Concepts, Techniques, and Models
of Computer Programming

with Practical Applications in
Distributed Computing and Intelligent Agents

PETER VAN ROY!
Université catholique de Louvain, Belgium
Swedish Institute of Computer Science, Sweden

SEIF HARIDI?
Royal Institute of Technology (KTH), Sweden
Swedish Institute of Computer Science, Sweden

June 10, 2002

'Email: pvr@info.ucl.ac.be, Web: http://www.info.ucl.ac.be/ pvr
’Email: seif@it.kth.se, Web: http://www.it.kth.se/ seif

WARNING

THIS MATERIAL IS

CHANGING RAPIDLY AND

SHOULD NOT BE TAKEN

AS DEFINITIVE

ALL COMMENTS WELCOME

Copyright (©) 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

Contents

List of Figures XV
List of Tables xxi
Abstract xxiii
Preface XXV
I Introduction 1
1 Introduction to Programming Concepts 3
1.1 Acalculator 3
1.2 Important information about Mozart 4
1.3 Variables 4
1.4 Functions)
1.5 Lists 7
1.6 Functions over lists 9
1.7 Correctness 11
1.8 Complexity 12
1.9 Lazy evaluation Lo 14
1.10 Higher-order programming 15
1.11 Concurrency o v oo 17
1.12 Dataflow 17
1.13 State 18
1.14 Objects 19
115 Classes o v o e 20
1.16 Nondeterminism and time 21
1.17 Atomicity 23
1.18 Where do we go from here 24
1.19 Exercises 24

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

II General Computation Models 29
2 Declarative Computation Model 31
2.1 Defining practical programming languages 32
2.1.1 Language syntax 33
2.1.2 Language semanticso 38

2.2 The single-assignment store oo 44
2.2.1 Declarative variables 45
222 Valuestore 45
2.2.3 Variable-value binding 46
2.2.4 Variable identifiers 0oL 46
2.2.5 Variable-value binding revisited 47
2.2.6 Partial values oo 49
2.2.7 Variable-variable binding 49
2.2.8 Dataflow variables 50

2.3 Kernel language syntaxo 0oL 51
2.3.1 Statements Lo 51
2.3.2 Variable identifierso 51
2.3.3 Valuesand types L. 52
2.3.4 Basictypes 54
2.3.5 Basic operations L. 55

2.4 Kernel language semantics b7
2.4.1 Basicconcepts.o 57
2.4.2 The abstract machine 61
2.4.3 Non-suspending statements 63
2.4.4 Suspending statements 66
2.4.5 Basic concepts revisitedo 68
2.4.6 Last call optimization 73
2.4.7 Active memory and memory management 74

2.5 Practical matters 76
2.5.1 From kernel syntax to full syntax 7
2.5.2 Interactive interface (the declare statement) 81
2.5.3 Functions (the fun statement) 84

2.6 Exceptions 86
2.6.1 Motivation and basic concepts 87
2.6.2 The declarative model with exceptions 89
2.6.3 Fullsyntax 90
2.6.4 System exceptions 92

2.7 Advanced topics 93
2.7.1 Functional programming languages 93
2.7.2 Unification and entailment 95
2.7.3 Dynamic and static typing 101
2.7.4 Exceptions and declarativeness 103

2.8 Exercises 103

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

3.2

3.3

3.4

3.5

3.6

3.7

3.8

@0013 Declarative Programming Techniques 109
What is declarativeness? L. 112
3.1.1 A classification of declarative programming 113
3.1.2 Specification languages 114
3.1.3 Implementing components in the declarative model 115
Iterative computation 116
3.2.1 General schema, 116
3.2.2 [Tteration with numbers 117
3.2.3 Using local procedures 118
3.2.4 From general schema to control abstraction 120
Recursive computation 122
3.3.1 Growing stack size, 123
3.3.2 Substitution-based abstract machine 124
3.3.3 Converting a recursive to an iterative computation 125
Programming with recursion 125
3.4.1 Typenotation oL 126
3.4.2 Basic list techniques 127
3.4.3 Accumulators 136
3.4.4 Difference lists oL 139
345 Trees e 145
3.4.6 Drawing trees Lo 152
3.4.7 Parsingo 155
Time and space efficiency 160
3.5.1 Execution time 160
3.5.2 Memory usage 166
Higher-order programming 168
3.6.1 Basic operations L. 168
3.6.2 Loop abstractions 174
3.6.3 Linguistic support for loops 179
3.6.4 Data-driven techniques 181
3.6.5 Explicit lazy evaluation 184
3.6.6 Currying 185
Abstract data types 186
3.7.1 A declarative dictionary 187
3.7.2 Using the declarative dictionary 191
3.7.3 Secure abstract data types 192
3.7.4 The declarative model with secure types 194
3.7.5 A secure declarative dictionary 198
3.7.6 The principle of independence 199
3.7.7 Capabilities and security 200
Nondeclarative needs oo 201
3.8.1 Programming with exceptions 202
3.8.2 Text input/output with a file 204
3.8.3 Text input/output with a graphic user interface 205

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

3.8.4 Stateless data input/output with files 209

3.9 Large-scale program structure 211
3.9.1 Modules and functors 211
3.9.2 Constructing functors and modules 213
3.9.3 Library modules. 0oL 215
3.9.4 Standalone compilation L. 216
3.9.5 Example of a standalone application 217

3.10 More on efficiency Lo 220
3.10.1 Reflections on optimization 220
3.10.2 Memory management 221
3.10.3 Garbage collection is not magic 224

3.11 Exercises 225
4 Declarative Concurrency 229
4.1 The data-driven concurrent model 232
4.1.1 Basicconcepts. 232
4.1.2 Semantics of threads 235
4.1.3 Example execution 238

4.2 Basic thread programming techniques 239
4.2.1 Creating threads 239
4.2.2 'Threads and the browser 239
4.2.3 Dataflow computation with threads 240
4.2.4 Cooperative and competitive concurrency 244
4.2.5 'Thread scheduling 245
4.2.6 Operations on threads 247

4.3 Streams 248
4.3.1 Basic producer/consumer 249
4.3.2 Transducers and pipelines 251
4.3.3 Managing resources and improving throughput 253
4.3.4 Stream objects 257
4.3.5 Digital logic simulation 258

4.4 Other programming techniques 264
4.4.1 Order-determining concurrency 264
4.4.2 Coroutineso 266
4.4.3 Concurrent composition 267

4.5 Lazy execution o 269
4.5.1 The demand-driven concurrent model 272
4.5.2 Reductionorder 277
4.5.3 Lagy streams 279
4.5.4 Bounded buffer L 281
4.5.5 Lazy readingofafile 283
4.5.6 The Hamming problem 284
4.5.7 List operations L 285
4.5.8 List comprehensions 288

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

vil

4.6 Soft real-time programmingo 290
4.6.1 Basicoperations 290
4.6.2 Ticking 292

4.7 Limitations and extensions of declarative programming 295
4.7.1 Efficiency 295
4.7.2 Modularity 296
4.7.3 Nondeterminism 300
4.7.4 Interfacing with the real world 303
4.7.5 Picking the right model 303
4.76 Extended models 304
4.7.7 Using different models together 306

4.8 Advanced topics 307
4.8.1 Kinds of nondeterminism 307
4.8.2 The declarative concurrent model with exceptions 309
4.8.3 The model’s “systolic” character. 311
4.8.4 Synchronization 311

4.9 EXercises 316

5 Explicit State 323

5.1 Whatisstate? 326
5.1.1 Implicit (declarative) state 326
5.1.2 Explicit state Lo 327

5.2 State and system buildingo 328
5.2.1 System properties L. 329
5.2.2 Component-based programming 330
5.2.3 Object-oriented programming 330

5.3 The declarative model with explicit state 331
53.1 Cells 331
5.3.2 Semanticsofcells 333
5.3.3 Relation to declarative programming 334

5.4 Abstract data types Lo 336
5.4.1 Eight ways to organize ADTs 337
5.4.2 Variationsonastack 338
5.4.3 Controlled security 343
5.4.4 Parameter passing oL 344

