficiently under the assumption that the system is deployed over a relatively
small set of datacenters. Nevertheless, without farther experimentation, we are
not sure how SATURN will behave when deployed over a larger amount; e.g.,
tens of datacenters. Following, we identify the strong and weak points of our
techniques regarding to scaling up in the number of datacenters.

On the one hand, SATURN’s metadata is small and constant, independently
of the system’s scale. This means that throughput is likely to remain high, de-
spite an increase in the number of datacenters, as the overhead associated with
the processing of metadata is the most significant factor affecting throughput.
Other solutions, whose metadata is proportional to the number of servers or
datacenters, will have more problems scaling up.

On other hand, we suspect that SATURN will deviate more from the op-
timal remote visibility latency (the one exhibited by an eventually consistent
system) as the number of datacenters increases. Two aspects motivate this
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observation. First, our configuration generator will have to employ a more re-
strictive threshold to find a good-enough configuration in a reasonable amount
of time. This will lead to a suboptimal configuration that it is possibly less
optimal than a configuration generated using a less restrictive threshold or no
threshold at all. Second, given the constraint of having a tree topology, even
when using the optimal configuration, it is not always possible to optimize all
metadata paths (the path between two datacenters when traversing the tree).
Specially problematic are those connecting the two extremes of the tree, as a
label generated in one extreme has to traverse the whole tree to reach the other
extreme (see Figures 4.8 and 4.9b). Intuitively, the more datacenters, the more
suboptimal metadata paths with a major deviation from the optimal, which will
have an impact on the average remote visibility latency. I would be interest-
ing exploring alternative topologies, e.g.; graphs with cycles or overlapping
trees, such that faster paths between pairs of datacenters are established. This
nonetheless would require maintaining extra metadata in the serializers (nodes
of the topology), causing an extra storage and processing overhead that has to
be measured to consider the validity of such approaches.

Remote metadata receivers. Each datacenter receives labels, coming from
SATURN, through a single remote metadata receiver. This component is re-
sponsible for taking these labels and propagating them to the responsible par-
tition in the local datacenter, ensuring that these are delivered at the partitions
in the order that were received at the receiver. This is a quite lightweight pro-
cedure, as, unlike most of previous solutions [103, 71, 72], the receiver does
not need to do any consistency check. Nevertheless, this receiver is still a po-
tential bottleneck of our design that other solutions, such as those based on
background stabilization [49, 7, 45], do not exhibit. It would be interesting to
explore techniques to efficiently distribute remote metadata receivers.

Robustness of the serializers tree. In SATURN, the tree is made resilient
by replicating (leveraging chain-replication [100]) each tree node. If failures
still cause a disconnection in the tree, SATURN falls back into making remote
updates visible in label (timestamp) order, which requires a background sta-
bilization mechanism that adds coordination among partitions. While the tree
is being repaired, SATURN exhibits significantly higher visibility latencies and
lower throughput (due to the costs associated with the stabilization mecha-
nism). It would be interesting to find ways to strengthen the service to reduce
the likelihood of being forced to fall back to label order. Similarly to the prob-
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lem of having long paths when using SATURN in a deployment with a large
number of datacenters, the usage of alternative (and more resilient) topologies
such as graphs with cycles or overlapping trees could also help to overcome
this issue.

Local-area networks. We have experimentally demonstrated that relying on
a tree topology to disseminate metadata between datacenters (in a wide-area
network) is an efficient technique to mitigate the impact of inter-datacenter
false dependencies, the most damaging ones (§5.1). Nevertheless, it is not clear
whether this technique would be efficient in other settings, such as local-area
networks. Local-area networks e.g., a datacenter network, exhibit latencies of
a few millisecond, and a uniform distribution of these among parties. In con-
trast, in geo-replicated settings, latencies can be of hundreds of milliseconds,
having significant differences in the latency exhibited by pairs of datacenters,
e.g., two datacenters co-located in the same country and two datacenters, each
located in a different continent. The fact that latencies are of at least an order of
magnitude lower in local-area networks would make the overheads introduced
by our techniques more significant. Moreover, the fact that there are not very
significant differences in latencies, makes the tree topology inefficient: for the
distant parties (those connected by longer tree-paths), the label propagation
time could be several times the data propagation time.

