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Université catholique de Louvain
Place Sainte Barbe, 2, B-1348 Louvain-la-Neuve, Belgium

{luque,pvr,yde,raph}@info.ucl.ac.be

Abstract. Constrained path problems have to do with finding paths in graphs
subject to constraints. We present a constraint programming approach for solving
the Ordered disjoint-paths problem (ODP), i.e., the Disjoint-paths problem where
the pairs are associated with ordering constraints. In our approach, we reduce
ODP to the Ordered simple path with mandatory nodes problem (OSPMN), i.e.,
the problem of finding a simple path containing a set of mandatory nodes in
a given order. The reduction of the problem is motivated by the fact that we
have an appropriate way of dealing with OSPMN based onDomReachability,
a propagator that implements a generalized reachability constraint on a directed
graph based on the concept of graph variables.
The DomReachabilityconstraint has three arguments: (1) a flow graph, i.e., a
directed graph with a source node; (2) the dominance relation graph on nodes
and edges of the flow graph; and (3) the transitive closure of the flow graph.
Our experimental evaluation ofDomReachabilityshows that it provides strong
pruning, obtaining solutions with very little search. Furthermore, we show that
DomReachabilityis also useful for defining a good labeling strategy. These ex-
perimental results give evidence thatDomReachabilityis a useful primitive for
solving constrained path problems over directed graphs.

1 Introduction

Constrained path problems have to do with finding paths in graphs subject to con-
straints. One way of constraining the graph is by enforcing reachability between nodes.
For instance, it may be required that a node reaches a particular set of nodes by respect-
ing some restrictions like visiting a particular set of nodes or edges in a given order. We
find instances of this problem in Vehicle routing problems [PGPR96,CL97,FLM99] and
Bioinformatics [DDD04].

An approach to solve this problem is by using concurrent constraint programming
(CCP) [Sch00,Mül01]. In CCP, we solve the problem by interleaving two processes:
propagation and labeling. Propagation consists in filtering the domains of a set of finite
domain variables, according to the semantics of the constraints that have to be satisfied.
Labeling consists in defining the way the search tree is created, i.e., which constraint is
used for branching.

In this paper, we present a propagator calledDomReachability, that implements a
generalized reachability constraint on a directed graph. TheDomReachabilityconstraint
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has three arguments: (1) a flow graph, i.e., a directed graph with a source node; (2) the
dominance relation graph on nodes and edges of the flow graph;and (3) the transi-
tive closure of the flow graph. The dominance relation graph represents a dominance
relation that identifies nodes common to all paths from a source to a destination. By
extending the dominator graph we can also identify edges common to all paths from a
source to a destination.

Due to the fact that the arguments ofDomReachabilityare graph variables that can
be partially instantiated, the problem modelled withDomReachabilitycan be under-
stood as finding a flow graph that respects the partial instantiations of the flow graph,
the dominance relation graph and the transitive closure. For instance, we may be inter-
ested in finding a subgraph of a given graph where a nodej is reached from a nodes
andj is dominated by a set of nodesns with respect tos.

Applicability. TheDomReachabilitypropagator is suitable for solving the Simple path
with mandatory nodes problem [Sel02,CB04]. This problem consists in finding a simple
path in a directed graph containing a set of mandatory nodes.A simple path is a path
where each node is visited only once. Certainly, this problem can be trivially solved
if the graph has no cycle, since in that case there is only one order in which we can
visit the mandatory nodes [Sel02]. However, the presence ofcycles makes the problem
NP-complete, since we can easily reduce the Hamiltonian path problem [GJ79,CLR90]
to this problem.

Note that we can not trivially reduce Simple path with mandatory nodes to Hamil-
tonian path. One could think that optional nodes (nodes thatare not mandatory) can be
eliminated in favor of new edges as a preprocessing step, which finds a path between
each pair of mandatory nodes. However, the paths that are precomputed may share
nodes. This may lead to violations of the requirement that a node should be visited at
most once.

Figure 1 illustrates this situation. Mandatory nodes are drawn with solid lines. In the
second graph we have eliminated the optional nodes by connecting each pair of manda-
tory nodes depending on whether there is a path between them.We observe that the
second graph has a simple path going from node 1 to node 4 (visiting all the mandatory
nodes) while the first one does not. Therefore the simple pathin the second graph is not
a valid solution to the original problem since it requires node 3 to be visited twice. Note
that the Simple path problem with only one mandatory node, which is equivalent to the
2-Disjoint paths problem [SP78], is still NP-complete.