5.5 Some stateful data typeso 349
5.5.1 Tterators o 349
5.5.2 Indexed collections 349
5.5.3 Choosing a collection 351

5.6 Reasoning with state 354
5.6.1 Invariant assertions 395
5.6.2 Exampleo 356
5.6.3 Assertions 358
5.6.4 Proofrules. 359

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

5.6.5 Normal termination 362

5.7 Component-based programming and system design 363
5.7.1 Components in general 365
5.7.2 System decomposition and computation models 365
5.7.3 What happens at the interface 366
5.7.4 System structure 371
5.7.5 Development methodology 373
5.7.6 Maintainable systems 375

5.8 Casestudies L 377
5.8.1 Transitive closure 377
5.8.2 Word frequencies (with stateful dictionary) 383
5.8.3 Generating random numbers 385
5.8.4 “Word of Mouth” simulation 389

5.9 Limitations of stateful programming 392
5.9.1 The real world is parallel 392
5.9.2 The real world is distributed 393

0.10 Exercises Lo 393
6 Object-Oriented Programming 399
6.1 Motivations L 400
6.1.1 Inheritance 400

6.1.2 Encapsulated state and inheritance 402
6.1.3 Objectsand classes 403

6.2 Classes as complete ADTs 403
6.2.1 Example 404

6.2.2 Semantics of the example 405
6.2.3 Defining classes 406
6.2.4 Initializing attributeso 408
6.2.5 First-class messages 410
6.2.6 First-class attributes 0oL 412
6.2.7 Programming techniques 413

6.3 Classes as incremental ADTs. 414
6.3.1 Inheritance L 414

6.3.2 Static and dynamic binding 0oL 416
6.3.3 Controlling encapsulation 418
6.3.4 Forwarding and delegation 423
6.3.5 Reflection 425

6.4 Programming with inheritance00 0L 428
6.4.1 The correct use of inheritance 428
6.4.2 Constructing a hierarchy by following the type 431
6.4.3 Generic classes 433
6.4.4 Multiple inheritance 436
6.4.5 Rules of thumb for multiple inheritance 442
6.4.6 The purpose of class diagrams 443

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

1X

6.4.7 Design patternso 443
Relation to other computation models 447
6.5.1 Object-based and component-based programming 447
6.5.2 Higher-order programming 447
6.5.3 Functional decomposition versus type decomposition . . . 450
6.5.4 Should everything be an object? 452
6.6 Implementing the object system 454
6.6.1 Abstraction diagram 454
6.6.2 Implementing classes 457
6.6.3 Implementing objects 458
6.6.4 Implementing inheritance 459
6.7 Exercises 459
Concurrency and State 461
7.1 The declarative model with concurrency and state 464
7.2 Programming with concurrency 465
7.2.1 Overview of the different approaches 466
7.2.2 Using the stateful concurrent model directly 469
7.3 Active objects 472
7.3.1 Example o 474
7.3.2 Communication channels and ports 474
7.3.3 Defining an active objecto 475
7.3.4 Using a class to define behavior 476
7.3.5 The Flavius Josephus problem 476
7.3.6 Making active objects synchronous 480
7.3.7 Handling exceptions 480
7.3.8 A concurrent queue with ports 481
7.3.9 Event manager with active objects 483
7.3.10 Active objects sharing one thread 487
7.3.11 A thread abstraction with termination detection 490
7.3.12 Eliminating sequential dependencies 491
7.4 Atomic actions 493
74.1 Locks 495
7.4.2 Building stateful concurrent ADTs 496
7.4.3 Tuple spaces (“Linda”) 497
7.4.4 Implementing locks 0. 503
7.4.5 Monitors 504
7.4.6 Bounded buffer 505
7.4.7 Programming with monitors 507
7.4.8 Implementing monitors 509
7.4.9 Another semantics for monitors L. 511
7.4.10 Transactions 511
7.4.11 Concurrency control 513
7.4.12 Transactionsoncells 518

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

7.4.13 Implementing transactions on cells 521
7.4.14 More on transactions L. 525

7.5 Advanced topics 526
7.5.1 Memory management 526
7.5.2 The nondeterministic concurrent model 528

7.6 Case study: a bouncing ball application. 533
7.6.1 The architecture 533
7.6.2 The program 534
7.6.3 Making a new bouncer 537
7.6.4 The ball manager 537
7.6.5 The ball active object 538
7.6.6 Animated active objects 539
7.6.7 Interface to the graphics subsystem 540
7.6.8 Making it standaloneo 541

7.7 Exercises 541
8 Relational Programming 549
8.1 The relational computation model 551
8.1.1 The choice and fail statements 551
8.1.2 Search tree 553
8.1.3 Encapsulated search 553
8.1.4 The Search module 553

8.2 Further examples 555
8.2.1 Numeric examples, 555
8.2.2 Puzzles and the n-queens problem 557
8.2.3 Lazyexecution 559

8.3 Relation to logic programming 560
8.3.1 Logic and logic programming 560
8.3.2 Operational and logical semantics 563
8.3.3 Nondeterministic logic programming 566
8.3.4 Relation to pure Prolog 567
8.3.5 Logic programming in other models 568

8.4 Natural language parsing 569
8.4.1 A simple grammar L. 570
8.4.2 Parsing with the grammar 571
8.4.3 Generating a parse tree 572
8.4.4 Generating quantifierso 572
8.4.5 Running the parser 575
8.4.6 Running the parser “backwards” 576
8.4.7 Unification grammars D76

8.5 A grammar interpretero D77
8.5.1 A simple grammar L. 578
8.5.2 Encoding the grammar 578
8.5.3 Running the grammar interpreter 579

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

xi

8.5.4 Implementing the grammar interpreter 580

.6 Databases 582
8.6.1 Defining a relation 583

8.6.2 Calculating with relations 584

8.6.3 Implementing relations 588

8.7 Exercises 589

9 Representative Languages (incomplete) 591
9.1 Erlang and concurrent programming 592
9.1.1 Computation model 592

9.1.2 The receive operation, 593

9.2 Haskell and functional programming 297
9.2.1 Computation model 597

9.3 Java and object-oriented programming 598
9.3.1 Computation model 598

9.4 Prolog and logic programming 600
9.4.1 Context 601

9.4.2 Computation model 602

9.4.3 Translating Prolog into a relational program 603

9.5 Exercises 606
III Specialized Computation Models 609
10 Graphic User Interface Programming (incomplete) 611
10.1 Declarative and procedural approaches 612
10.2 Basic concepts 614
10.2.1 Basic user interface elements 614

10.2.2 Building the user interface 615

10.2.3 Exampleo 616

10.2.4 Declarative geometry 617

10.2.5 Declarative resize behavior 619

10.2.6 Dynamic behavior of widgets 620

10.3 Case studies 621
10.3.1 A simple calendar widget 621

10.3.2 Automatic generation of user interfaces 623

10.3.3 A context-sensitive clock 627

10.4 Implementing the GUI tool 632
10.5 Exercises 632
11 Distributed Programming (incomplete) 633
11.1 The distribution model (part I) 637
11.2 Hands-on introduction, 640
11.2.1 Basic operations, 640

11.2.2 Network awareness 647

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

11.2.3 Objects and servers 649
11.2.4 Practical matters 657

11.3 The distribution model (part IT) 663
11.3.1 Global naming 666
11.3.2 Programmer support 667
11.3.3 Failure model L. 668
11.3.4 Implementation 669

11.4 Some related concepts 675
11.4.1 Parallelism o 675
11.4.2 Mobility 676

11.5 Generic client/servero 677
11.5.1 Application interface 678
11.5.2 A distributed expression evaluator 679
11.5.3 Achatroom 681

11.6 Transactional object store 686
11.6.1 Ascenario 687
11.6.2 Hands-on introduction 690
11.6.3 Application interface 694
11.6.4 Basic properties oL 696

11.7 Exercises Lo 697
12 Constraint Programming (incomplete) 699
12.1 Propagate and searcho 700
12.1.1 Basicideas 700
12.1.2 Exampleo 702
12.1.3 Executing the example 704
12.1.4 Summary 704