6.3 Other explored directions and collaborations

During the development of this dissertation, we explored other directions,
mostly through collaborations, that helped us to gain insights on the design of
distributed systems in general and on the challenges of enforcing consistency
in geo-replicated systems in particular.

Of special relevance for this thesis is Cure [7]. As greatly discussed in this
document, since it is one of state-of-the-art solutions we compared to, Cure is
a causally consistent geo-replicated storage system that tracks causal depen-
dencies by means of a vector clock with an entry per datacenter. Designing it,
we realized of the practical relevance of the tradeoff between throughput and
remote visibility latency. We noticed that when relying on background stabi-
lization mechanisms as the key technique to implement causal consistency, the
impact of this tradeoff is quite significant on throughput. This fact motivated
us to investigate strategies to reduce this impact without hampering the remote
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visibility latency.

Other projects [33, 31, 42, 21] gave us a broader understanding of con-
sistency, not only causal consistency, that helped us to better understand the
tradeoffs involved in ensuring consistency in replicated systems:

• In [33], we propose a set of high-level datatypes with rich confluent se-
mantics that can be partially replicated (partitionable CRDTs [36, 90]).
We built a prototype integrating this into SwiftCloud [103], a causally
consistent geo-replicated storage system. This work helped us to better
understand the challenges of adopting partial replication under causal
consistency.

• In [31], we propose a new type of hybrid clock [64] designed to be ex-
ploited by distributed transactional protocols. This work helped us to
better understand the tradeoffs of using different types of clocks (physi-
cal, logical or hybrid) to ensure consistency in distributed systems.

• In [42], we explore techniques to automatically and dynamically recon-
figure quorum-based replication systems. Our approach uses a combi-
nation of complementary techniques, including top-k analysis to priori-
tise quorum adaptation, machine learning to determine the best quorum
configuration, and a non-blocking quorum reconfiguration protocol that
preserves consistency during reconfiguration. This work helped us to
devise the on-line reconfiguration protocols integrated in SATURN and
presented in this dissertation.

• In [21], we study how different state dissemination techniques, such as
state transfer or operation transfer, have an impact in throughput, net-
work traffic and remote visibility latency in causally consistent systems.
We built a system, namely Bendy, that automatically adapts between
these techniques based on the application needs and the observed system
configuration, such that the best approach is used at each point in time.
Specifically, this work helped us to better understand how increases in
remote visibility latency have an impact in other performance aspects of
the system.
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6.4 Future work
We see several interesting directions for future work. All this promising direc-
tions have as starting point the lessons learnt when designing and developing
SATURN.

6.4.1 Supporting stronger semantics

Our plan is to investigate how to add stronger semantics to SATURN. Specifi-
cally, we are interesting in designing protocols to support transactional causal
consistency [7] (TCC), the strongest possible semantics that an always-available
distributed system can provide.

A TCC system offers a transactional interface, in which developers can
modelled their applications by defining a set of multi-key operations. Each
of these multi-key operations, or transactions, combines read and write opera-
tions. A TCC system guarantees that:

1. Transactions read from a causally consistent snapshot. A snapshot S is
causally consistent iff for any two object versions xi, yj ∈ S where x,
y are the object identifiers and i, j are the versions, @xk such that xk

causally precedes yj and causally follows xi (denoted as xi  xk  
yj). In other words, transactions read from a snapshot of the database
system that includes the effects of all transactions that causally precede
it. This guarantee simplifies the development of applications. For in-
stance, in the context of social networks, imagine that Alice—a user—
has a photo album which is public to everyone. Let us assume that the
permissions are stored under a different key that the album and its pho-
tos. She decides to change the visibility of the album to friends-only,
and only then to add new (private) photos. A system that does not sup-
port causally consistent snapshot reads may return (after two sequential
single-key reads) the new (private) photos to a user Bob that it is no
friend of Alice by allowing reading the old permissions and the new
state of the album. Under TCC, this is not possible if both keys are read
in the same transaction. Thus, Bob would either read the old permis-
sions and the public photos, or the new permission, being unable to have
access to Alice’s album.

2. All updates composing a transaction occur and are made visible simulta-
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neously, ensuring read atomicity [17]. This property is instrumental for
ensuring state transitions consistently with respect to certain invariants
such as foreign key constrains to represent relationships between data
records, secondary indexing to optimize location of partitioned data by
attributes, and the maintenance of materialized views.