In general, we can say that the set of optional nodes that can be used when going
from a mandatory nodea to a mandatory nodeb depends on the path that has been
traversed before reachinga. This is because the optional nodes used in the path going
from the source toa can not be used in the path going froma to b.

From our experimental measurements, we observe that the suitability of DomReach-
ability for dealing with Simple path with mandatory nodes relies on the following as-
pects:

– The strong pruning thatDomReachabilityperforms. Due to the computation of
dominators ,DomReachabilityis able to discover non-viable successors early on.
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Fig. 1. Relaxing Simple path with mandatory nodes by eliminating the optional nodes

– The information thatDomReachabilityprovides for implementing smart labeling
strategies.DomReachabilityassociates each node with the set of nodes that it reaches.
This information can be used to guide the search in a smart way. The strategy we
used in our experiments tends to minimize the use of optionalnodes.

An additional feature ofDomReachabilityis its suitability for dealing with a prob-
lem that we call the Ordered simple path with mandatory nodesproblem (OSPMN)
where ordering constraints among mandatory nodes are imposed, which is a common
issue in routing problems. Taking into account that a nodei reaches a nodej if there is
a path going from nodei to nodej, one way of forcing a nodei to be visited before a
nodej is by imposing thati reachesj andj does not reachi. The latter is equivalent
to imposing thati is an ancestor ofj in the extended dominator tree of the path. Our
experiments show thatDomReachabilitytakes the most advantage of this information
to avoid branches in the search tree with no solution.

Related work. The cycle constraint of CHIP [BC94,Bou99]cycle(N, [S1, . . . , Sn])
models the problem of findingN distinct circuits in a directed graph in such a way
that each node is visited exactly once. Certainly, Hamiltonian Path can be implemented
using this constraint. In fact, [Bou99] shows how this constraint can be used to deal with
the Euler knight problem (which is an application of Hamiltonian Path). Optional nodes
can be modelled by putting each optional in a separate elementary cycle. However, this
constraint is not implemented in terms of dominators.

Sellmann [Sel02] suggests some algorithms for discoveringmandatory nodes and
non-viable edges in directed acyclic graphs. These algorithms are extended by [CB04]
in order to address directed graphs in general with the notion of strongly connected
components and condensed graphs. Nevertheless, graphs similar to our third benchmark
[SPMc] represent tough scenarios for this approach since almost all the nodes are in the
same strongly connected component.

CP(Graph) introduces a new computation domain focussed on graphs including a
new type of variable, graph domain variables, as well as constraints over these variables
and their propagators [DDD04,DDD05]. CP(Graph) also introduces node variables and
edge variables, and is integrated with the finite domain and finite set computation do-
main. Consistency techniques have been developed, graph constraints have been built
over the kernel constraints and global constraints have been proposed. One of those
global constraints isPath(p, s, d, maxlength). This constraint is satisfied ifp is a
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simple path froms to d of length at mostmaxlength. Certainly, Simple path with
mandatory nodes can be implemented in terms ofPath. However, the filtering algo-
rithm of Pathdoes not compute dominators, which makesPathalso sensible to cases
like SPMN 52a.

Dominators are commonly used in compilers for dataflow analysis [AU77]. Dom-
inance constraints also appear in natural language processing, for building semantic
trees from partial information. However, we are not aware ofapproaches using domi-
nators for implementing filtering algorithms. Even though the information it provides
is extremely useful, and can be computed efficiently.

Structure of the paper. The paper is organized as follows. In Section 2, we introduce
DomReachabilityby presenting its semantics and pruning rules. In Section 3,we show
how we can model Simple path with mandatory nodes in terms ofDomReachability.
Section 4 gives experimental evidence of the performance ofDomReachabilityfor this
type of problem. In Section 5 we show a reduction of the Ordered disjoint-paths prob-
lem (ODP) to OSPMN, which can be solved by our approach.