12.2 Programming techniques 705
12.2.1 Example problem00 705
12.2.2 Palindrome products revisited 707
12.2.3 Drawing trees revisited 708

12.3 Constraint-based computation model 713
12.3.1 Basic constraints Lo 713
12.3.2 Computation spaces 713
12.3.3 Implementing the relational computation model 720

12.4 Case study: an intelligent minesweeper 720
12.4.1 Rules of the game 721
12.4.2 The architecture and implementation 722
12.4.3 Thegame 723
12.4.4 The user interface 727
12.4.5 The digital assistant 730

12,5 Exerciseso 735

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS xiii

5\’{, Semantics 737
\6‘ QQFZ’

0 8\/0«%13 anguage Semantics 739

13.1 The stateful concurrent model 740

13.1.1 Store 740

13.1.2 Abstract syntax 741

13.1.3 Structural rules L. 742

13.1.4 Sequential and concurrent execution 743

13.1.5 Comparison with the abstract machine semantics 744

13.1.6 Variable introduction 744

13.1.7 Imposing equality (tell) 745

13.1.8 Conditional statements (ask) 748

13.1.9 Names 750

13.1.10 Procedural abstraction 750

13.1.11 Explicit state 752

13.1.12 By-need synchronization 753

13.1.13 Exception handling 758

13.1.14 Variable substitution 761

13.2 Eight computation models 762

13.3 Semantics of common abstractions 763

13.4 Historical background oo 764

13.5 Exercises oo 765

V Appendices 769

A Mozart System Development Environment 771

A.1 Interactive interface 771

A.1.1 Interface commands. 771

A.1.2 Using functors interactively 772

A.2 Batch interface 773

B Chapter Supplements 775

B.1 Chapter 1 775

B.1.1 Extensible memory store 775

B.2 Chapter3 776

B.2.1 Simple file input/output 776

B.3 Chapter 6 T

B.3.1 Simple set operations 7T

B.4 Chapter 7 778

B.4.1 Active object 778

B.4.2 Port with close operation 778

B.5 Chapter 11 779

B.5.1 Ticket distribution and distributed objects 779

B.5.2 Generic client/servero 780

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

CONTENTS

C Basic Data Types 785
C.1 Numbers (integers, floats, and characters) 785
C.1.1 Operations on numbers 787

C.1.2 Operations on characters 788

C.2 Literals (atoms and names) 789
C.2.1 Operations on atoms 790

C.3 Records and tuples 790
C3.1 Tuples 791

C.3.2 Operations on records 791

C.3.3 Operationson tuples 793

C.4 Chunks (limited records) 793
C.h Lists e 793
C.5.1 Operationson lists 794

C.6 Strings 795
C.7 Virtual strings o 796

D Language Syntax 799
D.1 Interactive statements 800
D.2 Statements and expressions 800
D.3 Nonterminals for statements and expressions 802
D.4 Operators 802
D.5 Keywords 803
D.6 Lexical syntax 805
D.6.1 Tokens 805

D.6.2 Blankspace L 806

E General Computation Model 807
E.1 Kernel language oo 808
E.2 Concepts 809
E.3 Layered language design 810

F Mozart System Particularities 813
F.1 Syntax differences L 813
F.2 Memory properties and limitations 814
F.21 Memoryuse 814

F.2.2 Memoryleaks 815

F.3 Numeric limitations 819
F.4 Distribution limitations and modifications 819
F.4.1 Performance limitations 820

F.4.2 Functionality limitations 820

F.4.3 Modification 821
Bibliography 822
Index 836

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

List of Figures

1.1
1.2
1.3
1.4
1.5

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11
2.12
2.13
2.14
2.15
2.16
2.17
2.18
2.19
2.20
2.21
2.22

3.1
3.2
3.3
3.4
3.5
3.6

Taking apart the list [5 6 7 8 8
Calculating the fifth row of Pascal’s triangle 9
A simple example of dataflow execution 18
All possible executions of the first nondeterministic example . . . 21
One possible execution of the second nondeterministic example . . 22
From characters to statements 33
The context-free approach to language syntax 35
Ambiguity in a context-free grammar L. 36
The kernel language approach to semantics 39
Translation approaches to language semantics 43
A single-assignment store with three unbound variables 44
Two of the variables are bound to values 44
A value store: all variables are bound to values 45
A variable identifier referring to an unbound variable 46
A variable identifier referring to a bound variable 47
A variable identifier referring to a value 47
A partial value 48
A partial value with no unbound variables, i.e., a complete value . 48
Two variables bound together 49
The store after binding one of the variables 49
The type hierarchy of the declarative model 53
The declarative computation model 61
The memory use cycle 75
Declaring global variables 81
The Browser 83
Exception handling oL 87
Unification of cyclic structures 97
A declarative operation inside a general computation 110
Structure of the chapter 111
A classification of declarative programming 112
Finding roots using Newton’s method (first version) 117
Finding roots using Newton’s method (second version) 119
Finding roots using Newton’s method (third version) 119

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES

3.7 Finding roots using Newton’s method (fourth version)
3.8 Finding roots using Newton’s method (fifth version)
3.9 Sorting with mergesort o
3.10 Control flow with threaded state
3.11 Deleting node Y when one subtree is a leaf (easy case)
3.12 Deleting node Y when neither subtree is a leaf (hard case)

3.13 Breadth-first traversal 0oL
3.14 Breadth-first traversal with accumulator
3.15 Depth-first traversal with explicit stack
3.16 The tree drawing constraints
3.17 Anexample treeo
3.18 Tree drawing algorithm
3.19 The example tree displayed with the tree drawing algorithm

3.20 Delayed execution of a procedure value
3.21 Defining an integer loopo
3.22 Defining a list loopo
3.23 Simple loops over integers and lists
3.24 Defining accumulator loopso
3.25 Accumulator loops over integers and lists
3.26 Folding alisto
3.27 Declarative dictionary (with linear list)
3.28 Declarative dictionary (with ordered binary tree)
3.29 Word frequencies (with declarative dictionary)
3.30 Internal structure of binary tree dictionary in WordFreq (partial)
3.31 Doing S1={Pop S X} with a secure stack
3.32 A simple graphical I/O interface for text
3.33 Screen shot of the word frequency application
3.34 Standalone dictionary library (file Dict.oz)
3.35 Standalone word frequency application (file WordApp.oz)

4.1 The declarative concurrent model
4.2 Causal orders of sequential and concurrent executions
4.3 Relationship between causal order and interleaving executions

4.4 Execution of the thread statement
4.5 A concurrent map functiono
4.6 A concurrent Fibonacci function
4.7 Thread creations for the call {Fib 6}
4.8 The Oz Panel showing thread creation in {Fib 26 X}
4.9 Dataflow and rubber bands 0L
4.10 Cooperative and competitive concurrency
4.11 Operations on threads
4.12 Producer-consumer stream communication
4.13 Filtering a streamo
4.14 A prime-number sieve with streams

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES xvii

Pipeline of filters generated by {Sieve Xs 316} 253
Bounded buffer (illustration) 254
Bounded buffer (data-driven concurrent version) 255
Digital logic gates oo 259
Afulladder 261
Alatch 262
Tree drawing algorithm with order-determining concurrency . . . 265
Procedures, coroutines, and threads 267
Concurrent composition L. 269
Different models for declarative programming 271
The by-need protocol 274
Bounded buffer (naive lazy version) 281
Bounded buffer (correct lazy version) 282
Lazy solution to the Hamming problem 284
A simple ‘Ping Pong’ program 291
A standalone ‘Ping Pong’ program 292
A standalone ‘Ping Pong’ program that exits cleanly 293
Changes needed for instrumenting procedure P1 298
How can two clients send to the same server? They cannot! 300
Impedance matching: example of a serializer 306
5.1 The declarative model with explicit state 331
5.2 Five ways to package astack 339
5.3 Four versions of a secure stack 339
5.4 Different varieties of indexed collections 351
5.5 Extensible array implementation 353
5.6 An application structured as a hierarchical graph 364
5.7 Example of interfacing different execution models 367
5.8 Application structure — static and dynamic 371
5.9 A directed graph and its transitive closure 377
5.10 One step in the transitive closure algorithm 377
5.11 Transitive closure (first declarative version) 379
5.12 Transitive closure (stateful version) 381
5.13 Transitive closure (second declarative version) 381
5.14 Word frequencies (with stateful dictionary) 384
6.1 An example class Counter (with class syntax) 404
6.2 Defining the Counter class (without syntactic support) 405
6.3 Creating a Counter object, 405
6.4 Illegal and legal class hierarchies 414
6.5 An example class Account L. 416
6.6 The meaning of “private” 419
6.7 Different ways to extend functionality 423
6.8 A simple hierarchy with three classes 429

