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Abstract. Constrained path problems have to do with finding paths iplga
subject to constraints. We present a constraint progragagproach for solving
the Ordered disjoint-paths problem (ODP), i.e., the Digjgaths problem where
the pairs are associated with ordering constraints. In ppraach, we reduce
ODP to the Ordered simple path with mandatory nodes prob@8PMN), i.e.,
the problem of finding a simple path containing a set of mamgabodes in

a given order. The reduction of the problem is motivated hy fdct that we
have an appropriate way of dealing with OSPMN basedomReachability

a propagator that implements a generalized reachabilitgtcaint on a directed
graph based on the concept of graph variables.

The DomReachabilityconstraint has three arguments: (1) a flow graph, i.e., a
directed graph with a source node; (2) the dominance relagraph on nodes
and edges of the flow graph; and (3) the transitive closurbeflow graph.

Our experimental evaluation @omReachabilityshows that it provides strong
pruning, obtaining solutions with very little search. Fhgtmore, we show that
DomReachabilityis also useful for defining a good labeling strategy. These ex
perimental results give evidence tHadmReachabilityis a useful primitive for
solving constrained path problems over directed graphs.

1 Introduction

Constrained path problems have to do with finding paths iplgasubject to con-
straints. One way of constraining the graph is by enforceaghability between nodes.
For instance, it may be required that a node reaches a part&at of nodes by respect-
ing some restrictions like visiting a particular set of nede edges in a given order. We
find instances of this problem in Vehicle routing problem&fR96,CL97,FLM99] and
Bioinformatics [DDDO04].

An approach to solve this problem is by using concurrent taimg programming
(CCP) [Sch00,Miil01]. In CCP, we solve the problem by irgaving two processes:
propagation and labeling. Propagation consists in filtgtite domains of a set of finite
domain variables, according to the semantics of the cdngdrdnat have to be satisfied.
Labeling consists in defining the way the search tree is etgae., which constraint is
used for branching.

In this paper, we present a propagator callmmReachabilitythat implements a
generalized reachability constraint on a directed grapkeDomReachabilitgonstraint



2 Luis Quesada et al.

has three arguments: (1) a flow graph, i.e., a directed graipharssource node; (2) the
dominance relation graph on nodes and edges of the flow geaph(3) the transi-
tive closure of the flow graph. The dominance relation graggresents a dominance
relation that identifies nodes common to all paths from ac®to a destination. By
extending the dominator graph we can also identify edgeswomto all paths from a
source to a destination.

Due to the fact that the arguments@dmReachabilityare graph variables that can
be partially instantiated, the problem modelled wdbmReachabilitican be under-
stood as finding a flow graph that respects the partial insti#ons of the flow graph,
the dominance relation graph and the transitive closureirfstance, we may be inter-
ested in finding a subgraph of a given graph where a nadeeached from a node
andj is dominated by a set of nodes with respect tcs.

Applicability. TheDomReachabilitpropagator is suitable for solving the Simple path
with mandatory nodes problem [Sel02,CB04]. This problemmststs in finding a simple
path in a directed graph containing a set of mandatory nodlegmple path is a path
where each node is visited only once. Certainly, this pnob&an be trivially solved

if the graph has no cycle, since in that case there is only ederan which we can
visit the mandatory nodes [Sel02]. However, the presencgdés makes the problem
NP-complete, since we can easily reduce the Hamiltoniamatblem [GJ79,CLR90]
to this problem.

Note that we can not trivially reduce Simple path with maodahodes to Hamil-
tonian path. One could think that optional nodes (nodesatehot mandatory) can be
eliminated in favor of new edges as a preprocessing stehafliids a path between
each pair of mandatory nodes. However, the paths that acomguted may share
nodes. This may lead to violations of the requirement thad@ershould be visited at
most once.

Figure 1 illustrates this situation. Mandatory nodes aesrwith solid lines. In the
second graph we have eliminated the optional nodes by ctingeach pair of manda-
tory nodes depending on whether there is a path between tenobserve that the
second graph has a simple path going from node 1 to node 4rfgisill the mandatory
nodes) while the first one does not. Therefore the simpleipatie second graph is not
a valid solution to the original problem since it requiresla® to be visited twice. Note
that the Simple path problem with only one mandatory nodéchvis equivalent to the
2-Disjoint paths problem [SP78], is still NP-complete.

