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Abstract

This book gives a broad and deep view of practical computer programming as
a unified engineering discipline based on a sound scientific foundation. It brings
the student a comprehensive and up-to-date presentation of all major program-
ming concepts and techniques. The concepts and techniques are organized into
computation models, a precise concept that captures the intuition of programming
paradigms. The models are situated in a uniform framework with a complete and
simple formal semantics that allows programmers to reason about correctness and
efficiency. We examine the relationships between the models and show how and
why to use different models together in the same program.

The simplest computation model covers the domain of declarative program-
ming, which includes deterministic logic programming and strict functional pro-
gramming. We add concurrency, leading to dataflow, streams, declarative con-
currency, lazy execution, and coroutining. We add a nondeterministic choice
operator, leading to search and nondeterministic logic programming. We add ex-
plicit state, leading to component-based programming, and inheritance, leading
to object-oriented programming. Together with concurrency, this leads to ac-
tive objects and atomic actions. We explain the models of the languages Erlang,
Haskell, Java, and Prolog. We then present three specialized models of intrinsic
interest, for user interface programming, dependable distributed programming,
and constraint programming.

The book is suitable for undergraduate and graduate courses in programming
techniques, programming models, constraint programming, distributed program-
ming, and semantics. It emphasizes scalable techniques useful in real programs.
All models are fully implemented for practical programming. There is an accom-
panying Open Source software development package, the Mozart Programming
System, that can run all the program fragments in the text.

The book and software package are the fruits of a research collaboration by
the Mozart Consortium, which groups the Swedish Institute of Computer Science
(SICS) in Stockholm, Sweden, the Universitdt des Saarlandes in Saarbriicken,
Germany, the Université catholique de Louvain (UCL) in Louvain-la-Neuve, Bel-
gium, and related institutions. Peter Van Roy is professor in the Department of
Computing Science and Engineering (INGI) at UCL and part-time SICS member.
Seif Haridi is professor in the Department of Microelectronics and Information
Technology (IMIT) at the Royal Institute of Technology (KTH), Stockholm, and
SICS chief scientific advisor.
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Preface

Six blind sages were shown an elephant and met to discuss their
experience. “It’s wonderful,” said the first, “an elephant is like a
snake: slender and flexible.” “No, no, not at all,” said the second, “an
elephant is like a tree: sturdily planted on the ground.” “Marvelous,”
said the third, “an elephant is like a wall.” “Incredible,” said the
fourth, “an elephant is a tube filled with water.” “What a strange
and piecemeal beast this is,” said the fifth. “Strange indeed,” said
the sixth, “but there must be some underlying harmony. Let us
investigate the matter further.”

— Freely adapted from a traditional fable.

One approach to study computer programming is to study programming lan-
guages. But there are a tremendously large number of languages, so large that it
is impractical to study them all. How can we tackle this immensity? We could
pick a small number of languages that are representative of different programming
paradigms. But this gives little insight into programming as a unified discipline.
This book uses another approach.

We focus on programming concepts and the techniques to use them, not on
programming languages. The concepts are organized in terms of computation
models. A computation model consists of a set of data types, operations on them,
and a language to write programs that use these operations. The term compu-
tation model makes precise the imprecise notion of “programming paradigm”.
The rest of the book talks about computation models and not programming
paradigms.

Each computation model has its own set of techniques for programming and
reasoning about programs. The number of different computation models that are
known to be useful is much smaller than the number of programming languages.
This book covers many widely-used models as well as some less-used models. The
main criterium for presenting a model is whether it is useful in practice.

Each computation model is based on a simple core language called its kernel
language. The kernel languages are introduced in a progressive way, by adding
concepts one by one. This lets us show the deep relationships between the dif-
ferent models. It also lets us use different models together in the same program.
This is usually called multiparadigm programming. It is quite natural, since it
means simply to use the right concepts for the problem, independent of what
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computation model they originate from. Multiparadigm programming is an old
idea. For example, the designers of Lisp and Scheme have long advocated a sim-
ilar view. However, this book applies it in a much broader and deeper way than
was previously done.