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES

6.9 Constructing a hierarchy by following the type 431
6.10 Lists in object-oriented style 432
6.11 A generic sorting class (with inheritance) 433
6.12 Making it concrete (with inheritance) 434
6.13 A class hierarchy for genericity 434
6.14 A generic sorting class (with higher-order programming) 435
6.15 Making it concrete (with higher-order programming) 436
6.16 Class diagram of the graphics package 438
6.17 Drawing in the graphics package 439
6.18 Class diagram with an association 441
6.19 The Composite pattern 444
6.20 Functional decomposition versus type decomposition 451
6.21 Abstractions in object-oriented programming 456
6.22 An example class Counter (again) 456
6.23 An example of class construction 457
6.24 An example of object construction 458
6.25 Implementing inheritanceo 459
7.1 The declarative model with concurrency and state 464
7.2 Different approaches to concurrent programming 466
7.3 Concurrent stack oo 470
74 Coroutines 470
7.5 Two active objects playing ball (definition) 473
7.6 Two active objects playing ball (illustration) 473
7.7 The Flavius Josephus problem 477
7.8 The Flavius Josephus problem (active object version) 478
7.9 The Flavius Josephus problem (data-driven concurrent version) . 479
7.10 Queue (naive version with ports) 481
7.11 Queue (correct version with ports) 483
7.12 Event manager with active objects 484
7.13 Adding functionality with inheritance 485
7.14 Batching a list of messages and procedures 485
7.15 Active objects sharing one thread 488
7.16 Screenshot of the ‘Ping-Pong’ program 488
7.17 The ‘Ping-Pong’ program: active objects in one thread 489
7.18 A thread abstraction with termination detection 491
7.19 A concurrent filter without sequential dependencies 492
7.20 The hierarchy of atomic actions 493
7.21 Differences between atomic actions 494
7.22 Queue (declarative version) 496
7.23 Queue (sequential stateful version) 497
7.24 Queue (stateful concurrent version with lock) 498

7.25 Queue
7.26 Queue

concurrent object-oriented version with lock) 499
stateful concurrent version with exchange) 500

N N N N

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES

xXix

Tuple space (object-oriented version) 501
Lock (non-reentrant version without exception handling) 502
Lock (non-reentrant version with exception handling) 502
Lock (reentrant version with exception handling) 503
Bounded buffer (monitor version) 508
Monitor implementation 510
Architecture of the transaction implementation 521
Implementation of the transaction manager (part 1) 522
Implementation of the transaction manager (part 2) 523
Priority queueo 525
Connecting two clients using a stream merger 530
Implementing nondeterministic choice (naive version) 932
Implementing nondeterministic choice (full version) 933
A bouncing ball application 534
Architecture of the bouncing ball application 535
Outline of the bouncer program 536
8.1 Search tree for the clothing design example 552
8.2 Two digit counting with depth-first search 555
8.3 The n-queens problem (whenn=4) 557
8.4 Solving the n-queens problem with relational programming 558
8.5 Natural language parsing (simple nonterminals) 573
8.6 Natural language parsing (compound nonterminals) 574
8.7 Encoding of a grammar 580
8.8 Implementing the grammar interpreter 581
8.9 Asimplegrapho 584
8.10 Pathsinagraph, 586
8.11 Implementing relations (with first-argument indexing) 587
9.1 Translation of receive without timeout 595
9.2 Translation of receive with timeout 596
9.3 Translation of receive with zero timeout 597
10.1 Building the user interface 615
10.2 Simple text entry window 616
10.3 Function for doing text entryo 616
10.4 Windows generated with the Ir and td widgets 617
10.5 Window generated with newline and continue codes 617
10.6 Declarative resize behavioro 619
10.7 Window generated with the glue parameter 619
10.8 A simple calendar widget 622
10.9 Automatic generation of user interfaces 624
10.10From the original data to the user interface 625
10.11Architecture of the context-sensitive clock 628
10.12Three views of FlexClock 629

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF FIGURES

10.13View definitions for context-sensitive clock
10.14The best view for any size clock window

11.1 The challenge: simplifying distributed programming
11.2 A simple taxonomy of distributed systems
11.3 The distributed computation model
11.4 Site-oriented view of the distribution model
11.5 Distributed locking o
11.6 The advantages of asynchronous objects with dataflow
11.7 Graph notation for a distributed cell
11.8 Moving the state pointer
11.9 Graph notation for a distributed dataflow variable
11.10Binding a distributed dataflow variable
11.11Generic client/server Lo
11.12A distributed expression evaluator
11.13Architecture of the chat room application.
11.14The original ChatServer class
11.15The original ChatClient class
11.16The client functor
11.17The server functor oL
11.18A collaborative graphic editor

12.1 Constraint definition of Send-More-Money puzzle
12.2 Tree drawing algorithm with constraint programming
12.3 Constraint-based computation model
12.4 Visibility of variables and bindings in nested spaces
12.5 Communication between a space and its distribution strategy . . .
12.6 Depth-first single solution search
12.7 The minesweeper application
12.8 Architecture of the minesweeper application
12.9 An example for the value of G.field
12.10The class Gamewhich implements the game
12.11The state diagram of a GameStatus object
12.12The class GameStatus which implements a game monitor

12.13Implementation of the graphical user interface
12.14Creation of a new game
12.15Making a single square L
12.16The application functor
12.17The Switchable class
12.18The implementation of an automatic playing agent
12.19The implementation of an agent propagating knowledge

13.1 The kernel language of the stateful concurrent model

C.1 Graph representation of the infinite list C1l=ab|C1

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

List of Tables

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4
3.5
3.6
3.7

4.1
4.2
4.3
4.4
4.5

0.1
0.2

6.1

7.1
7.2

8.1
8.2

The declarative kernel language o1
Value expressions in the declarative kernel language 52
Basic operations 55
Expressions for calculating with numbers 78
The if statement oo 79
The case statement, 79
Interactive statementso 81
Functions 84
The declarative kernel language with exceptions 89
Exceptions 90
Equality (unification) and equality test (entailment check) 95
A descriptive declarative kernel language 113
The parser’s input language (which is a token sequence) 157
The parser’s output language (which is a tree) 158
Execution times of kernel instructions 162
Memory consumption of kernel instructions 167
The declarative kernel language with secure types 194
Functors 211
The data-driven concurrent kernel language 233
The demand-driven concurrent kernel language. 273
The declarative concurrent kernel language with exceptions 310
Correspondence between variable and communication channel . . 311
Classifying synchronization 312
The kernel language with explicit state 332
Cell operations 332
Classes o o o 407
The kernel language with concurrency and state 465
The concurrent kernel language with nondeterministic choice . . . 529
The relational kernel language 551
Translating a relational program to logic 564

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

LIST OF TABLES

8.3 The extended relational kernel language 588
11.1 Distributed algorithms 671
12.1 Primitive operations for computation spaces 717
12.2 The choice statement 718
12.3 The dis statement 719
13.1 Eight computation models 762
C.1 Characters (lexical syntaz) 786
C.2 Operations on numbers 787
C.3 Some character operations 788
C.4 Literals e 788
C.5 Atoms (lexical syntazx) 789
C.6 Some atom operations 790
C.7 Records and tuples 790
C.8 Some record operations L 792
C.9 Some tuple operations 793
CA0 Lists o o 793
C.11 Some list operations 795
C.12 Strings (lezical syntax) 796
C.13 Some virtual string operations 797
D.1 Interactive statements 800
D.2 Statements and expressions 800
D.3 Nestable constructs (no declarations) 801
D.4 Nestable declarations 801
D.5 Terms and patterns 802
D.6 Other nonterminals needed for statements and expressions 803
D.7 Operators with precedence and associativity 804
D.8 Keywords 804
D.9 Lexical syntax of variables, atoms, strings, and characters 805
D.10 Nonterminals needed for lexical syntax 805
D.11 Lexical syntax of integers and floating point numbers 806
E.1 The general kernel language 808

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

Abstract

This book gives a broad and deep view of practical computer programming as
a unified engineering discipline based on a sound scientific foundation. It brings
the student a comprehensive and up-to-date presentation of all major program-
ming concepts and techniques. The concepts and techniques are organized into
computation models, a precise concept that captures the intuition of programming
paradigms. The models are situated in a uniform framework with a complete and
simple formal semantics that allows programmers to reason about correctness and
efficiency. We examine the relationships between the models and show how and
why to use different models together in the same program.