In general, we can say that the set of optional nodes that earséd when going
from a mandatory node to a mandatory nodé depends on the path that has been
traversed before reaching This is because the optional nodes used in the path going
from the source ta can not be used in the path going franto b.

From our experimental measurements, we observe that ttabsity of DomReach-
ability for dealing with Simple path with mandatory nodes relies loa following as-
pects:

— The strong pruning thaDomReachabilityperforms. Due to the computation of
dominators DPomReachabilitys able to discover non-viable successors early on.
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Fig. 1. Relaxing Simple path with mandatory nodes by eliminatirggdptional nodes

— The information thaDomReachabilityprovides for implementing smart labeling
strategiesDomReachabilitassociates each node with the set of nodes that it reaches.
This information can be used to guide the search in a smart Weg strategy we
used in our experiments tends to minimize the use of optioodés.

An additional feature obomReachabilitys its suitability for dealing with a prob-
lem that we call the Ordered simple path with mandatory ngdeblem (OSPMN)
where ordering constraints among mandatory nodes are map@ghich is a common
issue in routing problems. Taking into account that a no@aches a nodgif there is
a path going from nodéto nodej, one way of forcing a nodeto be visited before a
nodej is by imposing that reaches and; does not reach. The latter is equivalent
to imposing that is an ancestor of in the extended dominator tree of the path. Our
experiments show th@omReachabilityakes the most advantage of this information
to avoid branches in the search tree with no solution.

Related work. The cycle constraint of CHIP [BC94,Bou98jcle(N, [Sy, ..., Sn])
models the problem of findingy distinct circuits in a directed graph in such a way
that each node is visited exactly once. Certainly, Hami#orPath can be implemented
using this constraint. In fact, [Bou99] shows how this caaist can be used to deal with
the Euler knight problem (which is an application of Hamilian Path). Optional nodes
can be modelled by putting each optional in a separate el@myerycle. However, this
constraint is not implemented in terms of dominators.

Sellmann [Sel02] suggests some algorithms for discovamiagdatory nodes and
non-viable edges in directed acyclic graphs. These alyostare extended by [CB04]
in order to address directed graphs in general with the natiostrongly connected
components and condensed graphs. Nevertheless, graplas sirour third benchmark
[SPMc] represent tough scenarios for this approach simestlall the nodes are in the
same strongly connected component.

CP(Graph) introduces a new computation domain focussedaphg including a
new type of variable, graph domain variables, as well astcaimts over these variables
and their propagators [DDD04,DDDO05]. CP(Graph) also idtroes node variables and
edge variables, and is integrated with the finite domain amtefset computation do-
main. Consistency techniques have been developed, graystraimts have been built
over the kernel constraints and global constraints have lpegposed. One of those
global constraints isPath(p, s, d, maxlength). This constraint is satisfied i is a
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simple path froms to d of length at mostnaxiength. Certainly, Simple path with
mandatory nodes can be implemented in term®ath However, the filtering algo-
rithm of Path does not compute dominators, which makash also sensible to cases
like SPMNL52a.

Dominators are commonly used in compilers for dataflow agialpAU77]. Dom-
inance constraints also appear in natural language priogedsr building semantic
trees from partial information. However, we are not awarajbroaches using domi-
nators for implementing filtering algorithms. Even thouglke information it provides
is extremely useful, and can be computed efficiently.

Structure of the paper. The paper is organized as follows. In Section 2, we introduce
DomReachabilitypy presenting its semantics and pruning rules. In Sectiavehow
how we can model Simple path with mandatory nodes in terni3ariReachability
Section 4 gives experimental evidence of the performan@oofiReachabilityor this
type of problem. In Section 5 we show a reduction of the Ordelisjoint-paths prob-
lem (ODP) to OSPMN, which can be solved by our approach.