When stepping from one model to the next, how do we decide on what con-
cepts to add to its kernel language? We will touch on this question many times
in the book. One criterium is that adding a concept lets us write programs that
are simpler and have a better structure. Another criterium is expressiveness. Of-
ten, just adding one new concept makes a world of difference in programming.
For example, adding mutable variables (explicit state) to functional programming
allows to do object-oriented programming.

From the vantage point of computation models, the book also sheds new light
on important problems in computer science. We present three such areas, namely
graphic user interface design, robust distributed programming, and intelligent
agents. We show how the judicious combined use of several computation models
can help solve some of the difficult problems of these areas.

Languages mentioned

We mention many programming languages in the book and relate them to par-
ticular computation models. For example, Java and Smalltalk are based on an
object-oriented model. Haskell and Standard ML are based on a functional mod-
el. Prolog and Mercury are based on a logic model. Not all interesting languages
can be so classified. We mention some other languages for their own merits. For
example, Lisp and Scheme pioneered many of the concepts presented here. Er-
lang is functional, inherently concurrent, and supports fault tolerant distributed
programming.

We single out four languages as representatives of important computation
models: Erlang, Haskell, Java, and Prolog. We identify the computation model
of each language in terms of the book’s uniform framework. For more information
about them we refer readers to other books. Because of space limitations, we are
not able to mention all interesting languages. Omission of a language does not
imply any kind of value judgement.

Related books

Among programming books, the book by Abelson & Sussman [2; 3] is the closest
in spirit to ours. It covers functional programming, imperative (i.e., stateful)
programming, and introduces objects, concurrency, and logic programming. The
present book goes deeper into concurrency and nondeterminism, objects and in-
heritance, and also covers components, dataflow execution, distributed program-
ming, constraint programming, and user interface design. It gives a uniform for-
mal semantics for most of these models, thus putting them on a solid foundation.
The semantics is carefully designed to allow reasoning about both correctness and
complexity. The focus of the two books is different: the present book emphasizes
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O&\@\Q\ and building interpreters and virtual machines for them.
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Goals of the book

Programming as an engineering discipline

The main goal of the book is to teach programming as a true engineering disci-
pline. An engineering discipline consists of two parts: a technology and a science.
The technology consists of tools, practical techniques, and standards, allowing to
do programming. The science consists of a broad and deep theory with predictive
power, allowing to understand programming. Teaching an engineering discipline
means to teach both the current tools (the technology) and the fundamental
concepts (the science). Knowing the tools prepares the student for the present.
Knowing the science prepares the student for future developments.

We consider that engineering is the proper analogy for the discipline of pro-
gramming. This does not mean that the book is intended only for engineering
students. On the contrary, anyone doing programming is an “engineer” in the
sense of this book.

Programming is more than a craft

We define programming, as a general human activity, to mean extending or chang-
ing a system’s functionality. Programming is a widespread activity that is done
both by nonspecialists (e.g., consumers who change the settings of their alarm
clock or cellular phone) and specialists (computer programmers, the audience of
this book).

This book looks only at software systems. For these systems, programming
is the step between specification and running program. This step consists in
designing the program’s architecture and abstractions and coding them into a
programming language. This is a broad view, perhaps broader than the usual
connotation attached to the word programming. It covers both programming “in
the small” and “in the large”. It covers both (language-independent) architectural
issues and (language-dependent) coding issues. It is based more on concepts and
their use rather than on any one programming language. We find that this general
view is natural for teaching programming. It allows to look at many issues in a
way unbiased by limitations of any particular language or design methodology.
When used in a specific situation, the general view is adapted to the tools used,
taking account their abilities and limitations.

Up to now, programming has been taught more as a craft than as an engineer-
ing discipline. Tt is usually taught in the context of one (or a few) programming
languages (e.g., Java, complemented with Haskell, Scheme, or Prolog). The his-
torical accidents of the particular languages chosen are interwoven together so
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closely with the fundamental concepts that the two cannot be separated. There
is a confusion between tools and concepts. What’s more, different schools of
thought have developed, based on different ways of viewing programming, called
“paradigms”: object-oriented, logic, functional, etc. The unity of programming
as a single discipline has been lost.