The simplest computation model covers the domain of declarative program-
ming, which includes deterministic logic programming and strict functional pro-
gramming. We add concurrency, leading to dataflow, streams, declarative con-
currency, lazy execution, and coroutining. We add a nondeterministic choice
operator, leading to search and nondeterministic logic programming. We add ex-
plicit state, leading to component-based programming, and inheritance, leading
to object-oriented programming. Together with concurrency, this leads to ac-
tive objects and atomic actions. We explain the models of the languages Erlang,
Haskell, Java, and Prolog. We then present three specialized models of intrinsic
interest, for user interface programming, dependable distributed programming,
and constraint programming.

The book is suitable for undergraduate and graduate courses in programming
techniques, programming models, constraint programming, distributed program-
ming, and semantics. It emphasizes scalable techniques useful in real programs.
All models are fully implemented for practical programming. There is an accom-
panying Open Source software development package, the Mozart Programming
System, that can run all the program fragments in the text.

The book and software package are the fruits of a research collaboration by
the Mozart Consortium, which groups the Swedish Institute of Computer Science
(SICS) in Stockholm, Sweden, the Universitdt des Saarlandes in Saarbriicken,
Germany, the Université catholique de Louvain (UCL) in Louvain-la-Neuve, Bel-
gium, and related institutions. Peter Van Roy is professor in the Department of
Computing Science and Engineering (INGI) at UCL and part-time SICS member.
Seif Haridi is professor in the Department of Microelectronics and Information
Technology (IMIT) at the Royal Institute of Technology (KTH), Stockholm, and
SICS chief scientific advisor.

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

Preface

Six blind sages were shown an elephant and met to discuss their
experience. “It’s wonderful,” said the first, “an elephant is like a
snake: slender and flexible.” “No, no, not at all,” said the second, “an
elephant is like a tree: sturdily planted on the ground.” “Marvelous,”
said the third, “an elephant is like a wall.” “Incredible,” said the
fourth, “an elephant is a tube filled with water.” “What a strange
and piecemeal beast this is,” said the fifth. “Strange indeed,” said
the sixth, “but there must be some underlying harmony. Let us
investigate the matter further.”

— Freely adapted from a traditional fable.

One approach to study computer programming is to study programming lan-
guages. But there are a tremendously large number of languages, so large that it
is impractical to study them all. How can we tackle this immensity? We could
pick a small number of languages that are representative of different programming
paradigms. But this gives little insight into programming as a unified discipline.
This book uses another approach.

We focus on programming concepts and the techniques to use them, not on
programming languages. The concepts are organized in terms of computation
models. A computation model consists of a set of data types, operations on them,
and a language to write programs that use these operations. The term compu-
tation model makes precise the imprecise notion of “programming paradigm”.
The rest of the book talks about computation models and not programming
paradigms.

Each computation model has its own set of techniques for programming and
reasoning about programs. The number of different computation models that are
known to be useful is much smaller than the number of programming languages.
This book covers many widely-used models as well as some less-used models. The
main criterium for presenting a model is whether it is useful in practice.

Each computation model is based on a simple core language called its kernel
language. The kernel languages are introduced in a progressive way, by adding
concepts one by one. This lets us show the deep relationships between the dif-
ferent models. It also lets us use different models together in the same program.
This is usually called multiparadigm programming. It is quite natural, since it
means simply to use the right concepts for the problem, independent of what

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE

computation model they originate from. Multiparadigm programming is an old
idea. For example, the designers of Lisp and Scheme have long advocated a sim-
ilar view. However, this book applies it in a much broader and deeper way than
was previously done.

When stepping from one model to the next, how do we decide on what con-
cepts to add to its kernel language? We will touch on this question many times
in the book. One criterium is that adding a concept lets us write programs that
are simpler and have a better structure. Another criterium is expressiveness. Of-
ten, just adding one new concept makes a world of difference in programming.
For example, adding mutable variables (explicit state) to functional programming
allows to do object-oriented programming.

From the vantage point of computation models, the book also sheds new light
on important problems in computer science. We present three such areas, namely
graphic user interface design, robust distributed programming, and intelligent
agents. We show how the judicious combined use of several computation models
can help solve some of the difficult problems of these areas.

Languages mentioned

We mention many programming languages in the book and relate them to par-
ticular computation models. For example, Java and Smalltalk are based on an
object-oriented model. Haskell and Standard ML are based on a functional mod-
el. Prolog and Mercury are based on a logic model. Not all interesting languages
can be so classified. We mention some other languages for their own merits. For
example, Lisp and Scheme pioneered many of the concepts presented here. Er-
lang is functional, inherently concurrent, and supports fault tolerant distributed
programming.

We single out four languages as representatives of important computation
models: Erlang, Haskell, Java, and Prolog. We identify the computation model
of each language in terms of the book’s uniform framework. For more information
about them we refer readers to other books. Because of space limitations, we are
not able to mention all interesting languages. Omission of a language does not
imply any kind of value judgement.

Related books

Among programming books, the book by Abelson & Sussman [2; 3] is the closest
in spirit to ours. It covers functional programming, imperative (i.e., stateful)
programming, and introduces objects, concurrency, and logic programming. The
present book goes deeper into concurrency and nondeterminism, objects and in-
heritance, and also covers components, dataflow execution, distributed program-
ming, constraint programming, and user interface design. It gives a uniform for-
mal semantics for most of these models, thus putting them on a solid foundation.
The semantics is carefully designed to allow reasoning about both correctness and
complexity. The focus of the two books is different: the present book emphasizes

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE XXVii

ﬁs'\x&he relationships between the computation models and practical techniques in

‘ @Q‘B% odels while Abelson & Sussman emphasizes designing language features

O&\@\Q\ and building interpreters and virtual machines for them.
N

Goals of the book

Programming as an engineering discipline

The main goal of the book is to teach programming as a true engineering disci-
pline. An engineering discipline consists of two parts: a technology and a science.
The technology consists of tools, practical techniques, and standards, allowing to
do programming. The science consists of a broad and deep theory with predictive
power, allowing to understand programming. Teaching an engineering discipline
means to teach both the current tools (the technology) and the fundamental
concepts (the science). Knowing the tools prepares the student for the present.
Knowing the science prepares the student for future developments.

We consider that engineering is the proper analogy for the discipline of pro-
gramming. This does not mean that the book is intended only for engineering
students. On the contrary, anyone doing programming is an “engineer” in the
sense of this book.

Programming is more than a craft

We define programming, as a general human activity, to mean extending or chang-
ing a system’s functionality. Programming is a widespread activity that is done
both by nonspecialists (e.g., consumers who change the settings of their alarm
clock or cellular phone) and specialists (computer programmers, the audience of
this book).

This book looks only at software systems. For these systems, programming
is the step between specification and running program. This step consists in
designing the program’s architecture and abstractions and coding them into a
programming language. This is a broad view, perhaps broader than the usual
connotation attached to the word programming. It covers both programming “in
the small” and “in the large”. It covers both (language-independent) architectural
issues and (language-dependent) coding issues. It is based more on concepts and
their use rather than on any one programming language. We find that this general
view is natural for teaching programming. It allows to look at many issues in a
way unbiased by limitations of any particular language or design methodology.
When used in a specific situation, the general view is adapted to the tools used,
taking account their abilities and limitations.