2 The DomReachability propagator

2.1 Extended dominator graph

Given a flow graphf g and its corresponding soureea nodei is a dominator of node
j if all paths froms to j in fg containi [LT79,SGL97]:

i € Dominators(fg,j) < i # j AVp € Paths(fg,s,j) : i € Nodes(p) (1)

where

p is a subgraph of ¢
p € Paths(fg,i,7) <  Nodes(p) = {k1,....kn} N1 =i Nk, =] (2
Edges(p) = {(kt,ki41) [ 1 <t <n}

Note that the nodes unreachable fremmre dominated by all the other nodes. However,
the nodes reachable fropralways have aimmediatedominator, which can be defined
as

i = ImDominator(fg,j) <
i € Dominators(fg,7j)
{ -3k € Nodes(fg) : i € Dominators(fg,k) A k € Dominators(fg,j)
3)

This property allows to represent the whole dominance icelads a tree, where the
parent of a node is its immediate dominator. The dominaéa& tian be used as an effi-
cient representation of the relation, as there exists mergal algorithms for updating
the tree [SGL97]. This paper only presents a non-increnhaigarithm to compute the
whole relation (see Figure 5).
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Fig. 2. Flow graph Fig. 3. Extended flow graph Fig.4. Extended dominator

tree

Let us now consider the extended graphfaf, Fxt(fg), which is obtained by
replacing the edges by new nodes, and connecting the news remderdingly. This
graph can be formally defined as follows:

s’'=s
(N',E',s') = Ext((N,E,s)) <> { N=NUE
e={(i,j) € E & (i,e) € E'N(e,j) € F’
(4)

The extended dominator graph f§ is the dominator graph of its extended graph.
Figures 2, 3 and 4 show an example of a flow graph, its extendgdhgand its extended
dominator tree, respectively. The extended dominatortesgwo types of nodes: nodes
corresponding to nodes in the original graplode dominatons and nodes correspond-
ing to edges in the original grapleqge dominatods The latter nodes are drawn in
squares.

The extended dominator tree provides useful informatiar. iRstance, consider
two node dominatorsandj. If (i, j) € Edges(DomTree(Exzt(fg))) \ Edges(fg),
there are at least two node-disjoint paths froto j in the flow graph (as it is the case
between nodes 1 and 6 in Figure 4). Note also thatsian ancestor of in the extended
dominator tree, and the path frainto j does not contain any edge dominator, there are
at least two edge-disjoint paths frano j in the flow graph.

2.2 TheDomReachability constraint
The DomReachabilitgonstraint is a constraint on three graphs:

DomReachability(fg, edg,tc) (5)
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where

— fgis aflow graph, i.e., a directed graph with a source node, ekesof nodes is
a subset ofV;

— edyg is the extended dominator graph fj; and

— tcis the transitive closure ofg, i.e,

(i,7) € Edges(tc) < (i,j) € Edges(TransClos(fg))

c
(i,7) € Edges(TransClos(g)) <> Ip : p € Paths(g,1,7) (6)

The above definition oDomReachabilitymplies the following properties which
are important for the pruning th&tomReachabilityperforms. These properties define
relations between the graplfig, edg andtc. These relations can then be used for prun-
ing, as we show in the next section.

1. If (i, 5) is an edge of g, theni reacheg.
(i, j) € Edges(fg) : (i,j) € Edges(tc) (7)
2. If i reacheg, theni reaches all the nodes thateaches.

Vi,j,k € N : (i,j) € Edges(tc) A (j,k) € Edges(tc) — (i, k) € Edges(tc)
(8)
3. If jis reachable from = Source(fg) andi dominateg in fg, then: is reachable
from s andj is reachable froni:

Vi, j € N : (s,j) € Edges(tc) A (i, j) € Edges(edg) — )
(s,i) € Edges(tc) A (i, j) € Edges(tc)

2.3 Pruning rules

We implement the constraint (5) by the propagator that we not
DomReachability((FG, s), EDG,TC). (20)

FG, EDG andT'C are graph variables, i.e., variables whose domain is a sgaphs
[DDDO05]. A graph variable? is represented by a pair of graphsin(G)#Max(G).
The graply thatG approximates must be a supergraph\éfn(G) and a subgraph of
Mazx(G), thereforeMin(G) and M az(G) are called the lower and upper bounds of
G, respectively. So, € Nodes(G) holds ifi € Nodes(Min(QG)), andi ¢ Nodes(G)
holds ifi ¢ Nodes(Maxz(G)) (the same applies for edges). Notice that the sosiafe
the flow graphF'G is a known value.