Teaching programming in this fashion is like giving one course on building
wooden bridges and (possibly) one course on building iron bridges. Engineers
would implicitly consider the restriction to wood or iron as fundamental and
would not think of using other materials or even of using wood and iron together.

The result is that programs suffer from poor design. We give an example
based on Java, but the problem exists in all existing languages to some degree.
Concurrency in Java is complex to use and expensive in computational resources.
Because of these difficulties, Java-taught programmers conclude that concurrency
is a fundamentally complex and expensive concept. Program specifications are
designed around the difficulties, often in a contorted way. But these difficulties
are not fundamental at all. There are forms of concurrency that are quite useful
and yet as easy to program with as sequential programs. Furthermore, it is
possible to implement threads, the basic unit of concurrency, almost as cheaply
as procedure calls. If the programmer were taught about concurrency in the
correct way, then he or she would be able to specify for and program in systems
without concurrency restrictions (including improved versions of Java).

The kernel language approach

Practical programming languages scale up to programs of millions of lines of
code. They provide a rich set of abstractions and syntax. How can we separate
the languages’ fundamental concepts, which underlie their scalability, from their
historical accidents? The kernel language approach shows one way. A practical
language is translated into a kernel language that consists of a small number of
programmer-significant elements. The rich set of abstractions and syntax is en-
coded into the small kernel language. This gives both programmer and student a
clear insight into what the language does. The kernel language has a simple for-
mal semantics that allows reasoning about program correctness and complexity.
This gives a solid foundation to the programmer’s intuition and the programming
techniques built on top of it.

A wide variety of languages and programming paradigms can be modeled by
a small set of closely-related kernel languages. It follows that the kernel language
approach is a truly language-independent way to study programming. Because
any given language translates into a kernel language that is a subset of the full
kernel language, the underlying unity of programming is regained.

Reducing a complex phenomenon to its primitive elements is characteristic of
the scientific method. It is a successful approach that is used in all the exact
sciences. It gives a deep understanding that has predictive power. For example,
structural science lets one design all bridges (whether made of wood, iron, both,
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Comparison with other approaches

Let us compare the kernel language approach with three other ways to give pro-
gramming a broad scientific basis:

e A foundational calculus, like the A-calculus or m-calculus, reduces program-
ming to a minimal number of elements. The elements are chosen for ease in
mathematical analysis, not for their programmer intuition. This is intended
for mathematicians, not practicing programmers. Foundational calculi are
useful for studying the fundamental properties and limits of programming
a computer, not for writing or reasoning about general applications.

e A wirtual machine defines a language in terms of an implementation on
an idealized machine. It has concepts that are close to hardware, which
makes it hard to reason about abstractions. Virtual machines are useful
for designing computers, implementing languages, or for doing simulations,
but not for writing or reasoning about general applications.

o A multiparadigm language is a language that encompasses several program-
ming paradigms. For example, Scheme is both functional and imperative
([1]) and Leda has elements that are functional, object-oriented, and logical
([24]). The usefulness of a multiparadigm language depends on how well
the different paradigms are integrated.

The kernel language approach combines features of all these approaches. Practical
languages of different paradigms are defined with kernel languages, whose formal
semantics are defined with virtual machines at a high level of abstraction.

Designing abstractions

The most difficult work of programmers, but also the most rewarding, is not
writing programs but rather designing abstractions. Programming a computer is
primarily designing and using abstractions to achieve new goals. We define an
abstraction loosely as a tool or device that solves a particular problem. Usually the
same abstraction can be used to solve many different problems. This versatility
is one of the key properties of abstractions.

Abstractions are so deeply part of our daily life that we often forget about
them. Some typical abstractions are books, chairs, screwdrivers, and automo-
biles.! Abstractions can be classified into a hierarchy depending on how special-
ized they are (e.g., “pencil” is more specialized than “writing instrument”, but
both are abstractions).