2 The DomReachability propagator

2.1 Extended dominator graph

Given a flow graphfg and its corresponding sources, a nodei is a dominator of node
j if all paths froms to j in fg containi [LT79,SGL97]:

i ∈ Dominators(fg, j) ↔ i 6= j ∧ ∀p ∈ Paths(fg, s, j) : i ∈ Nodes(p) (1)

where

p ∈ Paths(fg, i, j) ↔







p is a subgraph offg
Nodes(p) = {k1, . . . , kn} ∧ k1 = i ∧ kn = j
Edges(p) = {〈kt, kt+1〉 | 1 ≤ t < n}

(2)

Note that the nodes unreachable froms are dominated by all the other nodes. However,
the nodes reachable froms always have animmediatedominator, which can be defined
as

i = ImDominator(fg, j) ↔
{

i ∈ Dominators(fg, j)
¬∃k ∈ Nodes(fg) : i ∈ Dominators(fg, k) ∧ k ∈ Dominators(fg, j)

(3)
This property allows to represent the whole dominance relation as a tree, where the
parent of a node is its immediate dominator. The dominator tree can be used as an effi-
cient representation of the relation, as there exists incremental algorithms for updating
the tree [SGL97]. This paper only presents a non-incremental algorithm to compute the
whole relation (see Figure 5).
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Fig. 2. Flow graph Fig. 3.Extended flow graph Fig. 4. Extended dominator
tree

Let us now consider the extended graph offg, Ext(fg), which is obtained by
replacing the edges by new nodes, and connecting the new nodes accordingly. This
graph can be formally defined as follows:

〈N ′, E′, s′〉 = Ext(〈N, E, s〉) ↔







s′ = s
N ′ = N ∪ E
e = 〈i, j〉 ∈ E ↔ 〈i, e〉 ∈ E′ ∧ 〈e, j〉 ∈ E′

(4)
The extended dominator graph offg is the dominator graph of its extended graph.

Figures 2, 3 and 4 show an example of a flow graph, its extended graph, and its extended
dominator tree, respectively. The extended dominator treehas two types of nodes: nodes
corresponding to nodes in the original graph (node dominators), and nodes correspond-
ing to edges in the original graph (edge dominators). The latter nodes are drawn in
squares.

The extended dominator tree provides useful information. For instance, consider
two node dominatorsi andj. If 〈i, j〉 ∈ Edges(DomTree(Ext(fg))) \ Edges(fg),
there are at least two node-disjoint paths fromi to j in the flow graph (as it is the case
between nodes 1 and 6 in Figure 4). Note also that, ifi is an ancestor ofj in the extended
dominator tree, and the path fromi to j does not contain any edge dominator, there are
at least two edge-disjoint paths fromi to j in the flow graph.

2.2 TheDomReachability constraint

TheDomReachabilityconstraint is a constraint on three graphs:

DomReachability(fg, edg, tc) (5)
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where

– fg is a flow graph, i.e., a directed graph with a source node, whose set of nodes is
a subset ofN ;

– edg is the extended dominator graph offg; and
– tc is the transitive closure offg, i.e,

〈i, j〉 ∈ Edges(tc) ↔ 〈i, j〉 ∈ Edges(TransClos(fg))
〈i, j〉 ∈ Edges(TransClos(g)) ↔ ∃p : p ∈ Paths(g, i, j)

(6)

The above definition ofDomReachabilityimplies the following properties which
are important for the pruning thatDomReachabilityperforms. These properties define
relations between the graphsfg, edg andtc. These relations can then be used for prun-
ing, as we show in the next section.

1. If 〈i, j〉 is an edge offg, theni reachesj.

∀〈i, j〉 ∈ Edges(fg) : 〈i, j〉 ∈ Edges(tc) (7)

2. If i reachesj, theni reaches all the nodes thatj reaches.

∀i, j, k ∈ N : 〈i, j〉 ∈ Edges(tc) ∧ 〈j, k〉 ∈ Edges(tc) → 〈i, k〉 ∈ Edges(tc)
(8)

3. If j is reachable froms = Source(fg) andi dominatesj in fg, theni is reachable
from s andj is reachable fromi:

∀i, j ∈ N : 〈s, j〉 ∈ Edges(tc) ∧ 〈i, j〉 ∈ Edges(edg) →
〈s, i〉 ∈ Edges(tc) ∧ 〈i, j〉 ∈ Edges(tc)

(9)

2.3 Pruning rules

We implement the constraint (5) by the propagator that we note

DomReachability(〈FG, s〉, EDG, TC). (10)

FG, EDG andTC are graph variables, i.e., variables whose domain is a set ofgraphs
[DDD05]. A graph variableG is represented by a pair of graphsMin(G)#Max(G).
The graphg thatG approximates must be a supergraph ofMin(G) and a subgraph of
Max(G), thereforeMin(G) andMax(G) are called the lower and upper bounds of
G, respectively. So,i ∈ Nodes(G) holds if i ∈ Nodes(Min(G)), andi 6∈ Nodes(G)
holds if i 6∈ Nodes(Max(G)) (the same applies for edges). Notice that the sources of
the flow graphFG is a known value.