The definition of theDomReachabilityconstraint and its derived properties give
place to a set of propagation rules. We show here the onesititatate the implemen-
tation of incremental algorithms for keeping the dominaretation and the transitive
closure of the flow graph. The others are given in [QVDO05b]. rAgagation rule is
defined as% where(C' is a condition and4 is an action. Whert' is true, the pruning
defined byA can be performed.
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From property (7) we derive

(i,7) € Edges(Min(FQ))
Edges(Min(TC)) := Edges(Min(TC)) U {{i,j)}

(11)

From property (8) we derive

(1,7) € Edges(Min(TC)) A (j,k) € Edges(Min(TC))
Edges(Min(TC)) := Edges(Min(TC)) U{{i,k)}

(12)

From property (9) we derive, fore Nodes(Min(FG)),

(s,7) € Edges(Min(TC)) A (i, j) € Edges(Min(EDG))

Edges(Min(TC)) := Edges(Min(TC)) U {(s, %), (i,7)} (13)

From definition (6) we derive

(i,7) & Edges(TransClos(Max(FQG)))
Edges(Max(TC)) := Edges(Max(TC)) \ {{(i,7)}

From definition (1) we derive

(1,7) € Edges(DomGraph(Ext(Max(FG))))
Edges(Min(EDG)) := Edges(Min(EGD)) U {{i,j)}

(14)

(15)

where DomGraph is a function that returns the dominator graph of a flow grajh,
(i,7) € Edges(DomGraph(fg)) < i € Dominators(fg,j).

2.4 Implementation of DomReachability

DomReachabilitthas been implemented using a message passing approach][VH04
on top of the multi-paradigm programming language Oz [Mdz0# [QVDO05a], we
discuss the implementation @fomReachabilityin detail. In this section we simply
refer to the update of the upper bound/af’ and the lower bound of DG. Both values
should be updated when an edge is removed fidm(F'G). However, as explained

in [QVDO05a], we do not compute these values each time an exdg#rioved since this
certainly leads to a considerably amount of unnecessarypuatation. This is due to the
fact that these two values evolve monotonically. What wealbt do is to consider all

the removals at once and make one computation per set of ezigesed.

Currently, our way of updatin@’C’s upper bound is simply by runninBFS on
each node of'C’s upper bound. So the complexity of this updatedéN * (N +
E)). Regardingt DG's lower bound, the set of dominators is computed by using the
algorithm in Figure 5 (which is actually equivalent to Ahodablliman’s algorithm
for computing dominators [AU77]Yoms(i) is the set of dominators of noden fg.

Let us assume th&FSreturns the reachable node&ms(7) is initialized with () or
Nodes(fg)\ {i} depending on whethéris reached fronbource(fg) (since any node
dominates an non-reached node). The basic idea of thisthlgas that, if Source(fg)
does not reach after removingi theni dominates;j. So, each node is removed in
order to detect the nodes that it dominates. Therefore thrgatation of dominators is
O(N * (N + E)) too.
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GetDominators(fg)
nodeso := DFS(fg, Source(fg))
for i € Nodes(fg) do
doms(3) = if ¢ € nodeso then( elseNodes(fg) \ {i} end
end
for 7 € nodeso do
nodes1 := DF S(RemoveNode(fg,1), Source(fg))
for j € nodeso \ (nodes: U {i}) do
doms(j) := doms(j) U {i}
end
end
returndoms
end

Fig. 5. Computation of Dominators

3 Solving Simple path with mandatory nodes with DomReachability

In this section we elaborate on the important role thamReachabilitycan play in
solving Simple path with mandatory nodes. This problem tgi$n finding a simple
path in a directed graph containing a set of mandatory nodlegmnple path is a path
where each node is visited once, i.e., given a directed ggaphsource noderc, a
destination nodést, and a set of mandatory nodesindnodes, we want to find a path
in g from src to dst, going throughnandnodes and visiting each node only once.

The contribution ofDomReachabilityconsists in discovering nodes/edges that are
part of the path early on. This information is obtained by poating dominators in each
labeling step. Let us consider the following two cdses

— Consider the graph variable on the left of Figure 6. Assuna titode 1 reaches
node 9. This information is enough to infer that node 5 besxaghe graph, node
1 reaches node 5, and node 5 reaches node 9.

— Consider the graph variable on the left of Figure 7. Assuna tiode 1 reaches
node 5. This information is enough to infer that edge®), (2, 3),(3,4) and(4, 5)
are in the graph, which implies that node 1 reaches node3,4,3, node 2 at least
reaches nodes 2,3,4,5, node 3 at least reaches nodes 31 4&dav at least reaches
nodes 4,5.