! Also, pencils, nuts and bolts, wires, transistors, corporations, songs, and differential equa-
tions. They do not have to be material entities!
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Abstractions are particularly numerous inside computer systems. Modern
computers are highly complex systems consisting of hardware, operating sys-
tem, middleware, and application layers, each of which is based on the work of
thousands of people over several decades. They contain an enormous number of
abstractions, working together in a highly organized manner.

Designing abstractions is not always easy. It can be a long and painful process,
as different approaches are tried, discarded, and improved. But the rewards are
very great. It is not a great exaggeration to say that civilization is based on
successful abstractions. New ones are being designed every day. Some ancient
ones, like the wheel and the arch, are still with us today. Some modern ones, like
the cellular phone, quickly become part of our daily life.

The second goal of the book is to teach how to design programming abstrac-
tions. We introduce most of the relevant concepts known today, in particular
higher-order programming, compositionality, concurrency, encapsulation, explic-
it state, and inheritance. We show how to build programs as hierarchical graphs
of interacting components, where each component is written using the computa-
tion model that is best for it. We give some general laws for building abstractions.
Many of these general laws have counterparts in other engineering disciplines [50].
We build sequential, concurrent, and robust distributed abstractions. We build
abstractions for constraint-based reasoning.

Distributed systems and intelligent agents

Two of the most challenging areas for programmers are distributed systems and
intelligent agents. The third goal of the book is to show how programming in these
areas can be made simpler, given the proper foundations. We start by making
both distribution and inferencing integral parts of the computation model. On
top of this foundation, we build powerful abstractions both for fault-tolerant
distributed programming and constraint-based inferencing. We illustrate them
with case studies of small, but complete and realistic applications. Since the
late 1980’s we have been doing research in constraint programming. Since 1995
we have been doing research in robust distributed programming. The third goal
distills the essence of this research.

Main features

Pedagogical approach

There are two complementary approaches to teaching programming as a rigorous
discipline:

e The computation-based approach presents programming as a way to define
executions on machines. It grounds the student’s intuition in the real world
by means of actual executions on real systems. This is especially effective
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with an interactive system: the student can create program fragments and
immediately see what they do. Reducing the time between thinking “what
if” and seeing the result is an enormous aid to understanding. Precision
is not sacrificed, since the formal semantics of a program can be given in
terms of an abstract machine.

e The logic-based approach presents programming as a branch of mathemat-
ical logic. Logic does not speak of execution but of program properties,
which is a higher level of abstraction. Programs are mathematical con-
structions that obey logical laws. The formal semantics of a program is
given in terms of a mathematical logic. Reasoning is done with logical as-
sertions. The logic-based approach is harder for students to grasp yet it is
essential for defining precise specifications of what programs do.

Like Abelson & Sussman [2, 3|, this book mostly uses the computation-based
approach. Concepts are illustrated with program fragments that can be run
interactively on an accompanying software package, the Mozart Programming
System [110]. Programs are constructed with a building-block approach, bringing
together basic concepts to build more complex ones. A small amount of logical
reasoning is introduced in later chapters, e.g., for defining specifications and for
using invariants to reason about programs with state.

Formalism used

This book uses a single formalism for presenting all computation models and
programs, namely the Oz language and its computation model. To be precise, the
computation models of this book are all carefully-chosen subsets of Oz. Why did
we choose Oz? The main reason is that it supports the kernel language approach
well. Another reason is the existence of the Mozart Programming System.

Panorama of computation models

This book presents a broad overview of many of the most useful computation
models. All have simple formal definitions. Yet they are designed with a very
different purpose than other formal calculi such as the Turing machine, the A
calculus, or the 7 calculus. Our focus is on the needs of practical programming
rather than the needs of mathematical analysis. We are interested in languages
with a small number of programmer-significant elements. The criterium is not just
the number of elements, but rather how easy it is to write useful programs and
to do practical reasoning about their properties. This approach is quite different
from the foundational approach.