The definition of theDomReachabilityconstraint and its derived properties give
place to a set of propagation rules. We show here the ones thatmotivate the implemen-
tation of incremental algorithms for keeping the dominancerelation and the transitive
closure of the flow graph. The others are given in [QVD05b]. A propagation rule is
defined asC

A
whereC is a condition andA is an action. WhenC is true, the pruning

defined byA can be performed.
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From property (7) we derive

〈i, j〉 ∈ Edges(Min(FG))

Edges(Min(TC)) := Edges(Min(TC)) ∪ {〈i, j〉}
(11)

From property (8) we derive

〈i, j〉 ∈ Edges(Min(TC)) ∧ 〈j, k〉 ∈ Edges(Min(TC))

Edges(Min(TC)) := Edges(Min(TC)) ∪ {〈i, k〉}
(12)

From property (9) we derive, fori ∈ Nodes(Min(FG)),

〈s, j〉 ∈ Edges(Min(TC)) ∧ 〈i, j〉 ∈ Edges(Min(EDG))

Edges(Min(TC)) := Edges(Min(TC)) ∪ {〈s, i〉, 〈i, j〉}
(13)

From definition (6) we derive

〈i, j〉 6∈ Edges(TransClos(Max(FG)))

Edges(Max(TC)) := Edges(Max(TC)) \ {〈i, j〉}
(14)

From definition (1) we derive

〈i, j〉 ∈ Edges(DomGraph(Ext(Max(FG))))

Edges(Min(EDG)) := Edges(Min(EGD)) ∪ {〈i, j〉}
(15)

whereDomGraph is a function that returns the dominator graph of a flow graph,i.e.,
〈i, j〉 ∈ Edges(DomGraph(fg)) ↔ i ∈ Dominators(fg, j).

2.4 Implementation ofDomReachability

DomReachabilityhas been implemented using a message passing approach [VH04]
on top of the multi-paradigm programming language Oz [Moz04]. In [QVD05a], we
discuss the implementation ofDomReachabilityin detail. In this section we simply
refer to the update of the upper bound ofTC and the lower bound ofEDG. Both values
should be updated when an edge is removed fromMax(FG). However, as explained
in [QVD05a], we do not compute these values each time an edge is removed since this
certainly leads to a considerably amount of unnecessary computation. This is due to the
fact that these two values evolve monotonically. What we actually do is to consider all
the removals at once and make one computation per set of edgesremoved.

Currently, our way of updatingTC ’s upper bound is simply by runningDFS on
each node ofTC ’s upper bound. So the complexity of this update isO(N ∗ (N +
E)). RegardingEDG’s lower bound, the set of dominators is computed by using the
algorithm in Figure 5 (which is actually equivalent to Aho and Ullman’s algorithm
for computing dominators [AU77]).doms(i) is the set of dominators of nodei in fg.
Let us assume thatDFS returns the reachable nodes.doms(i) is initialized with ∅ or
Nodes(fg) \ {i} depending on whetheri is reached fromSource(fg) (since any node
dominates an non-reached node). The basic idea of this algorithm is that, ifSource(fg)
does not reachj after removingi then i dominatesj. So, each node is removed in
order to detect the nodes that it dominates. Therefore the computation of dominators is
O(N ∗ (N + E)) too.
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GetDominators(fg)
nodes0 := DFS(fg, Source(fg))
for i ∈ Nodes(fg) do

doms(i) := if i ∈ nodes0 then∅ elseNodes(fg) \ {i} end
end
for i ∈ nodes0 do

nodes1 := DFS(RemoveNode(fg, i), Source(fg))
for j ∈ nodes0 \ (nodes1 ∪ {i}) do

doms(j) := doms(j) ∪ {i}
end

end
returndoms

end

Fig. 5. Computation of Dominators

3 SolvingSimple path with mandatory nodes with DomReachability

In this section we elaborate on the important role thatDomReachabilitycan play in
solving Simple path with mandatory nodes. This problem consists in finding a simple
path in a directed graph containing a set of mandatory nodes.A simple path is a path
where each node is visited once, i.e., given a directed graphg, a source nodesrc, a
destination nodedst, and a set of mandatory nodesmandnodes, we want to find a path
in g from src to dst, going throughmandnodes and visiting each node only once.