Up to now, programming has been taught more as a craft than as an engineer-
ing discipline. Tt is usually taught in the context of one (or a few) programming
languages (e.g., Java, complemented with Haskell, Scheme, or Prolog). The his-
torical accidents of the particular languages chosen are interwoven together so

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

xXxviii

PREFACE

closely with the fundamental concepts that the two cannot be separated. There
is a confusion between tools and concepts. What’s more, different schools of
thought have developed, based on different ways of viewing programming, called
“paradigms”: object-oriented, logic, functional, etc. The unity of programming
as a single discipline has been lost.

Teaching programming in this fashion is like giving one course on building
wooden bridges and (possibly) one course on building iron bridges. Engineers
would implicitly consider the restriction to wood or iron as fundamental and
would not think of using other materials or even of using wood and iron together.

The result is that programs suffer from poor design. We give an example
based on Java, but the problem exists in all existing languages to some degree.
Concurrency in Java is complex to use and expensive in computational resources.
Because of these difficulties, Java-taught programmers conclude that concurrency
is a fundamentally complex and expensive concept. Program specifications are
designed around the difficulties, often in a contorted way. But these difficulties
are not fundamental at all. There are forms of concurrency that are quite useful
and yet as easy to program with as sequential programs. Furthermore, it is
possible to implement threads, the basic unit of concurrency, almost as cheaply
as procedure calls. If the programmer were taught about concurrency in the
correct way, then he or she would be able to specify for and program in systems
without concurrency restrictions (including improved versions of Java).

The kernel language approach

Practical programming languages scale up to programs of millions of lines of
code. They provide a rich set of abstractions and syntax. How can we separate
the languages’ fundamental concepts, which underlie their scalability, from their
historical accidents? The kernel language approach shows one way. A practical
language is translated into a kernel language that consists of a small number of
programmer-significant elements. The rich set of abstractions and syntax is en-
coded into the small kernel language. This gives both programmer and student a
clear insight into what the language does. The kernel language has a simple for-
mal semantics that allows reasoning about program correctness and complexity.
This gives a solid foundation to the programmer’s intuition and the programming
techniques built on top of it.

A wide variety of languages and programming paradigms can be modeled by
a small set of closely-related kernel languages. It follows that the kernel language
approach is a truly language-independent way to study programming. Because
any given language translates into a kernel language that is a subset of the full
kernel language, the underlying unity of programming is regained.

Reducing a complex phenomenon to its primitive elements is characteristic of
the scientific method. It is a successful approach that is used in all the exact
sciences. It gives a deep understanding that has predictive power. For example,
structural science lets one design all bridges (whether made of wood, iron, both,

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE

XX1X

Comparison with other approaches

Let us compare the kernel language approach with three other ways to give pro-
gramming a broad scientific basis:

e A foundational calculus, like the A-calculus or m-calculus, reduces program-
ming to a minimal number of elements. The elements are chosen for ease in
mathematical analysis, not for their programmer intuition. This is intended
for mathematicians, not practicing programmers. Foundational calculi are
useful for studying the fundamental properties and limits of programming
a computer, not for writing or reasoning about general applications.

e A wirtual machine defines a language in terms of an implementation on
an idealized machine. It has concepts that are close to hardware, which
makes it hard to reason about abstractions. Virtual machines are useful
for designing computers, implementing languages, or for doing simulations,
but not for writing or reasoning about general applications.

o A multiparadigm language is a language that encompasses several program-
ming paradigms. For example, Scheme is both functional and imperative
([1]) and Leda has elements that are functional, object-oriented, and logical
([24]). The usefulness of a multiparadigm language depends on how well
the different paradigms are integrated.

The kernel language approach combines features of all these approaches. Practical
languages of different paradigms are defined with kernel languages, whose formal
semantics are defined with virtual machines at a high level of abstraction.

Designing abstractions

The most difficult work of programmers, but also the most rewarding, is not
writing programs but rather designing abstractions. Programming a computer is
primarily designing and using abstractions to achieve new goals. We define an
abstraction loosely as a tool or device that solves a particular problem. Usually the
same abstraction can be used to solve many different problems. This versatility
is one of the key properties of abstractions.

Abstractions are so deeply part of our daily life that we often forget about
them. Some typical abstractions are books, chairs, screwdrivers, and automo-
biles.! Abstractions can be classified into a hierarchy depending on how special-
ized they are (e.g., “pencil” is more specialized than “writing instrument”, but
both are abstractions).

! Also, pencils, nuts and bolts, wires, transistors, corporations, songs, and differential equa-
tions. They do not have to be material entities!

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

XXX

PREFACE

Abstractions are particularly numerous inside computer systems. Modern
computers are highly complex systems consisting of hardware, operating sys-
tem, middleware, and application layers, each of which is based on the work of
thousands of people over several decades. They contain an enormous number of
abstractions, working together in a highly organized manner.

Designing abstractions is not always easy. It can be a long and painful process,
as different approaches are tried, discarded, and improved. But the rewards are
very great. It is not a great exaggeration to say that civilization is based on
successful abstractions. New ones are being designed every day. Some ancient
ones, like the wheel and the arch, are still with us today. Some modern ones, like
the cellular phone, quickly become part of our daily life.

The second goal of the book is to teach how to design programming abstrac-
tions. We introduce most of the relevant concepts known today, in particular
higher-order programming, compositionality, concurrency, encapsulation, explic-
it state, and inheritance. We show how to build programs as hierarchical graphs
of interacting components, where each component is written using the computa-
tion model that is best for it. We give some general laws for building abstractions.
Many of these general laws have counterparts in other engineering disciplines [50].
We build sequential, concurrent, and robust distributed abstractions. We build
abstractions for constraint-based reasoning.

Distributed systems and intelligent agents

Two of the most challenging areas for programmers are distributed systems and
intelligent agents. The third goal of the book is to show how programming in these
areas can be made simpler, given the proper foundations. We start by making
both distribution and inferencing integral parts of the computation model. On
top of this foundation, we build powerful abstractions both for fault-tolerant
distributed programming and constraint-based inferencing. We illustrate them
with case studies of small, but complete and realistic applications. Since the
late 1980’s we have been doing research in constraint programming. Since 1995
we have been doing research in robust distributed programming. The third goal
distills the essence of this research.

Main features

Pedagogical approach

There are two complementary approaches to teaching programming as a rigorous
discipline:

e The computation-based approach presents programming as a way to define
executions on machines. It grounds the student’s intuition in the real world
by means of actual executions on real systems. This is especially effective

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE

xxxi

with an interactive system: the student can create program fragments and
immediately see what they do. Reducing the time between thinking “what
if” and seeing the result is an enormous aid to understanding. Precision
is not sacrificed, since the formal semantics of a program can be given in
terms of an abstract machine.

e The logic-based approach presents programming as a branch of mathemat-
ical logic. Logic does not speak of execution but of program properties,
which is a higher level of abstraction. Programs are mathematical con-
structions that obey logical laws. The formal semantics of a program is
given in terms of a mathematical logic. Reasoning is done with logical as-
sertions. The logic-based approach is harder for students to grasp yet it is
essential for defining precise specifications of what programs do.

Like Abelson & Sussman [2, 3|, this book mostly uses the computation-based
approach. Concepts are illustrated with program fragments that can be run
interactively on an accompanying software package, the Mozart Programming
System [110]. Programs are constructed with a building-block approach, bringing
together basic concepts to build more complex ones. A small amount of logical
reasoning is introduced in later chapters, e.g., for defining specifications and for
using invariants to reason about programs with state.

Formalism used

This book uses a single formalism for presenting all computation models and
programs, namely the Oz language and its computation model. To be precise, the
computation models of this book are all carefully-chosen subsets of Oz. Why did
we choose Oz? The main reason is that it supports the kernel language approach
well. Another reason is the existence of the Mozart Programming System.