Foundational calculi

In computer science theory, it is common practice to design languages and com-
putation models with a very small number of basic concepts, in order to study
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computation itself. For example, the Turing machine is a small language and
computation model, but it is equivalent or superior in programming power to all
computation models that have been implemented. That is, any program for one
of these models can be implemented on a Turing machine and vice versa. The A
calculus is a small language in which the only operations are defining functions
and calling them. It is a major theoretical result that anything that can be pro-
grammed in this calculus can also be programmed on a Turing machine, and vice
versa. The 7 calculus is a small language that was designed to study concurrency.
The 7 calculus is very powerful, in the sense that it can encode easily all the basic
concepts of concurrent programming.

The Turing machine, the A calculus, and the 7 calculus are important exam-
ples of calculi that have been designed to study the possibilities and limits of
computer programming. But they are too low-level to be practical programming
languages. Concepts that are simple to the programmer require complicated en-
codings in them. For example, procedure calls can be implemented on a Turing
machine, but they are complicated. From the viewpoint of the mathematical
study of computation, this is not a defect of the Turing machine. It is a virtue,
since it reduces complex concepts to their most primitive components. Mathe-
matical study is simplified if the languages are simple.

Role of expressiveness and reasoning

The computation models of this book are designed not just with formal simplicity
in mind (although it is important), but on the basis of how a programmer can
express himself/herself and reason within the model. We find that adding a new
concept to a computation model is a two-edged sword. It introduces new forms
of expression, making some programs simpler, but it also makes reasoning about
programs harder. For example, by adding ezplicit state (mutable variables) to a
functional programming model we can express the full range of object-oriented
programming techniques. However, reasoning about object-oriented programs is
harder than reasoning about functional programs. Functional programming is
about calculating values with mathematical functions. Neither the values nor the
functions change over time. Explicit state is one way to model things that change
over time: it provides a container whose content can be updated. The very power
of this concept makes it harder to reason about.

There are many different practical computation models, with different levels of
expressiveness, different programming techniques, and different ways of reasoning
about them. We find that each model has its domain of application. This book
explains many of these models, how they are related, how to program in them,
and how to combine them to greatest advantage.

Importance of using models together

Each computation model was originally designed to be used in isolation. It might
therefore seem like an aberration to use several of them together in the same
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0( rogram. We find that this is not at all the case. This is because models are not
A0
(g

rﬁust monolithic “blocks” with nothing in common. On the contrary, they have

ch in common. For example, the differences between declarative & imperative
models and concurrent & sequential models are very small compared to what
they have in common. Because of this, it is easy to use several models together.

But even though it is technically possible, why would one want to use several
models in the same program? The deep answer to this question is simple: because
one does not program with models, but with programming concepts and ways to
combine them. Depending on which concepts one uses, it is possible to consider
that one is programming in a particular model. The model appears as a kind of
epiphenomenon. Certain things become easy, other things become harder, and
reasoning about the program is done in a particular way. It is quite natural for
a well-written program to use different models. At this early point this answer
may seem cryptic. It will become clear later in the book.

An important principle we will see in this book is that concepts traditionally
associated with one model can be used to great effect in more general models.
For example, the concepts of lexical scoping, higher-order programming, and lazy
evaluation, usually associated with functional programming, are useful in all mod-
els. This is well-known in the functional programming community. Functional
languages have long been extended with explicit state (e.g., Scheme [1] and Stan-
dard ML [107]) and more recently with concurrency (e.g., Concurrent ML [127]
and Concurrent Haskell [120, 119)]).