The contribution ofDomReachabilityconsists in discovering nodes/edges that are
part of the path early on. This information is obtained by computing dominators in each
labeling step. Let us consider the following two cases1:

– Consider the graph variable on the left of Figure 6. Assume that node 1 reaches
node 9. This information is enough to infer that node 5 belongs to the graph, node
1 reaches node 5, and node 5 reaches node 9.

– Consider the graph variable on the left of Figure 7. Assume that node 1 reaches
node 5. This information is enough to infer that edges〈1, 2〉, 〈2, 3〉,〈3, 4〉 and〈4, 5〉
are in the graph, which implies that node 1 reaches nodes 1,2,3,4,5, node 2 at least
reaches nodes 2,3,4,5, node 3 at least reaches nodes 3,4,5 and node 4 at least reaches
nodes 4,5.

Note that the Hamiltonian path problem (finding a simple pathbetween two nodes
containing all the nodes of the graph [GJ79,CLR90]) can be reduced to Simple path with
mandatory nodes by defining the set of mandatory nodes asNodes(g) \ {src, dst}.

1 In Figures 6 and 7, nodes and edges that belong to the lower bound of the graph variable
are in solid line. For instance, the graph variable on the left side of Figure 6 is a graph
variable whose lower bound is the graph〈{1, 5}, ∅〉, and whose upper bound is the graph
〈{1, 2, 3, 4, 5, 6, 7, 8, 9}, {〈1, 2〉, 〈1, 3〉, 〈1, 4〉, 〈2, 5〉, 〈3, 5〉, 〈4, 5〉, 〈5, 6〉, 〈5, 7〉, 〈5, 8〉, 〈6, 9〉,
〈7, 9〉, 〈8, 9〉}〉.
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Fig. 6.Discovering node dominators

Fig. 7. Discovering edge dominator

The above definition of Simple path with mandatory nodes can be formally defined
as follows.

SPMN(g, src, dst, mandnodes, p) ↔







p ∈ Paths(g, src, dst)
NoCycle(p)
mandnodes ⊂ Nodes(p)

(16)

SPMN stands for “Simple path with mandatory nodes”.NoCycle(p) states thatp is
a simple path, i.e., a path where no node is visited twice. This definition of Simple path
with mandatory nodes implies the following property.

DomReachability(p, edg, tc)∧ 〈Source(p), dst〉 ∈ Edges(tc) ∧
mandnodes ⊂ {i | 〈Source(p), i〉 ∈ Edges(tc)}

(17)

This is because the destination is reached by the source and the path contains the manda-
tory nodes. This derived property and the fact that we can implementSPMN in terms
of the AllDiff constraint [Rég94] and theNoCycleconstraint [CL97] suggest the two
approaches for Simple path with mandatory nodes summarizedin Table 1 (which are
compared in the next section). In the first approach, we basically considerAllDiff and
NoCycle. In the second approach we additionally considerDomReachability.

4 Experimental results

In this section we present a set of experiments that show thatDomReachabilityis suit-
able for Simple path with mandatory nodes. In our experimentsApproach 2(in Table 1)
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Approach 1 Approach 2
SPMN(g, src, dst,mandnodes, p) SPMN(g, src, dst, mandnodes, p)

DomReachability(p, edg, tc)
〈Source(p), dst〉 ∈ Edges(tc)
mandnodes ⊂ {i | 〈Source(p), i〉 ∈ Edges(tc)}