We plan to integrate these guarantees to SATURN. The goal is to design
transactional protocols that add negligible performance overhead. A specially
important requirement is that read-only transactions are latency-optimal [73],
given the tight latency requirements of cloud services—in which a single read
request may fork into thousand of sub-requests [6]; and the negative impact in
user engagement and revenue that slight increases in latency carries [46, 89].

6.4.2 Moving towards edge computing

Our plan is to investigate the design of replication protocols to ensure causal
consistency on edge networks. The goal is to help developers to program the
edge.

Edge computing [83, 79, 27] is a promising computing paradigm which
aims at (i) reducing end-user latency, (ii) enhancing scalability, and (iii) enable
applications that are latency-sensitive and resource-eiger, such as augmented
reality applications [84, 95], by performing data processing at nodes situated
at the logical extreme of a network (closer to end-users). An edge network
therefore is composed by a set of heterogeneous computing nodes; e.g., points-
of-presence, mobile devices, datacenters, and more.

Unlike cloud networks where nodes are resourceful, almost never-failing
datacenters, ensuring consistency on edge networks is more challenging: one
can expect a large number of nodes, some of which may be severely resource-
constrained; nodes may join and leave constant and unexpectedly (high churn);
and privacy, security and data integrity issues are a major concern.

To address this challenge we plan to leverage our experience based on
building SATURN, which has the following properties that are useful in this
context:

• Saturn keeps the metadata size small a constant independently of the sys-
tem’s scale to optimize throughput while simultaneously optimizing re-
mote visibility latencies by using a tree-based dissemination technique.
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This is paramount on edge networks as the number of nodes is expected
to be large and therefore the metadata size cannot be proportional to the
number of nodes.

• Saturn implements genuine partial replication, the most scalable form
of partial replication. Adopting partial replication is inevitable in edge
computing, given that some edge nodes are typically resource-constrained.

Nevertheless, SATURN’s design choices aimed at a smaller set of stable
datacenters, and need to be revised to operate in edge networks. We outline a
few problems:

• First, the tree-based dissemination is key in SATURN to ensure genuine-
ness and to optimize remote visibility latency while keeping the meta-
data small and constant. Nevertheless, SATURN’s mechanism for build-
ing the tree, as discussed in the previous section, has been designed for
a handful set of datacenters and will not scale well. We need to envision
new ways of building the tree, even if this means finding a suboptimal
tree.

• Second, the on-line reconfiguration in SATURN implies rebuilding the
whole tree, disrupting end-users, under the assumption that reconfigura-
tion happens very rarely. We need mechanisms to add and remove nodes
disrupting the minimum possible the rest of the system; e.g., by applying
local changes to the tree, involving a minimum number of nodes. This is
paramount when placing replicas in client devices (mobile phones), as
one can expect a high churn.

• Third, we need to strengthen SATURN’s fault tolerant mechanisms. In
SATURN, the tree is made resilient by replicating (leveraging chain-
replication [100]) each tree node. We plan to explore alternative (and
more resilient) topologies such a graph with cycles or overlapping trees.
This nonetheless would require maintaining extra metadata in the nodes
of the topology, causing an extra storage and processing overhead.

• Fourth, in a deployment in which user devices—e.g., mobile phones—
are part of the edge network, we need to find solutions to guarantee
security, privacy and integrity.
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• Fifth, nodes may leave unexpectedly (specially when considering user
devices as edge components), and with them, updates that have not yet
been propagated to other nodes. Thus, we will need to ensure that an
update has been replicated in multiple nodes (or at least in some “stable”
node) before letting other clients depend on it. Otherwise, clients may
be blocked forever or have to restart their session.

We plan to first address a simpler problem in which we assume that edge
devices are points-of-presence controlled by the services’ providers with simi-
lar guarantees than datacenters but less resources. This simplifies the problem
by making the third, fourth and fifth points less critical and less challenging.
The plan is to eventually devise a solution that also considers end-user devices;
e.g., smartphones or tablets, as edge devices. This is a more challenging set-
ting, as the total number of nodes will increase significantly, as well as the
churn rate (the rate in which nodes join and leave) and the security, privacy
and integrity concerns.