W¢

Good programming style requires using models together

We find that a good programming style requires using programming concepts
that are usually associated with different computation models. Languages that
implement just one computation model make this difficult:

e Object-oriented languages encourage the overuse of state and inheritance.
Objects are stateful by default. While this seems simple and intuitive, it
actually complicates programming, e.g., it makes concurrency difficult (see
Section 7.2). Design patterns, which define a common terminology for de-
scribing good programming techniques, are usually explained in terms of in-
heritance [53]. In many cases, simpler higher-order programming techniques
would suffice (see Section 6.4.7). In addition, inheritance is often misused.
For example, object-oriented graphic user interfaces often recommend us-
ing inheritance to extend generic widget classes with application-specific
functionality (e.g., in the Swing components for Java). This is counter to
separation of concerns.

e Functional languages encourage the overuse of higher-order programming.
Typical examples are monads and currying. Monads are used to encode
state by threading it throughout the program. This makes programs more
intricate but does not achieve the modularity properties of true explicit
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state (see Section 4.7). Currying lets you apply a function “partially” by
giving only some of its arguments. This returns a new function that expects
the remaining arguments. The function body will not execute until all
arguments are there. The flipside is that it is not clear by inspection whether
the function has all its arguments or is still curried (“waiting” for the rest).

e Logic languages in the Prolog tradition encourage the overuse of Horn clause
syntax and search. These languages define all programs as collections of
Horn clauses, which resemble simple logical axioms in an “if-then” style.
Many algorithms are obfuscated when written in this style. Backtracking-
based search must always be used even though it is almost never needed
(see [163]).

These examples are to some extent subjective; it is difficult to be completely
objective regarding goodness of programming style and language expressiveness.
Therefore they should not be read as passing any judgement on these models.
Rather, they are hints that none of these models is a panacea when used alone.
This book tries to present a more balanced approach, using each concept when
it is appropriate and not stretching it beyond its abilities.

Teaching from the book

We explain how the book fits in a computer science curriculum and what courses
can be taught with it. We present the Mozart System, a software package that
can be used to support these courses.

Role in CS curriculum

Let us consider the discipline of programming independent of any other domain
in computer science. In our experience, it divides naturally into three core topics:

1. Concepts and techniques.
2. Algorithms and data structures.
3. Program design and software engineering.

The book gives a thorough treatment of topic (1) and an introduction to (2) and
(3). In which order should the topics be given? There is a strong interdependency
between (1) and (3). Experience shows that program design should be taught
early on, so that students avoid bad habits. However, this is only part of the story
since students need to know about concepts to express their designs. Parnas has
used an approach that starts with topic (3) and uses an imperative computation
model [116]. Because this book uses many computation models, we recommend
using it to teach (1) and (3) concurrently, introducing new concepts and design
principles gradually. In the engineering program at UCL, we attribute eight
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«osemester-hours to each topic. This includes lectures and lab sessions. Together
thle three topics comprise one sixth of the full computer science curriculum.

Courses

We have used the book as a textbook for several courses ranging from second-year
undergraduate to graduate courses [166, 126]. In its present form, this book is
not intended as a first programming course, but the approach could be adapted
for such a course.? Students should have a small amount of previous program-
ming experience (e.g., a practical introduction to programming and knowledge of
simple data structures such as sequences, sets, stacks, trees, and graphs) and a
minimum level of mathematical maturity (e.g., a first course on analysis, discrete
mathematics, or algebra). The book has enough material for four semester-hours
worth of lectures and as many lab sessions. There are many ways to subset the
material:

e An undergraduate course on programming concepts and techniques. Chap-
ter 1 gives a light introduction. The course continues with Chapters 2-7.
Depending on the desired depth of coverage, more or less emphasis can be
put on algorithms (to teach algorithms along with programming), concur-
rency (which can be left out completely, if so desired), formal semantics (to
make intuitions precise), or both.

e An undergraduate course on applied programming models. This includes re-
lational programming (Chapter 8), specific programming languages (Chap-
ter 9), graphic user interface programming (Chapter 10), distributed pro-
gramming (Chapter 11), and constraint programming (Chapter 12). This
course is a natural sequel to the previous one.

e An undergraduate course on concurrent and distributed programming (Chap-
ters 4, 7 and 11). Students should have some programming experience with
declarative and object-oriented systems. If desired, the book can be com-
plemented with other texts on concurrent and distributed algorithms (e.g.,
[95], [31], [98], or [157]).

e A graduate course on computation models (the whole book, including the
semantics in Chapter 13). The course can concentrate on the relationships
between the models and on their semantics.