Table 1.Two approaches for solving Simple path with mandatory nodes

Name Figure Source Destination Mand. Nodes Order

SPMN 22 [SPMa] 1 22 4 7 10 16 18 21 false

SPMN 22full [SPMb] 1 22 all false

SPMN 52a [SPMc] 1 52 11 13 24 39 45 false

SPMN 52b [SPMc] 1 52 4 5 7 13 16 19 22 false

24 29 33 36 39 44 45 49

SPMN 52full [SPMd] 1 52 all false

SPMN 52Ordera [SPMc] 1 52 45 39 24 13 11 true

SPMN 52Orderb [SPMc] 1 52 11 13 24 39 45 true

Table 2.Simple path with mandatory nodes instances

Opt. Nodes Failures Time

5 30 89

10 42 129

15 158 514

20 210 693

25 330 1152

32 101 399

37 100 402

42 731 3518

47 598 3046

Table 3. Performance with re-
spect to optional nodes

outperformsApproach 1. These experiments also show that Simple path with manda-
tory nodes tends to be harder when the number of optional nodes increases if they are
uniformly distributed in the graph. We have also observed that the labeling strategy that
we implemented withDomReachabilitytends to minimize the use of optional nodes
(which is a common need when the resources are limited).

In Table 2, we define the instances on which we made the tests ofTable 42. The
node id of the destination is also the size of the graph. The column Order is true
for the instances whose mandatory nodes are visited in the order given. Notice that
SPMN 52Orderb has no solution. The time measurements are given in seconds. The
number of failures means the number of failed alternatives tried before getting the so-
lution.

We have made four types of tests in our experiments: usingSPMNwithout Dom-
Reachability(column “SPMN”), usingSPMNandDomReachabilitybut without con-
sidering the dominance graph (column “SPMN+R”), usingSPMNandDomReachabil-
ity with the dominance graph (column “SPMN+R+ND”), and usingSPMNandDom-
Reachabilitywith the dominance graph of the extended flow graph (node+edge domi-
nators (column “SPMN+R+ND+ED”)).

As it can be observed in Table 4, we were not able to get a solution for SPMN22 in
less than 30 minutes without usingDomReachability. However, even though the num-
ber of failures is still inferior, the use ofDomReachabilitydoes not save too much time
when dealing with mandatory nodes only. This is due to the fact that we are basing our

2 In order to save space, the figures mentioned in the tables were dropped and made available
through references [SPMa], [SPMb], [SPMc] and [SPMd].
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Problem SPMN SPMN+R SPMN+R+ND SPMN+R+ND+ED

Instance Figure Failures Time Failures Time Failures Time Failures Time

SPMN 22 [SPMa] +130000 +1800 91 6.81 40 6.55 13 4.45

SPMN 22full [SPMb] 213 1.44 19 0.95 0 0.42 0 1.22

SPMN 52b +900 +1800 +700 +1800 100 402

SPMN 52full [SPMd] 3012 143 774 765 3 8.51 3 45.03

SPMN 52Ordera [SPMc] +12000 +1800 51 46.33 45 81 16 57.07

SPMN 52Orderb +12000 +1800 +1500 +1800 81 157 41 117

Table 4.Simple path with mandatory nodes tests

implementation ofSPMNon two things: theAllDiff constraint [Rég94] (that lets us effi-
ciently remove branches when there is no possibility of associating different successors
to the nodes) and theNoCycleconstraint [CL97] (that avoids re-visiting nodes).

The reason whySPMNdoes not perform well with optional nodes is because we
are no longer able to impose the globalAllDiff constraint on the successors of the nodes
since we do not know a priori which nodes are going to be used. In fact, one thing that
we observed is that the problem tends to be harder to solve when the number of optional
nodes increases. In Table 3, all the tests were performed usingDomReachabilityon the
graph of 52 nodes.

Even though, in SPMN22, the benefit caused by the computation of edge domi-
nators is not that significant, we were not able to obtain a solution for SPMN52b in
less than 30 minutes, while we obtained a solution in 402 seconds by computing edge
dominators. So, the computation of edge dominators pays offin most of the cases, but
node dominators should be computed in order to profit from edge dominators.

4.1 Labeling strategy

DomReachabilityprovides interesting information for implementing smart labeling strate-
gies, due to the fact that it associates each node with the setof nodes that it reaches.
This information can be used to guide the search in a smart way. For instance, we ob-
served that, when choosing first the nodei that reaches the most nodes and selecting
as a successor ofi first a node thati reaches, we obtain paths that minimize the use of
optional nodes (as it can be observed in [SPMc]).