Note that the Hamiltonian path problem (finding a simple gmtween two nodes
containing all the nodes of the graph [GJ79,CLR90]) can daced to Simple path with
mandatory nodes by defining the set of mandatory nod@éass(g) \ {src, dst}.

YIn Figures 6 and 7, nodes and edges that belong to the lowerdboluthe graph variable
are in solid line. For instance, the graph variable on thé dafe of Figure 6 is a graph
variable whose lower bound is the gragfil, 5}, ), and whose upper bound is the graph
({1,2,3,4,5,6,7,8,9},{(1,2), (1,3),(1,4),(2,5), (3,5), (4,5), (5,6), (5, 7), (5, 8), (6,9),
(7,9),(8,9)}).
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The above definition of Simple path with mandatory nodes @fotmally defined
as follows.

p € Paths(g, sre, dst)
SPMN (g, src,dst, mandnodes, p) < ¢ NoCycle(p) (16)
mandnodes C Nodes(p)

SPM N stands for “Simple path with mandatory node&"oCycle(p) states thap is
a simple path, i.e., a path where no node is visited twices @i&finition of Simple path
with mandatory nodes implies the following property.

DomReachability(p, edg, tc) A (Source(p), dst) € Edges(tc) A

mandnodes C {i | (Source(p),i) € Edges(tc)} (17)

This is because the destination is reached by the sourcéapadth contains the manda-
tory nodes. This derived property and the fact that we catempntSPM N in terms
of the AlIDIiff constraint [Rég94] and thidoCycleconstraint [CL97] suggest the two
approaches for Simple path with mandatory nodes summaiiz&dble 1 (which are
compared in the next section). In the first approach, we bHgiconsiderAllDiff and
NoCycle In the second approach we additionally considemReachability

4 Experimental results

In this section we present a set of experiments that showDtbatReachabilitys suit-
able for Simple path with mandatory nodes. In our experimapproach Zin Table 1)



10 Luis Quesada et al.

Approach 1 Approach 2

SPMN/ g, src,dst, mandnodes, p)|SPM N (g, src, dst, mandnodes, p)
DomReachability(p, edg, tc)

(Source(p), dst) € Edges(tc)

mandnodes C {i | (Source(p),i) € Edges(tc)}

Table 1. Two approaches for solving Simple path with mandatory nodes

|Name |Figure |Source| Destinalion| Mand. Nodes |Order | Opt. Nodes) Failures| Time
30 89

SPMN.22 [SPMa]|1 22 4710161821 false

10 42 129
SPMN.22full  [[SPMb]| 1 22 all false

15 158 514
SPMN.52a [SPMc]|1 52 1113243945 false

20 210 693
SPMN.52b [SPMc]|1 52 45713161922 false

25 330 1152

2429333639444549

32 101 399
SPMN52full  [[SPMd]| 1 52 all false

37 100 402
SPMN.520rdeta|[SPMc]| 1 52 4539241311 true

42 731 3518
SPMN.520rderb|[SPMc] |1 52 111324 3945 true 47 508 3046

Table 2. Simple path with mandatory nodes instances Taple 3. Performance with re-
spect to optional nodes

outperformsApproach 1 These experiments also show that Simple path with manda-

tory nodes tends to be harder when the number of optionalsiodecases if they are
uniformly distributed in the graph. We have also observed the labeling strategy that
we implemented wittDomReachabilittends to minimize the use of optional nodes
(which is a common need when the resources are limited).

In Table 2, we define the instances on which we made the teSfatié 4. The
node id of the destination is also the size of the graph. THenwo Order is true
for the instances whose mandatory nodes are visited in ttier ajiven. Notice that
SPMN.520rderb has no solution. The time measurements are given in sec®hds
number of failures means the number of failed alternativies tbefore getting the so-
lution.

We have made four types of tests in our experiments: uSialyINwithout Dom-
Reachability(column “SPMN”), usingSPMNand DomReachabilityput without con-
sidering the dominance graph (column “SPMN+R"), usBigMNandDomReachabil-
ity with the dominance graph (column “SPMN+R+ND"), and usBi@MNandDom-
Reachabilitywith the dominance graph of the extended flow graph (nodes-edmi-
nators (column “SPMN+R+ND+ED")).