In addition, the book can be used as a complement to other courses.

e Part of an undergraduate course on constraint programming (Chapters 2-8,
Chapter 12).

2We will gladly help anyone willing to tackly this adaptation.
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e Part of a graduate course on intelligent collaborative applications (parts of
the whole book, with emphasis on Part III). If desired, the book can be
complemented by texts on artificial intelligence (e.g., [129]) or multi-agent
systems (e.g., [172]).

e Part of an undergraduate course on semantics. All the models are formally
defined in the chapters that introduce them, and this semantics is sharpened
in Chapter 13. This gives a real-sized case study of how to define the
semantics of a complete modern programming language.

The book, while it has a solid theoretical underpinning, is intended to give a prac-
tical education in these subjects. Each chapter has many program fragments, all
of which can be executed on the Mozart system (see below). With these frag-
ments, course lectures can have live interactive demonstrations of the concepts.
We find that students very much appreciate this style of lecture.

Each chapter ends with a set of exercises that usually involve some program-
ming. They can be solved on the Mozart system. To best learn the material in
the chapter, we encourage students to do as many exercises as possible. Exer-
cises marked (advanced exercise) can take from several days up to several weeks.
Exercises marked (research project) are open ended and can result in significant
research contributions.

Software

A useful feature of the book is that all program fragments can be run on a soft-
ware platform called the Mozart Programming System. Mozart is a full-featured
production-quality programming system that comes with an interactive incremen-
tal development environment and a full set of tools. It compiles to an efficient
platform-independent bytecode that runs on many varieties of Unix and Windows.
Distributed programs can be spread out over both Unix and Windows systems.
The Mozart Web site, http://www.mozart-oz.org, has complete information
including downloadable binaries, documentation, scientific publications, source
code, and mailing lists.

The Mozart system efficiently implements all the computation models cov-
ered in the book. This makes it ideal for comparing models, by writing programs
in different models that solve the same problem, and for using models together.
Because each model is implemented efficiently, whole programs can be written
in just one model. Other models can be brought in later, if needed, in a peda-
gogically justified way. For example, programs can be completely written in an
object-oriented style, complemented by small declarative components where they
are most useful.

The Mozart system is the result of a long-term development effort by the
Mozart Consortium, an informal research and development collaboration of three
laboratories. It has been under continuing development since 1991. The system
is released with full source code under an Open Source license agreement. The
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’\\ﬁrs public release was in 1995. The first public release with distribution support
\(a‘qu@as in 1999. The book uses version 1.2.3, released in December 2001. The book
19" sholuld be compatible with all subsequent versions.

History and acknowledgements

The ideas in this book did not come easily. They came after more than a decade
of discussion, programming, evaluation, throwing out the bad, and bringing in
the good and convincing others that it is good. We are lucky to have had a
coherent vision among our colleagues for such a long period. Thanks to this, we
have been able to make progress.

Many people contributed ideas, implementations, tools, and applications. Our
main research vehicle and “testbed” of new ideas is the Mozart system, which im-
plements the Oz language. The system’s main designers and developers are and
were (in alphabetic order): Per Brand, Denys Duchier, Donatien Grolaux, Seif
Haridi, Dragan Havelka, Martin Henz, Erik Klintskog, Leif Kornstaedt, Michael
Mehl, Martin Miiller, Tobias Miiller, Anna Neiderud, Konstantin Popov, Ralf
Scheidhauer, Christian Schulte, Gert Smolka, Peter Van Roy, and Jorg Wiirtz.
Other important contributors are and were (in alphabetic order): Ilies Aloui-
ni, Thorsten Brunklaus, Raphaél Collet, Frej Drejhammer, Sameh El-Ansary,
Nils Franzén, Simon Lindblom, Benjamin Lorenz, Valentin Mesaros, Al-Metwally
Mostafa, and Andreas Simon.