Nevertheless, in order to reduce the number of failures in finding the solution of
[DPc] (which was solved in less than 100 failures), we favored the nodes that were
closer to the mandatory nodes, i.e., if the successors of thechosen node are not manda-
tory the chosen successor is the one closest to the next mandatory node.

4.2 Imposing order on nodes

An additional feature ofDomReachabilityis its suitability for imposing ordering con-
straints on nodes (which is a common issue in routing problems). In fact, it might be
the case that we have to visit the nodes of the graph in a particular (partial) order. We
call this version the “Ordered simple path with mandatory nodes problem”(OSPMN).
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Fig. 8. Finding two disjoint paths Fig. 9. Finding a simple path passing through n

Our way of forcing a nodei to be visited before a nodej is by imposing thati
reachesj and j does not reachi. The tests on the instances SPMN52Ordera and
SPMN 52Orderb show thatDomReachabilitytakes the most advantage of this infor-
mation to avoid branches in the search tree with no solution.Notice that we are able
to solve SPMN52Ordera (which is an extension of SPMN52a) in 57.07 seconds. We
are also able to detect the inconsistency of SPMN52Orderb in 117 seconds.

5 Reducing the Ordered disjoint-paths problem to the Simple
path with mandatory nodes problem

The k-Disjoint-paths problem consist in findingk pairwise disjoint paths betweenk
pairs of nodes〈s1, d1〉, 〈s2, d2〉, . . . , 〈sk, dk〉. Both the node-disjoint version and the
edge-disjoint version are NP-complete [SP78]. We will focus on the node-disjoint ver-
sion.

Let us first look at the problem of reducing the 2-Disjoint-paths problem to SPMN.
Suppose that we want to find two disjoint paths between the pairs 〈s1, d1〉 and〈s2, d2〉
in g. Let g′ andn be defined as follows.

n 6∈ Nodes(g)
g′ = AddEdges(g1, E1 ∪ E2)
g1 = AddNode(g2, n)
g2 = RemoveNodes(g, {d1, s2})
E1 = IncEdges(g, d1)[d1/n]
E2 = OutEdges(g, s2)[s2/n]

(18)

Finding the two disjoint paths is equivalent to finding a simple path froms1 to d2

passing throughn in g′. The correctness of this reduction relies on the fact that the
concatenation of the two disjoint paths forms a simple path since each disjoint path
is a simple path. Figure 9 shows the the reduction of the two disjoint paths problem
of Figure 8. The path found in Figure 9 corresponds to the concatenation of the two
disjoint paths of Figure 8.
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ReduceODP(〈g, 〈〈s1, d1, mn1, order1〉, . . . , 〈sk, dk, mnk, orderk〉〉〉)
ospmn := 〈g, s1, d1, mn1, order1〉
for i ∈ {2, 3, . . . , k} do

〈g′, s′, d′, mn′, order′〉 := ospmn

ospmn := Reduce 2 ODP (〈g′, 〈〈s′, d′, mn′, order′〉, 〈si, di, mni, orderi〉〉〉)
end
returnospmn

end

Fig. 10.Reducing ODP to OSPMN

Let us consider now an extended version of the 2 Node-disjoint path problem that we
call 2 Ordered node-disjoint path (2ODP). In this version, each pair is associated with
a set of mandatory nodes and an order relation on the mandatory nodes. That is, given
the directed graphg and the tuples〈s1, d1, mn1, order1〉 and 〈s2, d2, mn2, order2〉,
the goal is to find two pathsp1 andp2 such thatp1 is a path froms1 to d1 visiting mn1

respectingorder1, p2 is a path froms2 to d2 visiting mn2 respectingorder2, andp1

andp2 are node-disjoint.

The 2ODP problem〈g, 〈〈s1, d1, mn1, order1〉, 〈s2, d2, mn2, order2〉〉〉 can be re-
duced to OSPMN〈g′, s1, d2, mn′, order′〉 whereg′ is defined as in the previous reduc-
tion, mn′ = mn1 ∪ mn2 ∪ {n}, n is defined as before, and

order′ =







order1 ∪
order2 ∪
{〈n1, n2〉 | (n1 ∈ mn1 ∧ n2 = n) ∨ (n1 = n ∧ n2 ∈ mn2)}.