Panorama of computation models

This book presents a broad overview of many of the most useful computation
models. All have simple formal definitions. Yet they are designed with a very
different purpose than other formal calculi such as the Turing machine, the A
calculus, or the 7 calculus. Our focus is on the needs of practical programming
rather than the needs of mathematical analysis. We are interested in languages
with a small number of programmer-significant elements. The criterium is not just
the number of elements, but rather how easy it is to write useful programs and
to do practical reasoning about their properties. This approach is quite different
from the foundational approach.

Foundational calculi

In computer science theory, it is common practice to design languages and com-
putation models with a very small number of basic concepts, in order to study

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

xXxxii

PREFACE

computation itself. For example, the Turing machine is a small language and
computation model, but it is equivalent or superior in programming power to all
computation models that have been implemented. That is, any program for one
of these models can be implemented on a Turing machine and vice versa. The A
calculus is a small language in which the only operations are defining functions
and calling them. It is a major theoretical result that anything that can be pro-
grammed in this calculus can also be programmed on a Turing machine, and vice
versa. The 7 calculus is a small language that was designed to study concurrency.
The 7 calculus is very powerful, in the sense that it can encode easily all the basic
concepts of concurrent programming.

The Turing machine, the A calculus, and the 7 calculus are important exam-
ples of calculi that have been designed to study the possibilities and limits of
computer programming. But they are too low-level to be practical programming
languages. Concepts that are simple to the programmer require complicated en-
codings in them. For example, procedure calls can be implemented on a Turing
machine, but they are complicated. From the viewpoint of the mathematical
study of computation, this is not a defect of the Turing machine. It is a virtue,
since it reduces complex concepts to their most primitive components. Mathe-
matical study is simplified if the languages are simple.

Role of expressiveness and reasoning

The computation models of this book are designed not just with formal simplicity
in mind (although it is important), but on the basis of how a programmer can
express himself/herself and reason within the model. We find that adding a new
concept to a computation model is a two-edged sword. It introduces new forms
of expression, making some programs simpler, but it also makes reasoning about
programs harder. For example, by adding ezplicit state (mutable variables) to a
functional programming model we can express the full range of object-oriented
programming techniques. However, reasoning about object-oriented programs is
harder than reasoning about functional programs. Functional programming is
about calculating values with mathematical functions. Neither the values nor the
functions change over time. Explicit state is one way to model things that change
over time: it provides a container whose content can be updated. The very power
of this concept makes it harder to reason about.

There are many different practical computation models, with different levels of
expressiveness, different programming techniques, and different ways of reasoning
about them. We find that each model has its domain of application. This book
explains many of these models, how they are related, how to program in them,
and how to combine them to greatest advantage.

Importance of using models together

Each computation model was originally designed to be used in isolation. It might
therefore seem like an aberration to use several of them together in the same

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

REFACE xxxiii

\

0(rogram. We find that this is not at all the case. This is because models are not
A0
(g

rﬁust monolithic “blocks” with nothing in common. On the contrary, they have

ch in common. For example, the differences between declarative & imperative
models and concurrent & sequential models are very small compared to what
they have in common. Because of this, it is easy to use several models together.

But even though it is technically possible, why would one want to use several
models in the same program? The deep answer to this question is simple: because
one does not program with models, but with programming concepts and ways to
combine them. Depending on which concepts one uses, it is possible to consider
that one is programming in a particular model. The model appears as a kind of
epiphenomenon. Certain things become easy, other things become harder, and
reasoning about the program is done in a particular way. It is quite natural for
a well-written program to use different models. At this early point this answer
may seem cryptic. It will become clear later in the book.

An important principle we will see in this book is that concepts traditionally
associated with one model can be used to great effect in more general models.
For example, the concepts of lexical scoping, higher-order programming, and lazy
evaluation, usually associated with functional programming, are useful in all mod-
els. This is well-known in the functional programming community. Functional
languages have long been extended with explicit state (e.g., Scheme [1] and Stan-
dard ML [107]) and more recently with concurrency (e.g., Concurrent ML [127]
and Concurrent Haskell [120, 119)]).

W¢

Good programming style requires using models together

We find that a good programming style requires using programming concepts
that are usually associated with different computation models. Languages that
implement just one computation model make this difficult:

e Object-oriented languages encourage the overuse of state and inheritance.
Objects are stateful by default. While this seems simple and intuitive, it
actually complicates programming, e.g., it makes concurrency difficult (see
Section 7.2). Design patterns, which define a common terminology for de-
scribing good programming techniques, are usually explained in terms of in-
heritance [53]. In many cases, simpler higher-order programming techniques
would suffice (see Section 6.4.7). In addition, inheritance is often misused.
For example, object-oriented graphic user interfaces often recommend us-
ing inheritance to extend generic widget classes with application-specific
functionality (e.g., in the Swing components for Java). This is counter to
separation of concerns.

e Functional languages encourage the overuse of higher-order programming.
Typical examples are monads and currying. Monads are used to encode
state by threading it throughout the program. This makes programs more
intricate but does not achieve the modularity properties of true explicit

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE

state (see Section 4.7). Currying lets you apply a function “partially” by
giving only some of its arguments. This returns a new function that expects
the remaining arguments. The function body will not execute until all
arguments are there. The flipside is that it is not clear by inspection whether
the function has all its arguments or is still curried (“waiting” for the rest).

e Logic languages in the Prolog tradition encourage the overuse of Horn clause
syntax and search. These languages define all programs as collections of
Horn clauses, which resemble simple logical axioms in an “if-then” style.
Many algorithms are obfuscated when written in this style. Backtracking-
based search must always be used even though it is almost never needed
(see [163]).

These examples are to some extent subjective; it is difficult to be completely
objective regarding goodness of programming style and language expressiveness.
Therefore they should not be read as passing any judgement on these models.
Rather, they are hints that none of these models is a panacea when used alone.
This book tries to present a more balanced approach, using each concept when
it is appropriate and not stretching it beyond its abilities.

Teaching from the book

We explain how the book fits in a computer science curriculum and what courses
can be taught with it. We present the Mozart System, a software package that
can be used to support these courses.

Role in CS curriculum

Let us consider the discipline of programming independent of any other domain
in computer science. In our experience, it divides naturally into three core topics:

1. Concepts and techniques.
2. Algorithms and data structures.
3. Program design and software engineering.

The book gives a thorough treatment of topic (1) and an introduction to (2) and
(3). In which order should the topics be given? There is a strong interdependency
between (1) and (3). Experience shows that program design should be taught
early on, so that students avoid bad habits. However, this is only part of the story
since students need to know about concepts to express their designs. Parnas has
used an approach that starts with topic (3) and uses an imperative computation
model [116]. Because this book uses many computation models, we recommend
using it to teach (1) and (3) concurrently, introducing new concepts and design
principles gradually. In the engineering program at UCL, we attribute eight

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

W0

O‘ 93}

PREFACE

XXXV

«osemester-hours to each topic. This includes lectures and lab sessions. Together
thle three topics comprise one sixth of the full computer science curriculum.

Courses

We have used the book as a textbook for several courses ranging from second-year
undergraduate to graduate courses [166, 126]. In its present form, this book is
not intended as a first programming course, but the approach could be adapted
for such a course.? Students should have a small amount of previous program-
ming experience (e.g., a practical introduction to programming and knowledge of
simple data structures such as sequences, sets, stacks, trees, and graphs) and a
minimum level of mathematical maturity (e.g., a first course on analysis, discrete
mathematics, or algebra). The book has enough material for four semester-hours
worth of lectures and as many lab sessions. There are many ways to subset the
material:

e An undergraduate course on programming concepts and techniques. Chap-
ter 1 gives a light introduction. The course continues with Chapters 2-7.
Depending on the desired depth of coverage, more or less emphasis can be
put on algorithms (to teach algorithms along with programming), concur-
rency (which can be left out completely, if so desired), formal semantics (to
make intuitions precise), or both.

e An undergraduate course on applied programming models. This includes re-
lational programming (Chapter 8), specific programming languages (Chap-
ter 9), graphic user interface programming (Chapter 10), distributed pro-
gramming (Chapter 11), and constraint programming (Chapter 12). This
course is a natural sequel to the previous one.

e An undergraduate course on concurrent and distributed programming (Chap-
ters 4, 7 and 11). Students should have some programming experience with
declarative and object-oriented systems. If desired, the book can be com-
plemented with other texts on concurrent and distributed algorithms (e.g.,
[95], [31], [98], or [157]).

e A graduate course on computation models (the whole book, including the
semantics in Chapter 13). The course can concentrate on the relationships
between the models and on their semantics.