We would also like to thank the following researchers and indirect contributors.
Their legacy is not just software quality but also scientific results, tools, course
notes, applications, and encouragement. They include: Hassan Ait-Kaci, Andreas
Franke, Claire Gardent, Fredrik Holmgren, Sverker Janson, Johan Montelius,
Joachim Niehren, Luc Onana, Mathias Picker, Andreas Podelski, Christophe Pon-
sard, Mahmoud Rafea, Juris Reinfelds, Thomas Sjoland, and Jean Vanderdonckt.
Finally, we thank all the contributors to the users@mozart-oz.org mailing list
and the comp.lang.functional and comp.lang.prolog newsgroups, whose ani-
mated discussions have resulted in some very nice contributions to the book. We
apologize to anyone we may have inadvertently omitted.

For this book, we give a special thanks to Donatien Grolaux for the GUI
case studies (Section 10.3) and to Raphaél Collet for the Minesweeper game
(Section 12.4) and for his help on Chapter 13 (Language Semantics). We also
give a special thanks to Frej Drejhammer, Sameh El-Ansary, and Dragan Havelka
for their work on the lab sessions and exercises of Datalogill, a course taught at
KTH that is based on this book.

How did we manage to keep the result so simple with such a large crowd of
developers working together? No miracle, but the consequence of a strong vi-
sion and a carefully crafted design methodology that took more than a decade to
create and polish. Around 1990, some of us came together with already strong
systems building and theoretical backgrounds. These people initiated the AC-
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CLAIM project, funded by the European Union (1991-94). For some reason,
this project became a focal point. Three important milestones among many were
the papers by Sverker Janson & Seif Haridi in 1991 [83] (multiple paradigms in
AKL), by Gert Smolka in 1995 [148] (building abstractions in Oz), and by Seif
Haridi et al in 1998 [66] (dependable open distribution in Oz). The first paper
on Oz was published in 1993 and already had many important ideas [72]. Af-
ter ACCLAIM, two laboratories continued working together on the Oz ideas: the
Programming Systems Lab (DFKI, Universitit des Saarlandes, and Collaborative
Research Center SFB 378) in Saarbriicken, Germany, and the Intelligent Systems
Laboratory (Swedish Institute of Computer Science), in Stockholm, Sweden. The
Oz language was originally developed by the Programming Systems Lab, led by
Gert Smolka. The high quality of the implementation is due in large part to the
systems building expertise of this lab. Among the developers, we mention Chris-
tian Schulte for his role in coordinating general development, Denys Duchier for
his active support of users, and Per Brand for his role in coordinating develop-
ment of the distributed implementation. In 1996, the German and Swedish labs
were joined by the Department of Computing Science and Engineering (Univer-
sité catholique de Louvain), in Louvain-la-Neuve, Belgium, when the first author
moved there. Together the three laboratories formed the Mozart Consortium
with its neutral Web site http://www.mozart-oz.org so that the work would
not be tied down to a single institution.

This book was written using LaTeX 2., flex, xfig, xv, vim, emacs, and Mozart,
all running on Red Hat Linux with KDE. The first author thanks the Walloon
Region of Belgium for their generous support of the Oz/Mozart work at UCL in
the PIRATES project.

What’s missing

There are two main topics missing from the book:

e Static typing. The formalism used in this book is dynamically typed. De-
spite the advantages of static typing for program verification, security, and
implementation efficiency, we barely mention it. There is a good reason for
this, which is explained in Section 2.7.3.

e Specialized programming techniques. The set of programming techniques is
too vast to explain in one book of modest size. In addition to the general
techniques explained in this book, each problem domain has its own par-
ticular techniques. This book does not cover all of them; attempting to
do so would double or triple its size. To make up for this lack, we point
the reader to some good books that treat particular problem domains: ar-
tificial intelligence techniques [129, 112], algorithms [38], object-oriented
design patterns [53], multi-agent programming [172], databases [39], and
numerical techniques [124].
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