6.4.3 Coping with composed services

Modern cloud services are increasingly built on top of multiple subsystems:
storage systems, monitoring systems, processing systems; in an effort to make
cloud services modular, and therefore easier to maintain and optimize. Inter-
estingly, even if each of the subsystems ensures causal consistency, or stronger
consistency criteria such as linearizability, consistency violations may still oc-
cur [104]. Thus, current solutions, which are designed assuming a single repli-
cated system (usually a geo-replicated storage system)1, must be revisited.

Our plan is to investigate how the ideas behind SATURN can be useful to
address the problem of ensuring causal consistency for composed services. We
believe SATURN is a good starting point: (i) it decouples the management of
consistency from other concerns (by decoupling metadata from data dissemi-
nation), a key characteristic that a solution for composed services should have;
(ii) it efficiently supports partial replication, key in composed services as not
all subsystems will necessarily interact with all other subsystems. Neverthe-
less, we identify new challenges unaddressed in this thesis.

1Except Kronos [51] that, as SATURN, decouples the metadata from the data management.
Nevertheless, Kronos, unless SATURN, is centralized, imposing high latencies in geo-replicated
settings.
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First, in our work, we assume that the replication groups of each key are
known by the metadata service in order to ensure genuineness. Even when
this is not ensured, our solution ensures progress (but not genuineness) under
the assumption that a receiver datacenter can discard labels corresponding to
data items that are not replicated locally. These assumptions are too strong
for composed services. In these settings, one may not know a priori which
subsystems an event may reach. Note that if a subsystem replica receives a
label, whose corresponding payload is not meant to be received, this is blocked
forever (being unable to install remote operations), unless the label is ignored.

Second, events originating at a source subsystem replica may fork and
mutate throughout the way before reaching one of its final destinations. For
instance, a user of a social network Alice that writes a private message to a
second user Bob. This event needs to (i) be stored in the local replica of the
geo-replicated storage system; (ii) be replicated to possibly a subset of the
storage system replicas; and (iii) mutate into a notification event that is han-
dled by the notification service replica in charge of notifying Bob. We believe
this type of scenarios bring challenges in the consistency management—e.g.,
identification and timestamping of events—unsolved by our work.

6.5 Final remarks

In this thesis, we have investigated the tradeoff inherent to causally consis-
tent replicated data services between throughput and remote visibility latency
derived from the granularity in which causal dependencies are tracked. We
have studied its impact not only under full replication, which assumes that the
application state is fully replicated at all datacenters, but also under partial
replication, a more challenging setting that it is gaining prominence.

We have proposed a set of techniques and mechanisms that combined en-
able data services to upgrade their consistency guarantees to causal consis-
tency. The key proposed technique of this thesis is a novel metadata dissemina-
tion service. This service leverages a set of metadata brokers, geographically
distributed and organized in a tree topology to disseminate causal metadata
among datacenters. This permits solutions to ensure genuine partial replica-
tion; and to optimize remote visibility latency while using small and constant
pieces of metadata—independently of the system’s scale—imperative to avoid
impairing throughput. Furthermore, we advocate decoupling metadata dissem-



108 CHAPTER 6. CONCLUSION

ination from the data dissemination, which is key to enhance composability
and to make metadata brokers as light as possible. Finally, the metadata dis-
semination service requires to be notified by each datacenter of a total order,
consistent with causality, of the updates issued locally. In this thesis, we have
studied the integration into our architecture of metadata serialization services
able to achieve this goal very efficiently by operating out of clients’ critical op-
erational path. Concretely, we have demonstrated how to integrate an existing
metadata serialization service, namely Eunomia, with the metadata dissemina-
tion service and the rest of the intra-datacenter components.

We have presented our prototype, namely SATURN, a distributed meta-
data service that integrates all the mentioned techniques. Among many experi-
ments evaluating each of the techniques individually, we have shown that SAT-
URN, when attached to a data service, exhibits a throughput comparable (only
2% overhead on average) to systems providing almost no consistency guaran-
tees. At the same time, SATURN mitigates the impact of false dependencies—
unavoidably introduced when compressing metadata—by relying on a meta-
data dissemination service that can be configured to match optimal remote
visibility latencies. These results confirm that the techniques proposed are ef-
fective.
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