In addition, the book can be used as a complement to other courses.

e Part of an undergraduate course on constraint programming (Chapters 2-8,
Chapter 12).

2We will gladly help anyone willing to tackly this adaptation.

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE

e Part of a graduate course on intelligent collaborative applications (parts of
the whole book, with emphasis on Part III). If desired, the book can be
complemented by texts on artificial intelligence (e.g., [129]) or multi-agent
systems (e.g., [172]).

e Part of an undergraduate course on semantics. All the models are formally
defined in the chapters that introduce them, and this semantics is sharpened
in Chapter 13. This gives a real-sized case study of how to define the
semantics of a complete modern programming language.

The book, while it has a solid theoretical underpinning, is intended to give a prac-
tical education in these subjects. Each chapter has many program fragments, all
of which can be executed on the Mozart system (see below). With these frag-
ments, course lectures can have live interactive demonstrations of the concepts.
We find that students very much appreciate this style of lecture.

Each chapter ends with a set of exercises that usually involve some program-
ming. They can be solved on the Mozart system. To best learn the material in
the chapter, we encourage students to do as many exercises as possible. Exer-
cises marked (advanced exercise) can take from several days up to several weeks.
Exercises marked (research project) are open ended and can result in significant
research contributions.

Software

A useful feature of the book is that all program fragments can be run on a soft-
ware platform called the Mozart Programming System. Mozart is a full-featured
production-quality programming system that comes with an interactive incremen-
tal development environment and a full set of tools. It compiles to an efficient
platform-independent bytecode that runs on many varieties of Unix and Windows.
Distributed programs can be spread out over both Unix and Windows systems.
The Mozart Web site, http://www.mozart-oz.org, has complete information
including downloadable binaries, documentation, scientific publications, source
code, and mailing lists.

The Mozart system efficiently implements all the computation models cov-
ered in the book. This makes it ideal for comparing models, by writing programs
in different models that solve the same problem, and for using models together.
Because each model is implemented efficiently, whole programs can be written
in just one model. Other models can be brought in later, if needed, in a peda-
gogically justified way. For example, programs can be completely written in an
object-oriented style, complemented by small declarative components where they
are most useful.

The Mozart system is the result of a long-term development effort by the
Mozart Consortium, an informal research and development collaboration of three
laboratories. It has been under continuing development since 1991. The system
is released with full source code under an Open Source license agreement. The

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

PREFACE XXXVii

’\\ﬁrs public release was in 1995. The first public release with distribution support
\(a‘qu@as in 1999. The book uses version 1.2.3, released in December 2001. The book
19" sholuld be compatible with all subsequent versions.

History and acknowledgements

The ideas in this book did not come easily. They came after more than a decade
of discussion, programming, evaluation, throwing out the bad, and bringing in
the good and convincing others that it is good. We are lucky to have had a
coherent vision among our colleagues for such a long period. Thanks to this, we
have been able to make progress.

Many people contributed ideas, implementations, tools, and applications. Our
main research vehicle and “testbed” of new ideas is the Mozart system, which im-
plements the Oz language. The system’s main designers and developers are and
were (in alphabetic order): Per Brand, Denys Duchier, Donatien Grolaux, Seif
Haridi, Dragan Havelka, Martin Henz, Erik Klintskog, Leif Kornstaedt, Michael
Mehl, Martin Miiller, Tobias Miiller, Anna Neiderud, Konstantin Popov, Ralf
Scheidhauer, Christian Schulte, Gert Smolka, Peter Van Roy, and Jorg Wiirtz.
Other important contributors are and were (in alphabetic order): Ilies Aloui-
ni, Thorsten Brunklaus, Raphaél Collet, Frej Drejhammer, Sameh El-Ansary,
Nils Franzén, Simon Lindblom, Benjamin Lorenz, Valentin Mesaros, Al-Metwally
Mostafa, and Andreas Simon.

We would also like to thank the following researchers and indirect contributors.
Their legacy is not just software quality but also scientific results, tools, course
notes, applications, and encouragement. They include: Hassan Ait-Kaci, Andreas
Franke, Claire Gardent, Fredrik Holmgren, Sverker Janson, Johan Montelius,
Joachim Niehren, Luc Onana, Mathias Picker, Andreas Podelski, Christophe Pon-
sard, Mahmoud Rafea, Juris Reinfelds, Thomas Sjoland, and Jean Vanderdonckt.
Finally, we thank all the contributors to the users@mozart-oz.org mailing list
and the comp.lang.functional and comp.lang.prolog newsgroups, whose ani-
mated discussions have resulted in some very nice contributions to the book. We
apologize to anyone we may have inadvertently omitted.

For this book, we give a special thanks to Donatien Grolaux for the GUI
case studies (Section 10.3) and to Raphaél Collet for the Minesweeper game
(Section 12.4) and for his help on Chapter 13 (Language Semantics). We also
give a special thanks to Frej Drejhammer, Sameh El-Ansary, and Dragan Havelka
for their work on the lab sessions and exercises of Datalogill, a course taught at
KTH that is based on this book.

How did we manage to keep the result so simple with such a large crowd of
developers working together? No miracle, but the consequence of a strong vi-
sion and a carefully crafted design methodology that took more than a decade to
create and polish. Around 1990, some of us came together with already strong
systems building and theoretical backgrounds. These people initiated the AC-

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

XXX Viii

PREFACE

CLAIM project, funded by the European Union (1991-94). For some reason,
this project became a focal point. Three important milestones among many were
the papers by Sverker Janson & Seif Haridi in 1991 [83] (multiple paradigms in
AKL), by Gert Smolka in 1995 [148] (building abstractions in Oz), and by Seif
Haridi et al in 1998 [66] (dependable open distribution in Oz). The first paper
on Oz was published in 1993 and already had many important ideas [72]. Af-
ter ACCLAIM, two laboratories continued working together on the Oz ideas: the
Programming Systems Lab (DFKI, Universitit des Saarlandes, and Collaborative
Research Center SFB 378) in Saarbriicken, Germany, and the Intelligent Systems
Laboratory (Swedish Institute of Computer Science), in Stockholm, Sweden. The
Oz language was originally developed by the Programming Systems Lab, led by
Gert Smolka. The high quality of the implementation is due in large part to the
systems building expertise of this lab. Among the developers, we mention Chris-
tian Schulte for his role in coordinating general development, Denys Duchier for
his active support of users, and Per Brand for his role in coordinating develop-
ment of the distributed implementation. In 1996, the German and Swedish labs
were joined by the Department of Computing Science and Engineering (Univer-
sité catholique de Louvain), in Louvain-la-Neuve, Belgium, when the first author
moved there. Together the three laboratories formed the Mozart Consortium
with its neutral Web site http://www.mozart-oz.org so that the work would
not be tied down to a single institution.

This book was written using LaTeX 2., flex, xfig, xv, vim, emacs, and Mozart,
all running on Red Hat Linux with KDE. The first author thanks the Walloon
Region of Belgium for their generous support of the Oz/Mozart work at UCL in
the PIRATES project.

What’s missing

There are two main topics missing from the book:

e Static typing. The formalism used in this book is dynamically typed. De-
spite the advantages of static typing for program verification, security, and
implementation efficiency, we barely mention it. There is a good reason for
this, which is explained in Section 2.7.3.

e Specialized programming techniques. The set of programming techniques is
too vast to explain in one book of modest size. In addition to the general
techniques explained in this book, each problem domain has its own par-
ticular techniques. This book does not cover all of them; attempting to
do so would double or triple its size. To make up for this lack, we point
the reader to some good books that treat particular problem domains: ar-
tificial intelligence techniques [129, 112], algorithms [38], object-oriented
design patterns [53], multi-agent programming [172], databases [39], and
numerical techniques [124].

Copyright (© 2001-2 by P. Van Roy and S. Haridi. All rights reserved.