As it can be observed in Table 4, we were not able to get a solftr SPMN22 in
less than 30 minutes without usilpmReachabilityHowever, even though the num-
ber of failures is still inferior, the use @omReachabilitgloes not save too much time
when dealing with mandatory nodes only. This is due to thetfet we are basing our

2 In order to save space, the figures mentioned in the tables erepped and made available
through references [SPMa], [SPMb], [SPMc] and [SPMd].
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Problem SPMN SPMN+R SPMN+R+ND | SPMN+R+ND+ED
Instance Figure |Failures|Time [Failures|Time |Failures|Time Fa\lures|Time
SPMN.22 [SPMa]|+130000 +1800| 91 6.81 (40 6.55 |13 4.45
SPMN.22full [SPMb]|213 1.44 |19 0.95 |0 042 |0 1.22
SPMN.52b - - - +900 ([+1800+700 [+1800 100 402
SPMN.52full [SPMd]| 3012 143 |774 765 |3 851 (3 45.03
SPMNL520rdera|[SPMc]|+12000 | +1800]51 46.33(45 81 16 57.07
SPMN.520rdetb | - +12000 (+1800(+1500 |+1800/81 157 |41 117

Table 4. Simple path with mandatory nodes tests

implementation o6PMNon two things: thélIDiff constraint [Rég94] (that lets us effi-
ciently remove branches when there is no possibility of eissimg different successors
to the nodes) and theoCycleconstraint [CL97] (that avoids re-visiting nodes).

The reason whysPMNdoes not perform well with optional nodes is because we
are no longer able to impose the gloBdIDiff constraint on the successors of the nodes
since we do not know a priori which nodes are going to be usefhdt, one thing that
we observed is that the problem tends to be harder to solva thieenumber of optional
nodes increases. In Table 3, all the tests were performed DeimReachabilityn the
graph of 52 nodes.

Even though, in SPMI2, the benefit caused by the computation of edge domi-
nators is not that significant, we were not able to obtain atsmi for SPMN52b in
less than 30 minutes, while we obtained a solution in 402rs#xby computing edge
dominators. So, the computation of edge dominators payis affost of the cases, but
node dominators should be computed in order to profit froneettgminators.

4.1 Labeling strategy

DomReachabilitprovides interesting information for implementing smatiéling strate-
gies, due to the fact that it associates each node with thef setdes that it reaches.
This information can be used to guide the search in a smart Bayinstance, we ob-
served that, when choosing first the nadéat reaches the most nodes and selecting
as a successor offirst a node that reaches, we obtain paths that minimize the use of
optional nodes (as it can be observed in [SPMc]).

Nevertheless, in order to reduce the number of failures idiffign the solution of
[DPc] (which was solved in less than 100 failures), we fadottee nodes that were
closer to the mandatory nodes, i.e., if the successors afttbeen node are not manda-
tory the chosen successor is the one closest to the next hoaydade.

4.2 Imposing order on nodes

An additional feature oDomReachabilitys its suitability for imposing ordering con-
straints on nodes (which is a common issue in routing prokjei fact, it might be

the case that we have to visit the nodes of the graph in a pkati¢partial) order. We

call this version the “Ordered simple path with mandatorge®problem{OSPMN)
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Fig. 8. Finding two disjoint paths Fig. 9. Finding a simple path passing through n

Our way of forcing a node to be visited before a nodgis by imposing that
reachesj andj does not reach. The tests on the instances SPMROrdera and
SPMN.520rderb show thatDomReachabilityakes the most advantage of this infor-
mation to avoid branches in the search tree with no solufitmiice that we are able
to solve SPMN520rdera (which is an extension of SPMBRa) in 57.07 seconds. We
are also able to detect the inconsistency of SP8ADrderb in 117 seconds.

5 Reducing the Ordered disjoint-paths problem to the Simple
path with mandatory nodes problem

The k-Disjoint-paths problem consist in finding pairwise disjoint paths betweédn
pairs of nodegs1,d1), (s2,dsa), ..., (sk,dx). Both the node-disjoint version and the
edge-disjoint version are NP-complete [SP78]. We will foom the node-disjoint ver-
sion.