(19)

The simple path traverses the nodesmn1 in the orderorder1, and the nodesmn2 in the
orderorder2, the nodesmn1 are visited beforen and the nodes inmn2 aftern.

Let Reduce 2 ODP be defined as

Reduce 2 ODP (ODPins) = OSPMNins
ODPins = 〈g, 〈〈s1, d1, mn1, order1〉, 〈s2, d2, mn2, order2〉〉〉

OSPMNins = 〈g′, s1, d2, mn′, order′〉
(20)

The functionReduceODP , which reduces any ordered disjoint path problem (ODP)
to OSPMN, can be defined as shown in Figure 10. Certainly, we assume that the pairs
〈s1, d1〉, 〈s2, d2〉, . . . , 〈sk, dk〉 are pairwise node-disjoint. However, this condition can
be easily fulfilled by duplicating the nodes that are used by more than one pair.

Note that the conventionalk node-disjoint paths problem can be trivially reduced to
ODP. We simply need to map each pair〈si, di〉 to 〈si, di, ∅, ∅〉. We usedReduceODP
to solve the case shown in [DPc]. In this case we were interested in finding 14 node-
disjoint paths in a directed graph of 165 nodes.
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6 Conclusion and future work

We presentedDomReachability, a constrained graph propagator that can be used for
solving constrained path problems.DomReachabilityis a propagator that reasons in
terms of the three partially defined graphs that it has as arguments. Further definition of
one of its graphs may cause the other two graphs to be further defined. After introducing
the semantics and pruning rules ofDomReachability, we showed how its use can speed
up a standard approach for dealing with Simple path problem with mandatory nodes.
Our experiments show that the gain is increased with the presence of optional nodes.
The latter makes the problem harder, and standard approaches perform worse.

It is important to emphasize that both the computation of node dominators, and
the computation of edge dominators play an essential role inthe performance ofDom-
Reachability. The reason is that each one is able to prune when the other cannot. Notice
that Figure 6 is a context where the computation of edge dominators cannot infer any-
thing since there is no edge dominator. Similarly, Figure 7 represents a context where
the computation of edge dominators discovers more information than the computation
of node dominators.

As mentioned before, our current approach for maintaining the dominator graph
and the transitive closure has complexityO(N ∗ (N + E)). However, we are aware of
O(N + E) algorithms for updating these structures [SGL97,DI00]. Infact, there is a
non-incremental algorithm for computing dominator trees that is more efficient than our
current algorithm since it isO(Eα(E, N)), whereα(E, N) is a functional inverse of
Ackermann’s function [LT79]. Certainly, our next step is toimplement these algorithms
since we believe that they will remarkably improve the performance ofDomReachabil-
ity.
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[Rég94] Jean Charles Régin. A filtering algorithm for constraints of difference in csps. In
In Proceedings of the Twelfth National Conference on Artificial Intelligence, pages
362–367, 1994.

[Sch00] Christian Schulte.Programming Constraint Services. Doctoral dissertation, Univer-
sität des Saarlandes, Naturwissenschaftlich-Technische Fakultät I, Fachrichtung Infor-
matik, Saarbrücken, Germany, 2000.

[Sel02] Meinolf Sellmann.Reduction Techniques in Constraint Programming and Combina-
torial Optimization. Doctoral dissertation, University of Paderborn, Paderborn, Ger-
many, 2002.

[SGL97] Vugranam C. Sreedhar, Guang R. Gao, and Yong-Fong Lee. Incremental computa-
tion of dominator trees.ACM Transactions on Programming Languages and Systems,
19(2):239–252, March 1997.

[SP78] Y. Shiloach and Y. Perl. Finding two disjoint paths between two pairs of vertices in a
graph.Journal of the ACM, 1978.

[SPMa] Spmn22. Available athttp://www.info.ucl.ac.be/˜luque/PADL06/test22.ps.
[SPMb] Spmn22full. Available athttp://www.info.ucl.ac.be/˜luque/PADL06/test22full.ps.
[SPMc] Spmn52a. Available athttp://www.info.ucl.ac.be/˜luque/PADL06/test52.ps.
[SPMd] Spmn52full. Available athttp://www.info.ucl.ac.be/˜luque/PADL06/test52full.ps.
[VH04] P. Van Roy and S. Haridi.Concepts, Techniques, and Models of Computer Program-

ming. The MIT Press, 2004.