Let us first look at the problem of reducing the 2-Disjointfgaproblem to SPMN.
Suppose that we want to find two disjoint paths between ths pai, d;) and(ss, d2)
in g. Let¢’ andn be defined as follows.

n & Nodes(g)
g = AddEdges(g1, E1 U Es)
g1 = AddNode(ga, n)
g2 = RemoveNodes(g, {d1, s2})
Ey = IncEdges(g,d1)[d1/n]
Es = OutEdges(g, s2)[s2/n]

(18)

Finding the two disjoint paths is equivalent to finding a sienpath froms; to ds
passing through in ¢’. The correctness of this reduction relies on the fact that th
concatenation of the two disjoint paths forms a simple patheseach disjoint path
is a simple path. Figure 9 shows the the reduction of the twiit paths problem
of Figure 8. The path found in Figure 9 corresponds to the atamation of the two
disjoint paths of Figure 8.
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ReduceODR(y, ({s1, d1, mn1,order1), ..., {sk, di, mng, ordery))))
ospmn = (g, s1,d1, mni,order:)
fori € {2,3,...,k} do
(¢',s',d',mn’ order’) := ospmn
ospmn := Reduce2.ODP({g’, {({s',d',mn’, order’), {s:,d;, mn;, order;))))
end
returnospmn
end

Fig. 10.Reducing ODP to OSPMN

Let us consider now an extended version of the 2 Node-digjaith problem that we
call 2 Ordered node-disjoint path (20DPn this version, each pair is associated with
a set of mandatory nodes and an order relation on the maydaades. That is, given
the directed graply and the tuplessi, di, mny, order;) and (ss, da, mna, orders),
the goal is to find two paths, andps such thap, is a path froms; to d; visiting mn;
respectingrdery, po is a path fromss to ds visiting mnso respectingorders, andp,
andp- are node-disjoint.

The 20DP problemg, ({(s1,d1, mny, ordert), (s2,da, mna, orders))) can be re-
duced to OSPMNy’, s1, d2, mn’, order’) whereg' is defined as in the previous reduc-
tion,mn’ = mn; Umns U {n}, nis defined as before, and

ordery U
order’ = { ordery U (19)
{(n1,n2) | (n1 € mny Ang =n)V(ng =nAny €mng)}.

The simple path traverses the nodes; in the ordeforder;, and the nodesins in the
orderorders, the nodesnn; are visited before and the nodes imn- aftern.

Let Reduce_2_ODP be defined as

Reduce 2. ODP(ODPins) = OSPMNins
ODPins = (g, {(s1,d1, mny,order), (s2,da, mna, orders)))
OSPMNins = (g, s1,d2, mn', order’)
(20)

The functionReduceO D P, which reduces any ordered disjoint path problem (ODP)
to OSPMN, can be defined as shown in Figure 10. Certainly, weras that the pairs
(s1,d1), (s2,d2), ..., (sk,di) are pairwise node-disjoint. However, this condition can
be easily fulfilled by duplicating the nodes that are used byetthan one pair.

Note that the conventionalnode-disjoint paths problem can be trivially reduced to
ODP. We simply need to map each pgir, d;) to (s;, d;, 0, 0). We usedReduceOD P
to solve the case shown in [DPc]. In this case we were inteddst finding 14 node-
disjoint paths in a directed graph of 165 nodes.
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6 Conclusion and future work

We presenteddomReachabilitya constrained graph propagator that can be used for
solving constrained path problem3omReachabilityis a propagator that reasons in
terms of the three partially defined graphs that it has asmaegs. Further definition of
one of its graphs may cause the other two graphs to be furdiiered!. After introducing
the semantics and pruning rulesdmReachabilitywe showed how its use can speed
up a standard approach for dealing with Simple path probléttm mandatory nodes.
Our experiments show that the gain is increased with theepi@sof optional nodes.
The latter makes the problem harder, and standard appregaei®rm worse.

It is important to emphasize that both the computation ofenddminators, and
the computation of edge dominators play an essential raleemperformance dbom-
Reachability The reason is that each one is able to prune when the othaeontaXotice
that Figure 6 is a context where the computation of edge datoia cannot infer any-
thing since there is no edge dominator. Similarly, Figureg@resents a context where
the computation of edge dominators discovers more infdondhan the computation
of node dominators.

As mentioned before, our current approach for maintainhmgy dominator graph
and the transitive closure has complexityN * (N + E)). However, we are aware of
O(N + E) algorithms for updating these structures [SGL97,DI00]fdct, there is a
non-incremental algorithm for computing dominator tréest is more efficient than our
current algorithm since it i©(Ea(E, N)), wherea(E, N) is a functional inverse of
Ackermann’s function [LT79]. Certainly, our next step istoplement these algorithms
since we believe that they will remarkably improve the perfance oDomReachabil-

ity.
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